net/cxgbe: support matching VLAN via flow API
[dpdk.git] / drivers / net / cxgbe / cxgbe_main.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2014-2018 Chelsio Communications.
3  * All rights reserved.
4  */
5
6 #include <sys/queue.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <string.h>
11 #include <unistd.h>
12 #include <stdarg.h>
13 #include <inttypes.h>
14 #include <netinet/in.h>
15
16 #include <rte_byteorder.h>
17 #include <rte_common.h>
18 #include <rte_cycles.h>
19 #include <rte_interrupts.h>
20 #include <rte_log.h>
21 #include <rte_debug.h>
22 #include <rte_pci.h>
23 #include <rte_atomic.h>
24 #include <rte_branch_prediction.h>
25 #include <rte_memory.h>
26 #include <rte_tailq.h>
27 #include <rte_eal.h>
28 #include <rte_alarm.h>
29 #include <rte_ether.h>
30 #include <rte_ethdev_driver.h>
31 #include <rte_ethdev_pci.h>
32 #include <rte_random.h>
33 #include <rte_dev.h>
34 #include <rte_kvargs.h>
35
36 #include "base/common.h"
37 #include "base/t4_regs.h"
38 #include "base/t4_msg.h"
39 #include "cxgbe.h"
40 #include "cxgbe_pfvf.h"
41 #include "clip_tbl.h"
42 #include "l2t.h"
43 #include "mps_tcam.h"
44
45 /**
46  * Allocate a chunk of memory. The allocated memory is cleared.
47  */
48 void *t4_alloc_mem(size_t size)
49 {
50         return rte_zmalloc(NULL, size, 0);
51 }
52
53 /**
54  * Free memory allocated through t4_alloc_mem().
55  */
56 void t4_free_mem(void *addr)
57 {
58         rte_free(addr);
59 }
60
61 /*
62  * Response queue handler for the FW event queue.
63  */
64 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
65                           __rte_unused const struct pkt_gl *gl)
66 {
67         u8 opcode = ((const struct rss_header *)rsp)->opcode;
68
69         rsp++;                                          /* skip RSS header */
70
71         /*
72          * FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
73          */
74         if (unlikely(opcode == CPL_FW4_MSG &&
75                      ((const struct cpl_fw4_msg *)rsp)->type ==
76                       FW_TYPE_RSSCPL)) {
77                 rsp++;
78                 opcode = ((const struct rss_header *)rsp)->opcode;
79                 rsp++;
80                 if (opcode != CPL_SGE_EGR_UPDATE) {
81                         dev_err(q->adapter, "unexpected FW4/CPL %#x on FW event queue\n",
82                                 opcode);
83                         goto out;
84                 }
85         }
86
87         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
88                 /* do nothing */
89         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
90                 const struct cpl_fw6_msg *msg = (const void *)rsp;
91
92                 t4_handle_fw_rpl(q->adapter, msg->data);
93         } else if (opcode == CPL_ABORT_RPL_RSS) {
94                 const struct cpl_abort_rpl_rss *p = (const void *)rsp;
95
96                 cxgbe_hash_del_filter_rpl(q->adapter, p);
97         } else if (opcode == CPL_SET_TCB_RPL) {
98                 const struct cpl_set_tcb_rpl *p = (const void *)rsp;
99
100                 cxgbe_filter_rpl(q->adapter, p);
101         } else if (opcode == CPL_ACT_OPEN_RPL) {
102                 const struct cpl_act_open_rpl *p = (const void *)rsp;
103
104                 cxgbe_hash_filter_rpl(q->adapter, p);
105         } else if (opcode == CPL_L2T_WRITE_RPL) {
106                 const struct cpl_l2t_write_rpl *p = (const void *)rsp;
107
108                 cxgbe_do_l2t_write_rpl(q->adapter, p);
109         } else {
110                 dev_err(adapter, "unexpected CPL %#x on FW event queue\n",
111                         opcode);
112         }
113 out:
114         return 0;
115 }
116
117 /**
118  * Setup sge control queues to pass control information.
119  */
120 int cxgbe_setup_sge_ctrl_txq(struct adapter *adapter)
121 {
122         struct sge *s = &adapter->sge;
123         int err = 0, i = 0;
124
125         for_each_port(adapter, i) {
126                 struct port_info *pi = adap2pinfo(adapter, i);
127                 char name[RTE_ETH_NAME_MAX_LEN];
128                 struct sge_ctrl_txq *q = &s->ctrlq[i];
129
130                 q->q.size = 1024;
131                 err = t4_sge_alloc_ctrl_txq(adapter, q,
132                                             adapter->eth_dev,  i,
133                                             s->fw_evtq.cntxt_id,
134                                             rte_socket_id());
135                 if (err) {
136                         dev_err(adapter, "Failed to alloc ctrl txq. Err: %d",
137                                 err);
138                         goto out;
139                 }
140                 snprintf(name, sizeof(name), "%s_ctrl_pool_%d",
141                          pi->eth_dev->device->driver->name,
142                          pi->eth_dev->data->port_id);
143                 q->mb_pool = rte_pktmbuf_pool_create(name, s->ctrlq[i].q.size,
144                                                      RTE_CACHE_LINE_SIZE,
145                                                      RTE_MBUF_PRIV_ALIGN,
146                                                      RTE_MBUF_DEFAULT_BUF_SIZE,
147                                                      SOCKET_ID_ANY);
148                 if (!q->mb_pool) {
149                         err = -rte_errno;
150                         dev_err(adapter,
151                                 "Can't create ctrl pool for port %d. Err: %d\n",
152                                 pi->eth_dev->data->port_id, err);
153                         goto out;
154                 }
155         }
156         return 0;
157 out:
158         t4_free_sge_resources(adapter);
159         return err;
160 }
161
162 /**
163  * cxgbe_poll_for_completion: Poll rxq for completion
164  * @q: rxq to poll
165  * @ms: milliseconds to delay
166  * @cnt: number of times to poll
167  * @c: completion to check for 'done' status
168  *
169  * Polls the rxq for reples until completion is done or the count
170  * expires.
171  */
172 int cxgbe_poll_for_completion(struct sge_rspq *q, unsigned int ms,
173                               unsigned int cnt, struct t4_completion *c)
174 {
175         unsigned int i;
176         unsigned int work_done, budget = 32;
177
178         if (!c)
179                 return -EINVAL;
180
181         for (i = 0; i < cnt; i++) {
182                 cxgbe_poll(q, NULL, budget, &work_done);
183                 t4_os_lock(&c->lock);
184                 if (c->done) {
185                         t4_os_unlock(&c->lock);
186                         return 0;
187                 }
188                 t4_os_unlock(&c->lock);
189                 rte_delay_ms(ms);
190         }
191         return -ETIMEDOUT;
192 }
193
194 int cxgbe_setup_sge_fwevtq(struct adapter *adapter)
195 {
196         struct sge *s = &adapter->sge;
197         int err = 0;
198         int msi_idx = 0;
199
200         err = t4_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->eth_dev,
201                                msi_idx, NULL, fwevtq_handler, -1, NULL, 0,
202                                rte_socket_id());
203         return err;
204 }
205
206 static int closest_timer(const struct sge *s, int time)
207 {
208         unsigned int i, match = 0;
209         int delta, min_delta = INT_MAX;
210
211         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
212                 delta = time - s->timer_val[i];
213                 if (delta < 0)
214                         delta = -delta;
215                 if (delta < min_delta) {
216                         min_delta = delta;
217                         match = i;
218                 }
219         }
220         return match;
221 }
222
223 static int closest_thres(const struct sge *s, int thres)
224 {
225         unsigned int i, match = 0;
226         int delta, min_delta = INT_MAX;
227
228         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
229                 delta = thres - s->counter_val[i];
230                 if (delta < 0)
231                         delta = -delta;
232                 if (delta < min_delta) {
233                         min_delta = delta;
234                         match = i;
235                 }
236         }
237         return match;
238 }
239
240 /**
241  * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
242  * @q: the Rx queue
243  * @us: the hold-off time in us, or 0 to disable timer
244  * @cnt: the hold-off packet count, or 0 to disable counter
245  *
246  * Sets an Rx queue's interrupt hold-off time and packet count.  At least
247  * one of the two needs to be enabled for the queue to generate interrupts.
248  */
249 int cxgb4_set_rspq_intr_params(struct sge_rspq *q, unsigned int us,
250                                unsigned int cnt)
251 {
252         struct adapter *adap = q->adapter;
253         unsigned int timer_val;
254
255         if (cnt) {
256                 int err;
257                 u32 v, new_idx;
258
259                 new_idx = closest_thres(&adap->sge, cnt);
260                 if (q->desc && q->pktcnt_idx != new_idx) {
261                         /* the queue has already been created, update it */
262                         v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
263                             V_FW_PARAMS_PARAM_X(
264                             FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
265                             V_FW_PARAMS_PARAM_YZ(q->cntxt_id);
266                         err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
267                                             &v, &new_idx);
268                         if (err)
269                                 return err;
270                 }
271                 q->pktcnt_idx = new_idx;
272         }
273
274         timer_val = (us == 0) ? X_TIMERREG_RESTART_COUNTER :
275                                 closest_timer(&adap->sge, us);
276
277         if ((us | cnt) == 0)
278                 q->intr_params = V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX);
279         else
280                 q->intr_params = V_QINTR_TIMER_IDX(timer_val) |
281                                  V_QINTR_CNT_EN(cnt > 0);
282         return 0;
283 }
284
285 /**
286  * Allocate an active-open TID and set it to the supplied value.
287  */
288 int cxgbe_alloc_atid(struct tid_info *t, void *data)
289 {
290         int atid = -1;
291
292         t4_os_lock(&t->atid_lock);
293         if (t->afree) {
294                 union aopen_entry *p = t->afree;
295
296                 atid = p - t->atid_tab;
297                 t->afree = p->next;
298                 p->data = data;
299                 t->atids_in_use++;
300         }
301         t4_os_unlock(&t->atid_lock);
302         return atid;
303 }
304
305 /**
306  * Release an active-open TID.
307  */
308 void cxgbe_free_atid(struct tid_info *t, unsigned int atid)
309 {
310         union aopen_entry *p = &t->atid_tab[atid];
311
312         t4_os_lock(&t->atid_lock);
313         p->next = t->afree;
314         t->afree = p;
315         t->atids_in_use--;
316         t4_os_unlock(&t->atid_lock);
317 }
318
319 /**
320  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
321  */
322 static void mk_tid_release(struct rte_mbuf *mbuf, unsigned int tid)
323 {
324         struct cpl_tid_release *req;
325
326         req = rte_pktmbuf_mtod(mbuf, struct cpl_tid_release *);
327         INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
328 }
329
330 /**
331  * Release a TID and inform HW.  If we are unable to allocate the release
332  * message we defer to a work queue.
333  */
334 void cxgbe_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
335                       unsigned short family)
336 {
337         struct rte_mbuf *mbuf;
338         struct adapter *adap = container_of(t, struct adapter, tids);
339
340         WARN_ON(tid >= t->ntids);
341
342         if (t->tid_tab[tid]) {
343                 t->tid_tab[tid] = NULL;
344                 rte_atomic32_dec(&t->conns_in_use);
345                 if (t->hash_base && tid >= t->hash_base) {
346                         if (family == FILTER_TYPE_IPV4)
347                                 rte_atomic32_dec(&t->hash_tids_in_use);
348                 } else {
349                         if (family == FILTER_TYPE_IPV4)
350                                 rte_atomic32_dec(&t->tids_in_use);
351                 }
352         }
353
354         mbuf = rte_pktmbuf_alloc((&adap->sge.ctrlq[chan])->mb_pool);
355         if (mbuf) {
356                 mbuf->data_len = sizeof(struct cpl_tid_release);
357                 mbuf->pkt_len = mbuf->data_len;
358                 mk_tid_release(mbuf, tid);
359                 t4_mgmt_tx(&adap->sge.ctrlq[chan], mbuf);
360         }
361 }
362
363 /**
364  * Insert a TID.
365  */
366 void cxgbe_insert_tid(struct tid_info *t, void *data, unsigned int tid,
367                       unsigned short family)
368 {
369         t->tid_tab[tid] = data;
370         if (t->hash_base && tid >= t->hash_base) {
371                 if (family == FILTER_TYPE_IPV4)
372                         rte_atomic32_inc(&t->hash_tids_in_use);
373         } else {
374                 if (family == FILTER_TYPE_IPV4)
375                         rte_atomic32_inc(&t->tids_in_use);
376         }
377
378         rte_atomic32_inc(&t->conns_in_use);
379 }
380
381 /**
382  * Free TID tables.
383  */
384 static void tid_free(struct tid_info *t)
385 {
386         if (t->tid_tab) {
387                 if (t->ftid_bmap)
388                         rte_bitmap_free(t->ftid_bmap);
389
390                 if (t->ftid_bmap_array)
391                         t4_os_free(t->ftid_bmap_array);
392
393                 t4_os_free(t->tid_tab);
394         }
395
396         memset(t, 0, sizeof(struct tid_info));
397 }
398
399 /**
400  * Allocate and initialize the TID tables.  Returns 0 on success.
401  */
402 static int tid_init(struct tid_info *t)
403 {
404         size_t size;
405         unsigned int ftid_bmap_size;
406         unsigned int natids = t->natids;
407         unsigned int max_ftids = t->nftids;
408
409         ftid_bmap_size = rte_bitmap_get_memory_footprint(t->nftids);
410         size = t->ntids * sizeof(*t->tid_tab) +
411                 max_ftids * sizeof(*t->ftid_tab) +
412                 natids * sizeof(*t->atid_tab);
413
414         t->tid_tab = t4_os_alloc(size);
415         if (!t->tid_tab)
416                 return -ENOMEM;
417
418         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
419         t->ftid_tab = (struct filter_entry *)&t->atid_tab[t->natids];
420         t->ftid_bmap_array = t4_os_alloc(ftid_bmap_size);
421         if (!t->ftid_bmap_array) {
422                 tid_free(t);
423                 return -ENOMEM;
424         }
425
426         t4_os_lock_init(&t->atid_lock);
427         t4_os_lock_init(&t->ftid_lock);
428
429         t->afree = NULL;
430         t->atids_in_use = 0;
431         rte_atomic32_init(&t->tids_in_use);
432         rte_atomic32_set(&t->tids_in_use, 0);
433         rte_atomic32_init(&t->conns_in_use);
434         rte_atomic32_set(&t->conns_in_use, 0);
435
436         /* Setup the free list for atid_tab and clear the stid bitmap. */
437         if (natids) {
438                 while (--natids)
439                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
440                 t->afree = t->atid_tab;
441         }
442
443         t->ftid_bmap = rte_bitmap_init(t->nftids, t->ftid_bmap_array,
444                                        ftid_bmap_size);
445         if (!t->ftid_bmap) {
446                 tid_free(t);
447                 return -ENOMEM;
448         }
449
450         return 0;
451 }
452
453 static inline bool is_x_1g_port(const struct link_config *lc)
454 {
455         return (lc->pcaps & FW_PORT_CAP32_SPEED_1G) != 0;
456 }
457
458 static inline bool is_x_10g_port(const struct link_config *lc)
459 {
460         unsigned int speeds, high_speeds;
461
462         speeds = V_FW_PORT_CAP32_SPEED(G_FW_PORT_CAP32_SPEED(lc->pcaps));
463         high_speeds = speeds &
464                       ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
465
466         return high_speeds != 0;
467 }
468
469 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
470                       unsigned int us, unsigned int cnt,
471                       unsigned int size, unsigned int iqe_size)
472 {
473         q->adapter = adap;
474         cxgb4_set_rspq_intr_params(q, us, cnt);
475         q->iqe_len = iqe_size;
476         q->size = size;
477 }
478
479 int cxgbe_cfg_queue_count(struct rte_eth_dev *eth_dev)
480 {
481         struct port_info *pi = eth_dev->data->dev_private;
482         struct adapter *adap = pi->adapter;
483         struct sge *s = &adap->sge;
484         unsigned int max_queues = s->max_ethqsets / adap->params.nports;
485
486         if ((eth_dev->data->nb_rx_queues < 1) ||
487             (eth_dev->data->nb_tx_queues < 1))
488                 return -EINVAL;
489
490         if ((eth_dev->data->nb_rx_queues > max_queues) ||
491             (eth_dev->data->nb_tx_queues > max_queues))
492                 return -EINVAL;
493
494         if (eth_dev->data->nb_rx_queues > pi->rss_size)
495                 return -EINVAL;
496
497         /* We must configure RSS, since config has changed*/
498         pi->flags &= ~PORT_RSS_DONE;
499
500         pi->n_rx_qsets = eth_dev->data->nb_rx_queues;
501         pi->n_tx_qsets = eth_dev->data->nb_tx_queues;
502
503         return 0;
504 }
505
506 void cxgbe_cfg_queues(struct rte_eth_dev *eth_dev)
507 {
508         struct port_info *pi = eth_dev->data->dev_private;
509         struct adapter *adap = pi->adapter;
510         struct sge *s = &adap->sge;
511         unsigned int i, nb_ports = 0, qidx = 0;
512         unsigned int q_per_port = 0;
513
514         if (!(adap->flags & CFG_QUEUES)) {
515                 for_each_port(adap, i) {
516                         struct port_info *tpi = adap2pinfo(adap, i);
517
518                         nb_ports += (is_x_10g_port(&tpi->link_cfg)) ||
519                                      is_x_1g_port(&tpi->link_cfg) ? 1 : 0;
520                 }
521
522                 /*
523                  * We default up to # of cores queues per 1G/10G port.
524                  */
525                 if (nb_ports)
526                         q_per_port = (s->max_ethqsets -
527                                      (adap->params.nports - nb_ports)) /
528                                      nb_ports;
529
530                 if (q_per_port > rte_lcore_count())
531                         q_per_port = rte_lcore_count();
532
533                 for_each_port(adap, i) {
534                         struct port_info *pi = adap2pinfo(adap, i);
535
536                         pi->first_qset = qidx;
537
538                         /* Initially n_rx_qsets == n_tx_qsets */
539                         pi->n_rx_qsets = (is_x_10g_port(&pi->link_cfg) ||
540                                           is_x_1g_port(&pi->link_cfg)) ?
541                                           q_per_port : 1;
542                         pi->n_tx_qsets = pi->n_rx_qsets;
543
544                         if (pi->n_rx_qsets > pi->rss_size)
545                                 pi->n_rx_qsets = pi->rss_size;
546
547                         qidx += pi->n_rx_qsets;
548                 }
549
550                 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
551                         struct sge_eth_rxq *r = &s->ethrxq[i];
552
553                         init_rspq(adap, &r->rspq, 5, 32, 1024, 64);
554                         r->usembufs = 1;
555                         r->fl.size = (r->usembufs ? 1024 : 72);
556                 }
557
558                 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
559                         s->ethtxq[i].q.size = 1024;
560
561                 init_rspq(adap, &adap->sge.fw_evtq, 0, 0, 1024, 64);
562                 adap->flags |= CFG_QUEUES;
563         }
564 }
565
566 void cxgbe_stats_get(struct port_info *pi, struct port_stats *stats)
567 {
568         t4_get_port_stats_offset(pi->adapter, pi->tx_chan, stats,
569                                  &pi->stats_base);
570 }
571
572 void cxgbe_stats_reset(struct port_info *pi)
573 {
574         t4_clr_port_stats(pi->adapter, pi->tx_chan);
575 }
576
577 static void setup_memwin(struct adapter *adap)
578 {
579         u32 mem_win0_base;
580
581         /* For T5, only relative offset inside the PCIe BAR is passed */
582         mem_win0_base = MEMWIN0_BASE;
583
584         /*
585          * Set up memory window for accessing adapter memory ranges.  (Read
586          * back MA register to ensure that changes propagate before we attempt
587          * to use the new values.)
588          */
589         t4_write_reg(adap,
590                      PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
591                                          MEMWIN_NIC),
592                      mem_win0_base | V_BIR(0) |
593                      V_WINDOW(ilog2(MEMWIN0_APERTURE) - X_WINDOW_SHIFT));
594         t4_read_reg(adap,
595                     PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN,
596                                         MEMWIN_NIC));
597 }
598
599 int cxgbe_init_rss(struct adapter *adap)
600 {
601         unsigned int i;
602
603         if (is_pf4(adap)) {
604                 int err;
605
606                 err = t4_init_rss_mode(adap, adap->mbox);
607                 if (err)
608                         return err;
609         }
610
611         for_each_port(adap, i) {
612                 struct port_info *pi = adap2pinfo(adap, i);
613
614                 pi->rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
615                 if (!pi->rss)
616                         return -ENOMEM;
617
618                 pi->rss_hf = CXGBE_RSS_HF_ALL;
619         }
620         return 0;
621 }
622
623 /**
624  * Dump basic information about the adapter.
625  */
626 void cxgbe_print_adapter_info(struct adapter *adap)
627 {
628         /**
629          * Hardware/Firmware/etc. Version/Revision IDs.
630          */
631         t4_dump_version_info(adap);
632 }
633
634 void cxgbe_print_port_info(struct adapter *adap)
635 {
636         int i;
637         char buf[80];
638         struct rte_pci_addr *loc = &adap->pdev->addr;
639
640         for_each_port(adap, i) {
641                 const struct port_info *pi = adap2pinfo(adap, i);
642                 char *bufp = buf;
643
644                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
645                         bufp += sprintf(bufp, "100M/");
646                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
647                         bufp += sprintf(bufp, "1G/");
648                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
649                         bufp += sprintf(bufp, "10G/");
650                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
651                         bufp += sprintf(bufp, "25G/");
652                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
653                         bufp += sprintf(bufp, "40G/");
654                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
655                         bufp += sprintf(bufp, "50G/");
656                 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
657                         bufp += sprintf(bufp, "100G/");
658                 if (bufp != buf)
659                         --bufp;
660                 sprintf(bufp, "BASE-%s",
661                         t4_get_port_type_description(
662                                         (enum fw_port_type)pi->port_type));
663
664                 dev_info(adap,
665                          " " PCI_PRI_FMT " Chelsio rev %d %s %s\n",
666                          loc->domain, loc->bus, loc->devid, loc->function,
667                          CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
668                          (adap->flags & USING_MSIX) ? " MSI-X" :
669                          (adap->flags & USING_MSI) ? " MSI" : "");
670         }
671 }
672
673 static int check_devargs_handler(const char *key, const char *value, void *p)
674 {
675         if (!strncmp(key, CXGBE_DEVARG_CMN_KEEP_OVLAN, strlen(key)) ||
676             !strncmp(key, CXGBE_DEVARG_CMN_TX_MODE_LATENCY, strlen(key)) ||
677             !strncmp(key, CXGBE_DEVARG_VF_FORCE_LINK_UP, strlen(key))) {
678                 if (!strncmp(value, "1", 1)) {
679                         bool *dst_val = (bool *)p;
680
681                         *dst_val = true;
682                 }
683         }
684
685         return 0;
686 }
687
688 static int cxgbe_get_devargs(struct rte_devargs *devargs, const char *key,
689                              void *p)
690 {
691         struct rte_kvargs *kvlist;
692         int ret = 0;
693
694         if (!devargs)
695                 return 0;
696
697         kvlist = rte_kvargs_parse(devargs->args, NULL);
698         if (!kvlist)
699                 return 0;
700
701         if (!rte_kvargs_count(kvlist, key))
702                 goto out;
703
704         ret = rte_kvargs_process(kvlist, key, check_devargs_handler, p);
705
706 out:
707         rte_kvargs_free(kvlist);
708
709         return ret;
710 }
711
712 static void cxgbe_get_devargs_int(struct adapter *adap, int *dst,
713                                   const char *key, int default_value)
714 {
715         struct rte_pci_device *pdev = adap->pdev;
716         int ret, devarg_value = default_value;
717
718         *dst = default_value;
719         if (!pdev)
720                 return;
721
722         ret = cxgbe_get_devargs(pdev->device.devargs, key, &devarg_value);
723         if (ret)
724                 return;
725
726         *dst = devarg_value;
727 }
728
729 void cxgbe_process_devargs(struct adapter *adap)
730 {
731         cxgbe_get_devargs_int(adap, &adap->devargs.keep_ovlan,
732                               CXGBE_DEVARG_CMN_KEEP_OVLAN, 0);
733         cxgbe_get_devargs_int(adap, &adap->devargs.tx_mode_latency,
734                               CXGBE_DEVARG_CMN_TX_MODE_LATENCY, 0);
735         cxgbe_get_devargs_int(adap, &adap->devargs.force_link_up,
736                               CXGBE_DEVARG_VF_FORCE_LINK_UP, 0);
737 }
738
739 static void configure_vlan_types(struct adapter *adapter)
740 {
741         int i;
742
743         for_each_port(adapter, i) {
744                 /* OVLAN Type 0x88a8 */
745                 t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN0),
746                                  V_OVLAN_MASK(M_OVLAN_MASK) |
747                                  V_OVLAN_ETYPE(M_OVLAN_ETYPE),
748                                  V_OVLAN_MASK(M_OVLAN_MASK) |
749                                  V_OVLAN_ETYPE(0x88a8));
750                 /* OVLAN Type 0x9100 */
751                 t4_set_reg_field(adapter, MPS_PORT_RX_OVLAN_REG(i, A_RX_OVLAN1),
752                                  V_OVLAN_MASK(M_OVLAN_MASK) |
753                                  V_OVLAN_ETYPE(M_OVLAN_ETYPE),
754                                  V_OVLAN_MASK(M_OVLAN_MASK) |
755                                  V_OVLAN_ETYPE(0x9100));
756
757                 /* IVLAN 0X8100 */
758                 t4_set_reg_field(adapter, MPS_PORT_RX_IVLAN(i),
759                                  V_IVLAN_ETYPE(M_IVLAN_ETYPE),
760                                  V_IVLAN_ETYPE(0x8100));
761
762                 t4_set_reg_field(adapter, MPS_PORT_RX_CTL(i),
763                                  F_OVLAN_EN0 | F_OVLAN_EN1 |
764                                  F_IVLAN_EN,
765                                  F_OVLAN_EN0 | F_OVLAN_EN1 |
766                                  F_IVLAN_EN);
767         }
768
769         t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG, V_RM_OVLAN(1),
770                                V_RM_OVLAN(!adapter->devargs.keep_ovlan));
771 }
772
773 static void configure_pcie_ext_tag(struct adapter *adapter)
774 {
775         u16 v;
776         int pos = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
777
778         if (!pos)
779                 return;
780
781         if (pos > 0) {
782                 t4_os_pci_read_cfg2(adapter, pos + PCI_EXP_DEVCTL, &v);
783                 v |= PCI_EXP_DEVCTL_EXT_TAG;
784                 t4_os_pci_write_cfg2(adapter, pos + PCI_EXP_DEVCTL, v);
785                 if (is_t6(adapter->params.chip)) {
786                         t4_set_reg_field(adapter, A_PCIE_CFG2,
787                                          V_T6_TOTMAXTAG(M_T6_TOTMAXTAG),
788                                          V_T6_TOTMAXTAG(7));
789                         t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
790                                          V_T6_MINTAG(M_T6_MINTAG),
791                                          V_T6_MINTAG(8));
792                 } else {
793                         t4_set_reg_field(adapter, A_PCIE_CFG2,
794                                          V_TOTMAXTAG(M_TOTMAXTAG),
795                                          V_TOTMAXTAG(3));
796                         t4_set_reg_field(adapter, A_PCIE_CMD_CFG,
797                                          V_MINTAG(M_MINTAG),
798                                          V_MINTAG(8));
799                 }
800         }
801 }
802
803 /* Figure out how many Queue Sets we can support */
804 void cxgbe_configure_max_ethqsets(struct adapter *adapter)
805 {
806         unsigned int ethqsets;
807
808         /*
809          * We need to reserve an Ingress Queue for the Asynchronous Firmware
810          * Event Queue.
811          *
812          * For each Queue Set, we'll need the ability to allocate two Egress
813          * Contexts -- one for the Ingress Queue Free List and one for the TX
814          * Ethernet Queue.
815          */
816         if (is_pf4(adapter)) {
817                 struct pf_resources *pfres = &adapter->params.pfres;
818
819                 ethqsets = pfres->niqflint - 1;
820                 if (pfres->neq < ethqsets * 2)
821                         ethqsets = pfres->neq / 2;
822         } else {
823                 struct vf_resources *vfres = &adapter->params.vfres;
824
825                 ethqsets = vfres->niqflint - 1;
826                 if (vfres->nethctrl != ethqsets)
827                         ethqsets = min(vfres->nethctrl, ethqsets);
828                 if (vfres->neq < ethqsets * 2)
829                         ethqsets = vfres->neq / 2;
830         }
831
832         if (ethqsets > MAX_ETH_QSETS)
833                 ethqsets = MAX_ETH_QSETS;
834         adapter->sge.max_ethqsets = ethqsets;
835 }
836
837 /*
838  * Tweak configuration based on system architecture, etc.  Most of these have
839  * defaults assigned to them by Firmware Configuration Files (if we're using
840  * them) but need to be explicitly set if we're using hard-coded
841  * initialization. So these are essentially common tweaks/settings for
842  * Configuration Files and hard-coded initialization ...
843  */
844 static int adap_init0_tweaks(struct adapter *adapter)
845 {
846         u8 rx_dma_offset;
847
848         /*
849          * Fix up various Host-Dependent Parameters like Page Size, Cache
850          * Line Size, etc.  The firmware default is for a 4KB Page Size and
851          * 64B Cache Line Size ...
852          */
853         t4_fixup_host_params_compat(adapter, CXGBE_PAGE_SIZE, L1_CACHE_BYTES,
854                                     T5_LAST_REV);
855
856         /*
857          * Keep the chip default offset to deliver Ingress packets into our
858          * DMA buffers to zero
859          */
860         rx_dma_offset = 0;
861         t4_set_reg_field(adapter, A_SGE_CONTROL, V_PKTSHIFT(M_PKTSHIFT),
862                          V_PKTSHIFT(rx_dma_offset));
863
864         t4_set_reg_field(adapter, A_SGE_FLM_CFG,
865                          V_CREDITCNT(M_CREDITCNT) | M_CREDITCNTPACKING,
866                          V_CREDITCNT(3) | V_CREDITCNTPACKING(1));
867
868         t4_set_reg_field(adapter, A_SGE_INGRESS_RX_THRESHOLD,
869                          V_THRESHOLD_3(M_THRESHOLD_3), V_THRESHOLD_3(32U));
870
871         t4_set_reg_field(adapter, A_SGE_CONTROL2, V_IDMAARBROUNDROBIN(1U),
872                          V_IDMAARBROUNDROBIN(1U));
873
874         /*
875          * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
876          * adds the pseudo header itself.
877          */
878         t4_tp_wr_bits_indirect(adapter, A_TP_INGRESS_CONFIG,
879                                F_CSUM_HAS_PSEUDO_HDR, 0);
880
881         return 0;
882 }
883
884 /*
885  * Attempt to initialize the adapter via a Firmware Configuration File.
886  */
887 static int adap_init0_config(struct adapter *adapter, int reset)
888 {
889         struct fw_caps_config_cmd caps_cmd;
890         unsigned long mtype = 0, maddr = 0;
891         u32 finiver, finicsum, cfcsum;
892         int ret;
893         int config_issued = 0;
894         int cfg_addr;
895         char config_name[20];
896
897         /*
898          * Reset device if necessary.
899          */
900         if (reset) {
901                 ret = t4_fw_reset(adapter, adapter->mbox,
902                                   F_PIORSTMODE | F_PIORST);
903                 if (ret < 0) {
904                         dev_warn(adapter, "Firmware reset failed, error %d\n",
905                                  -ret);
906                         goto bye;
907                 }
908         }
909
910         cfg_addr = t4_flash_cfg_addr(adapter);
911         if (cfg_addr < 0) {
912                 ret = cfg_addr;
913                 dev_warn(adapter, "Finding address for firmware config file in flash failed, error %d\n",
914                          -ret);
915                 goto bye;
916         }
917
918         strcpy(config_name, "On Flash");
919         mtype = FW_MEMTYPE_CF_FLASH;
920         maddr = cfg_addr;
921
922         /*
923          * Issue a Capability Configuration command to the firmware to get it
924          * to parse the Configuration File.  We don't use t4_fw_config_file()
925          * because we want the ability to modify various features after we've
926          * processed the configuration file ...
927          */
928         memset(&caps_cmd, 0, sizeof(caps_cmd));
929         caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
930                                            F_FW_CMD_REQUEST | F_FW_CMD_READ);
931         caps_cmd.cfvalid_to_len16 =
932                 cpu_to_be32(F_FW_CAPS_CONFIG_CMD_CFVALID |
933                             V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
934                             V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
935                             FW_LEN16(caps_cmd));
936         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
937                          &caps_cmd);
938         /*
939          * If the CAPS_CONFIG failed with an ENOENT (for a Firmware
940          * Configuration File in FLASH), our last gasp effort is to use the
941          * Firmware Configuration File which is embedded in the firmware.  A
942          * very few early versions of the firmware didn't have one embedded
943          * but we can ignore those.
944          */
945         if (ret == -ENOENT) {
946                 dev_info(adapter, "%s: Going for embedded config in firmware..\n",
947                          __func__);
948
949                 memset(&caps_cmd, 0, sizeof(caps_cmd));
950                 caps_cmd.op_to_write =
951                         cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
952                                     F_FW_CMD_REQUEST | F_FW_CMD_READ);
953                 caps_cmd.cfvalid_to_len16 = cpu_to_be32(FW_LEN16(caps_cmd));
954                 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
955                                  sizeof(caps_cmd), &caps_cmd);
956                 strcpy(config_name, "Firmware Default");
957         }
958
959         config_issued = 1;
960         if (ret < 0)
961                 goto bye;
962
963         finiver = be32_to_cpu(caps_cmd.finiver);
964         finicsum = be32_to_cpu(caps_cmd.finicsum);
965         cfcsum = be32_to_cpu(caps_cmd.cfcsum);
966         if (finicsum != cfcsum)
967                 dev_warn(adapter, "Configuration File checksum mismatch: [fini] csum=%#x, computed csum=%#x\n",
968                          finicsum, cfcsum);
969
970         /*
971          * If we're a pure NIC driver then disable all offloading facilities.
972          * This will allow the firmware to optimize aspects of the hardware
973          * configuration which will result in improved performance.
974          */
975         caps_cmd.niccaps &= cpu_to_be16(~FW_CAPS_CONFIG_NIC_ETHOFLD);
976         caps_cmd.toecaps = 0;
977         caps_cmd.iscsicaps = 0;
978         caps_cmd.rdmacaps = 0;
979         caps_cmd.fcoecaps = 0;
980
981         /*
982          * And now tell the firmware to use the configuration we just loaded.
983          */
984         caps_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
985                                            F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
986         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
987         ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
988                          NULL);
989         if (ret < 0) {
990                 dev_warn(adapter, "Unable to finalize Firmware Capabilities %d\n",
991                          -ret);
992                 goto bye;
993         }
994
995         /*
996          * Tweak configuration based on system architecture, etc.
997          */
998         ret = adap_init0_tweaks(adapter);
999         if (ret < 0) {
1000                 dev_warn(adapter, "Unable to do init0-tweaks %d\n", -ret);
1001                 goto bye;
1002         }
1003
1004         /*
1005          * And finally tell the firmware to initialize itself using the
1006          * parameters from the Configuration File.
1007          */
1008         ret = t4_fw_initialize(adapter, adapter->mbox);
1009         if (ret < 0) {
1010                 dev_warn(adapter, "Initializing Firmware failed, error %d\n",
1011                          -ret);
1012                 goto bye;
1013         }
1014
1015         /*
1016          * Return successfully and note that we're operating with parameters
1017          * not supplied by the driver, rather than from hard-wired
1018          * initialization constants buried in the driver.
1019          */
1020         dev_info(adapter,
1021                  "Successfully configured using Firmware Configuration File \"%s\", version %#x, computed checksum %#x\n",
1022                  config_name, finiver, cfcsum);
1023
1024         return 0;
1025
1026         /*
1027          * Something bad happened.  Return the error ...  (If the "error"
1028          * is that there's no Configuration File on the adapter we don't
1029          * want to issue a warning since this is fairly common.)
1030          */
1031 bye:
1032         if (config_issued && ret != -ENOENT)
1033                 dev_warn(adapter, "\"%s\" configuration file error %d\n",
1034                          config_name, -ret);
1035
1036         dev_debug(adapter, "%s: returning ret = %d ..\n", __func__, ret);
1037         return ret;
1038 }
1039
1040 static int adap_init0(struct adapter *adap)
1041 {
1042         struct fw_caps_config_cmd caps_cmd;
1043         int ret = 0;
1044         u32 v, port_vec;
1045         enum dev_state state;
1046         u32 params[7], val[7];
1047         int reset = 1;
1048         int mbox = adap->mbox;
1049
1050         /*
1051          * Contact FW, advertising Master capability.
1052          */
1053         ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
1054         if (ret < 0) {
1055                 dev_err(adap, "%s: could not connect to FW, error %d\n",
1056                         __func__, -ret);
1057                 goto bye;
1058         }
1059
1060         CXGBE_DEBUG_MBOX(adap, "%s: adap->mbox = %d; ret = %d\n", __func__,
1061                          adap->mbox, ret);
1062
1063         if (ret == mbox)
1064                 adap->flags |= MASTER_PF;
1065
1066         if (state == DEV_STATE_INIT) {
1067                 /*
1068                  * Force halt and reset FW because a previous instance may have
1069                  * exited abnormally without properly shutting down
1070                  */
1071                 ret = t4_fw_halt(adap, adap->mbox, reset);
1072                 if (ret < 0) {
1073                         dev_err(adap, "Failed to halt. Exit.\n");
1074                         goto bye;
1075                 }
1076
1077                 ret = t4_fw_restart(adap, adap->mbox, reset);
1078                 if (ret < 0) {
1079                         dev_err(adap, "Failed to restart. Exit.\n");
1080                         goto bye;
1081                 }
1082                 state = (enum dev_state)((unsigned)state & ~DEV_STATE_INIT);
1083         }
1084
1085         t4_get_version_info(adap);
1086
1087         ret = t4_get_core_clock(adap, &adap->params.vpd);
1088         if (ret < 0) {
1089                 dev_err(adap, "%s: could not get core clock, error %d\n",
1090                         __func__, -ret);
1091                 goto bye;
1092         }
1093
1094         /*
1095          * If the firmware is initialized already (and we're not forcing a
1096          * master initialization), note that we're living with existing
1097          * adapter parameters.  Otherwise, it's time to try initializing the
1098          * adapter ...
1099          */
1100         if (state == DEV_STATE_INIT) {
1101                 dev_info(adap, "Coming up as %s: Adapter already initialized\n",
1102                          adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
1103         } else {
1104                 dev_info(adap, "Coming up as MASTER: Initializing adapter\n");
1105
1106                 ret = adap_init0_config(adap, reset);
1107                 if (ret == -ENOENT) {
1108                         dev_err(adap,
1109                                 "No Configuration File present on adapter. Using hard-wired configuration parameters.\n");
1110                         goto bye;
1111                 }
1112         }
1113         if (ret < 0) {
1114                 dev_err(adap, "could not initialize adapter, error %d\n", -ret);
1115                 goto bye;
1116         }
1117
1118         /* Now that we've successfully configured and initialized the adapter
1119          * (or found it already initialized), we can ask the Firmware what
1120          * resources it has provisioned for us.
1121          */
1122         ret = t4_get_pfres(adap);
1123         if (ret) {
1124                 dev_err(adap->pdev_dev,
1125                         "Unable to retrieve resource provisioning info\n");
1126                 goto bye;
1127         }
1128
1129         /* Find out what ports are available to us. */
1130         v = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
1131             V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_PORTVEC);
1132         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
1133         if (ret < 0) {
1134                 dev_err(adap, "%s: failure in t4_query_params; error = %d\n",
1135                         __func__, ret);
1136                 goto bye;
1137         }
1138
1139         adap->params.nports = hweight32(port_vec);
1140         adap->params.portvec = port_vec;
1141
1142         dev_debug(adap, "%s: adap->params.nports = %u\n", __func__,
1143                   adap->params.nports);
1144
1145         /*
1146          * Give the SGE code a chance to pull in anything that it needs ...
1147          * Note that this must be called after we retrieve our VPD parameters
1148          * in order to know how to convert core ticks to seconds, etc.
1149          */
1150         ret = t4_sge_init(adap);
1151         if (ret < 0) {
1152                 dev_err(adap, "t4_sge_init failed with error %d\n",
1153                         -ret);
1154                 goto bye;
1155         }
1156
1157         /*
1158          * Grab some of our basic fundamental operating parameters.
1159          */
1160         params[0] = CXGBE_FW_PARAM_PFVF(L2T_START);
1161         params[1] = CXGBE_FW_PARAM_PFVF(L2T_END);
1162         params[2] = CXGBE_FW_PARAM_PFVF(FILTER_START);
1163         params[3] = CXGBE_FW_PARAM_PFVF(FILTER_END);
1164         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 4, params, val);
1165         if (ret < 0)
1166                 goto bye;
1167         adap->l2t_start = val[0];
1168         adap->l2t_end = val[1];
1169         adap->tids.ftid_base = val[2];
1170         adap->tids.nftids = val[3] - val[2] + 1;
1171
1172         params[0] = CXGBE_FW_PARAM_PFVF(CLIP_START);
1173         params[1] = CXGBE_FW_PARAM_PFVF(CLIP_END);
1174         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
1175         if (ret < 0)
1176                 goto bye;
1177         adap->clipt_start = val[0];
1178         adap->clipt_end = val[1];
1179
1180         /*
1181          * Get device capabilities so we can determine what resources we need
1182          * to manage.
1183          */
1184         memset(&caps_cmd, 0, sizeof(caps_cmd));
1185         caps_cmd.op_to_write = htonl(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1186                                      F_FW_CMD_REQUEST | F_FW_CMD_READ);
1187         caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
1188         ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
1189                          &caps_cmd);
1190         if (ret < 0)
1191                 goto bye;
1192
1193         if ((caps_cmd.niccaps & cpu_to_be16(FW_CAPS_CONFIG_NIC_HASHFILTER)) &&
1194             is_t6(adap->params.chip)) {
1195                 if (cxgbe_init_hash_filter(adap) < 0)
1196                         goto bye;
1197         }
1198
1199         /* See if FW supports FW_FILTER2 work request */
1200         if (is_t4(adap->params.chip)) {
1201                 adap->params.filter2_wr_support = 0;
1202         } else {
1203                 params[0] = CXGBE_FW_PARAM_DEV(FILTER2_WR);
1204                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1205                                       1, params, val);
1206                 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
1207         }
1208
1209         /* query tid-related parameters */
1210         params[0] = CXGBE_FW_PARAM_DEV(NTID);
1211         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
1212                               params, val);
1213         if (ret < 0)
1214                 goto bye;
1215         adap->tids.ntids = val[0];
1216         adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
1217
1218         /* If we're running on newer firmware, let it know that we're
1219          * prepared to deal with encapsulated CPL messages.  Older
1220          * firmware won't understand this and we'll just get
1221          * unencapsulated messages ...
1222          */
1223         params[0] = CXGBE_FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
1224         val[0] = 1;
1225         (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1226
1227         /*
1228          * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
1229          * capability.  Earlier versions of the firmware didn't have the
1230          * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
1231          * permission to use ULPTX MEMWRITE DSGL.
1232          */
1233         if (is_t4(adap->params.chip)) {
1234                 adap->params.ulptx_memwrite_dsgl = false;
1235         } else {
1236                 params[0] = CXGBE_FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
1237                 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
1238                                       1, params, val);
1239                 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
1240         }
1241
1242         /* Query for max number of packets that can be coalesced for Tx */
1243         params[0] = CXGBE_FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR);
1244         ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
1245         if (!ret && val[0] > 0)
1246                 adap->params.max_tx_coalesce_num = val[0];
1247         else
1248                 adap->params.max_tx_coalesce_num = ETH_COALESCE_PKT_NUM;
1249
1250         /*
1251          * The MTU/MSS Table is initialized by now, so load their values.  If
1252          * we're initializing the adapter, then we'll make any modifications
1253          * we want to the MTU/MSS Table and also initialize the congestion
1254          * parameters.
1255          */
1256         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
1257         if (state != DEV_STATE_INIT) {
1258                 int i;
1259
1260                 /*
1261                  * The default MTU Table contains values 1492 and 1500.
1262                  * However, for TCP, it's better to have two values which are
1263                  * a multiple of 8 +/- 4 bytes apart near this popular MTU.
1264                  * This allows us to have a TCP Data Payload which is a
1265                  * multiple of 8 regardless of what combination of TCP Options
1266                  * are in use (always a multiple of 4 bytes) which is
1267                  * important for performance reasons.  For instance, if no
1268                  * options are in use, then we have a 20-byte IP header and a
1269                  * 20-byte TCP header.  In this case, a 1500-byte MSS would
1270                  * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
1271                  * which is not a multiple of 8.  So using an MSS of 1488 in
1272                  * this case results in a TCP Data Payload of 1448 bytes which
1273                  * is a multiple of 8.  On the other hand, if 12-byte TCP Time
1274                  * Stamps have been negotiated, then an MTU of 1500 bytes
1275                  * results in a TCP Data Payload of 1448 bytes which, as
1276                  * above, is a multiple of 8 bytes ...
1277                  */
1278                 for (i = 0; i < NMTUS; i++)
1279                         if (adap->params.mtus[i] == 1492) {
1280                                 adap->params.mtus[i] = 1488;
1281                                 break;
1282                         }
1283
1284                 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
1285                              adap->params.b_wnd);
1286         }
1287         t4_init_sge_params(adap);
1288         t4_init_tp_params(adap);
1289         configure_pcie_ext_tag(adap);
1290         configure_vlan_types(adap);
1291         cxgbe_configure_max_ethqsets(adap);
1292
1293         adap->params.drv_memwin = MEMWIN_NIC;
1294         adap->flags |= FW_OK;
1295         dev_debug(adap, "%s: returning zero..\n", __func__);
1296         return 0;
1297
1298         /*
1299          * Something bad happened.  If a command timed out or failed with EIO
1300          * FW does not operate within its spec or something catastrophic
1301          * happened to HW/FW, stop issuing commands.
1302          */
1303 bye:
1304         if (ret != -ETIMEDOUT && ret != -EIO)
1305                 t4_fw_bye(adap, adap->mbox);
1306         return ret;
1307 }
1308
1309 /**
1310  * t4_os_portmod_changed - handle port module changes
1311  * @adap: the adapter associated with the module change
1312  * @port_id: the port index whose module status has changed
1313  *
1314  * This is the OS-dependent handler for port module changes.  It is
1315  * invoked when a port module is removed or inserted for any OS-specific
1316  * processing.
1317  */
1318 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
1319 {
1320         static const char * const mod_str[] = {
1321                 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
1322         };
1323
1324         const struct port_info *pi = adap2pinfo(adap, port_id);
1325
1326         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
1327                 dev_info(adap, "Port%d: port module unplugged\n", pi->port_id);
1328         else if (pi->mod_type < ARRAY_SIZE(mod_str))
1329                 dev_info(adap, "Port%d: %s port module inserted\n", pi->port_id,
1330                          mod_str[pi->mod_type]);
1331         else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
1332                 dev_info(adap, "Port%d: unsupported port module inserted\n",
1333                          pi->port_id);
1334         else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
1335                 dev_info(adap, "Port%d: unknown port module inserted\n",
1336                          pi->port_id);
1337         else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
1338                 dev_info(adap, "Port%d: transceiver module error\n",
1339                          pi->port_id);
1340         else
1341                 dev_info(adap, "Port%d: unknown module type %d inserted\n",
1342                          pi->port_id, pi->mod_type);
1343 }
1344
1345 bool cxgbe_force_linkup(struct adapter *adap)
1346 {
1347         if (is_pf4(adap))
1348                 return false;   /* force_linkup not required for pf driver */
1349
1350         return adap->devargs.force_link_up;
1351 }
1352
1353 /**
1354  * link_start - enable a port
1355  * @dev: the port to enable
1356  *
1357  * Performs the MAC and PHY actions needed to enable a port.
1358  */
1359 int cxgbe_link_start(struct port_info *pi)
1360 {
1361         struct adapter *adapter = pi->adapter;
1362         u64 conf_offloads;
1363         unsigned int mtu;
1364         int ret;
1365
1366         mtu = pi->eth_dev->data->dev_conf.rxmode.max_rx_pkt_len -
1367               (RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN);
1368
1369         conf_offloads = pi->eth_dev->data->dev_conf.rxmode.offloads;
1370
1371         /*
1372          * We do not set address filters and promiscuity here, the stack does
1373          * that step explicitly.
1374          */
1375         ret = t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu, -1, -1, -1,
1376                             !!(conf_offloads & DEV_RX_OFFLOAD_VLAN_STRIP),
1377                             true);
1378         if (ret == 0) {
1379                 ret = cxgbe_mpstcam_modify(pi, (int)pi->xact_addr_filt,
1380                                 (u8 *)&pi->eth_dev->data->mac_addrs[0]);
1381                 if (ret >= 0) {
1382                         pi->xact_addr_filt = ret;
1383                         ret = 0;
1384                 }
1385         }
1386         if (ret == 0 && is_pf4(adapter))
1387                 ret = t4_link_l1cfg(adapter, adapter->mbox, pi->tx_chan,
1388                                     &pi->link_cfg);
1389         if (ret == 0) {
1390                 /*
1391                  * Enabling a Virtual Interface can result in an interrupt
1392                  * during the processing of the VI Enable command and, in some
1393                  * paths, result in an attempt to issue another command in the
1394                  * interrupt context.  Thus, we disable interrupts during the
1395                  * course of the VI Enable command ...
1396                  */
1397                 ret = t4_enable_vi_params(adapter, adapter->mbox, pi->viid,
1398                                           true, true, false);
1399         }
1400
1401         if (ret == 0 && cxgbe_force_linkup(adapter))
1402                 pi->eth_dev->data->dev_link.link_status = ETH_LINK_UP;
1403         return ret;
1404 }
1405
1406 /**
1407  * cxgbe_write_rss_conf - flash the RSS configuration for a given port
1408  * @pi: the port
1409  * @rss_hf: Hash configuration to apply
1410  */
1411 int cxgbe_write_rss_conf(const struct port_info *pi, uint64_t rss_hf)
1412 {
1413         struct adapter *adapter = pi->adapter;
1414         const struct sge_eth_rxq *rxq;
1415         u64 flags = 0;
1416         u16 rss;
1417         int err;
1418
1419         /*  Should never be called before setting up sge eth rx queues */
1420         if (!(adapter->flags & FULL_INIT_DONE)) {
1421                 dev_err(adap, "%s No RXQs available on port %d\n",
1422                         __func__, pi->port_id);
1423                 return -EINVAL;
1424         }
1425
1426         /* Don't allow unsupported hash functions */
1427         if (rss_hf & ~CXGBE_RSS_HF_ALL)
1428                 return -EINVAL;
1429
1430         if (rss_hf & CXGBE_RSS_HF_IPV4_MASK)
1431                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
1432
1433         if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
1434                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
1435
1436         if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
1437                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
1438                          F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1439
1440         if (rss_hf & CXGBE_RSS_HF_IPV6_MASK)
1441                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
1442
1443         if (rss_hf & CXGBE_RSS_HF_TCP_IPV6_MASK)
1444                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1445                          F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
1446
1447         if (rss_hf & CXGBE_RSS_HF_UDP_IPV6_MASK)
1448                 flags |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
1449                          F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
1450                          F_FW_RSS_VI_CONFIG_CMD_UDPEN;
1451
1452         rxq = &adapter->sge.ethrxq[pi->first_qset];
1453         rss = rxq[0].rspq.abs_id;
1454
1455         /* If Tunnel All Lookup isn't specified in the global RSS
1456          * Configuration, then we need to specify a default Ingress
1457          * Queue for any ingress packets which aren't hashed.  We'll
1458          * use our first ingress queue ...
1459          */
1460         err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
1461                                flags, rss);
1462         return err;
1463 }
1464
1465 /**
1466  * cxgbe_write_rss - write the RSS table for a given port
1467  * @pi: the port
1468  * @queues: array of queue indices for RSS
1469  *
1470  * Sets up the portion of the HW RSS table for the port's VI to distribute
1471  * packets to the Rx queues in @queues.
1472  */
1473 int cxgbe_write_rss(const struct port_info *pi, const u16 *queues)
1474 {
1475         u16 *rss;
1476         int i, err;
1477         struct adapter *adapter = pi->adapter;
1478         const struct sge_eth_rxq *rxq;
1479
1480         /*  Should never be called before setting up sge eth rx queues */
1481         BUG_ON(!(adapter->flags & FULL_INIT_DONE));
1482
1483         rxq = &adapter->sge.ethrxq[pi->first_qset];
1484         rss = rte_zmalloc(NULL, pi->rss_size * sizeof(u16), 0);
1485         if (!rss)
1486                 return -ENOMEM;
1487
1488         /* map the queue indices to queue ids */
1489         for (i = 0; i < pi->rss_size; i++, queues++)
1490                 rss[i] = rxq[*queues].rspq.abs_id;
1491
1492         err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
1493                                   pi->rss_size, rss, pi->rss_size);
1494         rte_free(rss);
1495         return err;
1496 }
1497
1498 /**
1499  * setup_rss - configure RSS
1500  * @adapter: the adapter
1501  *
1502  * Sets up RSS to distribute packets to multiple receive queues.  We
1503  * configure the RSS CPU lookup table to distribute to the number of HW
1504  * receive queues, and the response queue lookup table to narrow that
1505  * down to the response queues actually configured for each port.
1506  * We always configure the RSS mapping for all ports since the mapping
1507  * table has plenty of entries.
1508  */
1509 int cxgbe_setup_rss(struct port_info *pi)
1510 {
1511         int j, err;
1512         struct adapter *adapter = pi->adapter;
1513
1514         dev_debug(adapter, "%s:  pi->rss_size = %u; pi->n_rx_qsets = %u\n",
1515                   __func__, pi->rss_size, pi->n_rx_qsets);
1516
1517         if (!(pi->flags & PORT_RSS_DONE)) {
1518                 if (adapter->flags & FULL_INIT_DONE) {
1519                         /* Fill default values with equal distribution */
1520                         for (j = 0; j < pi->rss_size; j++)
1521                                 pi->rss[j] = j % pi->n_rx_qsets;
1522
1523                         err = cxgbe_write_rss(pi, pi->rss);
1524                         if (err)
1525                                 return err;
1526
1527                         err = cxgbe_write_rss_conf(pi, pi->rss_hf);
1528                         if (err)
1529                                 return err;
1530                         pi->flags |= PORT_RSS_DONE;
1531                 }
1532         }
1533         return 0;
1534 }
1535
1536 /*
1537  * Enable NAPI scheduling and interrupt generation for all Rx queues.
1538  */
1539 static void enable_rx(struct adapter *adap, struct sge_rspq *q)
1540 {
1541         /* 0-increment GTS to start the timer and enable interrupts */
1542         t4_write_reg(adap, is_pf4(adap) ? MYPF_REG(A_SGE_PF_GTS) :
1543                                           T4VF_SGE_BASE_ADDR + A_SGE_VF_GTS,
1544                      V_SEINTARM(q->intr_params) |
1545                      V_INGRESSQID(q->cntxt_id));
1546 }
1547
1548 void cxgbe_enable_rx_queues(struct port_info *pi)
1549 {
1550         struct adapter *adap = pi->adapter;
1551         struct sge *s = &adap->sge;
1552         unsigned int i;
1553
1554         for (i = 0; i < pi->n_rx_qsets; i++)
1555                 enable_rx(adap, &s->ethrxq[pi->first_qset + i].rspq);
1556 }
1557
1558 /**
1559  * fw_caps_to_speed_caps - translate Firmware Port Caps to Speed Caps.
1560  * @port_type: Firmware Port Type
1561  * @fw_caps: Firmware Port Capabilities
1562  * @speed_caps: Device Info Speed Capabilities
1563  *
1564  * Translate a Firmware Port Capabilities specification to Device Info
1565  * Speed Capabilities.
1566  */
1567 static void fw_caps_to_speed_caps(enum fw_port_type port_type,
1568                                   unsigned int fw_caps,
1569                                   u32 *speed_caps)
1570 {
1571 #define SET_SPEED(__speed_name) \
1572         do { \
1573                 *speed_caps |= ETH_LINK_ ## __speed_name; \
1574         } while (0)
1575
1576 #define FW_CAPS_TO_SPEED(__fw_name) \
1577         do { \
1578                 if (fw_caps & FW_PORT_CAP32_ ## __fw_name) \
1579                         SET_SPEED(__fw_name); \
1580         } while (0)
1581
1582         switch (port_type) {
1583         case FW_PORT_TYPE_BT_SGMII:
1584         case FW_PORT_TYPE_BT_XFI:
1585         case FW_PORT_TYPE_BT_XAUI:
1586                 FW_CAPS_TO_SPEED(SPEED_100M);
1587                 FW_CAPS_TO_SPEED(SPEED_1G);
1588                 FW_CAPS_TO_SPEED(SPEED_10G);
1589                 break;
1590
1591         case FW_PORT_TYPE_KX4:
1592         case FW_PORT_TYPE_KX:
1593         case FW_PORT_TYPE_FIBER_XFI:
1594         case FW_PORT_TYPE_FIBER_XAUI:
1595         case FW_PORT_TYPE_SFP:
1596         case FW_PORT_TYPE_QSFP_10G:
1597         case FW_PORT_TYPE_QSA:
1598                 FW_CAPS_TO_SPEED(SPEED_1G);
1599                 FW_CAPS_TO_SPEED(SPEED_10G);
1600                 break;
1601
1602         case FW_PORT_TYPE_KR:
1603                 SET_SPEED(SPEED_10G);
1604                 break;
1605
1606         case FW_PORT_TYPE_BP_AP:
1607         case FW_PORT_TYPE_BP4_AP:
1608                 SET_SPEED(SPEED_1G);
1609                 SET_SPEED(SPEED_10G);
1610                 break;
1611
1612         case FW_PORT_TYPE_BP40_BA:
1613         case FW_PORT_TYPE_QSFP:
1614                 SET_SPEED(SPEED_40G);
1615                 break;
1616
1617         case FW_PORT_TYPE_CR_QSFP:
1618         case FW_PORT_TYPE_SFP28:
1619         case FW_PORT_TYPE_KR_SFP28:
1620                 FW_CAPS_TO_SPEED(SPEED_1G);
1621                 FW_CAPS_TO_SPEED(SPEED_10G);
1622                 FW_CAPS_TO_SPEED(SPEED_25G);
1623                 break;
1624
1625         case FW_PORT_TYPE_CR2_QSFP:
1626                 SET_SPEED(SPEED_50G);
1627                 break;
1628
1629         case FW_PORT_TYPE_KR4_100G:
1630         case FW_PORT_TYPE_CR4_QSFP:
1631                 FW_CAPS_TO_SPEED(SPEED_25G);
1632                 FW_CAPS_TO_SPEED(SPEED_40G);
1633                 FW_CAPS_TO_SPEED(SPEED_50G);
1634                 FW_CAPS_TO_SPEED(SPEED_100G);
1635                 break;
1636
1637         default:
1638                 break;
1639         }
1640
1641 #undef FW_CAPS_TO_SPEED
1642 #undef SET_SPEED
1643 }
1644
1645 /**
1646  * cxgbe_get_speed_caps - Fetch supported speed capabilities
1647  * @pi: Underlying port's info
1648  * @speed_caps: Device Info speed capabilities
1649  *
1650  * Fetch supported speed capabilities of the underlying port.
1651  */
1652 void cxgbe_get_speed_caps(struct port_info *pi, u32 *speed_caps)
1653 {
1654         *speed_caps = 0;
1655
1656         fw_caps_to_speed_caps(pi->port_type, pi->link_cfg.pcaps,
1657                               speed_caps);
1658
1659         if (!(pi->link_cfg.pcaps & FW_PORT_CAP32_ANEG))
1660                 *speed_caps |= ETH_LINK_SPEED_FIXED;
1661 }
1662
1663 /**
1664  * cxgbe_set_link_status - Set device link up or down.
1665  * @pi: Underlying port's info
1666  * @status: 0 - down, 1 - up
1667  *
1668  * Set the device link up or down.
1669  */
1670 int cxgbe_set_link_status(struct port_info *pi, bool status)
1671 {
1672         struct adapter *adapter = pi->adapter;
1673         int err = 0;
1674
1675         err = t4_enable_vi(adapter, adapter->mbox, pi->viid, status, status);
1676         if (err) {
1677                 dev_err(adapter, "%s: disable_vi failed: %d\n", __func__, err);
1678                 return err;
1679         }
1680
1681         if (!status)
1682                 t4_reset_link_config(adapter, pi->pidx);
1683
1684         return 0;
1685 }
1686
1687 /**
1688  * cxgb_up - enable the adapter
1689  * @adap: adapter being enabled
1690  *
1691  * Called when the first port is enabled, this function performs the
1692  * actions necessary to make an adapter operational, such as completing
1693  * the initialization of HW modules, and enabling interrupts.
1694  */
1695 int cxgbe_up(struct adapter *adap)
1696 {
1697         enable_rx(adap, &adap->sge.fw_evtq);
1698         t4_sge_tx_monitor_start(adap);
1699         if (is_pf4(adap))
1700                 t4_intr_enable(adap);
1701         adap->flags |= FULL_INIT_DONE;
1702
1703         /* TODO: deadman watchdog ?? */
1704         return 0;
1705 }
1706
1707 /*
1708  * Close the port
1709  */
1710 int cxgbe_down(struct port_info *pi)
1711 {
1712         return cxgbe_set_link_status(pi, false);
1713 }
1714
1715 /*
1716  * Release resources when all the ports have been stopped.
1717  */
1718 void cxgbe_close(struct adapter *adapter)
1719 {
1720         struct port_info *pi;
1721         int i;
1722
1723         if (adapter->flags & FULL_INIT_DONE) {
1724                 tid_free(&adapter->tids);
1725                 t4_cleanup_mpstcam(adapter);
1726                 t4_cleanup_clip_tbl(adapter);
1727                 t4_cleanup_l2t(adapter);
1728                 if (is_pf4(adapter))
1729                         t4_intr_disable(adapter);
1730                 t4_sge_tx_monitor_stop(adapter);
1731                 t4_free_sge_resources(adapter);
1732                 for_each_port(adapter, i) {
1733                         pi = adap2pinfo(adapter, i);
1734                         if (pi->viid != 0)
1735                                 t4_free_vi(adapter, adapter->mbox,
1736                                            adapter->pf, 0, pi->viid);
1737                         rte_eth_dev_release_port(pi->eth_dev);
1738                 }
1739                 adapter->flags &= ~FULL_INIT_DONE;
1740         }
1741
1742         if (is_pf4(adapter) && (adapter->flags & FW_OK))
1743                 t4_fw_bye(adapter, adapter->mbox);
1744 }
1745
1746 int cxgbe_probe(struct adapter *adapter)
1747 {
1748         struct port_info *pi;
1749         int chip;
1750         int func, i;
1751         int err = 0;
1752         u32 whoami;
1753
1754         whoami = t4_read_reg(adapter, A_PL_WHOAMI);
1755         chip = t4_get_chip_type(adapter,
1756                         CHELSIO_PCI_ID_VER(adapter->pdev->id.device_id));
1757         if (chip < 0)
1758                 return chip;
1759
1760         func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
1761                G_SOURCEPF(whoami) : G_T6_SOURCEPF(whoami);
1762
1763         adapter->mbox = func;
1764         adapter->pf = func;
1765
1766         t4_os_lock_init(&adapter->mbox_lock);
1767         TAILQ_INIT(&adapter->mbox_list);
1768         t4_os_lock_init(&adapter->win0_lock);
1769
1770         err = t4_prep_adapter(adapter);
1771         if (err)
1772                 return err;
1773
1774         setup_memwin(adapter);
1775         err = adap_init0(adapter);
1776         if (err) {
1777                 dev_err(adapter, "%s: Adapter initialization failed, error %d\n",
1778                         __func__, err);
1779                 goto out_free;
1780         }
1781
1782         if (!is_t4(adapter->params.chip)) {
1783                 /*
1784                  * The userspace doorbell BAR is split evenly into doorbell
1785                  * regions, each associated with an egress queue.  If this
1786                  * per-queue region is large enough (at least UDBS_SEG_SIZE)
1787                  * then it can be used to submit a tx work request with an
1788                  * implied doorbell.  Enable write combining on the BAR if
1789                  * there is room for such work requests.
1790                  */
1791                 int s_qpp, qpp, num_seg;
1792
1793                 s_qpp = (S_QUEUESPERPAGEPF0 +
1794                         (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) *
1795                         adapter->pf);
1796                 qpp = 1 << ((t4_read_reg(adapter,
1797                                 A_SGE_EGRESS_QUEUES_PER_PAGE_PF) >> s_qpp)
1798                                 & M_QUEUESPERPAGEPF0);
1799                 num_seg = CXGBE_PAGE_SIZE / UDBS_SEG_SIZE;
1800                 if (qpp > num_seg)
1801                         dev_warn(adapter, "Incorrect SGE EGRESS QUEUES_PER_PAGE configuration, continuing in debug mode\n");
1802
1803                 adapter->bar2 = (void *)adapter->pdev->mem_resource[2].addr;
1804                 if (!adapter->bar2) {
1805                         dev_err(adapter, "cannot map device bar2 region\n");
1806                         err = -ENOMEM;
1807                         goto out_free;
1808                 }
1809                 t4_write_reg(adapter, A_SGE_STAT_CFG, V_STATSOURCE_T5(7) |
1810                              V_STATMODE(0));
1811         }
1812
1813         for_each_port(adapter, i) {
1814                 const unsigned int numa_node = rte_socket_id();
1815                 char name[RTE_ETH_NAME_MAX_LEN];
1816                 struct rte_eth_dev *eth_dev;
1817
1818                 snprintf(name, sizeof(name), "%s_%d",
1819                          adapter->pdev->device.name, i);
1820
1821                 if (i == 0) {
1822                         /* First port is already allocated by DPDK */
1823                         eth_dev = adapter->eth_dev;
1824                         goto allocate_mac;
1825                 }
1826
1827                 /*
1828                  * now do all data allocation - for eth_dev structure,
1829                  * and internal (private) data for the remaining ports
1830                  */
1831
1832                 /* reserve an ethdev entry */
1833                 eth_dev = rte_eth_dev_allocate(name);
1834                 if (!eth_dev)
1835                         goto out_free;
1836
1837                 eth_dev->data->dev_private =
1838                         rte_zmalloc_socket(name, sizeof(struct port_info),
1839                                            RTE_CACHE_LINE_SIZE, numa_node);
1840                 if (!eth_dev->data->dev_private)
1841                         goto out_free;
1842
1843 allocate_mac:
1844                 pi = eth_dev->data->dev_private;
1845                 adapter->port[i] = pi;
1846                 pi->eth_dev = eth_dev;
1847                 pi->adapter = adapter;
1848                 pi->xact_addr_filt = -1;
1849                 pi->port_id = i;
1850                 pi->pidx = i;
1851
1852                 pi->eth_dev->device = &adapter->pdev->device;
1853                 pi->eth_dev->dev_ops = adapter->eth_dev->dev_ops;
1854                 pi->eth_dev->tx_pkt_burst = adapter->eth_dev->tx_pkt_burst;
1855                 pi->eth_dev->rx_pkt_burst = adapter->eth_dev->rx_pkt_burst;
1856
1857                 rte_eth_copy_pci_info(pi->eth_dev, adapter->pdev);
1858
1859                 pi->eth_dev->data->mac_addrs = rte_zmalloc(name,
1860                                                         RTE_ETHER_ADDR_LEN, 0);
1861                 if (!pi->eth_dev->data->mac_addrs) {
1862                         dev_err(adapter, "%s: Mem allocation failed for storing mac addr, aborting\n",
1863                                 __func__);
1864                         err = -1;
1865                         goto out_free;
1866                 }
1867
1868                 if (i > 0) {
1869                         /* First port will be notified by upper layer */
1870                         rte_eth_dev_probing_finish(eth_dev);
1871                 }
1872         }
1873
1874         if (adapter->flags & FW_OK) {
1875                 err = t4_port_init(adapter, adapter->mbox, adapter->pf, 0);
1876                 if (err) {
1877                         dev_err(adapter, "%s: t4_port_init failed with err %d\n",
1878                                 __func__, err);
1879                         goto out_free;
1880                 }
1881         }
1882
1883         cxgbe_cfg_queues(adapter->eth_dev);
1884
1885         cxgbe_print_adapter_info(adapter);
1886         cxgbe_print_port_info(adapter);
1887
1888         adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
1889                                           adapter->clipt_end);
1890         if (!adapter->clipt) {
1891                 /* We tolerate a lack of clip_table, giving up some
1892                  * functionality
1893                  */
1894                 dev_warn(adapter, "could not allocate CLIP. Continuing\n");
1895         }
1896
1897         adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
1898         if (!adapter->l2t) {
1899                 /* We tolerate a lack of L2T, giving up some functionality */
1900                 dev_warn(adapter, "could not allocate L2T. Continuing\n");
1901         }
1902
1903         if (tid_init(&adapter->tids) < 0) {
1904                 /* Disable filtering support */
1905                 dev_warn(adapter, "could not allocate TID table, "
1906                          "filter support disabled. Continuing\n");
1907         }
1908
1909         adapter->mpstcam = t4_init_mpstcam(adapter);
1910         if (!adapter->mpstcam)
1911                 dev_warn(adapter, "could not allocate mps tcam table."
1912                          " Continuing\n");
1913
1914         if (is_hashfilter(adapter)) {
1915                 if (t4_read_reg(adapter, A_LE_DB_CONFIG) & F_HASHEN) {
1916                         u32 hash_base, hash_reg;
1917
1918                         hash_reg = A_LE_DB_TID_HASHBASE;
1919                         hash_base = t4_read_reg(adapter, hash_reg);
1920                         adapter->tids.hash_base = hash_base / 4;
1921                 }
1922         } else {
1923                 /* Disable hash filtering support */
1924                 dev_warn(adapter,
1925                          "Maskless filter support disabled. Continuing\n");
1926         }
1927
1928         err = cxgbe_init_rss(adapter);
1929         if (err)
1930                 goto out_free;
1931
1932         return 0;
1933
1934 out_free:
1935         for_each_port(adapter, i) {
1936                 pi = adap2pinfo(adapter, i);
1937                 if (pi->viid != 0)
1938                         t4_free_vi(adapter, adapter->mbox, adapter->pf,
1939                                    0, pi->viid);
1940                 rte_eth_dev_release_port(pi->eth_dev);
1941         }
1942
1943         if (adapter->flags & FW_OK)
1944                 t4_fw_bye(adapter, adapter->mbox);
1945         return -err;
1946 }