net/e1000/base: modify copyright
[dpdk.git] / drivers / net / e1000 / base / e1000_ich8lan.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2001-2020 Intel Corporation
3  */
4
5 /* 82562G 10/100 Network Connection
6  * 82562G-2 10/100 Network Connection
7  * 82562GT 10/100 Network Connection
8  * 82562GT-2 10/100 Network Connection
9  * 82562V 10/100 Network Connection
10  * 82562V-2 10/100 Network Connection
11  * 82566DC-2 Gigabit Network Connection
12  * 82566DC Gigabit Network Connection
13  * 82566DM-2 Gigabit Network Connection
14  * 82566DM Gigabit Network Connection
15  * 82566MC Gigabit Network Connection
16  * 82566MM Gigabit Network Connection
17  * 82567LM Gigabit Network Connection
18  * 82567LF Gigabit Network Connection
19  * 82567V Gigabit Network Connection
20  * 82567LM-2 Gigabit Network Connection
21  * 82567LF-2 Gigabit Network Connection
22  * 82567V-2 Gigabit Network Connection
23  * 82567LF-3 Gigabit Network Connection
24  * 82567LM-3 Gigabit Network Connection
25  * 82567LM-4 Gigabit Network Connection
26  * 82577LM Gigabit Network Connection
27  * 82577LC Gigabit Network Connection
28  * 82578DM Gigabit Network Connection
29  * 82578DC Gigabit Network Connection
30  * 82579LM Gigabit Network Connection
31  * 82579V Gigabit Network Connection
32  * Ethernet Connection I217-LM
33  * Ethernet Connection I217-V
34  * Ethernet Connection I218-V
35  * Ethernet Connection I218-LM
36  * Ethernet Connection (2) I218-LM
37  * Ethernet Connection (2) I218-V
38  * Ethernet Connection (3) I218-LM
39  * Ethernet Connection (3) I218-V
40  */
41
42 #include "e1000_api.h"
43
44 STATIC s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
45 STATIC s32  e1000_acquire_swflag_ich8lan(struct e1000_hw *hw);
46 STATIC void e1000_release_swflag_ich8lan(struct e1000_hw *hw);
47 STATIC s32  e1000_acquire_nvm_ich8lan(struct e1000_hw *hw);
48 STATIC void e1000_release_nvm_ich8lan(struct e1000_hw *hw);
49 STATIC bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
50 STATIC bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
51 STATIC int  e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
52 STATIC int  e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
53 STATIC s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw);
54 STATIC void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
55                                               u8 *mc_addr_list,
56                                               u32 mc_addr_count);
57 STATIC s32  e1000_check_reset_block_ich8lan(struct e1000_hw *hw);
58 STATIC s32  e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw);
59 STATIC s32  e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
60 STATIC s32  e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw,
61                                             bool active);
62 STATIC s32  e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw,
63                                             bool active);
64 STATIC s32  e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
65                                    u16 words, u16 *data);
66 STATIC s32  e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
67                                u16 *data);
68 STATIC s32  e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset,
69                                     u16 words, u16 *data);
70 STATIC s32  e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw);
71 STATIC s32  e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw);
72 STATIC s32  e1000_update_nvm_checksum_spt(struct e1000_hw *hw);
73 STATIC s32  e1000_valid_led_default_ich8lan(struct e1000_hw *hw,
74                                             u16 *data);
75 STATIC s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
76 STATIC s32  e1000_get_bus_info_ich8lan(struct e1000_hw *hw);
77 STATIC s32  e1000_reset_hw_ich8lan(struct e1000_hw *hw);
78 STATIC s32  e1000_init_hw_ich8lan(struct e1000_hw *hw);
79 STATIC s32  e1000_setup_link_ich8lan(struct e1000_hw *hw);
80 STATIC s32  e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
81 STATIC s32  e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
82 STATIC s32  e1000_get_link_up_info_ich8lan(struct e1000_hw *hw,
83                                            u16 *speed, u16 *duplex);
84 STATIC s32  e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
85 STATIC s32  e1000_led_on_ich8lan(struct e1000_hw *hw);
86 STATIC s32  e1000_led_off_ich8lan(struct e1000_hw *hw);
87 STATIC s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
88 STATIC s32  e1000_setup_led_pchlan(struct e1000_hw *hw);
89 STATIC s32  e1000_cleanup_led_pchlan(struct e1000_hw *hw);
90 STATIC s32  e1000_led_on_pchlan(struct e1000_hw *hw);
91 STATIC s32  e1000_led_off_pchlan(struct e1000_hw *hw);
92 STATIC void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
93 STATIC s32  e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
94 STATIC void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
95 STATIC s32  e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
96 STATIC s32  e1000_read_flash_byte_ich8lan(struct e1000_hw *hw,
97                                           u32 offset, u8 *data);
98 STATIC s32  e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
99                                           u8 size, u16 *data);
100 STATIC s32  e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
101                                             u32 *data);
102 STATIC s32  e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
103                                            u32 offset, u32 *data);
104 STATIC s32  e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
105                                              u32 offset, u32 data);
106 STATIC s32  e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
107                                                   u32 offset, u32 dword);
108 STATIC s32  e1000_read_flash_word_ich8lan(struct e1000_hw *hw,
109                                           u32 offset, u16 *data);
110 STATIC s32  e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
111                                                  u32 offset, u8 byte);
112 STATIC s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
113 STATIC void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
114 STATIC s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw);
115 STATIC s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
116 STATIC s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
117 STATIC void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
118
119 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
120 /* Offset 04h HSFSTS */
121 union ich8_hws_flash_status {
122         struct ich8_hsfsts {
123                 u16 flcdone:1; /* bit 0 Flash Cycle Done */
124                 u16 flcerr:1; /* bit 1 Flash Cycle Error */
125                 u16 dael:1; /* bit 2 Direct Access error Log */
126                 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
127                 u16 flcinprog:1; /* bit 5 flash cycle in Progress */
128                 u16 reserved1:2; /* bit 13:6 Reserved */
129                 u16 reserved2:6; /* bit 13:6 Reserved */
130                 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
131                 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
132         } hsf_status;
133         u16 regval;
134 };
135
136 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
137 /* Offset 06h FLCTL */
138 union ich8_hws_flash_ctrl {
139         struct ich8_hsflctl {
140                 u16 flcgo:1;   /* 0 Flash Cycle Go */
141                 u16 flcycle:2;   /* 2:1 Flash Cycle */
142                 u16 reserved:5;   /* 7:3 Reserved  */
143                 u16 fldbcount:2;   /* 9:8 Flash Data Byte Count */
144                 u16 flockdn:6;   /* 15:10 Reserved */
145         } hsf_ctrl;
146         u16 regval;
147 };
148
149 /* ICH Flash Region Access Permissions */
150 union ich8_hws_flash_regacc {
151         struct ich8_flracc {
152                 u32 grra:8; /* 0:7 GbE region Read Access */
153                 u32 grwa:8; /* 8:15 GbE region Write Access */
154                 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
155                 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
156         } hsf_flregacc;
157         u16 regval;
158 };
159
160 /**
161  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
162  *  @hw: pointer to the HW structure
163  *
164  *  Test access to the PHY registers by reading the PHY ID registers.  If
165  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
166  *  otherwise assume the read PHY ID is correct if it is valid.
167  *
168  *  Assumes the sw/fw/hw semaphore is already acquired.
169  **/
170 STATIC bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
171 {
172         u16 phy_reg = 0;
173         u32 phy_id = 0;
174         s32 ret_val = 0;
175         u16 retry_count;
176         u32 mac_reg = 0;
177
178         for (retry_count = 0; retry_count < 2; retry_count++) {
179                 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_reg);
180                 if (ret_val || (phy_reg == 0xFFFF))
181                         continue;
182                 phy_id = (u32)(phy_reg << 16);
183
184                 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_reg);
185                 if (ret_val || (phy_reg == 0xFFFF)) {
186                         phy_id = 0;
187                         continue;
188                 }
189                 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
190                 break;
191         }
192
193         if (hw->phy.id) {
194                 if  (hw->phy.id == phy_id)
195                         goto out;
196         } else if (phy_id) {
197                 hw->phy.id = phy_id;
198                 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
199                 goto out;
200         }
201
202         /* In case the PHY needs to be in mdio slow mode,
203          * set slow mode and try to get the PHY id again.
204          */
205         if (hw->mac.type < e1000_pch_lpt) {
206                 hw->phy.ops.release(hw);
207                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
208                 if (!ret_val)
209                         ret_val = e1000_get_phy_id(hw);
210                 hw->phy.ops.acquire(hw);
211         }
212
213         if (ret_val)
214                 return false;
215 out:
216         if (hw->mac.type >= e1000_pch_lpt) {
217                 /* Only unforce SMBus if ME is not active */
218                 if (!(E1000_READ_REG(hw, E1000_FWSM) &
219                     E1000_ICH_FWSM_FW_VALID)) {
220                         /* Unforce SMBus mode in PHY */
221                         hw->phy.ops.read_reg_locked(hw, CV_SMB_CTRL, &phy_reg);
222                         phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
223                         hw->phy.ops.write_reg_locked(hw, CV_SMB_CTRL, phy_reg);
224
225                         /* Unforce SMBus mode in MAC */
226                         mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
227                         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
228                         E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
229                 }
230         }
231
232         return true;
233 }
234
235 /**
236  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
237  *  @hw: pointer to the HW structure
238  *
239  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
240  *  used to reset the PHY to a quiescent state when necessary.
241  **/
242 STATIC void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
243 {
244         u32 mac_reg;
245
246         DEBUGFUNC("e1000_toggle_lanphypc_pch_lpt");
247
248         /* Set Phy Config Counter to 50msec */
249         mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
250         mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
251         mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
252         E1000_WRITE_REG(hw, E1000_FEXTNVM3, mac_reg);
253
254         /* Toggle LANPHYPC Value bit */
255         mac_reg = E1000_READ_REG(hw, E1000_CTRL);
256         mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
257         mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
258         E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
259         E1000_WRITE_FLUSH(hw);
260         msec_delay(1);
261         mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
262         E1000_WRITE_REG(hw, E1000_CTRL, mac_reg);
263         E1000_WRITE_FLUSH(hw);
264
265         if (hw->mac.type < e1000_pch_lpt) {
266                 msec_delay(50);
267         } else {
268                 u16 count = 20;
269
270                 do {
271                         msec_delay(5);
272                 } while (!(E1000_READ_REG(hw, E1000_CTRL_EXT) &
273                            E1000_CTRL_EXT_LPCD) && count--);
274
275                 msec_delay(30);
276         }
277 }
278
279 /**
280  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
281  *  @hw: pointer to the HW structure
282  *
283  *  Workarounds/flow necessary for PHY initialization during driver load
284  *  and resume paths.
285  **/
286 STATIC s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
287 {
288         u32 mac_reg, fwsm = E1000_READ_REG(hw, E1000_FWSM);
289         s32 ret_val;
290
291         DEBUGFUNC("e1000_init_phy_workarounds_pchlan");
292
293         /* Gate automatic PHY configuration by hardware on managed and
294          * non-managed 82579 and newer adapters.
295          */
296         e1000_gate_hw_phy_config_ich8lan(hw, true);
297
298         /* It is not possible to be certain of the current state of ULP
299          * so forcibly disable it.
300          */
301         hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
302
303         ret_val = hw->phy.ops.acquire(hw);
304         if (ret_val) {
305                 DEBUGOUT("Failed to initialize PHY flow\n");
306                 goto out;
307         }
308
309         /* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
310          * inaccessible and resetting the PHY is not blocked, toggle the
311          * LANPHYPC Value bit to force the interconnect to PCIe mode.
312          */
313         switch (hw->mac.type) {
314         case e1000_pch_lpt:
315         case e1000_pch_spt:
316         case e1000_pch_cnp:
317         case e1000_pch_adp:
318                 if (e1000_phy_is_accessible_pchlan(hw))
319                         break;
320
321                 /* Before toggling LANPHYPC, see if PHY is accessible by
322                  * forcing MAC to SMBus mode first.
323                  */
324                 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
325                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
326                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
327
328                 /* Wait 50 milliseconds for MAC to finish any retries
329                  * that it might be trying to perform from previous
330                  * attempts to acknowledge any phy read requests.
331                  */
332                  msec_delay(50);
333
334                 /* fall-through */
335         case e1000_pch2lan:
336                 if (e1000_phy_is_accessible_pchlan(hw))
337                         break;
338
339                 /* fall-through */
340         case e1000_pchlan:
341                 if ((hw->mac.type == e1000_pchlan) &&
342                     (fwsm & E1000_ICH_FWSM_FW_VALID))
343                         break;
344
345                 if (hw->phy.ops.check_reset_block(hw)) {
346                         DEBUGOUT("Required LANPHYPC toggle blocked by ME\n");
347                         ret_val = -E1000_ERR_PHY;
348                         break;
349                 }
350
351                 /* Toggle LANPHYPC Value bit */
352                 e1000_toggle_lanphypc_pch_lpt(hw);
353                 if (hw->mac.type >= e1000_pch_lpt) {
354                         if (e1000_phy_is_accessible_pchlan(hw))
355                                 break;
356
357                         /* Toggling LANPHYPC brings the PHY out of SMBus mode
358                          * so ensure that the MAC is also out of SMBus mode
359                          */
360                         mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
361                         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
362                         E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
363
364                         if (e1000_phy_is_accessible_pchlan(hw))
365                                 break;
366
367                         ret_val = -E1000_ERR_PHY;
368                 }
369                 break;
370         default:
371                 break;
372         }
373
374         hw->phy.ops.release(hw);
375         if (!ret_val) {
376
377                 /* Check to see if able to reset PHY.  Print error if not */
378                 if (hw->phy.ops.check_reset_block(hw)) {
379                         ERROR_REPORT("Reset blocked by ME\n");
380                         goto out;
381                 }
382
383                 /* Reset the PHY before any access to it.  Doing so, ensures
384                  * that the PHY is in a known good state before we read/write
385                  * PHY registers.  The generic reset is sufficient here,
386                  * because we haven't determined the PHY type yet.
387                  */
388                 ret_val = e1000_phy_hw_reset_generic(hw);
389                 if (ret_val)
390                         goto out;
391
392                 /* On a successful reset, possibly need to wait for the PHY
393                  * to quiesce to an accessible state before returning control
394                  * to the calling function.  If the PHY does not quiesce, then
395                  * return E1000E_BLK_PHY_RESET, as this is the condition that
396                  *  the PHY is in.
397                  */
398                 ret_val = hw->phy.ops.check_reset_block(hw);
399                 if (ret_val)
400                         ERROR_REPORT("ME blocked access to PHY after reset\n");
401         }
402
403 out:
404         /* Ungate automatic PHY configuration on non-managed 82579 */
405         if ((hw->mac.type == e1000_pch2lan) &&
406             !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
407                 msec_delay(10);
408                 e1000_gate_hw_phy_config_ich8lan(hw, false);
409         }
410
411         return ret_val;
412 }
413
414 /**
415  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
416  *  @hw: pointer to the HW structure
417  *
418  *  Initialize family-specific PHY parameters and function pointers.
419  **/
420 STATIC s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
421 {
422         struct e1000_phy_info *phy = &hw->phy;
423         s32 ret_val;
424
425         DEBUGFUNC("e1000_init_phy_params_pchlan");
426
427         phy->addr               = 1;
428         phy->reset_delay_us     = 100;
429
430         phy->ops.acquire        = e1000_acquire_swflag_ich8lan;
431         phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
432         phy->ops.get_cfg_done   = e1000_get_cfg_done_ich8lan;
433         phy->ops.set_page       = e1000_set_page_igp;
434         phy->ops.read_reg       = e1000_read_phy_reg_hv;
435         phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
436         phy->ops.read_reg_page  = e1000_read_phy_reg_page_hv;
437         phy->ops.release        = e1000_release_swflag_ich8lan;
438         phy->ops.reset          = e1000_phy_hw_reset_ich8lan;
439         phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
440         phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
441         phy->ops.write_reg      = e1000_write_phy_reg_hv;
442         phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
443         phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
444         phy->ops.power_up       = e1000_power_up_phy_copper;
445         phy->ops.power_down     = e1000_power_down_phy_copper_ich8lan;
446         phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
447
448         phy->id = e1000_phy_unknown;
449
450         ret_val = e1000_init_phy_workarounds_pchlan(hw);
451         if (ret_val)
452                 return ret_val;
453
454         if (phy->id == e1000_phy_unknown)
455                 switch (hw->mac.type) {
456                 default:
457                         ret_val = e1000_get_phy_id(hw);
458                         if (ret_val)
459                                 return ret_val;
460                         if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
461                                 break;
462                         /* fall-through */
463                 case e1000_pch2lan:
464                 case e1000_pch_lpt:
465                 case e1000_pch_spt:
466                 case e1000_pch_cnp:
467                 case e1000_pch_adp:
468                         /* In case the PHY needs to be in mdio slow mode,
469                          * set slow mode and try to get the PHY id again.
470                          */
471                         ret_val = e1000_set_mdio_slow_mode_hv(hw);
472                         if (ret_val)
473                                 return ret_val;
474                         ret_val = e1000_get_phy_id(hw);
475                         if (ret_val)
476                                 return ret_val;
477                         break;
478                 }
479         phy->type = e1000_get_phy_type_from_id(phy->id);
480
481         switch (phy->type) {
482         case e1000_phy_82577:
483         case e1000_phy_82579:
484         case e1000_phy_i217:
485                 phy->ops.check_polarity = e1000_check_polarity_82577;
486                 phy->ops.force_speed_duplex =
487                         e1000_phy_force_speed_duplex_82577;
488                 phy->ops.get_cable_length = e1000_get_cable_length_82577;
489                 phy->ops.get_info = e1000_get_phy_info_82577;
490                 phy->ops.commit = e1000_phy_sw_reset_generic;
491                 break;
492         case e1000_phy_82578:
493                 phy->ops.check_polarity = e1000_check_polarity_m88;
494                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
495                 phy->ops.get_cable_length = e1000_get_cable_length_m88;
496                 phy->ops.get_info = e1000_get_phy_info_m88;
497                 break;
498         default:
499                 ret_val = -E1000_ERR_PHY;
500                 break;
501         }
502
503         return ret_val;
504 }
505
506 /**
507  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
508  *  @hw: pointer to the HW structure
509  *
510  *  Initialize family-specific PHY parameters and function pointers.
511  **/
512 STATIC s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
513 {
514         struct e1000_phy_info *phy = &hw->phy;
515         s32 ret_val;
516         u16 i = 0;
517
518         DEBUGFUNC("e1000_init_phy_params_ich8lan");
519
520         phy->addr               = 1;
521         phy->reset_delay_us     = 100;
522
523         phy->ops.acquire        = e1000_acquire_swflag_ich8lan;
524         phy->ops.check_reset_block = e1000_check_reset_block_ich8lan;
525         phy->ops.get_cable_length = e1000_get_cable_length_igp_2;
526         phy->ops.get_cfg_done   = e1000_get_cfg_done_ich8lan;
527         phy->ops.read_reg       = e1000_read_phy_reg_igp;
528         phy->ops.release        = e1000_release_swflag_ich8lan;
529         phy->ops.reset          = e1000_phy_hw_reset_ich8lan;
530         phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan;
531         phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan;
532         phy->ops.write_reg      = e1000_write_phy_reg_igp;
533         phy->ops.power_up       = e1000_power_up_phy_copper;
534         phy->ops.power_down     = e1000_power_down_phy_copper_ich8lan;
535
536         /* We may need to do this twice - once for IGP and if that fails,
537          * we'll set BM func pointers and try again
538          */
539         ret_val = e1000_determine_phy_address(hw);
540         if (ret_val) {
541                 phy->ops.write_reg = e1000_write_phy_reg_bm;
542                 phy->ops.read_reg  = e1000_read_phy_reg_bm;
543                 ret_val = e1000_determine_phy_address(hw);
544                 if (ret_val) {
545                         DEBUGOUT("Cannot determine PHY addr. Erroring out\n");
546                         return ret_val;
547                 }
548         }
549
550         phy->id = 0;
551         while ((e1000_phy_unknown == e1000_get_phy_type_from_id(phy->id)) &&
552                (i++ < 100)) {
553                 msec_delay(1);
554                 ret_val = e1000_get_phy_id(hw);
555                 if (ret_val)
556                         return ret_val;
557         }
558
559         /* Verify phy id */
560         switch (phy->id) {
561         case IGP03E1000_E_PHY_ID:
562                 phy->type = e1000_phy_igp_3;
563                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
564                 phy->ops.read_reg_locked = e1000_read_phy_reg_igp_locked;
565                 phy->ops.write_reg_locked = e1000_write_phy_reg_igp_locked;
566                 phy->ops.get_info = e1000_get_phy_info_igp;
567                 phy->ops.check_polarity = e1000_check_polarity_igp;
568                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_igp;
569                 break;
570         case IFE_E_PHY_ID:
571         case IFE_PLUS_E_PHY_ID:
572         case IFE_C_E_PHY_ID:
573                 phy->type = e1000_phy_ife;
574                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
575                 phy->ops.get_info = e1000_get_phy_info_ife;
576                 phy->ops.check_polarity = e1000_check_polarity_ife;
577                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
578                 break;
579         case BME1000_E_PHY_ID:
580                 phy->type = e1000_phy_bm;
581                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
582                 phy->ops.read_reg = e1000_read_phy_reg_bm;
583                 phy->ops.write_reg = e1000_write_phy_reg_bm;
584                 phy->ops.commit = e1000_phy_sw_reset_generic;
585                 phy->ops.get_info = e1000_get_phy_info_m88;
586                 phy->ops.check_polarity = e1000_check_polarity_m88;
587                 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_m88;
588                 break;
589         default:
590                 return -E1000_ERR_PHY;
591                 break;
592         }
593
594         return E1000_SUCCESS;
595 }
596
597 /**
598  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
599  *  @hw: pointer to the HW structure
600  *
601  *  Initialize family-specific NVM parameters and function
602  *  pointers.
603  **/
604 STATIC s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
605 {
606         struct e1000_nvm_info *nvm = &hw->nvm;
607         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
608         u32 gfpreg, sector_base_addr, sector_end_addr;
609         u16 i;
610         u32 nvm_size;
611
612         DEBUGFUNC("e1000_init_nvm_params_ich8lan");
613
614         nvm->type = e1000_nvm_flash_sw;
615
616         if (hw->mac.type >= e1000_pch_spt) {
617                 /* in SPT, gfpreg doesn't exist. NVM size is taken from the
618                  * STRAP register. This is because in SPT the GbE Flash region
619                  * is no longer accessed through the flash registers. Instead,
620                  * the mechanism has changed, and the Flash region access
621                  * registers are now implemented in GbE memory space.
622                  */
623                 nvm->flash_base_addr = 0;
624                 nvm_size =
625                     (((E1000_READ_REG(hw, E1000_STRAP) >> 1) & 0x1F) + 1)
626                     * NVM_SIZE_MULTIPLIER;
627                 nvm->flash_bank_size = nvm_size / 2;
628                 /* Adjust to word count */
629                 nvm->flash_bank_size /= sizeof(u16);
630                 /* Set the base address for flash register access */
631                 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
632         } else {
633                 /* Can't read flash registers if register set isn't mapped. */
634                 if (!hw->flash_address) {
635                         DEBUGOUT("ERROR: Flash registers not mapped\n");
636                         return -E1000_ERR_CONFIG;
637                 }
638
639                 gfpreg = E1000_READ_FLASH_REG(hw, ICH_FLASH_GFPREG);
640
641                 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
642                  * Add 1 to sector_end_addr since this sector is included in
643                  * the overall size.
644                  */
645                 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
646                 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
647
648                 /* flash_base_addr is byte-aligned */
649                 nvm->flash_base_addr = sector_base_addr
650                                        << FLASH_SECTOR_ADDR_SHIFT;
651
652                 /* find total size of the NVM, then cut in half since the total
653                  * size represents two separate NVM banks.
654                  */
655                 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
656                                         << FLASH_SECTOR_ADDR_SHIFT);
657                 nvm->flash_bank_size /= 2;
658                 /* Adjust to word count */
659                 nvm->flash_bank_size /= sizeof(u16);
660         }
661
662         nvm->word_size = E1000_SHADOW_RAM_WORDS;
663
664         /* Clear shadow ram */
665         for (i = 0; i < nvm->word_size; i++) {
666                 dev_spec->shadow_ram[i].modified = false;
667                 dev_spec->shadow_ram[i].value    = 0xFFFF;
668         }
669
670         E1000_MUTEX_INIT(&dev_spec->nvm_mutex);
671         E1000_MUTEX_INIT(&dev_spec->swflag_mutex);
672
673         /* Function Pointers */
674         nvm->ops.acquire        = e1000_acquire_nvm_ich8lan;
675         nvm->ops.release        = e1000_release_nvm_ich8lan;
676         if (hw->mac.type >= e1000_pch_spt) {
677                 nvm->ops.read   = e1000_read_nvm_spt;
678                 nvm->ops.update = e1000_update_nvm_checksum_spt;
679         } else {
680                 nvm->ops.read   = e1000_read_nvm_ich8lan;
681                 nvm->ops.update = e1000_update_nvm_checksum_ich8lan;
682         }
683         nvm->ops.valid_led_default = e1000_valid_led_default_ich8lan;
684         nvm->ops.validate       = e1000_validate_nvm_checksum_ich8lan;
685         nvm->ops.write          = e1000_write_nvm_ich8lan;
686
687         return E1000_SUCCESS;
688 }
689
690 /**
691  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
692  *  @hw: pointer to the HW structure
693  *
694  *  Initialize family-specific MAC parameters and function
695  *  pointers.
696  **/
697 STATIC s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
698 {
699         struct e1000_mac_info *mac = &hw->mac;
700         u16 pci_cfg;
701
702         DEBUGFUNC("e1000_init_mac_params_ich8lan");
703
704         /* Set media type function pointer */
705         hw->phy.media_type = e1000_media_type_copper;
706
707         /* Set mta register count */
708         mac->mta_reg_count = 32;
709         /* Set rar entry count */
710         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
711         if (mac->type == e1000_ich8lan)
712                 mac->rar_entry_count--;
713         /* Set if part includes ASF firmware */
714         mac->asf_firmware_present = true;
715         /* FWSM register */
716         mac->has_fwsm = true;
717         /* ARC subsystem not supported */
718         mac->arc_subsystem_valid = false;
719         /* Adaptive IFS supported */
720         mac->adaptive_ifs = true;
721
722         /* Function pointers */
723
724         /* bus type/speed/width */
725         mac->ops.get_bus_info = e1000_get_bus_info_ich8lan;
726         /* function id */
727         mac->ops.set_lan_id = e1000_set_lan_id_single_port;
728         /* reset */
729         mac->ops.reset_hw = e1000_reset_hw_ich8lan;
730         /* hw initialization */
731         mac->ops.init_hw = e1000_init_hw_ich8lan;
732         /* link setup */
733         mac->ops.setup_link = e1000_setup_link_ich8lan;
734         /* physical interface setup */
735         mac->ops.setup_physical_interface = e1000_setup_copper_link_ich8lan;
736         /* check for link */
737         mac->ops.check_for_link = e1000_check_for_copper_link_ich8lan;
738         /* link info */
739         mac->ops.get_link_up_info = e1000_get_link_up_info_ich8lan;
740         /* multicast address update */
741         mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
742         /* clear hardware counters */
743         mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan;
744
745         /* LED and other operations */
746         switch (mac->type) {
747         case e1000_ich8lan:
748         case e1000_ich9lan:
749         case e1000_ich10lan:
750                 /* check management mode */
751                 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
752                 /* ID LED init */
753                 mac->ops.id_led_init = e1000_id_led_init_generic;
754                 /* blink LED */
755                 mac->ops.blink_led = e1000_blink_led_generic;
756                 /* setup LED */
757                 mac->ops.setup_led = e1000_setup_led_generic;
758                 /* cleanup LED */
759                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
760                 /* turn on/off LED */
761                 mac->ops.led_on = e1000_led_on_ich8lan;
762                 mac->ops.led_off = e1000_led_off_ich8lan;
763                 break;
764         case e1000_pch2lan:
765                 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
766                 mac->ops.rar_set = e1000_rar_set_pch2lan;
767                 /* fall-through */
768         case e1000_pch_lpt:
769         case e1000_pch_spt:
770         case e1000_pch_cnp:
771         case e1000_pch_adp:
772                 /* multicast address update for pch2 */
773                 mac->ops.update_mc_addr_list =
774                         e1000_update_mc_addr_list_pch2lan;
775                 /* fall-through */
776         case e1000_pchlan:
777                 /* save PCH revision_id */
778                 e1000_read_pci_cfg(hw, E1000_PCI_REVISION_ID_REG, &pci_cfg);
779                 /* SPT uses full byte for revision ID,
780                  * as opposed to previous generations
781                  */
782                 if (hw->mac.type >= e1000_pch_spt)
783                         hw->revision_id = (u8)(pci_cfg &= 0x00FF);
784                 else
785                         hw->revision_id = (u8)(pci_cfg &= 0x000F);
786                 /* check management mode */
787                 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
788                 /* ID LED init */
789                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
790                 /* setup LED */
791                 mac->ops.setup_led = e1000_setup_led_pchlan;
792                 /* cleanup LED */
793                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
794                 /* turn on/off LED */
795                 mac->ops.led_on = e1000_led_on_pchlan;
796                 mac->ops.led_off = e1000_led_off_pchlan;
797                 break;
798         default:
799                 break;
800         }
801
802         if (mac->type >= e1000_pch_lpt) {
803                 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
804                 mac->ops.rar_set = e1000_rar_set_pch_lpt;
805                 mac->ops.setup_physical_interface = e1000_setup_copper_link_pch_lpt;
806         }
807
808         /* Enable PCS Lock-loss workaround for ICH8 */
809         if (mac->type == e1000_ich8lan)
810                 e1000_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
811
812         return E1000_SUCCESS;
813 }
814
815 /**
816  *  __e1000_access_emi_reg_locked - Read/write EMI register
817  *  @hw: pointer to the HW structure
818  *  @address: EMI address to program
819  *  @data: pointer to value to read/write from/to the EMI address
820  *  @read: boolean flag to indicate read or write
821  *
822  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
823  **/
824 STATIC s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
825                                          u16 *data, bool read)
826 {
827         s32 ret_val;
828
829         DEBUGFUNC("__e1000_access_emi_reg_locked");
830
831         ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, address);
832         if (ret_val)
833                 return ret_val;
834
835         if (read)
836                 ret_val = hw->phy.ops.read_reg_locked(hw, I82579_EMI_DATA,
837                                                       data);
838         else
839                 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
840                                                        *data);
841
842         return ret_val;
843 }
844
845 /**
846  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
847  *  @hw: pointer to the HW structure
848  *  @addr: EMI address to program
849  *  @data: value to be read from the EMI address
850  *
851  *  Assumes the SW/FW/HW Semaphore is already acquired.
852  **/
853 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
854 {
855         DEBUGFUNC("e1000_read_emi_reg_locked");
856
857         return __e1000_access_emi_reg_locked(hw, addr, data, true);
858 }
859
860 /**
861  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
862  *  @hw: pointer to the HW structure
863  *  @addr: EMI address to program
864  *  @data: value to be written to the EMI address
865  *
866  *  Assumes the SW/FW/HW Semaphore is already acquired.
867  **/
868 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
869 {
870         DEBUGFUNC("e1000_read_emi_reg_locked");
871
872         return __e1000_access_emi_reg_locked(hw, addr, &data, false);
873 }
874
875 /**
876  *  e1000_set_eee_pchlan - Enable/disable EEE support
877  *  @hw: pointer to the HW structure
878  *
879  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
880  *  the link and the EEE capabilities of the link partner.  The LPI Control
881  *  register bits will remain set only if/when link is up.
882  *
883  *  EEE LPI must not be asserted earlier than one second after link is up.
884  *  On 82579, EEE LPI should not be enabled until such time otherwise there
885  *  can be link issues with some switches.  Other devices can have EEE LPI
886  *  enabled immediately upon link up since they have a timer in hardware which
887  *  prevents LPI from being asserted too early.
888  **/
889 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
890 {
891         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
892         s32 ret_val;
893         u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
894
895         DEBUGFUNC("e1000_set_eee_pchlan");
896
897         switch (hw->phy.type) {
898         case e1000_phy_82579:
899                 lpa = I82579_EEE_LP_ABILITY;
900                 pcs_status = I82579_EEE_PCS_STATUS;
901                 adv_addr = I82579_EEE_ADVERTISEMENT;
902                 break;
903         case e1000_phy_i217:
904                 lpa = I217_EEE_LP_ABILITY;
905                 pcs_status = I217_EEE_PCS_STATUS;
906                 adv_addr = I217_EEE_ADVERTISEMENT;
907                 break;
908         default:
909                 return E1000_SUCCESS;
910         }
911
912         ret_val = hw->phy.ops.acquire(hw);
913         if (ret_val)
914                 return ret_val;
915
916         ret_val = hw->phy.ops.read_reg_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
917         if (ret_val)
918                 goto release;
919
920         /* Clear bits that enable EEE in various speeds */
921         lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
922
923         /* Enable EEE if not disabled by user */
924         if (!dev_spec->eee_disable) {
925                 /* Save off link partner's EEE ability */
926                 ret_val = e1000_read_emi_reg_locked(hw, lpa,
927                                                     &dev_spec->eee_lp_ability);
928                 if (ret_val)
929                         goto release;
930
931                 /* Read EEE advertisement */
932                 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
933                 if (ret_val)
934                         goto release;
935
936                 /* Enable EEE only for speeds in which the link partner is
937                  * EEE capable and for which we advertise EEE.
938                  */
939                 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
940                         lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
941
942                 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
943                         hw->phy.ops.read_reg_locked(hw, PHY_LP_ABILITY, &data);
944                         if (data & NWAY_LPAR_100TX_FD_CAPS)
945                                 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
946                         else
947                                 /* EEE is not supported in 100Half, so ignore
948                                  * partner's EEE in 100 ability if full-duplex
949                                  * is not advertised.
950                                  */
951                                 dev_spec->eee_lp_ability &=
952                                     ~I82579_EEE_100_SUPPORTED;
953                 }
954         }
955
956         if (hw->phy.type == e1000_phy_82579) {
957                 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
958                                                     &data);
959                 if (ret_val)
960                         goto release;
961
962                 data &= ~I82579_LPI_100_PLL_SHUT;
963                 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
964                                                      data);
965         }
966
967         /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
968         ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
969         if (ret_val)
970                 goto release;
971
972         ret_val = hw->phy.ops.write_reg_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
973 release:
974         hw->phy.ops.release(hw);
975
976         return ret_val;
977 }
978
979 /**
980  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
981  *  @hw:   pointer to the HW structure
982  *  @link: link up bool flag
983  *
984  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
985  *  preventing further DMA write requests.  Workaround the issue by disabling
986  *  the de-assertion of the clock request when in 1Gpbs mode.
987  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
988  *  speeds in order to avoid Tx hangs.
989  **/
990 STATIC s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
991 {
992         u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
993         u32 status = E1000_READ_REG(hw, E1000_STATUS);
994         s32 ret_val = E1000_SUCCESS;
995         u16 reg;
996
997         if (link && (status & E1000_STATUS_SPEED_1000)) {
998                 ret_val = hw->phy.ops.acquire(hw);
999                 if (ret_val)
1000                         return ret_val;
1001
1002                 ret_val =
1003                     e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1004                                                &reg);
1005                 if (ret_val)
1006                         goto release;
1007
1008                 ret_val =
1009                     e1000_write_kmrn_reg_locked(hw,
1010                                                 E1000_KMRNCTRLSTA_K1_CONFIG,
1011                                                 reg &
1012                                                 ~E1000_KMRNCTRLSTA_K1_ENABLE);
1013                 if (ret_val)
1014                         goto release;
1015
1016                 usec_delay(10);
1017
1018                 E1000_WRITE_REG(hw, E1000_FEXTNVM6,
1019                                 fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
1020
1021                 ret_val =
1022                     e1000_write_kmrn_reg_locked(hw,
1023                                                 E1000_KMRNCTRLSTA_K1_CONFIG,
1024                                                 reg);
1025 release:
1026                 hw->phy.ops.release(hw);
1027         } else {
1028                 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
1029                 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
1030
1031                 if ((hw->phy.revision > 5) || !link ||
1032                     ((status & E1000_STATUS_SPEED_100) &&
1033                      (status & E1000_STATUS_FD)))
1034                         goto update_fextnvm6;
1035
1036                 ret_val = hw->phy.ops.read_reg(hw, I217_INBAND_CTRL, &reg);
1037                 if (ret_val)
1038                         return ret_val;
1039
1040                 /* Clear link status transmit timeout */
1041                 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
1042
1043                 if (status & E1000_STATUS_SPEED_100) {
1044                         /* Set inband Tx timeout to 5x10us for 100Half */
1045                         reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1046
1047                         /* Do not extend the K1 entry latency for 100Half */
1048                         fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1049                 } else {
1050                         /* Set inband Tx timeout to 50x10us for 10Full/Half */
1051                         reg |= 50 <<
1052                                I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1053
1054                         /* Extend the K1 entry latency for 10 Mbps */
1055                         fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1056                 }
1057
1058                 ret_val = hw->phy.ops.write_reg(hw, I217_INBAND_CTRL, reg);
1059                 if (ret_val)
1060                         return ret_val;
1061
1062 update_fextnvm6:
1063                 E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1064         }
1065
1066         return ret_val;
1067 }
1068
1069 /**
1070  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1071  *  @hw: pointer to the HW structure
1072  *  @to_sx: boolean indicating a system power state transition to Sx
1073  *
1074  *  When link is down, configure ULP mode to significantly reduce the power
1075  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1076  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1077  *  system, configure the ULP mode by software.
1078  */
1079 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1080 {
1081         u32 mac_reg;
1082         s32 ret_val = E1000_SUCCESS;
1083         u16 phy_reg;
1084         u16 oem_reg = 0;
1085
1086         if ((hw->mac.type < e1000_pch_lpt) ||
1087             (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1088             (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1089             (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1090             (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1091             (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1092                 return 0;
1093
1094         if (!to_sx) {
1095                 int i = 0;
1096                 /* Poll up to 5 seconds for Cable Disconnected indication */
1097                 while (!(E1000_READ_REG(hw, E1000_FEXT) &
1098                          E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1099                         /* Bail if link is re-acquired */
1100                         if (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)
1101                                 return -E1000_ERR_PHY;
1102                         if (i++ == 100)
1103                                 break;
1104
1105                         msec_delay(50);
1106                 }
1107                 DEBUGOUT2("CABLE_DISCONNECTED %s set after %dmsec\n",
1108                           (E1000_READ_REG(hw, E1000_FEXT) &
1109                            E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not",
1110                           i * 50);
1111                 if (!(E1000_READ_REG(hw, E1000_FEXT) &
1112                     E1000_FEXT_PHY_CABLE_DISCONNECTED))
1113                         return 0;
1114         }
1115
1116         if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1117                 /* Request ME configure ULP mode in the PHY */
1118                 mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1119                 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1120                 E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1121
1122                 goto out;
1123         }
1124
1125         ret_val = hw->phy.ops.acquire(hw);
1126         if (ret_val)
1127                 goto out;
1128
1129         /* During S0 Idle keep the phy in PCI-E mode */
1130         if (hw->dev_spec.ich8lan.smbus_disable)
1131                 goto skip_smbus;
1132
1133         /* Force SMBus mode in PHY */
1134         ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1135         if (ret_val)
1136                 goto release;
1137         phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1138         e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1139
1140         /* Force SMBus mode in MAC */
1141         mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1142         mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1143         E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1144
1145         /* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1146          * LPLU and disable Gig speed when entering ULP
1147          */
1148         if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1149                 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1150                                                        &oem_reg);
1151                 if (ret_val)
1152                         goto release;
1153
1154                 phy_reg = oem_reg;
1155                 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1156
1157                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1158                                                         phy_reg);
1159
1160                 if (ret_val)
1161                         goto release;
1162         }
1163
1164 skip_smbus:
1165         if (!to_sx) {
1166                 /* Change the 'Link Status Change' interrupt to trigger
1167                  * on 'Cable Status Change'
1168                  */
1169                 ret_val = e1000_read_kmrn_reg_locked(hw,
1170                                                      E1000_KMRNCTRLSTA_OP_MODES,
1171                                                      &phy_reg);
1172                 if (ret_val)
1173                         goto release;
1174                 phy_reg |= E1000_KMRNCTRLSTA_OP_MODES_LSC2CSC;
1175                 e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_OP_MODES,
1176                                             phy_reg);
1177         }
1178
1179         /* Set Inband ULP Exit, Reset to SMBus mode and
1180          * Disable SMBus Release on PERST# in PHY
1181          */
1182         ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1183         if (ret_val)
1184                 goto release;
1185         phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1186                     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1187         if (to_sx) {
1188                 if (E1000_READ_REG(hw, E1000_WUFC) & E1000_WUFC_LNKC)
1189                         phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1190                 else
1191                         phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1192
1193                 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1194                 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1195         } else {
1196                 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1197                 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1198                 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1199         }
1200         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1201
1202         /* Set Disable SMBus Release on PERST# in MAC */
1203         mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1204         mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1205         E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1206
1207         /* Commit ULP changes in PHY by starting auto ULP configuration */
1208         phy_reg |= I218_ULP_CONFIG1_START;
1209         e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1210
1211         if (!to_sx) {
1212                 /* Disable Tx so that the MAC doesn't send any (buffered)
1213                  * packets to the PHY.
1214                  */
1215                 mac_reg = E1000_READ_REG(hw, E1000_TCTL);
1216                 mac_reg &= ~E1000_TCTL_EN;
1217                 E1000_WRITE_REG(hw, E1000_TCTL, mac_reg);
1218         }
1219
1220         if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1221             to_sx && (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1222                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1223                                                         oem_reg);
1224                 if (ret_val)
1225                         goto release;
1226         }
1227
1228 release:
1229         hw->phy.ops.release(hw);
1230 out:
1231         if (ret_val)
1232                 DEBUGOUT1("Error in ULP enable flow: %d\n", ret_val);
1233         else
1234                 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1235
1236         return ret_val;
1237 }
1238
1239 /**
1240  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1241  *  @hw: pointer to the HW structure
1242  *  @force: boolean indicating whether or not to force disabling ULP
1243  *
1244  *  Un-configure ULP mode when link is up, the system is transitioned from
1245  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1246  *  system, poll for an indication from ME that ULP has been un-configured.
1247  *  If not on an ME enabled system, un-configure the ULP mode by software.
1248  *
1249  *  During nominal operation, this function is called when link is acquired
1250  *  to disable ULP mode (force=false); otherwise, for example when unloading
1251  *  the driver or during Sx->S0 transitions, this is called with force=true
1252  *  to forcibly disable ULP.
1253
1254  *  When the cable is plugged in while the device is in D0, a Cable Status
1255  *  Change interrupt is generated which causes this function to be called
1256  *  to partially disable ULP mode and restart autonegotiation.  This function
1257  *  is then called again due to the resulting Link Status Change interrupt
1258  *  to finish cleaning up after the ULP flow.
1259  */
1260 s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1261 {
1262         s32 ret_val = E1000_SUCCESS;
1263         u8 ulp_exit_timeout = 30;
1264         u32 mac_reg;
1265         u16 phy_reg;
1266         int i = 0;
1267
1268         if ((hw->mac.type < e1000_pch_lpt) ||
1269             (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1270             (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V) ||
1271             (hw->device_id == E1000_DEV_ID_PCH_I218_LM2) ||
1272             (hw->device_id == E1000_DEV_ID_PCH_I218_V2) ||
1273             (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1274                 return 0;
1275
1276         if (E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID) {
1277                 if (force) {
1278                         /* Request ME un-configure ULP mode in the PHY */
1279                         mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1280                         mac_reg &= ~E1000_H2ME_ULP;
1281                         mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1282                         E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1283                 }
1284
1285                 if (hw->mac.type == e1000_pch_cnp)
1286                         ulp_exit_timeout = 100;
1287
1288                 while (E1000_READ_REG(hw, E1000_FWSM) &
1289                        E1000_FWSM_ULP_CFG_DONE) {
1290                         if (i++ == ulp_exit_timeout) {
1291                                 ret_val = -E1000_ERR_PHY;
1292                                 goto out;
1293                         }
1294
1295                         msec_delay(10);
1296                 }
1297                 DEBUGOUT1("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1298
1299                 if (force) {
1300                         mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1301                         mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1302                         E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1303                 } else {
1304                         /* Clear H2ME.ULP after ME ULP configuration */
1305                         mac_reg = E1000_READ_REG(hw, E1000_H2ME);
1306                         mac_reg &= ~E1000_H2ME_ULP;
1307                         E1000_WRITE_REG(hw, E1000_H2ME, mac_reg);
1308
1309                         /* Restore link speed advertisements and restart
1310                          * Auto-negotiation
1311                          */
1312                         if (hw->mac.autoneg) {
1313                                 ret_val = e1000_phy_setup_autoneg(hw);
1314                                 if (ret_val)
1315                                         goto out;
1316                         } else {
1317                                 ret_val = e1000_setup_copper_link_generic(hw);
1318                                 if (ret_val)
1319                                         goto out;
1320                         }
1321                         ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1322                 }
1323
1324                 goto out;
1325         }
1326
1327         ret_val = hw->phy.ops.acquire(hw);
1328         if (ret_val)
1329                 goto out;
1330
1331         /* Revert the change to the 'Link Status Change'
1332          * interrupt to trigger on 'Cable Status Change'
1333          */
1334         ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_OP_MODES,
1335                                              &phy_reg);
1336         if (ret_val)
1337                 goto release;
1338         phy_reg &= ~E1000_KMRNCTRLSTA_OP_MODES_LSC2CSC;
1339         e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_OP_MODES, phy_reg);
1340
1341         if (force)
1342                 /* Toggle LANPHYPC Value bit */
1343                 e1000_toggle_lanphypc_pch_lpt(hw);
1344
1345         /* Unforce SMBus mode in PHY */
1346         ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1347         if (ret_val) {
1348                 /* The MAC might be in PCIe mode, so temporarily force to
1349                  * SMBus mode in order to access the PHY.
1350                  */
1351                 mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1352                 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1353                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1354
1355                 msec_delay(50);
1356
1357                 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1358                                                        &phy_reg);
1359                 if (ret_val)
1360                         goto release;
1361         }
1362         phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1363         e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1364
1365         /* Unforce SMBus mode in MAC */
1366         mac_reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
1367         mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1368         E1000_WRITE_REG(hw, E1000_CTRL_EXT, mac_reg);
1369
1370         /* When ULP mode was previously entered, K1 was disabled by the
1371          * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1372          */
1373         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1374         if (ret_val)
1375                 goto release;
1376         phy_reg |= HV_PM_CTRL_K1_ENABLE;
1377         e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1378
1379         /* Clear ULP enabled configuration */
1380         ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1381         if (ret_val)
1382                 goto release;
1383         /* CSC interrupt received due to ULP Indication */
1384         if ((phy_reg & I218_ULP_CONFIG1_IND) || force) {
1385                 phy_reg &= ~(I218_ULP_CONFIG1_IND |
1386                              I218_ULP_CONFIG1_STICKY_ULP |
1387                              I218_ULP_CONFIG1_RESET_TO_SMBUS |
1388                              I218_ULP_CONFIG1_WOL_HOST |
1389                              I218_ULP_CONFIG1_INBAND_EXIT |
1390                              I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1391                              I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1392                              I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1393                 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1394
1395                 /* Commit ULP changes by starting auto ULP configuration */
1396                 phy_reg |= I218_ULP_CONFIG1_START;
1397                 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1398
1399                 /* Clear Disable SMBus Release on PERST# in MAC */
1400                 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM7);
1401                 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1402                 E1000_WRITE_REG(hw, E1000_FEXTNVM7, mac_reg);
1403
1404                 if (!force) {
1405                         hw->phy.ops.release(hw);
1406
1407                         if (hw->mac.autoneg)
1408                                 e1000_phy_setup_autoneg(hw);
1409                         else
1410                                 e1000_setup_copper_link_generic(hw);
1411
1412                         e1000_sw_lcd_config_ich8lan(hw);
1413
1414                         e1000_oem_bits_config_ich8lan(hw, true);
1415
1416                         /* Set ULP state to unknown and return non-zero to
1417                          * indicate no link (yet) and re-enter on the next LSC
1418                          * to finish disabling ULP flow.
1419                          */
1420                         hw->dev_spec.ich8lan.ulp_state =
1421                             e1000_ulp_state_unknown;
1422
1423                         return 1;
1424                 }
1425         }
1426
1427         /* Re-enable Tx */
1428         mac_reg = E1000_READ_REG(hw, E1000_TCTL);
1429         mac_reg |= E1000_TCTL_EN;
1430         E1000_WRITE_REG(hw, E1000_TCTL, mac_reg);
1431
1432 release:
1433         hw->phy.ops.release(hw);
1434         if (force) {
1435                 hw->phy.ops.reset(hw);
1436                 msec_delay(50);
1437         }
1438 out:
1439         if (ret_val)
1440                 DEBUGOUT1("Error in ULP disable flow: %d\n", ret_val);
1441         else
1442                 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1443
1444         return ret_val;
1445 }
1446
1447
1448
1449 /**
1450  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1451  *  @hw: pointer to the HW structure
1452  *
1453  *  Checks to see of the link status of the hardware has changed.  If a
1454  *  change in link status has been detected, then we read the PHY registers
1455  *  to get the current speed/duplex if link exists.
1456  **/
1457 STATIC s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1458 {
1459         struct e1000_mac_info *mac = &hw->mac;
1460         s32 ret_val, tipg_reg = 0;
1461         u16 emi_addr, emi_val = 0;
1462         bool link = false;
1463         u16 phy_reg;
1464
1465         DEBUGFUNC("e1000_check_for_copper_link_ich8lan");
1466
1467         /* We only want to go out to the PHY registers to see if Auto-Neg
1468          * has completed and/or if our link status has changed.  The
1469          * get_link_status flag is set upon receiving a Link Status
1470          * Change or Rx Sequence Error interrupt.
1471          */
1472         if (!mac->get_link_status)
1473                 return E1000_SUCCESS;
1474
1475         if ((hw->mac.type < e1000_pch_lpt) ||
1476             (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1477             (hw->device_id == E1000_DEV_ID_PCH_LPT_I217_V)) {
1478                 /* First we want to see if the MII Status Register reports
1479                  * link.  If so, then we want to get the current speed/duplex
1480                  * of the PHY.
1481                  */
1482                 ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1483                 if (ret_val)
1484                         return ret_val;
1485         } else {
1486                 /* Check the MAC's STATUS register to determine link state
1487                  * since the PHY could be inaccessible while in ULP mode.
1488                  */
1489                 link = !!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU);
1490                 if (link)
1491                         ret_val = e1000_disable_ulp_lpt_lp(hw, false);
1492                 else
1493                         ret_val = e1000_enable_ulp_lpt_lp(hw, false);
1494                 if (ret_val)
1495                         return ret_val;
1496         }
1497
1498         if (hw->mac.type == e1000_pchlan) {
1499                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1500                 if (ret_val)
1501                         return ret_val;
1502         }
1503
1504         /* When connected at 10Mbps half-duplex, some parts are excessively
1505          * aggressive resulting in many collisions. To avoid this, increase
1506          * the IPG and reduce Rx latency in the PHY.
1507          */
1508         if ((hw->mac.type >= e1000_pch2lan) && link) {
1509                 u16 speed, duplex;
1510
1511                 e1000_get_speed_and_duplex_copper_generic(hw, &speed, &duplex);
1512                 tipg_reg = E1000_READ_REG(hw, E1000_TIPG);
1513                 tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1514
1515                 if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1516                         tipg_reg |= 0xFF;
1517                         /* Reduce Rx latency in analog PHY */
1518                         emi_val = 0;
1519                 } else if (hw->mac.type >= e1000_pch_spt &&
1520                            duplex == FULL_DUPLEX && speed != SPEED_1000) {
1521                         tipg_reg |= 0xC;
1522                         emi_val = 1;
1523                 } else {
1524                         /* Roll back the default values */
1525                         tipg_reg |= 0x08;
1526                         emi_val = 1;
1527                 }
1528
1529                 E1000_WRITE_REG(hw, E1000_TIPG, tipg_reg);
1530
1531                 ret_val = hw->phy.ops.acquire(hw);
1532                 if (ret_val)
1533                         return ret_val;
1534
1535                 if (hw->mac.type == e1000_pch2lan)
1536                         emi_addr = I82579_RX_CONFIG;
1537                 else
1538                         emi_addr = I217_RX_CONFIG;
1539                 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1540
1541
1542                 if (hw->mac.type >= e1000_pch_lpt) {
1543                         hw->phy.ops.read_reg_locked(hw, I217_PLL_CLOCK_GATE_REG,
1544                                                     &phy_reg);
1545                         phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1546                         if (speed == SPEED_100 || speed == SPEED_10)
1547                                 phy_reg |= 0x3E8;
1548                         else
1549                                 phy_reg |= 0xFA;
1550                         hw->phy.ops.write_reg_locked(hw,
1551                                                      I217_PLL_CLOCK_GATE_REG,
1552                                                      phy_reg);
1553
1554                         if (speed == SPEED_1000) {
1555                                 hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1556                                                             &phy_reg);
1557
1558                                 phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1559
1560                                 hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1561                                                              phy_reg);
1562                                 }
1563                  }
1564                 hw->phy.ops.release(hw);
1565
1566                 if (ret_val)
1567                         return ret_val;
1568
1569                 if (hw->mac.type >= e1000_pch_spt) {
1570                         u16 data;
1571                         u16 ptr_gap;
1572
1573                         if (speed == SPEED_1000) {
1574                                 ret_val = hw->phy.ops.acquire(hw);
1575                                 if (ret_val)
1576                                         return ret_val;
1577
1578                                 ret_val = hw->phy.ops.read_reg_locked(hw,
1579                                                               PHY_REG(776, 20),
1580                                                               &data);
1581                                 if (ret_val) {
1582                                         hw->phy.ops.release(hw);
1583                                         return ret_val;
1584                                 }
1585
1586                                 ptr_gap = (data & (0x3FF << 2)) >> 2;
1587                                 if (ptr_gap < 0x18) {
1588                                         data &= ~(0x3FF << 2);
1589                                         data |= (0x18 << 2);
1590                                         ret_val =
1591                                                 hw->phy.ops.write_reg_locked(hw,
1592                                                         PHY_REG(776, 20), data);
1593                                 }
1594                                 hw->phy.ops.release(hw);
1595                                 if (ret_val)
1596                                         return ret_val;
1597                         } else {
1598                                 ret_val = hw->phy.ops.acquire(hw);
1599                                 if (ret_val)
1600                                         return ret_val;
1601
1602                                 ret_val = hw->phy.ops.write_reg_locked(hw,
1603                                                              PHY_REG(776, 20),
1604                                                              0xC023);
1605                                 hw->phy.ops.release(hw);
1606                                 if (ret_val)
1607                                         return ret_val;
1608
1609                         }
1610                 }
1611         }
1612
1613         /* I217 Packet Loss issue:
1614          * ensure that FEXTNVM4 Beacon Duration is set correctly
1615          * on power up.
1616          * Set the Beacon Duration for I217 to 8 usec
1617          */
1618         if (hw->mac.type >= e1000_pch_lpt) {
1619                 u32 mac_reg;
1620
1621                 mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
1622                 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1623                 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1624                 E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
1625         }
1626
1627         /* Work-around I218 hang issue */
1628         if ((hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1629             (hw->device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1630             (hw->device_id == E1000_DEV_ID_PCH_I218_LM3) ||
1631             (hw->device_id == E1000_DEV_ID_PCH_I218_V3)) {
1632                 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1633                 if (ret_val)
1634                         return ret_val;
1635         }
1636         /* Clear link partner's EEE ability */
1637         hw->dev_spec.ich8lan.eee_lp_ability = 0;
1638
1639         /* Configure K0s minimum time */
1640         if (hw->mac.type >= e1000_pch_lpt) {
1641                 e1000_configure_k0s_lpt(hw, K1_ENTRY_LATENCY, K1_MIN_TIME);
1642         }
1643
1644         if (hw->mac.type >= e1000_pch_lpt) {
1645                 u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
1646
1647                 if (hw->mac.type == e1000_pch_spt) {
1648                         /* FEXTNVM6 K1-off workaround - for SPT only */
1649                         u32 pcieanacfg = E1000_READ_REG(hw, E1000_PCIEANACFG);
1650
1651                         if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1652                                 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1653                         else
1654                                 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1655                 }
1656
1657                 if (hw->dev_spec.ich8lan.disable_k1_off == true)
1658                         fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1659
1660                 E1000_WRITE_REG(hw, E1000_FEXTNVM6, fextnvm6);
1661         }
1662
1663         if (!link)
1664                 return E1000_SUCCESS; /* No link detected */
1665
1666         mac->get_link_status = false;
1667
1668         switch (hw->mac.type) {
1669         case e1000_pch2lan:
1670                 ret_val = e1000_k1_workaround_lv(hw);
1671                 if (ret_val)
1672                         return ret_val;
1673                 /* fall-thru */
1674         case e1000_pchlan:
1675                 if (hw->phy.type == e1000_phy_82578) {
1676                         ret_val = e1000_link_stall_workaround_hv(hw);
1677                         if (ret_val)
1678                                 return ret_val;
1679                 }
1680
1681                 /* Workaround for PCHx parts in half-duplex:
1682                  * Set the number of preambles removed from the packet
1683                  * when it is passed from the PHY to the MAC to prevent
1684                  * the MAC from misinterpreting the packet type.
1685                  */
1686                 hw->phy.ops.read_reg(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1687                 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1688
1689                 if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_FD) !=
1690                     E1000_STATUS_FD)
1691                         phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1692
1693                 hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1694                 break;
1695         default:
1696                 break;
1697         }
1698
1699         /* Check if there was DownShift, must be checked
1700          * immediately after link-up
1701          */
1702         e1000_check_downshift_generic(hw);
1703
1704         /* Enable/Disable EEE after link up */
1705         if (hw->phy.type > e1000_phy_82579) {
1706                 ret_val = e1000_set_eee_pchlan(hw);
1707                 if (ret_val)
1708                         return ret_val;
1709         }
1710
1711         /* If we are forcing speed/duplex, then we simply return since
1712          * we have already determined whether we have link or not.
1713          */
1714         if (!mac->autoneg)
1715                 return -E1000_ERR_CONFIG;
1716
1717         /* Auto-Neg is enabled.  Auto Speed Detection takes care
1718          * of MAC speed/duplex configuration.  So we only need to
1719          * configure Collision Distance in the MAC.
1720          */
1721         mac->ops.config_collision_dist(hw);
1722
1723         /* Configure Flow Control now that Auto-Neg has completed.
1724          * First, we need to restore the desired flow control
1725          * settings because we may have had to re-autoneg with a
1726          * different link partner.
1727          */
1728         ret_val = e1000_config_fc_after_link_up_generic(hw);
1729         if (ret_val)
1730                 DEBUGOUT("Error configuring flow control\n");
1731
1732         return ret_val;
1733 }
1734
1735 /**
1736  *  e1000_init_function_pointers_ich8lan - Initialize ICH8 function pointers
1737  *  @hw: pointer to the HW structure
1738  *
1739  *  Initialize family-specific function pointers for PHY, MAC, and NVM.
1740  **/
1741 void e1000_init_function_pointers_ich8lan(struct e1000_hw *hw)
1742 {
1743         DEBUGFUNC("e1000_init_function_pointers_ich8lan");
1744
1745         hw->mac.ops.init_params = e1000_init_mac_params_ich8lan;
1746         hw->nvm.ops.init_params = e1000_init_nvm_params_ich8lan;
1747         switch (hw->mac.type) {
1748         case e1000_ich8lan:
1749         case e1000_ich9lan:
1750         case e1000_ich10lan:
1751                 hw->phy.ops.init_params = e1000_init_phy_params_ich8lan;
1752                 break;
1753         case e1000_pchlan:
1754         case e1000_pch2lan:
1755         case e1000_pch_lpt:
1756         case e1000_pch_spt:
1757         case e1000_pch_cnp:
1758         case e1000_pch_adp:
1759                 hw->phy.ops.init_params = e1000_init_phy_params_pchlan;
1760                 break;
1761         default:
1762                 break;
1763         }
1764 }
1765
1766 /**
1767  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1768  *  @hw: pointer to the HW structure
1769  *
1770  *  Acquires the mutex for performing NVM operations.
1771  **/
1772 STATIC s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1773 {
1774         DEBUGFUNC("e1000_acquire_nvm_ich8lan");
1775
1776         E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1777
1778         return E1000_SUCCESS;
1779 }
1780
1781 /**
1782  *  e1000_release_nvm_ich8lan - Release NVM mutex
1783  *  @hw: pointer to the HW structure
1784  *
1785  *  Releases the mutex used while performing NVM operations.
1786  **/
1787 STATIC void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1788 {
1789         DEBUGFUNC("e1000_release_nvm_ich8lan");
1790
1791         E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.nvm_mutex);
1792
1793         return;
1794 }
1795
1796 /**
1797  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1798  *  @hw: pointer to the HW structure
1799  *
1800  *  Acquires the software control flag for performing PHY and select
1801  *  MAC CSR accesses.
1802  **/
1803 STATIC s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1804 {
1805         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1806         s32 ret_val = E1000_SUCCESS;
1807
1808         DEBUGFUNC("e1000_acquire_swflag_ich8lan");
1809
1810         E1000_MUTEX_LOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1811
1812         while (timeout) {
1813                 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1814                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1815                         break;
1816
1817                 msec_delay_irq(1);
1818                 timeout--;
1819         }
1820
1821         if (!timeout) {
1822                 DEBUGOUT("SW has already locked the resource.\n");
1823                 ret_val = -E1000_ERR_CONFIG;
1824                 goto out;
1825         }
1826
1827         timeout = SW_FLAG_TIMEOUT;
1828
1829         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1830         E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1831
1832         while (timeout) {
1833                 extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1834                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1835                         break;
1836
1837                 msec_delay_irq(1);
1838                 timeout--;
1839         }
1840
1841         if (!timeout) {
1842                 DEBUGOUT2("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1843                           E1000_READ_REG(hw, E1000_FWSM), extcnf_ctrl);
1844                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1845                 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1846                 ret_val = -E1000_ERR_CONFIG;
1847                 goto out;
1848         }
1849
1850 out:
1851         if (ret_val)
1852                 E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1853
1854         return ret_val;
1855 }
1856
1857 /**
1858  *  e1000_release_swflag_ich8lan - Release software control flag
1859  *  @hw: pointer to the HW structure
1860  *
1861  *  Releases the software control flag for performing PHY and select
1862  *  MAC CSR accesses.
1863  **/
1864 STATIC void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1865 {
1866         u32 extcnf_ctrl;
1867
1868         DEBUGFUNC("e1000_release_swflag_ich8lan");
1869
1870         extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
1871
1872         if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1873                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1874                 E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
1875         } else {
1876                 DEBUGOUT("Semaphore unexpectedly released by sw/fw/hw\n");
1877         }
1878
1879         E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
1880
1881         return;
1882 }
1883
1884 /**
1885  *  e1000_check_mng_mode_ich8lan - Checks management mode
1886  *  @hw: pointer to the HW structure
1887  *
1888  *  This checks if the adapter has any manageability enabled.
1889  *  This is a function pointer entry point only called by read/write
1890  *  routines for the PHY and NVM parts.
1891  **/
1892 STATIC bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1893 {
1894         u32 fwsm;
1895
1896         DEBUGFUNC("e1000_check_mng_mode_ich8lan");
1897
1898         fwsm = E1000_READ_REG(hw, E1000_FWSM);
1899
1900         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1901                ((fwsm & E1000_FWSM_MODE_MASK) ==
1902                 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1903 }
1904
1905 /**
1906  *  e1000_check_mng_mode_pchlan - Checks management mode
1907  *  @hw: pointer to the HW structure
1908  *
1909  *  This checks if the adapter has iAMT enabled.
1910  *  This is a function pointer entry point only called by read/write
1911  *  routines for the PHY and NVM parts.
1912  **/
1913 STATIC bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1914 {
1915         u32 fwsm;
1916
1917         DEBUGFUNC("e1000_check_mng_mode_pchlan");
1918
1919         fwsm = E1000_READ_REG(hw, E1000_FWSM);
1920
1921         return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1922                (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1923 }
1924
1925 /**
1926  *  e1000_rar_set_pch2lan - Set receive address register
1927  *  @hw: pointer to the HW structure
1928  *  @addr: pointer to the receive address
1929  *  @index: receive address array register
1930  *
1931  *  Sets the receive address array register at index to the address passed
1932  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1933  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1934  *  Use SHRA[0-3] in place of those reserved for ME.
1935  **/
1936 STATIC int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1937 {
1938         u32 rar_low, rar_high;
1939
1940         DEBUGFUNC("e1000_rar_set_pch2lan");
1941
1942         /* HW expects these in little endian so we reverse the byte order
1943          * from network order (big endian) to little endian
1944          */
1945         rar_low = ((u32) addr[0] |
1946                    ((u32) addr[1] << 8) |
1947                    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
1948
1949         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
1950
1951         /* If MAC address zero, no need to set the AV bit */
1952         if (rar_low || rar_high)
1953                 rar_high |= E1000_RAH_AV;
1954
1955         if (index == 0) {
1956                 E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
1957                 E1000_WRITE_FLUSH(hw);
1958                 E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
1959                 E1000_WRITE_FLUSH(hw);
1960                 return E1000_SUCCESS;
1961         }
1962
1963         /* RAR[1-6] are owned by manageability.  Skip those and program the
1964          * next address into the SHRA register array.
1965          */
1966         if (index < (u32) (hw->mac.rar_entry_count)) {
1967                 s32 ret_val;
1968
1969                 ret_val = e1000_acquire_swflag_ich8lan(hw);
1970                 if (ret_val)
1971                         goto out;
1972
1973                 E1000_WRITE_REG(hw, E1000_SHRAL(index - 1), rar_low);
1974                 E1000_WRITE_FLUSH(hw);
1975                 E1000_WRITE_REG(hw, E1000_SHRAH(index - 1), rar_high);
1976                 E1000_WRITE_FLUSH(hw);
1977
1978                 e1000_release_swflag_ich8lan(hw);
1979
1980                 /* verify the register updates */
1981                 if ((E1000_READ_REG(hw, E1000_SHRAL(index - 1)) == rar_low) &&
1982                     (E1000_READ_REG(hw, E1000_SHRAH(index - 1)) == rar_high))
1983                         return E1000_SUCCESS;
1984
1985                 DEBUGOUT2("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1986                          (index - 1), E1000_READ_REG(hw, E1000_FWSM));
1987         }
1988
1989 out:
1990         DEBUGOUT1("Failed to write receive address at index %d\n", index);
1991         return -E1000_ERR_CONFIG;
1992 }
1993
1994 /**
1995  *  e1000_rar_set_pch_lpt - Set receive address registers
1996  *  @hw: pointer to the HW structure
1997  *  @addr: pointer to the receive address
1998  *  @index: receive address array register
1999  *
2000  *  Sets the receive address register array at index to the address passed
2001  *  in by addr. For LPT, RAR[0] is the base address register that is to
2002  *  contain the MAC address. SHRA[0-10] are the shared receive address
2003  *  registers that are shared between the Host and manageability engine (ME).
2004  **/
2005 STATIC int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
2006 {
2007         u32 rar_low, rar_high;
2008         u32 wlock_mac;
2009
2010         DEBUGFUNC("e1000_rar_set_pch_lpt");
2011
2012         /* HW expects these in little endian so we reverse the byte order
2013          * from network order (big endian) to little endian
2014          */
2015         rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
2016                    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
2017
2018         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
2019
2020         /* If MAC address zero, no need to set the AV bit */
2021         if (rar_low || rar_high)
2022                 rar_high |= E1000_RAH_AV;
2023
2024         if (index == 0) {
2025                 E1000_WRITE_REG(hw, E1000_RAL(index), rar_low);
2026                 E1000_WRITE_FLUSH(hw);
2027                 E1000_WRITE_REG(hw, E1000_RAH(index), rar_high);
2028                 E1000_WRITE_FLUSH(hw);
2029                 return E1000_SUCCESS;
2030         }
2031
2032         /* The manageability engine (ME) can lock certain SHRAR registers that
2033          * it is using - those registers are unavailable for use.
2034          */
2035         if (index < hw->mac.rar_entry_count) {
2036                 wlock_mac = E1000_READ_REG(hw, E1000_FWSM) &
2037                             E1000_FWSM_WLOCK_MAC_MASK;
2038                 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2039
2040                 /* Check if all SHRAR registers are locked */
2041                 if (wlock_mac == 1)
2042                         goto out;
2043
2044                 if ((wlock_mac == 0) || (index <= wlock_mac)) {
2045                         s32 ret_val;
2046
2047                         ret_val = e1000_acquire_swflag_ich8lan(hw);
2048
2049                         if (ret_val)
2050                                 goto out;
2051
2052                         E1000_WRITE_REG(hw, E1000_SHRAL_PCH_LPT(index - 1),
2053                                         rar_low);
2054                         E1000_WRITE_FLUSH(hw);
2055                         E1000_WRITE_REG(hw, E1000_SHRAH_PCH_LPT(index - 1),
2056                                         rar_high);
2057                         E1000_WRITE_FLUSH(hw);
2058
2059                         e1000_release_swflag_ich8lan(hw);
2060
2061                         /* verify the register updates */
2062                         if ((E1000_READ_REG(hw, E1000_SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2063                             (E1000_READ_REG(hw, E1000_SHRAH_PCH_LPT(index - 1)) == rar_high))
2064                                 return E1000_SUCCESS;
2065                 }
2066         }
2067
2068 out:
2069         DEBUGOUT1("Failed to write receive address at index %d\n", index);
2070         return -E1000_ERR_CONFIG;
2071 }
2072
2073 /**
2074  *  e1000_update_mc_addr_list_pch2lan - Update Multicast addresses
2075  *  @hw: pointer to the HW structure
2076  *  @mc_addr_list: array of multicast addresses to program
2077  *  @mc_addr_count: number of multicast addresses to program
2078  *
2079  *  Updates entire Multicast Table Array of the PCH2 MAC and PHY.
2080  *  The caller must have a packed mc_addr_list of multicast addresses.
2081  **/
2082 STATIC void e1000_update_mc_addr_list_pch2lan(struct e1000_hw *hw,
2083                                               u8 *mc_addr_list,
2084                                               u32 mc_addr_count)
2085 {
2086         u16 phy_reg = 0;
2087         int i;
2088         s32 ret_val;
2089
2090         DEBUGFUNC("e1000_update_mc_addr_list_pch2lan");
2091
2092         e1000_update_mc_addr_list_generic(hw, mc_addr_list, mc_addr_count);
2093
2094         ret_val = hw->phy.ops.acquire(hw);
2095         if (ret_val)
2096                 return;
2097
2098         ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2099         if (ret_val)
2100                 goto release;
2101
2102         for (i = 0; i < hw->mac.mta_reg_count; i++) {
2103                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
2104                                            (u16)(hw->mac.mta_shadow[i] &
2105                                                  0xFFFF));
2106                 hw->phy.ops.write_reg_page(hw, (BM_MTA(i) + 1),
2107                                            (u16)((hw->mac.mta_shadow[i] >> 16) &
2108                                                  0xFFFF));
2109         }
2110
2111         e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2112
2113 release:
2114         hw->phy.ops.release(hw);
2115 }
2116
2117 /**
2118  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2119  *  @hw: pointer to the HW structure
2120  *
2121  *  Checks if firmware is blocking the reset of the PHY.
2122  *  This is a function pointer entry point only called by
2123  *  reset routines.
2124  **/
2125 STATIC s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2126 {
2127         u32 fwsm;
2128         bool blocked = false;
2129         int i = 0;
2130
2131         DEBUGFUNC("e1000_check_reset_block_ich8lan");
2132
2133         do {
2134                 fwsm = E1000_READ_REG(hw, E1000_FWSM);
2135                 if (!(fwsm & E1000_ICH_FWSM_RSPCIPHY)) {
2136                         blocked = true;
2137                         msec_delay(10);
2138                         continue;
2139                 }
2140                 blocked = false;
2141         } while (blocked && (i++ < 30));
2142         return blocked ? E1000_BLK_PHY_RESET : E1000_SUCCESS;
2143 }
2144
2145 /**
2146  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2147  *  @hw: pointer to the HW structure
2148  *
2149  *  Assumes semaphore already acquired.
2150  *
2151  **/
2152 STATIC s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2153 {
2154         u16 phy_data;
2155         u32 strap = E1000_READ_REG(hw, E1000_STRAP);
2156         u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2157                 E1000_STRAP_SMT_FREQ_SHIFT;
2158         s32 ret_val;
2159
2160         strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2161
2162         ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2163         if (ret_val)
2164                 return ret_val;
2165
2166         phy_data &= ~HV_SMB_ADDR_MASK;
2167         phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2168         phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2169
2170         if (hw->phy.type == e1000_phy_i217) {
2171                 /* Restore SMBus frequency */
2172                 if (freq--) {
2173                         phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2174                         phy_data |= (freq & (1 << 0)) <<
2175                                 HV_SMB_ADDR_FREQ_LOW_SHIFT;
2176                         phy_data |= (freq & (1 << 1)) <<
2177                                 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2178                 } else {
2179                         DEBUGOUT("Unsupported SMB frequency in PHY\n");
2180                 }
2181         }
2182
2183         return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2184 }
2185
2186 /**
2187  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2188  *  @hw:   pointer to the HW structure
2189  *
2190  *  SW should configure the LCD from the NVM extended configuration region
2191  *  as a workaround for certain parts.
2192  **/
2193 STATIC s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2194 {
2195         struct e1000_phy_info *phy = &hw->phy;
2196         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2197         s32 ret_val = E1000_SUCCESS;
2198         u16 word_addr, reg_data, reg_addr, phy_page = 0;
2199
2200         DEBUGFUNC("e1000_sw_lcd_config_ich8lan");
2201
2202         /* Initialize the PHY from the NVM on ICH platforms.  This
2203          * is needed due to an issue where the NVM configuration is
2204          * not properly autoloaded after power transitions.
2205          * Therefore, after each PHY reset, we will load the
2206          * configuration data out of the NVM manually.
2207          */
2208         switch (hw->mac.type) {
2209         case e1000_ich8lan:
2210                 if (phy->type != e1000_phy_igp_3)
2211                         return ret_val;
2212
2213                 if ((hw->device_id == E1000_DEV_ID_ICH8_IGP_AMT) ||
2214                     (hw->device_id == E1000_DEV_ID_ICH8_IGP_C)) {
2215                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2216                         break;
2217                 }
2218                 /* Fall-thru */
2219         case e1000_pchlan:
2220         case e1000_pch2lan:
2221         case e1000_pch_lpt:
2222         case e1000_pch_spt:
2223         case e1000_pch_cnp:
2224         case e1000_pch_adp:
2225                 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2226                 break;
2227         default:
2228                 return ret_val;
2229         }
2230
2231         ret_val = hw->phy.ops.acquire(hw);
2232         if (ret_val)
2233                 return ret_val;
2234
2235         data = E1000_READ_REG(hw, E1000_FEXTNVM);
2236         if (!(data & sw_cfg_mask))
2237                 goto release;
2238
2239         /* Make sure HW does not configure LCD from PHY
2240          * extended configuration before SW configuration
2241          */
2242         data = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2243         if ((hw->mac.type < e1000_pch2lan) &&
2244             (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2245                         goto release;
2246
2247         cnf_size = E1000_READ_REG(hw, E1000_EXTCNF_SIZE);
2248         cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2249         cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2250         if (!cnf_size)
2251                 goto release;
2252
2253         cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2254         cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2255
2256         if (((hw->mac.type == e1000_pchlan) &&
2257              !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2258             (hw->mac.type > e1000_pchlan)) {
2259                 /* HW configures the SMBus address and LEDs when the
2260                  * OEM and LCD Write Enable bits are set in the NVM.
2261                  * When both NVM bits are cleared, SW will configure
2262                  * them instead.
2263                  */
2264                 ret_val = e1000_write_smbus_addr(hw);
2265                 if (ret_val)
2266                         goto release;
2267
2268                 data = E1000_READ_REG(hw, E1000_LEDCTL);
2269                 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2270                                                         (u16)data);
2271                 if (ret_val)
2272                         goto release;
2273         }
2274
2275         /* Configure LCD from extended configuration region. */
2276
2277         /* cnf_base_addr is in DWORD */
2278         word_addr = (u16)(cnf_base_addr << 1);
2279
2280         for (i = 0; i < cnf_size; i++) {
2281                 ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2), 1,
2282                                            &reg_data);
2283                 if (ret_val)
2284                         goto release;
2285
2286                 ret_val = hw->nvm.ops.read(hw, (word_addr + i * 2 + 1),
2287                                            1, &reg_addr);
2288                 if (ret_val)
2289                         goto release;
2290
2291                 /* Save off the PHY page for future writes. */
2292                 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2293                         phy_page = reg_data;
2294                         continue;
2295                 }
2296
2297                 reg_addr &= PHY_REG_MASK;
2298                 reg_addr |= phy_page;
2299
2300                 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
2301                                                     reg_data);
2302                 if (ret_val)
2303                         goto release;
2304         }
2305
2306 release:
2307         hw->phy.ops.release(hw);
2308         return ret_val;
2309 }
2310
2311 /**
2312  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2313  *  @hw:   pointer to the HW structure
2314  *  @link: link up bool flag
2315  *
2316  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2317  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2318  *  If link is down, the function will restore the default K1 setting located
2319  *  in the NVM.
2320  **/
2321 STATIC s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2322 {
2323         s32 ret_val = E1000_SUCCESS;
2324         u16 status_reg = 0;
2325         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2326
2327         DEBUGFUNC("e1000_k1_gig_workaround_hv");
2328
2329         if (hw->mac.type != e1000_pchlan)
2330                 return E1000_SUCCESS;
2331
2332         /* Wrap the whole flow with the sw flag */
2333         ret_val = hw->phy.ops.acquire(hw);
2334         if (ret_val)
2335                 return ret_val;
2336
2337         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2338         if (link) {
2339                 if (hw->phy.type == e1000_phy_82578) {
2340                         ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
2341                                                               &status_reg);
2342                         if (ret_val)
2343                                 goto release;
2344
2345                         status_reg &= (BM_CS_STATUS_LINK_UP |
2346                                        BM_CS_STATUS_RESOLVED |
2347                                        BM_CS_STATUS_SPEED_MASK);
2348
2349                         if (status_reg == (BM_CS_STATUS_LINK_UP |
2350                                            BM_CS_STATUS_RESOLVED |
2351                                            BM_CS_STATUS_SPEED_1000))
2352                                 k1_enable = false;
2353                 }
2354
2355                 if (hw->phy.type == e1000_phy_82577) {
2356                         ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
2357                                                               &status_reg);
2358                         if (ret_val)
2359                                 goto release;
2360
2361                         status_reg &= (HV_M_STATUS_LINK_UP |
2362                                        HV_M_STATUS_AUTONEG_COMPLETE |
2363                                        HV_M_STATUS_SPEED_MASK);
2364
2365                         if (status_reg == (HV_M_STATUS_LINK_UP |
2366                                            HV_M_STATUS_AUTONEG_COMPLETE |
2367                                            HV_M_STATUS_SPEED_1000))
2368                                 k1_enable = false;
2369                 }
2370
2371                 /* Link stall fix for link up */
2372                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2373                                                        0x0100);
2374                 if (ret_val)
2375                         goto release;
2376
2377         } else {
2378                 /* Link stall fix for link down */
2379                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
2380                                                        0x4100);
2381                 if (ret_val)
2382                         goto release;
2383         }
2384
2385         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2386
2387 release:
2388         hw->phy.ops.release(hw);
2389
2390         return ret_val;
2391 }
2392
2393 /**
2394  *  e1000_configure_k1_ich8lan - Configure K1 power state
2395  *  @hw: pointer to the HW structure
2396  *  @k1_enable: K1 state to configure
2397  *
2398  *  Configure the K1 power state based on the provided parameter.
2399  *  Assumes semaphore already acquired.
2400  *
2401  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2402  **/
2403 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2404 {
2405         s32 ret_val;
2406         u32 ctrl_reg = 0;
2407         u32 ctrl_ext = 0;
2408         u32 reg = 0;
2409         u16 kmrn_reg = 0;
2410
2411         DEBUGFUNC("e1000_configure_k1_ich8lan");
2412
2413         ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2414                                              &kmrn_reg);
2415         if (ret_val)
2416                 return ret_val;
2417
2418         if (k1_enable)
2419                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2420         else
2421                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2422
2423         ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2424                                               kmrn_reg);
2425         if (ret_val)
2426                 return ret_val;
2427
2428         usec_delay(20);
2429         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2430         ctrl_reg = E1000_READ_REG(hw, E1000_CTRL);
2431
2432         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2433         reg |= E1000_CTRL_FRCSPD;
2434         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2435
2436         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2437         E1000_WRITE_FLUSH(hw);
2438         usec_delay(20);
2439         E1000_WRITE_REG(hw, E1000_CTRL, ctrl_reg);
2440         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
2441         E1000_WRITE_FLUSH(hw);
2442         usec_delay(20);
2443
2444         return E1000_SUCCESS;
2445 }
2446
2447 /**
2448  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2449  *  @hw:       pointer to the HW structure
2450  *  @d0_state: boolean if entering d0 or d3 device state
2451  *
2452  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2453  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2454  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2455  **/
2456 STATIC s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2457 {
2458         s32 ret_val = 0;
2459         u32 mac_reg;
2460         u16 oem_reg;
2461
2462         DEBUGFUNC("e1000_oem_bits_config_ich8lan");
2463
2464         if (hw->mac.type < e1000_pchlan)
2465                 return ret_val;
2466
2467         ret_val = hw->phy.ops.acquire(hw);
2468         if (ret_val)
2469                 return ret_val;
2470
2471         if (hw->mac.type == e1000_pchlan) {
2472                 mac_reg = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2473                 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2474                         goto release;
2475         }
2476
2477         mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM);
2478         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2479                 goto release;
2480
2481         mac_reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
2482
2483         ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
2484         if (ret_val)
2485                 goto release;
2486
2487         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2488
2489         if (d0_state) {
2490                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2491                         oem_reg |= HV_OEM_BITS_GBE_DIS;
2492
2493                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2494                         oem_reg |= HV_OEM_BITS_LPLU;
2495         } else {
2496                 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2497                     E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2498                         oem_reg |= HV_OEM_BITS_GBE_DIS;
2499
2500                 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2501                     E1000_PHY_CTRL_NOND0A_LPLU))
2502                         oem_reg |= HV_OEM_BITS_LPLU;
2503         }
2504
2505         /* Set Restart auto-neg to activate the bits */
2506         if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2507             !hw->phy.ops.check_reset_block(hw))
2508                 oem_reg |= HV_OEM_BITS_RESTART_AN;
2509
2510         ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
2511
2512 release:
2513         hw->phy.ops.release(hw);
2514
2515         return ret_val;
2516 }
2517
2518
2519 /**
2520  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2521  *  @hw:   pointer to the HW structure
2522  **/
2523 STATIC s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2524 {
2525         s32 ret_val;
2526         u16 data;
2527
2528         DEBUGFUNC("e1000_set_mdio_slow_mode_hv");
2529
2530         ret_val = hw->phy.ops.read_reg(hw, HV_KMRN_MODE_CTRL, &data);
2531         if (ret_val)
2532                 return ret_val;
2533
2534         data |= HV_KMRN_MDIO_SLOW;
2535
2536         ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_MODE_CTRL, data);
2537
2538         return ret_val;
2539 }
2540
2541 /**
2542  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2543  *  done after every PHY reset.
2544  *  @hw: pointer to the HW structure
2545  **/
2546 STATIC s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2547 {
2548         s32 ret_val = E1000_SUCCESS;
2549         u16 phy_data;
2550
2551         DEBUGFUNC("e1000_hv_phy_workarounds_ich8lan");
2552
2553         if (hw->mac.type != e1000_pchlan)
2554                 return E1000_SUCCESS;
2555
2556         /* Set MDIO slow mode before any other MDIO access */
2557         if (hw->phy.type == e1000_phy_82577) {
2558                 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2559                 if (ret_val)
2560                         return ret_val;
2561         }
2562
2563         if (((hw->phy.type == e1000_phy_82577) &&
2564              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2565             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2566                 /* Disable generation of early preamble */
2567                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 25), 0x4431);
2568                 if (ret_val)
2569                         return ret_val;
2570
2571                 /* Preamble tuning for SSC */
2572                 ret_val = hw->phy.ops.write_reg(hw, HV_KMRN_FIFO_CTRLSTA,
2573                                                 0xA204);
2574                 if (ret_val)
2575                         return ret_val;
2576         }
2577
2578         if (hw->phy.type == e1000_phy_82578) {
2579                 /* Return registers to default by doing a soft reset then
2580                  * writing 0x3140 to the control register.
2581                  */
2582                 if (hw->phy.revision < 2) {
2583                         e1000_phy_sw_reset_generic(hw);
2584                         ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL,
2585                                                         0x3140);
2586                 }
2587         }
2588
2589         /* Select page 0 */
2590         ret_val = hw->phy.ops.acquire(hw);
2591         if (ret_val)
2592                 return ret_val;
2593
2594         hw->phy.addr = 1;
2595         ret_val = e1000_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2596         hw->phy.ops.release(hw);
2597         if (ret_val)
2598                 return ret_val;
2599
2600         /* Configure the K1 Si workaround during phy reset assuming there is
2601          * link so that it disables K1 if link is in 1Gbps.
2602          */
2603         ret_val = e1000_k1_gig_workaround_hv(hw, true);
2604         if (ret_val)
2605                 return ret_val;
2606
2607         /* Workaround for link disconnects on a busy hub in half duplex */
2608         ret_val = hw->phy.ops.acquire(hw);
2609         if (ret_val)
2610                 return ret_val;
2611         ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2612         if (ret_val)
2613                 goto release;
2614         ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
2615                                                phy_data & 0x00FF);
2616         if (ret_val)
2617                 goto release;
2618
2619         /* set MSE higher to enable link to stay up when noise is high */
2620         ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2621 release:
2622         hw->phy.ops.release(hw);
2623
2624         return ret_val;
2625 }
2626
2627 /**
2628  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2629  *  @hw:   pointer to the HW structure
2630  **/
2631 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2632 {
2633         u32 mac_reg;
2634         u16 i, phy_reg = 0;
2635         s32 ret_val;
2636
2637         DEBUGFUNC("e1000_copy_rx_addrs_to_phy_ich8lan");
2638
2639         ret_val = hw->phy.ops.acquire(hw);
2640         if (ret_val)
2641                 return;
2642         ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2643         if (ret_val)
2644                 goto release;
2645
2646         /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2647         for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2648                 mac_reg = E1000_READ_REG(hw, E1000_RAL(i));
2649                 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2650                                            (u16)(mac_reg & 0xFFFF));
2651                 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2652                                            (u16)((mac_reg >> 16) & 0xFFFF));
2653
2654                 mac_reg = E1000_READ_REG(hw, E1000_RAH(i));
2655                 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2656                                            (u16)(mac_reg & 0xFFFF));
2657                 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2658                                            (u16)((mac_reg & E1000_RAH_AV)
2659                                                  >> 16));
2660         }
2661
2662         e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2663
2664 release:
2665         hw->phy.ops.release(hw);
2666 }
2667
2668 STATIC u32 e1000_calc_rx_da_crc(u8 mac[])
2669 {
2670         u32 poly = 0xEDB88320;  /* Polynomial for 802.3 CRC calculation */
2671         u32 i, j, mask, crc;
2672
2673         DEBUGFUNC("e1000_calc_rx_da_crc");
2674
2675         crc = 0xffffffff;
2676         for (i = 0; i < 6; i++) {
2677                 crc = crc ^ mac[i];
2678                 for (j = 8; j > 0; j--) {
2679                         mask = (crc & 1) * (-1);
2680                         crc = (crc >> 1) ^ (poly & mask);
2681                 }
2682         }
2683         return ~crc;
2684 }
2685
2686 /**
2687  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2688  *  with 82579 PHY
2689  *  @hw: pointer to the HW structure
2690  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2691  **/
2692 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2693 {
2694         s32 ret_val = E1000_SUCCESS;
2695         u16 phy_reg, data;
2696         u32 mac_reg;
2697         u16 i;
2698
2699         DEBUGFUNC("e1000_lv_jumbo_workaround_ich8lan");
2700
2701         if (hw->mac.type < e1000_pch2lan)
2702                 return E1000_SUCCESS;
2703
2704         /* disable Rx path while enabling/disabling workaround */
2705         hw->phy.ops.read_reg(hw, PHY_REG(769, 20), &phy_reg);
2706         ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 20),
2707                                         phy_reg | (1 << 14));
2708         if (ret_val)
2709                 return ret_val;
2710
2711         if (enable) {
2712                 /* Write Rx addresses (rar_entry_count for RAL/H, and
2713                  * SHRAL/H) and initial CRC values to the MAC
2714                  */
2715                 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2716                         u8 mac_addr[ETH_ADDR_LEN] = {0};
2717                         u32 addr_high, addr_low;
2718
2719                         addr_high = E1000_READ_REG(hw, E1000_RAH(i));
2720                         if (!(addr_high & E1000_RAH_AV))
2721                                 continue;
2722                         addr_low = E1000_READ_REG(hw, E1000_RAL(i));
2723                         mac_addr[0] = (addr_low & 0xFF);
2724                         mac_addr[1] = ((addr_low >> 8) & 0xFF);
2725                         mac_addr[2] = ((addr_low >> 16) & 0xFF);
2726                         mac_addr[3] = ((addr_low >> 24) & 0xFF);
2727                         mac_addr[4] = (addr_high & 0xFF);
2728                         mac_addr[5] = ((addr_high >> 8) & 0xFF);
2729
2730                         E1000_WRITE_REG(hw, E1000_PCH_RAICC(i),
2731                                         e1000_calc_rx_da_crc(mac_addr));
2732                 }
2733
2734                 /* Write Rx addresses to the PHY */
2735                 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2736
2737                 /* Enable jumbo frame workaround in the MAC */
2738                 mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2739                 mac_reg &= ~(1 << 14);
2740                 mac_reg |= (7 << 15);
2741                 E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2742
2743                 mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2744                 mac_reg |= E1000_RCTL_SECRC;
2745                 E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2746
2747                 ret_val = e1000_read_kmrn_reg_generic(hw,
2748                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2749                                                 &data);
2750                 if (ret_val)
2751                         return ret_val;
2752                 ret_val = e1000_write_kmrn_reg_generic(hw,
2753                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2754                                                 data | (1 << 0));
2755                 if (ret_val)
2756                         return ret_val;
2757                 ret_val = e1000_read_kmrn_reg_generic(hw,
2758                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2759                                                 &data);
2760                 if (ret_val)
2761                         return ret_val;
2762                 data &= ~(0xF << 8);
2763                 data |= (0xB << 8);
2764                 ret_val = e1000_write_kmrn_reg_generic(hw,
2765                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2766                                                 data);
2767                 if (ret_val)
2768                         return ret_val;
2769
2770                 /* Enable jumbo frame workaround in the PHY */
2771                 hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2772                 data &= ~(0x7F << 5);
2773                 data |= (0x37 << 5);
2774                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2775                 if (ret_val)
2776                         return ret_val;
2777                 hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2778                 data &= ~(1 << 13);
2779                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2780                 if (ret_val)
2781                         return ret_val;
2782                 hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2783                 data &= ~(0x3FF << 2);
2784                 data |= (E1000_TX_PTR_GAP << 2);
2785                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2786                 if (ret_val)
2787                         return ret_val;
2788                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0xF100);
2789                 if (ret_val)
2790                         return ret_val;
2791                 hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2792                 ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data |
2793                                                 (1 << 10));
2794                 if (ret_val)
2795                         return ret_val;
2796         } else {
2797                 /* Write MAC register values back to h/w defaults */
2798                 mac_reg = E1000_READ_REG(hw, E1000_FFLT_DBG);
2799                 mac_reg &= ~(0xF << 14);
2800                 E1000_WRITE_REG(hw, E1000_FFLT_DBG, mac_reg);
2801
2802                 mac_reg = E1000_READ_REG(hw, E1000_RCTL);
2803                 mac_reg &= ~E1000_RCTL_SECRC;
2804                 E1000_WRITE_REG(hw, E1000_RCTL, mac_reg);
2805
2806                 ret_val = e1000_read_kmrn_reg_generic(hw,
2807                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2808                                                 &data);
2809                 if (ret_val)
2810                         return ret_val;
2811                 ret_val = e1000_write_kmrn_reg_generic(hw,
2812                                                 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2813                                                 data & ~(1 << 0));
2814                 if (ret_val)
2815                         return ret_val;
2816                 ret_val = e1000_read_kmrn_reg_generic(hw,
2817                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2818                                                 &data);
2819                 if (ret_val)
2820                         return ret_val;
2821                 data &= ~(0xF << 8);
2822                 data |= (0xB << 8);
2823                 ret_val = e1000_write_kmrn_reg_generic(hw,
2824                                                 E1000_KMRNCTRLSTA_HD_CTRL,
2825                                                 data);
2826                 if (ret_val)
2827                         return ret_val;
2828
2829                 /* Write PHY register values back to h/w defaults */
2830                 hw->phy.ops.read_reg(hw, PHY_REG(769, 23), &data);
2831                 data &= ~(0x7F << 5);
2832                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 23), data);
2833                 if (ret_val)
2834                         return ret_val;
2835                 hw->phy.ops.read_reg(hw, PHY_REG(769, 16), &data);
2836                 data |= (1 << 13);
2837                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(769, 16), data);
2838                 if (ret_val)
2839                         return ret_val;
2840                 hw->phy.ops.read_reg(hw, PHY_REG(776, 20), &data);
2841                 data &= ~(0x3FF << 2);
2842                 data |= (0x8 << 2);
2843                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 20), data);
2844                 if (ret_val)
2845                         return ret_val;
2846                 ret_val = hw->phy.ops.write_reg(hw, PHY_REG(776, 23), 0x7E00);
2847                 if (ret_val)
2848                         return ret_val;
2849                 hw->phy.ops.read_reg(hw, HV_PM_CTRL, &data);
2850                 ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL, data &
2851                                                 ~(1 << 10));
2852                 if (ret_val)
2853                         return ret_val;
2854         }
2855
2856         /* re-enable Rx path after enabling/disabling workaround */
2857         return hw->phy.ops.write_reg(hw, PHY_REG(769, 20), phy_reg &
2858                                      ~(1 << 14));
2859 }
2860
2861 /**
2862  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2863  *  done after every PHY reset.
2864  *  @hw: pointer to the HW structure
2865  **/
2866 STATIC s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2867 {
2868         s32 ret_val = E1000_SUCCESS;
2869
2870         DEBUGFUNC("e1000_lv_phy_workarounds_ich8lan");
2871
2872         if (hw->mac.type != e1000_pch2lan)
2873                 return E1000_SUCCESS;
2874
2875         /* Set MDIO slow mode before any other MDIO access */
2876         ret_val = e1000_set_mdio_slow_mode_hv(hw);
2877         if (ret_val)
2878                 return ret_val;
2879
2880         ret_val = hw->phy.ops.acquire(hw);
2881         if (ret_val)
2882                 return ret_val;
2883         /* set MSE higher to enable link to stay up when noise is high */
2884         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2885         if (ret_val)
2886                 goto release;
2887         /* drop link after 5 times MSE threshold was reached */
2888         ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2889 release:
2890         hw->phy.ops.release(hw);
2891
2892         return ret_val;
2893 }
2894
2895 /**
2896  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2897  *  @hw:   pointer to the HW structure
2898  *
2899  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2900  *  Disable K1 for 1000 and 100 speeds
2901  **/
2902 STATIC s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2903 {
2904         s32 ret_val = E1000_SUCCESS;
2905         u16 status_reg = 0;
2906
2907         DEBUGFUNC("e1000_k1_workaround_lv");
2908
2909         if (hw->mac.type != e1000_pch2lan)
2910                 return E1000_SUCCESS;
2911
2912         /* Set K1 beacon duration based on 10Mbs speed */
2913         ret_val = hw->phy.ops.read_reg(hw, HV_M_STATUS, &status_reg);
2914         if (ret_val)
2915                 return ret_val;
2916
2917         if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2918             == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2919                 if (status_reg &
2920                     (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2921                         u16 pm_phy_reg;
2922
2923                         /* LV 1G/100 Packet drop issue wa  */
2924                         ret_val = hw->phy.ops.read_reg(hw, HV_PM_CTRL,
2925                                                        &pm_phy_reg);
2926                         if (ret_val)
2927                                 return ret_val;
2928                         pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2929                         ret_val = hw->phy.ops.write_reg(hw, HV_PM_CTRL,
2930                                                         pm_phy_reg);
2931                         if (ret_val)
2932                                 return ret_val;
2933                 } else {
2934                         u32 mac_reg;
2935                         mac_reg = E1000_READ_REG(hw, E1000_FEXTNVM4);
2936                         mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2937                         mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2938                         E1000_WRITE_REG(hw, E1000_FEXTNVM4, mac_reg);
2939                 }
2940         }
2941
2942         return ret_val;
2943 }
2944
2945 /**
2946  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2947  *  @hw:   pointer to the HW structure
2948  *  @gate: boolean set to true to gate, false to ungate
2949  *
2950  *  Gate/ungate the automatic PHY configuration via hardware; perform
2951  *  the configuration via software instead.
2952  **/
2953 STATIC void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2954 {
2955         u32 extcnf_ctrl;
2956
2957         DEBUGFUNC("e1000_gate_hw_phy_config_ich8lan");
2958
2959         if (hw->mac.type < e1000_pch2lan)
2960                 return;
2961
2962         extcnf_ctrl = E1000_READ_REG(hw, E1000_EXTCNF_CTRL);
2963
2964         if (gate)
2965                 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2966         else
2967                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2968
2969         E1000_WRITE_REG(hw, E1000_EXTCNF_CTRL, extcnf_ctrl);
2970 }
2971
2972 /**
2973  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2974  *  @hw: pointer to the HW structure
2975  *
2976  *  Check the appropriate indication the MAC has finished configuring the
2977  *  PHY after a software reset.
2978  **/
2979 STATIC void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2980 {
2981         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2982
2983         DEBUGFUNC("e1000_lan_init_done_ich8lan");
2984
2985         /* Wait for basic configuration completes before proceeding */
2986         do {
2987                 data = E1000_READ_REG(hw, E1000_STATUS);
2988                 data &= E1000_STATUS_LAN_INIT_DONE;
2989                 usec_delay(100);
2990         } while ((!data) && --loop);
2991
2992         /* If basic configuration is incomplete before the above loop
2993          * count reaches 0, loading the configuration from NVM will
2994          * leave the PHY in a bad state possibly resulting in no link.
2995          */
2996         if (loop == 0)
2997                 DEBUGOUT("LAN_INIT_DONE not set, increase timeout\n");
2998
2999         /* Clear the Init Done bit for the next init event */
3000         data = E1000_READ_REG(hw, E1000_STATUS);
3001         data &= ~E1000_STATUS_LAN_INIT_DONE;
3002         E1000_WRITE_REG(hw, E1000_STATUS, data);
3003 }
3004
3005 /**
3006  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
3007  *  @hw: pointer to the HW structure
3008  **/
3009 STATIC s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
3010 {
3011         s32 ret_val = E1000_SUCCESS;
3012         u16 reg;
3013
3014         DEBUGFUNC("e1000_post_phy_reset_ich8lan");
3015
3016         if (hw->phy.ops.check_reset_block(hw))
3017                 return E1000_SUCCESS;
3018
3019         /* Allow time for h/w to get to quiescent state after reset */
3020         msec_delay(10);
3021
3022         /* Perform any necessary post-reset workarounds */
3023         switch (hw->mac.type) {
3024         case e1000_pchlan:
3025                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
3026                 if (ret_val)
3027                         return ret_val;
3028                 break;
3029         case e1000_pch2lan:
3030                 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
3031                 if (ret_val)
3032                         return ret_val;
3033                 break;
3034         default:
3035                 break;
3036         }
3037
3038         /* Clear the host wakeup bit after lcd reset */
3039         if (hw->mac.type >= e1000_pchlan) {
3040                 hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &reg);
3041                 reg &= ~BM_WUC_HOST_WU_BIT;
3042                 hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, reg);
3043         }
3044
3045         /* Configure the LCD with the extended configuration region in NVM */
3046         ret_val = e1000_sw_lcd_config_ich8lan(hw);
3047         if (ret_val)
3048                 return ret_val;
3049
3050         /* Configure the LCD with the OEM bits in NVM */
3051         ret_val = e1000_oem_bits_config_ich8lan(hw, true);
3052
3053         if (hw->mac.type == e1000_pch2lan) {
3054                 /* Ungate automatic PHY configuration on non-managed 82579 */
3055                 if (!(E1000_READ_REG(hw, E1000_FWSM) &
3056                     E1000_ICH_FWSM_FW_VALID)) {
3057                         msec_delay(10);
3058                         e1000_gate_hw_phy_config_ich8lan(hw, false);
3059                 }
3060
3061                 /* Set EEE LPI Update Timer to 200usec */
3062                 ret_val = hw->phy.ops.acquire(hw);
3063                 if (ret_val)
3064                         return ret_val;
3065                 ret_val = e1000_write_emi_reg_locked(hw,
3066                                                      I82579_LPI_UPDATE_TIMER,
3067                                                      0x1387);
3068                 hw->phy.ops.release(hw);
3069         }
3070
3071         return ret_val;
3072 }
3073
3074 /**
3075  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
3076  *  @hw: pointer to the HW structure
3077  *
3078  *  Resets the PHY
3079  *  This is a function pointer entry point called by drivers
3080  *  or other shared routines.
3081  **/
3082 STATIC s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
3083 {
3084         s32 ret_val = E1000_SUCCESS;
3085
3086         DEBUGFUNC("e1000_phy_hw_reset_ich8lan");
3087
3088         /* Gate automatic PHY configuration by hardware on non-managed 82579 */
3089         if ((hw->mac.type == e1000_pch2lan) &&
3090             !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
3091                 e1000_gate_hw_phy_config_ich8lan(hw, true);
3092
3093         ret_val = e1000_phy_hw_reset_generic(hw);
3094         if (ret_val)
3095                 return ret_val;
3096
3097         return e1000_post_phy_reset_ich8lan(hw);
3098 }
3099
3100 /**
3101  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
3102  *  @hw: pointer to the HW structure
3103  *  @active: true to enable LPLU, false to disable
3104  *
3105  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
3106  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
3107  *  the phy speed. This function will manually set the LPLU bit and restart
3108  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
3109  *  since it configures the same bit.
3110  **/
3111 STATIC s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
3112 {
3113         s32 ret_val;
3114         u16 oem_reg;
3115
3116         DEBUGFUNC("e1000_set_lplu_state_pchlan");
3117         ret_val = hw->phy.ops.read_reg(hw, HV_OEM_BITS, &oem_reg);
3118         if (ret_val)
3119                 return ret_val;
3120
3121         if (active)
3122                 oem_reg |= HV_OEM_BITS_LPLU;
3123         else
3124                 oem_reg &= ~HV_OEM_BITS_LPLU;
3125
3126         if (!hw->phy.ops.check_reset_block(hw))
3127                 oem_reg |= HV_OEM_BITS_RESTART_AN;
3128
3129         return hw->phy.ops.write_reg(hw, HV_OEM_BITS, oem_reg);
3130 }
3131
3132 /**
3133  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3134  *  @hw: pointer to the HW structure
3135  *  @active: true to enable LPLU, false to disable
3136  *
3137  *  Sets the LPLU D0 state according to the active flag.  When
3138  *  activating LPLU this function also disables smart speed
3139  *  and vice versa.  LPLU will not be activated unless the
3140  *  device autonegotiation advertisement meets standards of
3141  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3142  *  This is a function pointer entry point only called by
3143  *  PHY setup routines.
3144  **/
3145 STATIC s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3146 {
3147         struct e1000_phy_info *phy = &hw->phy;
3148         u32 phy_ctrl;
3149         s32 ret_val = E1000_SUCCESS;
3150         u16 data;
3151
3152         DEBUGFUNC("e1000_set_d0_lplu_state_ich8lan");
3153
3154         if (phy->type == e1000_phy_ife)
3155                 return E1000_SUCCESS;
3156
3157         phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3158
3159         if (active) {
3160                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3161                 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3162
3163                 if (phy->type != e1000_phy_igp_3)
3164                         return E1000_SUCCESS;
3165
3166                 /* Call gig speed drop workaround on LPLU before accessing
3167                  * any PHY registers
3168                  */
3169                 if (hw->mac.type == e1000_ich8lan)
3170                         e1000_gig_downshift_workaround_ich8lan(hw);
3171
3172                 /* When LPLU is enabled, we should disable SmartSpeed */
3173                 ret_val = phy->ops.read_reg(hw,
3174                                             IGP01E1000_PHY_PORT_CONFIG,
3175                                             &data);
3176                 if (ret_val)
3177                         return ret_val;
3178                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3179                 ret_val = phy->ops.write_reg(hw,
3180                                              IGP01E1000_PHY_PORT_CONFIG,
3181                                              data);
3182                 if (ret_val)
3183                         return ret_val;
3184         } else {
3185                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3186                 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3187
3188                 if (phy->type != e1000_phy_igp_3)
3189                         return E1000_SUCCESS;
3190
3191                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3192                  * during Dx states where the power conservation is most
3193                  * important.  During driver activity we should enable
3194                  * SmartSpeed, so performance is maintained.
3195                  */
3196                 if (phy->smart_speed == e1000_smart_speed_on) {
3197                         ret_val = phy->ops.read_reg(hw,
3198                                                     IGP01E1000_PHY_PORT_CONFIG,
3199                                                     &data);
3200                         if (ret_val)
3201                                 return ret_val;
3202
3203                         data |= IGP01E1000_PSCFR_SMART_SPEED;
3204                         ret_val = phy->ops.write_reg(hw,
3205                                                      IGP01E1000_PHY_PORT_CONFIG,
3206                                                      data);
3207                         if (ret_val)
3208                                 return ret_val;
3209                 } else if (phy->smart_speed == e1000_smart_speed_off) {
3210                         ret_val = phy->ops.read_reg(hw,
3211                                                     IGP01E1000_PHY_PORT_CONFIG,
3212                                                     &data);
3213                         if (ret_val)
3214                                 return ret_val;
3215
3216                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3217                         ret_val = phy->ops.write_reg(hw,
3218                                                      IGP01E1000_PHY_PORT_CONFIG,
3219                                                      data);
3220                         if (ret_val)
3221                                 return ret_val;
3222                 }
3223         }
3224
3225         return E1000_SUCCESS;
3226 }
3227
3228 /**
3229  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3230  *  @hw: pointer to the HW structure
3231  *  @active: true to enable LPLU, false to disable
3232  *
3233  *  Sets the LPLU D3 state according to the active flag.  When
3234  *  activating LPLU this function also disables smart speed
3235  *  and vice versa.  LPLU will not be activated unless the
3236  *  device autonegotiation advertisement meets standards of
3237  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3238  *  This is a function pointer entry point only called by
3239  *  PHY setup routines.
3240  **/
3241 STATIC s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3242 {
3243         struct e1000_phy_info *phy = &hw->phy;
3244         u32 phy_ctrl;
3245         s32 ret_val = E1000_SUCCESS;
3246         u16 data;
3247
3248         DEBUGFUNC("e1000_set_d3_lplu_state_ich8lan");
3249
3250         phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
3251
3252         if (!active) {
3253                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3254                 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3255
3256                 if (phy->type != e1000_phy_igp_3)
3257                         return E1000_SUCCESS;
3258
3259                 /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3260                  * during Dx states where the power conservation is most
3261                  * important.  During driver activity we should enable
3262                  * SmartSpeed, so performance is maintained.
3263                  */
3264                 if (phy->smart_speed == e1000_smart_speed_on) {
3265                         ret_val = phy->ops.read_reg(hw,
3266                                                     IGP01E1000_PHY_PORT_CONFIG,
3267                                                     &data);
3268                         if (ret_val)
3269                                 return ret_val;
3270
3271                         data |= IGP01E1000_PSCFR_SMART_SPEED;
3272                         ret_val = phy->ops.write_reg(hw,
3273                                                      IGP01E1000_PHY_PORT_CONFIG,
3274                                                      data);
3275                         if (ret_val)
3276                                 return ret_val;
3277                 } else if (phy->smart_speed == e1000_smart_speed_off) {
3278                         ret_val = phy->ops.read_reg(hw,
3279                                                     IGP01E1000_PHY_PORT_CONFIG,
3280                                                     &data);
3281                         if (ret_val)
3282                                 return ret_val;
3283
3284                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3285                         ret_val = phy->ops.write_reg(hw,
3286                                                      IGP01E1000_PHY_PORT_CONFIG,
3287                                                      data);
3288                         if (ret_val)
3289                                 return ret_val;
3290                 }
3291         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3292                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3293                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3294                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3295                 E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
3296
3297                 if (phy->type != e1000_phy_igp_3)
3298                         return E1000_SUCCESS;
3299
3300                 /* Call gig speed drop workaround on LPLU before accessing
3301                  * any PHY registers
3302                  */
3303                 if (hw->mac.type == e1000_ich8lan)
3304                         e1000_gig_downshift_workaround_ich8lan(hw);
3305
3306                 /* When LPLU is enabled, we should disable SmartSpeed */
3307                 ret_val = phy->ops.read_reg(hw,
3308                                             IGP01E1000_PHY_PORT_CONFIG,
3309                                             &data);
3310                 if (ret_val)
3311                         return ret_val;
3312
3313                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3314                 ret_val = phy->ops.write_reg(hw,
3315                                              IGP01E1000_PHY_PORT_CONFIG,
3316                                              data);
3317         }
3318
3319         return ret_val;
3320 }
3321
3322 /**
3323  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3324  *  @hw: pointer to the HW structure
3325  *  @bank:  pointer to the variable that returns the active bank
3326  *
3327  *  Reads signature byte from the NVM using the flash access registers.
3328  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3329  **/
3330 STATIC s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3331 {
3332         u32 eecd;
3333         struct e1000_nvm_info *nvm = &hw->nvm;
3334         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3335         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3336         u32 nvm_dword = 0;
3337         u8 sig_byte = 0;
3338         s32 ret_val;
3339
3340         DEBUGFUNC("e1000_valid_nvm_bank_detect_ich8lan");
3341
3342         switch (hw->mac.type) {
3343         case e1000_pch_spt:
3344         case e1000_pch_cnp:
3345         case e1000_pch_adp:
3346                 bank1_offset = nvm->flash_bank_size;
3347                 act_offset = E1000_ICH_NVM_SIG_WORD;
3348
3349                 /* set bank to 0 in case flash read fails */
3350                 *bank = 0;
3351
3352                 /* Check bank 0 */
3353                 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3354                                                          &nvm_dword);
3355                 if (ret_val)
3356                         return ret_val;
3357                 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3358                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3359                     E1000_ICH_NVM_SIG_VALUE) {
3360                         *bank = 0;
3361                         return E1000_SUCCESS;
3362                 }
3363
3364                 /* Check bank 1 */
3365                 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3366                                                          bank1_offset,
3367                                                          &nvm_dword);
3368                 if (ret_val)
3369                         return ret_val;
3370                 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3371                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3372                     E1000_ICH_NVM_SIG_VALUE) {
3373                         *bank = 1;
3374                         return E1000_SUCCESS;
3375                 }
3376
3377                 DEBUGOUT("ERROR: No valid NVM bank present\n");
3378                 return -E1000_ERR_NVM;
3379         case e1000_ich8lan:
3380         case e1000_ich9lan:
3381                 eecd = E1000_READ_REG(hw, E1000_EECD);
3382                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3383                     E1000_EECD_SEC1VAL_VALID_MASK) {
3384                         if (eecd & E1000_EECD_SEC1VAL)
3385                                 *bank = 1;
3386                         else
3387                                 *bank = 0;
3388
3389                         return E1000_SUCCESS;
3390                 }
3391                 DEBUGOUT("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3392                 /* fall-thru */
3393         default:
3394                 /* set bank to 0 in case flash read fails */
3395                 *bank = 0;
3396
3397                 /* Check bank 0 */
3398                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3399                                                         &sig_byte);
3400                 if (ret_val)
3401                         return ret_val;
3402                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3403                     E1000_ICH_NVM_SIG_VALUE) {
3404                         *bank = 0;
3405                         return E1000_SUCCESS;
3406                 }
3407
3408                 /* Check bank 1 */
3409                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3410                                                         bank1_offset,
3411                                                         &sig_byte);
3412                 if (ret_val)
3413                         return ret_val;
3414                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3415                     E1000_ICH_NVM_SIG_VALUE) {
3416                         *bank = 1;
3417                         return E1000_SUCCESS;
3418                 }
3419
3420                 DEBUGOUT("ERROR: No valid NVM bank present\n");
3421                 return -E1000_ERR_NVM;
3422         }
3423 }
3424
3425 /**
3426  *  e1000_read_nvm_spt - NVM access for SPT
3427  *  @hw: pointer to the HW structure
3428  *  @offset: The offset (in bytes) of the word(s) to read.
3429  *  @words: Size of data to read in words.
3430  *  @data: pointer to the word(s) to read at offset.
3431  *
3432  *  Reads a word(s) from the NVM
3433  **/
3434 STATIC s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3435                               u16 *data)
3436 {
3437         struct e1000_nvm_info *nvm = &hw->nvm;
3438         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3439         u32 act_offset;
3440         s32 ret_val = E1000_SUCCESS;
3441         u32 bank = 0;
3442         u32 dword = 0;
3443         u16 offset_to_read;
3444         u16 i;
3445
3446         DEBUGFUNC("e1000_read_nvm_spt");
3447
3448         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3449             (words == 0)) {
3450                 DEBUGOUT("nvm parameter(s) out of bounds\n");
3451                 ret_val = -E1000_ERR_NVM;
3452                 goto out;
3453         }
3454
3455         nvm->ops.acquire(hw);
3456
3457         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3458         if (ret_val != E1000_SUCCESS) {
3459                 DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3460                 bank = 0;
3461         }
3462
3463         act_offset = (bank) ? nvm->flash_bank_size : 0;
3464         act_offset += offset;
3465
3466         ret_val = E1000_SUCCESS;
3467
3468         for (i = 0; i < words; i += 2) {
3469                 if (words - i == 1) {
3470                         if (dev_spec->shadow_ram[offset + i].modified) {
3471                                 data[i] =
3472                                     dev_spec->shadow_ram[offset + i].value;
3473                         } else {
3474                                 offset_to_read = act_offset + i -
3475                                                  ((act_offset + i) % 2);
3476                                 ret_val =
3477                                    e1000_read_flash_dword_ich8lan(hw,
3478                                                                  offset_to_read,
3479                                                                  &dword);
3480                                 if (ret_val)
3481                                         break;
3482                                 if ((act_offset + i) % 2 == 0)
3483                                         data[i] = (u16)(dword & 0xFFFF);
3484                                 else
3485                                         data[i] = (u16)((dword >> 16) & 0xFFFF);
3486                         }
3487                 } else {
3488                         offset_to_read = act_offset + i;
3489                         if (!(dev_spec->shadow_ram[offset + i].modified) ||
3490                             !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3491                                 ret_val =
3492                                    e1000_read_flash_dword_ich8lan(hw,
3493                                                                  offset_to_read,
3494                                                                  &dword);
3495                                 if (ret_val)
3496                                         break;
3497                         }
3498                         if (dev_spec->shadow_ram[offset + i].modified)
3499                                 data[i] =
3500                                     dev_spec->shadow_ram[offset + i].value;
3501                         else
3502                                 data[i] = (u16)(dword & 0xFFFF);
3503                         if (dev_spec->shadow_ram[offset + i + 1].modified)
3504                                 data[i + 1] =
3505                                    dev_spec->shadow_ram[offset + i + 1].value;
3506                         else
3507                                 data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3508                 }
3509         }
3510
3511         nvm->ops.release(hw);
3512
3513 out:
3514         if (ret_val)
3515                 DEBUGOUT1("NVM read error: %d\n", ret_val);
3516
3517         return ret_val;
3518 }
3519
3520 /**
3521  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3522  *  @hw: pointer to the HW structure
3523  *  @offset: The offset (in bytes) of the word(s) to read.
3524  *  @words: Size of data to read in words
3525  *  @data: Pointer to the word(s) to read at offset.
3526  *
3527  *  Reads a word(s) from the NVM using the flash access registers.
3528  **/
3529 STATIC s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3530                                   u16 *data)
3531 {
3532         struct e1000_nvm_info *nvm = &hw->nvm;
3533         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3534         u32 act_offset;
3535         s32 ret_val = E1000_SUCCESS;
3536         u32 bank = 0;
3537         u16 i, word;
3538
3539         DEBUGFUNC("e1000_read_nvm_ich8lan");
3540
3541         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3542             (words == 0)) {
3543                 DEBUGOUT("nvm parameter(s) out of bounds\n");
3544                 ret_val = -E1000_ERR_NVM;
3545                 goto out;
3546         }
3547
3548         nvm->ops.acquire(hw);
3549
3550         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3551         if (ret_val != E1000_SUCCESS) {
3552                 DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
3553                 bank = 0;
3554         }
3555
3556         act_offset = (bank) ? nvm->flash_bank_size : 0;
3557         act_offset += offset;
3558
3559         ret_val = E1000_SUCCESS;
3560         for (i = 0; i < words; i++) {
3561                 if (dev_spec->shadow_ram[offset + i].modified) {
3562                         data[i] = dev_spec->shadow_ram[offset + i].value;
3563                 } else {
3564                         ret_val = e1000_read_flash_word_ich8lan(hw,
3565                                                                 act_offset + i,
3566                                                                 &word);
3567                         if (ret_val)
3568                                 break;
3569                         data[i] = word;
3570                 }
3571         }
3572
3573         nvm->ops.release(hw);
3574
3575 out:
3576         if (ret_val)
3577                 DEBUGOUT1("NVM read error: %d\n", ret_val);
3578
3579         return ret_val;
3580 }
3581
3582 /**
3583  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3584  *  @hw: pointer to the HW structure
3585  *
3586  *  This function does initial flash setup so that a new read/write/erase cycle
3587  *  can be started.
3588  **/
3589 STATIC s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3590 {
3591         union ich8_hws_flash_status hsfsts;
3592         s32 ret_val = -E1000_ERR_NVM;
3593
3594         DEBUGFUNC("e1000_flash_cycle_init_ich8lan");
3595
3596         hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3597
3598         /* Check if the flash descriptor is valid */
3599         if (!hsfsts.hsf_status.fldesvalid) {
3600                 DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used.\n");
3601                 return -E1000_ERR_NVM;
3602         }
3603
3604         /* Clear FCERR and DAEL in hw status by writing 1 */
3605         hsfsts.hsf_status.flcerr = 1;
3606         hsfsts.hsf_status.dael = 1;
3607         if (hw->mac.type >= e1000_pch_spt)
3608                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3609                                       hsfsts.regval & 0xFFFF);
3610         else
3611                 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval);
3612
3613         /* Either we should have a hardware SPI cycle in progress
3614          * bit to check against, in order to start a new cycle or
3615          * FDONE bit should be changed in the hardware so that it
3616          * is 1 after hardware reset, which can then be used as an
3617          * indication whether a cycle is in progress or has been
3618          * completed.
3619          */
3620
3621         if (!hsfsts.hsf_status.flcinprog) {
3622                 /* There is no cycle running at present,
3623                  * so we can start a cycle.
3624                  * Begin by setting Flash Cycle Done.
3625                  */
3626                 hsfsts.hsf_status.flcdone = 1;
3627                 if (hw->mac.type >= e1000_pch_spt)
3628                         E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3629                                               hsfsts.regval & 0xFFFF);
3630                 else
3631                         E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3632                                                 hsfsts.regval);
3633                 ret_val = E1000_SUCCESS;
3634         } else {
3635                 s32 i;
3636
3637                 /* Otherwise poll for sometime so the current
3638                  * cycle has a chance to end before giving up.
3639                  */
3640                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3641                         hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3642                                                               ICH_FLASH_HSFSTS);
3643                         if (!hsfsts.hsf_status.flcinprog) {
3644                                 ret_val = E1000_SUCCESS;
3645                                 break;
3646                         }
3647                         usec_delay(1);
3648                 }
3649                 if (ret_val == E1000_SUCCESS) {
3650                         /* Successful in waiting for previous cycle to timeout,
3651                          * now set the Flash Cycle Done.
3652                          */
3653                         hsfsts.hsf_status.flcdone = 1;
3654                         if (hw->mac.type >= e1000_pch_spt)
3655                                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3656                                                       hsfsts.regval & 0xFFFF);
3657                         else
3658                                 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFSTS,
3659                                                         hsfsts.regval);
3660                 } else {
3661                         DEBUGOUT("Flash controller busy, cannot get access\n");
3662                 }
3663         }
3664
3665         return ret_val;
3666 }
3667
3668 /**
3669  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3670  *  @hw: pointer to the HW structure
3671  *  @timeout: maximum time to wait for completion
3672  *
3673  *  This function starts a flash cycle and waits for its completion.
3674  **/
3675 STATIC s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3676 {
3677         union ich8_hws_flash_ctrl hsflctl;
3678         union ich8_hws_flash_status hsfsts;
3679         u32 i = 0;
3680
3681         DEBUGFUNC("e1000_flash_cycle_ich8lan");
3682
3683         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3684         if (hw->mac.type >= e1000_pch_spt)
3685                 hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
3686         else
3687                 hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3688         hsflctl.hsf_ctrl.flcgo = 1;
3689
3690         if (hw->mac.type >= e1000_pch_spt)
3691                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3692                                       hsflctl.regval << 16);
3693         else
3694                 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3695
3696         /* wait till FDONE bit is set to 1 */
3697         do {
3698                 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
3699                 if (hsfsts.hsf_status.flcdone)
3700                         break;
3701                 usec_delay(1);
3702         } while (i++ < timeout);
3703
3704         if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3705                 return E1000_SUCCESS;
3706
3707         return -E1000_ERR_NVM;
3708 }
3709
3710 /**
3711  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3712  *  @hw: pointer to the HW structure
3713  *  @offset: offset to data location
3714  *  @data: pointer to the location for storing the data
3715  *
3716  *  Reads the flash dword at offset into data.  Offset is converted
3717  *  to bytes before read.
3718  **/
3719 STATIC s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3720                                           u32 *data)
3721 {
3722         DEBUGFUNC("e1000_read_flash_dword_ich8lan");
3723
3724         if (!data)
3725                 return -E1000_ERR_NVM;
3726
3727         /* Must convert word offset into bytes. */
3728         offset <<= 1;
3729
3730         return e1000_read_flash_data32_ich8lan(hw, offset, data);
3731 }
3732
3733 /**
3734  *  e1000_read_flash_word_ich8lan - Read word from flash
3735  *  @hw: pointer to the HW structure
3736  *  @offset: offset to data location
3737  *  @data: pointer to the location for storing the data
3738  *
3739  *  Reads the flash word at offset into data.  Offset is converted
3740  *  to bytes before read.
3741  **/
3742 STATIC s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3743                                          u16 *data)
3744 {
3745         DEBUGFUNC("e1000_read_flash_word_ich8lan");
3746
3747         if (!data)
3748                 return -E1000_ERR_NVM;
3749
3750         /* Must convert offset into bytes. */
3751         offset <<= 1;
3752
3753         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3754 }
3755
3756 /**
3757  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3758  *  @hw: pointer to the HW structure
3759  *  @offset: The offset of the byte to read.
3760  *  @data: Pointer to a byte to store the value read.
3761  *
3762  *  Reads a single byte from the NVM using the flash access registers.
3763  **/
3764 STATIC s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3765                                          u8 *data)
3766 {
3767         s32 ret_val;
3768         u16 word = 0;
3769
3770         /* In SPT, only 32 bits access is supported,
3771          * so this function should not be called.
3772          */
3773         if (hw->mac.type >= e1000_pch_spt)
3774                 return -E1000_ERR_NVM;
3775         else
3776                 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3777
3778         if (ret_val)
3779                 return ret_val;
3780
3781         *data = (u8)word;
3782
3783         return E1000_SUCCESS;
3784 }
3785
3786 /**
3787  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3788  *  @hw: pointer to the HW structure
3789  *  @offset: The offset (in bytes) of the byte or word to read.
3790  *  @size: Size of data to read, 1=byte 2=word
3791  *  @data: Pointer to the word to store the value read.
3792  *
3793  *  Reads a byte or word from the NVM using the flash access registers.
3794  **/
3795 STATIC s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3796                                          u8 size, u16 *data)
3797 {
3798         union ich8_hws_flash_status hsfsts;
3799         union ich8_hws_flash_ctrl hsflctl;
3800         u32 flash_linear_addr;
3801         u32 flash_data = 0;
3802         s32 ret_val = -E1000_ERR_NVM;
3803         u8 count = 0;
3804
3805         DEBUGFUNC("e1000_read_flash_data_ich8lan");
3806
3807         if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3808                 return -E1000_ERR_NVM;
3809         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3810                              hw->nvm.flash_base_addr);
3811
3812         do {
3813                 usec_delay(1);
3814                 /* Steps */
3815                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3816                 if (ret_val != E1000_SUCCESS)
3817                         break;
3818                 hsflctl.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
3819
3820                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3821                 hsflctl.hsf_ctrl.fldbcount = size - 1;
3822                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3823                 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval);
3824                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3825
3826                 ret_val = e1000_flash_cycle_ich8lan(hw,
3827                                                 ICH_FLASH_READ_COMMAND_TIMEOUT);
3828
3829                 /* Check if FCERR is set to 1, if set to 1, clear it
3830                  * and try the whole sequence a few more times, else
3831                  * read in (shift in) the Flash Data0, the order is
3832                  * least significant byte first msb to lsb
3833                  */
3834                 if (ret_val == E1000_SUCCESS) {
3835                         flash_data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3836                         if (size == 1)
3837                                 *data = (u8)(flash_data & 0x000000FF);
3838                         else if (size == 2)
3839                                 *data = (u16)(flash_data & 0x0000FFFF);
3840                         break;
3841                 } else {
3842                         /* If we've gotten here, then things are probably
3843                          * completely hosed, but if the error condition is
3844                          * detected, it won't hurt to give it another try...
3845                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3846                          */
3847                         hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3848                                                               ICH_FLASH_HSFSTS);
3849                         if (hsfsts.hsf_status.flcerr) {
3850                                 /* Repeat for some time before giving up. */
3851                                 continue;
3852                         } else if (!hsfsts.hsf_status.flcdone) {
3853                                 DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3854                                 break;
3855                         }
3856                 }
3857         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3858
3859         return ret_val;
3860 }
3861
3862 /**
3863  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3864  *  @hw: pointer to the HW structure
3865  *  @offset: The offset (in bytes) of the dword to read.
3866  *  @data: Pointer to the dword to store the value read.
3867  *
3868  *  Reads a byte or word from the NVM using the flash access registers.
3869  **/
3870 STATIC s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3871                                            u32 *data)
3872 {
3873         union ich8_hws_flash_status hsfsts;
3874         union ich8_hws_flash_ctrl hsflctl;
3875         u32 flash_linear_addr;
3876         s32 ret_val = -E1000_ERR_NVM;
3877         u8 count = 0;
3878
3879         DEBUGFUNC("e1000_read_flash_data_ich8lan");
3880
3881                 if (offset > ICH_FLASH_LINEAR_ADDR_MASK ||
3882                     hw->mac.type < e1000_pch_spt)
3883                         return -E1000_ERR_NVM;
3884         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3885                              hw->nvm.flash_base_addr);
3886
3887         do {
3888                 usec_delay(1);
3889                 /* Steps */
3890                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3891                 if (ret_val != E1000_SUCCESS)
3892                         break;
3893                 /* In SPT, This register is in Lan memory space, not flash.
3894                  * Therefore, only 32 bit access is supported
3895                  */
3896                 hsflctl.regval = E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
3897
3898                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3899                 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3900                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3901                 /* In SPT, This register is in Lan memory space, not flash.
3902                  * Therefore, only 32 bit access is supported
3903                  */
3904                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
3905                                       (u32)hsflctl.regval << 16);
3906                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
3907
3908                 ret_val = e1000_flash_cycle_ich8lan(hw,
3909                                                 ICH_FLASH_READ_COMMAND_TIMEOUT);
3910
3911                 /* Check if FCERR is set to 1, if set to 1, clear it
3912                  * and try the whole sequence a few more times, else
3913                  * read in (shift in) the Flash Data0, the order is
3914                  * least significant byte first msb to lsb
3915                  */
3916                 if (ret_val == E1000_SUCCESS) {
3917                         *data = E1000_READ_FLASH_REG(hw, ICH_FLASH_FDATA0);
3918                         break;
3919                 } else {
3920                         /* If we've gotten here, then things are probably
3921                          * completely hosed, but if the error condition is
3922                          * detected, it won't hurt to give it another try...
3923                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3924                          */
3925                         hsfsts.regval = E1000_READ_FLASH_REG16(hw,
3926                                                               ICH_FLASH_HSFSTS);
3927                         if (hsfsts.hsf_status.flcerr) {
3928                                 /* Repeat for some time before giving up. */
3929                                 continue;
3930                         } else if (!hsfsts.hsf_status.flcdone) {
3931                                 DEBUGOUT("Timeout error - flash cycle did not complete.\n");
3932                                 break;
3933                         }
3934                 }
3935         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3936
3937         return ret_val;
3938 }
3939
3940 /**
3941  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3942  *  @hw: pointer to the HW structure
3943  *  @offset: The offset (in bytes) of the word(s) to write.
3944  *  @words: Size of data to write in words
3945  *  @data: Pointer to the word(s) to write at offset.
3946  *
3947  *  Writes a byte or word to the NVM using the flash access registers.
3948  **/
3949 STATIC s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3950                                    u16 *data)
3951 {
3952         struct e1000_nvm_info *nvm = &hw->nvm;
3953         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3954         u16 i;
3955
3956         DEBUGFUNC("e1000_write_nvm_ich8lan");
3957
3958         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3959             (words == 0)) {
3960                 DEBUGOUT("nvm parameter(s) out of bounds\n");
3961                 return -E1000_ERR_NVM;
3962         }
3963
3964         nvm->ops.acquire(hw);
3965
3966         for (i = 0; i < words; i++) {
3967                 dev_spec->shadow_ram[offset + i].modified = true;
3968                 dev_spec->shadow_ram[offset + i].value = data[i];
3969         }
3970
3971         nvm->ops.release(hw);
3972
3973         return E1000_SUCCESS;
3974 }
3975
3976 /**
3977  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3978  *  @hw: pointer to the HW structure
3979  *
3980  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3981  *  which writes the checksum to the shadow ram.  The changes in the shadow
3982  *  ram are then committed to the EEPROM by processing each bank at a time
3983  *  checking for the modified bit and writing only the pending changes.
3984  *  After a successful commit, the shadow ram is cleared and is ready for
3985  *  future writes.
3986  **/
3987 STATIC s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3988 {
3989         struct e1000_nvm_info *nvm = &hw->nvm;
3990         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3991         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3992         s32 ret_val;
3993         u32 dword = 0;
3994
3995         DEBUGFUNC("e1000_update_nvm_checksum_spt");
3996
3997         ret_val = e1000_update_nvm_checksum_generic(hw);
3998         if (ret_val)
3999                 goto out;
4000
4001         if (nvm->type != e1000_nvm_flash_sw)
4002                 goto out;
4003
4004         nvm->ops.acquire(hw);
4005
4006         /* We're writing to the opposite bank so if we're on bank 1,
4007          * write to bank 0 etc.  We also need to erase the segment that
4008          * is going to be written
4009          */
4010         ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4011         if (ret_val != E1000_SUCCESS) {
4012                 DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
4013                 bank = 0;
4014         }
4015
4016         if (bank == 0) {
4017                 new_bank_offset = nvm->flash_bank_size;
4018                 old_bank_offset = 0;
4019                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4020                 if (ret_val)
4021                         goto release;
4022         } else {
4023                 old_bank_offset = nvm->flash_bank_size;
4024                 new_bank_offset = 0;
4025                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4026                 if (ret_val)
4027                         goto release;
4028         }
4029         for (i = 0; i < E1000_SHADOW_RAM_WORDS; i += 2) {
4030                 /* Determine whether to write the value stored
4031                  * in the other NVM bank or a modified value stored
4032                  * in the shadow RAM
4033                  */
4034                 ret_val = e1000_read_flash_dword_ich8lan(hw,
4035                                                          i + old_bank_offset,
4036                                                          &dword);
4037
4038                 if (dev_spec->shadow_ram[i].modified) {
4039                         dword &= 0xffff0000;
4040                         dword |= (dev_spec->shadow_ram[i].value & 0xffff);
4041                 }
4042                 if (dev_spec->shadow_ram[i + 1].modified) {
4043                         dword &= 0x0000ffff;
4044                         dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
4045                                   << 16);
4046                 }
4047                 if (ret_val)
4048                         break;
4049
4050                 /* If the word is 0x13, then make sure the signature bits
4051                  * (15:14) are 11b until the commit has completed.
4052                  * This will allow us to write 10b which indicates the
4053                  * signature is valid.  We want to do this after the write
4054                  * has completed so that we don't mark the segment valid
4055                  * while the write is still in progress
4056                  */
4057                 if (i == E1000_ICH_NVM_SIG_WORD - 1)
4058                         dword |= E1000_ICH_NVM_SIG_MASK << 16;
4059
4060                 /* Convert offset to bytes. */
4061                 act_offset = (i + new_bank_offset) << 1;
4062
4063                 usec_delay(100);
4064
4065                 /* Write the data to the new bank. Offset in words*/
4066                 act_offset = i + new_bank_offset;
4067                 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
4068                                                                 dword);
4069                 if (ret_val)
4070                         break;
4071          }
4072
4073         /* Don't bother writing the segment valid bits if sector
4074          * programming failed.
4075          */
4076         if (ret_val) {
4077                 DEBUGOUT("Flash commit failed.\n");
4078                 goto release;
4079         }
4080
4081         /* Finally validate the new segment by setting bit 15:14
4082          * to 10b in word 0x13 , this can be done without an
4083          * erase as well since these bits are 11 to start with
4084          * and we need to change bit 14 to 0b
4085          */
4086         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4087
4088         /*offset in words but we read dword*/
4089         --act_offset;
4090         ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4091
4092         if (ret_val)
4093                 goto release;
4094
4095         dword &= 0xBFFFFFFF;
4096         ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4097
4098         if (ret_val)
4099                 goto release;
4100
4101         /* offset in words but we read dword*/
4102         act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
4103         ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4104
4105         if (ret_val)
4106                 goto release;
4107
4108         dword &= 0x00FFFFFF;
4109         ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4110
4111         if (ret_val)
4112                 goto release;
4113
4114         /* Great!  Everything worked, we can now clear the cached entries. */
4115         for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4116                 dev_spec->shadow_ram[i].modified = false;
4117                 dev_spec->shadow_ram[i].value = 0xFFFF;
4118         }
4119
4120 release:
4121         nvm->ops.release(hw);
4122
4123         /* Reload the EEPROM, or else modifications will not appear
4124          * until after the next adapter reset.
4125          */
4126         if (!ret_val) {
4127                 nvm->ops.reload(hw);
4128                 msec_delay(10);
4129         }
4130
4131 out:
4132         if (ret_val)
4133                 DEBUGOUT1("NVM update error: %d\n", ret_val);
4134
4135         return ret_val;
4136 }
4137
4138 /**
4139  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
4140  *  @hw: pointer to the HW structure
4141  *
4142  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4143  *  which writes the checksum to the shadow ram.  The changes in the shadow
4144  *  ram are then committed to the EEPROM by processing each bank at a time
4145  *  checking for the modified bit and writing only the pending changes.
4146  *  After a successful commit, the shadow ram is cleared and is ready for
4147  *  future writes.
4148  **/
4149 STATIC s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
4150 {
4151         struct e1000_nvm_info *nvm = &hw->nvm;
4152         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4153         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4154         s32 ret_val;
4155         u16 data = 0;
4156
4157         DEBUGFUNC("e1000_update_nvm_checksum_ich8lan");
4158
4159         ret_val = e1000_update_nvm_checksum_generic(hw);
4160         if (ret_val)
4161                 goto out;
4162
4163         if (nvm->type != e1000_nvm_flash_sw)
4164                 goto out;
4165
4166         nvm->ops.acquire(hw);
4167
4168         /* We're writing to the opposite bank so if we're on bank 1,
4169          * write to bank 0 etc.  We also need to erase the segment that
4170          * is going to be written
4171          */
4172         ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4173         if (ret_val != E1000_SUCCESS) {
4174                 DEBUGOUT("Could not detect valid bank, assuming bank 0\n");
4175                 bank = 0;
4176         }
4177
4178         if (bank == 0) {
4179                 new_bank_offset = nvm->flash_bank_size;
4180                 old_bank_offset = 0;
4181                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4182                 if (ret_val)
4183                         goto release;
4184         } else {
4185                 old_bank_offset = nvm->flash_bank_size;
4186                 new_bank_offset = 0;
4187                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4188                 if (ret_val)
4189                         goto release;
4190         }
4191         for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4192                 if (dev_spec->shadow_ram[i].modified) {
4193                         data = dev_spec->shadow_ram[i].value;
4194                 } else {
4195                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
4196                                                                 old_bank_offset,
4197                                                                 &data);
4198                         if (ret_val)
4199                                 break;
4200                 }
4201                 /* If the word is 0x13, then make sure the signature bits
4202                  * (15:14) are 11b until the commit has completed.
4203                  * This will allow us to write 10b which indicates the
4204                  * signature is valid.  We want to do this after the write
4205                  * has completed so that we don't mark the segment valid
4206                  * while the write is still in progress
4207                  */
4208                 if (i == E1000_ICH_NVM_SIG_WORD)
4209                         data |= E1000_ICH_NVM_SIG_MASK;
4210
4211                 /* Convert offset to bytes. */
4212                 act_offset = (i + new_bank_offset) << 1;
4213
4214                 usec_delay(100);
4215
4216                 /* Write the bytes to the new bank. */
4217                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4218                                                                act_offset,
4219                                                                (u8)data);
4220                 if (ret_val)
4221                         break;
4222
4223                 usec_delay(100);
4224                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4225                                                           act_offset + 1,
4226                                                           (u8)(data >> 8));
4227                 if (ret_val)
4228                         break;
4229         }
4230
4231         /* Don't bother writing the segment valid bits if sector
4232          * programming failed.
4233          */
4234         if (ret_val) {
4235                 DEBUGOUT("Flash commit failed.\n");
4236                 goto release;
4237         }
4238
4239         /* Finally validate the new segment by setting bit 15:14
4240          * to 10b in word 0x13 , this can be done without an
4241          * erase as well since these bits are 11 to start with
4242          * and we need to change bit 14 to 0b
4243          */
4244         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4245         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4246         if (ret_val)
4247                 goto release;
4248
4249         data &= 0xBFFF;
4250         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset * 2 + 1,
4251                                                        (u8)(data >> 8));
4252         if (ret_val)
4253                 goto release;
4254
4255         /* And invalidate the previously valid segment by setting
4256          * its signature word (0x13) high_byte to 0b. This can be
4257          * done without an erase because flash erase sets all bits
4258          * to 1's. We can write 1's to 0's without an erase
4259          */
4260         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4261
4262         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4263
4264         if (ret_val)
4265                 goto release;
4266
4267         /* Great!  Everything worked, we can now clear the cached entries. */
4268         for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4269                 dev_spec->shadow_ram[i].modified = false;
4270                 dev_spec->shadow_ram[i].value = 0xFFFF;
4271         }
4272
4273 release:
4274         nvm->ops.release(hw);
4275
4276         /* Reload the EEPROM, or else modifications will not appear
4277          * until after the next adapter reset.
4278          */
4279         if (!ret_val) {
4280                 nvm->ops.reload(hw);
4281                 msec_delay(10);
4282         }
4283
4284 out:
4285         if (ret_val)
4286                 DEBUGOUT1("NVM update error: %d\n", ret_val);
4287
4288         return ret_val;
4289 }
4290
4291 /**
4292  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4293  *  @hw: pointer to the HW structure
4294  *
4295  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4296  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4297  *  calculated, in which case we need to calculate the checksum and set bit 6.
4298  **/
4299 STATIC s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4300 {
4301         s32 ret_val;
4302         u16 data;
4303         u16 word;
4304         u16 valid_csum_mask;
4305
4306         DEBUGFUNC("e1000_validate_nvm_checksum_ich8lan");
4307
4308         /* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4309          * the checksum needs to be fixed.  This bit is an indication that
4310          * the NVM was prepared by OEM software and did not calculate
4311          * the checksum...a likely scenario.
4312          */
4313         switch (hw->mac.type) {
4314         case e1000_pch_lpt:
4315         case e1000_pch_spt:
4316         case e1000_pch_cnp:
4317         case e1000_pch_adp:
4318                 word = NVM_COMPAT;
4319                 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4320                 break;
4321         default:
4322                 word = NVM_FUTURE_INIT_WORD1;
4323                 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4324                 break;
4325         }
4326
4327         ret_val = hw->nvm.ops.read(hw, word, 1, &data);
4328         if (ret_val)
4329                 return ret_val;
4330
4331         if (!(data & valid_csum_mask)) {
4332                 data |= valid_csum_mask;
4333                 ret_val = hw->nvm.ops.write(hw, word, 1, &data);
4334                 if (ret_val)
4335                         return ret_val;
4336                 ret_val = hw->nvm.ops.update(hw);
4337                 if (ret_val)
4338                         return ret_val;
4339         }
4340
4341         return e1000_validate_nvm_checksum_generic(hw);
4342 }
4343
4344 /**
4345  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4346  *  @hw: pointer to the HW structure
4347  *  @offset: The offset (in bytes) of the byte/word to read.
4348  *  @size: Size of data to read, 1=byte 2=word
4349  *  @data: The byte(s) to write to the NVM.
4350  *
4351  *  Writes one/two bytes to the NVM using the flash access registers.
4352  **/
4353 STATIC s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4354                                           u8 size, u16 data)
4355 {
4356         union ich8_hws_flash_status hsfsts;
4357         union ich8_hws_flash_ctrl hsflctl;
4358         u32 flash_linear_addr;
4359         u32 flash_data = 0;
4360         s32 ret_val;
4361         u8 count = 0;
4362
4363         DEBUGFUNC("e1000_write_ich8_data");
4364
4365         if (hw->mac.type >= e1000_pch_spt) {
4366                 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4367                         return -E1000_ERR_NVM;
4368         } else {
4369                 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4370                         return -E1000_ERR_NVM;
4371         }
4372
4373         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4374                              hw->nvm.flash_base_addr);
4375
4376         do {
4377                 usec_delay(1);
4378                 /* Steps */
4379                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4380                 if (ret_val != E1000_SUCCESS)
4381                         break;
4382                 /* In SPT, This register is in Lan memory space, not
4383                  * flash.  Therefore, only 32 bit access is supported
4384                  */
4385                 if (hw->mac.type >= e1000_pch_spt)
4386                         hsflctl.regval =
4387                             E1000_READ_FLASH_REG(hw, ICH_FLASH_HSFSTS)>>16;
4388                 else
4389                         hsflctl.regval =
4390                             E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFCTL);
4391
4392                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4393                 hsflctl.hsf_ctrl.fldbcount = size - 1;
4394                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4395                 /* In SPT, This register is in Lan memory space,
4396                  * not flash.  Therefore, only 32 bit access is
4397                  * supported
4398                  */
4399                 if (hw->mac.type >= e1000_pch_spt)
4400                         E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4401                                               hsflctl.regval << 16);
4402                 else
4403                         E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4404                                                 hsflctl.regval);
4405
4406                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
4407
4408                 if (size == 1)
4409                         flash_data = (u32)data & 0x00FF;
4410                 else
4411                         flash_data = (u32)data;
4412
4413                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data);
4414
4415                 /* check if FCERR is set to 1 , if set to 1, clear it
4416                  * and try the whole sequence a few more times else done
4417                  */
4418                 ret_val =
4419                     e1000_flash_cycle_ich8lan(hw,
4420                                               ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4421                 if (ret_val == E1000_SUCCESS)
4422                         break;
4423
4424                 /* If we're here, then things are most likely
4425                  * completely hosed, but if the error condition
4426                  * is detected, it won't hurt to give it another
4427                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4428                  */
4429                 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4430                 if (hsfsts.hsf_status.flcerr)
4431                         /* Repeat for some time before giving up. */
4432                         continue;
4433                 if (!hsfsts.hsf_status.flcdone) {
4434                         DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4435                         break;
4436                 }
4437         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4438
4439         return ret_val;
4440 }
4441
4442 /**
4443 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4444 *  @hw: pointer to the HW structure
4445 *  @offset: The offset (in bytes) of the dwords to read.
4446 *  @data: The 4 bytes to write to the NVM.
4447 *
4448 *  Writes one/two/four bytes to the NVM using the flash access registers.
4449 **/
4450 STATIC s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4451                                             u32 data)
4452 {
4453         union ich8_hws_flash_status hsfsts;
4454         union ich8_hws_flash_ctrl hsflctl;
4455         u32 flash_linear_addr;
4456         s32 ret_val;
4457         u8 count = 0;
4458
4459         DEBUGFUNC("e1000_write_flash_data32_ich8lan");
4460
4461         if (hw->mac.type >= e1000_pch_spt) {
4462                 if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4463                         return -E1000_ERR_NVM;
4464         }
4465         flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4466                              hw->nvm.flash_base_addr);
4467         do {
4468                 usec_delay(1);
4469                 /* Steps */
4470                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4471                 if (ret_val != E1000_SUCCESS)
4472                         break;
4473
4474                 /* In SPT, This register is in Lan memory space, not
4475                  * flash.  Therefore, only 32 bit access is supported
4476                  */
4477                 if (hw->mac.type >= e1000_pch_spt)
4478                         hsflctl.regval = E1000_READ_FLASH_REG(hw,
4479                                                               ICH_FLASH_HSFSTS)
4480                                          >> 16;
4481                 else
4482                         hsflctl.regval = E1000_READ_FLASH_REG16(hw,
4483                                                               ICH_FLASH_HSFCTL);
4484
4485                 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4486                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4487
4488                 /* In SPT, This register is in Lan memory space,
4489                  * not flash.  Therefore, only 32 bit access is
4490                  * supported
4491                  */
4492                 if (hw->mac.type >= e1000_pch_spt)
4493                         E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4494                                               hsflctl.regval << 16);
4495                 else
4496                         E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4497                                                 hsflctl.regval);
4498
4499                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_addr);
4500
4501                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FDATA0, data);
4502
4503                 /* check if FCERR is set to 1 , if set to 1, clear it
4504                  * and try the whole sequence a few more times else done
4505                  */
4506                 ret_val = e1000_flash_cycle_ich8lan(hw,
4507                                                ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4508
4509                 if (ret_val == E1000_SUCCESS)
4510                         break;
4511
4512                 /* If we're here, then things are most likely
4513                  * completely hosed, but if the error condition
4514                  * is detected, it won't hurt to give it another
4515                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4516                  */
4517                 hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4518
4519                 if (hsfsts.hsf_status.flcerr)
4520                         /* Repeat for some time before giving up. */
4521                         continue;
4522                 if (!hsfsts.hsf_status.flcdone) {
4523                         DEBUGOUT("Timeout error - flash cycle did not complete.\n");
4524                         break;
4525                 }
4526         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4527
4528         return ret_val;
4529 }
4530
4531 /**
4532  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4533  *  @hw: pointer to the HW structure
4534  *  @offset: The index of the byte to read.
4535  *  @data: The byte to write to the NVM.
4536  *
4537  *  Writes a single byte to the NVM using the flash access registers.
4538  **/
4539 STATIC s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4540                                           u8 data)
4541 {
4542         u16 word = (u16)data;
4543
4544         DEBUGFUNC("e1000_write_flash_byte_ich8lan");
4545
4546         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4547 }
4548
4549 /**
4550 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4551 *  @hw: pointer to the HW structure
4552 *  @offset: The offset of the word to write.
4553 *  @dword: The dword to write to the NVM.
4554 *
4555 *  Writes a single dword to the NVM using the flash access registers.
4556 *  Goes through a retry algorithm before giving up.
4557 **/
4558 STATIC s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4559                                                  u32 offset, u32 dword)
4560 {
4561         s32 ret_val;
4562         u16 program_retries;
4563
4564         DEBUGFUNC("e1000_retry_write_flash_dword_ich8lan");
4565
4566         /* Must convert word offset into bytes. */
4567         offset <<= 1;
4568
4569         ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4570
4571         if (!ret_val)
4572                 return ret_val;
4573         for (program_retries = 0; program_retries < 100; program_retries++) {
4574                 DEBUGOUT2("Retrying Byte %8.8X at offset %u\n", dword, offset);
4575                 usec_delay(100);
4576                 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4577                 if (ret_val == E1000_SUCCESS)
4578                         break;
4579         }
4580         if (program_retries == 100)
4581                 return -E1000_ERR_NVM;
4582
4583         return E1000_SUCCESS;
4584 }
4585
4586 /**
4587  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4588  *  @hw: pointer to the HW structure
4589  *  @offset: The offset of the byte to write.
4590  *  @byte: The byte to write to the NVM.
4591  *
4592  *  Writes a single byte to the NVM using the flash access registers.
4593  *  Goes through a retry algorithm before giving up.
4594  **/
4595 STATIC s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4596                                                 u32 offset, u8 byte)
4597 {
4598         s32 ret_val;
4599         u16 program_retries;
4600
4601         DEBUGFUNC("e1000_retry_write_flash_byte_ich8lan");
4602
4603         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4604         if (!ret_val)
4605                 return ret_val;
4606
4607         for (program_retries = 0; program_retries < 100; program_retries++) {
4608                 DEBUGOUT2("Retrying Byte %2.2X at offset %u\n", byte, offset);
4609                 usec_delay(100);
4610                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4611                 if (ret_val == E1000_SUCCESS)
4612                         break;
4613         }
4614         if (program_retries == 100)
4615                 return -E1000_ERR_NVM;
4616
4617         return E1000_SUCCESS;
4618 }
4619
4620 /**
4621  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4622  *  @hw: pointer to the HW structure
4623  *  @bank: 0 for first bank, 1 for second bank, etc.
4624  *
4625  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4626  *  bank N is 4096 * N + flash_reg_addr.
4627  **/
4628 STATIC s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4629 {
4630         struct e1000_nvm_info *nvm = &hw->nvm;
4631         union ich8_hws_flash_status hsfsts;
4632         union ich8_hws_flash_ctrl hsflctl;
4633         u32 flash_linear_addr;
4634         /* bank size is in 16bit words - adjust to bytes */
4635         u32 flash_bank_size = nvm->flash_bank_size * 2;
4636         s32 ret_val;
4637         s32 count = 0;
4638         s32 j, iteration, sector_size;
4639
4640         DEBUGFUNC("e1000_erase_flash_bank_ich8lan");
4641
4642         hsfsts.regval = E1000_READ_FLASH_REG16(hw, ICH_FLASH_HSFSTS);
4643
4644         /* Determine HW Sector size: Read BERASE bits of hw flash status
4645          * register
4646          * 00: The Hw sector is 256 bytes, hence we need to erase 16
4647          *     consecutive sectors.  The start index for the nth Hw sector
4648          *     can be calculated as = bank * 4096 + n * 256
4649          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4650          *     The start index for the nth Hw sector can be calculated
4651          *     as = bank * 4096
4652          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4653          *     (ich9 only, otherwise error condition)
4654          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4655          */
4656         switch (hsfsts.hsf_status.berasesz) {
4657         case 0:
4658                 /* Hw sector size 256 */
4659                 sector_size = ICH_FLASH_SEG_SIZE_256;
4660                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4661                 break;
4662         case 1:
4663                 sector_size = ICH_FLASH_SEG_SIZE_4K;
4664                 iteration = 1;
4665                 break;
4666         case 2:
4667                 sector_size = ICH_FLASH_SEG_SIZE_8K;
4668                 iteration = 1;
4669                 break;
4670         case 3:
4671                 sector_size = ICH_FLASH_SEG_SIZE_64K;
4672                 iteration = 1;
4673                 break;
4674         default:
4675                 return -E1000_ERR_NVM;
4676         }
4677
4678         /* Start with the base address, then add the sector offset. */
4679         flash_linear_addr = hw->nvm.flash_base_addr;
4680         flash_linear_addr += (bank) ? flash_bank_size : 0;
4681
4682         for (j = 0; j < iteration; j++) {
4683                 do {
4684                         u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4685
4686                         /* Steps */
4687                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
4688                         if (ret_val)
4689                                 return ret_val;
4690
4691                         /* Write a value 11 (block Erase) in Flash
4692                          * Cycle field in hw flash control
4693                          */
4694                         if (hw->mac.type >= e1000_pch_spt)
4695                                 hsflctl.regval =
4696                                     E1000_READ_FLASH_REG(hw,
4697                                                          ICH_FLASH_HSFSTS)>>16;
4698                         else
4699                                 hsflctl.regval =
4700                                     E1000_READ_FLASH_REG16(hw,
4701                                                            ICH_FLASH_HSFCTL);
4702
4703                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4704                         if (hw->mac.type >= e1000_pch_spt)
4705                                 E1000_WRITE_FLASH_REG(hw, ICH_FLASH_HSFSTS,
4706                                                       hsflctl.regval << 16);
4707                         else
4708                                 E1000_WRITE_FLASH_REG16(hw, ICH_FLASH_HSFCTL,
4709                                                         hsflctl.regval);
4710
4711                         /* Write the last 24 bits of an index within the
4712                          * block into Flash Linear address field in Flash
4713                          * Address.
4714                          */
4715                         flash_linear_addr += (j * sector_size);
4716                         E1000_WRITE_FLASH_REG(hw, ICH_FLASH_FADDR,
4717                                               flash_linear_addr);
4718
4719                         ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4720                         if (ret_val == E1000_SUCCESS)
4721                                 break;
4722
4723                         /* Check if FCERR is set to 1.  If 1,
4724                          * clear it and try the whole sequence
4725                          * a few more times else Done
4726                          */
4727                         hsfsts.regval = E1000_READ_FLASH_REG16(hw,
4728                                                       ICH_FLASH_HSFSTS);
4729                         if (hsfsts.hsf_status.flcerr)
4730                                 /* repeat for some time before giving up */
4731                                 continue;
4732                         else if (!hsfsts.hsf_status.flcdone)
4733                                 return ret_val;
4734                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4735         }
4736
4737         return E1000_SUCCESS;
4738 }
4739
4740 /**
4741  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4742  *  @hw: pointer to the HW structure
4743  *  @data: Pointer to the LED settings
4744  *
4745  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4746  *  settings is all 0's or F's, set the LED default to a valid LED default
4747  *  setting.
4748  **/
4749 STATIC s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4750 {
4751         s32 ret_val;
4752
4753         DEBUGFUNC("e1000_valid_led_default_ich8lan");
4754
4755         ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
4756         if (ret_val) {
4757                 DEBUGOUT("NVM Read Error\n");
4758                 return ret_val;
4759         }
4760
4761         if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4762                 *data = ID_LED_DEFAULT_ICH8LAN;
4763
4764         return E1000_SUCCESS;
4765 }
4766
4767 /**
4768  *  e1000_id_led_init_pchlan - store LED configurations
4769  *  @hw: pointer to the HW structure
4770  *
4771  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4772  *  the PHY LED configuration register.
4773  *
4774  *  PCH also does not have an "always on" or "always off" mode which
4775  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4776  *  in ledctl_mode2 the LEDs to use for ID (see e1000_id_led_init_generic()),
4777  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4778  *  link based on logic in e1000_led_[on|off]_pchlan().
4779  **/
4780 STATIC s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4781 {
4782         struct e1000_mac_info *mac = &hw->mac;
4783         s32 ret_val;
4784         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4785         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4786         u16 data, i, temp, shift;
4787
4788         DEBUGFUNC("e1000_id_led_init_pchlan");
4789
4790         /* Get default ID LED modes */
4791         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4792         if (ret_val)
4793                 return ret_val;
4794
4795         mac->ledctl_default = E1000_READ_REG(hw, E1000_LEDCTL);
4796         mac->ledctl_mode1 = mac->ledctl_default;
4797         mac->ledctl_mode2 = mac->ledctl_default;
4798
4799         for (i = 0; i < 4; i++) {
4800                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4801                 shift = (i * 5);
4802                 switch (temp) {
4803                 case ID_LED_ON1_DEF2:
4804                 case ID_LED_ON1_ON2:
4805                 case ID_LED_ON1_OFF2:
4806                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4807                         mac->ledctl_mode1 |= (ledctl_on << shift);
4808                         break;
4809                 case ID_LED_OFF1_DEF2:
4810                 case ID_LED_OFF1_ON2:
4811                 case ID_LED_OFF1_OFF2:
4812                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4813                         mac->ledctl_mode1 |= (ledctl_off << shift);
4814                         break;
4815                 default:
4816                         /* Do nothing */
4817                         break;
4818                 }
4819                 switch (temp) {
4820                 case ID_LED_DEF1_ON2:
4821                 case ID_LED_ON1_ON2:
4822                 case ID_LED_OFF1_ON2:
4823                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4824                         mac->ledctl_mode2 |= (ledctl_on << shift);
4825                         break;
4826                 case ID_LED_DEF1_OFF2:
4827                 case ID_LED_ON1_OFF2:
4828                 case ID_LED_OFF1_OFF2:
4829                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4830                         mac->ledctl_mode2 |= (ledctl_off << shift);
4831                         break;
4832                 default:
4833                         /* Do nothing */
4834                         break;
4835                 }
4836         }
4837
4838         return E1000_SUCCESS;
4839 }
4840
4841 /**
4842  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4843  *  @hw: pointer to the HW structure
4844  *
4845  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4846  *  register, so the bus width is hard coded.
4847  **/
4848 STATIC s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4849 {
4850         struct e1000_bus_info *bus = &hw->bus;
4851         s32 ret_val;
4852
4853         DEBUGFUNC("e1000_get_bus_info_ich8lan");
4854
4855         ret_val = e1000_get_bus_info_pcie_generic(hw);
4856
4857         /* ICH devices are "PCI Express"-ish.  They have
4858          * a configuration space, but do not contain
4859          * PCI Express Capability registers, so bus width
4860          * must be hardcoded.
4861          */
4862         if (bus->width == e1000_bus_width_unknown)
4863                 bus->width = e1000_bus_width_pcie_x1;
4864
4865         return ret_val;
4866 }
4867
4868 /**
4869  *  e1000_reset_hw_ich8lan - Reset the hardware
4870  *  @hw: pointer to the HW structure
4871  *
4872  *  Does a full reset of the hardware which includes a reset of the PHY and
4873  *  MAC.
4874  **/
4875 STATIC s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4876 {
4877         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4878         u16 kum_cfg;
4879         u32 ctrl, reg;
4880         s32 ret_val;
4881         u16 pci_cfg;
4882
4883         DEBUGFUNC("e1000_reset_hw_ich8lan");
4884
4885         /* Prevent the PCI-E bus from sticking if there is no TLP connection
4886          * on the last TLP read/write transaction when MAC is reset.
4887          */
4888         ret_val = e1000_disable_pcie_master_generic(hw);
4889         if (ret_val)
4890                 DEBUGOUT("PCI-E Master disable polling has failed.\n");
4891
4892         DEBUGOUT("Masking off all interrupts\n");
4893         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4894
4895         /* Disable the Transmit and Receive units.  Then delay to allow
4896          * any pending transactions to complete before we hit the MAC
4897          * with the global reset.
4898          */
4899         E1000_WRITE_REG(hw, E1000_RCTL, 0);
4900         E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
4901         E1000_WRITE_FLUSH(hw);
4902
4903         msec_delay(10);
4904
4905         /* Workaround for ICH8 bit corruption issue in FIFO memory */
4906         if (hw->mac.type == e1000_ich8lan) {
4907                 /* Set Tx and Rx buffer allocation to 8k apiece. */
4908                 E1000_WRITE_REG(hw, E1000_PBA, E1000_PBA_8K);
4909                 /* Set Packet Buffer Size to 16k. */
4910                 E1000_WRITE_REG(hw, E1000_PBS, E1000_PBS_16K);
4911         }
4912
4913         if (hw->mac.type == e1000_pchlan) {
4914                 /* Save the NVM K1 bit setting*/
4915                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4916                 if (ret_val)
4917                         return ret_val;
4918
4919                 if (kum_cfg & E1000_NVM_K1_ENABLE)
4920                         dev_spec->nvm_k1_enabled = true;
4921                 else
4922                         dev_spec->nvm_k1_enabled = false;
4923         }
4924
4925         ctrl = E1000_READ_REG(hw, E1000_CTRL);
4926
4927         if (!hw->phy.ops.check_reset_block(hw)) {
4928                 /* Full-chip reset requires MAC and PHY reset at the same
4929                  * time to make sure the interface between MAC and the
4930                  * external PHY is reset.
4931                  */
4932                 ctrl |= E1000_CTRL_PHY_RST;
4933
4934                 /* Gate automatic PHY configuration by hardware on
4935                  * non-managed 82579
4936                  */
4937                 if ((hw->mac.type == e1000_pch2lan) &&
4938                     !(E1000_READ_REG(hw, E1000_FWSM) & E1000_ICH_FWSM_FW_VALID))
4939                         e1000_gate_hw_phy_config_ich8lan(hw, true);
4940         }
4941         ret_val = e1000_acquire_swflag_ich8lan(hw);
4942
4943         /* Read from EXTCNF_CTRL in e1000_acquire_swflag_ich8lan function
4944          * may occur during global reset and cause system hang.
4945          * Configuration space access creates the needed delay.
4946          * Write to E1000_STRAP RO register E1000_PCI_VENDOR_ID_REGISTER value
4947          * insures configuration space read is done before global reset.
4948          */
4949         e1000_read_pci_cfg(hw, E1000_PCI_VENDOR_ID_REGISTER, &pci_cfg);
4950         E1000_WRITE_REG(hw, E1000_STRAP, pci_cfg);
4951         DEBUGOUT("Issuing a global reset to ich8lan\n");
4952         E1000_WRITE_REG(hw, E1000_CTRL, (ctrl | E1000_CTRL_RST));
4953         /* cannot issue a flush here because it hangs the hardware */
4954         msec_delay(20);
4955
4956         /* Configuration space access improve HW level time sync mechanism.
4957          * Write to E1000_STRAP RO register E1000_PCI_VENDOR_ID_REGISTER
4958          * value to insure configuration space read is done
4959          * before any access to mac register.
4960          */
4961         e1000_read_pci_cfg(hw, E1000_PCI_VENDOR_ID_REGISTER, &pci_cfg);
4962         E1000_WRITE_REG(hw, E1000_STRAP, pci_cfg);
4963
4964         /* Set Phy Config Counter to 50msec */
4965         if (hw->mac.type == e1000_pch2lan) {
4966                 reg = E1000_READ_REG(hw, E1000_FEXTNVM3);
4967                 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4968                 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4969                 E1000_WRITE_REG(hw, E1000_FEXTNVM3, reg);
4970         }
4971
4972         if (!ret_val)
4973                 E1000_MUTEX_UNLOCK(&hw->dev_spec.ich8lan.swflag_mutex);
4974
4975         if (ctrl & E1000_CTRL_PHY_RST) {
4976                 ret_val = hw->phy.ops.get_cfg_done(hw);
4977                 if (ret_val)
4978                         return ret_val;
4979
4980                 ret_val = e1000_post_phy_reset_ich8lan(hw);
4981                 if (ret_val)
4982                         return ret_val;
4983         }
4984
4985         /* For PCH, this write will make sure that any noise
4986          * will be detected as a CRC error and be dropped rather than show up
4987          * as a bad packet to the DMA engine.
4988          */
4989         if (hw->mac.type == e1000_pchlan)
4990                 E1000_WRITE_REG(hw, E1000_CRC_OFFSET, 0x65656565);
4991
4992         E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
4993         E1000_READ_REG(hw, E1000_ICR);
4994
4995         reg = E1000_READ_REG(hw, E1000_KABGTXD);
4996         reg |= E1000_KABGTXD_BGSQLBIAS;
4997         E1000_WRITE_REG(hw, E1000_KABGTXD, reg);
4998
4999         return E1000_SUCCESS;
5000 }
5001
5002 /**
5003  *  e1000_init_hw_ich8lan - Initialize the hardware
5004  *  @hw: pointer to the HW structure
5005  *
5006  *  Prepares the hardware for transmit and receive by doing the following:
5007  *   - initialize hardware bits
5008  *   - initialize LED identification
5009  *   - setup receive address registers
5010  *   - setup flow control
5011  *   - setup transmit descriptors
5012  *   - clear statistics
5013  **/
5014 STATIC s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
5015 {
5016         struct e1000_mac_info *mac = &hw->mac;
5017         u32 ctrl_ext, txdctl, snoop;
5018         s32 ret_val;
5019         u16 i;
5020
5021         DEBUGFUNC("e1000_init_hw_ich8lan");
5022
5023         e1000_initialize_hw_bits_ich8lan(hw);
5024
5025         /* Initialize identification LED */
5026         ret_val = mac->ops.id_led_init(hw);
5027         /* An error is not fatal and we should not stop init due to this */
5028         if (ret_val)
5029                 DEBUGOUT("Error initializing identification LED\n");
5030
5031         /* Setup the receive address. */
5032         e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
5033
5034         /* Zero out the Multicast HASH table */
5035         DEBUGOUT("Zeroing the MTA\n");
5036         for (i = 0; i < mac->mta_reg_count; i++)
5037                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
5038
5039         /* The 82578 Rx buffer will stall if wakeup is enabled in host and
5040          * the ME.  Disable wakeup by clearing the host wakeup bit.
5041          * Reset the phy after disabling host wakeup to reset the Rx buffer.
5042          */
5043         if (hw->phy.type == e1000_phy_82578) {
5044                 hw->phy.ops.read_reg(hw, BM_PORT_GEN_CFG, &i);
5045                 i &= ~BM_WUC_HOST_WU_BIT;
5046                 hw->phy.ops.write_reg(hw, BM_PORT_GEN_CFG, i);
5047                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
5048                 if (ret_val)
5049                         return ret_val;
5050         }
5051
5052         /* Setup link and flow control */
5053         ret_val = mac->ops.setup_link(hw);
5054
5055         /* Set the transmit descriptor write-back policy for both queues */
5056         txdctl = E1000_READ_REG(hw, E1000_TXDCTL(0));
5057         txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5058                   E1000_TXDCTL_FULL_TX_DESC_WB);
5059         txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5060                   E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5061         E1000_WRITE_REG(hw, E1000_TXDCTL(0), txdctl);
5062         txdctl = E1000_READ_REG(hw, E1000_TXDCTL(1));
5063         txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5064                   E1000_TXDCTL_FULL_TX_DESC_WB);
5065         txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5066                   E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5067         E1000_WRITE_REG(hw, E1000_TXDCTL(1), txdctl);
5068
5069         /* ICH8 has opposite polarity of no_snoop bits.
5070          * By default, we should use snoop behavior.
5071          */
5072         if (mac->type == e1000_ich8lan)
5073                 snoop = PCIE_ICH8_SNOOP_ALL;
5074         else
5075                 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
5076         e1000_set_pcie_no_snoop_generic(hw, snoop);
5077
5078         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5079         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
5080         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5081
5082         /* Clear all of the statistics registers (clear on read).  It is
5083          * important that we do this after we have tried to establish link
5084          * because the symbol error count will increment wildly if there
5085          * is no link.
5086          */
5087         e1000_clear_hw_cntrs_ich8lan(hw);
5088
5089         return ret_val;
5090 }
5091
5092 /**
5093  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
5094  *  @hw: pointer to the HW structure
5095  *
5096  *  Sets/Clears required hardware bits necessary for correctly setting up the
5097  *  hardware for transmit and receive.
5098  **/
5099 STATIC void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
5100 {
5101         u32 reg;
5102
5103         DEBUGFUNC("e1000_initialize_hw_bits_ich8lan");
5104
5105         /* Extended Device Control */
5106         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
5107         reg |= (1 << 22);
5108         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
5109         if (hw->mac.type >= e1000_pchlan)
5110                 reg |= E1000_CTRL_EXT_PHYPDEN;
5111         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
5112
5113         /* Transmit Descriptor Control 0 */
5114         reg = E1000_READ_REG(hw, E1000_TXDCTL(0));
5115         reg |= (1 << 22);
5116         E1000_WRITE_REG(hw, E1000_TXDCTL(0), reg);
5117
5118         /* Transmit Descriptor Control 1 */
5119         reg = E1000_READ_REG(hw, E1000_TXDCTL(1));
5120         reg |= (1 << 22);
5121         E1000_WRITE_REG(hw, E1000_TXDCTL(1), reg);
5122
5123         /* Transmit Arbitration Control 0 */
5124         reg = E1000_READ_REG(hw, E1000_TARC(0));
5125         if (hw->mac.type == e1000_ich8lan)
5126                 reg |= (1 << 28) | (1 << 29);
5127         reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
5128         E1000_WRITE_REG(hw, E1000_TARC(0), reg);
5129
5130         /* Transmit Arbitration Control 1 */
5131         reg = E1000_READ_REG(hw, E1000_TARC(1));
5132         if (E1000_READ_REG(hw, E1000_TCTL) & E1000_TCTL_MULR)
5133                 reg &= ~(1 << 28);
5134         else
5135                 reg |= (1 << 28);
5136         reg |= (1 << 24) | (1 << 26) | (1 << 30);
5137         E1000_WRITE_REG(hw, E1000_TARC(1), reg);
5138
5139         /* Device Status */
5140         if (hw->mac.type == e1000_ich8lan) {
5141                 reg = E1000_READ_REG(hw, E1000_STATUS);
5142                 reg &= ~(1U << 31);
5143                 E1000_WRITE_REG(hw, E1000_STATUS, reg);
5144         }
5145
5146         /* work-around descriptor data corruption issue during nfs v2 udp
5147          * traffic, just disable the nfs filtering capability
5148          */
5149         reg = E1000_READ_REG(hw, E1000_RFCTL);
5150         reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
5151
5152         /* Disable IPv6 extension header parsing because some malformed
5153          * IPv6 headers can hang the Rx.
5154          */
5155         if (hw->mac.type == e1000_ich8lan)
5156                 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
5157         E1000_WRITE_REG(hw, E1000_RFCTL, reg);
5158
5159         /* Enable ECC on Lynxpoint */
5160         if (hw->mac.type >= e1000_pch_lpt) {
5161                 reg = E1000_READ_REG(hw, E1000_PBECCSTS);
5162                 reg |= E1000_PBECCSTS_ECC_ENABLE;
5163                 E1000_WRITE_REG(hw, E1000_PBECCSTS, reg);
5164
5165                 reg = E1000_READ_REG(hw, E1000_CTRL);
5166                 reg |= E1000_CTRL_MEHE;
5167                 E1000_WRITE_REG(hw, E1000_CTRL, reg);
5168         }
5169
5170         return;
5171 }
5172
5173 /**
5174  *  e1000_setup_link_ich8lan - Setup flow control and link settings
5175  *  @hw: pointer to the HW structure
5176  *
5177  *  Determines which flow control settings to use, then configures flow
5178  *  control.  Calls the appropriate media-specific link configuration
5179  *  function.  Assuming the adapter has a valid link partner, a valid link
5180  *  should be established.  Assumes the hardware has previously been reset
5181  *  and the transmitter and receiver are not enabled.
5182  **/
5183 STATIC s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5184 {
5185         s32 ret_val;
5186
5187         DEBUGFUNC("e1000_setup_link_ich8lan");
5188
5189         /* ICH parts do not have a word in the NVM to determine
5190          * the default flow control setting, so we explicitly
5191          * set it to full.
5192          */
5193         if (hw->fc.requested_mode == e1000_fc_default)
5194                 hw->fc.requested_mode = e1000_fc_full;
5195
5196         /* Save off the requested flow control mode for use later.  Depending
5197          * on the link partner's capabilities, we may or may not use this mode.
5198          */
5199         hw->fc.current_mode = hw->fc.requested_mode;
5200
5201         DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
5202                 hw->fc.current_mode);
5203
5204         if (!hw->phy.ops.check_reset_block(hw)) {
5205                 /* Continue to configure the copper link. */
5206                 ret_val = hw->mac.ops.setup_physical_interface(hw);
5207                 if (ret_val)
5208                         return ret_val;
5209         }
5210
5211         E1000_WRITE_REG(hw, E1000_FCTTV, hw->fc.pause_time);
5212         if ((hw->phy.type == e1000_phy_82578) ||
5213             (hw->phy.type == e1000_phy_82579) ||
5214             (hw->phy.type == e1000_phy_i217) ||
5215             (hw->phy.type == e1000_phy_82577)) {
5216                 E1000_WRITE_REG(hw, E1000_FCRTV_PCH, hw->fc.refresh_time);
5217
5218                 ret_val = hw->phy.ops.write_reg(hw,
5219                                              PHY_REG(BM_PORT_CTRL_PAGE, 27),
5220                                              hw->fc.pause_time);
5221                 if (ret_val)
5222                         return ret_val;
5223         }
5224
5225         return e1000_set_fc_watermarks_generic(hw);
5226 }
5227
5228 /**
5229  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5230  *  @hw: pointer to the HW structure
5231  *
5232  *  Configures the kumeran interface to the PHY to wait the appropriate time
5233  *  when polling the PHY, then call the generic setup_copper_link to finish
5234  *  configuring the copper link.
5235  **/
5236 STATIC s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5237 {
5238         u32 ctrl;
5239         s32 ret_val;
5240         u16 reg_data;
5241
5242         DEBUGFUNC("e1000_setup_copper_link_ich8lan");
5243
5244         ctrl = E1000_READ_REG(hw, E1000_CTRL);
5245         ctrl |= E1000_CTRL_SLU;
5246         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5247         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5248
5249         /* Set the mac to wait the maximum time between each iteration
5250          * and increase the max iterations when polling the phy;
5251          * this fixes erroneous timeouts at 10Mbps.
5252          */
5253         ret_val = e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_TIMEOUTS,
5254                                                0xFFFF);
5255         if (ret_val)
5256                 return ret_val;
5257         ret_val = e1000_read_kmrn_reg_generic(hw,
5258                                               E1000_KMRNCTRLSTA_INBAND_PARAM,
5259                                               &reg_data);
5260         if (ret_val)
5261                 return ret_val;
5262         reg_data |= 0x3F;
5263         ret_val = e1000_write_kmrn_reg_generic(hw,
5264                                                E1000_KMRNCTRLSTA_INBAND_PARAM,
5265                                                reg_data);
5266         if (ret_val)
5267                 return ret_val;
5268
5269         switch (hw->phy.type) {
5270         case e1000_phy_igp_3:
5271                 ret_val = e1000_copper_link_setup_igp(hw);
5272                 if (ret_val)
5273                         return ret_val;
5274                 break;
5275         case e1000_phy_bm:
5276         case e1000_phy_82578:
5277                 ret_val = e1000_copper_link_setup_m88(hw);
5278                 if (ret_val)
5279                         return ret_val;
5280                 break;
5281         case e1000_phy_82577:
5282         case e1000_phy_82579:
5283                 ret_val = e1000_copper_link_setup_82577(hw);
5284                 if (ret_val)
5285                         return ret_val;
5286                 break;
5287         case e1000_phy_ife:
5288                 ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
5289                                                &reg_data);
5290                 if (ret_val)
5291                         return ret_val;
5292
5293                 reg_data &= ~IFE_PMC_AUTO_MDIX;
5294
5295                 switch (hw->phy.mdix) {
5296                 case 1:
5297                         reg_data &= ~IFE_PMC_FORCE_MDIX;
5298                         break;
5299                 case 2:
5300                         reg_data |= IFE_PMC_FORCE_MDIX;
5301                         break;
5302                 case 0:
5303                 default:
5304                         reg_data |= IFE_PMC_AUTO_MDIX;
5305                         break;
5306                 }
5307                 ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
5308                                                 reg_data);
5309                 if (ret_val)
5310                         return ret_val;
5311                 break;
5312         default:
5313                 break;
5314         }
5315
5316         return e1000_setup_copper_link_generic(hw);
5317 }
5318
5319 /**
5320  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5321  *  @hw: pointer to the HW structure
5322  *
5323  *  Calls the PHY specific link setup function and then calls the
5324  *  generic setup_copper_link to finish configuring the link for
5325  *  Lynxpoint PCH devices
5326  **/
5327 STATIC s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5328 {
5329         u32 ctrl;
5330         s32 ret_val;
5331
5332         DEBUGFUNC("e1000_setup_copper_link_pch_lpt");
5333
5334         ctrl = E1000_READ_REG(hw, E1000_CTRL);
5335         ctrl |= E1000_CTRL_SLU;
5336         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5337         E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5338
5339         ret_val = e1000_copper_link_setup_82577(hw);
5340         if (ret_val)
5341                 return ret_val;
5342
5343         return e1000_setup_copper_link_generic(hw);
5344 }
5345
5346 /**
5347  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5348  *  @hw: pointer to the HW structure
5349  *  @speed: pointer to store current link speed
5350  *  @duplex: pointer to store the current link duplex
5351  *
5352  *  Calls the generic get_speed_and_duplex to retrieve the current link
5353  *  information and then calls the Kumeran lock loss workaround for links at
5354  *  gigabit speeds.
5355  **/
5356 STATIC s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5357                                           u16 *duplex)
5358 {
5359         s32 ret_val;
5360
5361         DEBUGFUNC("e1000_get_link_up_info_ich8lan");
5362
5363         ret_val = e1000_get_speed_and_duplex_copper_generic(hw, speed, duplex);
5364         if (ret_val)
5365                 return ret_val;
5366
5367         if ((hw->mac.type == e1000_ich8lan) &&
5368             (hw->phy.type == e1000_phy_igp_3) &&
5369             (*speed == SPEED_1000)) {
5370                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5371         }
5372
5373         return ret_val;
5374 }
5375
5376 /**
5377  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5378  *  @hw: pointer to the HW structure
5379  *
5380  *  Work-around for 82566 Kumeran PCS lock loss:
5381  *  On link status change (i.e. PCI reset, speed change) and link is up and
5382  *  speed is gigabit-
5383  *    0) if workaround is optionally disabled do nothing
5384  *    1) wait 1ms for Kumeran link to come up
5385  *    2) check Kumeran Diagnostic register PCS lock loss bit
5386  *    3) if not set the link is locked (all is good), otherwise...
5387  *    4) reset the PHY
5388  *    5) repeat up to 10 times
5389  *  Note: this is only called for IGP3 copper when speed is 1gb.
5390  **/
5391 STATIC s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5392 {
5393         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5394         u32 phy_ctrl;
5395         s32 ret_val;
5396         u16 i, data;
5397         bool link;
5398
5399         DEBUGFUNC("e1000_kmrn_lock_loss_workaround_ich8lan");
5400
5401         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5402                 return E1000_SUCCESS;
5403
5404         /* Make sure link is up before proceeding.  If not just return.
5405          * Attempting this while link is negotiating fouled up link
5406          * stability
5407          */
5408         ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
5409         if (!link)
5410                 return E1000_SUCCESS;
5411
5412         for (i = 0; i < 10; i++) {
5413                 /* read once to clear */
5414                 ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
5415                 if (ret_val)
5416                         return ret_val;
5417                 /* and again to get new status */
5418                 ret_val = hw->phy.ops.read_reg(hw, IGP3_KMRN_DIAG, &data);
5419                 if (ret_val)
5420                         return ret_val;
5421
5422                 /* check for PCS lock */
5423                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5424                         return E1000_SUCCESS;
5425
5426                 /* Issue PHY reset */
5427                 hw->phy.ops.reset(hw);
5428                 msec_delay_irq(5);
5429         }
5430         /* Disable GigE link negotiation */
5431         phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
5432         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5433                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5434         E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
5435
5436         /* Call gig speed drop workaround on Gig disable before accessing
5437          * any PHY registers
5438          */
5439         e1000_gig_downshift_workaround_ich8lan(hw);
5440
5441         /* unable to acquire PCS lock */
5442         return -E1000_ERR_PHY;
5443 }
5444
5445 /**
5446  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5447  *  @hw: pointer to the HW structure
5448  *  @state: boolean value used to set the current Kumeran workaround state
5449  *
5450  *  If ICH8, set the current Kumeran workaround state (enabled - true
5451  *  /disabled - false).
5452  **/
5453 void e1000_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5454                                                  bool state)
5455 {
5456         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5457
5458         DEBUGFUNC("e1000_set_kmrn_lock_loss_workaround_ich8lan");
5459
5460         if (hw->mac.type != e1000_ich8lan) {
5461                 DEBUGOUT("Workaround applies to ICH8 only.\n");
5462                 return;
5463         }
5464
5465         dev_spec->kmrn_lock_loss_workaround_enabled = state;
5466
5467         return;
5468 }
5469
5470 /**
5471  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5472  *  @hw: pointer to the HW structure
5473  *
5474  *  Workaround for 82566 power-down on D3 entry:
5475  *    1) disable gigabit link
5476  *    2) write VR power-down enable
5477  *    3) read it back
5478  *  Continue if successful, else issue LCD reset and repeat
5479  **/
5480 void e1000_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5481 {
5482         u32 reg;
5483         u16 data;
5484         u8  retry = 0;
5485
5486         DEBUGFUNC("e1000_igp3_phy_powerdown_workaround_ich8lan");
5487
5488         if (hw->phy.type != e1000_phy_igp_3)
5489                 return;
5490
5491         /* Try the workaround twice (if needed) */
5492         do {
5493                 /* Disable link */
5494                 reg = E1000_READ_REG(hw, E1000_PHY_CTRL);
5495                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5496                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5497                 E1000_WRITE_REG(hw, E1000_PHY_CTRL, reg);
5498
5499                 /* Call gig speed drop workaround on Gig disable before
5500                  * accessing any PHY registers
5501                  */
5502                 if (hw->mac.type == e1000_ich8lan)
5503                         e1000_gig_downshift_workaround_ich8lan(hw);
5504
5505                 /* Write VR power-down enable */
5506                 hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
5507                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5508                 hw->phy.ops.write_reg(hw, IGP3_VR_CTRL,
5509                                       data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5510
5511                 /* Read it back and test */
5512                 hw->phy.ops.read_reg(hw, IGP3_VR_CTRL, &data);
5513                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5514                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5515                         break;
5516
5517                 /* Issue PHY reset and repeat at most one more time */
5518                 reg = E1000_READ_REG(hw, E1000_CTRL);
5519                 E1000_WRITE_REG(hw, E1000_CTRL, reg | E1000_CTRL_PHY_RST);
5520                 retry++;
5521         } while (retry);
5522 }
5523
5524 /**
5525  *  e1000_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5526  *  @hw: pointer to the HW structure
5527  *
5528  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5529  *  LPLU, Gig disable, MDIC PHY reset):
5530  *    1) Set Kumeran Near-end loopback
5531  *    2) Clear Kumeran Near-end loopback
5532  *  Should only be called for ICH8[m] devices with any 1G Phy.
5533  **/
5534 void e1000_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5535 {
5536         s32 ret_val;
5537         u16 reg_data = 0;
5538
5539         DEBUGFUNC("e1000_gig_downshift_workaround_ich8lan");
5540
5541         if ((hw->mac.type != e1000_ich8lan) ||
5542             (hw->phy.type == e1000_phy_ife))
5543                 return;
5544
5545         ret_val = e1000_read_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5546                                               &reg_data);
5547         if (ret_val)
5548                 return;
5549         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5550         ret_val = e1000_write_kmrn_reg_generic(hw,
5551                                                E1000_KMRNCTRLSTA_DIAG_OFFSET,
5552                                                reg_data);
5553         if (ret_val)
5554                 return;
5555         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5556         e1000_write_kmrn_reg_generic(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5557                                      reg_data);
5558 }
5559
5560 /**
5561  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5562  *  @hw: pointer to the HW structure
5563  *
5564  *  During S0 to Sx transition, it is possible the link remains at gig
5565  *  instead of negotiating to a lower speed.  Before going to Sx, set
5566  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5567  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5568  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5569  *  needs to be written.
5570  *  Parts that support (and are linked to a partner which support) EEE in
5571  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5572  *  than 10Mbps w/o EEE.
5573  **/
5574 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5575 {
5576         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5577         u32 phy_ctrl;
5578         s32 ret_val;
5579
5580         DEBUGFUNC("e1000_suspend_workarounds_ich8lan");
5581
5582         phy_ctrl = E1000_READ_REG(hw, E1000_PHY_CTRL);
5583         phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5584
5585         if (hw->phy.type == e1000_phy_i217) {
5586                 u16 phy_reg, device_id = hw->device_id;
5587
5588                 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5589                     (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5590                     (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5591                     (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5592                     (hw->mac.type >= e1000_pch_spt)) {
5593                         u32 fextnvm6 = E1000_READ_REG(hw, E1000_FEXTNVM6);
5594
5595                         E1000_WRITE_REG(hw, E1000_FEXTNVM6,
5596                                         fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5597                 }
5598
5599                 ret_val = hw->phy.ops.acquire(hw);
5600                 if (ret_val)
5601                         goto out;
5602
5603                 if (!dev_spec->eee_disable) {
5604                         u16 eee_advert;
5605
5606                         ret_val =
5607                             e1000_read_emi_reg_locked(hw,
5608                                                       I217_EEE_ADVERTISEMENT,
5609                                                       &eee_advert);
5610                         if (ret_val)
5611                                 goto release;
5612
5613                         /* Disable LPLU if both link partners support 100BaseT
5614                          * EEE and 100Full is advertised on both ends of the
5615                          * link, and enable Auto Enable LPI since there will
5616                          * be no driver to enable LPI while in Sx.
5617                          */
5618                         if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5619                             (dev_spec->eee_lp_ability &
5620                              I82579_EEE_100_SUPPORTED) &&
5621                             (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5622                                 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5623                                               E1000_PHY_CTRL_NOND0A_LPLU);
5624
5625                                 /* Set Auto Enable LPI after link up */
5626                                 hw->phy.ops.read_reg_locked(hw,
5627                                                             I217_LPI_GPIO_CTRL,
5628                                                             &phy_reg);
5629                                 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5630                                 hw->phy.ops.write_reg_locked(hw,
5631                                                              I217_LPI_GPIO_CTRL,
5632                                                              phy_reg);
5633                         }
5634                 }
5635
5636                 /* For i217 Intel Rapid Start Technology support,
5637                  * when the system is going into Sx and no manageability engine
5638                  * is present, the driver must configure proxy to reset only on
5639                  * power good.  LPI (Low Power Idle) state must also reset only
5640                  * on power good, as well as the MTA (Multicast table array).
5641                  * The SMBus release must also be disabled on LCD reset.
5642                  */
5643                 if (!(E1000_READ_REG(hw, E1000_FWSM) &
5644                       E1000_ICH_FWSM_FW_VALID)) {
5645                         /* Enable proxy to reset only on power good. */
5646                         hw->phy.ops.read_reg_locked(hw, I217_PROXY_CTRL,
5647                                                     &phy_reg);
5648                         phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5649                         hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL,
5650                                                      phy_reg);
5651
5652                         /* Set bit enable LPI (EEE) to reset only on
5653                          * power good.
5654                         */
5655                         hw->phy.ops.read_reg_locked(hw, I217_SxCTRL, &phy_reg);
5656                         phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5657                         hw->phy.ops.write_reg_locked(hw, I217_SxCTRL, phy_reg);
5658
5659                         /* Disable the SMB release on LCD reset. */
5660                         hw->phy.ops.read_reg_locked(hw, I217_MEMPWR, &phy_reg);
5661                         phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5662                         hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5663                 }
5664
5665                 /* Enable MTA to reset for Intel Rapid Start Technology
5666                  * Support
5667                  */
5668                 hw->phy.ops.read_reg_locked(hw, I217_CGFREG, &phy_reg);
5669                 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5670                 hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5671
5672 release:
5673                 hw->phy.ops.release(hw);
5674         }
5675 out:
5676         E1000_WRITE_REG(hw, E1000_PHY_CTRL, phy_ctrl);
5677
5678         if (hw->mac.type == e1000_ich8lan)
5679                 e1000_gig_downshift_workaround_ich8lan(hw);
5680
5681         if (hw->mac.type >= e1000_pchlan) {
5682                 e1000_oem_bits_config_ich8lan(hw, false);
5683
5684                 /* Reset PHY to activate OEM bits on 82577/8 */
5685                 if (hw->mac.type == e1000_pchlan)
5686                         e1000_phy_hw_reset_generic(hw);
5687
5688                 ret_val = hw->phy.ops.acquire(hw);
5689                 if (ret_val)
5690                         return;
5691                 e1000_write_smbus_addr(hw);
5692                 hw->phy.ops.release(hw);
5693         }
5694
5695         return;
5696 }
5697
5698 /**
5699  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5700  *  @hw: pointer to the HW structure
5701  *
5702  *  During Sx to S0 transitions on non-managed devices or managed devices
5703  *  on which PHY resets are not blocked, if the PHY registers cannot be
5704  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5705  *  the PHY.
5706  *  On i217, setup Intel Rapid Start Technology.
5707  **/
5708 u32 e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5709 {
5710         s32 ret_val;
5711
5712         DEBUGFUNC("e1000_resume_workarounds_pchlan");
5713         if (hw->mac.type < e1000_pch2lan)
5714                 return E1000_SUCCESS;
5715
5716         ret_val = e1000_init_phy_workarounds_pchlan(hw);
5717         if (ret_val) {
5718                 DEBUGOUT1("Failed to init PHY flow ret_val=%d\n", ret_val);
5719                 return ret_val;
5720         }
5721
5722         /* For i217 Intel Rapid Start Technology support when the system
5723          * is transitioning from Sx and no manageability engine is present
5724          * configure SMBus to restore on reset, disable proxy, and enable
5725          * the reset on MTA (Multicast table array).
5726          */
5727         if (hw->phy.type == e1000_phy_i217) {
5728                 u16 phy_reg;
5729
5730                 ret_val = hw->phy.ops.acquire(hw);
5731                 if (ret_val) {
5732                         DEBUGOUT("Failed to setup iRST\n");
5733                         return ret_val;
5734                 }
5735
5736                 /* Clear Auto Enable LPI after link up */
5737                 hw->phy.ops.read_reg_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5738                 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5739                 hw->phy.ops.write_reg_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5740
5741                 if (!(E1000_READ_REG(hw, E1000_FWSM) &
5742                     E1000_ICH_FWSM_FW_VALID)) {
5743                         /* Restore clear on SMB if no manageability engine
5744                          * is present
5745                          */
5746                         ret_val = hw->phy.ops.read_reg_locked(hw, I217_MEMPWR,
5747                                                               &phy_reg);
5748                         if (ret_val)
5749                                 goto release;
5750                         phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5751                         hw->phy.ops.write_reg_locked(hw, I217_MEMPWR, phy_reg);
5752
5753                         /* Disable Proxy */
5754                         hw->phy.ops.write_reg_locked(hw, I217_PROXY_CTRL, 0);
5755                 }
5756                 /* Enable reset on MTA */
5757                 ret_val = hw->phy.ops.read_reg_locked(hw, I217_CGFREG,
5758                                                       &phy_reg);
5759                 if (ret_val)
5760                         goto release;
5761                 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5762                 hw->phy.ops.write_reg_locked(hw, I217_CGFREG, phy_reg);
5763 release:
5764                 if (ret_val)
5765                         DEBUGOUT1("Error %d in resume workarounds\n", ret_val);
5766                 hw->phy.ops.release(hw);
5767                 return ret_val;
5768         }
5769         return E1000_SUCCESS;
5770 }
5771
5772 /**
5773  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5774  *  @hw: pointer to the HW structure
5775  *
5776  *  Return the LED back to the default configuration.
5777  **/
5778 STATIC s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5779 {
5780         DEBUGFUNC("e1000_cleanup_led_ich8lan");
5781
5782         if (hw->phy.type == e1000_phy_ife)
5783                 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5784                                              0);
5785
5786         E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_default);
5787         return E1000_SUCCESS;
5788 }
5789
5790 /**
5791  *  e1000_led_on_ich8lan - Turn LEDs on
5792  *  @hw: pointer to the HW structure
5793  *
5794  *  Turn on the LEDs.
5795  **/
5796 STATIC s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5797 {
5798         DEBUGFUNC("e1000_led_on_ich8lan");
5799
5800         if (hw->phy.type == e1000_phy_ife)
5801                 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5802                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5803
5804         E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode2);
5805         return E1000_SUCCESS;
5806 }
5807
5808 /**
5809  *  e1000_led_off_ich8lan - Turn LEDs off
5810  *  @hw: pointer to the HW structure
5811  *
5812  *  Turn off the LEDs.
5813  **/
5814 STATIC s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5815 {
5816         DEBUGFUNC("e1000_led_off_ich8lan");
5817
5818         if (hw->phy.type == e1000_phy_ife)
5819                 return hw->phy.ops.write_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5820                                (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
5821
5822         E1000_WRITE_REG(hw, E1000_LEDCTL, hw->mac.ledctl_mode1);
5823         return E1000_SUCCESS;
5824 }
5825
5826 /**
5827  *  e1000_setup_led_pchlan - Configures SW controllable LED
5828  *  @hw: pointer to the HW structure
5829  *
5830  *  This prepares the SW controllable LED for use.
5831  **/
5832 STATIC s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5833 {
5834         DEBUGFUNC("e1000_setup_led_pchlan");
5835
5836         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5837                                      (u16)hw->mac.ledctl_mode1);
5838 }
5839
5840 /**
5841  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5842  *  @hw: pointer to the HW structure
5843  *
5844  *  Return the LED back to the default configuration.
5845  **/
5846 STATIC s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5847 {
5848         DEBUGFUNC("e1000_cleanup_led_pchlan");
5849
5850         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
5851                                      (u16)hw->mac.ledctl_default);
5852 }
5853
5854 /**
5855  *  e1000_led_on_pchlan - Turn LEDs on
5856  *  @hw: pointer to the HW structure
5857  *
5858  *  Turn on the LEDs.
5859  **/
5860 STATIC s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5861 {
5862         u16 data = (u16)hw->mac.ledctl_mode2;
5863         u32 i, led;
5864
5865         DEBUGFUNC("e1000_led_on_pchlan");
5866
5867         /* If no link, then turn LED on by setting the invert bit
5868          * for each LED that's mode is "link_up" in ledctl_mode2.
5869          */
5870         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5871                 for (i = 0; i < 3; i++) {
5872                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5873                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
5874                             E1000_LEDCTL_MODE_LINK_UP)
5875                                 continue;
5876                         if (led & E1000_PHY_LED0_IVRT)
5877                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5878                         else
5879                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5880                 }
5881         }
5882
5883         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5884 }
5885
5886 /**
5887  *  e1000_led_off_pchlan - Turn LEDs off
5888  *  @hw: pointer to the HW structure
5889  *
5890  *  Turn off the LEDs.
5891  **/
5892 STATIC s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5893 {
5894         u16 data = (u16)hw->mac.ledctl_mode1;
5895         u32 i, led;
5896
5897         DEBUGFUNC("e1000_led_off_pchlan");
5898
5899         /* If no link, then turn LED off by clearing the invert bit
5900          * for each LED that's mode is "link_up" in ledctl_mode1.
5901          */
5902         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
5903                 for (i = 0; i < 3; i++) {
5904                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5905                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
5906                             E1000_LEDCTL_MODE_LINK_UP)
5907                                 continue;
5908                         if (led & E1000_PHY_LED0_IVRT)
5909                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5910                         else
5911                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5912                 }
5913         }
5914
5915         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
5916 }
5917
5918 /**
5919  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5920  *  @hw: pointer to the HW structure
5921  *
5922  *  Read appropriate register for the config done bit for completion status
5923  *  and configure the PHY through s/w for EEPROM-less parts.
5924  *
5925  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5926  *  config done bit, so only an error is logged and continues.  If we were
5927  *  to return with error, EEPROM-less silicon would not be able to be reset
5928  *  or change link.
5929  **/
5930 STATIC s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5931 {
5932         s32 ret_val = E1000_SUCCESS;
5933         u32 bank = 0;
5934         u32 status;
5935
5936         DEBUGFUNC("e1000_get_cfg_done_ich8lan");
5937
5938         e1000_get_cfg_done_generic(hw);
5939
5940         /* Wait for indication from h/w that it has completed basic config */
5941         if (hw->mac.type >= e1000_ich10lan) {
5942                 e1000_lan_init_done_ich8lan(hw);
5943         } else {
5944                 ret_val = e1000_get_auto_rd_done_generic(hw);
5945                 if (ret_val) {
5946                         /* When auto config read does not complete, do not
5947                          * return with an error. This can happen in situations
5948                          * where there is no eeprom and prevents getting link.
5949                          */
5950                         DEBUGOUT("Auto Read Done did not complete\n");
5951                         ret_val = E1000_SUCCESS;
5952                 }
5953         }
5954
5955         /* Clear PHY Reset Asserted bit */
5956         status = E1000_READ_REG(hw, E1000_STATUS);
5957         if (status & E1000_STATUS_PHYRA)
5958                 E1000_WRITE_REG(hw, E1000_STATUS, status & ~E1000_STATUS_PHYRA);
5959         else
5960                 DEBUGOUT("PHY Reset Asserted not set - needs delay\n");
5961
5962         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5963         if (hw->mac.type <= e1000_ich9lan) {
5964                 if (!(E1000_READ_REG(hw, E1000_EECD) & E1000_EECD_PRES) &&
5965                     (hw->phy.type == e1000_phy_igp_3)) {
5966                         e1000_phy_init_script_igp3(hw);
5967                 }
5968         } else {
5969                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5970                         /* Maybe we should do a basic PHY config */
5971                         DEBUGOUT("EEPROM not present\n");
5972                         ret_val = -E1000_ERR_CONFIG;
5973                 }
5974         }
5975
5976         return ret_val;
5977 }
5978
5979 /**
5980  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5981  * @hw: pointer to the HW structure
5982  *
5983  * In the case of a PHY power down to save power, or to turn off link during a
5984  * driver unload, or wake on lan is not enabled, remove the link.
5985  **/
5986 STATIC void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5987 {
5988         /* If the management interface is not enabled, then power down */
5989         if (!(hw->mac.ops.check_mng_mode(hw) ||
5990               hw->phy.ops.check_reset_block(hw)))
5991                 e1000_power_down_phy_copper(hw);
5992
5993         return;
5994 }
5995
5996 /**
5997  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5998  *  @hw: pointer to the HW structure
5999  *
6000  *  Clears hardware counters specific to the silicon family and calls
6001  *  clear_hw_cntrs_generic to clear all general purpose counters.
6002  **/
6003 STATIC void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
6004 {
6005         u16 phy_data;
6006         s32 ret_val;
6007
6008         DEBUGFUNC("e1000_clear_hw_cntrs_ich8lan");
6009
6010         e1000_clear_hw_cntrs_base_generic(hw);
6011
6012         E1000_READ_REG(hw, E1000_ALGNERRC);
6013         E1000_READ_REG(hw, E1000_RXERRC);
6014         E1000_READ_REG(hw, E1000_TNCRS);
6015         E1000_READ_REG(hw, E1000_CEXTERR);
6016         E1000_READ_REG(hw, E1000_TSCTC);
6017         E1000_READ_REG(hw, E1000_TSCTFC);
6018
6019         E1000_READ_REG(hw, E1000_MGTPRC);
6020         E1000_READ_REG(hw, E1000_MGTPDC);
6021         E1000_READ_REG(hw, E1000_MGTPTC);
6022
6023         E1000_READ_REG(hw, E1000_IAC);
6024         E1000_READ_REG(hw, E1000_ICRXOC);
6025
6026         /* Clear PHY statistics registers */
6027         if ((hw->phy.type == e1000_phy_82578) ||
6028             (hw->phy.type == e1000_phy_82579) ||
6029             (hw->phy.type == e1000_phy_i217) ||
6030             (hw->phy.type == e1000_phy_82577)) {
6031                 ret_val = hw->phy.ops.acquire(hw);
6032                 if (ret_val)
6033                         return;
6034                 ret_val = hw->phy.ops.set_page(hw,
6035                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
6036                 if (ret_val)
6037                         goto release;
6038                 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
6039                 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
6040                 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
6041                 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
6042                 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
6043                 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
6044                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
6045                 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
6046                 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
6047                 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
6048                 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
6049                 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
6050                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
6051                 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
6052 release:
6053                 hw->phy.ops.release(hw);
6054         }
6055 }
6056
6057 /**
6058  *  e1000_configure_k0s_lpt - Configure K0s power state
6059  *  @hw: pointer to the HW structure
6060  *  @entry_latency: Tx idle period for entering K0s - valid values are 0 to 3.
6061  *      0 corresponds to 128ns, each value over 0 doubles the duration.
6062  *  @min_time: Minimum Tx idle period allowed  - valid values are 0 to 4.
6063  *      0 corresponds to 128ns, each value over 0 doubles the duration.
6064  *
6065  *  Configure the K1 power state based on the provided parameter.
6066  *  Assumes semaphore already acquired.
6067  *
6068  *  Success returns 0, Failure returns:
6069  *      -E1000_ERR_PHY (-2) in case of access error
6070  *      -E1000_ERR_PARAM (-4) in case of parameters error
6071  **/
6072 s32 e1000_configure_k0s_lpt(struct e1000_hw *hw, u8 entry_latency, u8 min_time)
6073 {
6074         s32 ret_val;
6075         u16 kmrn_reg = 0;
6076
6077         DEBUGFUNC("e1000_configure_k0s_lpt");
6078
6079         if (entry_latency > 3 || min_time > 4)
6080                 return -E1000_ERR_PARAM;
6081
6082         ret_val = e1000_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K0S_CTRL,
6083                                              &kmrn_reg);
6084         if (ret_val)
6085                 return ret_val;
6086
6087         /* for now don't touch the latency */
6088         kmrn_reg &= ~(E1000_KMRNCTRLSTA_K0S_CTRL_MIN_TIME_MASK);
6089         kmrn_reg |= ((min_time << E1000_KMRNCTRLSTA_K0S_CTRL_MIN_TIME_SHIFT));
6090
6091         ret_val = e1000_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K0S_CTRL,
6092                                               kmrn_reg);
6093         if (ret_val)
6094                 return ret_val;
6095
6096         return E1000_SUCCESS;
6097 }