net/bnxt: refactor HW ptype mapping table
[dpdk.git] / drivers / net / bnxt / bnxt_rxr.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2021 Broadcom
3  * All rights reserved.
4  */
5
6 #include <inttypes.h>
7 #include <stdbool.h>
8
9 #include <rte_bitmap.h>
10 #include <rte_byteorder.h>
11 #include <rte_malloc.h>
12 #include <rte_memory.h>
13
14 #include "bnxt.h"
15 #include "bnxt_reps.h"
16 #include "bnxt_ring.h"
17 #include "bnxt_rxr.h"
18 #include "bnxt_rxq.h"
19 #include "hsi_struct_def_dpdk.h"
20 #ifdef RTE_LIBRTE_IEEE1588
21 #include "bnxt_hwrm.h"
22 #endif
23
24 #include <bnxt_tf_common.h>
25 #include <ulp_mark_mgr.h>
26
27 /*
28  * RX Ring handling
29  */
30
31 static inline struct rte_mbuf *__bnxt_alloc_rx_data(struct rte_mempool *mb)
32 {
33         struct rte_mbuf *data;
34
35         data = rte_mbuf_raw_alloc(mb);
36
37         return data;
38 }
39
40 static inline int bnxt_alloc_rx_data(struct bnxt_rx_queue *rxq,
41                                      struct bnxt_rx_ring_info *rxr,
42                                      uint16_t raw_prod)
43 {
44         uint16_t prod = RING_IDX(rxr->rx_ring_struct, raw_prod);
45         struct rx_prod_pkt_bd *rxbd;
46         struct rte_mbuf **rx_buf;
47         struct rte_mbuf *mbuf;
48
49         rxbd = &rxr->rx_desc_ring[prod];
50         rx_buf = &rxr->rx_buf_ring[prod];
51         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
52         if (!mbuf) {
53                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
54                 return -ENOMEM;
55         }
56
57         *rx_buf = mbuf;
58         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
59
60         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
61
62         return 0;
63 }
64
65 static inline int bnxt_alloc_ag_data(struct bnxt_rx_queue *rxq,
66                                      struct bnxt_rx_ring_info *rxr,
67                                      uint16_t raw_prod)
68 {
69         uint16_t prod = RING_IDX(rxr->ag_ring_struct, raw_prod);
70         struct rx_prod_pkt_bd *rxbd;
71         struct rte_mbuf **rx_buf;
72         struct rte_mbuf *mbuf;
73
74         rxbd = &rxr->ag_desc_ring[prod];
75         rx_buf = &rxr->ag_buf_ring[prod];
76         if (rxbd == NULL) {
77                 PMD_DRV_LOG(ERR, "Jumbo Frame. rxbd is NULL\n");
78                 return -EINVAL;
79         }
80
81         if (rx_buf == NULL) {
82                 PMD_DRV_LOG(ERR, "Jumbo Frame. rx_buf is NULL\n");
83                 return -EINVAL;
84         }
85
86         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
87         if (!mbuf) {
88                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
89                 return -ENOMEM;
90         }
91
92         *rx_buf = mbuf;
93         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
94
95         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
96
97         return 0;
98 }
99
100 static inline void bnxt_reuse_rx_mbuf(struct bnxt_rx_ring_info *rxr,
101                                struct rte_mbuf *mbuf)
102 {
103         uint16_t prod, raw_prod = RING_NEXT(rxr->rx_raw_prod);
104         struct rte_mbuf **prod_rx_buf;
105         struct rx_prod_pkt_bd *prod_bd;
106
107         prod = RING_IDX(rxr->rx_ring_struct, raw_prod);
108         prod_rx_buf = &rxr->rx_buf_ring[prod];
109
110         RTE_ASSERT(*prod_rx_buf == NULL);
111         RTE_ASSERT(mbuf != NULL);
112
113         *prod_rx_buf = mbuf;
114
115         prod_bd = &rxr->rx_desc_ring[prod];
116
117         prod_bd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
118
119         rxr->rx_raw_prod = raw_prod;
120 }
121
122 static inline
123 struct rte_mbuf *bnxt_consume_rx_buf(struct bnxt_rx_ring_info *rxr,
124                                      uint16_t cons)
125 {
126         struct rte_mbuf **cons_rx_buf;
127         struct rte_mbuf *mbuf;
128
129         cons_rx_buf = &rxr->rx_buf_ring[RING_IDX(rxr->rx_ring_struct, cons)];
130         RTE_ASSERT(*cons_rx_buf != NULL);
131         mbuf = *cons_rx_buf;
132         *cons_rx_buf = NULL;
133
134         return mbuf;
135 }
136
137 static void bnxt_tpa_get_metadata(struct bnxt *bp,
138                                   struct bnxt_tpa_info *tpa_info,
139                                   struct rx_tpa_start_cmpl *tpa_start,
140                                   struct rx_tpa_start_cmpl_hi *tpa_start1)
141 {
142         tpa_info->cfa_code_valid = 0;
143         tpa_info->vlan_valid = 0;
144         tpa_info->hash_valid = 0;
145         tpa_info->l4_csum_valid = 0;
146
147         if (likely(tpa_start->flags_type &
148                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS_RSS_VALID))) {
149                 tpa_info->hash_valid = 1;
150                 tpa_info->rss_hash = rte_le_to_cpu_32(tpa_start->rss_hash);
151         }
152
153         if (bp->vnic_cap_flags & BNXT_VNIC_CAP_RX_CMPL_V2) {
154                 struct rx_tpa_start_v2_cmpl *v2_tpa_start = (void *)tpa_start;
155                 struct rx_tpa_start_v2_cmpl_hi *v2_tpa_start1 =
156                         (void *)tpa_start1;
157
158                 if (v2_tpa_start->agg_id &
159                     RX_TPA_START_V2_CMPL_METADATA1_VALID) {
160                         tpa_info->vlan_valid = 1;
161                         tpa_info->vlan =
162                                 rte_le_to_cpu_16(v2_tpa_start1->metadata0);
163                 }
164
165                 if (v2_tpa_start1->flags2 & RX_CMP_FLAGS2_L4_CSUM_ALL_OK_MASK)
166                         tpa_info->l4_csum_valid = 1;
167
168                 return;
169         }
170
171         tpa_info->cfa_code_valid = 1;
172         tpa_info->cfa_code = rte_le_to_cpu_16(tpa_start1->cfa_code);
173         if (tpa_start1->flags2 &
174             rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_META_FORMAT_VLAN)) {
175                 tpa_info->vlan_valid = 1;
176                 tpa_info->vlan = rte_le_to_cpu_32(tpa_start1->metadata);
177         }
178
179         if (likely(tpa_start1->flags2 &
180                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_L4_CS_CALC)))
181                 tpa_info->l4_csum_valid = 1;
182 }
183
184 static void bnxt_tpa_start(struct bnxt_rx_queue *rxq,
185                            struct rx_tpa_start_cmpl *tpa_start,
186                            struct rx_tpa_start_cmpl_hi *tpa_start1)
187 {
188         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
189         uint16_t agg_id;
190         uint16_t data_cons;
191         struct bnxt_tpa_info *tpa_info;
192         struct rte_mbuf *mbuf;
193
194         agg_id = bnxt_tpa_start_agg_id(rxq->bp, tpa_start);
195
196         data_cons = tpa_start->opaque;
197         tpa_info = &rxr->tpa_info[agg_id];
198
199         mbuf = bnxt_consume_rx_buf(rxr, data_cons);
200
201         bnxt_reuse_rx_mbuf(rxr, tpa_info->mbuf);
202
203         tpa_info->agg_count = 0;
204         tpa_info->mbuf = mbuf;
205         tpa_info->len = rte_le_to_cpu_32(tpa_start->len);
206
207         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
208         mbuf->nb_segs = 1;
209         mbuf->next = NULL;
210         mbuf->pkt_len = rte_le_to_cpu_32(tpa_start->len);
211         mbuf->data_len = mbuf->pkt_len;
212         mbuf->port = rxq->port_id;
213         mbuf->ol_flags = PKT_RX_LRO;
214
215         bnxt_tpa_get_metadata(rxq->bp, tpa_info, tpa_start, tpa_start1);
216
217         if (likely(tpa_info->hash_valid)) {
218                 mbuf->hash.rss = tpa_info->rss_hash;
219                 mbuf->ol_flags |= PKT_RX_RSS_HASH;
220         } else if (tpa_info->cfa_code_valid) {
221                 mbuf->hash.fdir.id = tpa_info->cfa_code;
222                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
223         }
224
225         if (tpa_info->vlan_valid) {
226                 mbuf->vlan_tci = tpa_info->vlan;
227                 mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
228         }
229
230         if (likely(tpa_info->l4_csum_valid))
231                 mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
232
233         /* recycle next mbuf */
234         data_cons = RING_NEXT(data_cons);
235         bnxt_reuse_rx_mbuf(rxr, bnxt_consume_rx_buf(rxr, data_cons));
236 }
237
238 static int bnxt_agg_bufs_valid(struct bnxt_cp_ring_info *cpr,
239                 uint8_t agg_bufs, uint32_t raw_cp_cons)
240 {
241         uint16_t last_cp_cons;
242         struct rx_pkt_cmpl *agg_cmpl;
243
244         raw_cp_cons = ADV_RAW_CMP(raw_cp_cons, agg_bufs);
245         last_cp_cons = RING_CMP(cpr->cp_ring_struct, raw_cp_cons);
246         agg_cmpl = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[last_cp_cons];
247         cpr->valid = FLIP_VALID(raw_cp_cons,
248                                 cpr->cp_ring_struct->ring_mask,
249                                 cpr->valid);
250         return CMP_VALID(agg_cmpl, raw_cp_cons, cpr->cp_ring_struct);
251 }
252
253 /* TPA consume agg buffer out of order, allocate connected data only */
254 static int bnxt_prod_ag_mbuf(struct bnxt_rx_queue *rxq)
255 {
256         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
257         uint16_t raw_next = RING_NEXT(rxr->ag_raw_prod);
258         uint16_t bmap_next = RING_IDX(rxr->ag_ring_struct, raw_next);
259
260         /* TODO batch allocation for better performance */
261         while (rte_bitmap_get(rxr->ag_bitmap, bmap_next)) {
262                 if (unlikely(bnxt_alloc_ag_data(rxq, rxr, raw_next))) {
263                         PMD_DRV_LOG(ERR, "agg mbuf alloc failed: prod=0x%x\n",
264                                     raw_next);
265                         break;
266                 }
267                 rte_bitmap_clear(rxr->ag_bitmap, bmap_next);
268                 rxr->ag_raw_prod = raw_next;
269                 raw_next = RING_NEXT(raw_next);
270                 bmap_next = RING_IDX(rxr->ag_ring_struct, raw_next);
271         }
272
273         return 0;
274 }
275
276 static int bnxt_rx_pages(struct bnxt_rx_queue *rxq,
277                          struct rte_mbuf *mbuf, uint32_t *tmp_raw_cons,
278                          uint8_t agg_buf, struct bnxt_tpa_info *tpa_info)
279 {
280         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
281         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
282         int i;
283         uint16_t cp_cons, ag_cons;
284         struct rx_pkt_cmpl *rxcmp;
285         struct rte_mbuf *last = mbuf;
286         bool is_p5_tpa = tpa_info && BNXT_CHIP_P5(rxq->bp);
287
288         for (i = 0; i < agg_buf; i++) {
289                 struct rte_mbuf **ag_buf;
290                 struct rte_mbuf *ag_mbuf;
291
292                 if (is_p5_tpa) {
293                         rxcmp = (void *)&tpa_info->agg_arr[i];
294                 } else {
295                         *tmp_raw_cons = NEXT_RAW_CMP(*tmp_raw_cons);
296                         cp_cons = RING_CMP(cpr->cp_ring_struct, *tmp_raw_cons);
297                         rxcmp = (struct rx_pkt_cmpl *)
298                                         &cpr->cp_desc_ring[cp_cons];
299                 }
300
301 #ifdef BNXT_DEBUG
302                 bnxt_dump_cmpl(cp_cons, rxcmp);
303 #endif
304
305                 ag_cons = rxcmp->opaque;
306                 RTE_ASSERT(ag_cons <= rxr->ag_ring_struct->ring_mask);
307                 ag_buf = &rxr->ag_buf_ring[ag_cons];
308                 ag_mbuf = *ag_buf;
309                 RTE_ASSERT(ag_mbuf != NULL);
310
311                 ag_mbuf->data_len = rte_le_to_cpu_16(rxcmp->len);
312
313                 mbuf->nb_segs++;
314                 mbuf->pkt_len += ag_mbuf->data_len;
315
316                 last->next = ag_mbuf;
317                 last = ag_mbuf;
318
319                 *ag_buf = NULL;
320
321                 /*
322                  * As aggregation buffer consumed out of order in TPA module,
323                  * use bitmap to track freed slots to be allocated and notified
324                  * to NIC
325                  */
326                 rte_bitmap_set(rxr->ag_bitmap, ag_cons);
327         }
328         last->next = NULL;
329         bnxt_prod_ag_mbuf(rxq);
330         return 0;
331 }
332
333 static inline struct rte_mbuf *bnxt_tpa_end(
334                 struct bnxt_rx_queue *rxq,
335                 uint32_t *raw_cp_cons,
336                 struct rx_tpa_end_cmpl *tpa_end,
337                 struct rx_tpa_end_cmpl_hi *tpa_end1)
338 {
339         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
340         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
341         uint16_t agg_id;
342         struct rte_mbuf *mbuf;
343         uint8_t agg_bufs;
344         uint8_t payload_offset;
345         struct bnxt_tpa_info *tpa_info;
346
347         if (BNXT_CHIP_P5(rxq->bp)) {
348                 struct rx_tpa_v2_end_cmpl *th_tpa_end;
349                 struct rx_tpa_v2_end_cmpl_hi *th_tpa_end1;
350
351                 th_tpa_end = (void *)tpa_end;
352                 th_tpa_end1 = (void *)tpa_end1;
353                 agg_id = BNXT_TPA_END_AGG_ID_TH(th_tpa_end);
354                 agg_bufs = BNXT_TPA_END_AGG_BUFS_TH(th_tpa_end1);
355                 payload_offset = th_tpa_end1->payload_offset;
356         } else {
357                 agg_id = BNXT_TPA_END_AGG_ID(tpa_end);
358                 agg_bufs = BNXT_TPA_END_AGG_BUFS(tpa_end);
359                 if (!bnxt_agg_bufs_valid(cpr, agg_bufs, *raw_cp_cons))
360                         return NULL;
361                 payload_offset = tpa_end->payload_offset;
362         }
363
364         tpa_info = &rxr->tpa_info[agg_id];
365         mbuf = tpa_info->mbuf;
366         RTE_ASSERT(mbuf != NULL);
367
368         if (agg_bufs) {
369                 bnxt_rx_pages(rxq, mbuf, raw_cp_cons, agg_bufs, tpa_info);
370         }
371         mbuf->l4_len = payload_offset;
372
373         struct rte_mbuf *new_data = __bnxt_alloc_rx_data(rxq->mb_pool);
374         RTE_ASSERT(new_data != NULL);
375         if (!new_data) {
376                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
377                 return NULL;
378         }
379         tpa_info->mbuf = new_data;
380
381         return mbuf;
382 }
383
384 uint32_t bnxt_ptype_table[BNXT_PTYPE_TBL_DIM] __rte_cache_aligned;
385
386 static void __rte_cold
387 bnxt_init_ptype_table(void)
388 {
389         uint32_t *pt = bnxt_ptype_table;
390         static bool initialized;
391         int ip6, tun, type;
392         uint32_t l3;
393         int i;
394
395         if (initialized)
396                 return;
397
398         for (i = 0; i < BNXT_PTYPE_TBL_DIM; i++) {
399                 if (i & BNXT_PTYPE_TBL_VLAN_MSK)
400                         pt[i] = RTE_PTYPE_L2_ETHER_VLAN;
401                 else
402                         pt[i] = RTE_PTYPE_L2_ETHER;
403
404                 ip6 = !!(i & BNXT_PTYPE_TBL_IP_VER_MSK);
405                 tun = !!(i & BNXT_PTYPE_TBL_TUN_MSK);
406                 type = (i & BNXT_PTYPE_TBL_TYPE_MSK) >> BNXT_PTYPE_TBL_TYPE_SFT;
407
408                 if (!tun && !ip6)
409                         l3 = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
410                 else if (!tun && ip6)
411                         l3 = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
412                 else if (tun && !ip6)
413                         l3 = RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
414                 else
415                         l3 = RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
416
417                 switch (type) {
418                 case BNXT_PTYPE_TBL_TYPE_ICMP:
419                         if (tun)
420                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_ICMP;
421                         else
422                                 pt[i] |= l3 | RTE_PTYPE_L4_ICMP;
423                         break;
424                 case BNXT_PTYPE_TBL_TYPE_TCP:
425                         if (tun)
426                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_TCP;
427                         else
428                                 pt[i] |= l3 | RTE_PTYPE_L4_TCP;
429                         break;
430                 case BNXT_PTYPE_TBL_TYPE_UDP:
431                         if (tun)
432                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_UDP;
433                         else
434                                 pt[i] |= l3 | RTE_PTYPE_L4_UDP;
435                         break;
436                 case BNXT_PTYPE_TBL_TYPE_IP:
437                         pt[i] |= l3;
438                         break;
439                 }
440         }
441         initialized = true;
442 }
443
444 static uint32_t
445 bnxt_parse_pkt_type(struct rx_pkt_cmpl *rxcmp, struct rx_pkt_cmpl_hi *rxcmp1)
446 {
447         uint32_t flags_type, flags2;
448         uint8_t index;
449
450         flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
451         flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
452
453         /* Validate ptype table indexing at build time. */
454         bnxt_check_ptype_constants();
455
456         /*
457          * Index format:
458          *     bit 0: Set if IP tunnel encapsulated packet.
459          *     bit 1: Set if IPv6 packet, clear if IPv4.
460          *     bit 2: Set if VLAN tag present.
461          *     bits 3-6: Four-bit hardware packet type field.
462          */
463         index = BNXT_CMPL_ITYPE_TO_IDX(flags_type) |
464                 BNXT_CMPL_VLAN_TUN_TO_IDX(flags2) |
465                 BNXT_CMPL_IP_VER_TO_IDX(flags2);
466
467         return bnxt_ptype_table[index];
468 }
469
470 static void __rte_cold
471 bnxt_init_ol_flags_tables(struct bnxt_rx_queue *rxq)
472 {
473         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
474         struct rte_eth_conf *dev_conf;
475         bool outer_cksum_enabled;
476         uint64_t offloads;
477         uint32_t *pt;
478         int i;
479
480         dev_conf = &rxq->bp->eth_dev->data->dev_conf;
481         offloads = dev_conf->rxmode.offloads;
482
483         outer_cksum_enabled = !!(offloads & (DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
484                                              DEV_RX_OFFLOAD_OUTER_UDP_CKSUM));
485
486         /* Initialize ol_flags table. */
487         pt = rxr->ol_flags_table;
488         for (i = 0; i < BNXT_OL_FLAGS_TBL_DIM; i++) {
489                 pt[i] = 0;
490
491                 if (i & RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN)
492                         pt[i] |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
493
494                 if (i & (RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC << 3)) {
495                         /* Tunnel case. */
496                         if (outer_cksum_enabled) {
497                                 if (i & RX_PKT_CMPL_FLAGS2_IP_CS_CALC)
498                                         pt[i] |= PKT_RX_IP_CKSUM_GOOD;
499
500                                 if (i & RX_PKT_CMPL_FLAGS2_L4_CS_CALC)
501                                         pt[i] |= PKT_RX_L4_CKSUM_GOOD;
502
503                                 if (i & RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC)
504                                         pt[i] |= PKT_RX_OUTER_L4_CKSUM_GOOD;
505                         } else {
506                                 if (i & RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC)
507                                         pt[i] |= PKT_RX_IP_CKSUM_GOOD;
508
509                                 if (i & RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC)
510                                         pt[i] |= PKT_RX_L4_CKSUM_GOOD;
511                         }
512                 } else {
513                         /* Non-tunnel case. */
514                         if (i & RX_PKT_CMPL_FLAGS2_IP_CS_CALC)
515                                 pt[i] |= PKT_RX_IP_CKSUM_GOOD;
516
517                         if (i & RX_PKT_CMPL_FLAGS2_L4_CS_CALC)
518                                 pt[i] |= PKT_RX_L4_CKSUM_GOOD;
519                 }
520         }
521
522         /* Initialize checksum error table. */
523         pt = rxr->ol_flags_err_table;
524         for (i = 0; i < BNXT_OL_FLAGS_ERR_TBL_DIM; i++) {
525                 pt[i] = 0;
526
527                 if (i & (RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC << 2)) {
528                         /* Tunnel case. */
529                         if (outer_cksum_enabled) {
530                                 if (i & (RX_PKT_CMPL_ERRORS_IP_CS_ERROR >> 4))
531                                         pt[i] |= PKT_RX_IP_CKSUM_BAD;
532
533                                 if (i & (RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR >> 4))
534                                         pt[i] |= PKT_RX_OUTER_IP_CKSUM_BAD;
535
536                                 if (i & (RX_PKT_CMPL_ERRORS_L4_CS_ERROR >> 4))
537                                         pt[i] |= PKT_RX_L4_CKSUM_BAD;
538
539                                 if (i & (RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR >> 4))
540                                         pt[i] |= PKT_RX_OUTER_L4_CKSUM_BAD;
541                         } else {
542                                 if (i & (RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR >> 4))
543                                         pt[i] |= PKT_RX_IP_CKSUM_BAD;
544
545                                 if (i & (RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR >> 4))
546                                         pt[i] |= PKT_RX_L4_CKSUM_BAD;
547                         }
548                 } else {
549                         /* Non-tunnel case. */
550                         if (i & (RX_PKT_CMPL_ERRORS_IP_CS_ERROR >> 4))
551                                 pt[i] |= PKT_RX_IP_CKSUM_BAD;
552
553                         if (i & (RX_PKT_CMPL_ERRORS_L4_CS_ERROR >> 4))
554                                 pt[i] |= PKT_RX_L4_CKSUM_BAD;
555                 }
556         }
557 }
558
559 static void
560 bnxt_set_ol_flags(struct bnxt_rx_ring_info *rxr, struct rx_pkt_cmpl *rxcmp,
561                   struct rx_pkt_cmpl_hi *rxcmp1, struct rte_mbuf *mbuf)
562 {
563         uint16_t flags_type, errors, flags;
564         uint64_t ol_flags;
565
566         flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
567
568         flags = rte_le_to_cpu_32(rxcmp1->flags2) &
569                                 (RX_PKT_CMPL_FLAGS2_IP_CS_CALC |
570                                  RX_PKT_CMPL_FLAGS2_L4_CS_CALC |
571                                  RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC |
572                                  RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC |
573                                  RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN);
574
575         flags |= (flags & RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC) << 3;
576         errors = rte_le_to_cpu_16(rxcmp1->errors_v2) &
577                                 (RX_PKT_CMPL_ERRORS_IP_CS_ERROR |
578                                  RX_PKT_CMPL_ERRORS_L4_CS_ERROR |
579                                  RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR |
580                                  RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR);
581         errors = (errors >> 4) & flags;
582
583         ol_flags = rxr->ol_flags_table[flags & ~errors];
584
585         if (unlikely(errors)) {
586                 errors |= (flags & RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC) << 2;
587                 ol_flags |= rxr->ol_flags_err_table[errors];
588         }
589
590         if (flags_type & RX_PKT_CMPL_FLAGS_RSS_VALID) {
591                 mbuf->hash.rss = rte_le_to_cpu_32(rxcmp->rss_hash);
592                 ol_flags |= PKT_RX_RSS_HASH;
593         }
594
595 #ifdef RTE_LIBRTE_IEEE1588
596         if (unlikely((flags_type & RX_PKT_CMPL_FLAGS_MASK) ==
597                      RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP))
598                 ol_flags |= PKT_RX_IEEE1588_PTP | PKT_RX_IEEE1588_TMST;
599 #endif
600
601         mbuf->ol_flags = ol_flags;
602 }
603
604 #ifdef RTE_LIBRTE_IEEE1588
605 static void
606 bnxt_get_rx_ts_p5(struct bnxt *bp, uint32_t rx_ts_cmpl)
607 {
608         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
609         uint64_t last_hwrm_time;
610         uint64_t pkt_time = 0;
611
612         if (!BNXT_CHIP_P5(bp) || !ptp)
613                 return;
614
615         /* On Thor, Rx timestamps are provided directly in the
616          * Rx completion records to the driver. Only 32 bits of
617          * the timestamp is present in the completion. Driver needs
618          * to read the current 48 bit free running timer using the
619          * HWRM_PORT_TS_QUERY command and combine the upper 16 bits
620          * from the HWRM response with the lower 32 bits in the
621          * Rx completion to produce the 48 bit timestamp for the Rx packet
622          */
623         last_hwrm_time = ptp->current_time;
624         pkt_time = (last_hwrm_time & BNXT_PTP_CURRENT_TIME_MASK) | rx_ts_cmpl;
625         if (rx_ts_cmpl < (uint32_t)last_hwrm_time) {
626                 /* timer has rolled over */
627                 pkt_time += (1ULL << 32);
628         }
629         ptp->rx_timestamp = pkt_time;
630 }
631 #endif
632
633 static uint32_t
634 bnxt_ulp_set_mark_in_mbuf(struct bnxt *bp, struct rx_pkt_cmpl_hi *rxcmp1,
635                           struct rte_mbuf *mbuf, uint32_t *vfr_flag)
636 {
637         uint32_t cfa_code;
638         uint32_t meta_fmt;
639         uint32_t meta;
640         bool gfid = false;
641         uint32_t mark_id;
642         uint32_t flags2;
643         uint32_t gfid_support = 0;
644         int rc;
645
646         if (BNXT_GFID_ENABLED(bp))
647                 gfid_support = 1;
648
649         cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
650         flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
651         meta = rte_le_to_cpu_32(rxcmp1->metadata);
652
653         /*
654          * The flags field holds extra bits of info from [6:4]
655          * which indicate if the flow is in TCAM or EM or EEM
656          */
657         meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
658                 BNXT_CFA_META_FMT_SHFT;
659
660         switch (meta_fmt) {
661         case 0:
662                 if (gfid_support) {
663                         /* Not an LFID or GFID, a flush cmd. */
664                         goto skip_mark;
665                 } else {
666                         /* LFID mode, no vlan scenario */
667                         gfid = false;
668                 }
669                 break;
670         case 4:
671         case 5:
672                 /*
673                  * EM/TCAM case
674                  * Assume that EM doesn't support Mark due to GFID
675                  * collisions with EEM.  Simply return without setting the mark
676                  * in the mbuf.
677                  */
678                 if (BNXT_CFA_META_EM_TEST(meta)) {
679                         /*This is EM hit {EM(1), GFID[27:16], 19'd0 or vtag } */
680                         gfid = true;
681                         meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
682                         cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
683                 } else {
684                         /*
685                          * It is a TCAM entry, so it is an LFID.
686                          * The TCAM IDX and Mode can also be determined
687                          * by decoding the meta_data. We are not
688                          * using these for now.
689                          */
690                 }
691                 break;
692         case 6:
693         case 7:
694                 /* EEM Case, only using gfid in EEM for now. */
695                 gfid = true;
696
697                 /*
698                  * For EEM flows, The first part of cfa_code is 16 bits.
699                  * The second part is embedded in the
700                  * metadata field from bit 19 onwards. The driver needs to
701                  * ignore the first 19 bits of metadata and use the next 12
702                  * bits as higher 12 bits of cfa_code.
703                  */
704                 meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
705                 cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
706                 break;
707         default:
708                 /* For other values, the cfa_code is assumed to be an LFID. */
709                 break;
710         }
711
712         rc = ulp_mark_db_mark_get(bp->ulp_ctx, gfid,
713                                   cfa_code, vfr_flag, &mark_id);
714         if (!rc) {
715                 /* VF to VFR Rx path. So, skip mark_id injection in mbuf */
716                 if (vfr_flag && *vfr_flag)
717                         return mark_id;
718                 /* Got the mark, write it to the mbuf and return */
719                 mbuf->hash.fdir.hi = mark_id;
720                 *bnxt_cfa_code_dynfield(mbuf) = cfa_code & 0xffffffffull;
721                 mbuf->hash.fdir.id = rxcmp1->cfa_code;
722                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
723                 return mark_id;
724         }
725
726 skip_mark:
727         mbuf->hash.fdir.hi = 0;
728         mbuf->hash.fdir.id = 0;
729
730         return 0;
731 }
732
733 void bnxt_set_mark_in_mbuf(struct bnxt *bp,
734                            struct rx_pkt_cmpl_hi *rxcmp1,
735                            struct rte_mbuf *mbuf)
736 {
737         uint32_t cfa_code = 0;
738         uint8_t meta_fmt = 0;
739         uint16_t flags2 = 0;
740         uint32_t meta =  0;
741
742         cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
743         if (!cfa_code)
744                 return;
745
746         if (cfa_code && !bp->mark_table[cfa_code].valid)
747                 return;
748
749         flags2 = rte_le_to_cpu_16(rxcmp1->flags2);
750         meta = rte_le_to_cpu_32(rxcmp1->metadata);
751         if (meta) {
752                 meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
753
754                 /* The flags field holds extra bits of info from [6:4]
755                  * which indicate if the flow is in TCAM or EM or EEM
756                  */
757                 meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
758                            BNXT_CFA_META_FMT_SHFT;
759
760                 /* meta_fmt == 4 => 'b100 => 'b10x => EM.
761                  * meta_fmt == 5 => 'b101 => 'b10x => EM + VLAN
762                  * meta_fmt == 6 => 'b110 => 'b11x => EEM
763                  * meta_fmt == 7 => 'b111 => 'b11x => EEM + VLAN.
764                  */
765                 meta_fmt >>= BNXT_CFA_META_FMT_EM_EEM_SHFT;
766         }
767
768         mbuf->hash.fdir.hi = bp->mark_table[cfa_code].mark_id;
769         mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
770 }
771
772 static int bnxt_rx_pkt(struct rte_mbuf **rx_pkt,
773                        struct bnxt_rx_queue *rxq, uint32_t *raw_cons)
774 {
775         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
776         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
777         struct rx_pkt_cmpl *rxcmp;
778         struct rx_pkt_cmpl_hi *rxcmp1;
779         uint32_t tmp_raw_cons = *raw_cons;
780         uint16_t cons, raw_prod, cp_cons =
781             RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
782         struct rte_mbuf *mbuf;
783         int rc = 0;
784         uint8_t agg_buf = 0;
785         uint16_t cmp_type;
786         uint32_t vfr_flag = 0, mark_id = 0;
787         struct bnxt *bp = rxq->bp;
788
789         rxcmp = (struct rx_pkt_cmpl *)
790             &cpr->cp_desc_ring[cp_cons];
791
792         cmp_type = CMP_TYPE(rxcmp);
793
794         if (cmp_type == RX_TPA_V2_ABUF_CMPL_TYPE_RX_TPA_AGG) {
795                 struct rx_tpa_v2_abuf_cmpl *rx_agg = (void *)rxcmp;
796                 uint16_t agg_id = rte_cpu_to_le_16(rx_agg->agg_id);
797                 struct bnxt_tpa_info *tpa_info;
798
799                 tpa_info = &rxr->tpa_info[agg_id];
800                 RTE_ASSERT(tpa_info->agg_count < 16);
801                 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
802                 rc = -EINVAL; /* Continue w/o new mbuf */
803                 goto next_rx;
804         }
805
806         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
807         cp_cons = RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
808         rxcmp1 = (struct rx_pkt_cmpl_hi *)&cpr->cp_desc_ring[cp_cons];
809
810         if (!CMP_VALID(rxcmp1, tmp_raw_cons, cpr->cp_ring_struct))
811                 return -EBUSY;
812
813         cpr->valid = FLIP_VALID(cp_cons,
814                                 cpr->cp_ring_struct->ring_mask,
815                                 cpr->valid);
816
817         if (cmp_type == RX_TPA_START_CMPL_TYPE_RX_TPA_START ||
818             cmp_type == RX_TPA_START_V2_CMPL_TYPE_RX_TPA_START_V2) {
819                 bnxt_tpa_start(rxq, (struct rx_tpa_start_cmpl *)rxcmp,
820                                (struct rx_tpa_start_cmpl_hi *)rxcmp1);
821                 rc = -EINVAL; /* Continue w/o new mbuf */
822                 goto next_rx;
823         } else if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
824                 mbuf = bnxt_tpa_end(rxq, &tmp_raw_cons,
825                                    (struct rx_tpa_end_cmpl *)rxcmp,
826                                    (struct rx_tpa_end_cmpl_hi *)rxcmp1);
827                 if (unlikely(!mbuf))
828                         return -EBUSY;
829                 *rx_pkt = mbuf;
830                 goto next_rx;
831         } else if ((cmp_type != CMPL_BASE_TYPE_RX_L2) &&
832                    (cmp_type != CMPL_BASE_TYPE_RX_L2_V2)) {
833                 rc = -EINVAL;
834                 goto next_rx;
835         }
836
837         agg_buf = BNXT_RX_L2_AGG_BUFS(rxcmp);
838         if (agg_buf && !bnxt_agg_bufs_valid(cpr, agg_buf, tmp_raw_cons))
839                 return -EBUSY;
840
841         raw_prod = rxr->rx_raw_prod;
842
843         cons = rxcmp->opaque;
844         mbuf = bnxt_consume_rx_buf(rxr, cons);
845         if (mbuf == NULL)
846                 return -EBUSY;
847
848         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
849         mbuf->nb_segs = 1;
850         mbuf->next = NULL;
851         mbuf->pkt_len = rxcmp->len;
852         mbuf->data_len = mbuf->pkt_len;
853         mbuf->port = rxq->port_id;
854
855 #ifdef RTE_LIBRTE_IEEE1588
856         if (unlikely((rte_le_to_cpu_16(rxcmp->flags_type) &
857                       RX_PKT_CMPL_FLAGS_MASK) ==
858                      RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP))
859                 bnxt_get_rx_ts_p5(rxq->bp, rxcmp1->reorder);
860 #endif
861
862         if (cmp_type == CMPL_BASE_TYPE_RX_L2_V2) {
863                 bnxt_parse_csum_v2(mbuf, rxcmp1);
864                 bnxt_parse_pkt_type_v2(mbuf, rxcmp, rxcmp1);
865                 bnxt_rx_vlan_v2(mbuf, rxcmp, rxcmp1);
866                 /* TODO Add support for cfa_code parsing */
867                 goto reuse_rx_mbuf;
868         }
869
870         bnxt_set_ol_flags(rxr, rxcmp, rxcmp1, mbuf);
871
872         mbuf->packet_type = bnxt_parse_pkt_type(rxcmp, rxcmp1);
873
874         if (BNXT_TRUFLOW_EN(bp))
875                 mark_id = bnxt_ulp_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf,
876                                                     &vfr_flag);
877         else
878                 bnxt_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf);
879
880 reuse_rx_mbuf:
881         if (agg_buf)
882                 bnxt_rx_pages(rxq, mbuf, &tmp_raw_cons, agg_buf, NULL);
883
884 #ifdef BNXT_DEBUG
885         if (rxcmp1->errors_v2 & RX_CMP_L2_ERRORS) {
886                 /* Re-install the mbuf back to the rx ring */
887                 bnxt_reuse_rx_mbuf(rxr, cons, mbuf);
888
889                 rc = -EIO;
890                 goto next_rx;
891         }
892 #endif
893         /*
894          * TODO: Redesign this....
895          * If the allocation fails, the packet does not get received.
896          * Simply returning this will result in slowly falling behind
897          * on the producer ring buffers.
898          * Instead, "filling up" the producer just before ringing the
899          * doorbell could be a better solution since it will let the
900          * producer ring starve until memory is available again pushing
901          * the drops into hardware and getting them out of the driver
902          * allowing recovery to a full producer ring.
903          *
904          * This could also help with cache usage by preventing per-packet
905          * calls in favour of a tight loop with the same function being called
906          * in it.
907          */
908         raw_prod = RING_NEXT(raw_prod);
909         if (bnxt_alloc_rx_data(rxq, rxr, raw_prod)) {
910                 PMD_DRV_LOG(ERR, "mbuf alloc failed with prod=0x%x\n",
911                             raw_prod);
912                 rc = -ENOMEM;
913                 goto rx;
914         }
915         rxr->rx_raw_prod = raw_prod;
916
917         if (BNXT_TRUFLOW_EN(bp) && (BNXT_VF_IS_TRUSTED(bp) || BNXT_PF(bp)) &&
918             vfr_flag) {
919                 bnxt_vfr_recv(mark_id, rxq->queue_id, mbuf);
920                 /* Now return an error so that nb_rx_pkts is not
921                  * incremented.
922                  * This packet was meant to be given to the representor.
923                  * So no need to account the packet and give it to
924                  * parent Rx burst function.
925                  */
926                 rc = -ENODEV;
927                 goto next_rx;
928         }
929         /*
930          * All MBUFs are allocated with the same size under DPDK,
931          * no optimization for rx_copy_thresh
932          */
933 rx:
934         *rx_pkt = mbuf;
935
936 next_rx:
937
938         *raw_cons = tmp_raw_cons;
939
940         return rc;
941 }
942
943 uint16_t bnxt_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
944                                uint16_t nb_pkts)
945 {
946         struct bnxt_rx_queue *rxq = rx_queue;
947         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
948         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
949         uint16_t rx_raw_prod = rxr->rx_raw_prod;
950         uint16_t ag_raw_prod = rxr->ag_raw_prod;
951         uint32_t raw_cons = cpr->cp_raw_cons;
952         bool alloc_failed = false;
953         uint32_t cons;
954         int nb_rx_pkts = 0;
955         int nb_rep_rx_pkts = 0;
956         struct rx_pkt_cmpl *rxcmp;
957         int rc = 0;
958         bool evt = false;
959
960         if (unlikely(is_bnxt_in_error(rxq->bp)))
961                 return 0;
962
963         /* If Rx Q was stopped return */
964         if (unlikely(!rxq->rx_started))
965                 return 0;
966
967 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
968         /*
969          * Replenish buffers if needed when a transition has been made from
970          * vector- to non-vector- receive processing.
971          */
972         while (unlikely(rxq->rxrearm_nb)) {
973                 if (!bnxt_alloc_rx_data(rxq, rxr, rxq->rxrearm_start)) {
974                         rxr->rx_raw_prod = rxq->rxrearm_start;
975                         bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
976                         rxq->rxrearm_start++;
977                         rxq->rxrearm_nb--;
978                 } else {
979                         /* Retry allocation on next call. */
980                         break;
981                 }
982         }
983 #endif
984
985         /* Handle RX burst request */
986         while (1) {
987                 cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
988                 rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
989
990                 if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct))
991                         break;
992                 cpr->valid = FLIP_VALID(cons,
993                                         cpr->cp_ring_struct->ring_mask,
994                                         cpr->valid);
995
996                 if (CMP_TYPE(rxcmp) == CMPL_BASE_TYPE_HWRM_DONE) {
997                         PMD_DRV_LOG(ERR, "Rx flush done\n");
998                 } else if ((CMP_TYPE(rxcmp) >= CMPL_BASE_TYPE_RX_TPA_START_V2) &&
999                      (CMP_TYPE(rxcmp) <= RX_TPA_V2_ABUF_CMPL_TYPE_RX_TPA_AGG)) {
1000                         rc = bnxt_rx_pkt(&rx_pkts[nb_rx_pkts], rxq, &raw_cons);
1001                         if (!rc)
1002                                 nb_rx_pkts++;
1003                         else if (rc == -EBUSY)  /* partial completion */
1004                                 break;
1005                         else if (rc == -ENODEV) /* completion for representor */
1006                                 nb_rep_rx_pkts++;
1007                         else if (rc == -ENOMEM) {
1008                                 nb_rx_pkts++;
1009                                 alloc_failed = true;
1010                         }
1011                 } else if (!BNXT_NUM_ASYNC_CPR(rxq->bp)) {
1012                         evt =
1013                         bnxt_event_hwrm_resp_handler(rxq->bp,
1014                                                      (struct cmpl_base *)rxcmp);
1015                         /* If the async event is Fatal error, return */
1016                         if (unlikely(is_bnxt_in_error(rxq->bp)))
1017                                 goto done;
1018                 }
1019
1020                 raw_cons = NEXT_RAW_CMP(raw_cons);
1021                 if (nb_rx_pkts == nb_pkts || nb_rep_rx_pkts == nb_pkts || evt)
1022                         break;
1023         }
1024
1025         cpr->cp_raw_cons = raw_cons;
1026         if (!nb_rx_pkts && !nb_rep_rx_pkts && !evt) {
1027                 /*
1028                  * For PMD, there is no need to keep on pushing to REARM
1029                  * the doorbell if there are no new completions
1030                  */
1031                 goto done;
1032         }
1033
1034         /* Ring the completion queue doorbell. */
1035         bnxt_db_cq(cpr);
1036
1037         /* Ring the receive descriptor doorbell. */
1038         if (rx_raw_prod != rxr->rx_raw_prod)
1039                 bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
1040
1041         /* Ring the AGG ring DB */
1042         if (ag_raw_prod != rxr->ag_raw_prod)
1043                 bnxt_db_write(&rxr->ag_db, rxr->ag_raw_prod);
1044
1045         /* Attempt to alloc Rx buf in case of a previous allocation failure. */
1046         if (alloc_failed) {
1047                 int cnt;
1048
1049                 rx_raw_prod = RING_NEXT(rx_raw_prod);
1050                 for (cnt = 0; cnt < nb_rx_pkts + nb_rep_rx_pkts; cnt++) {
1051                         struct rte_mbuf **rx_buf;
1052                         uint16_t ndx;
1053
1054                         ndx = RING_IDX(rxr->rx_ring_struct, rx_raw_prod + cnt);
1055                         rx_buf = &rxr->rx_buf_ring[ndx];
1056
1057                         /* Buffer already allocated for this index. */
1058                         if (*rx_buf != NULL && *rx_buf != &rxq->fake_mbuf)
1059                                 continue;
1060
1061                         /* This slot is empty. Alloc buffer for Rx */
1062                         if (!bnxt_alloc_rx_data(rxq, rxr, rx_raw_prod + cnt)) {
1063                                 rxr->rx_raw_prod = rx_raw_prod + cnt;
1064                                 bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
1065                         } else {
1066                                 PMD_DRV_LOG(ERR, "Alloc  mbuf failed\n");
1067                                 break;
1068                         }
1069                 }
1070         }
1071
1072 done:
1073         return nb_rx_pkts;
1074 }
1075
1076 /*
1077  * Dummy DPDK callback for RX.
1078  *
1079  * This function is used to temporarily replace the real callback during
1080  * unsafe control operations on the queue, or in case of error.
1081  */
1082 uint16_t
1083 bnxt_dummy_recv_pkts(void *rx_queue __rte_unused,
1084                      struct rte_mbuf **rx_pkts __rte_unused,
1085                      uint16_t nb_pkts __rte_unused)
1086 {
1087         return 0;
1088 }
1089
1090 void bnxt_free_rx_rings(struct bnxt *bp)
1091 {
1092         int i;
1093         struct bnxt_rx_queue *rxq;
1094
1095         if (!bp->rx_queues)
1096                 return;
1097
1098         for (i = 0; i < (int)bp->rx_nr_rings; i++) {
1099                 rxq = bp->rx_queues[i];
1100                 if (!rxq)
1101                         continue;
1102
1103                 bnxt_free_ring(rxq->rx_ring->rx_ring_struct);
1104                 rte_free(rxq->rx_ring->rx_ring_struct);
1105
1106                 /* Free the Aggregator ring */
1107                 bnxt_free_ring(rxq->rx_ring->ag_ring_struct);
1108                 rte_free(rxq->rx_ring->ag_ring_struct);
1109                 rxq->rx_ring->ag_ring_struct = NULL;
1110
1111                 rte_free(rxq->rx_ring);
1112
1113                 bnxt_free_ring(rxq->cp_ring->cp_ring_struct);
1114                 rte_free(rxq->cp_ring->cp_ring_struct);
1115                 rte_free(rxq->cp_ring);
1116
1117                 rte_free(rxq);
1118                 bp->rx_queues[i] = NULL;
1119         }
1120 }
1121
1122 int bnxt_init_rx_ring_struct(struct bnxt_rx_queue *rxq, unsigned int socket_id)
1123 {
1124         struct bnxt_cp_ring_info *cpr;
1125         struct bnxt_rx_ring_info *rxr;
1126         struct bnxt_ring *ring;
1127
1128         rxq->rx_buf_size = BNXT_MAX_PKT_LEN + sizeof(struct rte_mbuf);
1129
1130         rxr = rte_zmalloc_socket("bnxt_rx_ring",
1131                                  sizeof(struct bnxt_rx_ring_info),
1132                                  RTE_CACHE_LINE_SIZE, socket_id);
1133         if (rxr == NULL)
1134                 return -ENOMEM;
1135         rxq->rx_ring = rxr;
1136
1137         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1138                                    sizeof(struct bnxt_ring),
1139                                    RTE_CACHE_LINE_SIZE, socket_id);
1140         if (ring == NULL)
1141                 return -ENOMEM;
1142         rxr->rx_ring_struct = ring;
1143         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc);
1144         ring->ring_mask = ring->ring_size - 1;
1145         ring->bd = (void *)rxr->rx_desc_ring;
1146         ring->bd_dma = rxr->rx_desc_mapping;
1147
1148         /* Allocate extra rx ring entries for vector rx. */
1149         ring->vmem_size = sizeof(struct rte_mbuf *) *
1150                                 (ring->ring_size + RTE_BNXT_DESCS_PER_LOOP);
1151
1152         ring->vmem = (void **)&rxr->rx_buf_ring;
1153         ring->fw_ring_id = INVALID_HW_RING_ID;
1154
1155         cpr = rte_zmalloc_socket("bnxt_rx_ring",
1156                                  sizeof(struct bnxt_cp_ring_info),
1157                                  RTE_CACHE_LINE_SIZE, socket_id);
1158         if (cpr == NULL)
1159                 return -ENOMEM;
1160         rxq->cp_ring = cpr;
1161
1162         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1163                                    sizeof(struct bnxt_ring),
1164                                    RTE_CACHE_LINE_SIZE, socket_id);
1165         if (ring == NULL)
1166                 return -ENOMEM;
1167         cpr->cp_ring_struct = ring;
1168
1169         /* Allocate two completion slots per entry in desc ring. */
1170         ring->ring_size = rxr->rx_ring_struct->ring_size * 2;
1171         ring->ring_size *= AGG_RING_SIZE_FACTOR;
1172
1173         ring->ring_size = rte_align32pow2(ring->ring_size);
1174         ring->ring_mask = ring->ring_size - 1;
1175         ring->bd = (void *)cpr->cp_desc_ring;
1176         ring->bd_dma = cpr->cp_desc_mapping;
1177         ring->vmem_size = 0;
1178         ring->vmem = NULL;
1179         ring->fw_ring_id = INVALID_HW_RING_ID;
1180
1181         /* Allocate Aggregator rings */
1182         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1183                                    sizeof(struct bnxt_ring),
1184                                    RTE_CACHE_LINE_SIZE, socket_id);
1185         if (ring == NULL)
1186                 return -ENOMEM;
1187         rxr->ag_ring_struct = ring;
1188         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc *
1189                                           AGG_RING_SIZE_FACTOR);
1190         ring->ring_mask = ring->ring_size - 1;
1191         ring->bd = (void *)rxr->ag_desc_ring;
1192         ring->bd_dma = rxr->ag_desc_mapping;
1193         ring->vmem_size = ring->ring_size * sizeof(struct rte_mbuf *);
1194         ring->vmem = (void **)&rxr->ag_buf_ring;
1195         ring->fw_ring_id = INVALID_HW_RING_ID;
1196
1197         return 0;
1198 }
1199
1200 static void bnxt_init_rxbds(struct bnxt_ring *ring, uint32_t type,
1201                             uint16_t len)
1202 {
1203         uint32_t j;
1204         struct rx_prod_pkt_bd *rx_bd_ring = (struct rx_prod_pkt_bd *)ring->bd;
1205
1206         if (!rx_bd_ring)
1207                 return;
1208         for (j = 0; j < ring->ring_size; j++) {
1209                 rx_bd_ring[j].flags_type = rte_cpu_to_le_16(type);
1210                 rx_bd_ring[j].len = rte_cpu_to_le_16(len);
1211                 rx_bd_ring[j].opaque = j;
1212         }
1213 }
1214
1215 int bnxt_init_one_rx_ring(struct bnxt_rx_queue *rxq)
1216 {
1217         struct bnxt_rx_ring_info *rxr;
1218         struct bnxt_ring *ring;
1219         uint32_t raw_prod, type;
1220         unsigned int i;
1221         uint16_t size;
1222
1223         /* Initialize packet type table. */
1224         bnxt_init_ptype_table();
1225
1226         size = rte_pktmbuf_data_room_size(rxq->mb_pool) - RTE_PKTMBUF_HEADROOM;
1227         size = RTE_MIN(BNXT_MAX_PKT_LEN, size);
1228
1229         type = RX_PROD_PKT_BD_TYPE_RX_PROD_PKT;
1230
1231         rxr = rxq->rx_ring;
1232         ring = rxr->rx_ring_struct;
1233         bnxt_init_rxbds(ring, type, size);
1234
1235         /* Initialize offload flags parsing table. */
1236         bnxt_init_ol_flags_tables(rxq);
1237
1238         raw_prod = rxr->rx_raw_prod;
1239         for (i = 0; i < ring->ring_size; i++) {
1240                 if (unlikely(!rxr->rx_buf_ring[i])) {
1241                         if (bnxt_alloc_rx_data(rxq, rxr, raw_prod) != 0) {
1242                                 PMD_DRV_LOG(WARNING,
1243                                             "init'ed rx ring %d with %d/%d mbufs only\n",
1244                                             rxq->queue_id, i, ring->ring_size);
1245                                 break;
1246                         }
1247                 }
1248                 rxr->rx_raw_prod = raw_prod;
1249                 raw_prod = RING_NEXT(raw_prod);
1250         }
1251
1252         /* Initialize dummy mbuf pointers for vector mode rx. */
1253         for (i = ring->ring_size;
1254              i < ring->ring_size + RTE_BNXT_DESCS_PER_LOOP; i++) {
1255                 rxr->rx_buf_ring[i] = &rxq->fake_mbuf;
1256         }
1257
1258         ring = rxr->ag_ring_struct;
1259         type = RX_PROD_AGG_BD_TYPE_RX_PROD_AGG;
1260         bnxt_init_rxbds(ring, type, size);
1261         raw_prod = rxr->ag_raw_prod;
1262
1263         for (i = 0; i < ring->ring_size; i++) {
1264                 if (unlikely(!rxr->ag_buf_ring[i])) {
1265                         if (bnxt_alloc_ag_data(rxq, rxr, raw_prod) != 0) {
1266                                 PMD_DRV_LOG(WARNING,
1267                                             "init'ed AG ring %d with %d/%d mbufs only\n",
1268                                             rxq->queue_id, i, ring->ring_size);
1269                                 break;
1270                         }
1271                 }
1272                 rxr->ag_raw_prod = raw_prod;
1273                 raw_prod = RING_NEXT(raw_prod);
1274         }
1275         PMD_DRV_LOG(DEBUG, "AGG Done!\n");
1276
1277         if (rxr->tpa_info) {
1278                 unsigned int max_aggs = BNXT_TPA_MAX_AGGS(rxq->bp);
1279
1280                 for (i = 0; i < max_aggs; i++) {
1281                         if (unlikely(!rxr->tpa_info[i].mbuf)) {
1282                                 rxr->tpa_info[i].mbuf =
1283                                         __bnxt_alloc_rx_data(rxq->mb_pool);
1284                                 if (!rxr->tpa_info[i].mbuf) {
1285                                         rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
1286                                         return -ENOMEM;
1287                                 }
1288                         }
1289                 }
1290         }
1291         PMD_DRV_LOG(DEBUG, "TPA alloc Done!\n");
1292
1293         return 0;
1294 }
1295
1296 /* Sweep the Rx completion queue till HWRM_DONE for ring flush is received.
1297  * The mbufs will not be freed in this call.
1298  * They will be freed during ring free as a part of mem cleanup.
1299  */
1300 int bnxt_flush_rx_cmp(struct bnxt_cp_ring_info *cpr)
1301 {
1302         struct bnxt_ring *cp_ring_struct = cpr->cp_ring_struct;
1303         uint32_t ring_mask = cp_ring_struct->ring_mask;
1304         uint32_t raw_cons = cpr->cp_raw_cons;
1305         struct rx_pkt_cmpl *rxcmp;
1306         uint32_t nb_rx = 0;
1307         uint32_t cons;
1308
1309         do {
1310                 cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
1311                 rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1312
1313                 if (CMP_TYPE(rxcmp) == CMPL_BASE_TYPE_HWRM_DONE)
1314                         return 1;
1315
1316                 raw_cons = NEXT_RAW_CMP(raw_cons);
1317                 nb_rx++;
1318         } while (nb_rx < ring_mask);
1319
1320         cpr->cp_raw_cons = raw_cons;
1321
1322         /* Ring the completion queue doorbell. */
1323         bnxt_db_cq(cpr);
1324
1325         return 0;
1326 }