net/bnxt: reduce CQ queue size without aggregation ring
[dpdk.git] / drivers / net / bnxt / bnxt_rxr.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Broadcom
3  * All rights reserved.
4  */
5
6 #include <inttypes.h>
7 #include <stdbool.h>
8
9 #include <rte_bitmap.h>
10 #include <rte_byteorder.h>
11 #include <rte_malloc.h>
12 #include <rte_memory.h>
13
14 #include "bnxt.h"
15 #include "bnxt_reps.h"
16 #include "bnxt_ring.h"
17 #include "bnxt_rxr.h"
18 #include "bnxt_rxq.h"
19 #include "hsi_struct_def_dpdk.h"
20 #ifdef RTE_LIBRTE_IEEE1588
21 #include "bnxt_hwrm.h"
22 #endif
23
24 #include <bnxt_tf_common.h>
25 #include <ulp_mark_mgr.h>
26
27 /*
28  * RX Ring handling
29  */
30
31 static inline struct rte_mbuf *__bnxt_alloc_rx_data(struct rte_mempool *mb)
32 {
33         struct rte_mbuf *data;
34
35         data = rte_mbuf_raw_alloc(mb);
36
37         return data;
38 }
39
40 static inline int bnxt_alloc_rx_data(struct bnxt_rx_queue *rxq,
41                                      struct bnxt_rx_ring_info *rxr,
42                                      uint16_t prod)
43 {
44         struct rx_prod_pkt_bd *rxbd = &rxr->rx_desc_ring[prod];
45         struct rte_mbuf **rx_buf = &rxr->rx_buf_ring[prod];
46         struct rte_mbuf *mbuf;
47
48         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
49         if (!mbuf) {
50                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
51                 return -ENOMEM;
52         }
53
54         *rx_buf = mbuf;
55         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
56
57         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
58
59         return 0;
60 }
61
62 static inline int bnxt_alloc_ag_data(struct bnxt_rx_queue *rxq,
63                                      struct bnxt_rx_ring_info *rxr,
64                                      uint16_t prod)
65 {
66         struct rx_prod_pkt_bd *rxbd = &rxr->ag_desc_ring[prod];
67         struct rte_mbuf **rx_buf = &rxr->ag_buf_ring[prod];
68         struct rte_mbuf *mbuf;
69
70         if (rxbd == NULL) {
71                 PMD_DRV_LOG(ERR, "Jumbo Frame. rxbd is NULL\n");
72                 return -EINVAL;
73         }
74
75         if (rx_buf == NULL) {
76                 PMD_DRV_LOG(ERR, "Jumbo Frame. rx_buf is NULL\n");
77                 return -EINVAL;
78         }
79
80         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
81         if (!mbuf) {
82                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
83                 return -ENOMEM;
84         }
85
86         *rx_buf = mbuf;
87         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
88
89         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
90
91         return 0;
92 }
93
94 static inline void bnxt_reuse_rx_mbuf(struct bnxt_rx_ring_info *rxr,
95                                struct rte_mbuf *mbuf)
96 {
97         uint16_t prod = RING_NEXT(rxr->rx_ring_struct, rxr->rx_prod);
98         struct rte_mbuf **prod_rx_buf;
99         struct rx_prod_pkt_bd *prod_bd;
100
101         prod_rx_buf = &rxr->rx_buf_ring[prod];
102
103         RTE_ASSERT(*prod_rx_buf == NULL);
104         RTE_ASSERT(mbuf != NULL);
105
106         *prod_rx_buf = mbuf;
107
108         prod_bd = &rxr->rx_desc_ring[prod];
109
110         prod_bd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
111
112         rxr->rx_prod = prod;
113 }
114
115 static inline
116 struct rte_mbuf *bnxt_consume_rx_buf(struct bnxt_rx_ring_info *rxr,
117                                      uint16_t cons)
118 {
119         struct rte_mbuf **cons_rx_buf;
120         struct rte_mbuf *mbuf;
121
122         cons_rx_buf = &rxr->rx_buf_ring[cons];
123         RTE_ASSERT(*cons_rx_buf != NULL);
124         mbuf = *cons_rx_buf;
125         *cons_rx_buf = NULL;
126
127         return mbuf;
128 }
129
130 static void bnxt_tpa_start(struct bnxt_rx_queue *rxq,
131                            struct rx_tpa_start_cmpl *tpa_start,
132                            struct rx_tpa_start_cmpl_hi *tpa_start1)
133 {
134         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
135         uint16_t agg_id;
136         uint16_t data_cons;
137         struct bnxt_tpa_info *tpa_info;
138         struct rte_mbuf *mbuf;
139
140         agg_id = bnxt_tpa_start_agg_id(rxq->bp, tpa_start);
141
142         data_cons = tpa_start->opaque;
143         tpa_info = &rxr->tpa_info[agg_id];
144
145         mbuf = bnxt_consume_rx_buf(rxr, data_cons);
146
147         bnxt_reuse_rx_mbuf(rxr, tpa_info->mbuf);
148
149         tpa_info->agg_count = 0;
150         tpa_info->mbuf = mbuf;
151         tpa_info->len = rte_le_to_cpu_32(tpa_start->len);
152
153         mbuf->nb_segs = 1;
154         mbuf->next = NULL;
155         mbuf->pkt_len = rte_le_to_cpu_32(tpa_start->len);
156         mbuf->data_len = mbuf->pkt_len;
157         mbuf->port = rxq->port_id;
158         mbuf->ol_flags = PKT_RX_LRO;
159         if (likely(tpa_start->flags_type &
160                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS_RSS_VALID))) {
161                 mbuf->hash.rss = rte_le_to_cpu_32(tpa_start->rss_hash);
162                 mbuf->ol_flags |= PKT_RX_RSS_HASH;
163         } else {
164                 mbuf->hash.fdir.id = rte_le_to_cpu_16(tpa_start1->cfa_code);
165                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
166         }
167         if (tpa_start1->flags2 &
168             rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_META_FORMAT_VLAN)) {
169                 mbuf->vlan_tci = rte_le_to_cpu_32(tpa_start1->metadata);
170                 mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
171         }
172         if (likely(tpa_start1->flags2 &
173                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_L4_CS_CALC)))
174                 mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
175
176         /* recycle next mbuf */
177         data_cons = RING_NEXT(rxr->rx_ring_struct, data_cons);
178         bnxt_reuse_rx_mbuf(rxr, bnxt_consume_rx_buf(rxr, data_cons));
179 }
180
181 static int bnxt_agg_bufs_valid(struct bnxt_cp_ring_info *cpr,
182                 uint8_t agg_bufs, uint32_t raw_cp_cons)
183 {
184         uint16_t last_cp_cons;
185         struct rx_pkt_cmpl *agg_cmpl;
186
187         raw_cp_cons = ADV_RAW_CMP(raw_cp_cons, agg_bufs);
188         last_cp_cons = RING_CMP(cpr->cp_ring_struct, raw_cp_cons);
189         agg_cmpl = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[last_cp_cons];
190         cpr->valid = FLIP_VALID(raw_cp_cons,
191                                 cpr->cp_ring_struct->ring_mask,
192                                 cpr->valid);
193         return CMP_VALID(agg_cmpl, raw_cp_cons, cpr->cp_ring_struct);
194 }
195
196 /* TPA consume agg buffer out of order, allocate connected data only */
197 static int bnxt_prod_ag_mbuf(struct bnxt_rx_queue *rxq)
198 {
199         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
200         uint16_t next = RING_NEXT(rxr->ag_ring_struct, rxr->ag_prod);
201
202         /* TODO batch allocation for better performance */
203         while (rte_bitmap_get(rxr->ag_bitmap, next)) {
204                 if (unlikely(bnxt_alloc_ag_data(rxq, rxr, next))) {
205                         PMD_DRV_LOG(ERR,
206                                 "agg mbuf alloc failed: prod=0x%x\n", next);
207                         break;
208                 }
209                 rte_bitmap_clear(rxr->ag_bitmap, next);
210                 rxr->ag_prod = next;
211                 next = RING_NEXT(rxr->ag_ring_struct, next);
212         }
213
214         return 0;
215 }
216
217 static int bnxt_rx_pages(struct bnxt_rx_queue *rxq,
218                          struct rte_mbuf *mbuf, uint32_t *tmp_raw_cons,
219                          uint8_t agg_buf, struct bnxt_tpa_info *tpa_info)
220 {
221         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
222         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
223         int i;
224         uint16_t cp_cons, ag_cons;
225         struct rx_pkt_cmpl *rxcmp;
226         struct rte_mbuf *last = mbuf;
227         bool is_thor_tpa = tpa_info && BNXT_CHIP_THOR(rxq->bp);
228
229         for (i = 0; i < agg_buf; i++) {
230                 struct rte_mbuf **ag_buf;
231                 struct rte_mbuf *ag_mbuf;
232
233                 if (is_thor_tpa) {
234                         rxcmp = (void *)&tpa_info->agg_arr[i];
235                 } else {
236                         *tmp_raw_cons = NEXT_RAW_CMP(*tmp_raw_cons);
237                         cp_cons = RING_CMP(cpr->cp_ring_struct, *tmp_raw_cons);
238                         rxcmp = (struct rx_pkt_cmpl *)
239                                         &cpr->cp_desc_ring[cp_cons];
240                 }
241
242 #ifdef BNXT_DEBUG
243                 bnxt_dump_cmpl(cp_cons, rxcmp);
244 #endif
245
246                 ag_cons = rxcmp->opaque;
247                 RTE_ASSERT(ag_cons <= rxr->ag_ring_struct->ring_mask);
248                 ag_buf = &rxr->ag_buf_ring[ag_cons];
249                 ag_mbuf = *ag_buf;
250                 RTE_ASSERT(ag_mbuf != NULL);
251
252                 ag_mbuf->data_len = rte_le_to_cpu_16(rxcmp->len);
253
254                 mbuf->nb_segs++;
255                 mbuf->pkt_len += ag_mbuf->data_len;
256
257                 last->next = ag_mbuf;
258                 last = ag_mbuf;
259
260                 *ag_buf = NULL;
261
262                 /*
263                  * As aggregation buffer consumed out of order in TPA module,
264                  * use bitmap to track freed slots to be allocated and notified
265                  * to NIC
266                  */
267                 rte_bitmap_set(rxr->ag_bitmap, ag_cons);
268         }
269         bnxt_prod_ag_mbuf(rxq);
270         return 0;
271 }
272
273 static inline struct rte_mbuf *bnxt_tpa_end(
274                 struct bnxt_rx_queue *rxq,
275                 uint32_t *raw_cp_cons,
276                 struct rx_tpa_end_cmpl *tpa_end,
277                 struct rx_tpa_end_cmpl_hi *tpa_end1)
278 {
279         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
280         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
281         uint16_t agg_id;
282         struct rte_mbuf *mbuf;
283         uint8_t agg_bufs;
284         uint8_t payload_offset;
285         struct bnxt_tpa_info *tpa_info;
286
287         if (BNXT_CHIP_THOR(rxq->bp)) {
288                 struct rx_tpa_v2_end_cmpl *th_tpa_end;
289                 struct rx_tpa_v2_end_cmpl_hi *th_tpa_end1;
290
291                 th_tpa_end = (void *)tpa_end;
292                 th_tpa_end1 = (void *)tpa_end1;
293                 agg_id = BNXT_TPA_END_AGG_ID_TH(th_tpa_end);
294                 agg_bufs = BNXT_TPA_END_AGG_BUFS_TH(th_tpa_end1);
295                 payload_offset = th_tpa_end1->payload_offset;
296         } else {
297                 agg_id = BNXT_TPA_END_AGG_ID(tpa_end);
298                 agg_bufs = BNXT_TPA_END_AGG_BUFS(tpa_end);
299                 if (!bnxt_agg_bufs_valid(cpr, agg_bufs, *raw_cp_cons))
300                         return NULL;
301                 payload_offset = tpa_end->payload_offset;
302         }
303
304         tpa_info = &rxr->tpa_info[agg_id];
305         mbuf = tpa_info->mbuf;
306         RTE_ASSERT(mbuf != NULL);
307
308         rte_prefetch0(mbuf);
309         if (agg_bufs) {
310                 bnxt_rx_pages(rxq, mbuf, raw_cp_cons, agg_bufs, tpa_info);
311         }
312         mbuf->l4_len = payload_offset;
313
314         struct rte_mbuf *new_data = __bnxt_alloc_rx_data(rxq->mb_pool);
315         RTE_ASSERT(new_data != NULL);
316         if (!new_data) {
317                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
318                 return NULL;
319         }
320         tpa_info->mbuf = new_data;
321
322         return mbuf;
323 }
324
325 static uint32_t
326 bnxt_parse_pkt_type(struct rx_pkt_cmpl *rxcmp, struct rx_pkt_cmpl_hi *rxcmp1)
327 {
328         uint32_t l3, pkt_type = 0;
329         uint32_t t_ipcs = 0, ip6 = 0, vlan = 0;
330         uint32_t flags_type;
331
332         vlan = !!(rxcmp1->flags2 &
333                 rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN));
334         pkt_type |= vlan ? RTE_PTYPE_L2_ETHER_VLAN : RTE_PTYPE_L2_ETHER;
335
336         t_ipcs = !!(rxcmp1->flags2 &
337                 rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC));
338         ip6 = !!(rxcmp1->flags2 &
339                  rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS2_IP_TYPE));
340
341         flags_type = rxcmp->flags_type &
342                 rte_cpu_to_le_32(RX_PKT_CMPL_FLAGS_ITYPE_MASK);
343
344         if (!t_ipcs && !ip6)
345                 l3 = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
346         else if (!t_ipcs && ip6)
347                 l3 = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
348         else if (t_ipcs && !ip6)
349                 l3 = RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
350         else
351                 l3 = RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
352
353         switch (flags_type) {
354         case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_ICMP):
355                 if (!t_ipcs)
356                         pkt_type |= l3 | RTE_PTYPE_L4_ICMP;
357                 else
358                         pkt_type |= l3 | RTE_PTYPE_INNER_L4_ICMP;
359                 break;
360
361         case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_TCP):
362                 if (!t_ipcs)
363                         pkt_type |= l3 | RTE_PTYPE_L4_TCP;
364                 else
365                         pkt_type |= l3 | RTE_PTYPE_INNER_L4_TCP;
366                 break;
367
368         case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_UDP):
369                 if (!t_ipcs)
370                         pkt_type |= l3 | RTE_PTYPE_L4_UDP;
371                 else
372                         pkt_type |= l3 | RTE_PTYPE_INNER_L4_UDP;
373                 break;
374
375         case RTE_LE32(RX_PKT_CMPL_FLAGS_ITYPE_IP):
376                 pkt_type |= l3;
377                 break;
378         }
379
380         return pkt_type;
381 }
382
383 #ifdef RTE_LIBRTE_IEEE1588
384 static void
385 bnxt_get_rx_ts_thor(struct bnxt *bp, uint32_t rx_ts_cmpl)
386 {
387         uint64_t systime_cycles = 0;
388
389         if (!BNXT_CHIP_THOR(bp))
390                 return;
391
392         /* On Thor, Rx timestamps are provided directly in the
393          * Rx completion records to the driver. Only 32 bits of
394          * the timestamp is present in the completion. Driver needs
395          * to read the current 48 bit free running timer using the
396          * HWRM_PORT_TS_QUERY command and combine the upper 16 bits
397          * from the HWRM response with the lower 32 bits in the
398          * Rx completion to produce the 48 bit timestamp for the Rx packet
399          */
400         bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_CURRENT_TIME,
401                                 &systime_cycles);
402         bp->ptp_cfg->rx_timestamp = (systime_cycles & 0xFFFF00000000);
403         bp->ptp_cfg->rx_timestamp |= rx_ts_cmpl;
404 }
405 #endif
406
407 static uint32_t
408 bnxt_ulp_set_mark_in_mbuf(struct bnxt *bp, struct rx_pkt_cmpl_hi *rxcmp1,
409                           struct rte_mbuf *mbuf, uint32_t *vfr_flag)
410 {
411         uint32_t cfa_code;
412         uint32_t meta_fmt;
413         uint32_t meta;
414         bool gfid = false;
415         uint32_t mark_id;
416         uint32_t flags2;
417         uint32_t gfid_support = 0;
418         int rc;
419
420         if (BNXT_GFID_ENABLED(bp))
421                 gfid_support = 1;
422
423         cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
424         flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
425         meta = rte_le_to_cpu_32(rxcmp1->metadata);
426
427         /*
428          * The flags field holds extra bits of info from [6:4]
429          * which indicate if the flow is in TCAM or EM or EEM
430          */
431         meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
432                 BNXT_CFA_META_FMT_SHFT;
433
434         switch (meta_fmt) {
435         case 0:
436                 if (gfid_support) {
437                         /* Not an LFID or GFID, a flush cmd. */
438                         goto skip_mark;
439                 } else {
440                         /* LFID mode, no vlan scenario */
441                         gfid = false;
442                 }
443                 break;
444         case 4:
445         case 5:
446                 /*
447                  * EM/TCAM case
448                  * Assume that EM doesn't support Mark due to GFID
449                  * collisions with EEM.  Simply return without setting the mark
450                  * in the mbuf.
451                  */
452                 if (BNXT_CFA_META_EM_TEST(meta)) {
453                         /*This is EM hit {EM(1), GFID[27:16], 19'd0 or vtag } */
454                         gfid = true;
455                         meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
456                         cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
457                 } else {
458                         /*
459                          * It is a TCAM entry, so it is an LFID.
460                          * The TCAM IDX and Mode can also be determined
461                          * by decoding the meta_data. We are not
462                          * using these for now.
463                          */
464                 }
465                 break;
466         case 6:
467         case 7:
468                 /* EEM Case, only using gfid in EEM for now. */
469                 gfid = true;
470
471                 /*
472                  * For EEM flows, The first part of cfa_code is 16 bits.
473                  * The second part is embedded in the
474                  * metadata field from bit 19 onwards. The driver needs to
475                  * ignore the first 19 bits of metadata and use the next 12
476                  * bits as higher 12 bits of cfa_code.
477                  */
478                 meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
479                 cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
480                 break;
481         default:
482                 /* For other values, the cfa_code is assumed to be an LFID. */
483                 break;
484         }
485
486         rc = ulp_mark_db_mark_get(bp->ulp_ctx, gfid,
487                                   cfa_code, vfr_flag, &mark_id);
488         if (!rc) {
489                 /* VF to VFR Rx path. So, skip mark_id injection in mbuf */
490                 if (vfr_flag && *vfr_flag)
491                         return mark_id;
492                 /* Got the mark, write it to the mbuf and return */
493                 mbuf->hash.fdir.hi = mark_id;
494                 mbuf->udata64 = (cfa_code & 0xffffffffull) << 32;
495                 mbuf->hash.fdir.id = rxcmp1->cfa_code;
496                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
497                 return mark_id;
498         }
499
500 skip_mark:
501         mbuf->hash.fdir.hi = 0;
502         mbuf->hash.fdir.id = 0;
503
504         return 0;
505 }
506
507 void bnxt_set_mark_in_mbuf(struct bnxt *bp,
508                            struct rx_pkt_cmpl_hi *rxcmp1,
509                            struct rte_mbuf *mbuf)
510 {
511         uint32_t cfa_code = 0;
512         uint8_t meta_fmt = 0;
513         uint16_t flags2 = 0;
514         uint32_t meta =  0;
515
516         cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
517         if (!cfa_code)
518                 return;
519
520         if (cfa_code && !bp->mark_table[cfa_code].valid)
521                 return;
522
523         flags2 = rte_le_to_cpu_16(rxcmp1->flags2);
524         meta = rte_le_to_cpu_32(rxcmp1->metadata);
525         if (meta) {
526                 meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
527
528                 /* The flags field holds extra bits of info from [6:4]
529                  * which indicate if the flow is in TCAM or EM or EEM
530                  */
531                 meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
532                            BNXT_CFA_META_FMT_SHFT;
533
534                 /* meta_fmt == 4 => 'b100 => 'b10x => EM.
535                  * meta_fmt == 5 => 'b101 => 'b10x => EM + VLAN
536                  * meta_fmt == 6 => 'b110 => 'b11x => EEM
537                  * meta_fmt == 7 => 'b111 => 'b11x => EEM + VLAN.
538                  */
539                 meta_fmt >>= BNXT_CFA_META_FMT_EM_EEM_SHFT;
540         }
541
542         mbuf->hash.fdir.hi = bp->mark_table[cfa_code].mark_id;
543         mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
544 }
545
546 static int bnxt_rx_pkt(struct rte_mbuf **rx_pkt,
547                        struct bnxt_rx_queue *rxq, uint32_t *raw_cons)
548 {
549         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
550         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
551         struct rx_pkt_cmpl *rxcmp;
552         struct rx_pkt_cmpl_hi *rxcmp1;
553         uint32_t tmp_raw_cons = *raw_cons;
554         uint16_t cons, prod, cp_cons =
555             RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
556         struct rte_mbuf *mbuf;
557         int rc = 0;
558         uint8_t agg_buf = 0;
559         uint16_t cmp_type;
560         uint32_t flags2_f = 0, vfr_flag = 0, mark_id = 0;
561         uint16_t flags_type;
562         struct bnxt *bp = rxq->bp;
563
564         rxcmp = (struct rx_pkt_cmpl *)
565             &cpr->cp_desc_ring[cp_cons];
566
567         cmp_type = CMP_TYPE(rxcmp);
568
569         if (cmp_type == RX_TPA_V2_ABUF_CMPL_TYPE_RX_TPA_AGG) {
570                 struct rx_tpa_v2_abuf_cmpl *rx_agg = (void *)rxcmp;
571                 uint16_t agg_id = rte_cpu_to_le_16(rx_agg->agg_id);
572                 struct bnxt_tpa_info *tpa_info;
573
574                 tpa_info = &rxr->tpa_info[agg_id];
575                 RTE_ASSERT(tpa_info->agg_count < 16);
576                 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
577                 rc = -EINVAL; /* Continue w/o new mbuf */
578                 goto next_rx;
579         }
580
581         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
582         cp_cons = RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
583         rxcmp1 = (struct rx_pkt_cmpl_hi *)&cpr->cp_desc_ring[cp_cons];
584
585         if (!CMP_VALID(rxcmp1, tmp_raw_cons, cpr->cp_ring_struct))
586                 return -EBUSY;
587
588         cpr->valid = FLIP_VALID(cp_cons,
589                                 cpr->cp_ring_struct->ring_mask,
590                                 cpr->valid);
591
592         if (cmp_type == RX_TPA_START_CMPL_TYPE_RX_TPA_START) {
593                 bnxt_tpa_start(rxq, (struct rx_tpa_start_cmpl *)rxcmp,
594                                (struct rx_tpa_start_cmpl_hi *)rxcmp1);
595                 rc = -EINVAL; /* Continue w/o new mbuf */
596                 goto next_rx;
597         } else if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
598                 mbuf = bnxt_tpa_end(rxq, &tmp_raw_cons,
599                                    (struct rx_tpa_end_cmpl *)rxcmp,
600                                    (struct rx_tpa_end_cmpl_hi *)rxcmp1);
601                 if (unlikely(!mbuf))
602                         return -EBUSY;
603                 *rx_pkt = mbuf;
604                 goto next_rx;
605         } else if (cmp_type != 0x11) {
606                 rc = -EINVAL;
607                 goto next_rx;
608         }
609
610         agg_buf = (rxcmp->agg_bufs_v1 & RX_PKT_CMPL_AGG_BUFS_MASK)
611                         >> RX_PKT_CMPL_AGG_BUFS_SFT;
612         if (agg_buf && !bnxt_agg_bufs_valid(cpr, agg_buf, tmp_raw_cons))
613                 return -EBUSY;
614
615         prod = rxr->rx_prod;
616
617         cons = rxcmp->opaque;
618         mbuf = bnxt_consume_rx_buf(rxr, cons);
619         if (mbuf == NULL)
620                 return -EBUSY;
621
622         rte_prefetch0(mbuf);
623
624         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
625         mbuf->nb_segs = 1;
626         mbuf->next = NULL;
627         mbuf->pkt_len = rxcmp->len;
628         mbuf->data_len = mbuf->pkt_len;
629         mbuf->port = rxq->port_id;
630         mbuf->ol_flags = 0;
631
632         flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
633         if (flags_type & RX_PKT_CMPL_FLAGS_RSS_VALID) {
634                 mbuf->hash.rss = rxcmp->rss_hash;
635                 mbuf->ol_flags |= PKT_RX_RSS_HASH;
636         }
637
638         if (BNXT_TRUFLOW_EN(bp))
639                 mark_id = bnxt_ulp_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf,
640                                                     &vfr_flag);
641         else
642                 bnxt_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf);
643
644 #ifdef RTE_LIBRTE_IEEE1588
645         if (unlikely((flags_type & RX_PKT_CMPL_FLAGS_MASK) ==
646                      RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP)) {
647                 mbuf->ol_flags |= PKT_RX_IEEE1588_PTP | PKT_RX_IEEE1588_TMST;
648                 bnxt_get_rx_ts_thor(rxq->bp, rxcmp1->reorder);
649         }
650 #endif
651         if (agg_buf)
652                 bnxt_rx_pages(rxq, mbuf, &tmp_raw_cons, agg_buf, NULL);
653
654         if (rxcmp1->flags2 & RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN) {
655                 mbuf->vlan_tci = rxcmp1->metadata &
656                         (RX_PKT_CMPL_METADATA_VID_MASK |
657                         RX_PKT_CMPL_METADATA_DE |
658                         RX_PKT_CMPL_METADATA_PRI_MASK);
659                 mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
660         }
661
662         flags2_f = flags2_0xf(rxcmp1);
663         /* IP Checksum */
664         if (likely(IS_IP_NONTUNNEL_PKT(flags2_f))) {
665                 if (unlikely(RX_CMP_IP_CS_ERROR(rxcmp1)))
666                         mbuf->ol_flags |= PKT_RX_IP_CKSUM_BAD;
667                 else if (unlikely(RX_CMP_IP_CS_UNKNOWN(rxcmp1)))
668                         mbuf->ol_flags |= PKT_RX_IP_CKSUM_UNKNOWN;
669                 else
670                         mbuf->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
671         } else if (IS_IP_TUNNEL_PKT(flags2_f)) {
672                 if (unlikely(RX_CMP_IP_OUTER_CS_ERROR(rxcmp1) ||
673                              RX_CMP_IP_CS_ERROR(rxcmp1)))
674                         mbuf->ol_flags |= PKT_RX_IP_CKSUM_BAD;
675                 else if (unlikely(RX_CMP_IP_CS_UNKNOWN(rxcmp1)))
676                         mbuf->ol_flags |= PKT_RX_IP_CKSUM_UNKNOWN;
677                 else
678                         mbuf->ol_flags |= PKT_RX_IP_CKSUM_GOOD;
679         }
680
681         /* L4 Checksum */
682         if (likely(IS_L4_NONTUNNEL_PKT(flags2_f))) {
683                 if (unlikely(RX_CMP_L4_INNER_CS_ERR2(rxcmp1)))
684                         mbuf->ol_flags |= PKT_RX_L4_CKSUM_BAD;
685                 else
686                         mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
687         } else if (IS_L4_TUNNEL_PKT(flags2_f)) {
688                 if (unlikely(RX_CMP_L4_INNER_CS_ERR2(rxcmp1)))
689                         mbuf->ol_flags |= PKT_RX_L4_CKSUM_BAD;
690                 else
691                         mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
692                 if (unlikely(RX_CMP_L4_OUTER_CS_ERR2(rxcmp1))) {
693                         mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_BAD;
694                 } else if (unlikely(IS_L4_TUNNEL_PKT_ONLY_INNER_L4_CS
695                                     (flags2_f))) {
696                         mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_UNKNOWN;
697                 } else {
698                         mbuf->ol_flags |= PKT_RX_OUTER_L4_CKSUM_GOOD;
699                 }
700         } else if (unlikely(RX_CMP_L4_CS_UNKNOWN(rxcmp1))) {
701                 mbuf->ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
702         }
703
704         mbuf->packet_type = bnxt_parse_pkt_type(rxcmp, rxcmp1);
705
706 #ifdef BNXT_DEBUG
707         if (rxcmp1->errors_v2 & RX_CMP_L2_ERRORS) {
708                 /* Re-install the mbuf back to the rx ring */
709                 bnxt_reuse_rx_mbuf(rxr, cons, mbuf);
710
711                 rc = -EIO;
712                 goto next_rx;
713         }
714 #endif
715         /*
716          * TODO: Redesign this....
717          * If the allocation fails, the packet does not get received.
718          * Simply returning this will result in slowly falling behind
719          * on the producer ring buffers.
720          * Instead, "filling up" the producer just before ringing the
721          * doorbell could be a better solution since it will let the
722          * producer ring starve until memory is available again pushing
723          * the drops into hardware and getting them out of the driver
724          * allowing recovery to a full producer ring.
725          *
726          * This could also help with cache usage by preventing per-packet
727          * calls in favour of a tight loop with the same function being called
728          * in it.
729          */
730         prod = RING_NEXT(rxr->rx_ring_struct, prod);
731         if (bnxt_alloc_rx_data(rxq, rxr, prod)) {
732                 PMD_DRV_LOG(ERR, "mbuf alloc failed with prod=0x%x\n", prod);
733                 rc = -ENOMEM;
734                 goto rx;
735         }
736         rxr->rx_prod = prod;
737         /*
738          * All MBUFs are allocated with the same size under DPDK,
739          * no optimization for rx_copy_thresh
740          */
741 rx:
742         *rx_pkt = mbuf;
743
744         if (BNXT_TRUFLOW_EN(bp) &&
745             (BNXT_VF_IS_TRUSTED(bp) || BNXT_PF(bp)) &&
746             vfr_flag) {
747                 if (!bnxt_vfr_recv(mark_id, rxq->queue_id, mbuf)) {
748                         /* Now return an error so that nb_rx_pkts is not
749                          * incremented.
750                          * This packet was meant to be given to the representor.
751                          * So no need to account the packet and give it to
752                          * parent Rx burst function.
753                          */
754                         rc = -ENODEV;
755                 }
756         }
757
758 next_rx:
759
760         *raw_cons = tmp_raw_cons;
761
762         return rc;
763 }
764
765 uint16_t bnxt_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
766                                uint16_t nb_pkts)
767 {
768         struct bnxt_rx_queue *rxq = rx_queue;
769         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
770         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
771         uint32_t raw_cons = cpr->cp_raw_cons;
772         uint32_t cons;
773         int nb_rx_pkts = 0;
774         int nb_rep_rx_pkts = 0;
775         struct rx_pkt_cmpl *rxcmp;
776         uint16_t prod = rxr->rx_prod;
777         uint16_t ag_prod = rxr->ag_prod;
778         int rc = 0;
779         bool evt = false;
780
781         if (unlikely(is_bnxt_in_error(rxq->bp)))
782                 return 0;
783
784         /* If Rx Q was stopped return */
785         if (unlikely(!rxq->rx_started ||
786                      !rte_spinlock_trylock(&rxq->lock)))
787                 return 0;
788
789 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
790         /*
791          * Replenish buffers if needed when a transition has been made from
792          * vector- to non-vector- receive processing.
793          */
794         while (unlikely(rxq->rxrearm_nb)) {
795                 if (!bnxt_alloc_rx_data(rxq, rxr, rxq->rxrearm_start)) {
796                         rxr->rx_prod = rxq->rxrearm_start;
797                         bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
798                         rxq->rxrearm_start++;
799                         rxq->rxrearm_nb--;
800                 } else {
801                         /* Retry allocation on next call. */
802                         break;
803                 }
804         }
805 #endif
806
807         /* Handle RX burst request */
808         while (1) {
809                 cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
810                 rte_prefetch0(&cpr->cp_desc_ring[cons]);
811                 rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
812
813                 if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct))
814                         break;
815                 cpr->valid = FLIP_VALID(cons,
816                                         cpr->cp_ring_struct->ring_mask,
817                                         cpr->valid);
818
819                 /* TODO: Avoid magic numbers... */
820                 if ((CMP_TYPE(rxcmp) & 0x30) == 0x10) {
821                         rc = bnxt_rx_pkt(&rx_pkts[nb_rx_pkts], rxq, &raw_cons);
822                         if (likely(!rc) || rc == -ENOMEM)
823                                 nb_rx_pkts++;
824                         if (rc == -EBUSY)       /* partial completion */
825                                 break;
826                         if (rc == -ENODEV)      /* completion for representor */
827                                 nb_rep_rx_pkts++;
828                 } else if (!BNXT_NUM_ASYNC_CPR(rxq->bp)) {
829                         evt =
830                         bnxt_event_hwrm_resp_handler(rxq->bp,
831                                                      (struct cmpl_base *)rxcmp);
832                         /* If the async event is Fatal error, return */
833                         if (unlikely(is_bnxt_in_error(rxq->bp)))
834                                 goto done;
835                 }
836
837                 raw_cons = NEXT_RAW_CMP(raw_cons);
838                 if (nb_rx_pkts == nb_pkts || evt)
839                         break;
840                 /* Post some Rx buf early in case of larger burst processing */
841                 if (nb_rx_pkts == BNXT_RX_POST_THRESH)
842                         bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
843         }
844
845         cpr->cp_raw_cons = raw_cons;
846         if (!nb_rx_pkts && !nb_rep_rx_pkts && !evt) {
847                 /*
848                  * For PMD, there is no need to keep on pushing to REARM
849                  * the doorbell if there are no new completions
850                  */
851                 goto done;
852         }
853
854         if (prod != rxr->rx_prod)
855                 bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
856
857         /* Ring the AGG ring DB */
858         if (ag_prod != rxr->ag_prod)
859                 bnxt_db_write(&rxr->ag_db, rxr->ag_prod);
860
861         bnxt_db_cq(cpr);
862
863         /* Attempt to alloc Rx buf in case of a previous allocation failure. */
864         if (rc == -ENOMEM) {
865                 int i = RING_NEXT(rxr->rx_ring_struct, prod);
866                 int cnt = nb_rx_pkts;
867
868                 for (; cnt;
869                         i = RING_NEXT(rxr->rx_ring_struct, i), cnt--) {
870                         struct rte_mbuf **rx_buf = &rxr->rx_buf_ring[i];
871
872                         /* Buffer already allocated for this index. */
873                         if (*rx_buf != NULL)
874                                 continue;
875
876                         /* This slot is empty. Alloc buffer for Rx */
877                         if (!bnxt_alloc_rx_data(rxq, rxr, i)) {
878                                 rxr->rx_prod = i;
879                                 bnxt_db_write(&rxr->rx_db, rxr->rx_prod);
880                         } else {
881                                 PMD_DRV_LOG(ERR, "Alloc  mbuf failed\n");
882                                 break;
883                         }
884                 }
885         }
886
887 done:
888         rte_spinlock_unlock(&rxq->lock);
889
890         return nb_rx_pkts;
891 }
892
893 /*
894  * Dummy DPDK callback for RX.
895  *
896  * This function is used to temporarily replace the real callback during
897  * unsafe control operations on the queue, or in case of error.
898  */
899 uint16_t
900 bnxt_dummy_recv_pkts(void *rx_queue __rte_unused,
901                      struct rte_mbuf **rx_pkts __rte_unused,
902                      uint16_t nb_pkts __rte_unused)
903 {
904         return 0;
905 }
906
907 void bnxt_free_rx_rings(struct bnxt *bp)
908 {
909         int i;
910         struct bnxt_rx_queue *rxq;
911
912         if (!bp->rx_queues)
913                 return;
914
915         for (i = 0; i < (int)bp->rx_nr_rings; i++) {
916                 rxq = bp->rx_queues[i];
917                 if (!rxq)
918                         continue;
919
920                 bnxt_free_ring(rxq->rx_ring->rx_ring_struct);
921                 rte_free(rxq->rx_ring->rx_ring_struct);
922
923                 /* Free the Aggregator ring */
924                 bnxt_free_ring(rxq->rx_ring->ag_ring_struct);
925                 rte_free(rxq->rx_ring->ag_ring_struct);
926                 rxq->rx_ring->ag_ring_struct = NULL;
927
928                 rte_free(rxq->rx_ring);
929
930                 bnxt_free_ring(rxq->cp_ring->cp_ring_struct);
931                 rte_free(rxq->cp_ring->cp_ring_struct);
932                 rte_free(rxq->cp_ring);
933
934                 rte_free(rxq);
935                 bp->rx_queues[i] = NULL;
936         }
937 }
938
939 int bnxt_init_rx_ring_struct(struct bnxt_rx_queue *rxq, unsigned int socket_id)
940 {
941         struct rte_eth_dev *eth_dev = rxq->bp->eth_dev;
942         struct rte_eth_rxmode *rxmode;
943         struct bnxt_cp_ring_info *cpr;
944         struct bnxt_rx_ring_info *rxr;
945         struct bnxt_ring *ring;
946         bool use_agg_ring;
947
948         rxq->rx_buf_size = BNXT_MAX_PKT_LEN + sizeof(struct rte_mbuf);
949
950         rxr = rte_zmalloc_socket("bnxt_rx_ring",
951                                  sizeof(struct bnxt_rx_ring_info),
952                                  RTE_CACHE_LINE_SIZE, socket_id);
953         if (rxr == NULL)
954                 return -ENOMEM;
955         rxq->rx_ring = rxr;
956
957         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
958                                    sizeof(struct bnxt_ring),
959                                    RTE_CACHE_LINE_SIZE, socket_id);
960         if (ring == NULL)
961                 return -ENOMEM;
962         rxr->rx_ring_struct = ring;
963         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc);
964         ring->ring_mask = ring->ring_size - 1;
965         ring->bd = (void *)rxr->rx_desc_ring;
966         ring->bd_dma = rxr->rx_desc_mapping;
967         ring->vmem_size = ring->ring_size * sizeof(struct rte_mbuf *);
968         ring->vmem = (void **)&rxr->rx_buf_ring;
969         ring->fw_ring_id = INVALID_HW_RING_ID;
970
971         cpr = rte_zmalloc_socket("bnxt_rx_ring",
972                                  sizeof(struct bnxt_cp_ring_info),
973                                  RTE_CACHE_LINE_SIZE, socket_id);
974         if (cpr == NULL)
975                 return -ENOMEM;
976         rxq->cp_ring = cpr;
977
978         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
979                                    sizeof(struct bnxt_ring),
980                                    RTE_CACHE_LINE_SIZE, socket_id);
981         if (ring == NULL)
982                 return -ENOMEM;
983         cpr->cp_ring_struct = ring;
984
985         rxmode = &eth_dev->data->dev_conf.rxmode;
986         use_agg_ring = (rxmode->offloads & DEV_RX_OFFLOAD_SCATTER) ||
987                        (rxmode->offloads & DEV_RX_OFFLOAD_TCP_LRO) ||
988                        (rxmode->max_rx_pkt_len >
989                          (uint32_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
990                                     RTE_PKTMBUF_HEADROOM));
991
992         /* Allocate two completion slots per entry in desc ring. */
993         ring->ring_size = rxr->rx_ring_struct->ring_size * 2;
994
995         /* Allocate additional slots if aggregation ring is in use. */
996         if (use_agg_ring)
997                 ring->ring_size *= AGG_RING_SIZE_FACTOR;
998
999         ring->ring_size = rte_align32pow2(ring->ring_size);
1000         ring->ring_mask = ring->ring_size - 1;
1001         ring->bd = (void *)cpr->cp_desc_ring;
1002         ring->bd_dma = cpr->cp_desc_mapping;
1003         ring->vmem_size = 0;
1004         ring->vmem = NULL;
1005         ring->fw_ring_id = INVALID_HW_RING_ID;
1006
1007         /* Allocate Aggregator rings */
1008         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1009                                    sizeof(struct bnxt_ring),
1010                                    RTE_CACHE_LINE_SIZE, socket_id);
1011         if (ring == NULL)
1012                 return -ENOMEM;
1013         rxr->ag_ring_struct = ring;
1014         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc *
1015                                           AGG_RING_SIZE_FACTOR);
1016         ring->ring_mask = ring->ring_size - 1;
1017         ring->bd = (void *)rxr->ag_desc_ring;
1018         ring->bd_dma = rxr->ag_desc_mapping;
1019         ring->vmem_size = ring->ring_size * sizeof(struct rte_mbuf *);
1020         ring->vmem = (void **)&rxr->ag_buf_ring;
1021         ring->fw_ring_id = INVALID_HW_RING_ID;
1022
1023         return 0;
1024 }
1025
1026 static void bnxt_init_rxbds(struct bnxt_ring *ring, uint32_t type,
1027                             uint16_t len)
1028 {
1029         uint32_t j;
1030         struct rx_prod_pkt_bd *rx_bd_ring = (struct rx_prod_pkt_bd *)ring->bd;
1031
1032         if (!rx_bd_ring)
1033                 return;
1034         for (j = 0; j < ring->ring_size; j++) {
1035                 rx_bd_ring[j].flags_type = rte_cpu_to_le_16(type);
1036                 rx_bd_ring[j].len = rte_cpu_to_le_16(len);
1037                 rx_bd_ring[j].opaque = j;
1038         }
1039 }
1040
1041 int bnxt_init_one_rx_ring(struct bnxt_rx_queue *rxq)
1042 {
1043         struct bnxt_rx_ring_info *rxr;
1044         struct bnxt_ring *ring;
1045         uint32_t prod, type;
1046         unsigned int i;
1047         uint16_t size;
1048
1049         size = rte_pktmbuf_data_room_size(rxq->mb_pool) - RTE_PKTMBUF_HEADROOM;
1050         size = RTE_MIN(BNXT_MAX_PKT_LEN, size);
1051
1052         type = RX_PROD_PKT_BD_TYPE_RX_PROD_PKT | RX_PROD_PKT_BD_FLAGS_EOP_PAD;
1053
1054         rxr = rxq->rx_ring;
1055         ring = rxr->rx_ring_struct;
1056         bnxt_init_rxbds(ring, type, size);
1057
1058         prod = rxr->rx_prod;
1059         for (i = 0; i < ring->ring_size; i++) {
1060                 if (unlikely(!rxr->rx_buf_ring[i])) {
1061                         if (bnxt_alloc_rx_data(rxq, rxr, prod) != 0) {
1062                                 PMD_DRV_LOG(WARNING,
1063                                             "init'ed rx ring %d with %d/%d mbufs only\n",
1064                                             rxq->queue_id, i, ring->ring_size);
1065                                 break;
1066                         }
1067                 }
1068                 rxr->rx_prod = prod;
1069                 prod = RING_NEXT(rxr->rx_ring_struct, prod);
1070         }
1071
1072         ring = rxr->ag_ring_struct;
1073         type = RX_PROD_AGG_BD_TYPE_RX_PROD_AGG;
1074         bnxt_init_rxbds(ring, type, size);
1075         prod = rxr->ag_prod;
1076
1077         for (i = 0; i < ring->ring_size; i++) {
1078                 if (unlikely(!rxr->ag_buf_ring[i])) {
1079                         if (bnxt_alloc_ag_data(rxq, rxr, prod) != 0) {
1080                                 PMD_DRV_LOG(WARNING,
1081                                             "init'ed AG ring %d with %d/%d mbufs only\n",
1082                                             rxq->queue_id, i, ring->ring_size);
1083                                 break;
1084                         }
1085                 }
1086                 rxr->ag_prod = prod;
1087                 prod = RING_NEXT(rxr->ag_ring_struct, prod);
1088         }
1089         PMD_DRV_LOG(DEBUG, "AGG Done!\n");
1090
1091         if (rxr->tpa_info) {
1092                 unsigned int max_aggs = BNXT_TPA_MAX_AGGS(rxq->bp);
1093
1094                 for (i = 0; i < max_aggs; i++) {
1095                         if (unlikely(!rxr->tpa_info[i].mbuf)) {
1096                                 rxr->tpa_info[i].mbuf =
1097                                         __bnxt_alloc_rx_data(rxq->mb_pool);
1098                                 if (!rxr->tpa_info[i].mbuf) {
1099                                         rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
1100                                         return -ENOMEM;
1101                                 }
1102                         }
1103                 }
1104         }
1105         PMD_DRV_LOG(DEBUG, "TPA alloc Done!\n");
1106
1107         return 0;
1108 }