net/bnxt: remove dead code
[dpdk.git] / drivers / net / bnxt / bnxt_rxr.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2021 Broadcom
3  * All rights reserved.
4  */
5
6 #include <inttypes.h>
7 #include <stdbool.h>
8
9 #include <rte_bitmap.h>
10 #include <rte_byteorder.h>
11 #include <rte_malloc.h>
12 #include <rte_memory.h>
13 #include <rte_alarm.h>
14
15 #include "bnxt.h"
16 #include "bnxt_reps.h"
17 #include "bnxt_ring.h"
18 #include "bnxt_rxr.h"
19 #include "bnxt_rxq.h"
20 #include "hsi_struct_def_dpdk.h"
21 #include "bnxt_hwrm.h"
22
23 #include <bnxt_tf_common.h>
24 #include <ulp_mark_mgr.h>
25
26 /*
27  * RX Ring handling
28  */
29
30 static inline struct rte_mbuf *__bnxt_alloc_rx_data(struct rte_mempool *mb)
31 {
32         struct rte_mbuf *data;
33
34         data = rte_mbuf_raw_alloc(mb);
35
36         return data;
37 }
38
39 static inline int bnxt_alloc_rx_data(struct bnxt_rx_queue *rxq,
40                                      struct bnxt_rx_ring_info *rxr,
41                                      uint16_t raw_prod)
42 {
43         uint16_t prod = RING_IDX(rxr->rx_ring_struct, raw_prod);
44         struct rx_prod_pkt_bd *rxbd;
45         struct rte_mbuf **rx_buf;
46         struct rte_mbuf *mbuf;
47
48         rxbd = &rxr->rx_desc_ring[prod];
49         rx_buf = &rxr->rx_buf_ring[prod];
50         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
51         if (!mbuf) {
52                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
53                 return -ENOMEM;
54         }
55
56         *rx_buf = mbuf;
57         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
58
59         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
60
61         return 0;
62 }
63
64 static inline int bnxt_alloc_ag_data(struct bnxt_rx_queue *rxq,
65                                      struct bnxt_rx_ring_info *rxr,
66                                      uint16_t raw_prod)
67 {
68         uint16_t prod = RING_IDX(rxr->ag_ring_struct, raw_prod);
69         struct rx_prod_pkt_bd *rxbd;
70         struct rte_mbuf **rx_buf;
71         struct rte_mbuf *mbuf;
72
73         rxbd = &rxr->ag_desc_ring[prod];
74         rx_buf = &rxr->ag_buf_ring[prod];
75         if (rxbd == NULL) {
76                 PMD_DRV_LOG(ERR, "Jumbo Frame. rxbd is NULL\n");
77                 return -EINVAL;
78         }
79
80         if (rx_buf == NULL) {
81                 PMD_DRV_LOG(ERR, "Jumbo Frame. rx_buf is NULL\n");
82                 return -EINVAL;
83         }
84
85         mbuf = __bnxt_alloc_rx_data(rxq->mb_pool);
86         if (!mbuf) {
87                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
88                 return -ENOMEM;
89         }
90
91         *rx_buf = mbuf;
92         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
93
94         rxbd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
95
96         return 0;
97 }
98
99 static inline void bnxt_reuse_rx_mbuf(struct bnxt_rx_ring_info *rxr,
100                                struct rte_mbuf *mbuf)
101 {
102         uint16_t prod, raw_prod = RING_NEXT(rxr->rx_raw_prod);
103         struct rte_mbuf **prod_rx_buf;
104         struct rx_prod_pkt_bd *prod_bd;
105
106         prod = RING_IDX(rxr->rx_ring_struct, raw_prod);
107         prod_rx_buf = &rxr->rx_buf_ring[prod];
108
109         RTE_ASSERT(*prod_rx_buf == NULL);
110         RTE_ASSERT(mbuf != NULL);
111
112         *prod_rx_buf = mbuf;
113
114         prod_bd = &rxr->rx_desc_ring[prod];
115
116         prod_bd->address = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
117
118         rxr->rx_raw_prod = raw_prod;
119 }
120
121 static inline
122 struct rte_mbuf *bnxt_consume_rx_buf(struct bnxt_rx_ring_info *rxr,
123                                      uint16_t cons)
124 {
125         struct rte_mbuf **cons_rx_buf;
126         struct rte_mbuf *mbuf;
127
128         cons_rx_buf = &rxr->rx_buf_ring[RING_IDX(rxr->rx_ring_struct, cons)];
129         RTE_ASSERT(*cons_rx_buf != NULL);
130         mbuf = *cons_rx_buf;
131         *cons_rx_buf = NULL;
132
133         return mbuf;
134 }
135
136 static void bnxt_rx_ring_reset(void *arg)
137 {
138         struct bnxt *bp = arg;
139         int i, rc = 0;
140         struct bnxt_rx_queue *rxq;
141
142
143         for (i = 0; i < (int)bp->rx_nr_rings; i++) {
144                 struct bnxt_rx_ring_info *rxr;
145
146                 rxq = bp->rx_queues[i];
147                 if (!rxq || !rxq->in_reset)
148                         continue;
149
150                 rxr = rxq->rx_ring;
151                 /* Disable and flush TPA before resetting the RX ring */
152                 if (rxr->tpa_info)
153                         bnxt_hwrm_vnic_tpa_cfg(bp, rxq->vnic, false);
154                 rc = bnxt_hwrm_rx_ring_reset(bp, i);
155                 if (rc) {
156                         PMD_DRV_LOG(ERR, "Rx ring%d reset failed\n", i);
157                         continue;
158                 }
159
160                 bnxt_rx_queue_release_mbufs(rxq);
161                 rxr->rx_raw_prod = 0;
162                 rxr->ag_raw_prod = 0;
163                 rxr->rx_next_cons = 0;
164                 bnxt_init_one_rx_ring(rxq);
165                 bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
166                 bnxt_db_write(&rxr->ag_db, rxr->ag_raw_prod);
167                 if (rxr->tpa_info)
168                         bnxt_hwrm_vnic_tpa_cfg(bp, rxq->vnic, true);
169
170                 rxq->in_reset = 0;
171         }
172 }
173
174
175 static void bnxt_sched_ring_reset(struct bnxt_rx_queue *rxq)
176 {
177         rxq->in_reset = 1;
178         rte_eal_alarm_set(1, bnxt_rx_ring_reset, (void *)rxq->bp);
179 }
180
181 static void bnxt_tpa_get_metadata(struct bnxt *bp,
182                                   struct bnxt_tpa_info *tpa_info,
183                                   struct rx_tpa_start_cmpl *tpa_start,
184                                   struct rx_tpa_start_cmpl_hi *tpa_start1)
185 {
186         tpa_info->cfa_code_valid = 0;
187         tpa_info->vlan_valid = 0;
188         tpa_info->hash_valid = 0;
189         tpa_info->l4_csum_valid = 0;
190
191         if (likely(tpa_start->flags_type &
192                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS_RSS_VALID))) {
193                 tpa_info->hash_valid = 1;
194                 tpa_info->rss_hash = rte_le_to_cpu_32(tpa_start->rss_hash);
195         }
196
197         if (bp->vnic_cap_flags & BNXT_VNIC_CAP_RX_CMPL_V2) {
198                 struct rx_tpa_start_v2_cmpl *v2_tpa_start = (void *)tpa_start;
199                 struct rx_tpa_start_v2_cmpl_hi *v2_tpa_start1 =
200                         (void *)tpa_start1;
201
202                 if (v2_tpa_start->agg_id &
203                     RX_TPA_START_V2_CMPL_METADATA1_VALID) {
204                         tpa_info->vlan_valid = 1;
205                         tpa_info->vlan =
206                                 rte_le_to_cpu_16(v2_tpa_start1->metadata0);
207                 }
208
209                 if (v2_tpa_start1->flags2 & RX_CMP_FLAGS2_L4_CSUM_ALL_OK_MASK)
210                         tpa_info->l4_csum_valid = 1;
211
212                 return;
213         }
214
215         tpa_info->cfa_code_valid = 1;
216         tpa_info->cfa_code = rte_le_to_cpu_16(tpa_start1->cfa_code);
217         if (tpa_start1->flags2 &
218             rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_META_FORMAT_VLAN)) {
219                 tpa_info->vlan_valid = 1;
220                 tpa_info->vlan = rte_le_to_cpu_32(tpa_start1->metadata);
221         }
222
223         if (likely(tpa_start1->flags2 &
224                    rte_cpu_to_le_32(RX_TPA_START_CMPL_FLAGS2_L4_CS_CALC)))
225                 tpa_info->l4_csum_valid = 1;
226 }
227
228 static void bnxt_tpa_start(struct bnxt_rx_queue *rxq,
229                            struct rx_tpa_start_cmpl *tpa_start,
230                            struct rx_tpa_start_cmpl_hi *tpa_start1)
231 {
232         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
233         uint16_t agg_id;
234         uint16_t data_cons;
235         struct bnxt_tpa_info *tpa_info;
236         struct rte_mbuf *mbuf;
237
238         agg_id = bnxt_tpa_start_agg_id(rxq->bp, tpa_start);
239
240         data_cons = tpa_start->opaque;
241         tpa_info = &rxr->tpa_info[agg_id];
242         if (unlikely(data_cons != rxr->rx_next_cons)) {
243                 PMD_DRV_LOG(ERR, "TPA cons %x, expected cons %x\n",
244                             data_cons, rxr->rx_next_cons);
245                 bnxt_sched_ring_reset(rxq);
246                 return;
247         }
248
249         mbuf = bnxt_consume_rx_buf(rxr, data_cons);
250
251         bnxt_reuse_rx_mbuf(rxr, tpa_info->mbuf);
252
253         tpa_info->agg_count = 0;
254         tpa_info->mbuf = mbuf;
255         tpa_info->len = rte_le_to_cpu_32(tpa_start->len);
256
257         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
258         mbuf->nb_segs = 1;
259         mbuf->next = NULL;
260         mbuf->pkt_len = rte_le_to_cpu_32(tpa_start->len);
261         mbuf->data_len = mbuf->pkt_len;
262         mbuf->port = rxq->port_id;
263         mbuf->ol_flags = PKT_RX_LRO;
264
265         bnxt_tpa_get_metadata(rxq->bp, tpa_info, tpa_start, tpa_start1);
266
267         if (likely(tpa_info->hash_valid)) {
268                 mbuf->hash.rss = tpa_info->rss_hash;
269                 mbuf->ol_flags |= PKT_RX_RSS_HASH;
270         } else if (tpa_info->cfa_code_valid) {
271                 mbuf->hash.fdir.id = tpa_info->cfa_code;
272                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
273         }
274
275         if (tpa_info->vlan_valid) {
276                 mbuf->vlan_tci = tpa_info->vlan;
277                 mbuf->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
278         }
279
280         if (likely(tpa_info->l4_csum_valid))
281                 mbuf->ol_flags |= PKT_RX_L4_CKSUM_GOOD;
282
283         /* recycle next mbuf */
284         data_cons = RING_NEXT(data_cons);
285         bnxt_reuse_rx_mbuf(rxr, bnxt_consume_rx_buf(rxr, data_cons));
286
287         rxr->rx_next_cons = RING_IDX(rxr->rx_ring_struct,
288                                      RING_NEXT(data_cons));
289 }
290
291 static int bnxt_agg_bufs_valid(struct bnxt_cp_ring_info *cpr,
292                 uint8_t agg_bufs, uint32_t raw_cp_cons)
293 {
294         uint16_t last_cp_cons;
295         struct rx_pkt_cmpl *agg_cmpl;
296
297         raw_cp_cons = ADV_RAW_CMP(raw_cp_cons, agg_bufs);
298         last_cp_cons = RING_CMP(cpr->cp_ring_struct, raw_cp_cons);
299         agg_cmpl = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[last_cp_cons];
300         return CMP_VALID(agg_cmpl, raw_cp_cons, cpr->cp_ring_struct);
301 }
302
303 /* TPA consume agg buffer out of order, allocate connected data only */
304 static int bnxt_prod_ag_mbuf(struct bnxt_rx_queue *rxq)
305 {
306         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
307         uint16_t raw_next = RING_NEXT(rxr->ag_raw_prod);
308         uint16_t bmap_next = RING_IDX(rxr->ag_ring_struct, raw_next);
309
310         /* TODO batch allocation for better performance */
311         while (rte_bitmap_get(rxr->ag_bitmap, bmap_next)) {
312                 if (unlikely(bnxt_alloc_ag_data(rxq, rxr, raw_next))) {
313                         PMD_DRV_LOG(ERR, "agg mbuf alloc failed: prod=0x%x\n",
314                                     raw_next);
315                         break;
316                 }
317                 rte_bitmap_clear(rxr->ag_bitmap, bmap_next);
318                 rxr->ag_raw_prod = raw_next;
319                 raw_next = RING_NEXT(raw_next);
320                 bmap_next = RING_IDX(rxr->ag_ring_struct, raw_next);
321         }
322
323         return 0;
324 }
325
326 static int bnxt_rx_pages(struct bnxt_rx_queue *rxq,
327                          struct rte_mbuf *mbuf, uint32_t *tmp_raw_cons,
328                          uint8_t agg_buf, struct bnxt_tpa_info *tpa_info)
329 {
330         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
331         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
332         int i;
333         uint16_t cp_cons, ag_cons;
334         struct rx_pkt_cmpl *rxcmp;
335         struct rte_mbuf *last = mbuf;
336         bool is_p5_tpa = tpa_info && BNXT_CHIP_P5(rxq->bp);
337
338         for (i = 0; i < agg_buf; i++) {
339                 struct rte_mbuf **ag_buf;
340                 struct rte_mbuf *ag_mbuf;
341
342                 if (is_p5_tpa) {
343                         rxcmp = (void *)&tpa_info->agg_arr[i];
344                 } else {
345                         *tmp_raw_cons = NEXT_RAW_CMP(*tmp_raw_cons);
346                         cp_cons = RING_CMP(cpr->cp_ring_struct, *tmp_raw_cons);
347                         rxcmp = (struct rx_pkt_cmpl *)
348                                         &cpr->cp_desc_ring[cp_cons];
349                 }
350
351 #ifdef BNXT_DEBUG
352                 bnxt_dump_cmpl(cp_cons, rxcmp);
353 #endif
354
355                 ag_cons = rxcmp->opaque;
356                 RTE_ASSERT(ag_cons <= rxr->ag_ring_struct->ring_mask);
357                 ag_buf = &rxr->ag_buf_ring[ag_cons];
358                 ag_mbuf = *ag_buf;
359                 RTE_ASSERT(ag_mbuf != NULL);
360
361                 ag_mbuf->data_len = rte_le_to_cpu_16(rxcmp->len);
362
363                 mbuf->nb_segs++;
364                 mbuf->pkt_len += ag_mbuf->data_len;
365
366                 last->next = ag_mbuf;
367                 last = ag_mbuf;
368
369                 *ag_buf = NULL;
370
371                 /*
372                  * As aggregation buffer consumed out of order in TPA module,
373                  * use bitmap to track freed slots to be allocated and notified
374                  * to NIC
375                  */
376                 rte_bitmap_set(rxr->ag_bitmap, ag_cons);
377         }
378         last->next = NULL;
379         bnxt_prod_ag_mbuf(rxq);
380         return 0;
381 }
382
383 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
384                            uint32_t *raw_cons, void *cmp)
385 {
386         struct rx_pkt_cmpl *rxcmp = cmp;
387         uint32_t tmp_raw_cons = *raw_cons;
388         uint8_t cmp_type, agg_bufs = 0;
389
390         cmp_type = CMP_TYPE(rxcmp);
391
392         if (cmp_type == CMPL_BASE_TYPE_RX_L2) {
393                 agg_bufs = BNXT_RX_L2_AGG_BUFS(rxcmp);
394         } else if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
395                 struct rx_tpa_end_cmpl *tpa_end = cmp;
396
397                 if (BNXT_CHIP_P5(bp))
398                         return 0;
399
400                 agg_bufs = BNXT_TPA_END_AGG_BUFS(tpa_end);
401         }
402
403         if (agg_bufs) {
404                 if (!bnxt_agg_bufs_valid(cpr, agg_bufs, tmp_raw_cons))
405                         return -EBUSY;
406         }
407         *raw_cons = tmp_raw_cons;
408         return 0;
409 }
410
411 static inline struct rte_mbuf *bnxt_tpa_end(
412                 struct bnxt_rx_queue *rxq,
413                 uint32_t *raw_cp_cons,
414                 struct rx_tpa_end_cmpl *tpa_end,
415                 struct rx_tpa_end_cmpl_hi *tpa_end1)
416 {
417         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
418         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
419         uint16_t agg_id;
420         struct rte_mbuf *mbuf;
421         uint8_t agg_bufs;
422         uint8_t payload_offset;
423         struct bnxt_tpa_info *tpa_info;
424
425         if (unlikely(rxq->in_reset)) {
426                 PMD_DRV_LOG(ERR, "rxq->in_reset: raw_cp_cons:%d\n",
427                             *raw_cp_cons);
428                 bnxt_discard_rx(rxq->bp, cpr, raw_cp_cons, tpa_end);
429                 return NULL;
430         }
431
432         if (BNXT_CHIP_P5(rxq->bp)) {
433                 struct rx_tpa_v2_end_cmpl *th_tpa_end;
434                 struct rx_tpa_v2_end_cmpl_hi *th_tpa_end1;
435
436                 th_tpa_end = (void *)tpa_end;
437                 th_tpa_end1 = (void *)tpa_end1;
438                 agg_id = BNXT_TPA_END_AGG_ID_TH(th_tpa_end);
439                 agg_bufs = BNXT_TPA_END_AGG_BUFS_TH(th_tpa_end1);
440                 payload_offset = th_tpa_end1->payload_offset;
441         } else {
442                 agg_id = BNXT_TPA_END_AGG_ID(tpa_end);
443                 agg_bufs = BNXT_TPA_END_AGG_BUFS(tpa_end);
444                 if (!bnxt_agg_bufs_valid(cpr, agg_bufs, *raw_cp_cons))
445                         return NULL;
446                 payload_offset = tpa_end->payload_offset;
447         }
448
449         tpa_info = &rxr->tpa_info[agg_id];
450         mbuf = tpa_info->mbuf;
451         RTE_ASSERT(mbuf != NULL);
452
453         if (agg_bufs) {
454                 bnxt_rx_pages(rxq, mbuf, raw_cp_cons, agg_bufs, tpa_info);
455         }
456         mbuf->l4_len = payload_offset;
457
458         struct rte_mbuf *new_data = __bnxt_alloc_rx_data(rxq->mb_pool);
459         RTE_ASSERT(new_data != NULL);
460         if (!new_data) {
461                 rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
462                 return NULL;
463         }
464         tpa_info->mbuf = new_data;
465
466         return mbuf;
467 }
468
469 uint32_t bnxt_ptype_table[BNXT_PTYPE_TBL_DIM] __rte_cache_aligned;
470
471 static void __rte_cold
472 bnxt_init_ptype_table(void)
473 {
474         uint32_t *pt = bnxt_ptype_table;
475         static bool initialized;
476         int ip6, tun, type;
477         uint32_t l3;
478         int i;
479
480         if (initialized)
481                 return;
482
483         for (i = 0; i < BNXT_PTYPE_TBL_DIM; i++) {
484                 if (i & BNXT_PTYPE_TBL_VLAN_MSK)
485                         pt[i] = RTE_PTYPE_L2_ETHER_VLAN;
486                 else
487                         pt[i] = RTE_PTYPE_L2_ETHER;
488
489                 ip6 = !!(i & BNXT_PTYPE_TBL_IP_VER_MSK);
490                 tun = !!(i & BNXT_PTYPE_TBL_TUN_MSK);
491                 type = (i & BNXT_PTYPE_TBL_TYPE_MSK) >> BNXT_PTYPE_TBL_TYPE_SFT;
492
493                 if (!tun && !ip6)
494                         l3 = RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
495                 else if (!tun && ip6)
496                         l3 = RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
497                 else if (tun && !ip6)
498                         l3 = RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
499                 else
500                         l3 = RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
501
502                 switch (type) {
503                 case BNXT_PTYPE_TBL_TYPE_ICMP:
504                         if (tun)
505                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_ICMP;
506                         else
507                                 pt[i] |= l3 | RTE_PTYPE_L4_ICMP;
508                         break;
509                 case BNXT_PTYPE_TBL_TYPE_TCP:
510                         if (tun)
511                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_TCP;
512                         else
513                                 pt[i] |= l3 | RTE_PTYPE_L4_TCP;
514                         break;
515                 case BNXT_PTYPE_TBL_TYPE_UDP:
516                         if (tun)
517                                 pt[i] |= l3 | RTE_PTYPE_INNER_L4_UDP;
518                         else
519                                 pt[i] |= l3 | RTE_PTYPE_L4_UDP;
520                         break;
521                 case BNXT_PTYPE_TBL_TYPE_IP:
522                         pt[i] |= l3;
523                         break;
524                 }
525         }
526         initialized = true;
527 }
528
529 static uint32_t
530 bnxt_parse_pkt_type(struct rx_pkt_cmpl *rxcmp, struct rx_pkt_cmpl_hi *rxcmp1)
531 {
532         uint32_t flags_type, flags2;
533         uint8_t index;
534
535         flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
536         flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
537
538         /* Validate ptype table indexing at build time. */
539         bnxt_check_ptype_constants();
540
541         /*
542          * Index format:
543          *     bit 0: Set if IP tunnel encapsulated packet.
544          *     bit 1: Set if IPv6 packet, clear if IPv4.
545          *     bit 2: Set if VLAN tag present.
546          *     bits 3-6: Four-bit hardware packet type field.
547          */
548         index = BNXT_CMPL_ITYPE_TO_IDX(flags_type) |
549                 BNXT_CMPL_VLAN_TUN_TO_IDX(flags2) |
550                 BNXT_CMPL_IP_VER_TO_IDX(flags2);
551
552         return bnxt_ptype_table[index];
553 }
554
555 static void __rte_cold
556 bnxt_init_ol_flags_tables(struct bnxt_rx_queue *rxq)
557 {
558         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
559         struct rte_eth_conf *dev_conf;
560         bool outer_cksum_enabled;
561         uint64_t offloads;
562         uint32_t *pt;
563         int i;
564
565         dev_conf = &rxq->bp->eth_dev->data->dev_conf;
566         offloads = dev_conf->rxmode.offloads;
567
568         outer_cksum_enabled = !!(offloads & (DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
569                                              DEV_RX_OFFLOAD_OUTER_UDP_CKSUM));
570
571         /* Initialize ol_flags table. */
572         pt = rxr->ol_flags_table;
573         for (i = 0; i < BNXT_OL_FLAGS_TBL_DIM; i++) {
574                 pt[i] = 0;
575
576                 if (i & RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN)
577                         pt[i] |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
578
579                 if (i & (RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC << 3)) {
580                         /* Tunnel case. */
581                         if (outer_cksum_enabled) {
582                                 if (i & RX_PKT_CMPL_FLAGS2_IP_CS_CALC)
583                                         pt[i] |= PKT_RX_IP_CKSUM_GOOD;
584
585                                 if (i & RX_PKT_CMPL_FLAGS2_L4_CS_CALC)
586                                         pt[i] |= PKT_RX_L4_CKSUM_GOOD;
587
588                                 if (i & RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC)
589                                         pt[i] |= PKT_RX_OUTER_L4_CKSUM_GOOD;
590                         } else {
591                                 if (i & RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC)
592                                         pt[i] |= PKT_RX_IP_CKSUM_GOOD;
593
594                                 if (i & RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC)
595                                         pt[i] |= PKT_RX_L4_CKSUM_GOOD;
596                         }
597                 } else {
598                         /* Non-tunnel case. */
599                         if (i & RX_PKT_CMPL_FLAGS2_IP_CS_CALC)
600                                 pt[i] |= PKT_RX_IP_CKSUM_GOOD;
601
602                         if (i & RX_PKT_CMPL_FLAGS2_L4_CS_CALC)
603                                 pt[i] |= PKT_RX_L4_CKSUM_GOOD;
604                 }
605         }
606
607         /* Initialize checksum error table. */
608         pt = rxr->ol_flags_err_table;
609         for (i = 0; i < BNXT_OL_FLAGS_ERR_TBL_DIM; i++) {
610                 pt[i] = 0;
611
612                 if (i & (RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC << 2)) {
613                         /* Tunnel case. */
614                         if (outer_cksum_enabled) {
615                                 if (i & (RX_PKT_CMPL_ERRORS_IP_CS_ERROR >> 4))
616                                         pt[i] |= PKT_RX_IP_CKSUM_BAD;
617
618                                 if (i & (RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR >> 4))
619                                         pt[i] |= PKT_RX_OUTER_IP_CKSUM_BAD;
620
621                                 if (i & (RX_PKT_CMPL_ERRORS_L4_CS_ERROR >> 4))
622                                         pt[i] |= PKT_RX_L4_CKSUM_BAD;
623
624                                 if (i & (RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR >> 4))
625                                         pt[i] |= PKT_RX_OUTER_L4_CKSUM_BAD;
626                         } else {
627                                 if (i & (RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR >> 4))
628                                         pt[i] |= PKT_RX_IP_CKSUM_BAD;
629
630                                 if (i & (RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR >> 4))
631                                         pt[i] |= PKT_RX_L4_CKSUM_BAD;
632                         }
633                 } else {
634                         /* Non-tunnel case. */
635                         if (i & (RX_PKT_CMPL_ERRORS_IP_CS_ERROR >> 4))
636                                 pt[i] |= PKT_RX_IP_CKSUM_BAD;
637
638                         if (i & (RX_PKT_CMPL_ERRORS_L4_CS_ERROR >> 4))
639                                 pt[i] |= PKT_RX_L4_CKSUM_BAD;
640                 }
641         }
642 }
643
644 static void
645 bnxt_set_ol_flags(struct bnxt_rx_ring_info *rxr, struct rx_pkt_cmpl *rxcmp,
646                   struct rx_pkt_cmpl_hi *rxcmp1, struct rte_mbuf *mbuf)
647 {
648         uint16_t flags_type, errors, flags;
649         uint64_t ol_flags;
650
651         flags_type = rte_le_to_cpu_16(rxcmp->flags_type);
652
653         flags = rte_le_to_cpu_32(rxcmp1->flags2) &
654                                 (RX_PKT_CMPL_FLAGS2_IP_CS_CALC |
655                                  RX_PKT_CMPL_FLAGS2_L4_CS_CALC |
656                                  RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC |
657                                  RX_PKT_CMPL_FLAGS2_T_L4_CS_CALC |
658                                  RX_PKT_CMPL_FLAGS2_META_FORMAT_VLAN);
659
660         flags |= (flags & RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC) << 3;
661         errors = rte_le_to_cpu_16(rxcmp1->errors_v2) &
662                                 (RX_PKT_CMPL_ERRORS_IP_CS_ERROR |
663                                  RX_PKT_CMPL_ERRORS_L4_CS_ERROR |
664                                  RX_PKT_CMPL_ERRORS_T_IP_CS_ERROR |
665                                  RX_PKT_CMPL_ERRORS_T_L4_CS_ERROR);
666         errors = (errors >> 4) & flags;
667
668         ol_flags = rxr->ol_flags_table[flags & ~errors];
669
670         if (unlikely(errors)) {
671                 errors |= (flags & RX_PKT_CMPL_FLAGS2_T_IP_CS_CALC) << 2;
672                 ol_flags |= rxr->ol_flags_err_table[errors];
673         }
674
675         if (flags_type & RX_PKT_CMPL_FLAGS_RSS_VALID) {
676                 mbuf->hash.rss = rte_le_to_cpu_32(rxcmp->rss_hash);
677                 ol_flags |= PKT_RX_RSS_HASH;
678         }
679
680 #ifdef RTE_LIBRTE_IEEE1588
681         if (unlikely((flags_type & RX_PKT_CMPL_FLAGS_MASK) ==
682                      RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP))
683                 ol_flags |= PKT_RX_IEEE1588_PTP | PKT_RX_IEEE1588_TMST;
684 #endif
685
686         mbuf->ol_flags = ol_flags;
687 }
688
689 #ifdef RTE_LIBRTE_IEEE1588
690 static void
691 bnxt_get_rx_ts_p5(struct bnxt *bp, uint32_t rx_ts_cmpl)
692 {
693         struct bnxt_ptp_cfg *ptp = bp->ptp_cfg;
694         uint64_t last_hwrm_time;
695         uint64_t pkt_time = 0;
696
697         if (!BNXT_CHIP_P5(bp) || !ptp)
698                 return;
699
700         /* On Thor, Rx timestamps are provided directly in the
701          * Rx completion records to the driver. Only 32 bits of
702          * the timestamp is present in the completion. Driver needs
703          * to read the current 48 bit free running timer using the
704          * HWRM_PORT_TS_QUERY command and combine the upper 16 bits
705          * from the HWRM response with the lower 32 bits in the
706          * Rx completion to produce the 48 bit timestamp for the Rx packet
707          */
708         last_hwrm_time = ptp->current_time;
709         pkt_time = (last_hwrm_time & BNXT_PTP_CURRENT_TIME_MASK) | rx_ts_cmpl;
710         if (rx_ts_cmpl < (uint32_t)last_hwrm_time) {
711                 /* timer has rolled over */
712                 pkt_time += (1ULL << 32);
713         }
714         ptp->rx_timestamp = pkt_time;
715 }
716 #endif
717
718 static uint32_t
719 bnxt_ulp_set_mark_in_mbuf(struct bnxt *bp, struct rx_pkt_cmpl_hi *rxcmp1,
720                           struct rte_mbuf *mbuf, uint32_t *vfr_flag)
721 {
722         uint32_t cfa_code;
723         uint32_t meta_fmt;
724         uint32_t meta;
725         bool gfid = false;
726         uint32_t mark_id;
727         uint32_t flags2;
728         uint32_t gfid_support = 0;
729         int rc;
730
731         if (BNXT_GFID_ENABLED(bp))
732                 gfid_support = 1;
733
734         cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
735         flags2 = rte_le_to_cpu_32(rxcmp1->flags2);
736         meta = rte_le_to_cpu_32(rxcmp1->metadata);
737
738         /*
739          * The flags field holds extra bits of info from [6:4]
740          * which indicate if the flow is in TCAM or EM or EEM
741          */
742         meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
743                 BNXT_CFA_META_FMT_SHFT;
744
745         switch (meta_fmt) {
746         case 0:
747                 if (gfid_support) {
748                         /* Not an LFID or GFID, a flush cmd. */
749                         goto skip_mark;
750                 } else {
751                         /* LFID mode, no vlan scenario */
752                         gfid = false;
753                 }
754                 break;
755         case 4:
756         case 5:
757                 /*
758                  * EM/TCAM case
759                  * Assume that EM doesn't support Mark due to GFID
760                  * collisions with EEM.  Simply return without setting the mark
761                  * in the mbuf.
762                  */
763                 if (BNXT_CFA_META_EM_TEST(meta)) {
764                         /*This is EM hit {EM(1), GFID[27:16], 19'd0 or vtag } */
765                         gfid = true;
766                         meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
767                         cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
768                 } else {
769                         /*
770                          * It is a TCAM entry, so it is an LFID.
771                          * The TCAM IDX and Mode can also be determined
772                          * by decoding the meta_data. We are not
773                          * using these for now.
774                          */
775                 }
776                 break;
777         case 6:
778         case 7:
779                 /* EEM Case, only using gfid in EEM for now. */
780                 gfid = true;
781
782                 /*
783                  * For EEM flows, The first part of cfa_code is 16 bits.
784                  * The second part is embedded in the
785                  * metadata field from bit 19 onwards. The driver needs to
786                  * ignore the first 19 bits of metadata and use the next 12
787                  * bits as higher 12 bits of cfa_code.
788                  */
789                 meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
790                 cfa_code |= meta << BNXT_CFA_CODE_META_SHIFT;
791                 break;
792         default:
793                 /* For other values, the cfa_code is assumed to be an LFID. */
794                 break;
795         }
796
797         rc = ulp_mark_db_mark_get(bp->ulp_ctx, gfid,
798                                   cfa_code, vfr_flag, &mark_id);
799         if (!rc) {
800                 /* VF to VFR Rx path. So, skip mark_id injection in mbuf */
801                 if (vfr_flag && *vfr_flag)
802                         return mark_id;
803                 /* Got the mark, write it to the mbuf and return */
804                 mbuf->hash.fdir.hi = mark_id;
805                 *bnxt_cfa_code_dynfield(mbuf) = cfa_code & 0xffffffffull;
806                 mbuf->hash.fdir.id = rxcmp1->cfa_code;
807                 mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
808                 return mark_id;
809         }
810
811 skip_mark:
812         mbuf->hash.fdir.hi = 0;
813         mbuf->hash.fdir.id = 0;
814
815         return 0;
816 }
817
818 void bnxt_set_mark_in_mbuf(struct bnxt *bp,
819                            struct rx_pkt_cmpl_hi *rxcmp1,
820                            struct rte_mbuf *mbuf)
821 {
822         uint32_t cfa_code = 0;
823         uint8_t meta_fmt = 0;
824         uint16_t flags2 = 0;
825         uint32_t meta =  0;
826
827         cfa_code = rte_le_to_cpu_16(rxcmp1->cfa_code);
828         if (!cfa_code)
829                 return;
830
831         if (cfa_code && !bp->mark_table[cfa_code].valid)
832                 return;
833
834         flags2 = rte_le_to_cpu_16(rxcmp1->flags2);
835         meta = rte_le_to_cpu_32(rxcmp1->metadata);
836         if (meta) {
837                 meta >>= BNXT_RX_META_CFA_CODE_SHIFT;
838
839                 /* The flags field holds extra bits of info from [6:4]
840                  * which indicate if the flow is in TCAM or EM or EEM
841                  */
842                 meta_fmt = (flags2 & BNXT_CFA_META_FMT_MASK) >>
843                            BNXT_CFA_META_FMT_SHFT;
844
845                 /* meta_fmt == 4 => 'b100 => 'b10x => EM.
846                  * meta_fmt == 5 => 'b101 => 'b10x => EM + VLAN
847                  * meta_fmt == 6 => 'b110 => 'b11x => EEM
848                  * meta_fmt == 7 => 'b111 => 'b11x => EEM + VLAN.
849                  */
850                 meta_fmt >>= BNXT_CFA_META_FMT_EM_EEM_SHFT;
851         }
852
853         mbuf->hash.fdir.hi = bp->mark_table[cfa_code].mark_id;
854         mbuf->ol_flags |= PKT_RX_FDIR | PKT_RX_FDIR_ID;
855 }
856
857 static int bnxt_rx_pkt(struct rte_mbuf **rx_pkt,
858                        struct bnxt_rx_queue *rxq, uint32_t *raw_cons)
859 {
860         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
861         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
862         struct rx_pkt_cmpl *rxcmp;
863         struct rx_pkt_cmpl_hi *rxcmp1;
864         uint32_t tmp_raw_cons = *raw_cons;
865         uint16_t cons, raw_prod, cp_cons =
866             RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
867         struct rte_mbuf *mbuf;
868         int rc = 0;
869         uint8_t agg_buf = 0;
870         uint16_t cmp_type;
871         uint32_t vfr_flag = 0, mark_id = 0;
872         struct bnxt *bp = rxq->bp;
873
874         rxcmp = (struct rx_pkt_cmpl *)
875             &cpr->cp_desc_ring[cp_cons];
876
877         cmp_type = CMP_TYPE(rxcmp);
878
879         if (cmp_type == RX_TPA_V2_ABUF_CMPL_TYPE_RX_TPA_AGG) {
880                 struct rx_tpa_v2_abuf_cmpl *rx_agg = (void *)rxcmp;
881                 uint16_t agg_id = rte_cpu_to_le_16(rx_agg->agg_id);
882                 struct bnxt_tpa_info *tpa_info;
883
884                 tpa_info = &rxr->tpa_info[agg_id];
885                 RTE_ASSERT(tpa_info->agg_count < 16);
886                 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg;
887                 rc = -EINVAL; /* Continue w/o new mbuf */
888                 goto next_rx;
889         }
890
891         tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
892         cp_cons = RING_CMP(cpr->cp_ring_struct, tmp_raw_cons);
893         rxcmp1 = (struct rx_pkt_cmpl_hi *)&cpr->cp_desc_ring[cp_cons];
894
895         if (!CMP_VALID(rxcmp1, tmp_raw_cons, cpr->cp_ring_struct))
896                 return -EBUSY;
897
898         if (cmp_type == RX_TPA_START_CMPL_TYPE_RX_TPA_START ||
899             cmp_type == RX_TPA_START_V2_CMPL_TYPE_RX_TPA_START_V2) {
900                 bnxt_tpa_start(rxq, (struct rx_tpa_start_cmpl *)rxcmp,
901                                (struct rx_tpa_start_cmpl_hi *)rxcmp1);
902                 rc = -EINVAL; /* Continue w/o new mbuf */
903                 goto next_rx;
904         } else if (cmp_type == RX_TPA_END_CMPL_TYPE_RX_TPA_END) {
905                 mbuf = bnxt_tpa_end(rxq, &tmp_raw_cons,
906                                    (struct rx_tpa_end_cmpl *)rxcmp,
907                                    (struct rx_tpa_end_cmpl_hi *)rxcmp1);
908                 if (unlikely(!mbuf))
909                         return -EBUSY;
910                 *rx_pkt = mbuf;
911                 goto next_rx;
912         } else if ((cmp_type != CMPL_BASE_TYPE_RX_L2) &&
913                    (cmp_type != CMPL_BASE_TYPE_RX_L2_V2)) {
914                 rc = -EINVAL;
915                 goto next_rx;
916         }
917
918         agg_buf = BNXT_RX_L2_AGG_BUFS(rxcmp);
919         if (agg_buf && !bnxt_agg_bufs_valid(cpr, agg_buf, tmp_raw_cons))
920                 return -EBUSY;
921
922         raw_prod = rxr->rx_raw_prod;
923
924         cons = rxcmp->opaque;
925         if (unlikely(cons != rxr->rx_next_cons)) {
926                 bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp);
927                 PMD_DRV_LOG(ERR, "RX cons %x != expected cons %x\n",
928                             cons, rxr->rx_next_cons);
929                 bnxt_sched_ring_reset(rxq);
930                 rc = -EBUSY;
931                 goto next_rx;
932         }
933         mbuf = bnxt_consume_rx_buf(rxr, cons);
934         if (mbuf == NULL)
935                 return -EBUSY;
936
937         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
938         mbuf->nb_segs = 1;
939         mbuf->next = NULL;
940         mbuf->pkt_len = rxcmp->len;
941         mbuf->data_len = mbuf->pkt_len;
942         mbuf->port = rxq->port_id;
943
944 #ifdef RTE_LIBRTE_IEEE1588
945         if (unlikely((rte_le_to_cpu_16(rxcmp->flags_type) &
946                       RX_PKT_CMPL_FLAGS_MASK) ==
947                      RX_PKT_CMPL_FLAGS_ITYPE_PTP_W_TIMESTAMP))
948                 bnxt_get_rx_ts_p5(rxq->bp, rxcmp1->reorder);
949 #endif
950
951         if (cmp_type == CMPL_BASE_TYPE_RX_L2_V2) {
952                 bnxt_parse_csum_v2(mbuf, rxcmp1);
953                 bnxt_parse_pkt_type_v2(mbuf, rxcmp, rxcmp1);
954                 bnxt_rx_vlan_v2(mbuf, rxcmp, rxcmp1);
955                 /* TODO Add support for cfa_code parsing */
956                 goto reuse_rx_mbuf;
957         }
958
959         bnxt_set_ol_flags(rxr, rxcmp, rxcmp1, mbuf);
960
961         mbuf->packet_type = bnxt_parse_pkt_type(rxcmp, rxcmp1);
962
963         if (BNXT_TRUFLOW_EN(bp))
964                 mark_id = bnxt_ulp_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf,
965                                                     &vfr_flag);
966         else
967                 bnxt_set_mark_in_mbuf(rxq->bp, rxcmp1, mbuf);
968
969 reuse_rx_mbuf:
970         if (agg_buf)
971                 bnxt_rx_pages(rxq, mbuf, &tmp_raw_cons, agg_buf, NULL);
972
973 #ifdef BNXT_DEBUG
974         if (rxcmp1->errors_v2 & RX_CMP_L2_ERRORS) {
975                 /* Re-install the mbuf back to the rx ring */
976                 bnxt_reuse_rx_mbuf(rxr, cons, mbuf);
977
978                 rc = -EIO;
979                 goto next_rx;
980         }
981 #endif
982         /*
983          * TODO: Redesign this....
984          * If the allocation fails, the packet does not get received.
985          * Simply returning this will result in slowly falling behind
986          * on the producer ring buffers.
987          * Instead, "filling up" the producer just before ringing the
988          * doorbell could be a better solution since it will let the
989          * producer ring starve until memory is available again pushing
990          * the drops into hardware and getting them out of the driver
991          * allowing recovery to a full producer ring.
992          *
993          * This could also help with cache usage by preventing per-packet
994          * calls in favour of a tight loop with the same function being called
995          * in it.
996          */
997         raw_prod = RING_NEXT(raw_prod);
998         if (bnxt_alloc_rx_data(rxq, rxr, raw_prod)) {
999                 PMD_DRV_LOG(ERR, "mbuf alloc failed with prod=0x%x\n",
1000                             raw_prod);
1001                 rc = -ENOMEM;
1002                 goto rx;
1003         }
1004         rxr->rx_raw_prod = raw_prod;
1005         rxr->rx_next_cons = RING_IDX(rxr->rx_ring_struct, RING_NEXT(cons));
1006
1007         if (BNXT_TRUFLOW_EN(bp) && (BNXT_VF_IS_TRUSTED(bp) || BNXT_PF(bp)) &&
1008             vfr_flag) {
1009                 bnxt_vfr_recv(mark_id, rxq->queue_id, mbuf);
1010                 /* Now return an error so that nb_rx_pkts is not
1011                  * incremented.
1012                  * This packet was meant to be given to the representor.
1013                  * So no need to account the packet and give it to
1014                  * parent Rx burst function.
1015                  */
1016                 rc = -ENODEV;
1017                 goto next_rx;
1018         }
1019         /*
1020          * All MBUFs are allocated with the same size under DPDK,
1021          * no optimization for rx_copy_thresh
1022          */
1023 rx:
1024         *rx_pkt = mbuf;
1025
1026 next_rx:
1027
1028         *raw_cons = tmp_raw_cons;
1029
1030         return rc;
1031 }
1032
1033 uint16_t bnxt_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
1034                                uint16_t nb_pkts)
1035 {
1036         struct bnxt_rx_queue *rxq = rx_queue;
1037         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
1038         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
1039         uint16_t rx_raw_prod = rxr->rx_raw_prod;
1040         uint16_t ag_raw_prod = rxr->ag_raw_prod;
1041         uint32_t raw_cons = cpr->cp_raw_cons;
1042         bool alloc_failed = false;
1043         uint32_t cons;
1044         int nb_rx_pkts = 0;
1045         int nb_rep_rx_pkts = 0;
1046         struct rx_pkt_cmpl *rxcmp;
1047         int rc = 0;
1048         bool evt = false;
1049
1050         if (unlikely(is_bnxt_in_error(rxq->bp)))
1051                 return 0;
1052
1053         /* If Rx Q was stopped return */
1054         if (unlikely(!rxq->rx_started))
1055                 return 0;
1056
1057 #if defined(RTE_ARCH_X86) || defined(RTE_ARCH_ARM64)
1058         /*
1059          * Replenish buffers if needed when a transition has been made from
1060          * vector- to non-vector- receive processing.
1061          */
1062         while (unlikely(rxq->rxrearm_nb)) {
1063                 if (!bnxt_alloc_rx_data(rxq, rxr, rxq->rxrearm_start)) {
1064                         rxr->rx_raw_prod = rxq->rxrearm_start;
1065                         bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
1066                         rxq->rxrearm_start++;
1067                         rxq->rxrearm_nb--;
1068                 } else {
1069                         /* Retry allocation on next call. */
1070                         break;
1071                 }
1072         }
1073 #endif
1074
1075         /* Handle RX burst request */
1076         while (1) {
1077                 cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
1078                 rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1079
1080                 if (!CMP_VALID(rxcmp, raw_cons, cpr->cp_ring_struct))
1081                         break;
1082                 if (CMP_TYPE(rxcmp) == CMPL_BASE_TYPE_HWRM_DONE) {
1083                         PMD_DRV_LOG(ERR, "Rx flush done\n");
1084                 } else if ((CMP_TYPE(rxcmp) >= CMPL_BASE_TYPE_RX_TPA_START_V2) &&
1085                      (CMP_TYPE(rxcmp) <= RX_TPA_V2_ABUF_CMPL_TYPE_RX_TPA_AGG)) {
1086                         rc = bnxt_rx_pkt(&rx_pkts[nb_rx_pkts], rxq, &raw_cons);
1087                         if (!rc)
1088                                 nb_rx_pkts++;
1089                         else if (rc == -EBUSY)  /* partial completion */
1090                                 break;
1091                         else if (rc == -ENODEV) /* completion for representor */
1092                                 nb_rep_rx_pkts++;
1093                         else if (rc == -ENOMEM) {
1094                                 nb_rx_pkts++;
1095                                 alloc_failed = true;
1096                         }
1097                 } else if (!BNXT_NUM_ASYNC_CPR(rxq->bp)) {
1098                         evt =
1099                         bnxt_event_hwrm_resp_handler(rxq->bp,
1100                                                      (struct cmpl_base *)rxcmp);
1101                         /* If the async event is Fatal error, return */
1102                         if (unlikely(is_bnxt_in_error(rxq->bp)))
1103                                 goto done;
1104                 }
1105
1106                 raw_cons = NEXT_RAW_CMP(raw_cons);
1107                 if (nb_rx_pkts == nb_pkts || nb_rep_rx_pkts == nb_pkts || evt)
1108                         break;
1109         }
1110
1111         cpr->cp_raw_cons = raw_cons;
1112         if (!nb_rx_pkts && !nb_rep_rx_pkts && !evt) {
1113                 /*
1114                  * For PMD, there is no need to keep on pushing to REARM
1115                  * the doorbell if there are no new completions
1116                  */
1117                 goto done;
1118         }
1119
1120         /* Ring the completion queue doorbell. */
1121         bnxt_db_cq(cpr);
1122
1123         /* Ring the receive descriptor doorbell. */
1124         if (rx_raw_prod != rxr->rx_raw_prod)
1125                 bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
1126
1127         /* Ring the AGG ring DB */
1128         if (ag_raw_prod != rxr->ag_raw_prod)
1129                 bnxt_db_write(&rxr->ag_db, rxr->ag_raw_prod);
1130
1131         /* Attempt to alloc Rx buf in case of a previous allocation failure. */
1132         if (alloc_failed) {
1133                 int cnt;
1134
1135                 rx_raw_prod = RING_NEXT(rx_raw_prod);
1136                 for (cnt = 0; cnt < nb_rx_pkts + nb_rep_rx_pkts; cnt++) {
1137                         struct rte_mbuf **rx_buf;
1138                         uint16_t ndx;
1139
1140                         ndx = RING_IDX(rxr->rx_ring_struct, rx_raw_prod + cnt);
1141                         rx_buf = &rxr->rx_buf_ring[ndx];
1142
1143                         /* Buffer already allocated for this index. */
1144                         if (*rx_buf != NULL && *rx_buf != &rxq->fake_mbuf)
1145                                 continue;
1146
1147                         /* This slot is empty. Alloc buffer for Rx */
1148                         if (!bnxt_alloc_rx_data(rxq, rxr, rx_raw_prod + cnt)) {
1149                                 rxr->rx_raw_prod = rx_raw_prod + cnt;
1150                                 bnxt_db_write(&rxr->rx_db, rxr->rx_raw_prod);
1151                         } else {
1152                                 PMD_DRV_LOG(ERR, "Alloc  mbuf failed\n");
1153                                 break;
1154                         }
1155                 }
1156         }
1157
1158 done:
1159         return nb_rx_pkts;
1160 }
1161
1162 /*
1163  * Dummy DPDK callback for RX.
1164  *
1165  * This function is used to temporarily replace the real callback during
1166  * unsafe control operations on the queue, or in case of error.
1167  */
1168 uint16_t
1169 bnxt_dummy_recv_pkts(void *rx_queue __rte_unused,
1170                      struct rte_mbuf **rx_pkts __rte_unused,
1171                      uint16_t nb_pkts __rte_unused)
1172 {
1173         return 0;
1174 }
1175
1176 void bnxt_free_rx_rings(struct bnxt *bp)
1177 {
1178         int i;
1179         struct bnxt_rx_queue *rxq;
1180
1181         if (!bp->rx_queues)
1182                 return;
1183
1184         for (i = 0; i < (int)bp->rx_nr_rings; i++) {
1185                 rxq = bp->rx_queues[i];
1186                 if (!rxq)
1187                         continue;
1188
1189                 bnxt_free_ring(rxq->rx_ring->rx_ring_struct);
1190                 rte_free(rxq->rx_ring->rx_ring_struct);
1191
1192                 /* Free the Aggregator ring */
1193                 bnxt_free_ring(rxq->rx_ring->ag_ring_struct);
1194                 rte_free(rxq->rx_ring->ag_ring_struct);
1195                 rxq->rx_ring->ag_ring_struct = NULL;
1196
1197                 rte_free(rxq->rx_ring);
1198
1199                 bnxt_free_ring(rxq->cp_ring->cp_ring_struct);
1200                 rte_free(rxq->cp_ring->cp_ring_struct);
1201                 rte_free(rxq->cp_ring);
1202
1203                 rte_free(rxq);
1204                 bp->rx_queues[i] = NULL;
1205         }
1206 }
1207
1208 int bnxt_init_rx_ring_struct(struct bnxt_rx_queue *rxq, unsigned int socket_id)
1209 {
1210         struct bnxt_cp_ring_info *cpr;
1211         struct bnxt_rx_ring_info *rxr;
1212         struct bnxt_ring *ring;
1213
1214         rxq->rx_buf_size = BNXT_MAX_PKT_LEN + sizeof(struct rte_mbuf);
1215
1216         rxr = rte_zmalloc_socket("bnxt_rx_ring",
1217                                  sizeof(struct bnxt_rx_ring_info),
1218                                  RTE_CACHE_LINE_SIZE, socket_id);
1219         if (rxr == NULL)
1220                 return -ENOMEM;
1221         rxq->rx_ring = rxr;
1222
1223         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1224                                    sizeof(struct bnxt_ring),
1225                                    RTE_CACHE_LINE_SIZE, socket_id);
1226         if (ring == NULL)
1227                 return -ENOMEM;
1228         rxr->rx_ring_struct = ring;
1229         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc);
1230         ring->ring_mask = ring->ring_size - 1;
1231         ring->bd = (void *)rxr->rx_desc_ring;
1232         ring->bd_dma = rxr->rx_desc_mapping;
1233
1234         /* Allocate extra rx ring entries for vector rx. */
1235         ring->vmem_size = sizeof(struct rte_mbuf *) *
1236                           (ring->ring_size + BNXT_RX_EXTRA_MBUF_ENTRIES);
1237
1238         ring->vmem = (void **)&rxr->rx_buf_ring;
1239         ring->fw_ring_id = INVALID_HW_RING_ID;
1240
1241         cpr = rte_zmalloc_socket("bnxt_rx_ring",
1242                                  sizeof(struct bnxt_cp_ring_info),
1243                                  RTE_CACHE_LINE_SIZE, socket_id);
1244         if (cpr == NULL)
1245                 return -ENOMEM;
1246         rxq->cp_ring = cpr;
1247
1248         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1249                                    sizeof(struct bnxt_ring),
1250                                    RTE_CACHE_LINE_SIZE, socket_id);
1251         if (ring == NULL)
1252                 return -ENOMEM;
1253         cpr->cp_ring_struct = ring;
1254
1255         /* Allocate two completion slots per entry in desc ring. */
1256         ring->ring_size = rxr->rx_ring_struct->ring_size * 2;
1257         ring->ring_size *= AGG_RING_SIZE_FACTOR;
1258
1259         ring->ring_size = rte_align32pow2(ring->ring_size);
1260         ring->ring_mask = ring->ring_size - 1;
1261         ring->bd = (void *)cpr->cp_desc_ring;
1262         ring->bd_dma = cpr->cp_desc_mapping;
1263         ring->vmem_size = 0;
1264         ring->vmem = NULL;
1265         ring->fw_ring_id = INVALID_HW_RING_ID;
1266
1267         /* Allocate Aggregator rings */
1268         ring = rte_zmalloc_socket("bnxt_rx_ring_struct",
1269                                    sizeof(struct bnxt_ring),
1270                                    RTE_CACHE_LINE_SIZE, socket_id);
1271         if (ring == NULL)
1272                 return -ENOMEM;
1273         rxr->ag_ring_struct = ring;
1274         ring->ring_size = rte_align32pow2(rxq->nb_rx_desc *
1275                                           AGG_RING_SIZE_FACTOR);
1276         ring->ring_mask = ring->ring_size - 1;
1277         ring->bd = (void *)rxr->ag_desc_ring;
1278         ring->bd_dma = rxr->ag_desc_mapping;
1279         ring->vmem_size = ring->ring_size * sizeof(struct rte_mbuf *);
1280         ring->vmem = (void **)&rxr->ag_buf_ring;
1281         ring->fw_ring_id = INVALID_HW_RING_ID;
1282
1283         return 0;
1284 }
1285
1286 static void bnxt_init_rxbds(struct bnxt_ring *ring, uint32_t type,
1287                             uint16_t len)
1288 {
1289         uint32_t j;
1290         struct rx_prod_pkt_bd *rx_bd_ring = (struct rx_prod_pkt_bd *)ring->bd;
1291
1292         if (!rx_bd_ring)
1293                 return;
1294         for (j = 0; j < ring->ring_size; j++) {
1295                 rx_bd_ring[j].flags_type = rte_cpu_to_le_16(type);
1296                 rx_bd_ring[j].len = rte_cpu_to_le_16(len);
1297                 rx_bd_ring[j].opaque = j;
1298         }
1299 }
1300
1301 int bnxt_init_one_rx_ring(struct bnxt_rx_queue *rxq)
1302 {
1303         struct bnxt_rx_ring_info *rxr;
1304         struct bnxt_ring *ring;
1305         uint32_t raw_prod, type;
1306         unsigned int i;
1307         uint16_t size;
1308
1309         /* Initialize packet type table. */
1310         bnxt_init_ptype_table();
1311
1312         size = rte_pktmbuf_data_room_size(rxq->mb_pool) - RTE_PKTMBUF_HEADROOM;
1313         size = RTE_MIN(BNXT_MAX_PKT_LEN, size);
1314
1315         type = RX_PROD_PKT_BD_TYPE_RX_PROD_PKT;
1316
1317         rxr = rxq->rx_ring;
1318         ring = rxr->rx_ring_struct;
1319         bnxt_init_rxbds(ring, type, size);
1320
1321         /* Initialize offload flags parsing table. */
1322         bnxt_init_ol_flags_tables(rxq);
1323
1324         raw_prod = rxr->rx_raw_prod;
1325         for (i = 0; i < ring->ring_size; i++) {
1326                 if (unlikely(!rxr->rx_buf_ring[i])) {
1327                         if (bnxt_alloc_rx_data(rxq, rxr, raw_prod) != 0) {
1328                                 PMD_DRV_LOG(WARNING,
1329                                             "init'ed rx ring %d with %d/%d mbufs only\n",
1330                                             rxq->queue_id, i, ring->ring_size);
1331                                 break;
1332                         }
1333                 }
1334                 rxr->rx_raw_prod = raw_prod;
1335                 raw_prod = RING_NEXT(raw_prod);
1336         }
1337
1338         /* Initialize dummy mbuf pointers for vector mode rx. */
1339         for (i = ring->ring_size;
1340              i < ring->ring_size + BNXT_RX_EXTRA_MBUF_ENTRIES; i++) {
1341                 rxr->rx_buf_ring[i] = &rxq->fake_mbuf;
1342         }
1343
1344         ring = rxr->ag_ring_struct;
1345         type = RX_PROD_AGG_BD_TYPE_RX_PROD_AGG;
1346         bnxt_init_rxbds(ring, type, size);
1347         raw_prod = rxr->ag_raw_prod;
1348
1349         for (i = 0; i < ring->ring_size; i++) {
1350                 if (unlikely(!rxr->ag_buf_ring[i])) {
1351                         if (bnxt_alloc_ag_data(rxq, rxr, raw_prod) != 0) {
1352                                 PMD_DRV_LOG(WARNING,
1353                                             "init'ed AG ring %d with %d/%d mbufs only\n",
1354                                             rxq->queue_id, i, ring->ring_size);
1355                                 break;
1356                         }
1357                 }
1358                 rxr->ag_raw_prod = raw_prod;
1359                 raw_prod = RING_NEXT(raw_prod);
1360         }
1361         PMD_DRV_LOG(DEBUG, "AGG Done!\n");
1362
1363         if (rxr->tpa_info) {
1364                 unsigned int max_aggs = BNXT_TPA_MAX_AGGS(rxq->bp);
1365
1366                 for (i = 0; i < max_aggs; i++) {
1367                         if (unlikely(!rxr->tpa_info[i].mbuf)) {
1368                                 rxr->tpa_info[i].mbuf =
1369                                         __bnxt_alloc_rx_data(rxq->mb_pool);
1370                                 if (!rxr->tpa_info[i].mbuf) {
1371                                         rte_atomic64_inc(&rxq->rx_mbuf_alloc_fail);
1372                                         return -ENOMEM;
1373                                 }
1374                         }
1375                 }
1376         }
1377         PMD_DRV_LOG(DEBUG, "TPA alloc Done!\n");
1378
1379         return 0;
1380 }
1381
1382 /* Sweep the Rx completion queue till HWRM_DONE for ring flush is received.
1383  * The mbufs will not be freed in this call.
1384  * They will be freed during ring free as a part of mem cleanup.
1385  */
1386 int bnxt_flush_rx_cmp(struct bnxt_cp_ring_info *cpr)
1387 {
1388         struct bnxt_ring *cp_ring_struct = cpr->cp_ring_struct;
1389         uint32_t ring_mask = cp_ring_struct->ring_mask;
1390         uint32_t raw_cons = cpr->cp_raw_cons;
1391         struct rx_pkt_cmpl *rxcmp;
1392         uint32_t nb_rx = 0;
1393         uint32_t cons;
1394
1395         do {
1396                 cons = RING_CMP(cpr->cp_ring_struct, raw_cons);
1397                 rxcmp = (struct rx_pkt_cmpl *)&cpr->cp_desc_ring[cons];
1398
1399                 if (CMP_TYPE(rxcmp) == CMPL_BASE_TYPE_HWRM_DONE)
1400                         return 1;
1401
1402                 raw_cons = NEXT_RAW_CMP(raw_cons);
1403                 nb_rx++;
1404         } while (nb_rx < ring_mask);
1405
1406         cpr->cp_raw_cons = raw_cons;
1407
1408         /* Ring the completion queue doorbell. */
1409         bnxt_db_cq(cpr);
1410
1411         return 0;
1412 }