net/bnxt: fix fallback mbuf allocation logic
[dpdk.git] / drivers / net / bnxt / bnxt_rxr.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Broadcom
3  * All rights reserved.
4  */
5
6 #include <inttypes.h>
7 #include <stdbool.h>
8
9 #include <rte_bitmap.h>
10 #include <rte_byteorder.h>
11 #include <rte_malloc.h>
12 #include <rte_memory.h>
13
14 #include "bnxt.h"
15 #include "bnxt_reps.h"
16 #include "bnxt_ring.h"
17 #include "bnxt_rxr.h"
18 #include "bnxt_rxq.h"
19 #include "hsi_struct_def_dpdk.h"
20 #ifdef RTE_LIBRTE_IEEE1588
21 #include "bnxt_hwrm.h"
22 #endif
23
24 #include <bnxt_tf_common.h>
25 #include <ulp_mark_mgr.h>
26
27 /*
28  * RX Ring handling
29  */
30
31 static inline struct rte_mbuf *__bnxt_alloc_rx_data(struct rte_mempool *mb)
32 {
33         struct rte_mbuf *data;
34
35         data = rte_mbuf_raw_alloc(mb);
36
37         return data;
38 }
39
40 static inline int bnxt_alloc_rx_data(struct bnxt_rx_queue *rxq,
41                                      struct bnxt_rx_ring_info *rxr,
42                                      uint16_t raw_prod)
43 {
44         uint16_t prod = RING_IDX(rxr->rx_ring_struct, raw_prod);
45         struct rx_prod_pkt_bd *rxbd;
46         struct rte_mbuf **rx_buf;
47         struct rte_mbuf *mbuf;
48
49         rxbd = &rxr->rx_desc_ring[prod];
50         rx_buf = &rxr->rx_buf_ring[prod];
51         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
52         if (!mbuf) {
53                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
54                 return -ENOMEM;
55         }
56
57         *rx_buf = mbuf;
58         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
59
60         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
61
62         return 0;
63 }
64
65 static inline int bnxt_alloc_ag_data(struct bnxt_rx_queue *rxq,
66                                      struct bnxt_rx_ring_info *rxr,
67                                      uint16_t raw_prod)
68 {
69         uint16_t prod = RING_IDX(rxr->ag_ring_struct, raw_prod);
70         struct rx_prod_pkt_bd *rxbd;
71         struct rte_mbuf **rx_buf;
72         struct rte_mbuf *mbuf;
73
74         rxbd = &rxr->ag_desc_ring[prod];
75         rx_buf = &rxr->ag_buf_ring[prod];
76         if (rxbd == NULL) {
77                 PMD_DRV_LOG(ERR, "Jumbo Frame. rxbd is NULL\n");
78                 return -EINVAL;
79         }
80
81         if (rx_buf == NULL) {
82                 PMD_DRV_LOG(ERR, "Jumbo Frame. rx_buf is NULL\n");
83                 return -EINVAL;
84         }
85
86         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
87         if (!mbuf) {
88                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
89                 return -ENOMEM;
90         }
91
92         *rx_buf = mbuf;
93         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
94
95         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
96
97         return 0;
98 }
99
100 static inline void bnxt_reuse_rx_mbuf(struct bnxt_rx_ring_info *rxr,
101                                struct rte_mbuf *mbuf)
102 {
103         uint16_t prod, raw_prod = RING_NEXT(rxr->rx_raw_prod);
104         struct rte_mbuf **prod_rx_buf;
105         struct rx_prod_pkt_bd *prod_bd;
106
107         prod = RING_IDX(rxr->rx_ring_struct, raw_prod);
108         prod_rx_buf = &rxr->rx_buf_ring[prod];
109
110         RTE_ASSERT(*prod_rx_buf == NULL);
111         RTE_ASSERT(mbuf != NULL);
112
113         *prod_rx_buf = mbuf;
114
115         prod_bd = &rxr->rx_desc_ring[prod];
116
117         prod_bd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
118
119         rxr->rx_raw_prod = raw_prod;
120 }
121
122 static inline
123 struct rte_mbuf *bnxt_consume_rx_buf(struct bnxt_rx_ring_info *rxr,
124                                      uint16_t cons)
125 {
126         struct rte_mbuf **cons_rx_buf;
127         struct rte_mbuf *mbuf;
128
129         cons_rx_buf = &rxr->rx_buf_ring[RING_IDX(rxr->rx_ring_struct, cons)];
130         RTE_ASSERT(*cons_rx_buf != NULL);
131         mbuf = *cons_rx_buf;
132         *cons_rx_buf = NULL;
133
134         return mbuf;
135 }
136
137 static void bnxt_tpa_start(struct bnxt_rx_queue *rxq,
138                            struct rx_tpa_start_cmpl *tpa_start,
139                            struct rx_tpa_start_cmpl_hi *tpa_start1)
140 {
141         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
142         uint16_t agg_id;
143         uint16_t data_cons;
144         struct bnxt_tpa_info *tpa_info;
145         struct rte_mbuf *mbuf;
146
147         agg_id = bnxt_tpa_start_agg_id(rxq->bp, tpa_start);
148
149         data_cons = tpa_start->opaque;
150         tpa_info = &rxr->tpa_info[agg_id];
151
152         mbuf = bnxt_consume_rx_buf(rxr, data_cons);
153
154         bnxt_reuse_rx_mbuf(rxr, tpa_info->mbuf);
155
156         tpa_info->agg_count = 0;
157         tpa_info->mbuf = mbuf;
158         tpa_info->len = rte_le_to_cpu_32(tpa_start->len);
159
160         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
161         mbuf->nb_segs = 1;
162         mbuf->next = NULL;
163         mbuf->pkt_len = rte_le_to_cpu_32(tpa_start->len);
164         mbuf->data_len = mbuf->pkt_len;
165         mbuf->port = rxq->port_id;
166         mbuf->ol_flags = PKT_RX_LRO;
167         if (likely(tpa_start->flags_type &
168                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS_RSS_VALID))) {
169                 mbuf->hash.rss = rte_le_to_cpu_32(tpa_start->rss_hash);
170                 mbuf->ol_flags |= PKT_RX_RSS_HASH;
171         } else {
172                 mbuf->hash.fdir.id = rte_le_to_cpu_16(tpa_start1->cfa_code);
173                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
174         }
175         if (tpa_start1->flags2 &
176             rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_META_FORMAT_VLAN)) {
177                 mbuf->vlan_tci = rte_le_to_cpu_32(tpa_start1->metadata);
178                 mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
179         }
180         if (likely(tpa_start1->flags2 &
181                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_L4_CS_CALC)))
182                 mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
183
184         /* recycle next mbuf */
185         data_cons = RING_NEXT(data_cons);
186         bnxt_reuse_rx_mbuf(rxr, bnxt_consume_rx_buf(rxr, data_cons));
187 }
188
189 static int bnxt_agg_bufs_valid(struct bnxt_cp_ring_info *cpr,
190                 uint8_t agg_bufs, uint32_t raw_cp_cons)
191 {
192         uint16_t last_cp_cons;
193         struct rx_pkt_cmpl *agg_cmpl;
194
195         raw_cp_cons = ADV_RAW_CMP(raw_cp_cons, agg_bufs);
196         last_cp_cons = RING_CMP(cpr->cp_ring_struct, raw_cp_cons);
197         agg_cmpl = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[last_cp_cons];
198         cpr->valid = FLIP_VALID(raw_cp_cons,
199                                 cpr->cp_ring_struct->ring_mask,
200                                 cpr->valid);
201         return CMP_VALID(agg_cmpl, raw_cp_cons, cpr->cp_ring_struct);
202 }
203
204 /* TPA consume agg buffer out of order, allocate connected data only */
205 static int bnxt_prod_ag_mbuf(struct bnxt_rx_queue *rxq)
206 {
207         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
208         uint16_t raw_next = RING_NEXT(rxr->ag_raw_prod);
209         uint16_t bmap_next = RING_IDX(rxr->ag_ring_struct, raw_next);
210
211         /* TODO batch allocation for better performance */
212         while (rte_bitmap_get(rxr->ag_bitmap, bmap_next)) {
213                 if (unlikely(bnxt_alloc_ag_data(rxq, rxr, raw_next))) {
214                         PMD_DRV_LOG(ERR, "agg mbuf alloc failed: prod=0x%x\n",
215                                     raw_next);
216                         break;
217                 }
218                 rte_bitmap_clear(rxr->ag_bitmap, bmap_next);
219                 rxr->ag_raw_prod = raw_next;
220                 raw_next = RING_NEXT(raw_next);
221                 bmap_next = RING_IDX(rxr->ag_ring_struct, raw_next);
222         }
223
224         return 0;
225 }
226
227 static int bnxt_rx_pages(struct bnxt_rx_queue *rxq,
228                          struct rte_mbuf *mbuf, uint32_t *tmp_raw_cons,
229                          uint8_t agg_buf, struct bnxt_tpa_info *tpa_info)
230 {
231         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
232         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
233         int i;
234         uint16_t cp_cons, ag_cons;
235         struct rx_pkt_cmpl *rxcmp;
236         struct rte_mbuf *last = mbuf;
237         bool is_p5_tpa = tpa_info && BNXT_CHIP_P5(rxq->bp);
238
239         for (i = 0; i < agg_buf; i++) {
240                 struct rte_mbuf **ag_buf;
241                 struct rte_mbuf *ag_mbuf;
242
243                 if (is_p5_tpa) {
244                         rxcmp = (void *)&tpa_info->agg_arr[i];
245                 } else {
246                         *tmp_raw_cons = NEXT_RAW_CMP(*tmp_raw_cons);
247                         cp_cons = RING_CMP(cpr->cp_ring_struct, *tmp_raw_cons);
248                         rxcmp = (struct rx_pkt_cmpl *)
249                                         &cpr->cp_desc_ring[cp_cons];
250                 }
251
252 #ifdef BNXT_DEBUG
253                 bnxt_dump_cmpl(cp_cons, rxcmp);
254 #endif
255
256                 ag_cons = rxcmp->opaque;
257                 RTE_ASSERT(ag_cons <= rxr->ag_ring_struct->ring_mask);
258                 ag_buf = &rxr->ag_buf_ring[ag_cons];
259                 ag_mbuf = *ag_buf;
260                 RTE_ASSERT(ag_mbuf != NULL);
261
262                 ag_mbuf->data_len = rte_le_to_cpu_16(rxcmp->len);
263
264                 mbuf->nb_segs++;
265                 mbuf->pkt_len += ag_mbuf->data_len;
266
267                 last->next = ag_mbuf;
268                 last = ag_mbuf;
269
270                 *ag_buf = NULL;
271
272                 /*
273                  * As aggregation buffer consumed out of order in TPA module,
274                  * use bitmap to track freed slots to be allocated and notified
275                  * to NIC
276                  */
277                 rte_bitmap_set(rxr->ag_bitmap, ag_cons);
278         }
279         bnxt_prod_ag_mbuf(rxq);
280         return 0;
281 }
282
283 static inline struct rte_mbuf *bnxt_tpa_end(
284                 struct bnxt_rx_queue *rxq,
285                 uint32_t *raw_cp_cons,
286                 struct rx_tpa_end_cmpl *tpa_end,
287                 struct rx_tpa_end_cmpl_hi *tpa_end1)
288 {
289         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
290         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
291         uint16_t agg_id;
292         struct rte_mbuf *mbuf;
293         uint8_t agg_bufs;
294         uint8_t payload_offset;
295         struct bnxt_tpa_info *tpa_info;
296
297         if (BNXT_CHIP_P5(rxq->bp)) {
298                 struct rx_tpa_v2_end_cmpl *th_tpa_end;
299                 struct rx_tpa_v2_end_cmpl_hi *th_tpa_end1;
300
301                 th_tpa_end = (void *)tpa_end;
302                 th_tpa_end1 = (void *)tpa_end1;
303                 agg_id = BNXT_TPA_END_AGG_ID_TH(th_tpa_end);
304                 agg_bufs = BNXT_TPA_END_AGG_BUFS_TH(th_tpa_end1);
305                 payload_offset = th_tpa_end1->payload_offset;
306         } else {
307                 agg_id = BNXT_TPA_END_AGG_ID(tpa_end);
308                 agg_bufs = BNXT_TPA_END_AGG_BUFS(tpa_end);
309                 if (!bnxt_agg_bufs_valid(cpr, agg_bufs, *raw_cp_cons))
310                         return NULL;
311                 payload_offset = tpa_end->payload_offset;
312         }
313
314         tpa_info = &rxr->tpa_info[agg_id];
315         mbuf = tpa_info->mbuf;
316         RTE_ASSERT(mbuf != NULL);
317
318         if (agg_bufs) {
319                 bnxt_rx_pages(rxq, mbuf, raw_cp_cons, agg_bufs, tpa_info);
320         }
321         mbuf->l4_len = payload_offset;
322
323         struct rte_mbuf *new_data = __bnxt_alloc_rx_data(rxq->mb_pool);
324         RTE_ASSERT(new_data != NULL);
325         if (!new_data) {
326                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
327                 return NULL;
328         }
329         tpa_info->mbuf = new_data;
330
331         return mbuf;
332 }
333
334 uint32_t bnxt_ptype_table[BNXT_PTYPE_TBL_DIM] __rte_cache_aligned;
335
336 static void __rte_cold
337 bnxt_init_ptype_table(void)
338 {
339         uint32_t *pt = bnxt_ptype_table;
340         static bool initialized;
341         int ip6, tun, type;
342         uint32_t l3;
343         int i;
344
345         if (initialized)
346                 return;
347
348         for (i = 0; i < BNXT_PTYPE_TBL_DIM; i++) {
349                 if (i & (RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN >> 2))
350                         pt[i] = RTE_PTYPE_L2_ETHER_VLAN;
351                 else
352                         pt[i] = RTE_PTYPE_L2_ETHER;
353
354                 ip6 = i & (RX_PKT_CMPL_FLAGS2_IP_TYPE >> 7);
355                 tun = i & (RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC >> 2);
356                 type = (i & 0x38) << 9;
357
358                 if (!tun && !ip6)
359                         l3 = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
360                 else if (!tun && ip6)
361                         l3 = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
362                 else if (tun && !ip6)
363                         l3 = RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
364                 else
365                         l3 = RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
366
367                 switch (type) {
368                 case RX_PKT_CMPL_FLAGS_ITYPE_ICMP:
369                         if (tun)
370                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_ICMP;
371                         else
372                                 pt[i] |= l3 | RTE_PTYPE_L4_ICMP;
373                         break;
374                 case RX_PKT_CMPL_FLAGS_ITYPE_TCP:
375                         if (tun)
376                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_TCP;
377                         else
378                                 pt[i] |= l3 | RTE_PTYPE_L4_TCP;
379                         break;
380                 case RX_PKT_CMPL_FLAGS_ITYPE_UDP:
381                         if (tun)
382                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_UDP;
383                         else
384                                 pt[i] |= l3 | RTE_PTYPE_L4_UDP;
385                         break;
386                 case RX_PKT_CMPL_FLAGS_ITYPE_IP:
387                         pt[i] |= l3;
388                         break;
389                 }
390         }
391         initialized = true;
392 }
393
394 static uint32_t
395 bnxt_parse_pkt_type(struct rx_pkt_cmpl *rxcmp, struct rx_pkt_cmpl_hi *rxcmp1)
396 {
397         uint32_t flags_type, flags2;
398         uint8_t index;
399
400         flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
401         flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
402
403         /*
404          * Index format:
405          *     bit 0: RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC
406          *     bit 1: RX_CMPL_FLAGS2_IP_TYPE
407          *     bit 2: RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN
408          *     bits 3-6: RX_PKT_CMPL_FLAGS_ITYPE
409          */
410         index = ((flags_type & RX_PKT_CMPL_FLAGS_ITYPE_MASK) >> 9) |
411                 ((flags2 & (RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN |
412                            RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC)) >> 2) |
413                 ((flags2 & RX_PKT_CMPL_FLAGS2_IP_TYPE) >> 7);
414
415         return bnxt_ptype_table[index];
416 }
417
418 uint32_t
419 bnxt_ol_flags_table[BNXT_OL_FLAGS_TBL_DIM] __rte_cache_aligned;
420
421 uint32_t
422 bnxt_ol_flags_err_table[BNXT_OL_FLAGS_ERR_TBL_DIM] __rte_cache_aligned;
423
424 static void __rte_cold
425 bnxt_init_ol_flags_tables(void)
426 {
427         static bool initialized;
428         uint32_t *pt;
429         int i;
430
431         if (initialized)
432                 return;
433
434         /* Initialize ol_flags table. */
435         pt = bnxt_ol_flags_table;
436         for (i = 0; i < BNXT_OL_FLAGS_TBL_DIM; i++) {
437                 pt[i] = 0;
438                 if (i & RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN)
439                         pt[i] |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
440
441                 if (i & RX_PKT_CMPL_FLAGS2_IP_CS_CALC)
442                         pt[i] |= PKT_RX_IP_CKSUM_GOOD;
443
444                 if (i & RX_PKT_CMPL_FLAGS2_L4_CS_CALC)
445                         pt[i] |= PKT_RX_L4_CKSUM_GOOD;
446
447                 if (i & RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC)
448                         pt[i] |= PKT_RX_OUTER_L4_CKSUM_GOOD;
449         }
450
451         /* Initialize checksum error table. */
452         pt = bnxt_ol_flags_err_table;
453         for (i = 0; i < BNXT_OL_FLAGS_ERR_TBL_DIM; i++) {
454                 pt[i] = 0;
455                 if (i & (RX_PKT_CMPL_ERRORS_IP_CS_ERROR >> 4))
456                         pt[i] |= PKT_RX_IP_CKSUM_BAD;
457
458                 if (i & (RX_PKT_CMPL_ERRORS_L4_CS_ERROR >> 4))
459                         pt[i] |= PKT_RX_L4_CKSUM_BAD;
460
461                 if (i & (RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR >> 4))
462                         pt[i] |= PKT_RX_EIP_CKSUM_BAD;
463
464                 if (i & (RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR >> 4))
465                         pt[i] |= PKT_RX_OUTER_L4_CKSUM_BAD;
466         }
467
468         initialized = true;
469 }
470
471 static void
472 bnxt_set_ol_flags(struct rx_pkt_cmpl *rxcmp, struct rx_pkt_cmpl_hi *rxcmp1,
473                   struct rte_mbuf *mbuf)
474 {
475         uint16_t flags_type, errors, flags;
476         uint64_t ol_flags;
477
478         flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
479
480         flags = rte_le_to_cpu_32(rxcmp1->flags2) &
481                                 (RX_PKT_CMPL_FLAGS2_IP_CS_CALC |
482                                  RX_PKT_CMPL_FLAGS2_L4_CS_CALC |
483                                  RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC |
484                                  RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC |
485                                  RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN);
486
487         errors = rte_le_to_cpu_16(rxcmp1->errors_v2) &
488                                 (RX_PKT_CMPL_ERRORS_IP_CS_ERROR |
489                                  RX_PKT_CMPL_ERRORS_L4_CS_ERROR |
490                                  RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR |
491                                  RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR);
492         errors = (errors >> 4) & flags;
493
494         ol_flags = bnxt_ol_flags_table[flags & ~errors];
495
496         if (errors)
497                 ol_flags |= bnxt_ol_flags_err_table[errors];
498
499         if (flags_type & RX_PKT_CMPL_FLAGS_RSS_VALID) {
500                 mbuf->hash.rss = rte_le_to_cpu_32(rxcmp->rss_hash);
501                 ol_flags |= PKT_RX_RSS_HASH;
502         }
503
504         mbuf->ol_flags = ol_flags;
505 }
506
507 #ifdef RTE_LIBRTE_IEEE1588
508 static void
509 bnxt_get_rx_ts_p5(struct bnxt *bp, uint32_t rx_ts_cmpl)
510 {
511         uint64_t systime_cycles = 0;
512
513         if (!BNXT_CHIP_P5(bp))
514                 return;
515
516         /* On Thor, Rx timestamps are provided directly in the
517          * Rx completion records to the driver. Only 32 bits of
518          * the timestamp is present in the completion. Driver needs
519          * to read the current 48 bit free running timer using the
520          * HWRM_PORT_TS_QUERY command and combine the upper 16 bits
521          * from the HWRM response with the lower 32 bits in the
522          * Rx completion to produce the 48 bit timestamp for the Rx packet
523          */
524         bnxt_hwrm_port_ts_query(bp, BNXT_PTP_FLAGS_CURRENT_TIME,
525                                 &systime_cycles);
526         bp->ptp_cfg->rx_timestamp = (systime_cycles & 0xFFFF00000000);
527         bp->ptp_cfg->rx_timestamp |= rx_ts_cmpl;
528 }
529 #endif
530
531 static uint32_t
532 bnxt_ulp_set_mark_in_mbuf(struct bnxt *bp, struct rx_pkt_cmpl_hi *rxcmp1,
533                           struct rte_mbuf *mbuf, uint32_t *vfr_flag)
534 {
535         uint32_t cfa_code;
536         uint32_t meta_fmt;
537         uint32_t meta;
538         bool gfid = false;
539         uint32_t mark_id;
540         uint32_t flags2;
541         uint32_t gfid_support = 0;
542         int rc;
543
544         if (BNXT_GFID_ENABLED(bp))
545                 gfid_support = 1;
546
547         cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
548         flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
549         meta = rte_le_to_cpu_32(rxcmp1->metadata);
550
551         /*
552          * The flags field holds extra bits of info from [6:4]
553          * which indicate if the flow is in TCAM or EM or EEM
554          */
555         meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
556                 BNXT_CFA_META_FMT_SHFT;
557
558         switch (meta_fmt) {
559         case 0:
560                 if (gfid_support) {
561                         /* Not an LFID or GFID, a flush cmd. */
562                         goto skip_mark;
563                 } else {
564                         /* LFID mode, no vlan scenario */
565                         gfid = false;
566                 }
567                 break;
568         case 4:
569         case 5:
570                 /*
571                  * EM/TCAM case
572                  * Assume that EM doesn't support Mark due to GFID
573                  * collisions with EEM.  Simply return without setting the mark
574                  * in the mbuf.
575                  */
576                 if (BNXT_CFA_META_EM_TEST(meta)) {
577                         /*This is EM hit {EM(1), GFID[27:16], 19'd0 or vtag } */
578                         gfid = true;
579                         meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
580                         cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
581                 } else {
582                         /*
583                          * It is a TCAM entry, so it is an LFID.
584                          * The TCAM IDX and Mode can also be determined
585                          * by decoding the meta_data. We are not
586                          * using these for now.
587                          */
588                 }
589                 break;
590         case 6:
591         case 7:
592                 /* EEM Case, only using gfid in EEM for now. */
593                 gfid = true;
594
595                 /*
596                  * For EEM flows, The first part of cfa_code is 16 bits.
597                  * The second part is embedded in the
598                  * metadata field from bit 19 onwards. The driver needs to
599                  * ignore the first 19 bits of metadata and use the next 12
600                  * bits as higher 12 bits of cfa_code.
601                  */
602                 meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
603                 cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
604                 break;
605         default:
606                 /* For other values, the cfa_code is assumed to be an LFID. */
607                 break;
608         }
609
610         rc = ulp_mark_db_mark_get(bp->ulp_ctx, gfid,
611                                   cfa_code, vfr_flag, &mark_id);
612         if (!rc) {
613                 /* VF to VFR Rx path. So, skip mark_id injection in mbuf */
614                 if (vfr_flag && *vfr_flag)
615                         return mark_id;
616                 /* Got the mark, write it to the mbuf and return */
617                 mbuf->hash.fdir.hi = mark_id;
618                 *bnxt_cfa_code_dynfield(mbuf) = cfa_code & 0xffffffffull;
619                 mbuf->hash.fdir.id = rxcmp1->cfa_code;
620                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
621                 return mark_id;
622         }
623
624 skip_mark:
625         mbuf->hash.fdir.hi = 0;
626         mbuf->hash.fdir.id = 0;
627
628         return 0;
629 }
630
631 void bnxt_set_mark_in_mbuf(struct bnxt *bp,
632                            struct rx_pkt_cmpl_hi *rxcmp1,
633                            struct rte_mbuf *mbuf)
634 {
635         uint32_t cfa_code = 0;
636         uint8_t meta_fmt = 0;
637         uint16_t flags2 = 0;
638         uint32_t meta =  0;
639
640         cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
641         if (!cfa_code)
642                 return;
643
644         if (cfa_code && !bp->mark_table[cfa_code].valid)
645                 return;
646
647         flags2 = rte_le_to_cpu_16(rxcmp1->flags2);
648         meta = rte_le_to_cpu_32(rxcmp1->metadata);
649         if (meta) {
650                 meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
651
652                 /* The flags field holds extra bits of info from [6:4]
653                  * which indicate if the flow is in TCAM or EM or EEM
654                  */
655                 meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
656                            BNXT_CFA_META_FMT_SHFT;
657
658                 /* meta_fmt == 4 => 'b100 => 'b10x => EM.
659                  * meta_fmt == 5 => 'b101 => 'b10x => EM + VLAN
660                  * meta_fmt == 6 => 'b110 => 'b11x => EEM
661                  * meta_fmt == 7 => 'b111 => 'b11x => EEM + VLAN.
662                  */
663                 meta_fmt >>= BNXT_CFA_META_FMT_EM_EEM_SHFT;
664         }
665
666         mbuf->hash.fdir.hi = bp->mark_table[cfa_code].mark_id;
667         mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
668 }
669
670 static int bnxt_rx_pkt(struct rte_mbuf **rx_pkt,
671                        struct bnxt_rx_queue *rxq, uint32_t *raw_cons)
672 {
673         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
674         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
675         struct rx_pkt_cmpl *rxcmp;
676         struct rx_pkt_cmpl_hi *rxcmp1;
677         uint32_t tmp_raw_cons = *raw_cons;
678         uint16_t cons, raw_prod, cp_cons =
679             RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
680         struct rte_mbuf *mbuf;
681         int rc = 0;
682         uint8_t agg_buf = 0;
683         uint16_t cmp_type;
684         uint32_t vfr_flag = 0, mark_id = 0;
685         struct bnxt *bp = rxq->bp;
686
687         rxcmp = (struct rx_pkt_cmpl *)
688             &cpr->cp_desc_ring[cp_cons];
689
690         cmp_type = CMP_TYPE(rxcmp);
691
692         if (cmp_type == RX_TPA_V2_ABUF_CMPL_TYPE_RX_TPA_AGG) {
693                 struct rx_tpa_v2_abuf_cmpl *rx_agg = (void *)rxcmp;
694                 uint16_t agg_id = rte_cpu_to_le_16(rx_agg->agg_id);
695                 struct bnxt_tpa_info *tpa_info;
696
697                 tpa_info = &rxr->tpa_info[agg_id];
698                 RTE_ASSERT(tpa_info->agg_count < 16);
699                 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
700                 rc = -EINVAL; /* Continue w/o new mbuf */
701                 goto next_rx;
702         }
703
704         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
705         cp_cons = RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
706         rxcmp1 = (struct rx_pkt_cmpl_hi *)&cpr->cp_desc_ring[cp_cons];
707
708         if (!CMP_VALID(rxcmp1, tmp_raw_cons, cpr->cp_ring_struct))
709                 return -EBUSY;
710
711         cpr->valid = FLIP_VALID(cp_cons,
712                                 cpr->cp_ring_struct->ring_mask,
713                                 cpr->valid);
714
715         if (cmp_type == RX_TPA_START_CMPL_TYPE_RX_TPA_START) {
716                 bnxt_tpa_start(rxq, (struct rx_tpa_start_cmpl *)rxcmp,
717                                (struct rx_tpa_start_cmpl_hi *)rxcmp1);
718                 rc = -EINVAL; /* Continue w/o new mbuf */
719                 goto next_rx;
720         } else if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
721                 mbuf = bnxt_tpa_end(rxq, &tmp_raw_cons,
722                                    (struct rx_tpa_end_cmpl *)rxcmp,
723                                    (struct rx_tpa_end_cmpl_hi *)rxcmp1);
724                 if (unlikely(!mbuf))
725                         return -EBUSY;
726                 *rx_pkt = mbuf;
727                 goto next_rx;
728         } else if (cmp_type != 0x11) {
729                 rc = -EINVAL;
730                 goto next_rx;
731         }
732
733         agg_buf = (rxcmp->agg_bufs_v1 & RX_PKT_CMPL_AGG_BUFS_MASK)
734                         >> RX_PKT_CMPL_AGG_BUFS_SFT;
735         if (agg_buf && !bnxt_agg_bufs_valid(cpr, agg_buf, tmp_raw_cons))
736                 return -EBUSY;
737
738         raw_prod = rxr->rx_raw_prod;
739
740         cons = rxcmp->opaque;
741         mbuf = bnxt_consume_rx_buf(rxr, cons);
742         if (mbuf == NULL)
743                 return -EBUSY;
744
745         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
746         mbuf->nb_segs = 1;
747         mbuf->next = NULL;
748         mbuf->pkt_len = rxcmp->len;
749         mbuf->data_len = mbuf->pkt_len;
750         mbuf->port = rxq->port_id;
751
752         bnxt_set_ol_flags(rxcmp, rxcmp1, mbuf);
753
754 #ifdef RTE_LIBRTE_IEEE1588
755         if (unlikely((rte_le_to_cpu_16(rxcmp->flags_type) &
756                       RX_PKT_CMPL_FLAGS_MASK) ==
757                       RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP)) {
758                 mbuf->ol_flags |= PKT_RX_IEEE1588_PTP | PKT_RX_IEEE1588_TMST;
759                 bnxt_get_rx_ts_p5(rxq->bp, rxcmp1->reorder);
760         }
761 #endif
762
763         if (BNXT_TRUFLOW_EN(bp))
764                 mark_id = bnxt_ulp_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf,
765                                                     &vfr_flag);
766         else
767                 bnxt_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf);
768
769         if (agg_buf)
770                 bnxt_rx_pages(rxq, mbuf, &tmp_raw_cons, agg_buf, NULL);
771
772         mbuf->packet_type = bnxt_parse_pkt_type(rxcmp, rxcmp1);
773
774 #ifdef BNXT_DEBUG
775         if (rxcmp1->errors_v2 & RX_CMP_L2_ERRORS) {
776                 /* Re-install the mbuf back to the rx ring */
777                 bnxt_reuse_rx_mbuf(rxr, cons, mbuf);
778
779                 rc = -EIO;
780                 goto next_rx;
781         }
782 #endif
783         /*
784          * TODO: Redesign this....
785          * If the allocation fails, the packet does not get received.
786          * Simply returning this will result in slowly falling behind
787          * on the producer ring buffers.
788          * Instead, "filling up" the producer just before ringing the
789          * doorbell could be a better solution since it will let the
790          * producer ring starve until memory is available again pushing
791          * the drops into hardware and getting them out of the driver
792          * allowing recovery to a full producer ring.
793          *
794          * This could also help with cache usage by preventing per-packet
795          * calls in favour of a tight loop with the same function being called
796          * in it.
797          */
798         raw_prod = RING_NEXT(raw_prod);
799         if (bnxt_alloc_rx_data(rxq, rxr, raw_prod)) {
800                 PMD_DRV_LOG(ERR, "mbuf alloc failed with prod=0x%x\n",
801                             raw_prod);
802                 rc = -ENOMEM;
803                 goto rx;
804         }
805         rxr->rx_raw_prod = raw_prod;
806
807         if (BNXT_TRUFLOW_EN(bp) && (BNXT_VF_IS_TRUSTED(bp) || BNXT_PF(bp)) &&
808             vfr_flag) {
809                 bnxt_vfr_recv(mark_id, rxq->queue_id, mbuf);
810                 /* Now return an error so that nb_rx_pkts is not
811                  * incremented.
812                  * This packet was meant to be given to the representor.
813                  * So no need to account the packet and give it to
814                  * parent Rx burst function.
815                  */
816                 rc = -ENODEV;
817                 goto next_rx;
818         }
819         /*
820          * All MBUFs are allocated with the same size under DPDK,
821          * no optimization for rx_copy_thresh
822          */
823 rx:
824         *rx_pkt = mbuf;
825
826 next_rx:
827
828         *raw_cons = tmp_raw_cons;
829
830         return rc;
831 }
832
833 uint16_t bnxt_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
834                                uint16_t nb_pkts)
835 {
836         struct bnxt_rx_queue *rxq = rx_queue;
837         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
838         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
839         uint16_t rx_raw_prod = rxr->rx_raw_prod;
840         uint16_t ag_raw_prod = rxr->ag_raw_prod;
841         uint32_t raw_cons = cpr->cp_raw_cons;
842         bool alloc_failed = false;
843         uint32_t cons;
844         int nb_rx_pkts = 0;
845         int nb_rep_rx_pkts = 0;
846         struct rx_pkt_cmpl *rxcmp;
847         int rc = 0;
848         bool evt = false;
849
850         if (unlikely(is_bnxt_in_error(rxq->bp)))
851                 return 0;
852
853         /* If Rx Q was stopped return */
854         if (unlikely(!rxq->rx_started))
855                 return 0;
856
857 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
858         /*
859          * Replenish buffers if needed when a transition has been made from
860          * vector- to non-vector- receive processing.
861          */
862         while (unlikely(rxq->rxrearm_nb)) {
863                 if (!bnxt_alloc_rx_data(rxq, rxr, rxq->rxrearm_start)) {
864                         rxr->rx_raw_prod = rxq->rxrearm_start;
865                         bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
866                         rxq->rxrearm_start++;
867                         rxq->rxrearm_nb--;
868                 } else {
869                         /* Retry allocation on next call. */
870                         break;
871                 }
872         }
873 #endif
874
875         /* Handle RX burst request */
876         while (1) {
877                 cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
878                 rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
879
880                 if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct))
881                         break;
882                 cpr->valid = FLIP_VALID(cons,
883                                         cpr->cp_ring_struct->ring_mask,
884                                         cpr->valid);
885
886                 /* TODO: Avoid magic numbers... */
887                 if ((CMP_TYPE(rxcmp) & 0x30) == 0x10) {
888                         rc = bnxt_rx_pkt(&rx_pkts[nb_rx_pkts], rxq, &raw_cons);
889                         if (!rc)
890                                 nb_rx_pkts++;
891                         else if (rc == -EBUSY)  /* partial completion */
892                                 break;
893                         else if (rc == -ENODEV) /* completion for representor */
894                                 nb_rep_rx_pkts++;
895                         else if (rc == -ENOMEM) {
896                                 nb_rx_pkts++;
897                                 alloc_failed = true;
898                         }
899                 } else if (!BNXT_NUM_ASYNC_CPR(rxq->bp)) {
900                         evt =
901                         bnxt_event_hwrm_resp_handler(rxq->bp,
902                                                      (struct cmpl_base *)rxcmp);
903                         /* If the async event is Fatal error, return */
904                         if (unlikely(is_bnxt_in_error(rxq->bp)))
905                                 goto done;
906                 }
907
908                 raw_cons = NEXT_RAW_CMP(raw_cons);
909                 if (nb_rx_pkts == nb_pkts || nb_rep_rx_pkts == nb_pkts || evt)
910                         break;
911                 /* Post some Rx buf early in case of larger burst processing */
912                 if (nb_rx_pkts == BNXT_RX_POST_THRESH)
913                         bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
914         }
915
916         cpr->cp_raw_cons = raw_cons;
917         if (!nb_rx_pkts && !nb_rep_rx_pkts && !evt) {
918                 /*
919                  * For PMD, there is no need to keep on pushing to REARM
920                  * the doorbell if there are no new completions
921                  */
922                 goto done;
923         }
924
925         /* Ring the completion queue doorbell. */
926         bnxt_db_cq(cpr);
927
928         /* Ring the receive descriptor doorbell. */
929         if (rx_raw_prod != rxr->rx_raw_prod)
930                 bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
931
932         /* Ring the AGG ring DB */
933         if (ag_raw_prod != rxr->ag_raw_prod)
934                 bnxt_db_write(&rxr->ag_db, rxr->ag_raw_prod);
935
936         /* Attempt to alloc Rx buf in case of a previous allocation failure. */
937         if (alloc_failed) {
938                 uint16_t cnt;
939
940                 rx_raw_prod = RING_NEXT(rx_raw_prod);
941                 for (cnt = 0; cnt < nb_rx_pkts + nb_rep_rx_pkts; cnt++) {
942                         struct rte_mbuf **rx_buf;
943                         uint16_t ndx;
944
945                         ndx = RING_IDX(rxr->rx_ring_struct, rx_raw_prod + cnt);
946                         rx_buf = &rxr->rx_buf_ring[ndx];
947
948                         /* Buffer already allocated for this index. */
949                         if (*rx_buf != NULL && *rx_buf != &rxq->fake_mbuf)
950                                 continue;
951
952                         /* This slot is empty. Alloc buffer for Rx */
953                         if (!bnxt_alloc_rx_data(rxq, rxr, rx_raw_prod + cnt)) {
954                                 rxr->rx_raw_prod = rx_raw_prod + cnt;
955                                 bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
956                         } else {
957                                 PMD_DRV_LOG(ERR, "Alloc  mbuf failed\n");
958                                 break;
959                         }
960                 }
961         }
962
963 done:
964         return nb_rx_pkts;
965 }
966
967 /*
968  * Dummy DPDK callback for RX.
969  *
970  * This function is used to temporarily replace the real callback during
971  * unsafe control operations on the queue, or in case of error.
972  */
973 uint16_t
974 bnxt_dummy_recv_pkts(void *rx_queue __rte_unused,
975                      struct rte_mbuf **rx_pkts __rte_unused,
976                      uint16_t nb_pkts __rte_unused)
977 {
978         return 0;
979 }
980
981 void bnxt_free_rx_rings(struct bnxt *bp)
982 {
983         int i;
984         struct bnxt_rx_queue *rxq;
985
986         if (!bp->rx_queues)
987                 return;
988
989         for (i = 0; i < (int)bp->rx_nr_rings; i++) {
990                 rxq = bp->rx_queues[i];
991                 if (!rxq)
992                         continue;
993
994                 bnxt_free_ring(rxq->rx_ring->rx_ring_struct);
995                 rte_free(rxq->rx_ring->rx_ring_struct);
996
997                 /* Free the Aggregator ring */
998                 bnxt_free_ring(rxq->rx_ring->ag_ring_struct);
999                 rte_free(rxq->rx_ring->ag_ring_struct);
1000                 rxq->rx_ring->ag_ring_struct = NULL;
1001
1002                 rte_free(rxq->rx_ring);
1003
1004                 bnxt_free_ring(rxq->cp_ring->cp_ring_struct);
1005                 rte_free(rxq->cp_ring->cp_ring_struct);
1006                 rte_free(rxq->cp_ring);
1007
1008                 rte_free(rxq);
1009                 bp->rx_queues[i] = NULL;
1010         }
1011 }
1012
1013 int bnxt_init_rx_ring_struct(struct bnxt_rx_queue *rxq, unsigned int socket_id)
1014 {
1015         struct rte_eth_dev *eth_dev = rxq->bp->eth_dev;
1016         struct rte_eth_rxmode *rxmode;
1017         struct bnxt_cp_ring_info *cpr;
1018         struct bnxt_rx_ring_info *rxr;
1019         struct bnxt_ring *ring;
1020         bool use_agg_ring;
1021
1022         rxq->rx_buf_size = BNXT_MAX_PKT_LEN + sizeof(struct rte_mbuf);
1023
1024         rxr = rte_zmalloc_socket("bnxt_rx_ring",
1025                                  sizeof(struct bnxt_rx_ring_info),
1026                                  RTE_CACHE_LINE_SIZE, socket_id);
1027         if (rxr == NULL)
1028                 return -ENOMEM;
1029         rxq->rx_ring = rxr;
1030
1031         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1032                                    sizeof(struct bnxt_ring),
1033                                    RTE_CACHE_LINE_SIZE, socket_id);
1034         if (ring == NULL)
1035                 return -ENOMEM;
1036         rxr->rx_ring_struct = ring;
1037         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc);
1038         ring->ring_mask = ring->ring_size - 1;
1039         ring->bd = (void *)rxr->rx_desc_ring;
1040         ring->bd_dma = rxr->rx_desc_mapping;
1041
1042         /* Allocate extra rx ring entries for vector rx. */
1043         ring->vmem_size = sizeof(struct rte_mbuf *) *
1044                                 (ring->ring_size + RTE_BNXT_DESCS_PER_LOOP);
1045
1046         ring->vmem = (void **)&rxr->rx_buf_ring;
1047         ring->fw_ring_id = INVALID_HW_RING_ID;
1048
1049         cpr = rte_zmalloc_socket("bnxt_rx_ring",
1050                                  sizeof(struct bnxt_cp_ring_info),
1051                                  RTE_CACHE_LINE_SIZE, socket_id);
1052         if (cpr == NULL)
1053                 return -ENOMEM;
1054         rxq->cp_ring = cpr;
1055
1056         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1057                                    sizeof(struct bnxt_ring),
1058                                    RTE_CACHE_LINE_SIZE, socket_id);
1059         if (ring == NULL)
1060                 return -ENOMEM;
1061         cpr->cp_ring_struct = ring;
1062
1063         rxmode = &eth_dev->data->dev_conf.rxmode;
1064         use_agg_ring = (rxmode->offloads & DEV_RX_OFFLOAD_SCATTER) ||
1065                        (rxmode->offloads & DEV_RX_OFFLOAD_TCP_LRO) ||
1066                        (rxmode->max_rx_pkt_len >
1067                          (uint32_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
1068                                     RTE_PKTMBUF_HEADROOM));
1069
1070         /* Allocate two completion slots per entry in desc ring. */
1071         ring->ring_size = rxr->rx_ring_struct->ring_size * 2;
1072
1073         /* Allocate additional slots if aggregation ring is in use. */
1074         if (use_agg_ring)
1075                 ring->ring_size *= AGG_RING_SIZE_FACTOR;
1076
1077         ring->ring_size = rte_align32pow2(ring->ring_size);
1078         ring->ring_mask = ring->ring_size - 1;
1079         ring->bd = (void *)cpr->cp_desc_ring;
1080         ring->bd_dma = cpr->cp_desc_mapping;
1081         ring->vmem_size = 0;
1082         ring->vmem = NULL;
1083         ring->fw_ring_id = INVALID_HW_RING_ID;
1084
1085         /* Allocate Aggregator rings */
1086         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1087                                    sizeof(struct bnxt_ring),
1088                                    RTE_CACHE_LINE_SIZE, socket_id);
1089         if (ring == NULL)
1090                 return -ENOMEM;
1091         rxr->ag_ring_struct = ring;
1092         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc *
1093                                           AGG_RING_SIZE_FACTOR);
1094         ring->ring_mask = ring->ring_size - 1;
1095         ring->bd = (void *)rxr->ag_desc_ring;
1096         ring->bd_dma = rxr->ag_desc_mapping;
1097         ring->vmem_size = ring->ring_size * sizeof(struct rte_mbuf *);
1098         ring->vmem = (void **)&rxr->ag_buf_ring;
1099         ring->fw_ring_id = INVALID_HW_RING_ID;
1100
1101         return 0;
1102 }
1103
1104 static void bnxt_init_rxbds(struct bnxt_ring *ring, uint32_t type,
1105                             uint16_t len)
1106 {
1107         uint32_t j;
1108         struct rx_prod_pkt_bd *rx_bd_ring = (struct rx_prod_pkt_bd *)ring->bd;
1109
1110         if (!rx_bd_ring)
1111                 return;
1112         for (j = 0; j < ring->ring_size; j++) {
1113                 rx_bd_ring[j].flags_type = rte_cpu_to_le_16(type);
1114                 rx_bd_ring[j].len = rte_cpu_to_le_16(len);
1115                 rx_bd_ring[j].opaque = j;
1116         }
1117 }
1118
1119 int bnxt_init_one_rx_ring(struct bnxt_rx_queue *rxq)
1120 {
1121         struct bnxt_rx_ring_info *rxr;
1122         struct bnxt_ring *ring;
1123         uint32_t raw_prod, type;
1124         unsigned int i;
1125         uint16_t size;
1126
1127         /* Initialize packet type table. */
1128         bnxt_init_ptype_table();
1129
1130         /* Initialize offload flags parsing table. */
1131         bnxt_init_ol_flags_tables();
1132
1133         size = rte_pktmbuf_data_room_size(rxq->mb_pool) - RTE_PKTMBUF_HEADROOM;
1134         size = RTE_MIN(BNXT_MAX_PKT_LEN, size);
1135
1136         type = RX_PROD_PKT_BD_TYPE_RX_PROD_PKT;
1137
1138         rxr = rxq->rx_ring;
1139         ring = rxr->rx_ring_struct;
1140         bnxt_init_rxbds(ring, type, size);
1141
1142         raw_prod = rxr->rx_raw_prod;
1143         for (i = 0; i < ring->ring_size; i++) {
1144                 if (unlikely(!rxr->rx_buf_ring[i])) {
1145                         if (bnxt_alloc_rx_data(rxq, rxr, raw_prod) != 0) {
1146                                 PMD_DRV_LOG(WARNING,
1147                                             "init'ed rx ring %d with %d/%d mbufs only\n",
1148                                             rxq->queue_id, i, ring->ring_size);
1149                                 break;
1150                         }
1151                 }
1152                 rxr->rx_raw_prod = raw_prod;
1153                 raw_prod = RING_NEXT(raw_prod);
1154         }
1155
1156         /* Initialize dummy mbuf pointers for vector mode rx. */
1157         for (i = ring->ring_size;
1158              i < ring->ring_size + RTE_BNXT_DESCS_PER_LOOP; i++) {
1159                 rxr->rx_buf_ring[i] = &rxq->fake_mbuf;
1160         }
1161
1162         ring = rxr->ag_ring_struct;
1163         type = RX_PROD_AGG_BD_TYPE_RX_PROD_AGG;
1164         bnxt_init_rxbds(ring, type, size);
1165         raw_prod = rxr->ag_raw_prod;
1166
1167         for (i = 0; i < ring->ring_size; i++) {
1168                 if (unlikely(!rxr->ag_buf_ring[i])) {
1169                         if (bnxt_alloc_ag_data(rxq, rxr, raw_prod) != 0) {
1170                                 PMD_DRV_LOG(WARNING,
1171                                             "init'ed AG ring %d with %d/%d mbufs only\n",
1172                                             rxq->queue_id, i, ring->ring_size);
1173                                 break;
1174                         }
1175                 }
1176                 rxr->ag_raw_prod = raw_prod;
1177                 raw_prod = RING_NEXT(raw_prod);
1178         }
1179         PMD_DRV_LOG(DEBUG, "AGG Done!\n");
1180
1181         if (rxr->tpa_info) {
1182                 unsigned int max_aggs = BNXT_TPA_MAX_AGGS(rxq->bp);
1183
1184                 for (i = 0; i < max_aggs; i++) {
1185                         if (unlikely(!rxr->tpa_info[i].mbuf)) {
1186                                 rxr->tpa_info[i].mbuf =
1187                                         __bnxt_alloc_rx_data(rxq->mb_pool);
1188                                 if (!rxr->tpa_info[i].mbuf) {
1189                                         rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
1190                                         return -ENOMEM;
1191                                 }
1192                         }
1193                 }
1194         }
1195         PMD_DRV_LOG(DEBUG, "TPA alloc Done!\n");
1196
1197         return 0;
1198 }