4 * Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 #include <sys/queue.h>
40 #include <rte_common.h>
41 #include <rte_interrupts.h>
42 #include <rte_byteorder.h>
44 #include <rte_debug.h>
46 #include <rte_ether.h>
47 #include <rte_ethdev.h>
48 #include <rte_memory.h>
49 #include <rte_memzone.h>
51 #include <rte_atomic.h>
52 #include <rte_malloc.h>
55 #include "e1000_logs.h"
56 #include "base/e1000_api.h"
57 #include "e1000_ethdev.h"
59 #define EM_EIAC 0x000DC
61 #define PMD_ROUNDUP(x,y) (((x) + (y) - 1)/(y) * (y))
64 static int eth_em_configure(struct rte_eth_dev *dev);
65 static int eth_em_start(struct rte_eth_dev *dev);
66 static void eth_em_stop(struct rte_eth_dev *dev);
67 static void eth_em_close(struct rte_eth_dev *dev);
68 static void eth_em_promiscuous_enable(struct rte_eth_dev *dev);
69 static void eth_em_promiscuous_disable(struct rte_eth_dev *dev);
70 static void eth_em_allmulticast_enable(struct rte_eth_dev *dev);
71 static void eth_em_allmulticast_disable(struct rte_eth_dev *dev);
72 static int eth_em_link_update(struct rte_eth_dev *dev,
73 int wait_to_complete);
74 static void eth_em_stats_get(struct rte_eth_dev *dev,
75 struct rte_eth_stats *rte_stats);
76 static void eth_em_stats_reset(struct rte_eth_dev *dev);
77 static void eth_em_infos_get(struct rte_eth_dev *dev,
78 struct rte_eth_dev_info *dev_info);
79 static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev,
80 struct rte_eth_fc_conf *fc_conf);
81 static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
82 struct rte_eth_fc_conf *fc_conf);
83 static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
84 static int eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev);
85 static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
86 static int eth_em_interrupt_action(struct rte_eth_dev *dev);
87 static void eth_em_interrupt_handler(struct rte_intr_handle *handle,
90 static int em_hw_init(struct e1000_hw *hw);
91 static int em_hardware_init(struct e1000_hw *hw);
92 static void em_hw_control_acquire(struct e1000_hw *hw);
93 static void em_hw_control_release(struct e1000_hw *hw);
94 static void em_init_manageability(struct e1000_hw *hw);
95 static void em_release_manageability(struct e1000_hw *hw);
97 static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
99 static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
100 uint16_t vlan_id, int on);
101 static void eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
102 static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
103 static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
104 static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
105 static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
108 static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
109 uint16_t vlan_id, int on);
112 static int eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id);
113 static int eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id);
114 static void em_lsc_intr_disable(struct e1000_hw *hw);
115 static void em_rxq_intr_enable(struct e1000_hw *hw);
116 static void em_rxq_intr_disable(struct e1000_hw *hw);
118 static int eth_em_led_on(struct rte_eth_dev *dev);
119 static int eth_em_led_off(struct rte_eth_dev *dev);
121 static int em_get_rx_buffer_size(struct e1000_hw *hw);
122 static void eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
123 uint32_t index, uint32_t pool);
124 static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
126 static int eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
127 struct ether_addr *mc_addr_set,
128 uint32_t nb_mc_addr);
130 #define EM_FC_PAUSE_TIME 0x0680
131 #define EM_LINK_UPDATE_CHECK_TIMEOUT 90 /* 9s */
132 #define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
134 static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
137 * The set of PCI devices this driver supports
139 static const struct rte_pci_id pci_id_em_map[] = {
141 #define RTE_PCI_DEV_ID_DECL_EM(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
142 #include "rte_pci_dev_ids.h"
147 static const struct eth_dev_ops eth_em_ops = {
148 .dev_configure = eth_em_configure,
149 .dev_start = eth_em_start,
150 .dev_stop = eth_em_stop,
151 .dev_close = eth_em_close,
152 .promiscuous_enable = eth_em_promiscuous_enable,
153 .promiscuous_disable = eth_em_promiscuous_disable,
154 .allmulticast_enable = eth_em_allmulticast_enable,
155 .allmulticast_disable = eth_em_allmulticast_disable,
156 .link_update = eth_em_link_update,
157 .stats_get = eth_em_stats_get,
158 .stats_reset = eth_em_stats_reset,
159 .dev_infos_get = eth_em_infos_get,
160 .mtu_set = eth_em_mtu_set,
161 .vlan_filter_set = eth_em_vlan_filter_set,
162 .vlan_offload_set = eth_em_vlan_offload_set,
163 .rx_queue_setup = eth_em_rx_queue_setup,
164 .rx_queue_release = eth_em_rx_queue_release,
165 .rx_queue_count = eth_em_rx_queue_count,
166 .rx_descriptor_done = eth_em_rx_descriptor_done,
167 .tx_queue_setup = eth_em_tx_queue_setup,
168 .tx_queue_release = eth_em_tx_queue_release,
169 .rx_queue_intr_enable = eth_em_rx_queue_intr_enable,
170 .rx_queue_intr_disable = eth_em_rx_queue_intr_disable,
171 .dev_led_on = eth_em_led_on,
172 .dev_led_off = eth_em_led_off,
173 .flow_ctrl_get = eth_em_flow_ctrl_get,
174 .flow_ctrl_set = eth_em_flow_ctrl_set,
175 .mac_addr_add = eth_em_rar_set,
176 .mac_addr_remove = eth_em_rar_clear,
177 .set_mc_addr_list = eth_em_set_mc_addr_list,
178 .rxq_info_get = em_rxq_info_get,
179 .txq_info_get = em_txq_info_get,
183 * Atomically reads the link status information from global
184 * structure rte_eth_dev.
187 * - Pointer to the structure rte_eth_dev to read from.
188 * - Pointer to the buffer to be saved with the link status.
191 * - On success, zero.
192 * - On failure, negative value.
195 rte_em_dev_atomic_read_link_status(struct rte_eth_dev *dev,
196 struct rte_eth_link *link)
198 struct rte_eth_link *dst = link;
199 struct rte_eth_link *src = &(dev->data->dev_link);
201 if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
202 *(uint64_t *)src) == 0)
209 * Atomically writes the link status information into global
210 * structure rte_eth_dev.
213 * - Pointer to the structure rte_eth_dev to read from.
214 * - Pointer to the buffer to be saved with the link status.
217 * - On success, zero.
218 * - On failure, negative value.
221 rte_em_dev_atomic_write_link_status(struct rte_eth_dev *dev,
222 struct rte_eth_link *link)
224 struct rte_eth_link *dst = &(dev->data->dev_link);
225 struct rte_eth_link *src = link;
227 if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
228 *(uint64_t *)src) == 0)
235 eth_em_dev_init(struct rte_eth_dev *eth_dev)
237 struct rte_pci_device *pci_dev;
238 struct e1000_adapter *adapter =
239 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
240 struct e1000_hw *hw =
241 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
242 struct e1000_vfta * shadow_vfta =
243 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
245 pci_dev = eth_dev->pci_dev;
247 eth_dev->dev_ops = ð_em_ops;
248 eth_dev->rx_pkt_burst = (eth_rx_burst_t)ð_em_recv_pkts;
249 eth_dev->tx_pkt_burst = (eth_tx_burst_t)ð_em_xmit_pkts;
251 /* for secondary processes, we don't initialise any further as primary
252 * has already done this work. Only check we don't need a different
254 if (rte_eal_process_type() != RTE_PROC_PRIMARY){
255 if (eth_dev->data->scattered_rx)
256 eth_dev->rx_pkt_burst =
257 (eth_rx_burst_t)ð_em_recv_scattered_pkts;
261 rte_eth_copy_pci_info(eth_dev, pci_dev);
263 hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
264 hw->device_id = pci_dev->id.device_id;
265 adapter->stopped = 0;
267 /* For ICH8 support we'll need to map the flash memory BAR */
269 if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
270 em_hw_init(hw) != 0) {
271 PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
273 eth_dev->data->port_id, pci_dev->id.vendor_id,
274 pci_dev->id.device_id);
278 /* Allocate memory for storing MAC addresses */
279 eth_dev->data->mac_addrs = rte_zmalloc("e1000", ETHER_ADDR_LEN *
280 hw->mac.rar_entry_count, 0);
281 if (eth_dev->data->mac_addrs == NULL) {
282 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
283 "store MAC addresses",
284 ETHER_ADDR_LEN * hw->mac.rar_entry_count);
288 /* Copy the permanent MAC address */
289 ether_addr_copy((struct ether_addr *) hw->mac.addr,
290 eth_dev->data->mac_addrs);
292 /* initialize the vfta */
293 memset(shadow_vfta, 0, sizeof(*shadow_vfta));
295 PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
296 eth_dev->data->port_id, pci_dev->id.vendor_id,
297 pci_dev->id.device_id);
299 rte_intr_callback_register(&(pci_dev->intr_handle),
300 eth_em_interrupt_handler, (void *)eth_dev);
306 eth_em_dev_uninit(struct rte_eth_dev *eth_dev)
308 struct rte_pci_device *pci_dev;
309 struct e1000_adapter *adapter =
310 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
312 PMD_INIT_FUNC_TRACE();
314 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
317 pci_dev = eth_dev->pci_dev;
319 if (adapter->stopped == 0)
320 eth_em_close(eth_dev);
322 eth_dev->dev_ops = NULL;
323 eth_dev->rx_pkt_burst = NULL;
324 eth_dev->tx_pkt_burst = NULL;
326 rte_free(eth_dev->data->mac_addrs);
327 eth_dev->data->mac_addrs = NULL;
329 /* disable uio intr before callback unregister */
330 rte_intr_disable(&(pci_dev->intr_handle));
331 rte_intr_callback_unregister(&(pci_dev->intr_handle),
332 eth_em_interrupt_handler, (void *)eth_dev);
337 static struct eth_driver rte_em_pmd = {
339 .name = "rte_em_pmd",
340 .id_table = pci_id_em_map,
341 .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
342 RTE_PCI_DRV_DETACHABLE,
344 .eth_dev_init = eth_em_dev_init,
345 .eth_dev_uninit = eth_em_dev_uninit,
346 .dev_private_size = sizeof(struct e1000_adapter),
350 rte_em_pmd_init(const char *name __rte_unused, const char *params __rte_unused)
352 rte_eth_driver_register(&rte_em_pmd);
357 em_hw_init(struct e1000_hw *hw)
361 diag = hw->mac.ops.init_params(hw);
363 PMD_INIT_LOG(ERR, "MAC Initialization Error");
366 diag = hw->nvm.ops.init_params(hw);
368 PMD_INIT_LOG(ERR, "NVM Initialization Error");
371 diag = hw->phy.ops.init_params(hw);
373 PMD_INIT_LOG(ERR, "PHY Initialization Error");
376 (void) e1000_get_bus_info(hw);
379 hw->phy.autoneg_wait_to_complete = 0;
380 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
382 e1000_init_script_state_82541(hw, TRUE);
383 e1000_set_tbi_compatibility_82543(hw, TRUE);
386 if (hw->phy.media_type == e1000_media_type_copper) {
387 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
388 hw->phy.disable_polarity_correction = 0;
389 hw->phy.ms_type = e1000_ms_hw_default;
393 * Start from a known state, this is important in reading the nvm
398 /* Make sure we have a good EEPROM before we read from it */
399 if (e1000_validate_nvm_checksum(hw) < 0) {
401 * Some PCI-E parts fail the first check due to
402 * the link being in sleep state, call it again,
403 * if it fails a second time its a real issue.
405 diag = e1000_validate_nvm_checksum(hw);
407 PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
412 /* Read the permanent MAC address out of the EEPROM */
413 diag = e1000_read_mac_addr(hw);
415 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
419 /* Now initialize the hardware */
420 diag = em_hardware_init(hw);
422 PMD_INIT_LOG(ERR, "Hardware initialization failed");
426 hw->mac.get_link_status = 1;
428 /* Indicate SOL/IDER usage */
429 diag = e1000_check_reset_block(hw);
431 PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
437 em_hw_control_release(hw);
442 eth_em_configure(struct rte_eth_dev *dev)
444 struct e1000_interrupt *intr =
445 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
447 PMD_INIT_FUNC_TRACE();
448 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
449 PMD_INIT_FUNC_TRACE();
455 em_set_pba(struct e1000_hw *hw)
460 * Packet Buffer Allocation (PBA)
461 * Writing PBA sets the receive portion of the buffer
462 * the remainder is used for the transmit buffer.
463 * Devices before the 82547 had a Packet Buffer of 64K.
464 * After the 82547 the buffer was reduced to 40K.
466 switch (hw->mac.type) {
468 case e1000_82547_rev_2:
469 /* 82547: Total Packet Buffer is 40K */
470 pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
474 case e1000_80003es2lan:
475 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
477 case e1000_82573: /* 82573: Total Packet Buffer is 32K */
478 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
482 pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
496 pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
499 E1000_WRITE_REG(hw, E1000_PBA, pba);
503 eth_em_start(struct rte_eth_dev *dev)
505 struct e1000_adapter *adapter =
506 E1000_DEV_PRIVATE(dev->data->dev_private);
507 struct e1000_hw *hw =
508 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
509 struct rte_intr_handle *intr_handle = &dev->pci_dev->intr_handle;
511 uint32_t intr_vector = 0;
513 PMD_INIT_FUNC_TRACE();
517 e1000_power_up_phy(hw);
519 /* Set default PBA value */
522 /* Put the address into the Receive Address Array */
523 e1000_rar_set(hw, hw->mac.addr, 0);
526 * With the 82571 adapter, RAR[0] may be overwritten
527 * when the other port is reset, we make a duplicate
528 * in RAR[14] for that eventuality, this assures
529 * the interface continues to function.
531 if (hw->mac.type == e1000_82571) {
532 e1000_set_laa_state_82571(hw, TRUE);
533 e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
536 /* Initialize the hardware */
537 if (em_hardware_init(hw)) {
538 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
542 E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
544 /* Configure for OS presence */
545 em_init_manageability(hw);
547 if (dev->data->dev_conf.intr_conf.rxq != 0) {
548 intr_vector = dev->data->nb_rx_queues;
549 if (rte_intr_efd_enable(intr_handle, intr_vector))
553 if (rte_intr_dp_is_en(intr_handle)) {
554 intr_handle->intr_vec =
555 rte_zmalloc("intr_vec",
556 dev->data->nb_rx_queues * sizeof(int), 0);
557 if (intr_handle->intr_vec == NULL) {
558 PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
559 " intr_vec\n", dev->data->nb_rx_queues);
563 /* enable rx interrupt */
564 em_rxq_intr_enable(hw);
569 ret = eth_em_rx_init(dev);
571 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
572 em_dev_clear_queues(dev);
576 e1000_clear_hw_cntrs_base_generic(hw);
578 mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
579 ETH_VLAN_EXTEND_MASK;
580 eth_em_vlan_offload_set(dev, mask);
582 /* Set Interrupt Throttling Rate to maximum allowed value. */
583 E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
585 /* Setup link speed and duplex */
586 switch (dev->data->dev_conf.link_speed) {
587 case ETH_LINK_SPEED_AUTONEG:
588 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
589 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
590 else if (dev->data->dev_conf.link_duplex ==
591 ETH_LINK_HALF_DUPLEX)
592 hw->phy.autoneg_advertised = E1000_ALL_HALF_DUPLEX;
593 else if (dev->data->dev_conf.link_duplex ==
594 ETH_LINK_FULL_DUPLEX)
595 hw->phy.autoneg_advertised = E1000_ALL_FULL_DUPLEX;
597 goto error_invalid_config;
599 case ETH_LINK_SPEED_10:
600 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
601 hw->phy.autoneg_advertised = E1000_ALL_10_SPEED;
602 else if (dev->data->dev_conf.link_duplex ==
603 ETH_LINK_HALF_DUPLEX)
604 hw->phy.autoneg_advertised = ADVERTISE_10_HALF;
605 else if (dev->data->dev_conf.link_duplex ==
606 ETH_LINK_FULL_DUPLEX)
607 hw->phy.autoneg_advertised = ADVERTISE_10_FULL;
609 goto error_invalid_config;
611 case ETH_LINK_SPEED_100:
612 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
613 hw->phy.autoneg_advertised = E1000_ALL_100_SPEED;
614 else if (dev->data->dev_conf.link_duplex ==
615 ETH_LINK_HALF_DUPLEX)
616 hw->phy.autoneg_advertised = ADVERTISE_100_HALF;
617 else if (dev->data->dev_conf.link_duplex ==
618 ETH_LINK_FULL_DUPLEX)
619 hw->phy.autoneg_advertised = ADVERTISE_100_FULL;
621 goto error_invalid_config;
623 case ETH_LINK_SPEED_1000:
624 if ((dev->data->dev_conf.link_duplex ==
625 ETH_LINK_AUTONEG_DUPLEX) ||
626 (dev->data->dev_conf.link_duplex ==
627 ETH_LINK_FULL_DUPLEX))
628 hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
630 goto error_invalid_config;
632 case ETH_LINK_SPEED_10000:
634 goto error_invalid_config;
636 e1000_setup_link(hw);
638 if (rte_intr_allow_others(intr_handle)) {
639 /* check if lsc interrupt is enabled */
640 if (dev->data->dev_conf.intr_conf.lsc != 0)
641 ret = eth_em_interrupt_setup(dev);
643 PMD_INIT_LOG(ERR, "Unable to setup interrupts");
644 em_dev_clear_queues(dev);
648 rte_intr_callback_unregister(intr_handle,
649 eth_em_interrupt_handler,
651 if (dev->data->dev_conf.intr_conf.lsc != 0)
652 PMD_INIT_LOG(INFO, "lsc won't enable because of"
653 " no intr multiplex\n");
655 /* check if rxq interrupt is enabled */
656 if (dev->data->dev_conf.intr_conf.rxq != 0)
657 eth_em_rxq_interrupt_setup(dev);
659 rte_intr_enable(intr_handle);
661 adapter->stopped = 0;
663 PMD_INIT_LOG(DEBUG, "<<");
667 error_invalid_config:
668 PMD_INIT_LOG(ERR, "Invalid link_speed/link_duplex (%u/%u) for port %u",
669 dev->data->dev_conf.link_speed,
670 dev->data->dev_conf.link_duplex, dev->data->port_id);
671 em_dev_clear_queues(dev);
675 /*********************************************************************
677 * This routine disables all traffic on the adapter by issuing a
678 * global reset on the MAC.
680 **********************************************************************/
682 eth_em_stop(struct rte_eth_dev *dev)
684 struct rte_eth_link link;
685 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
686 struct rte_intr_handle *intr_handle = &dev->pci_dev->intr_handle;
688 em_rxq_intr_disable(hw);
689 em_lsc_intr_disable(hw);
692 if (hw->mac.type >= e1000_82544)
693 E1000_WRITE_REG(hw, E1000_WUC, 0);
695 /* Power down the phy. Needed to make the link go down */
696 e1000_power_down_phy(hw);
698 em_dev_clear_queues(dev);
700 /* clear the recorded link status */
701 memset(&link, 0, sizeof(link));
702 rte_em_dev_atomic_write_link_status(dev, &link);
704 if (!rte_intr_allow_others(intr_handle))
705 /* resume to the default handler */
706 rte_intr_callback_register(intr_handle,
707 eth_em_interrupt_handler,
710 /* Clean datapath event and queue/vec mapping */
711 rte_intr_efd_disable(intr_handle);
712 if (intr_handle->intr_vec != NULL) {
713 rte_free(intr_handle->intr_vec);
714 intr_handle->intr_vec = NULL;
719 eth_em_close(struct rte_eth_dev *dev)
721 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
722 struct e1000_adapter *adapter =
723 E1000_DEV_PRIVATE(dev->data->dev_private);
726 adapter->stopped = 1;
727 em_dev_free_queues(dev);
728 e1000_phy_hw_reset(hw);
729 em_release_manageability(hw);
730 em_hw_control_release(hw);
734 em_get_rx_buffer_size(struct e1000_hw *hw)
736 uint32_t rx_buf_size;
738 rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
742 /*********************************************************************
744 * Initialize the hardware
746 **********************************************************************/
748 em_hardware_init(struct e1000_hw *hw)
750 uint32_t rx_buf_size;
753 /* Issue a global reset */
756 /* Let the firmware know the OS is in control */
757 em_hw_control_acquire(hw);
760 * These parameters control the automatic generation (Tx) and
761 * response (Rx) to Ethernet PAUSE frames.
762 * - High water mark should allow for at least two standard size (1518)
763 * frames to be received after sending an XOFF.
764 * - Low water mark works best when it is very near the high water mark.
765 * This allows the receiver to restart by sending XON when it has
766 * drained a bit. Here we use an arbitrary value of 1500 which will
767 * restart after one full frame is pulled from the buffer. There
768 * could be several smaller frames in the buffer and if so they will
769 * not trigger the XON until their total number reduces the buffer
771 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
773 rx_buf_size = em_get_rx_buffer_size(hw);
775 hw->fc.high_water = rx_buf_size - PMD_ROUNDUP(ETHER_MAX_LEN * 2, 1024);
776 hw->fc.low_water = hw->fc.high_water - 1500;
778 if (hw->mac.type == e1000_80003es2lan)
779 hw->fc.pause_time = UINT16_MAX;
781 hw->fc.pause_time = EM_FC_PAUSE_TIME;
785 /* Set Flow control, use the tunable location if sane */
786 if (em_fc_setting <= e1000_fc_full)
787 hw->fc.requested_mode = em_fc_setting;
789 hw->fc.requested_mode = e1000_fc_none;
791 /* Workaround: no TX flow ctrl for PCH */
792 if (hw->mac.type == e1000_pchlan)
793 hw->fc.requested_mode = e1000_fc_rx_pause;
795 /* Override - settings for PCH2LAN, ya its magic :) */
796 if (hw->mac.type == e1000_pch2lan) {
797 hw->fc.high_water = 0x5C20;
798 hw->fc.low_water = 0x5048;
799 hw->fc.pause_time = 0x0650;
800 hw->fc.refresh_time = 0x0400;
803 diag = e1000_init_hw(hw);
806 e1000_check_for_link(hw);
810 /* This function is based on em_update_stats_counters() in e1000/if_em.c */
812 eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
814 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
815 struct e1000_hw_stats *stats =
816 E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
819 if(hw->phy.media_type == e1000_media_type_copper ||
820 (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
821 stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
822 stats->sec += E1000_READ_REG(hw, E1000_SEC);
825 stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
826 stats->mpc += E1000_READ_REG(hw, E1000_MPC);
827 stats->scc += E1000_READ_REG(hw, E1000_SCC);
828 stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
830 stats->mcc += E1000_READ_REG(hw, E1000_MCC);
831 stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
832 stats->colc += E1000_READ_REG(hw, E1000_COLC);
833 stats->dc += E1000_READ_REG(hw, E1000_DC);
834 stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
835 stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
836 stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
839 * For watchdog management we need to know if we have been
840 * paused during the last interval, so capture that here.
842 pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
843 stats->xoffrxc += pause_frames;
844 stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
845 stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
846 stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
847 stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
848 stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
849 stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
850 stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
851 stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
852 stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
853 stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
854 stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
855 stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
858 * For the 64-bit byte counters the low dword must be read first.
859 * Both registers clear on the read of the high dword.
862 stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
863 stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
864 stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
865 stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
867 stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
868 stats->ruc += E1000_READ_REG(hw, E1000_RUC);
869 stats->rfc += E1000_READ_REG(hw, E1000_RFC);
870 stats->roc += E1000_READ_REG(hw, E1000_ROC);
871 stats->rjc += E1000_READ_REG(hw, E1000_RJC);
873 stats->tor += E1000_READ_REG(hw, E1000_TORH);
874 stats->tot += E1000_READ_REG(hw, E1000_TOTH);
876 stats->tpr += E1000_READ_REG(hw, E1000_TPR);
877 stats->tpt += E1000_READ_REG(hw, E1000_TPT);
878 stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
879 stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
880 stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
881 stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
882 stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
883 stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
884 stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
885 stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
887 /* Interrupt Counts */
889 if (hw->mac.type >= e1000_82571) {
890 stats->iac += E1000_READ_REG(hw, E1000_IAC);
891 stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
892 stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
893 stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
894 stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
895 stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
896 stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
897 stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
898 stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
901 if (hw->mac.type >= e1000_82543) {
902 stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
903 stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
904 stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
905 stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
906 stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
907 stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
910 if (rte_stats == NULL)
914 rte_stats->imissed = stats->mpc;
915 rte_stats->ierrors = stats->crcerrs +
916 stats->rlec + stats->ruc + stats->roc +
918 stats->rxerrc + stats->algnerrc + stats->cexterr;
921 rte_stats->oerrors = stats->ecol + stats->latecol;
923 rte_stats->ipackets = stats->gprc;
924 rte_stats->opackets = stats->gptc;
925 rte_stats->ibytes = stats->gorc;
926 rte_stats->obytes = stats->gotc;
930 eth_em_stats_reset(struct rte_eth_dev *dev)
932 struct e1000_hw_stats *hw_stats =
933 E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
935 /* HW registers are cleared on read */
936 eth_em_stats_get(dev, NULL);
938 /* Reset software totals */
939 memset(hw_stats, 0, sizeof(*hw_stats));
943 eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
945 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
947 em_rxq_intr_enable(hw);
948 rte_intr_enable(&dev->pci_dev->intr_handle);
954 eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
956 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
958 em_rxq_intr_disable(hw);
964 em_get_max_pktlen(const struct e1000_hw *hw)
966 switch (hw->mac.type) {
973 case e1000_80003es2lan: /* 9K Jumbo Frame size */
978 /* Adapters that do not support jumbo frames */
980 return ETHER_MAX_LEN;
982 return MAX_JUMBO_FRAME_SIZE;
987 eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
989 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
991 dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
992 dev_info->max_rx_pktlen = em_get_max_pktlen(hw);
993 dev_info->max_mac_addrs = hw->mac.rar_entry_count;
996 * Starting with 631xESB hw supports 2 TX/RX queues per port.
997 * Unfortunatelly, all these nics have just one TX context.
998 * So we have few choises for TX:
999 * - Use just one TX queue.
1000 * - Allow cksum offload only for one TX queue.
1001 * - Don't allow TX cksum offload at all.
1002 * For now, option #1 was chosen.
1003 * To use second RX queue we have to use extended RX descriptor
1004 * (Multiple Receive Queues are mutually exclusive with UDP
1005 * fragmentation and are not supported when a legacy receive
1006 * descriptor format is used).
1007 * Which means separate RX routinies - as legacy nics (82540, 82545)
1008 * don't support extended RXD.
1009 * To avoid it we support just one RX queue for now (no RSS).
1012 dev_info->max_rx_queues = 1;
1013 dev_info->max_tx_queues = 1;
1015 dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
1016 .nb_max = E1000_MAX_RING_DESC,
1017 .nb_min = E1000_MIN_RING_DESC,
1018 .nb_align = EM_RXD_ALIGN,
1021 dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
1022 .nb_max = E1000_MAX_RING_DESC,
1023 .nb_min = E1000_MIN_RING_DESC,
1024 .nb_align = EM_TXD_ALIGN,
1028 /* return 0 means link status changed, -1 means not changed */
1030 eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
1032 struct e1000_hw *hw =
1033 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1034 struct rte_eth_link link, old;
1035 int link_check, count;
1038 hw->mac.get_link_status = 1;
1040 /* possible wait-to-complete in up to 9 seconds */
1041 for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
1042 /* Read the real link status */
1043 switch (hw->phy.media_type) {
1044 case e1000_media_type_copper:
1045 /* Do the work to read phy */
1046 e1000_check_for_link(hw);
1047 link_check = !hw->mac.get_link_status;
1050 case e1000_media_type_fiber:
1051 e1000_check_for_link(hw);
1052 link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1056 case e1000_media_type_internal_serdes:
1057 e1000_check_for_link(hw);
1058 link_check = hw->mac.serdes_has_link;
1064 if (link_check || wait_to_complete == 0)
1066 rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
1068 memset(&link, 0, sizeof(link));
1069 rte_em_dev_atomic_read_link_status(dev, &link);
1072 /* Now we check if a transition has happened */
1073 if (link_check && (link.link_status == 0)) {
1074 hw->mac.ops.get_link_up_info(hw, &link.link_speed,
1076 link.link_status = 1;
1077 } else if (!link_check && (link.link_status == 1)) {
1078 link.link_speed = 0;
1079 link.link_duplex = 0;
1080 link.link_status = 0;
1082 rte_em_dev_atomic_write_link_status(dev, &link);
1085 if (old.link_status == link.link_status)
1093 * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1094 * For ASF and Pass Through versions of f/w this means
1095 * that the driver is loaded. For AMT version type f/w
1096 * this means that the network i/f is open.
1099 em_hw_control_acquire(struct e1000_hw *hw)
1101 uint32_t ctrl_ext, swsm;
1103 /* Let firmware know the driver has taken over */
1104 if (hw->mac.type == e1000_82573) {
1105 swsm = E1000_READ_REG(hw, E1000_SWSM);
1106 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
1109 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1110 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1111 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1116 * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
1117 * For ASF and Pass Through versions of f/w this means that the
1118 * driver is no longer loaded. For AMT versions of the
1119 * f/w this means that the network i/f is closed.
1122 em_hw_control_release(struct e1000_hw *hw)
1124 uint32_t ctrl_ext, swsm;
1126 /* Let firmware taken over control of h/w */
1127 if (hw->mac.type == e1000_82573) {
1128 swsm = E1000_READ_REG(hw, E1000_SWSM);
1129 E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1131 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1132 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1133 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1138 * Bit of a misnomer, what this really means is
1139 * to enable OS management of the system... aka
1140 * to disable special hardware management features.
1143 em_init_manageability(struct e1000_hw *hw)
1145 if (e1000_enable_mng_pass_thru(hw)) {
1146 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
1147 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
1149 /* disable hardware interception of ARP */
1150 manc &= ~(E1000_MANC_ARP_EN);
1152 /* enable receiving management packets to the host */
1153 manc |= E1000_MANC_EN_MNG2HOST;
1154 manc2h |= 1 << 5; /* Mng Port 623 */
1155 manc2h |= 1 << 6; /* Mng Port 664 */
1156 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
1157 E1000_WRITE_REG(hw, E1000_MANC, manc);
1162 * Give control back to hardware management
1163 * controller if there is one.
1166 em_release_manageability(struct e1000_hw *hw)
1170 if (e1000_enable_mng_pass_thru(hw)) {
1171 manc = E1000_READ_REG(hw, E1000_MANC);
1173 /* re-enable hardware interception of ARP */
1174 manc |= E1000_MANC_ARP_EN;
1175 manc &= ~E1000_MANC_EN_MNG2HOST;
1177 E1000_WRITE_REG(hw, E1000_MANC, manc);
1182 eth_em_promiscuous_enable(struct rte_eth_dev *dev)
1184 struct e1000_hw *hw =
1185 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1188 rctl = E1000_READ_REG(hw, E1000_RCTL);
1189 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1190 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1194 eth_em_promiscuous_disable(struct rte_eth_dev *dev)
1196 struct e1000_hw *hw =
1197 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1200 rctl = E1000_READ_REG(hw, E1000_RCTL);
1201 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
1202 if (dev->data->all_multicast == 1)
1203 rctl |= E1000_RCTL_MPE;
1205 rctl &= (~E1000_RCTL_MPE);
1206 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1210 eth_em_allmulticast_enable(struct rte_eth_dev *dev)
1212 struct e1000_hw *hw =
1213 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1216 rctl = E1000_READ_REG(hw, E1000_RCTL);
1217 rctl |= E1000_RCTL_MPE;
1218 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1222 eth_em_allmulticast_disable(struct rte_eth_dev *dev)
1224 struct e1000_hw *hw =
1225 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1228 if (dev->data->promiscuous == 1)
1229 return; /* must remain in all_multicast mode */
1230 rctl = E1000_READ_REG(hw, E1000_RCTL);
1231 rctl &= (~E1000_RCTL_MPE);
1232 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1236 eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1238 struct e1000_hw *hw =
1239 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1240 struct e1000_vfta * shadow_vfta =
1241 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1246 vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
1247 E1000_VFTA_ENTRY_MASK);
1248 vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
1249 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
1254 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
1256 /* update local VFTA copy */
1257 shadow_vfta->vfta[vid_idx] = vfta;
1263 em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
1265 struct e1000_hw *hw =
1266 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1269 /* Filter Table Disable */
1270 reg = E1000_READ_REG(hw, E1000_RCTL);
1271 reg &= ~E1000_RCTL_CFIEN;
1272 reg &= ~E1000_RCTL_VFE;
1273 E1000_WRITE_REG(hw, E1000_RCTL, reg);
1277 em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1279 struct e1000_hw *hw =
1280 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1281 struct e1000_vfta * shadow_vfta =
1282 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1286 /* Filter Table Enable, CFI not used for packet acceptance */
1287 reg = E1000_READ_REG(hw, E1000_RCTL);
1288 reg &= ~E1000_RCTL_CFIEN;
1289 reg |= E1000_RCTL_VFE;
1290 E1000_WRITE_REG(hw, E1000_RCTL, reg);
1292 /* restore vfta from local copy */
1293 for (i = 0; i < IGB_VFTA_SIZE; i++)
1294 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
1298 em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
1300 struct e1000_hw *hw =
1301 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1304 /* VLAN Mode Disable */
1305 reg = E1000_READ_REG(hw, E1000_CTRL);
1306 reg &= ~E1000_CTRL_VME;
1307 E1000_WRITE_REG(hw, E1000_CTRL, reg);
1312 em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
1314 struct e1000_hw *hw =
1315 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1318 /* VLAN Mode Enable */
1319 reg = E1000_READ_REG(hw, E1000_CTRL);
1320 reg |= E1000_CTRL_VME;
1321 E1000_WRITE_REG(hw, E1000_CTRL, reg);
1325 eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1327 if(mask & ETH_VLAN_STRIP_MASK){
1328 if (dev->data->dev_conf.rxmode.hw_vlan_strip)
1329 em_vlan_hw_strip_enable(dev);
1331 em_vlan_hw_strip_disable(dev);
1334 if(mask & ETH_VLAN_FILTER_MASK){
1335 if (dev->data->dev_conf.rxmode.hw_vlan_filter)
1336 em_vlan_hw_filter_enable(dev);
1338 em_vlan_hw_filter_disable(dev);
1343 * It enables the interrupt mask and then enable the interrupt.
1346 * Pointer to struct rte_eth_dev.
1349 * - On success, zero.
1350 * - On failure, a negative value.
1353 eth_em_interrupt_setup(struct rte_eth_dev *dev)
1356 struct e1000_hw *hw =
1357 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1359 /* clear interrupt */
1360 E1000_READ_REG(hw, E1000_ICR);
1361 regval = E1000_READ_REG(hw, E1000_IMS);
1362 E1000_WRITE_REG(hw, E1000_IMS, regval | E1000_ICR_LSC);
1367 * It clears the interrupt causes and enables the interrupt.
1368 * It will be called once only during nic initialized.
1371 * Pointer to struct rte_eth_dev.
1374 * - On success, zero.
1375 * - On failure, a negative value.
1378 eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev)
1380 struct e1000_hw *hw =
1381 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1383 E1000_READ_REG(hw, E1000_ICR);
1384 em_rxq_intr_enable(hw);
1389 * It enable receive packet interrupt.
1391 * Pointer to struct e1000_hw
1396 em_rxq_intr_enable(struct e1000_hw *hw)
1398 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_RXT0);
1399 E1000_WRITE_FLUSH(hw);
1403 * It disabled lsc interrupt.
1405 * Pointer to struct e1000_hw
1410 em_lsc_intr_disable(struct e1000_hw *hw)
1412 E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_LSC);
1413 E1000_WRITE_FLUSH(hw);
1417 * It disabled receive packet interrupt.
1419 * Pointer to struct e1000_hw
1424 em_rxq_intr_disable(struct e1000_hw *hw)
1426 E1000_READ_REG(hw, E1000_ICR);
1427 E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
1428 E1000_WRITE_FLUSH(hw);
1432 * It reads ICR and gets interrupt causes, check it and set a bit flag
1433 * to update link status.
1436 * Pointer to struct rte_eth_dev.
1439 * - On success, zero.
1440 * - On failure, a negative value.
1443 eth_em_interrupt_get_status(struct rte_eth_dev *dev)
1446 struct e1000_hw *hw =
1447 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1448 struct e1000_interrupt *intr =
1449 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1451 /* read-on-clear nic registers here */
1452 icr = E1000_READ_REG(hw, E1000_ICR);
1453 if (icr & E1000_ICR_LSC) {
1454 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1461 * It executes link_update after knowing an interrupt is prsent.
1464 * Pointer to struct rte_eth_dev.
1467 * - On success, zero.
1468 * - On failure, a negative value.
1471 eth_em_interrupt_action(struct rte_eth_dev *dev)
1473 struct e1000_hw *hw =
1474 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1475 struct e1000_interrupt *intr =
1476 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1477 uint32_t tctl, rctl;
1478 struct rte_eth_link link;
1481 if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
1484 intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
1485 rte_intr_enable(&(dev->pci_dev->intr_handle));
1487 /* set get_link_status to check register later */
1488 hw->mac.get_link_status = 1;
1489 ret = eth_em_link_update(dev, 0);
1491 /* check if link has changed */
1495 memset(&link, 0, sizeof(link));
1496 rte_em_dev_atomic_read_link_status(dev, &link);
1497 if (link.link_status) {
1498 PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s",
1499 dev->data->port_id, (unsigned)link.link_speed,
1500 link.link_duplex == ETH_LINK_FULL_DUPLEX ?
1501 "full-duplex" : "half-duplex");
1503 PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id);
1505 PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
1506 dev->pci_dev->addr.domain, dev->pci_dev->addr.bus,
1507 dev->pci_dev->addr.devid, dev->pci_dev->addr.function);
1509 tctl = E1000_READ_REG(hw, E1000_TCTL);
1510 rctl = E1000_READ_REG(hw, E1000_RCTL);
1511 if (link.link_status) {
1513 tctl |= E1000_TCTL_EN;
1514 rctl |= E1000_RCTL_EN;
1517 tctl &= ~E1000_TCTL_EN;
1518 rctl &= ~E1000_RCTL_EN;
1520 E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1521 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1522 E1000_WRITE_FLUSH(hw);
1528 * Interrupt handler which shall be registered at first.
1531 * Pointer to interrupt handle.
1533 * The address of parameter (struct rte_eth_dev *) regsitered before.
1539 eth_em_interrupt_handler(__rte_unused struct rte_intr_handle *handle,
1542 struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1544 eth_em_interrupt_get_status(dev);
1545 eth_em_interrupt_action(dev);
1546 _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC);
1550 eth_em_led_on(struct rte_eth_dev *dev)
1552 struct e1000_hw *hw;
1554 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1555 return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1559 eth_em_led_off(struct rte_eth_dev *dev)
1561 struct e1000_hw *hw;
1563 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1564 return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1568 eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1570 struct e1000_hw *hw;
1575 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1576 fc_conf->pause_time = hw->fc.pause_time;
1577 fc_conf->high_water = hw->fc.high_water;
1578 fc_conf->low_water = hw->fc.low_water;
1579 fc_conf->send_xon = hw->fc.send_xon;
1580 fc_conf->autoneg = hw->mac.autoneg;
1583 * Return rx_pause and tx_pause status according to actual setting of
1584 * the TFCE and RFCE bits in the CTRL register.
1586 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1587 if (ctrl & E1000_CTRL_TFCE)
1592 if (ctrl & E1000_CTRL_RFCE)
1597 if (rx_pause && tx_pause)
1598 fc_conf->mode = RTE_FC_FULL;
1600 fc_conf->mode = RTE_FC_RX_PAUSE;
1602 fc_conf->mode = RTE_FC_TX_PAUSE;
1604 fc_conf->mode = RTE_FC_NONE;
1610 eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1612 struct e1000_hw *hw;
1614 enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
1620 uint32_t rx_buf_size;
1621 uint32_t max_high_water;
1624 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1625 if (fc_conf->autoneg != hw->mac.autoneg)
1627 rx_buf_size = em_get_rx_buffer_size(hw);
1628 PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
1630 /* At least reserve one Ethernet frame for watermark */
1631 max_high_water = rx_buf_size - ETHER_MAX_LEN;
1632 if ((fc_conf->high_water > max_high_water) ||
1633 (fc_conf->high_water < fc_conf->low_water)) {
1634 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
1635 PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
1639 hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
1640 hw->fc.pause_time = fc_conf->pause_time;
1641 hw->fc.high_water = fc_conf->high_water;
1642 hw->fc.low_water = fc_conf->low_water;
1643 hw->fc.send_xon = fc_conf->send_xon;
1645 err = e1000_setup_link_generic(hw);
1646 if (err == E1000_SUCCESS) {
1648 /* check if we want to forward MAC frames - driver doesn't have native
1649 * capability to do that, so we'll write the registers ourselves */
1651 rctl = E1000_READ_REG(hw, E1000_RCTL);
1653 /* set or clear MFLCN.PMCF bit depending on configuration */
1654 if (fc_conf->mac_ctrl_frame_fwd != 0)
1655 rctl |= E1000_RCTL_PMCF;
1657 rctl &= ~E1000_RCTL_PMCF;
1659 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1660 E1000_WRITE_FLUSH(hw);
1665 PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
1670 eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
1671 uint32_t index, __rte_unused uint32_t pool)
1673 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1675 e1000_rar_set(hw, mac_addr->addr_bytes, index);
1679 eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
1681 uint8_t addr[ETHER_ADDR_LEN];
1682 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1684 memset(addr, 0, sizeof(addr));
1686 e1000_rar_set(hw, addr, index);
1690 eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1692 struct rte_eth_dev_info dev_info;
1693 struct e1000_hw *hw;
1694 uint32_t frame_size;
1697 eth_em_infos_get(dev, &dev_info);
1698 frame_size = mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE;
1700 /* check that mtu is within the allowed range */
1701 if ((mtu < ETHER_MIN_MTU) || (frame_size > dev_info.max_rx_pktlen))
1704 /* refuse mtu that requires the support of scattered packets when this
1705 * feature has not been enabled before. */
1706 if (!dev->data->scattered_rx &&
1707 frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
1710 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1711 rctl = E1000_READ_REG(hw, E1000_RCTL);
1713 /* switch to jumbo mode if needed */
1714 if (frame_size > ETHER_MAX_LEN) {
1715 dev->data->dev_conf.rxmode.jumbo_frame = 1;
1716 rctl |= E1000_RCTL_LPE;
1718 dev->data->dev_conf.rxmode.jumbo_frame = 0;
1719 rctl &= ~E1000_RCTL_LPE;
1721 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1723 /* update max frame size */
1724 dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
1729 eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
1730 struct ether_addr *mc_addr_set,
1731 uint32_t nb_mc_addr)
1733 struct e1000_hw *hw;
1735 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1736 e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
1740 struct rte_driver em_pmd_drv = {
1742 .init = rte_em_pmd_init,
1745 PMD_REGISTER_DRIVER(em_pmd_drv);