net/bnxt: remove software prefetches from AVX2 Rx
[dpdk.git] / drivers / net / bnxt / bnxt_rxtx_vec_avx2.c
1 /* SPDX-License-Identifier: BSD-3-Clause */
2 /* Copyright(c) 2019-2021 Broadcom All rights reserved. */
3
4 #include <inttypes.h>
5 #include <stdbool.h>
6
7 #include <rte_bitmap.h>
8 #include <rte_byteorder.h>
9 #include <rte_malloc.h>
10 #include <rte_memory.h>
11 #include <rte_vect.h>
12
13 #include "bnxt.h"
14 #include "bnxt_cpr.h"
15 #include "bnxt_ring.h"
16
17 #include "bnxt_txq.h"
18 #include "bnxt_txr.h"
19 #include "bnxt_rxtx_vec_common.h"
20 #include <unistd.h>
21
22 static uint16_t
23 recv_burst_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
24 {
25         struct bnxt_rx_queue *rxq = rx_queue;
26         const __m256i mbuf_init =
27                 _mm256_set_epi64x(0, 0, 0, rxq->mbuf_initializer);
28         struct bnxt_cp_ring_info *cpr = rxq->cp_ring;
29         struct bnxt_rx_ring_info *rxr = rxq->rx_ring;
30         uint16_t cp_ring_size = cpr->cp_ring_struct->ring_size;
31         uint16_t rx_ring_size = rxr->rx_ring_struct->ring_size;
32         struct cmpl_base *cp_desc_ring = cpr->cp_desc_ring;
33         uint64_t valid, desc_valid_mask = ~0ULL;
34         const __m256i info3_v_mask = _mm256_set1_epi32(CMPL_BASE_V);
35         uint32_t raw_cons = cpr->cp_raw_cons;
36         uint32_t cons, mbcons;
37         int nb_rx_pkts = 0;
38         int i;
39         const __m256i valid_target =
40                 _mm256_set1_epi32(!!(raw_cons & cp_ring_size));
41         const __m256i dsc_shuf_msk =
42                 _mm256_set_epi8(0xff, 0xff, 0xff, 0xff,  /* Zeroes. */
43                                 7, 6,                    /* metadata type */
44                                 9, 8,                    /* flags2 low 16 */
45                                 5, 4,                    /* vlan_tci */
46                                 1, 0,                    /* errors_v2 */
47                                 0xff, 0xff, 0xff, 0xff,  /* Zeroes. */
48                                 0xff, 0xff, 0xff, 0xff,  /* Zeroes. */
49                                 7, 6,                    /* metadata type */
50                                 9, 8,                    /* flags2 low 16 */
51                                 5, 4,                    /* vlan_tci */
52                                 1, 0,                    /* errors_v2 */
53                                 0xff, 0xff, 0xff, 0xff); /* Zeroes. */
54         const __m256i shuf_msk =
55                 _mm256_set_epi8(15, 14, 13, 12,          /* rss */
56                                 7, 6,                    /* vlan_tci */
57                                 3, 2,                    /* data_len */
58                                 0xFF, 0xFF, 3, 2,        /* pkt_len */
59                                 0xFF, 0xFF, 0xFF, 0xFF,  /* pkt_type (zeroes) */
60                                 15, 14, 13, 12,          /* rss */
61                                 7, 6,                    /* vlan_tci */
62                                 3, 2,                    /* data_len */
63                                 0xFF, 0xFF, 3, 2,        /* pkt_len */
64                                 0xFF, 0xFF, 0xFF, 0xFF); /* pkt_type (zeroes) */
65         const __m256i flags_type_mask =
66                 _mm256_set1_epi32(RX_PKT_CMPL_FLAGS_ITYPE_MASK);
67         const __m256i flags2_mask1 =
68                 _mm256_set1_epi32(CMPL_FLAGS2_VLAN_TUN_MSK);
69         const __m256i flags2_mask2 =
70                 _mm256_set1_epi32(RX_PKT_CMPL_FLAGS2_IP_TYPE);
71         const __m256i rss_mask =
72                 _mm256_set1_epi32(RX_PKT_CMPL_FLAGS_RSS_VALID);
73         __m256i t0, t1, flags_type, flags2, index, errors;
74         __m256i ptype_idx, ptypes, is_tunnel;
75         __m256i mbuf01, mbuf23, mbuf45, mbuf67;
76         __m256i rearm0, rearm1, rearm2, rearm3, rearm4, rearm5, rearm6, rearm7;
77         __m256i ol_flags, ol_flags_hi;
78         __m256i rss_flags;
79
80         /* Validate ptype table indexing at build time. */
81         bnxt_check_ptype_constants();
82
83         /* If Rx Q was stopped return */
84         if (unlikely(!rxq->rx_started))
85                 return 0;
86
87         if (rxq->rxrearm_nb >= rxq->rx_free_thresh)
88                 bnxt_rxq_rearm(rxq, rxr);
89
90         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, BNXT_RX_DESCS_PER_LOOP_VEC256);
91
92         cons = raw_cons & (cp_ring_size - 1);
93         mbcons = (raw_cons / 2) & (rx_ring_size - 1);
94
95         /* Return immediately if there is not at least one completed packet. */
96         if (!bnxt_cpr_cmp_valid(&cp_desc_ring[cons], raw_cons, cp_ring_size))
97                 return 0;
98
99         /* Ensure that we do not go past the ends of the rings. */
100         nb_pkts = RTE_MIN(nb_pkts, RTE_MIN(rx_ring_size - mbcons,
101                                            (cp_ring_size - cons) / 2));
102         /*
103          * If we are at the end of the ring, ensure that descriptors after the
104          * last valid entry are not treated as valid. Otherwise, force the
105          * maximum number of packets to receive to be a multiple of the per-
106          * loop count.
107          */
108         if (nb_pkts < BNXT_RX_DESCS_PER_LOOP_VEC256) {
109                 desc_valid_mask >>=
110                         CHAR_BIT * (BNXT_RX_DESCS_PER_LOOP_VEC256 - nb_pkts);
111         } else {
112                 nb_pkts =
113                         RTE_ALIGN_FLOOR(nb_pkts, BNXT_RX_DESCS_PER_LOOP_VEC256);
114         }
115
116         /* Handle RX burst request */
117         for (i = 0; i < nb_pkts; i += BNXT_RX_DESCS_PER_LOOP_VEC256,
118                                   cons += BNXT_RX_DESCS_PER_LOOP_VEC256 * 2,
119                                   mbcons += BNXT_RX_DESCS_PER_LOOP_VEC256) {
120                 __m256i desc0, desc1, desc2, desc3, desc4, desc5, desc6, desc7;
121                 __m256i rxcmp0_1, rxcmp2_3, rxcmp4_5, rxcmp6_7, info3_v;
122                 __m256i errors_v2;
123                 uint32_t num_valid;
124
125                 /* Copy eight mbuf pointers to output array. */
126                 t0 = _mm256_loadu_si256((void *)&rxr->rx_buf_ring[mbcons]);
127                 _mm256_storeu_si256((void *)&rx_pkts[i], t0);
128 #ifdef RTE_ARCH_X86_64
129                 t0 = _mm256_loadu_si256((void *)&rxr->rx_buf_ring[mbcons + 4]);
130                 _mm256_storeu_si256((void *)&rx_pkts[i + 4], t0);
131 #endif
132
133                 /*
134                  * Load eight receive completion descriptors into 256-bit
135                  * registers. Loads are issued in reverse order in order to
136                  * ensure consistent state.
137                  */
138                 desc7 = _mm256_load_si256((void *)&cp_desc_ring[cons + 14]);
139                 rte_compiler_barrier();
140                 desc6 = _mm256_load_si256((void *)&cp_desc_ring[cons + 12]);
141                 rte_compiler_barrier();
142                 desc5 = _mm256_load_si256((void *)&cp_desc_ring[cons + 10]);
143                 rte_compiler_barrier();
144                 desc4 = _mm256_load_si256((void *)&cp_desc_ring[cons + 8]);
145                 rte_compiler_barrier();
146                 desc3 = _mm256_load_si256((void *)&cp_desc_ring[cons + 6]);
147                 rte_compiler_barrier();
148                 desc2 = _mm256_load_si256((void *)&cp_desc_ring[cons + 4]);
149                 rte_compiler_barrier();
150                 desc1 = _mm256_load_si256((void *)&cp_desc_ring[cons + 2]);
151                 rte_compiler_barrier();
152                 desc0 = _mm256_load_si256((void *)&cp_desc_ring[cons + 0]);
153
154                 /*
155                  * Pack needed fields from each descriptor into a compressed
156                  * 128-bit layout and pair two compressed descriptors into
157                  * 256-bit registers. The 128-bit compressed layout is as
158                  * follows:
159                  *     Bits  0-15: flags_type field from low completion record.
160                  *     Bits 16-31: len field  from low completion record.
161                  *     Bits 32-47: flags2 (low 16 bits) from high completion.
162                  *     Bits 48-79: metadata from high completion record.
163                  *     Bits 80-95: errors_v2 from high completion record.
164                  *     Bits 96-127: rss hash from low completion record.
165                  */
166                 t0 = _mm256_permute2f128_si256(desc6, desc7, 0x20);
167                 t1 = _mm256_permute2f128_si256(desc6, desc7, 0x31);
168                 t1 = _mm256_shuffle_epi8(t1, dsc_shuf_msk);
169                 rxcmp6_7 = _mm256_blend_epi32(t0, t1, 0x66);
170
171                 t0 = _mm256_permute2f128_si256(desc4, desc5, 0x20);
172                 t1 = _mm256_permute2f128_si256(desc4, desc5, 0x31);
173                 t1 = _mm256_shuffle_epi8(t1, dsc_shuf_msk);
174                 rxcmp4_5 = _mm256_blend_epi32(t0, t1, 0x66);
175
176                 t0 = _mm256_permute2f128_si256(desc2, desc3, 0x20);
177                 t1 = _mm256_permute2f128_si256(desc2, desc3, 0x31);
178                 t1 = _mm256_shuffle_epi8(t1, dsc_shuf_msk);
179                 rxcmp2_3 = _mm256_blend_epi32(t0, t1, 0x66);
180
181                 t0 = _mm256_permute2f128_si256(desc0, desc1, 0x20);
182                 t1 = _mm256_permute2f128_si256(desc0, desc1, 0x31);
183                 t1 = _mm256_shuffle_epi8(t1, dsc_shuf_msk);
184                 rxcmp0_1 = _mm256_blend_epi32(t0, t1, 0x66);
185
186                 /* Compute packet type table indices for eight packets. */
187                 t0 = _mm256_unpacklo_epi32(rxcmp0_1, rxcmp2_3);
188                 t1 = _mm256_unpacklo_epi32(rxcmp4_5, rxcmp6_7);
189                 flags_type = _mm256_unpacklo_epi64(t0, t1);
190                 ptype_idx = _mm256_and_si256(flags_type, flags_type_mask);
191                 ptype_idx = _mm256_srli_epi32(ptype_idx,
192                                               RX_PKT_CMPL_FLAGS_ITYPE_SFT -
193                                               BNXT_PTYPE_TBL_TYPE_SFT);
194
195                 t0 = _mm256_unpacklo_epi32(rxcmp0_1, rxcmp2_3);
196                 t1 = _mm256_unpacklo_epi32(rxcmp4_5, rxcmp6_7);
197                 flags2 = _mm256_unpackhi_epi64(t0, t1);
198
199                 t0 = _mm256_srli_epi32(_mm256_and_si256(flags2, flags2_mask1),
200                                        RX_PKT_CMPL_FLAGS2_META_FORMAT_SFT -
201                                        BNXT_PTYPE_TBL_VLAN_SFT);
202                 ptype_idx = _mm256_or_si256(ptype_idx, t0);
203
204                 t0 = _mm256_srli_epi32(_mm256_and_si256(flags2, flags2_mask2),
205                                        RX_PKT_CMPL_FLAGS2_IP_TYPE_SFT -
206                                        BNXT_PTYPE_TBL_IP_VER_SFT);
207                 ptype_idx = _mm256_or_si256(ptype_idx, t0);
208
209                 /*
210                  * Load ptypes for eight packets using gather. Gather operations
211                  * have extremely high latency (~19 cycles), execution and use
212                  * of result should be separated as much as possible.
213                  */
214                 ptypes = _mm256_i32gather_epi32((int *)bnxt_ptype_table,
215                                                 ptype_idx, sizeof(uint32_t));
216                 /*
217                  * Compute ol_flags and checksum error table indices for eight
218                  * packets.
219                  */
220                 is_tunnel = _mm256_and_si256(flags2, _mm256_set1_epi32(4));
221                 is_tunnel = _mm256_slli_epi32(is_tunnel, 3);
222                 flags2 = _mm256_and_si256(flags2, _mm256_set1_epi32(0x1F));
223
224                 /* Extract errors_v2 fields for eight packets. */
225                 t0 = _mm256_unpackhi_epi32(rxcmp0_1, rxcmp2_3);
226                 t1 = _mm256_unpackhi_epi32(rxcmp4_5, rxcmp6_7);
227                 errors_v2 = _mm256_unpacklo_epi64(t0, t1);
228
229                 errors = _mm256_srli_epi32(errors_v2, 4);
230                 errors = _mm256_and_si256(errors, _mm256_set1_epi32(0xF));
231                 errors = _mm256_and_si256(errors, flags2);
232
233                 index = _mm256_andnot_si256(errors, flags2);
234                 errors = _mm256_or_si256(errors,
235                                          _mm256_srli_epi32(is_tunnel, 1));
236                 index = _mm256_or_si256(index, is_tunnel);
237
238                 /*
239                  * Load ol_flags for eight packets using gather. Gather
240                  * operations have extremely high latency (~19 cycles),
241                  * execution and use of result should be separated as much
242                  * as possible.
243                  */
244                 ol_flags = _mm256_i32gather_epi32((int *)rxr->ol_flags_table,
245                                                   index, sizeof(uint32_t));
246                 errors = _mm256_i32gather_epi32((int *)rxr->ol_flags_err_table,
247                                                 errors, sizeof(uint32_t));
248
249                 /*
250                  * Pack the 128-bit array of valid descriptor flags into 64
251                  * bits and count the number of set bits in order to determine
252                  * the number of valid descriptors.
253                  */
254                 const __m256i perm_msk =
255                                 _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0);
256                 info3_v = _mm256_permutevar8x32_epi32(errors_v2, perm_msk);
257                 info3_v = _mm256_and_si256(errors_v2, info3_v_mask);
258                 info3_v = _mm256_xor_si256(info3_v, valid_target);
259
260                 info3_v = _mm256_packs_epi32(info3_v, _mm256_setzero_si256());
261                 valid = _mm_cvtsi128_si64(_mm256_extracti128_si256(info3_v, 1));
262                 valid = (valid << CHAR_BIT) |
263                         _mm_cvtsi128_si64(_mm256_castsi256_si128(info3_v));
264                 num_valid = __builtin_popcountll(valid & desc_valid_mask);
265
266                 if (num_valid == 0)
267                         break;
268
269                 /* Update mbuf rearm_data for eight packets. */
270                 mbuf01 = _mm256_shuffle_epi8(rxcmp0_1, shuf_msk);
271                 mbuf23 = _mm256_shuffle_epi8(rxcmp2_3, shuf_msk);
272                 mbuf45 = _mm256_shuffle_epi8(rxcmp4_5, shuf_msk);
273                 mbuf67 = _mm256_shuffle_epi8(rxcmp6_7, shuf_msk);
274
275                 /* Blend in ptype field for two mbufs at a time. */
276                 mbuf01 = _mm256_blend_epi32(mbuf01, ptypes, 0x11);
277                 mbuf23 = _mm256_blend_epi32(mbuf23,
278                                         _mm256_srli_si256(ptypes, 4), 0x11);
279                 mbuf45 = _mm256_blend_epi32(mbuf45,
280                                         _mm256_srli_si256(ptypes, 8), 0x11);
281                 mbuf67 = _mm256_blend_epi32(mbuf67,
282                                         _mm256_srli_si256(ptypes, 12), 0x11);
283
284                 /* Unpack rearm data, set fixed fields for first four mbufs. */
285                 rearm0 = _mm256_permute2f128_si256(mbuf_init, mbuf01, 0x20);
286                 rearm1 = _mm256_blend_epi32(mbuf_init, mbuf01, 0xF0);
287                 rearm2 = _mm256_permute2f128_si256(mbuf_init, mbuf23, 0x20);
288                 rearm3 = _mm256_blend_epi32(mbuf_init, mbuf23, 0xF0);
289
290                 /* Compute final ol_flags values for eight packets. */
291                 rss_flags = _mm256_and_si256(flags_type, rss_mask);
292                 rss_flags = _mm256_srli_epi32(rss_flags, 9);
293                 ol_flags = _mm256_or_si256(ol_flags, errors);
294                 ol_flags = _mm256_or_si256(ol_flags, rss_flags);
295                 ol_flags_hi = _mm256_permute2f128_si256(ol_flags,
296                                                         ol_flags, 0x11);
297
298                 /* Set ol_flags fields for first four packets. */
299                 rearm0 = _mm256_blend_epi32(rearm0,
300                                             _mm256_slli_si256(ol_flags, 8),
301                                             0x04);
302                 rearm1 = _mm256_blend_epi32(rearm1,
303                                             _mm256_slli_si256(ol_flags_hi, 8),
304                                             0x04);
305                 rearm2 = _mm256_blend_epi32(rearm2,
306                                             _mm256_slli_si256(ol_flags, 4),
307                                             0x04);
308                 rearm3 = _mm256_blend_epi32(rearm3,
309                                             _mm256_slli_si256(ol_flags_hi, 4),
310                                             0x04);
311
312                 /* Store all mbuf fields for first four packets. */
313                 _mm256_storeu_si256((void *)&rx_pkts[i + 0]->rearm_data,
314                                     rearm0);
315                 _mm256_storeu_si256((void *)&rx_pkts[i + 1]->rearm_data,
316                                     rearm1);
317                 _mm256_storeu_si256((void *)&rx_pkts[i + 2]->rearm_data,
318                                     rearm2);
319                 _mm256_storeu_si256((void *)&rx_pkts[i + 3]->rearm_data,
320                                     rearm3);
321
322                 /* Unpack rearm data, set fixed fields for final four mbufs. */
323                 rearm4 = _mm256_permute2f128_si256(mbuf_init, mbuf45, 0x20);
324                 rearm5 = _mm256_blend_epi32(mbuf_init, mbuf45, 0xF0);
325                 rearm6 = _mm256_permute2f128_si256(mbuf_init, mbuf67, 0x20);
326                 rearm7 = _mm256_blend_epi32(mbuf_init, mbuf67, 0xF0);
327
328                 /* Set ol_flags fields for final four packets. */
329                 rearm4 = _mm256_blend_epi32(rearm4, ol_flags, 0x04);
330                 rearm5 = _mm256_blend_epi32(rearm5, ol_flags_hi, 0x04);
331                 rearm6 = _mm256_blend_epi32(rearm6,
332                                             _mm256_srli_si256(ol_flags, 4),
333                                             0x04);
334                 rearm7 = _mm256_blend_epi32(rearm7,
335                                             _mm256_srli_si256(ol_flags_hi, 4),
336                                             0x04);
337
338                 /* Store all mbuf fields for final four packets. */
339                 _mm256_storeu_si256((void *)&rx_pkts[i + 4]->rearm_data,
340                                     rearm4);
341                 _mm256_storeu_si256((void *)&rx_pkts[i + 5]->rearm_data,
342                                     rearm5);
343                 _mm256_storeu_si256((void *)&rx_pkts[i + 6]->rearm_data,
344                                     rearm6);
345                 _mm256_storeu_si256((void *)&rx_pkts[i + 7]->rearm_data,
346                                     rearm7);
347
348                 nb_rx_pkts += num_valid;
349                 if (num_valid < BNXT_RX_DESCS_PER_LOOP_VEC256)
350                         break;
351         }
352
353         if (nb_rx_pkts) {
354                 rxr->rx_raw_prod = RING_ADV(rxr->rx_raw_prod, nb_rx_pkts);
355
356                 rxq->rxrearm_nb += nb_rx_pkts;
357                 cpr->cp_raw_cons += 2 * nb_rx_pkts;
358                 bnxt_db_cq(cpr);
359         }
360
361         return nb_rx_pkts;
362 }
363
364 uint16_t
365 bnxt_recv_pkts_vec_avx2(void *rx_queue, struct rte_mbuf **rx_pkts,
366                          uint16_t nb_pkts)
367 {
368         uint16_t cnt = 0;
369
370         while (nb_pkts > RTE_BNXT_MAX_RX_BURST) {
371                 uint16_t burst;
372
373                 burst = recv_burst_vec_avx2(rx_queue, rx_pkts + cnt,
374                                              RTE_BNXT_MAX_RX_BURST);
375
376                 cnt += burst;
377                 nb_pkts -= burst;
378
379                 if (burst < RTE_BNXT_MAX_RX_BURST)
380                         return cnt;
381         }
382         return cnt + recv_burst_vec_avx2(rx_queue, rx_pkts + cnt, nb_pkts);
383 }
384
385 static void
386 bnxt_handle_tx_cp_vec(struct bnxt_tx_queue *txq)
387 {
388         struct bnxt_cp_ring_info *cpr = txq->cp_ring;
389         uint32_t raw_cons = cpr->cp_raw_cons;
390         uint32_t cons;
391         uint32_t nb_tx_pkts = 0;
392         struct tx_cmpl *txcmp;
393         struct cmpl_base *cp_desc_ring = cpr->cp_desc_ring;
394         struct bnxt_ring *cp_ring_struct = cpr->cp_ring_struct;
395         uint32_t ring_mask = cp_ring_struct->ring_mask;
396
397         do {
398                 cons = RING_CMPL(ring_mask, raw_cons);
399                 txcmp = (struct tx_cmpl *)&cp_desc_ring[cons];
400
401                 if (!bnxt_cpr_cmp_valid(txcmp, raw_cons, ring_mask + 1))
402                         break;
403
404                 nb_tx_pkts += txcmp->opaque;
405                 raw_cons = NEXT_RAW_CMP(raw_cons);
406         } while (nb_tx_pkts < ring_mask);
407
408         if (nb_tx_pkts) {
409                 if (txq->offloads & RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE)
410                         bnxt_tx_cmp_vec_fast(txq, nb_tx_pkts);
411                 else
412                         bnxt_tx_cmp_vec(txq, nb_tx_pkts);
413                 cpr->cp_raw_cons = raw_cons;
414                 bnxt_db_cq(cpr);
415         }
416 }
417
418 static inline void
419 bnxt_xmit_one(struct rte_mbuf *mbuf, struct tx_bd_long *txbd,
420               struct rte_mbuf **tx_buf)
421 {
422         uint64_t dsc_hi, dsc_lo;
423         __m128i desc;
424
425         *tx_buf = mbuf;
426
427         dsc_hi = mbuf->buf_iova + mbuf->data_off;
428         dsc_lo = (mbuf->data_len << 16) |
429                  bnxt_xmit_flags_len(mbuf->data_len, TX_BD_FLAGS_NOCMPL);
430
431         desc = _mm_set_epi64x(dsc_hi, dsc_lo);
432         _mm_store_si128((void *)txbd, desc);
433 }
434
435 static uint16_t
436 bnxt_xmit_fixed_burst_vec(struct bnxt_tx_queue *txq, struct rte_mbuf **pkts,
437                           uint16_t nb_pkts)
438 {
439         struct bnxt_tx_ring_info *txr = txq->tx_ring;
440         uint16_t tx_prod, tx_raw_prod = txr->tx_raw_prod;
441         struct tx_bd_long *txbd;
442         struct rte_mbuf **tx_buf;
443         uint16_t to_send;
444
445         tx_prod = RING_IDX(txr->tx_ring_struct, tx_raw_prod);
446         txbd = &txr->tx_desc_ring[tx_prod];
447         tx_buf = &txr->tx_buf_ring[tx_prod];
448
449         /* Prefetch next transmit buffer descriptors. */
450         rte_prefetch0(txbd);
451         rte_prefetch0(txbd + 3);
452
453         nb_pkts = RTE_MIN(nb_pkts, bnxt_tx_avail(txq));
454
455         if (unlikely(nb_pkts == 0))
456                 return 0;
457
458         /* Handle TX burst request */
459         to_send = nb_pkts;
460
461         /*
462          * If current descriptor is not on a 32-byte boundary, send one packet
463          * to align for 32-byte stores.
464          */
465         if (tx_prod & 1) {
466                 bnxt_xmit_one(pkts[0], txbd++, tx_buf++);
467                 to_send--;
468                 pkts++;
469         }
470
471         /*
472          * Send four packets per loop, with a single store for each pair
473          * of descriptors.
474          */
475         while (to_send >= BNXT_TX_DESCS_PER_LOOP) {
476                 uint64_t dsc0_hi, dsc0_lo, dsc1_hi, dsc1_lo;
477                 uint64_t dsc2_hi, dsc2_lo, dsc3_hi, dsc3_lo;
478                 __m256i dsc01, dsc23;
479
480                 /* Prefetch next transmit buffer descriptors. */
481                 rte_prefetch0(txbd + 4);
482                 rte_prefetch0(txbd + 7);
483
484                 /* Copy four mbuf pointers to tx buf ring. */
485 #ifdef RTE_ARCH_X86_64
486                 __m256i tmp = _mm256_loadu_si256((void *)pkts);
487                 _mm256_storeu_si256((void *)tx_buf, tmp);
488 #else
489                 __m128i tmp = _mm_loadu_si128((void *)pkts);
490                 _mm_storeu_si128((void *)tx_buf, tmp);
491 #endif
492
493                 dsc0_hi = tx_buf[0]->buf_iova + tx_buf[0]->data_off;
494                 dsc0_lo = (tx_buf[0]->data_len << 16) |
495                           bnxt_xmit_flags_len(tx_buf[0]->data_len,
496                                               TX_BD_FLAGS_NOCMPL);
497
498                 dsc1_hi = tx_buf[1]->buf_iova + tx_buf[1]->data_off;
499                 dsc1_lo = (tx_buf[1]->data_len << 16) |
500                           bnxt_xmit_flags_len(tx_buf[1]->data_len,
501                                               TX_BD_FLAGS_NOCMPL);
502
503                 dsc01 = _mm256_set_epi64x(dsc1_hi, dsc1_lo, dsc0_hi, dsc0_lo);
504
505                 dsc2_hi = tx_buf[2]->buf_iova + tx_buf[2]->data_off;
506                 dsc2_lo = (tx_buf[2]->data_len << 16) |
507                           bnxt_xmit_flags_len(tx_buf[2]->data_len,
508                                               TX_BD_FLAGS_NOCMPL);
509
510                 dsc3_hi = tx_buf[3]->buf_iova + tx_buf[3]->data_off;
511                 dsc3_lo = (tx_buf[3]->data_len << 16) |
512                           bnxt_xmit_flags_len(tx_buf[3]->data_len,
513                                               TX_BD_FLAGS_NOCMPL);
514
515                 dsc23 = _mm256_set_epi64x(dsc3_hi, dsc3_lo, dsc2_hi, dsc2_lo);
516
517                 _mm256_store_si256((void *)txbd, dsc01);
518                 _mm256_store_si256((void *)(txbd + 2), dsc23);
519
520                 to_send -= BNXT_TX_DESCS_PER_LOOP;
521                 pkts += BNXT_TX_DESCS_PER_LOOP;
522                 txbd += BNXT_TX_DESCS_PER_LOOP;
523                 tx_buf += BNXT_TX_DESCS_PER_LOOP;
524         }
525
526         /* Send any remaining packets, writing each descriptor individually. */
527         while (to_send) {
528                 bnxt_xmit_one(pkts[0], txbd++, tx_buf++);
529                 to_send--;
530                 pkts++;
531         }
532
533         /* Request a completion for the final packet of the burst. */
534         txbd[-1].opaque = nb_pkts;
535         txbd[-1].flags_type &= ~TX_BD_LONG_FLAGS_NO_CMPL;
536
537         tx_raw_prod += nb_pkts;
538         bnxt_db_write(&txr->tx_db, tx_raw_prod);
539
540         txr->tx_raw_prod = tx_raw_prod;
541
542         return nb_pkts;
543 }
544
545 uint16_t
546 bnxt_xmit_pkts_vec_avx2(void *tx_queue, struct rte_mbuf **tx_pkts,
547                         uint16_t nb_pkts)
548 {
549         int nb_sent = 0;
550         struct bnxt_tx_queue *txq = tx_queue;
551         struct bnxt_tx_ring_info *txr = txq->tx_ring;
552         uint16_t ring_size = txr->tx_ring_struct->ring_size;
553
554         /* Tx queue was stopped; wait for it to be restarted */
555         if (unlikely(!txq->tx_started)) {
556                 PMD_DRV_LOG(DEBUG, "Tx q stopped;return\n");
557                 return 0;
558         }
559
560         /* Handle TX completions */
561         if (bnxt_tx_bds_in_hw(txq) >= txq->tx_free_thresh)
562                 bnxt_handle_tx_cp_vec(txq);
563
564         while (nb_pkts) {
565                 uint16_t ret, num;
566
567                 /*
568                  * Ensure that no more than RTE_BNXT_MAX_TX_BURST packets
569                  * are transmitted before the next completion.
570                  */
571                 num = RTE_MIN(nb_pkts, RTE_BNXT_MAX_TX_BURST);
572
573                 /*
574                  * Ensure that a ring wrap does not occur within a call to
575                  * bnxt_xmit_fixed_burst_vec().
576                  */
577                 num = RTE_MIN(num, ring_size -
578                                    (txr->tx_raw_prod & (ring_size - 1)));
579                 ret = bnxt_xmit_fixed_burst_vec(txq, &tx_pkts[nb_sent], num);
580                 nb_sent += ret;
581                 nb_pkts -= ret;
582                 if (ret < num)
583                         break;
584         }
585
586         return nb_sent;
587 }