4 * Copyright(c) 2010-2015 Intel Corporation. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * * Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in
15 * the documentation and/or other materials provided with the
17 * * Neither the name of Intel Corporation nor the names of its
18 * contributors may be used to endorse or promote products derived
19 * from this software without specific prior written permission.
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 #include <sys/queue.h>
40 #include <rte_common.h>
41 #include <rte_interrupts.h>
42 #include <rte_byteorder.h>
44 #include <rte_debug.h>
46 #include <rte_ether.h>
47 #include <rte_ethdev.h>
48 #include <rte_memory.h>
49 #include <rte_memzone.h>
51 #include <rte_atomic.h>
52 #include <rte_malloc.h>
55 #include "e1000_logs.h"
56 #include "base/e1000_api.h"
57 #include "e1000_ethdev.h"
59 #define EM_EIAC 0x000DC
61 #define PMD_ROUNDUP(x,y) (((x) + (y) - 1)/(y) * (y))
64 static int eth_em_configure(struct rte_eth_dev *dev);
65 static int eth_em_start(struct rte_eth_dev *dev);
66 static void eth_em_stop(struct rte_eth_dev *dev);
67 static void eth_em_close(struct rte_eth_dev *dev);
68 static void eth_em_promiscuous_enable(struct rte_eth_dev *dev);
69 static void eth_em_promiscuous_disable(struct rte_eth_dev *dev);
70 static void eth_em_allmulticast_enable(struct rte_eth_dev *dev);
71 static void eth_em_allmulticast_disable(struct rte_eth_dev *dev);
72 static int eth_em_link_update(struct rte_eth_dev *dev,
73 int wait_to_complete);
74 static void eth_em_stats_get(struct rte_eth_dev *dev,
75 struct rte_eth_stats *rte_stats);
76 static void eth_em_stats_reset(struct rte_eth_dev *dev);
77 static void eth_em_infos_get(struct rte_eth_dev *dev,
78 struct rte_eth_dev_info *dev_info);
79 static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev,
80 struct rte_eth_fc_conf *fc_conf);
81 static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
82 struct rte_eth_fc_conf *fc_conf);
83 static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
84 static int eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev);
85 static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
86 static int eth_em_interrupt_action(struct rte_eth_dev *dev);
87 static void eth_em_interrupt_handler(struct rte_intr_handle *handle,
90 static int em_hw_init(struct e1000_hw *hw);
91 static int em_hardware_init(struct e1000_hw *hw);
92 static void em_hw_control_acquire(struct e1000_hw *hw);
93 static void em_hw_control_release(struct e1000_hw *hw);
94 static void em_init_manageability(struct e1000_hw *hw);
95 static void em_release_manageability(struct e1000_hw *hw);
97 static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
99 static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
100 uint16_t vlan_id, int on);
101 static void eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
102 static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
103 static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
104 static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
105 static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
108 static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
109 uint16_t vlan_id, int on);
112 static int eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id);
113 static int eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id);
114 static void em_lsc_intr_disable(struct e1000_hw *hw);
115 static void em_rxq_intr_enable(struct e1000_hw *hw);
116 static void em_rxq_intr_disable(struct e1000_hw *hw);
118 static int eth_em_led_on(struct rte_eth_dev *dev);
119 static int eth_em_led_off(struct rte_eth_dev *dev);
121 static int em_get_rx_buffer_size(struct e1000_hw *hw);
122 static void eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
123 uint32_t index, uint32_t pool);
124 static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
126 static int eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
127 struct ether_addr *mc_addr_set,
128 uint32_t nb_mc_addr);
130 #define EM_FC_PAUSE_TIME 0x0680
131 #define EM_LINK_UPDATE_CHECK_TIMEOUT 90 /* 9s */
132 #define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
134 static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
137 * The set of PCI devices this driver supports
139 static const struct rte_pci_id pci_id_em_map[] = {
141 #define RTE_PCI_DEV_ID_DECL_EM(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
142 #include "rte_pci_dev_ids.h"
147 static const struct eth_dev_ops eth_em_ops = {
148 .dev_configure = eth_em_configure,
149 .dev_start = eth_em_start,
150 .dev_stop = eth_em_stop,
151 .dev_close = eth_em_close,
152 .promiscuous_enable = eth_em_promiscuous_enable,
153 .promiscuous_disable = eth_em_promiscuous_disable,
154 .allmulticast_enable = eth_em_allmulticast_enable,
155 .allmulticast_disable = eth_em_allmulticast_disable,
156 .link_update = eth_em_link_update,
157 .stats_get = eth_em_stats_get,
158 .stats_reset = eth_em_stats_reset,
159 .dev_infos_get = eth_em_infos_get,
160 .mtu_set = eth_em_mtu_set,
161 .vlan_filter_set = eth_em_vlan_filter_set,
162 .vlan_offload_set = eth_em_vlan_offload_set,
163 .rx_queue_setup = eth_em_rx_queue_setup,
164 .rx_queue_release = eth_em_rx_queue_release,
165 .rx_queue_count = eth_em_rx_queue_count,
166 .rx_descriptor_done = eth_em_rx_descriptor_done,
167 .tx_queue_setup = eth_em_tx_queue_setup,
168 .tx_queue_release = eth_em_tx_queue_release,
169 .rx_queue_intr_enable = eth_em_rx_queue_intr_enable,
170 .rx_queue_intr_disable = eth_em_rx_queue_intr_disable,
171 .dev_led_on = eth_em_led_on,
172 .dev_led_off = eth_em_led_off,
173 .flow_ctrl_get = eth_em_flow_ctrl_get,
174 .flow_ctrl_set = eth_em_flow_ctrl_set,
175 .mac_addr_add = eth_em_rar_set,
176 .mac_addr_remove = eth_em_rar_clear,
177 .set_mc_addr_list = eth_em_set_mc_addr_list,
181 * Atomically reads the link status information from global
182 * structure rte_eth_dev.
185 * - Pointer to the structure rte_eth_dev to read from.
186 * - Pointer to the buffer to be saved with the link status.
189 * - On success, zero.
190 * - On failure, negative value.
193 rte_em_dev_atomic_read_link_status(struct rte_eth_dev *dev,
194 struct rte_eth_link *link)
196 struct rte_eth_link *dst = link;
197 struct rte_eth_link *src = &(dev->data->dev_link);
199 if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
200 *(uint64_t *)src) == 0)
207 * Atomically writes the link status information into global
208 * structure rte_eth_dev.
211 * - Pointer to the structure rte_eth_dev to read from.
212 * - Pointer to the buffer to be saved with the link status.
215 * - On success, zero.
216 * - On failure, negative value.
219 rte_em_dev_atomic_write_link_status(struct rte_eth_dev *dev,
220 struct rte_eth_link *link)
222 struct rte_eth_link *dst = &(dev->data->dev_link);
223 struct rte_eth_link *src = link;
225 if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
226 *(uint64_t *)src) == 0)
233 eth_em_dev_init(struct rte_eth_dev *eth_dev)
235 struct rte_pci_device *pci_dev;
236 struct e1000_adapter *adapter =
237 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
238 struct e1000_hw *hw =
239 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
240 struct e1000_vfta * shadow_vfta =
241 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
243 pci_dev = eth_dev->pci_dev;
244 eth_dev->dev_ops = ð_em_ops;
245 eth_dev->rx_pkt_burst = (eth_rx_burst_t)ð_em_recv_pkts;
246 eth_dev->tx_pkt_burst = (eth_tx_burst_t)ð_em_xmit_pkts;
248 /* for secondary processes, we don't initialise any further as primary
249 * has already done this work. Only check we don't need a different
251 if (rte_eal_process_type() != RTE_PROC_PRIMARY){
252 if (eth_dev->data->scattered_rx)
253 eth_dev->rx_pkt_burst =
254 (eth_rx_burst_t)ð_em_recv_scattered_pkts;
258 hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
259 hw->device_id = pci_dev->id.device_id;
260 adapter->stopped = 0;
262 /* For ICH8 support we'll need to map the flash memory BAR */
264 if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
265 em_hw_init(hw) != 0) {
266 PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
268 eth_dev->data->port_id, pci_dev->id.vendor_id,
269 pci_dev->id.device_id);
273 /* Allocate memory for storing MAC addresses */
274 eth_dev->data->mac_addrs = rte_zmalloc("e1000", ETHER_ADDR_LEN *
275 hw->mac.rar_entry_count, 0);
276 if (eth_dev->data->mac_addrs == NULL) {
277 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
278 "store MAC addresses",
279 ETHER_ADDR_LEN * hw->mac.rar_entry_count);
283 /* Copy the permanent MAC address */
284 ether_addr_copy((struct ether_addr *) hw->mac.addr,
285 eth_dev->data->mac_addrs);
287 /* initialize the vfta */
288 memset(shadow_vfta, 0, sizeof(*shadow_vfta));
290 PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
291 eth_dev->data->port_id, pci_dev->id.vendor_id,
292 pci_dev->id.device_id);
294 rte_intr_callback_register(&(pci_dev->intr_handle),
295 eth_em_interrupt_handler, (void *)eth_dev);
301 eth_em_dev_uninit(struct rte_eth_dev *eth_dev)
303 struct rte_pci_device *pci_dev;
304 struct e1000_adapter *adapter =
305 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
307 PMD_INIT_FUNC_TRACE();
309 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
312 pci_dev = eth_dev->pci_dev;
314 if (adapter->stopped == 0)
315 eth_em_close(eth_dev);
317 eth_dev->dev_ops = NULL;
318 eth_dev->rx_pkt_burst = NULL;
319 eth_dev->tx_pkt_burst = NULL;
321 rte_free(eth_dev->data->mac_addrs);
322 eth_dev->data->mac_addrs = NULL;
324 /* disable uio intr before callback unregister */
325 rte_intr_disable(&(pci_dev->intr_handle));
326 rte_intr_callback_unregister(&(pci_dev->intr_handle),
327 eth_em_interrupt_handler, (void *)eth_dev);
332 static struct eth_driver rte_em_pmd = {
334 .name = "rte_em_pmd",
335 .id_table = pci_id_em_map,
336 .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
337 RTE_PCI_DRV_DETACHABLE,
339 .eth_dev_init = eth_em_dev_init,
340 .eth_dev_uninit = eth_em_dev_uninit,
341 .dev_private_size = sizeof(struct e1000_adapter),
345 rte_em_pmd_init(const char *name __rte_unused, const char *params __rte_unused)
347 rte_eth_driver_register(&rte_em_pmd);
352 em_hw_init(struct e1000_hw *hw)
356 diag = hw->mac.ops.init_params(hw);
358 PMD_INIT_LOG(ERR, "MAC Initialization Error");
361 diag = hw->nvm.ops.init_params(hw);
363 PMD_INIT_LOG(ERR, "NVM Initialization Error");
366 diag = hw->phy.ops.init_params(hw);
368 PMD_INIT_LOG(ERR, "PHY Initialization Error");
371 (void) e1000_get_bus_info(hw);
374 hw->phy.autoneg_wait_to_complete = 0;
375 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
377 e1000_init_script_state_82541(hw, TRUE);
378 e1000_set_tbi_compatibility_82543(hw, TRUE);
381 if (hw->phy.media_type == e1000_media_type_copper) {
382 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
383 hw->phy.disable_polarity_correction = 0;
384 hw->phy.ms_type = e1000_ms_hw_default;
388 * Start from a known state, this is important in reading the nvm
393 /* Make sure we have a good EEPROM before we read from it */
394 if (e1000_validate_nvm_checksum(hw) < 0) {
396 * Some PCI-E parts fail the first check due to
397 * the link being in sleep state, call it again,
398 * if it fails a second time its a real issue.
400 diag = e1000_validate_nvm_checksum(hw);
402 PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
407 /* Read the permanent MAC address out of the EEPROM */
408 diag = e1000_read_mac_addr(hw);
410 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
414 /* Now initialize the hardware */
415 diag = em_hardware_init(hw);
417 PMD_INIT_LOG(ERR, "Hardware initialization failed");
421 hw->mac.get_link_status = 1;
423 /* Indicate SOL/IDER usage */
424 diag = e1000_check_reset_block(hw);
426 PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
432 em_hw_control_release(hw);
437 eth_em_configure(struct rte_eth_dev *dev)
439 struct e1000_interrupt *intr =
440 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
442 PMD_INIT_FUNC_TRACE();
443 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
444 PMD_INIT_FUNC_TRACE();
450 em_set_pba(struct e1000_hw *hw)
455 * Packet Buffer Allocation (PBA)
456 * Writing PBA sets the receive portion of the buffer
457 * the remainder is used for the transmit buffer.
458 * Devices before the 82547 had a Packet Buffer of 64K.
459 * After the 82547 the buffer was reduced to 40K.
461 switch (hw->mac.type) {
463 case e1000_82547_rev_2:
464 /* 82547: Total Packet Buffer is 40K */
465 pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
469 case e1000_80003es2lan:
470 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
472 case e1000_82573: /* 82573: Total Packet Buffer is 32K */
473 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
477 pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
491 pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
494 E1000_WRITE_REG(hw, E1000_PBA, pba);
498 eth_em_start(struct rte_eth_dev *dev)
500 struct e1000_adapter *adapter =
501 E1000_DEV_PRIVATE(dev->data->dev_private);
502 struct e1000_hw *hw =
503 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
506 PMD_INIT_FUNC_TRACE();
510 e1000_power_up_phy(hw);
512 /* Set default PBA value */
515 /* Put the address into the Receive Address Array */
516 e1000_rar_set(hw, hw->mac.addr, 0);
519 * With the 82571 adapter, RAR[0] may be overwritten
520 * when the other port is reset, we make a duplicate
521 * in RAR[14] for that eventuality, this assures
522 * the interface continues to function.
524 if (hw->mac.type == e1000_82571) {
525 e1000_set_laa_state_82571(hw, TRUE);
526 e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
529 /* Initialize the hardware */
530 if (em_hardware_init(hw)) {
531 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
535 E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
537 /* Configure for OS presence */
538 em_init_manageability(hw);
542 ret = eth_em_rx_init(dev);
544 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
545 em_dev_clear_queues(dev);
549 e1000_clear_hw_cntrs_base_generic(hw);
551 mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
552 ETH_VLAN_EXTEND_MASK;
553 eth_em_vlan_offload_set(dev, mask);
555 /* Set Interrupt Throttling Rate to maximum allowed value. */
556 E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
558 /* Setup link speed and duplex */
559 switch (dev->data->dev_conf.link_speed) {
560 case ETH_LINK_SPEED_AUTONEG:
561 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
562 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
563 else if (dev->data->dev_conf.link_duplex ==
564 ETH_LINK_HALF_DUPLEX)
565 hw->phy.autoneg_advertised = E1000_ALL_HALF_DUPLEX;
566 else if (dev->data->dev_conf.link_duplex ==
567 ETH_LINK_FULL_DUPLEX)
568 hw->phy.autoneg_advertised = E1000_ALL_FULL_DUPLEX;
570 goto error_invalid_config;
572 case ETH_LINK_SPEED_10:
573 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
574 hw->phy.autoneg_advertised = E1000_ALL_10_SPEED;
575 else if (dev->data->dev_conf.link_duplex ==
576 ETH_LINK_HALF_DUPLEX)
577 hw->phy.autoneg_advertised = ADVERTISE_10_HALF;
578 else if (dev->data->dev_conf.link_duplex ==
579 ETH_LINK_FULL_DUPLEX)
580 hw->phy.autoneg_advertised = ADVERTISE_10_FULL;
582 goto error_invalid_config;
584 case ETH_LINK_SPEED_100:
585 if (dev->data->dev_conf.link_duplex == ETH_LINK_AUTONEG_DUPLEX)
586 hw->phy.autoneg_advertised = E1000_ALL_100_SPEED;
587 else if (dev->data->dev_conf.link_duplex ==
588 ETH_LINK_HALF_DUPLEX)
589 hw->phy.autoneg_advertised = ADVERTISE_100_HALF;
590 else if (dev->data->dev_conf.link_duplex ==
591 ETH_LINK_FULL_DUPLEX)
592 hw->phy.autoneg_advertised = ADVERTISE_100_FULL;
594 goto error_invalid_config;
596 case ETH_LINK_SPEED_1000:
597 if ((dev->data->dev_conf.link_duplex ==
598 ETH_LINK_AUTONEG_DUPLEX) ||
599 (dev->data->dev_conf.link_duplex ==
600 ETH_LINK_FULL_DUPLEX))
601 hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
603 goto error_invalid_config;
605 case ETH_LINK_SPEED_10000:
607 goto error_invalid_config;
609 e1000_setup_link(hw);
611 /* check if lsc interrupt feature is enabled */
612 if (dev->data->dev_conf.intr_conf.lsc != 0) {
613 ret = eth_em_interrupt_setup(dev);
615 PMD_INIT_LOG(ERR, "Unable to setup interrupts");
616 em_dev_clear_queues(dev);
620 /* check if rxq interrupt is enabled */
621 if (dev->data->dev_conf.intr_conf.rxq != 0)
622 eth_em_rxq_interrupt_setup(dev);
624 adapter->stopped = 0;
626 PMD_INIT_LOG(DEBUG, "<<");
630 error_invalid_config:
631 PMD_INIT_LOG(ERR, "Invalid link_speed/link_duplex (%u/%u) for port %u",
632 dev->data->dev_conf.link_speed,
633 dev->data->dev_conf.link_duplex, dev->data->port_id);
634 em_dev_clear_queues(dev);
638 /*********************************************************************
640 * This routine disables all traffic on the adapter by issuing a
641 * global reset on the MAC.
643 **********************************************************************/
645 eth_em_stop(struct rte_eth_dev *dev)
647 struct rte_eth_link link;
648 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
650 em_rxq_intr_disable(hw);
651 em_lsc_intr_disable(hw);
654 if (hw->mac.type >= e1000_82544)
655 E1000_WRITE_REG(hw, E1000_WUC, 0);
657 /* Power down the phy. Needed to make the link go down */
658 e1000_power_down_phy(hw);
660 em_dev_clear_queues(dev);
662 /* clear the recorded link status */
663 memset(&link, 0, sizeof(link));
664 rte_em_dev_atomic_write_link_status(dev, &link);
668 eth_em_close(struct rte_eth_dev *dev)
670 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
671 struct e1000_adapter *adapter =
672 E1000_DEV_PRIVATE(dev->data->dev_private);
675 adapter->stopped = 1;
676 em_dev_free_queues(dev);
677 e1000_phy_hw_reset(hw);
678 em_release_manageability(hw);
679 em_hw_control_release(hw);
683 em_get_rx_buffer_size(struct e1000_hw *hw)
685 uint32_t rx_buf_size;
687 rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
691 /*********************************************************************
693 * Initialize the hardware
695 **********************************************************************/
697 em_hardware_init(struct e1000_hw *hw)
699 uint32_t rx_buf_size;
702 /* Issue a global reset */
705 /* Let the firmware know the OS is in control */
706 em_hw_control_acquire(hw);
709 * These parameters control the automatic generation (Tx) and
710 * response (Rx) to Ethernet PAUSE frames.
711 * - High water mark should allow for at least two standard size (1518)
712 * frames to be received after sending an XOFF.
713 * - Low water mark works best when it is very near the high water mark.
714 * This allows the receiver to restart by sending XON when it has
715 * drained a bit. Here we use an arbitrary value of 1500 which will
716 * restart after one full frame is pulled from the buffer. There
717 * could be several smaller frames in the buffer and if so they will
718 * not trigger the XON until their total number reduces the buffer
720 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
722 rx_buf_size = em_get_rx_buffer_size(hw);
724 hw->fc.high_water = rx_buf_size - PMD_ROUNDUP(ETHER_MAX_LEN * 2, 1024);
725 hw->fc.low_water = hw->fc.high_water - 1500;
727 if (hw->mac.type == e1000_80003es2lan)
728 hw->fc.pause_time = UINT16_MAX;
730 hw->fc.pause_time = EM_FC_PAUSE_TIME;
734 /* Set Flow control, use the tunable location if sane */
735 if (em_fc_setting <= e1000_fc_full)
736 hw->fc.requested_mode = em_fc_setting;
738 hw->fc.requested_mode = e1000_fc_none;
740 /* Workaround: no TX flow ctrl for PCH */
741 if (hw->mac.type == e1000_pchlan)
742 hw->fc.requested_mode = e1000_fc_rx_pause;
744 /* Override - settings for PCH2LAN, ya its magic :) */
745 if (hw->mac.type == e1000_pch2lan) {
746 hw->fc.high_water = 0x5C20;
747 hw->fc.low_water = 0x5048;
748 hw->fc.pause_time = 0x0650;
749 hw->fc.refresh_time = 0x0400;
752 diag = e1000_init_hw(hw);
755 e1000_check_for_link(hw);
759 /* This function is based on em_update_stats_counters() in e1000/if_em.c */
761 eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
763 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
764 struct e1000_hw_stats *stats =
765 E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
768 if(hw->phy.media_type == e1000_media_type_copper ||
769 (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
770 stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
771 stats->sec += E1000_READ_REG(hw, E1000_SEC);
774 stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
775 stats->mpc += E1000_READ_REG(hw, E1000_MPC);
776 stats->scc += E1000_READ_REG(hw, E1000_SCC);
777 stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
779 stats->mcc += E1000_READ_REG(hw, E1000_MCC);
780 stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
781 stats->colc += E1000_READ_REG(hw, E1000_COLC);
782 stats->dc += E1000_READ_REG(hw, E1000_DC);
783 stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
784 stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
785 stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
788 * For watchdog management we need to know if we have been
789 * paused during the last interval, so capture that here.
791 pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
792 stats->xoffrxc += pause_frames;
793 stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
794 stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
795 stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
796 stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
797 stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
798 stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
799 stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
800 stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
801 stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
802 stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
803 stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
804 stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
807 * For the 64-bit byte counters the low dword must be read first.
808 * Both registers clear on the read of the high dword.
811 stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
812 stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
813 stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
814 stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
816 stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
817 stats->ruc += E1000_READ_REG(hw, E1000_RUC);
818 stats->rfc += E1000_READ_REG(hw, E1000_RFC);
819 stats->roc += E1000_READ_REG(hw, E1000_ROC);
820 stats->rjc += E1000_READ_REG(hw, E1000_RJC);
822 stats->tor += E1000_READ_REG(hw, E1000_TORH);
823 stats->tot += E1000_READ_REG(hw, E1000_TOTH);
825 stats->tpr += E1000_READ_REG(hw, E1000_TPR);
826 stats->tpt += E1000_READ_REG(hw, E1000_TPT);
827 stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
828 stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
829 stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
830 stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
831 stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
832 stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
833 stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
834 stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
836 /* Interrupt Counts */
838 if (hw->mac.type >= e1000_82571) {
839 stats->iac += E1000_READ_REG(hw, E1000_IAC);
840 stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
841 stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
842 stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
843 stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
844 stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
845 stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
846 stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
847 stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
850 if (hw->mac.type >= e1000_82543) {
851 stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
852 stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
853 stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
854 stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
855 stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
856 stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
859 if (rte_stats == NULL)
863 rte_stats->ibadcrc = stats->crcerrs;
864 rte_stats->ibadlen = stats->rlec + stats->ruc + stats->roc;
865 rte_stats->imissed = stats->mpc;
866 rte_stats->ierrors = rte_stats->ibadcrc +
869 stats->rxerrc + stats->algnerrc + stats->cexterr;
872 rte_stats->oerrors = stats->ecol + stats->latecol;
874 rte_stats->ipackets = stats->gprc;
875 rte_stats->opackets = stats->gptc;
876 rte_stats->ibytes = stats->gorc;
877 rte_stats->obytes = stats->gotc;
879 /* XON/XOFF pause frames stats registers */
880 rte_stats->tx_pause_xon = stats->xontxc;
881 rte_stats->rx_pause_xon = stats->xonrxc;
882 rte_stats->tx_pause_xoff = stats->xofftxc;
883 rte_stats->rx_pause_xoff = stats->xoffrxc;
887 eth_em_stats_reset(struct rte_eth_dev *dev)
889 struct e1000_hw_stats *hw_stats =
890 E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
892 /* HW registers are cleared on read */
893 eth_em_stats_get(dev, NULL);
895 /* Reset software totals */
896 memset(hw_stats, 0, sizeof(*hw_stats));
900 eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
902 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
904 em_rxq_intr_enable(hw);
905 rte_intr_enable(&dev->pci_dev->intr_handle);
911 eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
913 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
915 em_rxq_intr_disable(hw);
921 em_get_max_pktlen(const struct e1000_hw *hw)
923 switch (hw->mac.type) {
930 case e1000_80003es2lan: /* 9K Jumbo Frame size */
935 /* Adapters that do not support jumbo frames */
937 return (ETHER_MAX_LEN);
939 return (MAX_JUMBO_FRAME_SIZE);
944 eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
946 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
948 dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
949 dev_info->max_rx_pktlen = em_get_max_pktlen(hw);
950 dev_info->max_mac_addrs = hw->mac.rar_entry_count;
953 * Starting with 631xESB hw supports 2 TX/RX queues per port.
954 * Unfortunatelly, all these nics have just one TX context.
955 * So we have few choises for TX:
956 * - Use just one TX queue.
957 * - Allow cksum offload only for one TX queue.
958 * - Don't allow TX cksum offload at all.
959 * For now, option #1 was chosen.
960 * To use second RX queue we have to use extended RX descriptor
961 * (Multiple Receive Queues are mutually exclusive with UDP
962 * fragmentation and are not supported when a legacy receive
963 * descriptor format is used).
964 * Which means separate RX routinies - as legacy nics (82540, 82545)
965 * don't support extended RXD.
966 * To avoid it we support just one RX queue for now (no RSS).
969 dev_info->max_rx_queues = 1;
970 dev_info->max_tx_queues = 1;
973 /* return 0 means link status changed, -1 means not changed */
975 eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
977 struct e1000_hw *hw =
978 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
979 struct rte_eth_link link, old;
980 int link_check, count;
983 hw->mac.get_link_status = 1;
985 /* possible wait-to-complete in up to 9 seconds */
986 for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
987 /* Read the real link status */
988 switch (hw->phy.media_type) {
989 case e1000_media_type_copper:
990 /* Do the work to read phy */
991 e1000_check_for_link(hw);
992 link_check = !hw->mac.get_link_status;
995 case e1000_media_type_fiber:
996 e1000_check_for_link(hw);
997 link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1001 case e1000_media_type_internal_serdes:
1002 e1000_check_for_link(hw);
1003 link_check = hw->mac.serdes_has_link;
1009 if (link_check || wait_to_complete == 0)
1011 rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
1013 memset(&link, 0, sizeof(link));
1014 rte_em_dev_atomic_read_link_status(dev, &link);
1017 /* Now we check if a transition has happened */
1018 if (link_check && (link.link_status == 0)) {
1019 hw->mac.ops.get_link_up_info(hw, &link.link_speed,
1021 link.link_status = 1;
1022 } else if (!link_check && (link.link_status == 1)) {
1023 link.link_speed = 0;
1024 link.link_duplex = 0;
1025 link.link_status = 0;
1027 rte_em_dev_atomic_write_link_status(dev, &link);
1030 if (old.link_status == link.link_status)
1038 * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1039 * For ASF and Pass Through versions of f/w this means
1040 * that the driver is loaded. For AMT version type f/w
1041 * this means that the network i/f is open.
1044 em_hw_control_acquire(struct e1000_hw *hw)
1046 uint32_t ctrl_ext, swsm;
1048 /* Let firmware know the driver has taken over */
1049 if (hw->mac.type == e1000_82573) {
1050 swsm = E1000_READ_REG(hw, E1000_SWSM);
1051 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
1054 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1055 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1056 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1061 * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
1062 * For ASF and Pass Through versions of f/w this means that the
1063 * driver is no longer loaded. For AMT versions of the
1064 * f/w this means that the network i/f is closed.
1067 em_hw_control_release(struct e1000_hw *hw)
1069 uint32_t ctrl_ext, swsm;
1071 /* Let firmware taken over control of h/w */
1072 if (hw->mac.type == e1000_82573) {
1073 swsm = E1000_READ_REG(hw, E1000_SWSM);
1074 E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1076 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1077 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1078 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1083 * Bit of a misnomer, what this really means is
1084 * to enable OS management of the system... aka
1085 * to disable special hardware management features.
1088 em_init_manageability(struct e1000_hw *hw)
1090 if (e1000_enable_mng_pass_thru(hw)) {
1091 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
1092 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
1094 /* disable hardware interception of ARP */
1095 manc &= ~(E1000_MANC_ARP_EN);
1097 /* enable receiving management packets to the host */
1098 manc |= E1000_MANC_EN_MNG2HOST;
1099 manc2h |= 1 << 5; /* Mng Port 623 */
1100 manc2h |= 1 << 6; /* Mng Port 664 */
1101 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
1102 E1000_WRITE_REG(hw, E1000_MANC, manc);
1107 * Give control back to hardware management
1108 * controller if there is one.
1111 em_release_manageability(struct e1000_hw *hw)
1115 if (e1000_enable_mng_pass_thru(hw)) {
1116 manc = E1000_READ_REG(hw, E1000_MANC);
1118 /* re-enable hardware interception of ARP */
1119 manc |= E1000_MANC_ARP_EN;
1120 manc &= ~E1000_MANC_EN_MNG2HOST;
1122 E1000_WRITE_REG(hw, E1000_MANC, manc);
1127 eth_em_promiscuous_enable(struct rte_eth_dev *dev)
1129 struct e1000_hw *hw =
1130 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1133 rctl = E1000_READ_REG(hw, E1000_RCTL);
1134 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1135 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1139 eth_em_promiscuous_disable(struct rte_eth_dev *dev)
1141 struct e1000_hw *hw =
1142 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1145 rctl = E1000_READ_REG(hw, E1000_RCTL);
1146 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
1147 if (dev->data->all_multicast == 1)
1148 rctl |= E1000_RCTL_MPE;
1150 rctl &= (~E1000_RCTL_MPE);
1151 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1155 eth_em_allmulticast_enable(struct rte_eth_dev *dev)
1157 struct e1000_hw *hw =
1158 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1161 rctl = E1000_READ_REG(hw, E1000_RCTL);
1162 rctl |= E1000_RCTL_MPE;
1163 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1167 eth_em_allmulticast_disable(struct rte_eth_dev *dev)
1169 struct e1000_hw *hw =
1170 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1173 if (dev->data->promiscuous == 1)
1174 return; /* must remain in all_multicast mode */
1175 rctl = E1000_READ_REG(hw, E1000_RCTL);
1176 rctl &= (~E1000_RCTL_MPE);
1177 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1181 eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1183 struct e1000_hw *hw =
1184 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1185 struct e1000_vfta * shadow_vfta =
1186 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1191 vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
1192 E1000_VFTA_ENTRY_MASK);
1193 vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
1194 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
1199 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
1201 /* update local VFTA copy */
1202 shadow_vfta->vfta[vid_idx] = vfta;
1208 em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
1210 struct e1000_hw *hw =
1211 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1214 /* Filter Table Disable */
1215 reg = E1000_READ_REG(hw, E1000_RCTL);
1216 reg &= ~E1000_RCTL_CFIEN;
1217 reg &= ~E1000_RCTL_VFE;
1218 E1000_WRITE_REG(hw, E1000_RCTL, reg);
1222 em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1224 struct e1000_hw *hw =
1225 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1226 struct e1000_vfta * shadow_vfta =
1227 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1231 /* Filter Table Enable, CFI not used for packet acceptance */
1232 reg = E1000_READ_REG(hw, E1000_RCTL);
1233 reg &= ~E1000_RCTL_CFIEN;
1234 reg |= E1000_RCTL_VFE;
1235 E1000_WRITE_REG(hw, E1000_RCTL, reg);
1237 /* restore vfta from local copy */
1238 for (i = 0; i < IGB_VFTA_SIZE; i++)
1239 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
1243 em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
1245 struct e1000_hw *hw =
1246 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1249 /* VLAN Mode Disable */
1250 reg = E1000_READ_REG(hw, E1000_CTRL);
1251 reg &= ~E1000_CTRL_VME;
1252 E1000_WRITE_REG(hw, E1000_CTRL, reg);
1257 em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
1259 struct e1000_hw *hw =
1260 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1263 /* VLAN Mode Enable */
1264 reg = E1000_READ_REG(hw, E1000_CTRL);
1265 reg |= E1000_CTRL_VME;
1266 E1000_WRITE_REG(hw, E1000_CTRL, reg);
1270 eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1272 if(mask & ETH_VLAN_STRIP_MASK){
1273 if (dev->data->dev_conf.rxmode.hw_vlan_strip)
1274 em_vlan_hw_strip_enable(dev);
1276 em_vlan_hw_strip_disable(dev);
1279 if(mask & ETH_VLAN_FILTER_MASK){
1280 if (dev->data->dev_conf.rxmode.hw_vlan_filter)
1281 em_vlan_hw_filter_enable(dev);
1283 em_vlan_hw_filter_disable(dev);
1288 * It enables the interrupt mask and then enable the interrupt.
1291 * Pointer to struct rte_eth_dev.
1294 * - On success, zero.
1295 * - On failure, a negative value.
1298 eth_em_interrupt_setup(struct rte_eth_dev *dev)
1301 struct e1000_hw *hw =
1302 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1304 /* clear interrupt */
1305 E1000_READ_REG(hw, E1000_ICR);
1306 regval = E1000_READ_REG(hw, E1000_IMS);
1307 E1000_WRITE_REG(hw, E1000_IMS, regval | E1000_ICR_LSC);
1312 * It clears the interrupt causes and enables the interrupt.
1313 * It will be called once only during nic initialized.
1316 * Pointer to struct rte_eth_dev.
1319 * - On success, zero.
1320 * - On failure, a negative value.
1323 eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev)
1325 struct e1000_hw *hw =
1326 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1328 E1000_READ_REG(hw, E1000_ICR);
1329 em_rxq_intr_enable(hw);
1334 * It enable receive packet interrupt.
1336 * Pointer to struct e1000_hw
1341 em_rxq_intr_enable(struct e1000_hw *hw)
1343 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_RXT0);
1344 E1000_WRITE_FLUSH(hw);
1348 * It disabled lsc interrupt.
1350 * Pointer to struct e1000_hw
1355 em_lsc_intr_disable(struct e1000_hw *hw)
1357 E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_LSC);
1358 E1000_WRITE_FLUSH(hw);
1362 * It disabled receive packet interrupt.
1364 * Pointer to struct e1000_hw
1369 em_rxq_intr_disable(struct e1000_hw *hw)
1371 E1000_READ_REG(hw, E1000_ICR);
1372 E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
1373 E1000_WRITE_FLUSH(hw);
1377 * It reads ICR and gets interrupt causes, check it and set a bit flag
1378 * to update link status.
1381 * Pointer to struct rte_eth_dev.
1384 * - On success, zero.
1385 * - On failure, a negative value.
1388 eth_em_interrupt_get_status(struct rte_eth_dev *dev)
1391 struct e1000_hw *hw =
1392 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1393 struct e1000_interrupt *intr =
1394 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1396 /* read-on-clear nic registers here */
1397 icr = E1000_READ_REG(hw, E1000_ICR);
1398 if (icr & E1000_ICR_LSC) {
1399 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1406 * It executes link_update after knowing an interrupt is prsent.
1409 * Pointer to struct rte_eth_dev.
1412 * - On success, zero.
1413 * - On failure, a negative value.
1416 eth_em_interrupt_action(struct rte_eth_dev *dev)
1418 struct e1000_hw *hw =
1419 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1420 struct e1000_interrupt *intr =
1421 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1422 uint32_t tctl, rctl;
1423 struct rte_eth_link link;
1426 if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
1429 intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
1430 rte_intr_enable(&(dev->pci_dev->intr_handle));
1432 /* set get_link_status to check register later */
1433 hw->mac.get_link_status = 1;
1434 ret = eth_em_link_update(dev, 0);
1436 /* check if link has changed */
1440 memset(&link, 0, sizeof(link));
1441 rte_em_dev_atomic_read_link_status(dev, &link);
1442 if (link.link_status) {
1443 PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s",
1444 dev->data->port_id, (unsigned)link.link_speed,
1445 link.link_duplex == ETH_LINK_FULL_DUPLEX ?
1446 "full-duplex" : "half-duplex");
1448 PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id);
1450 PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
1451 dev->pci_dev->addr.domain, dev->pci_dev->addr.bus,
1452 dev->pci_dev->addr.devid, dev->pci_dev->addr.function);
1454 tctl = E1000_READ_REG(hw, E1000_TCTL);
1455 rctl = E1000_READ_REG(hw, E1000_RCTL);
1456 if (link.link_status) {
1458 tctl |= E1000_TCTL_EN;
1459 rctl |= E1000_RCTL_EN;
1462 tctl &= ~E1000_TCTL_EN;
1463 rctl &= ~E1000_RCTL_EN;
1465 E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1466 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1467 E1000_WRITE_FLUSH(hw);
1473 * Interrupt handler which shall be registered at first.
1476 * Pointer to interrupt handle.
1478 * The address of parameter (struct rte_eth_dev *) regsitered before.
1484 eth_em_interrupt_handler(__rte_unused struct rte_intr_handle *handle,
1487 struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1489 eth_em_interrupt_get_status(dev);
1490 eth_em_interrupt_action(dev);
1491 _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC);
1495 eth_em_led_on(struct rte_eth_dev *dev)
1497 struct e1000_hw *hw;
1499 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1500 return (e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
1504 eth_em_led_off(struct rte_eth_dev *dev)
1506 struct e1000_hw *hw;
1508 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1509 return (e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP);
1513 eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1515 struct e1000_hw *hw;
1520 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1521 fc_conf->pause_time = hw->fc.pause_time;
1522 fc_conf->high_water = hw->fc.high_water;
1523 fc_conf->low_water = hw->fc.low_water;
1524 fc_conf->send_xon = hw->fc.send_xon;
1525 fc_conf->autoneg = hw->mac.autoneg;
1528 * Return rx_pause and tx_pause status according to actual setting of
1529 * the TFCE and RFCE bits in the CTRL register.
1531 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1532 if (ctrl & E1000_CTRL_TFCE)
1537 if (ctrl & E1000_CTRL_RFCE)
1542 if (rx_pause && tx_pause)
1543 fc_conf->mode = RTE_FC_FULL;
1545 fc_conf->mode = RTE_FC_RX_PAUSE;
1547 fc_conf->mode = RTE_FC_TX_PAUSE;
1549 fc_conf->mode = RTE_FC_NONE;
1555 eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1557 struct e1000_hw *hw;
1559 enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
1565 uint32_t rx_buf_size;
1566 uint32_t max_high_water;
1569 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1570 if (fc_conf->autoneg != hw->mac.autoneg)
1572 rx_buf_size = em_get_rx_buffer_size(hw);
1573 PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
1575 /* At least reserve one Ethernet frame for watermark */
1576 max_high_water = rx_buf_size - ETHER_MAX_LEN;
1577 if ((fc_conf->high_water > max_high_water) ||
1578 (fc_conf->high_water < fc_conf->low_water)) {
1579 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
1580 PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
1584 hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
1585 hw->fc.pause_time = fc_conf->pause_time;
1586 hw->fc.high_water = fc_conf->high_water;
1587 hw->fc.low_water = fc_conf->low_water;
1588 hw->fc.send_xon = fc_conf->send_xon;
1590 err = e1000_setup_link_generic(hw);
1591 if (err == E1000_SUCCESS) {
1593 /* check if we want to forward MAC frames - driver doesn't have native
1594 * capability to do that, so we'll write the registers ourselves */
1596 rctl = E1000_READ_REG(hw, E1000_RCTL);
1598 /* set or clear MFLCN.PMCF bit depending on configuration */
1599 if (fc_conf->mac_ctrl_frame_fwd != 0)
1600 rctl |= E1000_RCTL_PMCF;
1602 rctl &= ~E1000_RCTL_PMCF;
1604 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1605 E1000_WRITE_FLUSH(hw);
1610 PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
1615 eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
1616 uint32_t index, __rte_unused uint32_t pool)
1618 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1620 e1000_rar_set(hw, mac_addr->addr_bytes, index);
1624 eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
1626 uint8_t addr[ETHER_ADDR_LEN];
1627 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1629 memset(addr, 0, sizeof(addr));
1631 e1000_rar_set(hw, addr, index);
1635 eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1637 struct rte_eth_dev_info dev_info;
1638 struct e1000_hw *hw;
1639 uint32_t frame_size;
1642 eth_em_infos_get(dev, &dev_info);
1643 frame_size = mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE;
1645 /* check that mtu is within the allowed range */
1646 if ((mtu < ETHER_MIN_MTU) || (frame_size > dev_info.max_rx_pktlen))
1649 /* refuse mtu that requires the support of scattered packets when this
1650 * feature has not been enabled before. */
1651 if (!dev->data->scattered_rx &&
1652 frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
1655 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1656 rctl = E1000_READ_REG(hw, E1000_RCTL);
1658 /* switch to jumbo mode if needed */
1659 if (frame_size > ETHER_MAX_LEN) {
1660 dev->data->dev_conf.rxmode.jumbo_frame = 1;
1661 rctl |= E1000_RCTL_LPE;
1663 dev->data->dev_conf.rxmode.jumbo_frame = 0;
1664 rctl &= ~E1000_RCTL_LPE;
1666 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1668 /* update max frame size */
1669 dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
1674 eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
1675 struct ether_addr *mc_addr_set,
1676 uint32_t nb_mc_addr)
1678 struct e1000_hw *hw;
1680 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1681 e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
1685 struct rte_driver em_pmd_drv = {
1687 .init = rte_em_pmd_init,
1690 PMD_REGISTER_DRIVER(em_pmd_drv);