net/bnxt: add Rx logic for 58818 chips
[dpdk.git] / drivers / net / bnxt / bnxt_rxr.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Broadcom
3  * All rights reserved.
4  */
5
6 #include <inttypes.h>
7 #include <stdbool.h>
8
9 #include <rte_bitmap.h>
10 #include <rte_byteorder.h>
11 #include <rte_malloc.h>
12 #include <rte_memory.h>
13
14 #include "bnxt.h"
15 #include "bnxt_reps.h"
16 #include "bnxt_ring.h"
17 #include "bnxt_rxr.h"
18 #include "bnxt_rxq.h"
19 #include "hsi_struct_def_dpdk.h"
20 #ifdef RTE_LIBRTE_IEEE1588
21 #include "bnxt_hwrm.h"
22 #endif
23
24 #include <bnxt_tf_common.h>
25 #include <ulp_mark_mgr.h>
26
27 /*
28  * RX Ring handling
29  */
30
31 static inline struct rte_mbuf *__bnxt_alloc_rx_data(struct rte_mempool *mb)
32 {
33         struct rte_mbuf *data;
34
35         data = rte_mbuf_raw_alloc(mb);
36
37         return data;
38 }
39
40 static inline int bnxt_alloc_rx_data(struct bnxt_rx_queue *rxq,
41                                      struct bnxt_rx_ring_info *rxr,
42                                      uint16_t raw_prod)
43 {
44         uint16_t prod = RING_IDX(rxr->rx_ring_struct, raw_prod);
45         struct rx_prod_pkt_bd *rxbd;
46         struct rte_mbuf **rx_buf;
47         struct rte_mbuf *mbuf;
48
49         rxbd = &rxr->rx_desc_ring[prod];
50         rx_buf = &rxr->rx_buf_ring[prod];
51         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
52         if (!mbuf) {
53                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
54                 return -ENOMEM;
55         }
56
57         *rx_buf = mbuf;
58         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
59
60         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
61
62         return 0;
63 }
64
65 static inline int bnxt_alloc_ag_data(struct bnxt_rx_queue *rxq,
66                                      struct bnxt_rx_ring_info *rxr,
67                                      uint16_t raw_prod)
68 {
69         uint16_t prod = RING_IDX(rxr->ag_ring_struct, raw_prod);
70         struct rx_prod_pkt_bd *rxbd;
71         struct rte_mbuf **rx_buf;
72         struct rte_mbuf *mbuf;
73
74         rxbd = &rxr->ag_desc_ring[prod];
75         rx_buf = &rxr->ag_buf_ring[prod];
76         if (rxbd == NULL) {
77                 PMD_DRV_LOG(ERR, "Jumbo Frame. rxbd is NULL\n");
78                 return -EINVAL;
79         }
80
81         if (rx_buf == NULL) {
82                 PMD_DRV_LOG(ERR, "Jumbo Frame. rx_buf is NULL\n");
83                 return -EINVAL;
84         }
85
86         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
87         if (!mbuf) {
88                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
89                 return -ENOMEM;
90         }
91
92         *rx_buf = mbuf;
93         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
94
95         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
96
97         return 0;
98 }
99
100 static inline void bnxt_reuse_rx_mbuf(struct bnxt_rx_ring_info *rxr,
101                                struct rte_mbuf *mbuf)
102 {
103         uint16_t prod, raw_prod = RING_NEXT(rxr->rx_raw_prod);
104         struct rte_mbuf **prod_rx_buf;
105         struct rx_prod_pkt_bd *prod_bd;
106
107         prod = RING_IDX(rxr->rx_ring_struct, raw_prod);
108         prod_rx_buf = &rxr->rx_buf_ring[prod];
109
110         RTE_ASSERT(*prod_rx_buf == NULL);
111         RTE_ASSERT(mbuf != NULL);
112
113         *prod_rx_buf = mbuf;
114
115         prod_bd = &rxr->rx_desc_ring[prod];
116
117         prod_bd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
118
119         rxr->rx_raw_prod = raw_prod;
120 }
121
122 static inline
123 struct rte_mbuf *bnxt_consume_rx_buf(struct bnxt_rx_ring_info *rxr,
124                                      uint16_t cons)
125 {
126         struct rte_mbuf **cons_rx_buf;
127         struct rte_mbuf *mbuf;
128
129         cons_rx_buf = &rxr->rx_buf_ring[RING_IDX(rxr->rx_ring_struct, cons)];
130         RTE_ASSERT(*cons_rx_buf != NULL);
131         mbuf = *cons_rx_buf;
132         *cons_rx_buf = NULL;
133
134         return mbuf;
135 }
136
137 static void bnxt_tpa_get_metadata(struct bnxt *bp,
138                                   struct bnxt_tpa_info *tpa_info,
139                                   struct rx_tpa_start_cmpl *tpa_start,
140                                   struct rx_tpa_start_cmpl_hi *tpa_start1)
141 {
142         tpa_info->cfa_code_valid = 0;
143         tpa_info->vlan_valid = 0;
144         tpa_info->hash_valid = 0;
145         tpa_info->l4_csum_valid = 0;
146
147         if (likely(tpa_start->flags_type &
148                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS_RSS_VALID))) {
149                 tpa_info->hash_valid = 1;
150                 tpa_info->rss_hash = rte_le_to_cpu_32(tpa_start->rss_hash);
151         }
152
153         if (bp->vnic_cap_flags & BNXT_VNIC_CAP_RX_CMPL_V2) {
154                 struct rx_tpa_start_v2_cmpl *v2_tpa_start = (void *)tpa_start;
155                 struct rx_tpa_start_v2_cmpl_hi *v2_tpa_start1 =
156                         (void *)tpa_start1;
157
158                 if (v2_tpa_start->agg_id &
159                     RX_TPA_START_V2_CMPL_METADATA1_VALID) {
160                         tpa_info->vlan_valid = 1;
161                         tpa_info->vlan =
162                                 rte_le_to_cpu_16(v2_tpa_start1->metadata0);
163                 }
164
165                 if (v2_tpa_start1->flags2 & RX_CMP_FLAGS2_L4_CSUM_ALL_OK_MASK)
166                         tpa_info->l4_csum_valid = 1;
167
168                 return;
169         }
170
171         tpa_info->cfa_code_valid = 1;
172         tpa_info->cfa_code = rte_le_to_cpu_16(tpa_start1->cfa_code);
173         if (tpa_start1->flags2 &
174             rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_META_FORMAT_VLAN)) {
175                 tpa_info->vlan_valid = 1;
176                 tpa_info->vlan = rte_le_to_cpu_32(tpa_start1->metadata);
177         }
178
179         if (likely(tpa_start1->flags2 &
180                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_L4_CS_CALC)))
181                 tpa_info->l4_csum_valid = 1;
182 }
183
184 static void bnxt_tpa_start(struct bnxt_rx_queue *rxq,
185                            struct rx_tpa_start_cmpl *tpa_start,
186                            struct rx_tpa_start_cmpl_hi *tpa_start1)
187 {
188         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
189         uint16_t agg_id;
190         uint16_t data_cons;
191         struct bnxt_tpa_info *tpa_info;
192         struct rte_mbuf *mbuf;
193
194         agg_id = bnxt_tpa_start_agg_id(rxq->bp, tpa_start);
195
196         data_cons = tpa_start->opaque;
197         tpa_info = &rxr->tpa_info[agg_id];
198
199         mbuf = bnxt_consume_rx_buf(rxr, data_cons);
200
201         bnxt_reuse_rx_mbuf(rxr, tpa_info->mbuf);
202
203         tpa_info->agg_count = 0;
204         tpa_info->mbuf = mbuf;
205         tpa_info->len = rte_le_to_cpu_32(tpa_start->len);
206
207         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
208         mbuf->nb_segs = 1;
209         mbuf->next = NULL;
210         mbuf->pkt_len = rte_le_to_cpu_32(tpa_start->len);
211         mbuf->data_len = mbuf->pkt_len;
212         mbuf->port = rxq->port_id;
213         mbuf->ol_flags = PKT_RX_LRO;
214
215         bnxt_tpa_get_metadata(rxq->bp, tpa_info, tpa_start, tpa_start1);
216
217         if (likely(tpa_info->hash_valid)) {
218                 mbuf->hash.rss = tpa_info->rss_hash;
219                 mbuf->ol_flags |= PKT_RX_RSS_HASH;
220         } else if (tpa_info->cfa_code_valid) {
221                 mbuf->hash.fdir.id = tpa_info->cfa_code;
222                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
223         }
224
225         if (tpa_info->vlan_valid) {
226                 mbuf->vlan_tci = tpa_info->vlan;
227                 mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
228         }
229
230         if (likely(tpa_info->l4_csum_valid))
231                 mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
232
233         /* recycle next mbuf */
234         data_cons = RING_NEXT(data_cons);
235         bnxt_reuse_rx_mbuf(rxr, bnxt_consume_rx_buf(rxr, data_cons));
236 }
237
238 static int bnxt_agg_bufs_valid(struct bnxt_cp_ring_info *cpr,
239                 uint8_t agg_bufs, uint32_t raw_cp_cons)
240 {
241         uint16_t last_cp_cons;
242         struct rx_pkt_cmpl *agg_cmpl;
243
244         raw_cp_cons = ADV_RAW_CMP(raw_cp_cons, agg_bufs);
245         last_cp_cons = RING_CMP(cpr->cp_ring_struct, raw_cp_cons);
246         agg_cmpl = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[last_cp_cons];
247         cpr->valid = FLIP_VALID(raw_cp_cons,
248                                 cpr->cp_ring_struct->ring_mask,
249                                 cpr->valid);
250         return CMP_VALID(agg_cmpl, raw_cp_cons, cpr->cp_ring_struct);
251 }
252
253 /* TPA consume agg buffer out of order, allocate connected data only */
254 static int bnxt_prod_ag_mbuf(struct bnxt_rx_queue *rxq)
255 {
256         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
257         uint16_t raw_next = RING_NEXT(rxr->ag_raw_prod);
258         uint16_t bmap_next = RING_IDX(rxr->ag_ring_struct, raw_next);
259
260         /* TODO batch allocation for better performance */
261         while (rte_bitmap_get(rxr->ag_bitmap, bmap_next)) {
262                 if (unlikely(bnxt_alloc_ag_data(rxq, rxr, raw_next))) {
263                         PMD_DRV_LOG(ERR, "agg mbuf alloc failed: prod=0x%x\n",
264                                     raw_next);
265                         break;
266                 }
267                 rte_bitmap_clear(rxr->ag_bitmap, bmap_next);
268                 rxr->ag_raw_prod = raw_next;
269                 raw_next = RING_NEXT(raw_next);
270                 bmap_next = RING_IDX(rxr->ag_ring_struct, raw_next);
271         }
272
273         return 0;
274 }
275
276 static int bnxt_rx_pages(struct bnxt_rx_queue *rxq,
277                          struct rte_mbuf *mbuf, uint32_t *tmp_raw_cons,
278                          uint8_t agg_buf, struct bnxt_tpa_info *tpa_info)
279 {
280         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
281         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
282         int i;
283         uint16_t cp_cons, ag_cons;
284         struct rx_pkt_cmpl *rxcmp;
285         struct rte_mbuf *last = mbuf;
286         bool is_p5_tpa = tpa_info && BNXT_CHIP_P5(rxq->bp);
287
288         for (i = 0; i < agg_buf; i++) {
289                 struct rte_mbuf **ag_buf;
290                 struct rte_mbuf *ag_mbuf;
291
292                 if (is_p5_tpa) {
293                         rxcmp = (void *)&tpa_info->agg_arr[i];
294                 } else {
295                         *tmp_raw_cons = NEXT_RAW_CMP(*tmp_raw_cons);
296                         cp_cons = RING_CMP(cpr->cp_ring_struct, *tmp_raw_cons);
297                         rxcmp = (struct rx_pkt_cmpl *)
298                                         &cpr->cp_desc_ring[cp_cons];
299                 }
300
301 #ifdef BNXT_DEBUG
302                 bnxt_dump_cmpl(cp_cons, rxcmp);
303 #endif
304
305                 ag_cons = rxcmp->opaque;
306                 RTE_ASSERT(ag_cons <= rxr->ag_ring_struct->ring_mask);
307                 ag_buf = &rxr->ag_buf_ring[ag_cons];
308                 ag_mbuf = *ag_buf;
309                 RTE_ASSERT(ag_mbuf != NULL);
310
311                 ag_mbuf->data_len = rte_le_to_cpu_16(rxcmp->len);
312
313                 mbuf->nb_segs++;
314                 mbuf->pkt_len += ag_mbuf->data_len;
315
316                 last->next = ag_mbuf;
317                 last = ag_mbuf;
318
319                 *ag_buf = NULL;
320
321                 /*
322                  * As aggregation buffer consumed out of order in TPA module,
323                  * use bitmap to track freed slots to be allocated and notified
324                  * to NIC
325                  */
326                 rte_bitmap_set(rxr->ag_bitmap, ag_cons);
327         }
328         bnxt_prod_ag_mbuf(rxq);
329         return 0;
330 }
331
332 static inline struct rte_mbuf *bnxt_tpa_end(
333                 struct bnxt_rx_queue *rxq,
334                 uint32_t *raw_cp_cons,
335                 struct rx_tpa_end_cmpl *tpa_end,
336                 struct rx_tpa_end_cmpl_hi *tpa_end1)
337 {
338         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
339         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
340         uint16_t agg_id;
341         struct rte_mbuf *mbuf;
342         uint8_t agg_bufs;
343         uint8_t payload_offset;
344         struct bnxt_tpa_info *tpa_info;
345
346         if (BNXT_CHIP_P5(rxq->bp)) {
347                 struct rx_tpa_v2_end_cmpl *th_tpa_end;
348                 struct rx_tpa_v2_end_cmpl_hi *th_tpa_end1;
349
350                 th_tpa_end = (void *)tpa_end;
351                 th_tpa_end1 = (void *)tpa_end1;
352                 agg_id = BNXT_TPA_END_AGG_ID_TH(th_tpa_end);
353                 agg_bufs = BNXT_TPA_END_AGG_BUFS_TH(th_tpa_end1);
354                 payload_offset = th_tpa_end1->payload_offset;
355         } else {
356                 agg_id = BNXT_TPA_END_AGG_ID(tpa_end);
357                 agg_bufs = BNXT_TPA_END_AGG_BUFS(tpa_end);
358                 if (!bnxt_agg_bufs_valid(cpr, agg_bufs, *raw_cp_cons))
359                         return NULL;
360                 payload_offset = tpa_end->payload_offset;
361         }
362
363         tpa_info = &rxr->tpa_info[agg_id];
364         mbuf = tpa_info->mbuf;
365         RTE_ASSERT(mbuf != NULL);
366
367         if (agg_bufs) {
368                 bnxt_rx_pages(rxq, mbuf, raw_cp_cons, agg_bufs, tpa_info);
369         }
370         mbuf->l4_len = payload_offset;
371
372         struct rte_mbuf *new_data = __bnxt_alloc_rx_data(rxq->mb_pool);
373         RTE_ASSERT(new_data != NULL);
374         if (!new_data) {
375                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
376                 return NULL;
377         }
378         tpa_info->mbuf = new_data;
379
380         return mbuf;
381 }
382
383 uint32_t bnxt_ptype_table[BNXT_PTYPE_TBL_DIM] __rte_cache_aligned;
384
385 static void __rte_cold
386 bnxt_init_ptype_table(void)
387 {
388         uint32_t *pt = bnxt_ptype_table;
389         static bool initialized;
390         int ip6, tun, type;
391         uint32_t l3;
392         int i;
393
394         if (initialized)
395                 return;
396
397         for (i = 0; i < BNXT_PTYPE_TBL_DIM; i++) {
398                 if (i & (RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN >> 2))
399                         pt[i] = RTE_PTYPE_L2_ETHER_VLAN;
400                 else
401                         pt[i] = RTE_PTYPE_L2_ETHER;
402
403                 ip6 = i & (RX_PKT_CMPL_FLAGS2_IP_TYPE >> 7);
404                 tun = i & (RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC >> 2);
405                 type = (i & 0x38) << 9;
406
407                 if (!tun && !ip6)
408                         l3 = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
409                 else if (!tun && ip6)
410                         l3 = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
411                 else if (tun && !ip6)
412                         l3 = RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
413                 else
414                         l3 = RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
415
416                 switch (type) {
417                 case RX_PKT_CMPL_FLAGS_ITYPE_ICMP:
418                         if (tun)
419                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_ICMP;
420                         else
421                                 pt[i] |= l3 | RTE_PTYPE_L4_ICMP;
422                         break;
423                 case RX_PKT_CMPL_FLAGS_ITYPE_TCP:
424                         if (tun)
425                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_TCP;
426                         else
427                                 pt[i] |= l3 | RTE_PTYPE_L4_TCP;
428                         break;
429                 case RX_PKT_CMPL_FLAGS_ITYPE_UDP:
430                         if (tun)
431                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_UDP;
432                         else
433                                 pt[i] |= l3 | RTE_PTYPE_L4_UDP;
434                         break;
435                 case RX_PKT_CMPL_FLAGS_ITYPE_IP:
436                         pt[i] |= l3;
437                         break;
438                 }
439         }
440         initialized = true;
441 }
442
443 static uint32_t
444 bnxt_parse_pkt_type(struct rx_pkt_cmpl *rxcmp, struct rx_pkt_cmpl_hi *rxcmp1)
445 {
446         uint32_t flags_type, flags2;
447         uint8_t index;
448
449         flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
450         flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
451
452         /*
453          * Index format:
454          *     bit 0: RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC
455          *     bit 1: RX_CMPL_FLAGS2_IP_TYPE
456          *     bit 2: RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN
457          *     bits 3-6: RX_PKT_CMPL_FLAGS_ITYPE
458          */
459         index = ((flags_type & RX_PKT_CMPL_FLAGS_ITYPE_MASK) >> 9) |
460                 ((flags2 & (RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN |
461                            RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC)) >> 2) |
462                 ((flags2 & RX_PKT_CMPL_FLAGS2_IP_TYPE) >> 7);
463
464         return bnxt_ptype_table[index];
465 }
466
467 static void __rte_cold
468 bnxt_init_ol_flags_tables(struct bnxt_rx_queue *rxq)
469 {
470         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
471         struct rte_eth_conf *dev_conf;
472         bool outer_cksum_enabled;
473         uint64_t offloads;
474         uint32_t *pt;
475         int i;
476
477         dev_conf = &rxq->bp->eth_dev->data->dev_conf;
478         offloads = dev_conf->rxmode.offloads;
479
480         outer_cksum_enabled = !!(offloads & (DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
481                                              DEV_RX_OFFLOAD_OUTER_UDP_CKSUM));
482
483         /* Initialize ol_flags table. */
484         pt = rxr->ol_flags_table;
485         for (i = 0; i < BNXT_OL_FLAGS_TBL_DIM; i++) {
486                 pt[i] = 0;
487
488                 if (i & RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN)
489                         pt[i] |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
490
491                 if (i & (RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC << 3)) {
492                         /* Tunnel case. */
493                         if (outer_cksum_enabled) {
494                                 if (i & RX_PKT_CMPL_FLAGS2_IP_CS_CALC)
495                                         pt[i] |= PKT_RX_IP_CKSUM_GOOD;
496
497                                 if (i & RX_PKT_CMPL_FLAGS2_L4_CS_CALC)
498                                         pt[i] |= PKT_RX_L4_CKSUM_GOOD;
499
500                                 if (i & RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC)
501                                         pt[i] |= PKT_RX_OUTER_L4_CKSUM_GOOD;
502                         } else {
503                                 if (i & RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC)
504                                         pt[i] |= PKT_RX_IP_CKSUM_GOOD;
505
506                                 if (i & RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC)
507                                         pt[i] |= PKT_RX_L4_CKSUM_GOOD;
508                         }
509                 } else {
510                         /* Non-tunnel case. */
511                         if (i & RX_PKT_CMPL_FLAGS2_IP_CS_CALC)
512                                 pt[i] |= PKT_RX_IP_CKSUM_GOOD;
513
514                         if (i & RX_PKT_CMPL_FLAGS2_L4_CS_CALC)
515                                 pt[i] |= PKT_RX_L4_CKSUM_GOOD;
516                 }
517         }
518
519         /* Initialize checksum error table. */
520         pt = rxr->ol_flags_err_table;
521         for (i = 0; i < BNXT_OL_FLAGS_ERR_TBL_DIM; i++) {
522                 pt[i] = 0;
523
524                 if (i & (RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC << 2)) {
525                         /* Tunnel case. */
526                         if (outer_cksum_enabled) {
527                                 if (i & (RX_PKT_CMPL_ERRORS_IP_CS_ERROR >> 4))
528                                         pt[i] |= PKT_RX_IP_CKSUM_BAD;
529
530                                 if (i & (RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR >> 4))
531                                         pt[i] |= PKT_RX_EIP_CKSUM_BAD;
532
533                                 if (i & (RX_PKT_CMPL_ERRORS_L4_CS_ERROR >> 4))
534                                         pt[i] |= PKT_RX_L4_CKSUM_BAD;
535
536                                 if (i & (RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR >> 4))
537                                         pt[i] |= PKT_RX_OUTER_L4_CKSUM_BAD;
538                         } else {
539                                 if (i & (RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR >> 4))
540                                         pt[i] |= PKT_RX_IP_CKSUM_BAD;
541
542                                 if (i & (RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR >> 4))
543                                         pt[i] |= PKT_RX_L4_CKSUM_BAD;
544                         }
545                 } else {
546                         /* Non-tunnel case. */
547                         if (i & (RX_PKT_CMPL_ERRORS_IP_CS_ERROR >> 4))
548                                 pt[i] |= PKT_RX_IP_CKSUM_BAD;
549
550                         if (i & (RX_PKT_CMPL_ERRORS_L4_CS_ERROR >> 4))
551                                 pt[i] |= PKT_RX_L4_CKSUM_BAD;
552                 }
553         }
554 }
555
556 static void
557 bnxt_set_ol_flags(struct bnxt_rx_ring_info *rxr, struct rx_pkt_cmpl *rxcmp,
558                   struct rx_pkt_cmpl_hi *rxcmp1, struct rte_mbuf *mbuf)
559 {
560         uint16_t flags_type, errors, flags;
561         uint64_t ol_flags;
562
563         flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
564
565         flags = rte_le_to_cpu_32(rxcmp1->flags2) &
566                                 (RX_PKT_CMPL_FLAGS2_IP_CS_CALC |
567                                  RX_PKT_CMPL_FLAGS2_L4_CS_CALC |
568                                  RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC |
569                                  RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC |
570                                  RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN);
571
572         flags |= (flags & RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC) << 3;
573         errors = rte_le_to_cpu_16(rxcmp1->errors_v2) &
574                                 (RX_PKT_CMPL_ERRORS_IP_CS_ERROR |
575                                  RX_PKT_CMPL_ERRORS_L4_CS_ERROR |
576                                  RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR |
577                                  RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR);
578         errors = (errors >> 4) & flags;
579
580         ol_flags = rxr->ol_flags_table[flags & ~errors];
581
582         if (unlikely(errors)) {
583                 errors |= (flags & RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC) << 2;
584                 ol_flags |= rxr->ol_flags_err_table[errors];
585         }
586
587         if (flags_type & RX_PKT_CMPL_FLAGS_RSS_VALID) {
588                 mbuf->hash.rss = rte_le_to_cpu_32(rxcmp->rss_hash);
589                 ol_flags |= PKT_RX_RSS_HASH;
590         }
591
592         mbuf->ol_flags = ol_flags;
593 }
594
595 #ifdef RTE_LIBRTE_IEEE1588
596 static void
597 bnxt_get_rx_ts_p5(struct bnxt *bp, uint32_t rx_ts_cmpl)
598 {
599         uint64_t systime_cycles = 0;
600
601         if (!BNXT_CHIP_P5(bp))
602                 return;
603
604         /* On Thor, Rx timestamps are provided directly in the
605          * Rx completion records to the driver. Only 32 bits of
606          * the timestamp is present in the completion. Driver needs
607          * to read the current 48 bit free running timer using the
608          * HWRM_PORT_TS_QUERY command and combine the upper 16 bits
609          * from the HWRM response with the lower 32 bits in the
610          * Rx completion to produce the 48 bit timestamp for the Rx packet
611          */
612         bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_CURRENT_TIME,
613                                 &systime_cycles);
614         bp->ptp_cfg->rx_timestamp = (systime_cycles & 0xFFFF00000000);
615         bp->ptp_cfg->rx_timestamp |= rx_ts_cmpl;
616 }
617 #endif
618
619 static uint32_t
620 bnxt_ulp_set_mark_in_mbuf(struct bnxt *bp, struct rx_pkt_cmpl_hi *rxcmp1,
621                           struct rte_mbuf *mbuf, uint32_t *vfr_flag)
622 {
623         uint32_t cfa_code;
624         uint32_t meta_fmt;
625         uint32_t meta;
626         bool gfid = false;
627         uint32_t mark_id;
628         uint32_t flags2;
629         uint32_t gfid_support = 0;
630         int rc;
631
632         if (BNXT_GFID_ENABLED(bp))
633                 gfid_support = 1;
634
635         cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
636         flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
637         meta = rte_le_to_cpu_32(rxcmp1->metadata);
638
639         /*
640          * The flags field holds extra bits of info from [6:4]
641          * which indicate if the flow is in TCAM or EM or EEM
642          */
643         meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
644                 BNXT_CFA_META_FMT_SHFT;
645
646         switch (meta_fmt) {
647         case 0:
648                 if (gfid_support) {
649                         /* Not an LFID or GFID, a flush cmd. */
650                         goto skip_mark;
651                 } else {
652                         /* LFID mode, no vlan scenario */
653                         gfid = false;
654                 }
655                 break;
656         case 4:
657         case 5:
658                 /*
659                  * EM/TCAM case
660                  * Assume that EM doesn't support Mark due to GFID
661                  * collisions with EEM.  Simply return without setting the mark
662                  * in the mbuf.
663                  */
664                 if (BNXT_CFA_META_EM_TEST(meta)) {
665                         /*This is EM hit {EM(1), GFID[27:16], 19'd0 or vtag } */
666                         gfid = true;
667                         meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
668                         cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
669                 } else {
670                         /*
671                          * It is a TCAM entry, so it is an LFID.
672                          * The TCAM IDX and Mode can also be determined
673                          * by decoding the meta_data. We are not
674                          * using these for now.
675                          */
676                 }
677                 break;
678         case 6:
679         case 7:
680                 /* EEM Case, only using gfid in EEM for now. */
681                 gfid = true;
682
683                 /*
684                  * For EEM flows, The first part of cfa_code is 16 bits.
685                  * The second part is embedded in the
686                  * metadata field from bit 19 onwards. The driver needs to
687                  * ignore the first 19 bits of metadata and use the next 12
688                  * bits as higher 12 bits of cfa_code.
689                  */
690                 meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
691                 cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
692                 break;
693         default:
694                 /* For other values, the cfa_code is assumed to be an LFID. */
695                 break;
696         }
697
698         rc = ulp_mark_db_mark_get(bp->ulp_ctx, gfid,
699                                   cfa_code, vfr_flag, &mark_id);
700         if (!rc) {
701                 /* VF to VFR Rx path. So, skip mark_id injection in mbuf */
702                 if (vfr_flag && *vfr_flag)
703                         return mark_id;
704                 /* Got the mark, write it to the mbuf and return */
705                 mbuf->hash.fdir.hi = mark_id;
706                 *bnxt_cfa_code_dynfield(mbuf) = cfa_code & 0xffffffffull;
707                 mbuf->hash.fdir.id = rxcmp1->cfa_code;
708                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
709                 return mark_id;
710         }
711
712 skip_mark:
713         mbuf->hash.fdir.hi = 0;
714         mbuf->hash.fdir.id = 0;
715
716         return 0;
717 }
718
719 void bnxt_set_mark_in_mbuf(struct bnxt *bp,
720                            struct rx_pkt_cmpl_hi *rxcmp1,
721                            struct rte_mbuf *mbuf)
722 {
723         uint32_t cfa_code = 0;
724         uint8_t meta_fmt = 0;
725         uint16_t flags2 = 0;
726         uint32_t meta =  0;
727
728         cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
729         if (!cfa_code)
730                 return;
731
732         if (cfa_code && !bp->mark_table[cfa_code].valid)
733                 return;
734
735         flags2 = rte_le_to_cpu_16(rxcmp1->flags2);
736         meta = rte_le_to_cpu_32(rxcmp1->metadata);
737         if (meta) {
738                 meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
739
740                 /* The flags field holds extra bits of info from [6:4]
741                  * which indicate if the flow is in TCAM or EM or EEM
742                  */
743                 meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
744                            BNXT_CFA_META_FMT_SHFT;
745
746                 /* meta_fmt == 4 => 'b100 => 'b10x => EM.
747                  * meta_fmt == 5 => 'b101 => 'b10x => EM + VLAN
748                  * meta_fmt == 6 => 'b110 => 'b11x => EEM
749                  * meta_fmt == 7 => 'b111 => 'b11x => EEM + VLAN.
750                  */
751                 meta_fmt >>= BNXT_CFA_META_FMT_EM_EEM_SHFT;
752         }
753
754         mbuf->hash.fdir.hi = bp->mark_table[cfa_code].mark_id;
755         mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
756 }
757
758 static int bnxt_rx_pkt(struct rte_mbuf **rx_pkt,
759                        struct bnxt_rx_queue *rxq, uint32_t *raw_cons)
760 {
761         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
762         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
763         struct rx_pkt_cmpl *rxcmp;
764         struct rx_pkt_cmpl_hi *rxcmp1;
765         uint32_t tmp_raw_cons = *raw_cons;
766         uint16_t cons, raw_prod, cp_cons =
767             RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
768         struct rte_mbuf *mbuf;
769         int rc = 0;
770         uint8_t agg_buf = 0;
771         uint16_t cmp_type;
772         uint32_t vfr_flag = 0, mark_id = 0;
773         struct bnxt *bp = rxq->bp;
774
775         rxcmp = (struct rx_pkt_cmpl *)
776             &cpr->cp_desc_ring[cp_cons];
777
778         cmp_type = CMP_TYPE(rxcmp);
779
780         if (cmp_type == RX_TPA_V2_ABUF_CMPL_TYPE_RX_TPA_AGG) {
781                 struct rx_tpa_v2_abuf_cmpl *rx_agg = (void *)rxcmp;
782                 uint16_t agg_id = rte_cpu_to_le_16(rx_agg->agg_id);
783                 struct bnxt_tpa_info *tpa_info;
784
785                 tpa_info = &rxr->tpa_info[agg_id];
786                 RTE_ASSERT(tpa_info->agg_count < 16);
787                 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
788                 rc = -EINVAL; /* Continue w/o new mbuf */
789                 goto next_rx;
790         }
791
792         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
793         cp_cons = RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
794         rxcmp1 = (struct rx_pkt_cmpl_hi *)&cpr->cp_desc_ring[cp_cons];
795
796         if (!CMP_VALID(rxcmp1, tmp_raw_cons, cpr->cp_ring_struct))
797                 return -EBUSY;
798
799         cpr->valid = FLIP_VALID(cp_cons,
800                                 cpr->cp_ring_struct->ring_mask,
801                                 cpr->valid);
802
803         if (cmp_type == RX_TPA_START_CMPL_TYPE_RX_TPA_START ||
804             cmp_type == RX_TPA_START_V2_CMPL_TYPE_RX_TPA_START_V2) {
805                 bnxt_tpa_start(rxq, (struct rx_tpa_start_cmpl *)rxcmp,
806                                (struct rx_tpa_start_cmpl_hi *)rxcmp1);
807                 rc = -EINVAL; /* Continue w/o new mbuf */
808                 goto next_rx;
809         } else if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
810                 mbuf = bnxt_tpa_end(rxq, &tmp_raw_cons,
811                                    (struct rx_tpa_end_cmpl *)rxcmp,
812                                    (struct rx_tpa_end_cmpl_hi *)rxcmp1);
813                 if (unlikely(!mbuf))
814                         return -EBUSY;
815                 *rx_pkt = mbuf;
816                 goto next_rx;
817         } else if ((cmp_type != CMPL_BASE_TYPE_RX_L2) &&
818                    (cmp_type != CMPL_BASE_TYPE_RX_L2_V2)) {
819                 rc = -EINVAL;
820                 goto next_rx;
821         }
822
823         agg_buf = (rxcmp->agg_bufs_v1 & RX_PKT_CMPL_AGG_BUFS_MASK)
824                         >> RX_PKT_CMPL_AGG_BUFS_SFT;
825         if (agg_buf && !bnxt_agg_bufs_valid(cpr, agg_buf, tmp_raw_cons))
826                 return -EBUSY;
827
828         raw_prod = rxr->rx_raw_prod;
829
830         cons = rxcmp->opaque;
831         mbuf = bnxt_consume_rx_buf(rxr, cons);
832         if (mbuf == NULL)
833                 return -EBUSY;
834
835         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
836         mbuf->nb_segs = 1;
837         mbuf->next = NULL;
838         mbuf->pkt_len = rxcmp->len;
839         mbuf->data_len = mbuf->pkt_len;
840         mbuf->port = rxq->port_id;
841
842 #ifdef RTE_LIBRTE_IEEE1588
843         if (unlikely((rte_le_to_cpu_16(rxcmp->flags_type) &
844                       RX_PKT_CMPL_FLAGS_MASK) ==
845                       RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP)) {
846                 mbuf->ol_flags |= PKT_RX_IEEE1588_PTP | PKT_RX_IEEE1588_TMST;
847                 bnxt_get_rx_ts_p5(rxq->bp, rxcmp1->reorder);
848         }
849 #endif
850
851         if (cmp_type == CMPL_BASE_TYPE_RX_L2_V2) {
852                 bnxt_parse_csum_v2(mbuf, rxcmp1);
853                 bnxt_parse_pkt_type_v2(mbuf, rxcmp, rxcmp1);
854                 bnxt_rx_vlan_v2(mbuf, rxcmp, rxcmp1);
855                 /* TODO Add support for cfa_code parsing */
856                 goto reuse_rx_mbuf;
857         }
858
859         bnxt_set_ol_flags(rxr, rxcmp, rxcmp1, mbuf);
860
861         mbuf->packet_type = bnxt_parse_pkt_type(rxcmp, rxcmp1);
862
863         if (BNXT_TRUFLOW_EN(bp))
864                 mark_id = bnxt_ulp_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf,
865                                                     &vfr_flag);
866         else
867                 bnxt_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf);
868
869 reuse_rx_mbuf:
870         if (agg_buf)
871                 bnxt_rx_pages(rxq, mbuf, &tmp_raw_cons, agg_buf, NULL);
872
873 #ifdef BNXT_DEBUG
874         if (rxcmp1->errors_v2 & RX_CMP_L2_ERRORS) {
875                 /* Re-install the mbuf back to the rx ring */
876                 bnxt_reuse_rx_mbuf(rxr, cons, mbuf);
877
878                 rc = -EIO;
879                 goto next_rx;
880         }
881 #endif
882         /*
883          * TODO: Redesign this....
884          * If the allocation fails, the packet does not get received.
885          * Simply returning this will result in slowly falling behind
886          * on the producer ring buffers.
887          * Instead, "filling up" the producer just before ringing the
888          * doorbell could be a better solution since it will let the
889          * producer ring starve until memory is available again pushing
890          * the drops into hardware and getting them out of the driver
891          * allowing recovery to a full producer ring.
892          *
893          * This could also help with cache usage by preventing per-packet
894          * calls in favour of a tight loop with the same function being called
895          * in it.
896          */
897         raw_prod = RING_NEXT(raw_prod);
898         if (bnxt_alloc_rx_data(rxq, rxr, raw_prod)) {
899                 PMD_DRV_LOG(ERR, "mbuf alloc failed with prod=0x%x\n",
900                             raw_prod);
901                 rc = -ENOMEM;
902                 goto rx;
903         }
904         rxr->rx_raw_prod = raw_prod;
905
906         if (BNXT_TRUFLOW_EN(bp) && (BNXT_VF_IS_TRUSTED(bp) || BNXT_PF(bp)) &&
907             vfr_flag) {
908                 bnxt_vfr_recv(mark_id, rxq->queue_id, mbuf);
909                 /* Now return an error so that nb_rx_pkts is not
910                  * incremented.
911                  * This packet was meant to be given to the representor.
912                  * So no need to account the packet and give it to
913                  * parent Rx burst function.
914                  */
915                 rc = -ENODEV;
916                 goto next_rx;
917         }
918         /*
919          * All MBUFs are allocated with the same size under DPDK,
920          * no optimization for rx_copy_thresh
921          */
922 rx:
923         *rx_pkt = mbuf;
924
925 next_rx:
926
927         *raw_cons = tmp_raw_cons;
928
929         return rc;
930 }
931
932 uint16_t bnxt_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
933                                uint16_t nb_pkts)
934 {
935         struct bnxt_rx_queue *rxq = rx_queue;
936         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
937         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
938         uint16_t rx_raw_prod = rxr->rx_raw_prod;
939         uint16_t ag_raw_prod = rxr->ag_raw_prod;
940         uint32_t raw_cons = cpr->cp_raw_cons;
941         bool alloc_failed = false;
942         uint32_t cons;
943         int nb_rx_pkts = 0;
944         int nb_rep_rx_pkts = 0;
945         struct rx_pkt_cmpl *rxcmp;
946         int rc = 0;
947         bool evt = false;
948
949         if (unlikely(is_bnxt_in_error(rxq->bp)))
950                 return 0;
951
952         /* If Rx Q was stopped return */
953         if (unlikely(!rxq->rx_started))
954                 return 0;
955
956 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
957         /*
958          * Replenish buffers if needed when a transition has been made from
959          * vector- to non-vector- receive processing.
960          */
961         while (unlikely(rxq->rxrearm_nb)) {
962                 if (!bnxt_alloc_rx_data(rxq, rxr, rxq->rxrearm_start)) {
963                         rxr->rx_raw_prod = rxq->rxrearm_start;
964                         bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
965                         rxq->rxrearm_start++;
966                         rxq->rxrearm_nb--;
967                 } else {
968                         /* Retry allocation on next call. */
969                         break;
970                 }
971         }
972 #endif
973
974         /* Handle RX burst request */
975         while (1) {
976                 cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
977                 rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
978
979                 if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct))
980                         break;
981                 cpr->valid = FLIP_VALID(cons,
982                                         cpr->cp_ring_struct->ring_mask,
983                                         cpr->valid);
984
985                 if ((CMP_TYPE(rxcmp) >= CMPL_BASE_TYPE_RX_TPA_START_V2) &&
986                      (CMP_TYPE(rxcmp) <= RX_TPA_V2_ABUF_CMPL_TYPE_RX_TPA_AGG)) {
987                         rc = bnxt_rx_pkt(&rx_pkts[nb_rx_pkts], rxq, &raw_cons);
988                         if (!rc)
989                                 nb_rx_pkts++;
990                         else if (rc == -EBUSY)  /* partial completion */
991                                 break;
992                         else if (rc == -ENODEV) /* completion for representor */
993                                 nb_rep_rx_pkts++;
994                         else if (rc == -ENOMEM) {
995                                 nb_rx_pkts++;
996                                 alloc_failed = true;
997                         }
998                 } else if (!BNXT_NUM_ASYNC_CPR(rxq->bp)) {
999                         evt =
1000                         bnxt_event_hwrm_resp_handler(rxq->bp,
1001                                                      (struct cmpl_base *)rxcmp);
1002                         /* If the async event is Fatal error, return */
1003                         if (unlikely(is_bnxt_in_error(rxq->bp)))
1004                                 goto done;
1005                 }
1006
1007                 raw_cons = NEXT_RAW_CMP(raw_cons);
1008                 if (nb_rx_pkts == nb_pkts || nb_rep_rx_pkts == nb_pkts || evt)
1009                         break;
1010                 /* Post some Rx buf early in case of larger burst processing */
1011                 if (nb_rx_pkts == BNXT_RX_POST_THRESH)
1012                         bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
1013         }
1014
1015         cpr->cp_raw_cons = raw_cons;
1016         if (!nb_rx_pkts && !nb_rep_rx_pkts && !evt) {
1017                 /*
1018                  * For PMD, there is no need to keep on pushing to REARM
1019                  * the doorbell if there are no new completions
1020                  */
1021                 goto done;
1022         }
1023
1024         /* Ring the completion queue doorbell. */
1025         bnxt_db_cq(cpr);
1026
1027         /* Ring the receive descriptor doorbell. */
1028         if (rx_raw_prod != rxr->rx_raw_prod)
1029                 bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
1030
1031         /* Ring the AGG ring DB */
1032         if (ag_raw_prod != rxr->ag_raw_prod)
1033                 bnxt_db_write(&rxr->ag_db, rxr->ag_raw_prod);
1034
1035         /* Attempt to alloc Rx buf in case of a previous allocation failure. */
1036         if (alloc_failed) {
1037                 uint16_t cnt;
1038
1039                 rx_raw_prod = RING_NEXT(rx_raw_prod);
1040                 for (cnt = 0; cnt < nb_rx_pkts + nb_rep_rx_pkts; cnt++) {
1041                         struct rte_mbuf **rx_buf;
1042                         uint16_t ndx;
1043
1044                         ndx = RING_IDX(rxr->rx_ring_struct, rx_raw_prod + cnt);
1045                         rx_buf = &rxr->rx_buf_ring[ndx];
1046
1047                         /* Buffer already allocated for this index. */
1048                         if (*rx_buf != NULL && *rx_buf != &rxq->fake_mbuf)
1049                                 continue;
1050
1051                         /* This slot is empty. Alloc buffer for Rx */
1052                         if (!bnxt_alloc_rx_data(rxq, rxr, rx_raw_prod + cnt)) {
1053                                 rxr->rx_raw_prod = rx_raw_prod + cnt;
1054                                 bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
1055                         } else {
1056                                 PMD_DRV_LOG(ERR, "Alloc  mbuf failed\n");
1057                                 break;
1058                         }
1059                 }
1060         }
1061
1062 done:
1063         return nb_rx_pkts;
1064 }
1065
1066 /*
1067  * Dummy DPDK callback for RX.
1068  *
1069  * This function is used to temporarily replace the real callback during
1070  * unsafe control operations on the queue, or in case of error.
1071  */
1072 uint16_t
1073 bnxt_dummy_recv_pkts(void *rx_queue __rte_unused,
1074                      struct rte_mbuf **rx_pkts __rte_unused,
1075                      uint16_t nb_pkts __rte_unused)
1076 {
1077         return 0;
1078 }
1079
1080 void bnxt_free_rx_rings(struct bnxt *bp)
1081 {
1082         int i;
1083         struct bnxt_rx_queue *rxq;
1084
1085         if (!bp->rx_queues)
1086                 return;
1087
1088         for (i = 0; i < (int)bp->rx_nr_rings; i++) {
1089                 rxq = bp->rx_queues[i];
1090                 if (!rxq)
1091                         continue;
1092
1093                 bnxt_free_ring(rxq->rx_ring->rx_ring_struct);
1094                 rte_free(rxq->rx_ring->rx_ring_struct);
1095
1096                 /* Free the Aggregator ring */
1097                 bnxt_free_ring(rxq->rx_ring->ag_ring_struct);
1098                 rte_free(rxq->rx_ring->ag_ring_struct);
1099                 rxq->rx_ring->ag_ring_struct = NULL;
1100
1101                 rte_free(rxq->rx_ring);
1102
1103                 bnxt_free_ring(rxq->cp_ring->cp_ring_struct);
1104                 rte_free(rxq->cp_ring->cp_ring_struct);
1105                 rte_free(rxq->cp_ring);
1106
1107                 rte_free(rxq);
1108                 bp->rx_queues[i] = NULL;
1109         }
1110 }
1111
1112 int bnxt_init_rx_ring_struct(struct bnxt_rx_queue *rxq, unsigned int socket_id)
1113 {
1114         struct rte_eth_dev *eth_dev = rxq->bp->eth_dev;
1115         struct rte_eth_rxmode *rxmode;
1116         struct bnxt_cp_ring_info *cpr;
1117         struct bnxt_rx_ring_info *rxr;
1118         struct bnxt_ring *ring;
1119         bool use_agg_ring;
1120
1121         rxq->rx_buf_size = BNXT_MAX_PKT_LEN + sizeof(struct rte_mbuf);
1122
1123         rxr = rte_zmalloc_socket("bnxt_rx_ring",
1124                                  sizeof(struct bnxt_rx_ring_info),
1125                                  RTE_CACHE_LINE_SIZE, socket_id);
1126         if (rxr == NULL)
1127                 return -ENOMEM;
1128         rxq->rx_ring = rxr;
1129
1130         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1131                                    sizeof(struct bnxt_ring),
1132                                    RTE_CACHE_LINE_SIZE, socket_id);
1133         if (ring == NULL)
1134                 return -ENOMEM;
1135         rxr->rx_ring_struct = ring;
1136         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc);
1137         ring->ring_mask = ring->ring_size - 1;
1138         ring->bd = (void *)rxr->rx_desc_ring;
1139         ring->bd_dma = rxr->rx_desc_mapping;
1140
1141         /* Allocate extra rx ring entries for vector rx. */
1142         ring->vmem_size = sizeof(struct rte_mbuf *) *
1143                                 (ring->ring_size + RTE_BNXT_DESCS_PER_LOOP);
1144
1145         ring->vmem = (void **)&rxr->rx_buf_ring;
1146         ring->fw_ring_id = INVALID_HW_RING_ID;
1147
1148         cpr = rte_zmalloc_socket("bnxt_rx_ring",
1149                                  sizeof(struct bnxt_cp_ring_info),
1150                                  RTE_CACHE_LINE_SIZE, socket_id);
1151         if (cpr == NULL)
1152                 return -ENOMEM;
1153         rxq->cp_ring = cpr;
1154
1155         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1156                                    sizeof(struct bnxt_ring),
1157                                    RTE_CACHE_LINE_SIZE, socket_id);
1158         if (ring == NULL)
1159                 return -ENOMEM;
1160         cpr->cp_ring_struct = ring;
1161
1162         rxmode = &eth_dev->data->dev_conf.rxmode;
1163         use_agg_ring = (rxmode->offloads & DEV_RX_OFFLOAD_SCATTER) ||
1164                        (rxmode->offloads & DEV_RX_OFFLOAD_TCP_LRO) ||
1165                        (rxmode->max_rx_pkt_len >
1166                          (uint32_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
1167                                     RTE_PKTMBUF_HEADROOM));
1168
1169         /* Allocate two completion slots per entry in desc ring. */
1170         ring->ring_size = rxr->rx_ring_struct->ring_size * 2;
1171
1172         /* Allocate additional slots if aggregation ring is in use. */
1173         if (use_agg_ring)
1174                 ring->ring_size *= AGG_RING_SIZE_FACTOR;
1175
1176         ring->ring_size = rte_align32pow2(ring->ring_size);
1177         ring->ring_mask = ring->ring_size - 1;
1178         ring->bd = (void *)cpr->cp_desc_ring;
1179         ring->bd_dma = cpr->cp_desc_mapping;
1180         ring->vmem_size = 0;
1181         ring->vmem = NULL;
1182         ring->fw_ring_id = INVALID_HW_RING_ID;
1183
1184         /* Allocate Aggregator rings */
1185         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1186                                    sizeof(struct bnxt_ring),
1187                                    RTE_CACHE_LINE_SIZE, socket_id);
1188         if (ring == NULL)
1189                 return -ENOMEM;
1190         rxr->ag_ring_struct = ring;
1191         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc *
1192                                           AGG_RING_SIZE_FACTOR);
1193         ring->ring_mask = ring->ring_size - 1;
1194         ring->bd = (void *)rxr->ag_desc_ring;
1195         ring->bd_dma = rxr->ag_desc_mapping;
1196         ring->vmem_size = ring->ring_size * sizeof(struct rte_mbuf *);
1197         ring->vmem = (void **)&rxr->ag_buf_ring;
1198         ring->fw_ring_id = INVALID_HW_RING_ID;
1199
1200         return 0;
1201 }
1202
1203 static void bnxt_init_rxbds(struct bnxt_ring *ring, uint32_t type,
1204                             uint16_t len)
1205 {
1206         uint32_t j;
1207         struct rx_prod_pkt_bd *rx_bd_ring = (struct rx_prod_pkt_bd *)ring->bd;
1208
1209         if (!rx_bd_ring)
1210                 return;
1211         for (j = 0; j < ring->ring_size; j++) {
1212                 rx_bd_ring[j].flags_type = rte_cpu_to_le_16(type);
1213                 rx_bd_ring[j].len = rte_cpu_to_le_16(len);
1214                 rx_bd_ring[j].opaque = j;
1215         }
1216 }
1217
1218 int bnxt_init_one_rx_ring(struct bnxt_rx_queue *rxq)
1219 {
1220         struct bnxt_rx_ring_info *rxr;
1221         struct bnxt_ring *ring;
1222         uint32_t raw_prod, type;
1223         unsigned int i;
1224         uint16_t size;
1225
1226         /* Initialize packet type table. */
1227         bnxt_init_ptype_table();
1228
1229         size = rte_pktmbuf_data_room_size(rxq->mb_pool) - RTE_PKTMBUF_HEADROOM;
1230         size = RTE_MIN(BNXT_MAX_PKT_LEN, size);
1231
1232         type = RX_PROD_PKT_BD_TYPE_RX_PROD_PKT;
1233
1234         rxr = rxq->rx_ring;
1235         ring = rxr->rx_ring_struct;
1236         bnxt_init_rxbds(ring, type, size);
1237
1238         /* Initialize offload flags parsing table. */
1239         bnxt_init_ol_flags_tables(rxq);
1240
1241         raw_prod = rxr->rx_raw_prod;
1242         for (i = 0; i < ring->ring_size; i++) {
1243                 if (unlikely(!rxr->rx_buf_ring[i])) {
1244                         if (bnxt_alloc_rx_data(rxq, rxr, raw_prod) != 0) {
1245                                 PMD_DRV_LOG(WARNING,
1246                                             "init'ed rx ring %d with %d/%d mbufs only\n",
1247                                             rxq->queue_id, i, ring->ring_size);
1248                                 break;
1249                         }
1250                 }
1251                 rxr->rx_raw_prod = raw_prod;
1252                 raw_prod = RING_NEXT(raw_prod);
1253         }
1254
1255         /* Initialize dummy mbuf pointers for vector mode rx. */
1256         for (i = ring->ring_size;
1257              i < ring->ring_size + RTE_BNXT_DESCS_PER_LOOP; i++) {
1258                 rxr->rx_buf_ring[i] = &rxq->fake_mbuf;
1259         }
1260
1261         ring = rxr->ag_ring_struct;
1262         type = RX_PROD_AGG_BD_TYPE_RX_PROD_AGG;
1263         bnxt_init_rxbds(ring, type, size);
1264         raw_prod = rxr->ag_raw_prod;
1265
1266         for (i = 0; i < ring->ring_size; i++) {
1267                 if (unlikely(!rxr->ag_buf_ring[i])) {
1268                         if (bnxt_alloc_ag_data(rxq, rxr, raw_prod) != 0) {
1269                                 PMD_DRV_LOG(WARNING,
1270                                             "init'ed AG ring %d with %d/%d mbufs only\n",
1271                                             rxq->queue_id, i, ring->ring_size);
1272                                 break;
1273                         }
1274                 }
1275                 rxr->ag_raw_prod = raw_prod;
1276                 raw_prod = RING_NEXT(raw_prod);
1277         }
1278         PMD_DRV_LOG(DEBUG, "AGG Done!\n");
1279
1280         if (rxr->tpa_info) {
1281                 unsigned int max_aggs = BNXT_TPA_MAX_AGGS(rxq->bp);
1282
1283                 for (i = 0; i < max_aggs; i++) {
1284                         if (unlikely(!rxr->tpa_info[i].mbuf)) {
1285                                 rxr->tpa_info[i].mbuf =
1286                                         __bnxt_alloc_rx_data(rxq->mb_pool);
1287                                 if (!rxr->tpa_info[i].mbuf) {
1288                                         rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
1289                                         return -ENOMEM;
1290                                 }
1291                         }
1292                 }
1293         }
1294         PMD_DRV_LOG(DEBUG, "TPA alloc Done!\n");
1295
1296         return 0;
1297 }