net/bnxt: fix PTP support for Thor
[dpdk.git] / drivers / net / bnxt / bnxt_rxr.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2021 Broadcom
3  * All rights reserved.
4  */
5
6 #include <inttypes.h>
7 #include <stdbool.h>
8
9 #include <rte_bitmap.h>
10 #include <rte_byteorder.h>
11 #include <rte_malloc.h>
12 #include <rte_memory.h>
13
14 #include "bnxt.h"
15 #include "bnxt_reps.h"
16 #include "bnxt_ring.h"
17 #include "bnxt_rxr.h"
18 #include "bnxt_rxq.h"
19 #include "hsi_struct_def_dpdk.h"
20 #ifdef RTE_LIBRTE_IEEE1588
21 #include "bnxt_hwrm.h"
22 #endif
23
24 #include <bnxt_tf_common.h>
25 #include <ulp_mark_mgr.h>
26
27 /*
28  * RX Ring handling
29  */
30
31 static inline struct rte_mbuf *__bnxt_alloc_rx_data(struct rte_mempool *mb)
32 {
33         struct rte_mbuf *data;
34
35         data = rte_mbuf_raw_alloc(mb);
36
37         return data;
38 }
39
40 static inline int bnxt_alloc_rx_data(struct bnxt_rx_queue *rxq,
41                                      struct bnxt_rx_ring_info *rxr,
42                                      uint16_t raw_prod)
43 {
44         uint16_t prod = RING_IDX(rxr->rx_ring_struct, raw_prod);
45         struct rx_prod_pkt_bd *rxbd;
46         struct rte_mbuf **rx_buf;
47         struct rte_mbuf *mbuf;
48
49         rxbd = &rxr->rx_desc_ring[prod];
50         rx_buf = &rxr->rx_buf_ring[prod];
51         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
52         if (!mbuf) {
53                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
54                 return -ENOMEM;
55         }
56
57         *rx_buf = mbuf;
58         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
59
60         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
61
62         return 0;
63 }
64
65 static inline int bnxt_alloc_ag_data(struct bnxt_rx_queue *rxq,
66                                      struct bnxt_rx_ring_info *rxr,
67                                      uint16_t raw_prod)
68 {
69         uint16_t prod = RING_IDX(rxr->ag_ring_struct, raw_prod);
70         struct rx_prod_pkt_bd *rxbd;
71         struct rte_mbuf **rx_buf;
72         struct rte_mbuf *mbuf;
73
74         rxbd = &rxr->ag_desc_ring[prod];
75         rx_buf = &rxr->ag_buf_ring[prod];
76         if (rxbd == NULL) {
77                 PMD_DRV_LOG(ERR, "Jumbo Frame. rxbd is NULL\n");
78                 return -EINVAL;
79         }
80
81         if (rx_buf == NULL) {
82                 PMD_DRV_LOG(ERR, "Jumbo Frame. rx_buf is NULL\n");
83                 return -EINVAL;
84         }
85
86         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
87         if (!mbuf) {
88                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
89                 return -ENOMEM;
90         }
91
92         *rx_buf = mbuf;
93         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
94
95         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
96
97         return 0;
98 }
99
100 static inline void bnxt_reuse_rx_mbuf(struct bnxt_rx_ring_info *rxr,
101                                struct rte_mbuf *mbuf)
102 {
103         uint16_t prod, raw_prod = RING_NEXT(rxr->rx_raw_prod);
104         struct rte_mbuf **prod_rx_buf;
105         struct rx_prod_pkt_bd *prod_bd;
106
107         prod = RING_IDX(rxr->rx_ring_struct, raw_prod);
108         prod_rx_buf = &rxr->rx_buf_ring[prod];
109
110         RTE_ASSERT(*prod_rx_buf == NULL);
111         RTE_ASSERT(mbuf != NULL);
112
113         *prod_rx_buf = mbuf;
114
115         prod_bd = &rxr->rx_desc_ring[prod];
116
117         prod_bd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
118
119         rxr->rx_raw_prod = raw_prod;
120 }
121
122 static inline
123 struct rte_mbuf *bnxt_consume_rx_buf(struct bnxt_rx_ring_info *rxr,
124                                      uint16_t cons)
125 {
126         struct rte_mbuf **cons_rx_buf;
127         struct rte_mbuf *mbuf;
128
129         cons_rx_buf = &rxr->rx_buf_ring[RING_IDX(rxr->rx_ring_struct, cons)];
130         RTE_ASSERT(*cons_rx_buf != NULL);
131         mbuf = *cons_rx_buf;
132         *cons_rx_buf = NULL;
133
134         return mbuf;
135 }
136
137 static void bnxt_tpa_get_metadata(struct bnxt *bp,
138                                   struct bnxt_tpa_info *tpa_info,
139                                   struct rx_tpa_start_cmpl *tpa_start,
140                                   struct rx_tpa_start_cmpl_hi *tpa_start1)
141 {
142         tpa_info->cfa_code_valid = 0;
143         tpa_info->vlan_valid = 0;
144         tpa_info->hash_valid = 0;
145         tpa_info->l4_csum_valid = 0;
146
147         if (likely(tpa_start->flags_type &
148                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS_RSS_VALID))) {
149                 tpa_info->hash_valid = 1;
150                 tpa_info->rss_hash = rte_le_to_cpu_32(tpa_start->rss_hash);
151         }
152
153         if (bp->vnic_cap_flags & BNXT_VNIC_CAP_RX_CMPL_V2) {
154                 struct rx_tpa_start_v2_cmpl *v2_tpa_start = (void *)tpa_start;
155                 struct rx_tpa_start_v2_cmpl_hi *v2_tpa_start1 =
156                         (void *)tpa_start1;
157
158                 if (v2_tpa_start->agg_id &
159                     RX_TPA_START_V2_CMPL_METADATA1_VALID) {
160                         tpa_info->vlan_valid = 1;
161                         tpa_info->vlan =
162                                 rte_le_to_cpu_16(v2_tpa_start1->metadata0);
163                 }
164
165                 if (v2_tpa_start1->flags2 & RX_CMP_FLAGS2_L4_CSUM_ALL_OK_MASK)
166                         tpa_info->l4_csum_valid = 1;
167
168                 return;
169         }
170
171         tpa_info->cfa_code_valid = 1;
172         tpa_info->cfa_code = rte_le_to_cpu_16(tpa_start1->cfa_code);
173         if (tpa_start1->flags2 &
174             rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_META_FORMAT_VLAN)) {
175                 tpa_info->vlan_valid = 1;
176                 tpa_info->vlan = rte_le_to_cpu_32(tpa_start1->metadata);
177         }
178
179         if (likely(tpa_start1->flags2 &
180                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_L4_CS_CALC)))
181                 tpa_info->l4_csum_valid = 1;
182 }
183
184 static void bnxt_tpa_start(struct bnxt_rx_queue *rxq,
185                            struct rx_tpa_start_cmpl *tpa_start,
186                            struct rx_tpa_start_cmpl_hi *tpa_start1)
187 {
188         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
189         uint16_t agg_id;
190         uint16_t data_cons;
191         struct bnxt_tpa_info *tpa_info;
192         struct rte_mbuf *mbuf;
193
194         agg_id = bnxt_tpa_start_agg_id(rxq->bp, tpa_start);
195
196         data_cons = tpa_start->opaque;
197         tpa_info = &rxr->tpa_info[agg_id];
198
199         mbuf = bnxt_consume_rx_buf(rxr, data_cons);
200
201         bnxt_reuse_rx_mbuf(rxr, tpa_info->mbuf);
202
203         tpa_info->agg_count = 0;
204         tpa_info->mbuf = mbuf;
205         tpa_info->len = rte_le_to_cpu_32(tpa_start->len);
206
207         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
208         mbuf->nb_segs = 1;
209         mbuf->next = NULL;
210         mbuf->pkt_len = rte_le_to_cpu_32(tpa_start->len);
211         mbuf->data_len = mbuf->pkt_len;
212         mbuf->port = rxq->port_id;
213         mbuf->ol_flags = PKT_RX_LRO;
214
215         bnxt_tpa_get_metadata(rxq->bp, tpa_info, tpa_start, tpa_start1);
216
217         if (likely(tpa_info->hash_valid)) {
218                 mbuf->hash.rss = tpa_info->rss_hash;
219                 mbuf->ol_flags |= PKT_RX_RSS_HASH;
220         } else if (tpa_info->cfa_code_valid) {
221                 mbuf->hash.fdir.id = tpa_info->cfa_code;
222                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
223         }
224
225         if (tpa_info->vlan_valid) {
226                 mbuf->vlan_tci = tpa_info->vlan;
227                 mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
228         }
229
230         if (likely(tpa_info->l4_csum_valid))
231                 mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
232
233         /* recycle next mbuf */
234         data_cons = RING_NEXT(data_cons);
235         bnxt_reuse_rx_mbuf(rxr, bnxt_consume_rx_buf(rxr, data_cons));
236 }
237
238 static int bnxt_agg_bufs_valid(struct bnxt_cp_ring_info *cpr,
239                 uint8_t agg_bufs, uint32_t raw_cp_cons)
240 {
241         uint16_t last_cp_cons;
242         struct rx_pkt_cmpl *agg_cmpl;
243
244         raw_cp_cons = ADV_RAW_CMP(raw_cp_cons, agg_bufs);
245         last_cp_cons = RING_CMP(cpr->cp_ring_struct, raw_cp_cons);
246         agg_cmpl = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[last_cp_cons];
247         cpr->valid = FLIP_VALID(raw_cp_cons,
248                                 cpr->cp_ring_struct->ring_mask,
249                                 cpr->valid);
250         return CMP_VALID(agg_cmpl, raw_cp_cons, cpr->cp_ring_struct);
251 }
252
253 /* TPA consume agg buffer out of order, allocate connected data only */
254 static int bnxt_prod_ag_mbuf(struct bnxt_rx_queue *rxq)
255 {
256         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
257         uint16_t raw_next = RING_NEXT(rxr->ag_raw_prod);
258         uint16_t bmap_next = RING_IDX(rxr->ag_ring_struct, raw_next);
259
260         /* TODO batch allocation for better performance */
261         while (rte_bitmap_get(rxr->ag_bitmap, bmap_next)) {
262                 if (unlikely(bnxt_alloc_ag_data(rxq, rxr, raw_next))) {
263                         PMD_DRV_LOG(ERR, "agg mbuf alloc failed: prod=0x%x\n",
264                                     raw_next);
265                         break;
266                 }
267                 rte_bitmap_clear(rxr->ag_bitmap, bmap_next);
268                 rxr->ag_raw_prod = raw_next;
269                 raw_next = RING_NEXT(raw_next);
270                 bmap_next = RING_IDX(rxr->ag_ring_struct, raw_next);
271         }
272
273         return 0;
274 }
275
276 static int bnxt_rx_pages(struct bnxt_rx_queue *rxq,
277                          struct rte_mbuf *mbuf, uint32_t *tmp_raw_cons,
278                          uint8_t agg_buf, struct bnxt_tpa_info *tpa_info)
279 {
280         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
281         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
282         int i;
283         uint16_t cp_cons, ag_cons;
284         struct rx_pkt_cmpl *rxcmp;
285         struct rte_mbuf *last = mbuf;
286         bool is_p5_tpa = tpa_info && BNXT_CHIP_P5(rxq->bp);
287
288         for (i = 0; i < agg_buf; i++) {
289                 struct rte_mbuf **ag_buf;
290                 struct rte_mbuf *ag_mbuf;
291
292                 if (is_p5_tpa) {
293                         rxcmp = (void *)&tpa_info->agg_arr[i];
294                 } else {
295                         *tmp_raw_cons = NEXT_RAW_CMP(*tmp_raw_cons);
296                         cp_cons = RING_CMP(cpr->cp_ring_struct, *tmp_raw_cons);
297                         rxcmp = (struct rx_pkt_cmpl *)
298                                         &cpr->cp_desc_ring[cp_cons];
299                 }
300
301 #ifdef BNXT_DEBUG
302                 bnxt_dump_cmpl(cp_cons, rxcmp);
303 #endif
304
305                 ag_cons = rxcmp->opaque;
306                 RTE_ASSERT(ag_cons <= rxr->ag_ring_struct->ring_mask);
307                 ag_buf = &rxr->ag_buf_ring[ag_cons];
308                 ag_mbuf = *ag_buf;
309                 RTE_ASSERT(ag_mbuf != NULL);
310
311                 ag_mbuf->data_len = rte_le_to_cpu_16(rxcmp->len);
312
313                 mbuf->nb_segs++;
314                 mbuf->pkt_len += ag_mbuf->data_len;
315
316                 last->next = ag_mbuf;
317                 last = ag_mbuf;
318
319                 *ag_buf = NULL;
320
321                 /*
322                  * As aggregation buffer consumed out of order in TPA module,
323                  * use bitmap to track freed slots to be allocated and notified
324                  * to NIC
325                  */
326                 rte_bitmap_set(rxr->ag_bitmap, ag_cons);
327         }
328         last->next = NULL;
329         bnxt_prod_ag_mbuf(rxq);
330         return 0;
331 }
332
333 static inline struct rte_mbuf *bnxt_tpa_end(
334                 struct bnxt_rx_queue *rxq,
335                 uint32_t *raw_cp_cons,
336                 struct rx_tpa_end_cmpl *tpa_end,
337                 struct rx_tpa_end_cmpl_hi *tpa_end1)
338 {
339         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
340         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
341         uint16_t agg_id;
342         struct rte_mbuf *mbuf;
343         uint8_t agg_bufs;
344         uint8_t payload_offset;
345         struct bnxt_tpa_info *tpa_info;
346
347         if (BNXT_CHIP_P5(rxq->bp)) {
348                 struct rx_tpa_v2_end_cmpl *th_tpa_end;
349                 struct rx_tpa_v2_end_cmpl_hi *th_tpa_end1;
350
351                 th_tpa_end = (void *)tpa_end;
352                 th_tpa_end1 = (void *)tpa_end1;
353                 agg_id = BNXT_TPA_END_AGG_ID_TH(th_tpa_end);
354                 agg_bufs = BNXT_TPA_END_AGG_BUFS_TH(th_tpa_end1);
355                 payload_offset = th_tpa_end1->payload_offset;
356         } else {
357                 agg_id = BNXT_TPA_END_AGG_ID(tpa_end);
358                 agg_bufs = BNXT_TPA_END_AGG_BUFS(tpa_end);
359                 if (!bnxt_agg_bufs_valid(cpr, agg_bufs, *raw_cp_cons))
360                         return NULL;
361                 payload_offset = tpa_end->payload_offset;
362         }
363
364         tpa_info = &rxr->tpa_info[agg_id];
365         mbuf = tpa_info->mbuf;
366         RTE_ASSERT(mbuf != NULL);
367
368         if (agg_bufs) {
369                 bnxt_rx_pages(rxq, mbuf, raw_cp_cons, agg_bufs, tpa_info);
370         }
371         mbuf->l4_len = payload_offset;
372
373         struct rte_mbuf *new_data = __bnxt_alloc_rx_data(rxq->mb_pool);
374         RTE_ASSERT(new_data != NULL);
375         if (!new_data) {
376                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
377                 return NULL;
378         }
379         tpa_info->mbuf = new_data;
380
381         return mbuf;
382 }
383
384 uint32_t bnxt_ptype_table[BNXT_PTYPE_TBL_DIM] __rte_cache_aligned;
385
386 static void __rte_cold
387 bnxt_init_ptype_table(void)
388 {
389         uint32_t *pt = bnxt_ptype_table;
390         static bool initialized;
391         int ip6, tun, type;
392         uint32_t l3;
393         int i;
394
395         if (initialized)
396                 return;
397
398         for (i = 0; i < BNXT_PTYPE_TBL_DIM; i++) {
399                 if (i & (RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN >> 2))
400                         pt[i] = RTE_PTYPE_L2_ETHER_VLAN;
401                 else
402                         pt[i] = RTE_PTYPE_L2_ETHER;
403
404                 ip6 = i & (RX_PKT_CMPL_FLAGS2_IP_TYPE >> 7);
405                 tun = i & (RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC >> 2);
406                 type = (i & 0x78) << 9;
407
408                 if (!tun && !ip6)
409                         l3 = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
410                 else if (!tun && ip6)
411                         l3 = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
412                 else if (tun && !ip6)
413                         l3 = RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
414                 else
415                         l3 = RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
416
417                 switch (type) {
418                 case RX_PKT_CMPL_FLAGS_ITYPE_ICMP:
419                         if (tun)
420                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_ICMP;
421                         else
422                                 pt[i] |= l3 | RTE_PTYPE_L4_ICMP;
423                         break;
424                 case RX_PKT_CMPL_FLAGS_ITYPE_TCP:
425                         if (tun)
426                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_TCP;
427                         else
428                                 pt[i] |= l3 | RTE_PTYPE_L4_TCP;
429                         break;
430                 case RX_PKT_CMPL_FLAGS_ITYPE_UDP:
431                         if (tun)
432                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_UDP;
433                         else
434                                 pt[i] |= l3 | RTE_PTYPE_L4_UDP;
435                         break;
436                 case RX_PKT_CMPL_FLAGS_ITYPE_IP:
437                         pt[i] |= l3;
438                         break;
439                 }
440         }
441         initialized = true;
442 }
443
444 static uint32_t
445 bnxt_parse_pkt_type(struct rx_pkt_cmpl *rxcmp, struct rx_pkt_cmpl_hi *rxcmp1)
446 {
447         uint32_t flags_type, flags2;
448         uint8_t index;
449
450         flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
451         flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
452
453         /*
454          * Index format:
455          *     bit 0: RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC
456          *     bit 1: RX_CMPL_FLAGS2_IP_TYPE
457          *     bit 2: RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN
458          *     bits 3-6: RX_PKT_CMPL_FLAGS_ITYPE
459          */
460         index = ((flags_type & RX_PKT_CMPL_FLAGS_ITYPE_MASK) >> 9) |
461                 ((flags2 & (RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN |
462                            RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC)) >> 2) |
463                 ((flags2 & RX_PKT_CMPL_FLAGS2_IP_TYPE) >> 7);
464
465         return bnxt_ptype_table[index];
466 }
467
468 static void __rte_cold
469 bnxt_init_ol_flags_tables(struct bnxt_rx_queue *rxq)
470 {
471         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
472         struct rte_eth_conf *dev_conf;
473         bool outer_cksum_enabled;
474         uint64_t offloads;
475         uint32_t *pt;
476         int i;
477
478         dev_conf = &rxq->bp->eth_dev->data->dev_conf;
479         offloads = dev_conf->rxmode.offloads;
480
481         outer_cksum_enabled = !!(offloads & (DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
482                                              DEV_RX_OFFLOAD_OUTER_UDP_CKSUM));
483
484         /* Initialize ol_flags table. */
485         pt = rxr->ol_flags_table;
486         for (i = 0; i < BNXT_OL_FLAGS_TBL_DIM; i++) {
487                 pt[i] = 0;
488
489                 if (i & RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN)
490                         pt[i] |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
491
492                 if (i & (RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC << 3)) {
493                         /* Tunnel case. */
494                         if (outer_cksum_enabled) {
495                                 if (i & RX_PKT_CMPL_FLAGS2_IP_CS_CALC)
496                                         pt[i] |= PKT_RX_IP_CKSUM_GOOD;
497
498                                 if (i & RX_PKT_CMPL_FLAGS2_L4_CS_CALC)
499                                         pt[i] |= PKT_RX_L4_CKSUM_GOOD;
500
501                                 if (i & RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC)
502                                         pt[i] |= PKT_RX_OUTER_L4_CKSUM_GOOD;
503                         } else {
504                                 if (i & RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC)
505                                         pt[i] |= PKT_RX_IP_CKSUM_GOOD;
506
507                                 if (i & RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC)
508                                         pt[i] |= PKT_RX_L4_CKSUM_GOOD;
509                         }
510                 } else {
511                         /* Non-tunnel case. */
512                         if (i & RX_PKT_CMPL_FLAGS2_IP_CS_CALC)
513                                 pt[i] |= PKT_RX_IP_CKSUM_GOOD;
514
515                         if (i & RX_PKT_CMPL_FLAGS2_L4_CS_CALC)
516                                 pt[i] |= PKT_RX_L4_CKSUM_GOOD;
517                 }
518         }
519
520         /* Initialize checksum error table. */
521         pt = rxr->ol_flags_err_table;
522         for (i = 0; i < BNXT_OL_FLAGS_ERR_TBL_DIM; i++) {
523                 pt[i] = 0;
524
525                 if (i & (RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC << 2)) {
526                         /* Tunnel case. */
527                         if (outer_cksum_enabled) {
528                                 if (i & (RX_PKT_CMPL_ERRORS_IP_CS_ERROR >> 4))
529                                         pt[i] |= PKT_RX_IP_CKSUM_BAD;
530
531                                 if (i & (RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR >> 4))
532                                         pt[i] |= PKT_RX_OUTER_IP_CKSUM_BAD;
533
534                                 if (i & (RX_PKT_CMPL_ERRORS_L4_CS_ERROR >> 4))
535                                         pt[i] |= PKT_RX_L4_CKSUM_BAD;
536
537                                 if (i & (RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR >> 4))
538                                         pt[i] |= PKT_RX_OUTER_L4_CKSUM_BAD;
539                         } else {
540                                 if (i & (RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR >> 4))
541                                         pt[i] |= PKT_RX_IP_CKSUM_BAD;
542
543                                 if (i & (RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR >> 4))
544                                         pt[i] |= PKT_RX_L4_CKSUM_BAD;
545                         }
546                 } else {
547                         /* Non-tunnel case. */
548                         if (i & (RX_PKT_CMPL_ERRORS_IP_CS_ERROR >> 4))
549                                 pt[i] |= PKT_RX_IP_CKSUM_BAD;
550
551                         if (i & (RX_PKT_CMPL_ERRORS_L4_CS_ERROR >> 4))
552                                 pt[i] |= PKT_RX_L4_CKSUM_BAD;
553                 }
554         }
555 }
556
557 static void
558 bnxt_set_ol_flags(struct bnxt_rx_ring_info *rxr, struct rx_pkt_cmpl *rxcmp,
559                   struct rx_pkt_cmpl_hi *rxcmp1, struct rte_mbuf *mbuf)
560 {
561         uint16_t flags_type, errors, flags;
562         uint64_t ol_flags;
563
564         flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
565
566         flags = rte_le_to_cpu_32(rxcmp1->flags2) &
567                                 (RX_PKT_CMPL_FLAGS2_IP_CS_CALC |
568                                  RX_PKT_CMPL_FLAGS2_L4_CS_CALC |
569                                  RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC |
570                                  RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC |
571                                  RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN);
572
573         flags |= (flags & RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC) << 3;
574         errors = rte_le_to_cpu_16(rxcmp1->errors_v2) &
575                                 (RX_PKT_CMPL_ERRORS_IP_CS_ERROR |
576                                  RX_PKT_CMPL_ERRORS_L4_CS_ERROR |
577                                  RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR |
578                                  RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR);
579         errors = (errors >> 4) & flags;
580
581         ol_flags = rxr->ol_flags_table[flags & ~errors];
582
583         if (unlikely(errors)) {
584                 errors |= (flags & RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC) << 2;
585                 ol_flags |= rxr->ol_flags_err_table[errors];
586         }
587
588         if (flags_type & RX_PKT_CMPL_FLAGS_RSS_VALID) {
589                 mbuf->hash.rss = rte_le_to_cpu_32(rxcmp->rss_hash);
590                 ol_flags |= PKT_RX_RSS_HASH;
591         }
592
593 #ifdef RTE_LIBRTE_IEEE1588
594         if (unlikely((flags_type & RX_PKT_CMPL_FLAGS_MASK) ==
595                      RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP))
596                 ol_flags |= PKT_RX_IEEE1588_PTP | PKT_RX_IEEE1588_TMST;
597 #endif
598
599         mbuf->ol_flags = ol_flags;
600 }
601
602 #ifdef RTE_LIBRTE_IEEE1588
603 static void
604 bnxt_get_rx_ts_p5(struct bnxt *bp, uint32_t rx_ts_cmpl)
605 {
606         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
607         uint64_t last_hwrm_time;
608         uint64_t pkt_time = 0;
609
610         if (!BNXT_CHIP_P5(bp) || !ptp)
611                 return;
612
613         /* On Thor, Rx timestamps are provided directly in the
614          * Rx completion records to the driver. Only 32 bits of
615          * the timestamp is present in the completion. Driver needs
616          * to read the current 48 bit free running timer using the
617          * HWRM_PORT_TS_QUERY command and combine the upper 16 bits
618          * from the HWRM response with the lower 32 bits in the
619          * Rx completion to produce the 48 bit timestamp for the Rx packet
620          */
621         last_hwrm_time = ptp->current_time;
622         pkt_time = (last_hwrm_time & BNXT_PTP_CURRENT_TIME_MASK) | rx_ts_cmpl;
623         if (rx_ts_cmpl < (uint32_t)last_hwrm_time) {
624                 /* timer has rolled over */
625                 pkt_time += (1ULL << 32);
626         }
627         ptp->rx_timestamp = pkt_time;
628 }
629 #endif
630
631 static uint32_t
632 bnxt_ulp_set_mark_in_mbuf(struct bnxt *bp, struct rx_pkt_cmpl_hi *rxcmp1,
633                           struct rte_mbuf *mbuf, uint32_t *vfr_flag)
634 {
635         uint32_t cfa_code;
636         uint32_t meta_fmt;
637         uint32_t meta;
638         bool gfid = false;
639         uint32_t mark_id;
640         uint32_t flags2;
641         uint32_t gfid_support = 0;
642         int rc;
643
644         if (BNXT_GFID_ENABLED(bp))
645                 gfid_support = 1;
646
647         cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
648         flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
649         meta = rte_le_to_cpu_32(rxcmp1->metadata);
650
651         /*
652          * The flags field holds extra bits of info from [6:4]
653          * which indicate if the flow is in TCAM or EM or EEM
654          */
655         meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
656                 BNXT_CFA_META_FMT_SHFT;
657
658         switch (meta_fmt) {
659         case 0:
660                 if (gfid_support) {
661                         /* Not an LFID or GFID, a flush cmd. */
662                         goto skip_mark;
663                 } else {
664                         /* LFID mode, no vlan scenario */
665                         gfid = false;
666                 }
667                 break;
668         case 4:
669         case 5:
670                 /*
671                  * EM/TCAM case
672                  * Assume that EM doesn't support Mark due to GFID
673                  * collisions with EEM.  Simply return without setting the mark
674                  * in the mbuf.
675                  */
676                 if (BNXT_CFA_META_EM_TEST(meta)) {
677                         /*This is EM hit {EM(1), GFID[27:16], 19'd0 or vtag } */
678                         gfid = true;
679                         meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
680                         cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
681                 } else {
682                         /*
683                          * It is a TCAM entry, so it is an LFID.
684                          * The TCAM IDX and Mode can also be determined
685                          * by decoding the meta_data. We are not
686                          * using these for now.
687                          */
688                 }
689                 break;
690         case 6:
691         case 7:
692                 /* EEM Case, only using gfid in EEM for now. */
693                 gfid = true;
694
695                 /*
696                  * For EEM flows, The first part of cfa_code is 16 bits.
697                  * The second part is embedded in the
698                  * metadata field from bit 19 onwards. The driver needs to
699                  * ignore the first 19 bits of metadata and use the next 12
700                  * bits as higher 12 bits of cfa_code.
701                  */
702                 meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
703                 cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
704                 break;
705         default:
706                 /* For other values, the cfa_code is assumed to be an LFID. */
707                 break;
708         }
709
710         rc = ulp_mark_db_mark_get(bp->ulp_ctx, gfid,
711                                   cfa_code, vfr_flag, &mark_id);
712         if (!rc) {
713                 /* VF to VFR Rx path. So, skip mark_id injection in mbuf */
714                 if (vfr_flag && *vfr_flag)
715                         return mark_id;
716                 /* Got the mark, write it to the mbuf and return */
717                 mbuf->hash.fdir.hi = mark_id;
718                 *bnxt_cfa_code_dynfield(mbuf) = cfa_code & 0xffffffffull;
719                 mbuf->hash.fdir.id = rxcmp1->cfa_code;
720                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
721                 return mark_id;
722         }
723
724 skip_mark:
725         mbuf->hash.fdir.hi = 0;
726         mbuf->hash.fdir.id = 0;
727
728         return 0;
729 }
730
731 void bnxt_set_mark_in_mbuf(struct bnxt *bp,
732                            struct rx_pkt_cmpl_hi *rxcmp1,
733                            struct rte_mbuf *mbuf)
734 {
735         uint32_t cfa_code = 0;
736         uint8_t meta_fmt = 0;
737         uint16_t flags2 = 0;
738         uint32_t meta =  0;
739
740         cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
741         if (!cfa_code)
742                 return;
743
744         if (cfa_code && !bp->mark_table[cfa_code].valid)
745                 return;
746
747         flags2 = rte_le_to_cpu_16(rxcmp1->flags2);
748         meta = rte_le_to_cpu_32(rxcmp1->metadata);
749         if (meta) {
750                 meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
751
752                 /* The flags field holds extra bits of info from [6:4]
753                  * which indicate if the flow is in TCAM or EM or EEM
754                  */
755                 meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
756                            BNXT_CFA_META_FMT_SHFT;
757
758                 /* meta_fmt == 4 => 'b100 => 'b10x => EM.
759                  * meta_fmt == 5 => 'b101 => 'b10x => EM + VLAN
760                  * meta_fmt == 6 => 'b110 => 'b11x => EEM
761                  * meta_fmt == 7 => 'b111 => 'b11x => EEM + VLAN.
762                  */
763                 meta_fmt >>= BNXT_CFA_META_FMT_EM_EEM_SHFT;
764         }
765
766         mbuf->hash.fdir.hi = bp->mark_table[cfa_code].mark_id;
767         mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
768 }
769
770 static int bnxt_rx_pkt(struct rte_mbuf **rx_pkt,
771                        struct bnxt_rx_queue *rxq, uint32_t *raw_cons)
772 {
773         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
774         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
775         struct rx_pkt_cmpl *rxcmp;
776         struct rx_pkt_cmpl_hi *rxcmp1;
777         uint32_t tmp_raw_cons = *raw_cons;
778         uint16_t cons, raw_prod, cp_cons =
779             RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
780         struct rte_mbuf *mbuf;
781         int rc = 0;
782         uint8_t agg_buf = 0;
783         uint16_t cmp_type;
784         uint32_t vfr_flag = 0, mark_id = 0;
785         struct bnxt *bp = rxq->bp;
786
787         rxcmp = (struct rx_pkt_cmpl *)
788             &cpr->cp_desc_ring[cp_cons];
789
790         cmp_type = CMP_TYPE(rxcmp);
791
792         if (cmp_type == RX_TPA_V2_ABUF_CMPL_TYPE_RX_TPA_AGG) {
793                 struct rx_tpa_v2_abuf_cmpl *rx_agg = (void *)rxcmp;
794                 uint16_t agg_id = rte_cpu_to_le_16(rx_agg->agg_id);
795                 struct bnxt_tpa_info *tpa_info;
796
797                 tpa_info = &rxr->tpa_info[agg_id];
798                 RTE_ASSERT(tpa_info->agg_count < 16);
799                 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
800                 rc = -EINVAL; /* Continue w/o new mbuf */
801                 goto next_rx;
802         }
803
804         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
805         cp_cons = RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
806         rxcmp1 = (struct rx_pkt_cmpl_hi *)&cpr->cp_desc_ring[cp_cons];
807
808         if (!CMP_VALID(rxcmp1, tmp_raw_cons, cpr->cp_ring_struct))
809                 return -EBUSY;
810
811         cpr->valid = FLIP_VALID(cp_cons,
812                                 cpr->cp_ring_struct->ring_mask,
813                                 cpr->valid);
814
815         if (cmp_type == RX_TPA_START_CMPL_TYPE_RX_TPA_START ||
816             cmp_type == RX_TPA_START_V2_CMPL_TYPE_RX_TPA_START_V2) {
817                 bnxt_tpa_start(rxq, (struct rx_tpa_start_cmpl *)rxcmp,
818                                (struct rx_tpa_start_cmpl_hi *)rxcmp1);
819                 rc = -EINVAL; /* Continue w/o new mbuf */
820                 goto next_rx;
821         } else if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
822                 mbuf = bnxt_tpa_end(rxq, &tmp_raw_cons,
823                                    (struct rx_tpa_end_cmpl *)rxcmp,
824                                    (struct rx_tpa_end_cmpl_hi *)rxcmp1);
825                 if (unlikely(!mbuf))
826                         return -EBUSY;
827                 *rx_pkt = mbuf;
828                 goto next_rx;
829         } else if ((cmp_type != CMPL_BASE_TYPE_RX_L2) &&
830                    (cmp_type != CMPL_BASE_TYPE_RX_L2_V2)) {
831                 rc = -EINVAL;
832                 goto next_rx;
833         }
834
835         agg_buf = BNXT_RX_L2_AGG_BUFS(rxcmp);
836         if (agg_buf && !bnxt_agg_bufs_valid(cpr, agg_buf, tmp_raw_cons))
837                 return -EBUSY;
838
839         raw_prod = rxr->rx_raw_prod;
840
841         cons = rxcmp->opaque;
842         mbuf = bnxt_consume_rx_buf(rxr, cons);
843         if (mbuf == NULL)
844                 return -EBUSY;
845
846         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
847         mbuf->nb_segs = 1;
848         mbuf->next = NULL;
849         mbuf->pkt_len = rxcmp->len;
850         mbuf->data_len = mbuf->pkt_len;
851         mbuf->port = rxq->port_id;
852
853 #ifdef RTE_LIBRTE_IEEE1588
854         if (unlikely((rte_le_to_cpu_16(rxcmp->flags_type) &
855                       RX_PKT_CMPL_FLAGS_MASK) ==
856                      RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP))
857                 bnxt_get_rx_ts_p5(rxq->bp, rxcmp1->reorder);
858 #endif
859
860         if (cmp_type == CMPL_BASE_TYPE_RX_L2_V2) {
861                 bnxt_parse_csum_v2(mbuf, rxcmp1);
862                 bnxt_parse_pkt_type_v2(mbuf, rxcmp, rxcmp1);
863                 bnxt_rx_vlan_v2(mbuf, rxcmp, rxcmp1);
864                 /* TODO Add support for cfa_code parsing */
865                 goto reuse_rx_mbuf;
866         }
867
868         bnxt_set_ol_flags(rxr, rxcmp, rxcmp1, mbuf);
869
870         mbuf->packet_type = bnxt_parse_pkt_type(rxcmp, rxcmp1);
871
872         if (BNXT_TRUFLOW_EN(bp))
873                 mark_id = bnxt_ulp_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf,
874                                                     &vfr_flag);
875         else
876                 bnxt_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf);
877
878 reuse_rx_mbuf:
879         if (agg_buf)
880                 bnxt_rx_pages(rxq, mbuf, &tmp_raw_cons, agg_buf, NULL);
881
882 #ifdef BNXT_DEBUG
883         if (rxcmp1->errors_v2 & RX_CMP_L2_ERRORS) {
884                 /* Re-install the mbuf back to the rx ring */
885                 bnxt_reuse_rx_mbuf(rxr, cons, mbuf);
886
887                 rc = -EIO;
888                 goto next_rx;
889         }
890 #endif
891         /*
892          * TODO: Redesign this....
893          * If the allocation fails, the packet does not get received.
894          * Simply returning this will result in slowly falling behind
895          * on the producer ring buffers.
896          * Instead, "filling up" the producer just before ringing the
897          * doorbell could be a better solution since it will let the
898          * producer ring starve until memory is available again pushing
899          * the drops into hardware and getting them out of the driver
900          * allowing recovery to a full producer ring.
901          *
902          * This could also help with cache usage by preventing per-packet
903          * calls in favour of a tight loop with the same function being called
904          * in it.
905          */
906         raw_prod = RING_NEXT(raw_prod);
907         if (bnxt_alloc_rx_data(rxq, rxr, raw_prod)) {
908                 PMD_DRV_LOG(ERR, "mbuf alloc failed with prod=0x%x\n",
909                             raw_prod);
910                 rc = -ENOMEM;
911                 goto rx;
912         }
913         rxr->rx_raw_prod = raw_prod;
914
915         if (BNXT_TRUFLOW_EN(bp) && (BNXT_VF_IS_TRUSTED(bp) || BNXT_PF(bp)) &&
916             vfr_flag) {
917                 bnxt_vfr_recv(mark_id, rxq->queue_id, mbuf);
918                 /* Now return an error so that nb_rx_pkts is not
919                  * incremented.
920                  * This packet was meant to be given to the representor.
921                  * So no need to account the packet and give it to
922                  * parent Rx burst function.
923                  */
924                 rc = -ENODEV;
925                 goto next_rx;
926         }
927         /*
928          * All MBUFs are allocated with the same size under DPDK,
929          * no optimization for rx_copy_thresh
930          */
931 rx:
932         *rx_pkt = mbuf;
933
934 next_rx:
935
936         *raw_cons = tmp_raw_cons;
937
938         return rc;
939 }
940
941 uint16_t bnxt_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
942                                uint16_t nb_pkts)
943 {
944         struct bnxt_rx_queue *rxq = rx_queue;
945         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
946         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
947         uint16_t rx_raw_prod = rxr->rx_raw_prod;
948         uint16_t ag_raw_prod = rxr->ag_raw_prod;
949         uint32_t raw_cons = cpr->cp_raw_cons;
950         bool alloc_failed = false;
951         uint32_t cons;
952         int nb_rx_pkts = 0;
953         int nb_rep_rx_pkts = 0;
954         struct rx_pkt_cmpl *rxcmp;
955         int rc = 0;
956         bool evt = false;
957
958         if (unlikely(is_bnxt_in_error(rxq->bp)))
959                 return 0;
960
961         /* If Rx Q was stopped return */
962         if (unlikely(!rxq->rx_started))
963                 return 0;
964
965 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
966         /*
967          * Replenish buffers if needed when a transition has been made from
968          * vector- to non-vector- receive processing.
969          */
970         while (unlikely(rxq->rxrearm_nb)) {
971                 if (!bnxt_alloc_rx_data(rxq, rxr, rxq->rxrearm_start)) {
972                         rxr->rx_raw_prod = rxq->rxrearm_start;
973                         bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
974                         rxq->rxrearm_start++;
975                         rxq->rxrearm_nb--;
976                 } else {
977                         /* Retry allocation on next call. */
978                         break;
979                 }
980         }
981 #endif
982
983         /* Handle RX burst request */
984         while (1) {
985                 cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
986                 rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
987
988                 if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct))
989                         break;
990                 cpr->valid = FLIP_VALID(cons,
991                                         cpr->cp_ring_struct->ring_mask,
992                                         cpr->valid);
993
994                 if ((CMP_TYPE(rxcmp) >= CMPL_BASE_TYPE_RX_TPA_START_V2) &&
995                      (CMP_TYPE(rxcmp) <= RX_TPA_V2_ABUF_CMPL_TYPE_RX_TPA_AGG)) {
996                         rc = bnxt_rx_pkt(&rx_pkts[nb_rx_pkts], rxq, &raw_cons);
997                         if (!rc)
998                                 nb_rx_pkts++;
999                         else if (rc == -EBUSY)  /* partial completion */
1000                                 break;
1001                         else if (rc == -ENODEV) /* completion for representor */
1002                                 nb_rep_rx_pkts++;
1003                         else if (rc == -ENOMEM) {
1004                                 nb_rx_pkts++;
1005                                 alloc_failed = true;
1006                         }
1007                 } else if (!BNXT_NUM_ASYNC_CPR(rxq->bp)) {
1008                         evt =
1009                         bnxt_event_hwrm_resp_handler(rxq->bp,
1010                                                      (struct cmpl_base *)rxcmp);
1011                         /* If the async event is Fatal error, return */
1012                         if (unlikely(is_bnxt_in_error(rxq->bp)))
1013                                 goto done;
1014                 }
1015
1016                 raw_cons = NEXT_RAW_CMP(raw_cons);
1017                 if (nb_rx_pkts == nb_pkts || nb_rep_rx_pkts == nb_pkts || evt)
1018                         break;
1019                 /* Post some Rx buf early in case of larger burst processing */
1020                 if (nb_rx_pkts == BNXT_RX_POST_THRESH)
1021                         bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
1022         }
1023
1024         cpr->cp_raw_cons = raw_cons;
1025         if (!nb_rx_pkts && !nb_rep_rx_pkts && !evt) {
1026                 /*
1027                  * For PMD, there is no need to keep on pushing to REARM
1028                  * the doorbell if there are no new completions
1029                  */
1030                 goto done;
1031         }
1032
1033         /* Ring the completion queue doorbell. */
1034         bnxt_db_cq(cpr);
1035
1036         /* Ring the receive descriptor doorbell. */
1037         if (rx_raw_prod != rxr->rx_raw_prod)
1038                 bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
1039
1040         /* Ring the AGG ring DB */
1041         if (ag_raw_prod != rxr->ag_raw_prod)
1042                 bnxt_db_write(&rxr->ag_db, rxr->ag_raw_prod);
1043
1044         /* Attempt to alloc Rx buf in case of a previous allocation failure. */
1045         if (alloc_failed) {
1046                 uint16_t cnt;
1047
1048                 rx_raw_prod = RING_NEXT(rx_raw_prod);
1049                 for (cnt = 0; cnt < nb_rx_pkts + nb_rep_rx_pkts; cnt++) {
1050                         struct rte_mbuf **rx_buf;
1051                         uint16_t ndx;
1052
1053                         ndx = RING_IDX(rxr->rx_ring_struct, rx_raw_prod + cnt);
1054                         rx_buf = &rxr->rx_buf_ring[ndx];
1055
1056                         /* Buffer already allocated for this index. */
1057                         if (*rx_buf != NULL && *rx_buf != &rxq->fake_mbuf)
1058                                 continue;
1059
1060                         /* This slot is empty. Alloc buffer for Rx */
1061                         if (!bnxt_alloc_rx_data(rxq, rxr, rx_raw_prod + cnt)) {
1062                                 rxr->rx_raw_prod = rx_raw_prod + cnt;
1063                                 bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
1064                         } else {
1065                                 PMD_DRV_LOG(ERR, "Alloc  mbuf failed\n");
1066                                 break;
1067                         }
1068                 }
1069         }
1070
1071 done:
1072         return nb_rx_pkts;
1073 }
1074
1075 /*
1076  * Dummy DPDK callback for RX.
1077  *
1078  * This function is used to temporarily replace the real callback during
1079  * unsafe control operations on the queue, or in case of error.
1080  */
1081 uint16_t
1082 bnxt_dummy_recv_pkts(void *rx_queue __rte_unused,
1083                      struct rte_mbuf **rx_pkts __rte_unused,
1084                      uint16_t nb_pkts __rte_unused)
1085 {
1086         return 0;
1087 }
1088
1089 void bnxt_free_rx_rings(struct bnxt *bp)
1090 {
1091         int i;
1092         struct bnxt_rx_queue *rxq;
1093
1094         if (!bp->rx_queues)
1095                 return;
1096
1097         for (i = 0; i < (int)bp->rx_nr_rings; i++) {
1098                 rxq = bp->rx_queues[i];
1099                 if (!rxq)
1100                         continue;
1101
1102                 bnxt_free_ring(rxq->rx_ring->rx_ring_struct);
1103                 rte_free(rxq->rx_ring->rx_ring_struct);
1104
1105                 /* Free the Aggregator ring */
1106                 bnxt_free_ring(rxq->rx_ring->ag_ring_struct);
1107                 rte_free(rxq->rx_ring->ag_ring_struct);
1108                 rxq->rx_ring->ag_ring_struct = NULL;
1109
1110                 rte_free(rxq->rx_ring);
1111
1112                 bnxt_free_ring(rxq->cp_ring->cp_ring_struct);
1113                 rte_free(rxq->cp_ring->cp_ring_struct);
1114                 rte_free(rxq->cp_ring);
1115
1116                 rte_free(rxq);
1117                 bp->rx_queues[i] = NULL;
1118         }
1119 }
1120
1121 int bnxt_init_rx_ring_struct(struct bnxt_rx_queue *rxq, unsigned int socket_id)
1122 {
1123         struct bnxt_cp_ring_info *cpr;
1124         struct bnxt_rx_ring_info *rxr;
1125         struct bnxt_ring *ring;
1126
1127         rxq->rx_buf_size = BNXT_MAX_PKT_LEN + sizeof(struct rte_mbuf);
1128
1129         rxr = rte_zmalloc_socket("bnxt_rx_ring",
1130                                  sizeof(struct bnxt_rx_ring_info),
1131                                  RTE_CACHE_LINE_SIZE, socket_id);
1132         if (rxr == NULL)
1133                 return -ENOMEM;
1134         rxq->rx_ring = rxr;
1135
1136         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1137                                    sizeof(struct bnxt_ring),
1138                                    RTE_CACHE_LINE_SIZE, socket_id);
1139         if (ring == NULL)
1140                 return -ENOMEM;
1141         rxr->rx_ring_struct = ring;
1142         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc);
1143         ring->ring_mask = ring->ring_size - 1;
1144         ring->bd = (void *)rxr->rx_desc_ring;
1145         ring->bd_dma = rxr->rx_desc_mapping;
1146
1147         /* Allocate extra rx ring entries for vector rx. */
1148         ring->vmem_size = sizeof(struct rte_mbuf *) *
1149                                 (ring->ring_size + RTE_BNXT_DESCS_PER_LOOP);
1150
1151         ring->vmem = (void **)&rxr->rx_buf_ring;
1152         ring->fw_ring_id = INVALID_HW_RING_ID;
1153
1154         cpr = rte_zmalloc_socket("bnxt_rx_ring",
1155                                  sizeof(struct bnxt_cp_ring_info),
1156                                  RTE_CACHE_LINE_SIZE, socket_id);
1157         if (cpr == NULL)
1158                 return -ENOMEM;
1159         rxq->cp_ring = cpr;
1160
1161         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1162                                    sizeof(struct bnxt_ring),
1163                                    RTE_CACHE_LINE_SIZE, socket_id);
1164         if (ring == NULL)
1165                 return -ENOMEM;
1166         cpr->cp_ring_struct = ring;
1167
1168         /* Allocate two completion slots per entry in desc ring. */
1169         ring->ring_size = rxr->rx_ring_struct->ring_size * 2;
1170         ring->ring_size *= AGG_RING_SIZE_FACTOR;
1171
1172         ring->ring_size = rte_align32pow2(ring->ring_size);
1173         ring->ring_mask = ring->ring_size - 1;
1174         ring->bd = (void *)cpr->cp_desc_ring;
1175         ring->bd_dma = cpr->cp_desc_mapping;
1176         ring->vmem_size = 0;
1177         ring->vmem = NULL;
1178         ring->fw_ring_id = INVALID_HW_RING_ID;
1179
1180         /* Allocate Aggregator rings */
1181         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1182                                    sizeof(struct bnxt_ring),
1183                                    RTE_CACHE_LINE_SIZE, socket_id);
1184         if (ring == NULL)
1185                 return -ENOMEM;
1186         rxr->ag_ring_struct = ring;
1187         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc *
1188                                           AGG_RING_SIZE_FACTOR);
1189         ring->ring_mask = ring->ring_size - 1;
1190         ring->bd = (void *)rxr->ag_desc_ring;
1191         ring->bd_dma = rxr->ag_desc_mapping;
1192         ring->vmem_size = ring->ring_size * sizeof(struct rte_mbuf *);
1193         ring->vmem = (void **)&rxr->ag_buf_ring;
1194         ring->fw_ring_id = INVALID_HW_RING_ID;
1195
1196         return 0;
1197 }
1198
1199 static void bnxt_init_rxbds(struct bnxt_ring *ring, uint32_t type,
1200                             uint16_t len)
1201 {
1202         uint32_t j;
1203         struct rx_prod_pkt_bd *rx_bd_ring = (struct rx_prod_pkt_bd *)ring->bd;
1204
1205         if (!rx_bd_ring)
1206                 return;
1207         for (j = 0; j < ring->ring_size; j++) {
1208                 rx_bd_ring[j].flags_type = rte_cpu_to_le_16(type);
1209                 rx_bd_ring[j].len = rte_cpu_to_le_16(len);
1210                 rx_bd_ring[j].opaque = j;
1211         }
1212 }
1213
1214 int bnxt_init_one_rx_ring(struct bnxt_rx_queue *rxq)
1215 {
1216         struct bnxt_rx_ring_info *rxr;
1217         struct bnxt_ring *ring;
1218         uint32_t raw_prod, type;
1219         unsigned int i;
1220         uint16_t size;
1221
1222         /* Initialize packet type table. */
1223         bnxt_init_ptype_table();
1224
1225         size = rte_pktmbuf_data_room_size(rxq->mb_pool) - RTE_PKTMBUF_HEADROOM;
1226         size = RTE_MIN(BNXT_MAX_PKT_LEN, size);
1227
1228         type = RX_PROD_PKT_BD_TYPE_RX_PROD_PKT;
1229
1230         rxr = rxq->rx_ring;
1231         ring = rxr->rx_ring_struct;
1232         bnxt_init_rxbds(ring, type, size);
1233
1234         /* Initialize offload flags parsing table. */
1235         bnxt_init_ol_flags_tables(rxq);
1236
1237         raw_prod = rxr->rx_raw_prod;
1238         for (i = 0; i < ring->ring_size; i++) {
1239                 if (unlikely(!rxr->rx_buf_ring[i])) {
1240                         if (bnxt_alloc_rx_data(rxq, rxr, raw_prod) != 0) {
1241                                 PMD_DRV_LOG(WARNING,
1242                                             "init'ed rx ring %d with %d/%d mbufs only\n",
1243                                             rxq->queue_id, i, ring->ring_size);
1244                                 break;
1245                         }
1246                 }
1247                 rxr->rx_raw_prod = raw_prod;
1248                 raw_prod = RING_NEXT(raw_prod);
1249         }
1250
1251         /* Initialize dummy mbuf pointers for vector mode rx. */
1252         for (i = ring->ring_size;
1253              i < ring->ring_size + RTE_BNXT_DESCS_PER_LOOP; i++) {
1254                 rxr->rx_buf_ring[i] = &rxq->fake_mbuf;
1255         }
1256
1257         ring = rxr->ag_ring_struct;
1258         type = RX_PROD_AGG_BD_TYPE_RX_PROD_AGG;
1259         bnxt_init_rxbds(ring, type, size);
1260         raw_prod = rxr->ag_raw_prod;
1261
1262         for (i = 0; i < ring->ring_size; i++) {
1263                 if (unlikely(!rxr->ag_buf_ring[i])) {
1264                         if (bnxt_alloc_ag_data(rxq, rxr, raw_prod) != 0) {
1265                                 PMD_DRV_LOG(WARNING,
1266                                             "init'ed AG ring %d with %d/%d mbufs only\n",
1267                                             rxq->queue_id, i, ring->ring_size);
1268                                 break;
1269                         }
1270                 }
1271                 rxr->ag_raw_prod = raw_prod;
1272                 raw_prod = RING_NEXT(raw_prod);
1273         }
1274         PMD_DRV_LOG(DEBUG, "AGG Done!\n");
1275
1276         if (rxr->tpa_info) {
1277                 unsigned int max_aggs = BNXT_TPA_MAX_AGGS(rxq->bp);
1278
1279                 for (i = 0; i < max_aggs; i++) {
1280                         if (unlikely(!rxr->tpa_info[i].mbuf)) {
1281                                 rxr->tpa_info[i].mbuf =
1282                                         __bnxt_alloc_rx_data(rxq->mb_pool);
1283                                 if (!rxr->tpa_info[i].mbuf) {
1284                                         rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
1285                                         return -ENOMEM;
1286                                 }
1287                         }
1288                 }
1289         }
1290         PMD_DRV_LOG(DEBUG, "TPA alloc Done!\n");
1291
1292         return 0;
1293 }