1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2016 Intel Corporation
11 #include <rte_common.h>
12 #include <rte_interrupts.h>
13 #include <rte_byteorder.h>
14 #include <rte_debug.h>
16 #include <rte_bus_pci.h>
17 #include <rte_ether.h>
18 #include <rte_ethdev_driver.h>
19 #include <rte_ethdev_pci.h>
20 #include <rte_memory.h>
22 #include <rte_malloc.h>
25 #include "e1000_logs.h"
26 #include "base/e1000_api.h"
27 #include "e1000_ethdev.h"
29 #define EM_EIAC 0x000DC
31 #define PMD_ROUNDUP(x,y) (((x) + (y) - 1)/(y) * (y))
34 static int eth_em_configure(struct rte_eth_dev *dev);
35 static int eth_em_start(struct rte_eth_dev *dev);
36 static void eth_em_stop(struct rte_eth_dev *dev);
37 static void eth_em_close(struct rte_eth_dev *dev);
38 static void eth_em_promiscuous_enable(struct rte_eth_dev *dev);
39 static void eth_em_promiscuous_disable(struct rte_eth_dev *dev);
40 static void eth_em_allmulticast_enable(struct rte_eth_dev *dev);
41 static void eth_em_allmulticast_disable(struct rte_eth_dev *dev);
42 static int eth_em_link_update(struct rte_eth_dev *dev,
43 int wait_to_complete);
44 static int eth_em_stats_get(struct rte_eth_dev *dev,
45 struct rte_eth_stats *rte_stats);
46 static void eth_em_stats_reset(struct rte_eth_dev *dev);
47 static void eth_em_infos_get(struct rte_eth_dev *dev,
48 struct rte_eth_dev_info *dev_info);
49 static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev,
50 struct rte_eth_fc_conf *fc_conf);
51 static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
52 struct rte_eth_fc_conf *fc_conf);
53 static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
54 static int eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev);
55 static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
56 static int eth_em_interrupt_action(struct rte_eth_dev *dev,
57 struct rte_intr_handle *handle);
58 static void eth_em_interrupt_handler(void *param);
60 static int em_hw_init(struct e1000_hw *hw);
61 static int em_hardware_init(struct e1000_hw *hw);
62 static void em_hw_control_acquire(struct e1000_hw *hw);
63 static void em_hw_control_release(struct e1000_hw *hw);
64 static void em_init_manageability(struct e1000_hw *hw);
65 static void em_release_manageability(struct e1000_hw *hw);
67 static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
69 static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
70 uint16_t vlan_id, int on);
71 static int eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
72 static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
73 static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
74 static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
75 static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
78 static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
79 uint16_t vlan_id, int on);
82 static int eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id);
83 static int eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id);
84 static void em_lsc_intr_disable(struct e1000_hw *hw);
85 static void em_rxq_intr_enable(struct e1000_hw *hw);
86 static void em_rxq_intr_disable(struct e1000_hw *hw);
88 static int eth_em_led_on(struct rte_eth_dev *dev);
89 static int eth_em_led_off(struct rte_eth_dev *dev);
91 static int em_get_rx_buffer_size(struct e1000_hw *hw);
92 static int eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
93 uint32_t index, uint32_t pool);
94 static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
95 static int eth_em_default_mac_addr_set(struct rte_eth_dev *dev,
96 struct ether_addr *addr);
98 static int eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
99 struct ether_addr *mc_addr_set,
100 uint32_t nb_mc_addr);
102 #define EM_FC_PAUSE_TIME 0x0680
103 #define EM_LINK_UPDATE_CHECK_TIMEOUT 90 /* 9s */
104 #define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
106 static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
109 * The set of PCI devices this driver supports
111 static const struct rte_pci_id pci_id_em_map[] = {
112 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82540EM) },
113 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_COPPER) },
114 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_FIBER) },
115 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_COPPER) },
116 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_FIBER) },
117 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_QUAD_COPPER) },
118 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_COPPER) },
119 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_FIBER) },
120 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES) },
121 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_DUAL) },
122 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_QUAD) },
123 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER) },
124 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571PT_QUAD_COPPER) },
125 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_FIBER) },
126 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER_LP) },
127 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_COPPER) },
128 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_FIBER) },
129 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_SERDES) },
130 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI) },
131 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82573L) },
132 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574L) },
133 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574LA) },
134 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82583V) },
135 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH2_LV_LM) },
136 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_LM) },
137 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_V) },
138 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_LM) },
139 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_V) },
140 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM2) },
141 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V2) },
142 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM3) },
143 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V3) },
144 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM) },
145 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V) },
146 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM2) },
147 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V2) },
148 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LBG_I219_LM3) },
149 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM4) },
150 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V4) },
151 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM5) },
152 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V5) },
153 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM6) },
154 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V6) },
155 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM7) },
156 { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V7) },
157 { .vendor_id = 0, /* sentinel */ },
160 static const struct eth_dev_ops eth_em_ops = {
161 .dev_configure = eth_em_configure,
162 .dev_start = eth_em_start,
163 .dev_stop = eth_em_stop,
164 .dev_close = eth_em_close,
165 .promiscuous_enable = eth_em_promiscuous_enable,
166 .promiscuous_disable = eth_em_promiscuous_disable,
167 .allmulticast_enable = eth_em_allmulticast_enable,
168 .allmulticast_disable = eth_em_allmulticast_disable,
169 .link_update = eth_em_link_update,
170 .stats_get = eth_em_stats_get,
171 .stats_reset = eth_em_stats_reset,
172 .dev_infos_get = eth_em_infos_get,
173 .mtu_set = eth_em_mtu_set,
174 .vlan_filter_set = eth_em_vlan_filter_set,
175 .vlan_offload_set = eth_em_vlan_offload_set,
176 .rx_queue_setup = eth_em_rx_queue_setup,
177 .rx_queue_release = eth_em_rx_queue_release,
178 .rx_queue_count = eth_em_rx_queue_count,
179 .rx_descriptor_done = eth_em_rx_descriptor_done,
180 .rx_descriptor_status = eth_em_rx_descriptor_status,
181 .tx_descriptor_status = eth_em_tx_descriptor_status,
182 .tx_queue_setup = eth_em_tx_queue_setup,
183 .tx_queue_release = eth_em_tx_queue_release,
184 .rx_queue_intr_enable = eth_em_rx_queue_intr_enable,
185 .rx_queue_intr_disable = eth_em_rx_queue_intr_disable,
186 .dev_led_on = eth_em_led_on,
187 .dev_led_off = eth_em_led_off,
188 .flow_ctrl_get = eth_em_flow_ctrl_get,
189 .flow_ctrl_set = eth_em_flow_ctrl_set,
190 .mac_addr_set = eth_em_default_mac_addr_set,
191 .mac_addr_add = eth_em_rar_set,
192 .mac_addr_remove = eth_em_rar_clear,
193 .set_mc_addr_list = eth_em_set_mc_addr_list,
194 .rxq_info_get = em_rxq_info_get,
195 .txq_info_get = em_txq_info_get,
200 * eth_em_dev_is_ich8 - Check for ICH8 device
201 * @hw: pointer to the HW structure
203 * return TRUE for ICH8, otherwise FALSE
206 eth_em_dev_is_ich8(struct e1000_hw *hw)
208 DEBUGFUNC("eth_em_dev_is_ich8");
210 switch (hw->device_id) {
211 case E1000_DEV_ID_PCH2_LV_LM:
212 case E1000_DEV_ID_PCH_LPT_I217_LM:
213 case E1000_DEV_ID_PCH_LPT_I217_V:
214 case E1000_DEV_ID_PCH_LPTLP_I218_LM:
215 case E1000_DEV_ID_PCH_LPTLP_I218_V:
216 case E1000_DEV_ID_PCH_I218_V2:
217 case E1000_DEV_ID_PCH_I218_LM2:
218 case E1000_DEV_ID_PCH_I218_V3:
219 case E1000_DEV_ID_PCH_I218_LM3:
220 case E1000_DEV_ID_PCH_SPT_I219_LM:
221 case E1000_DEV_ID_PCH_SPT_I219_V:
222 case E1000_DEV_ID_PCH_SPT_I219_LM2:
223 case E1000_DEV_ID_PCH_SPT_I219_V2:
224 case E1000_DEV_ID_PCH_LBG_I219_LM3:
225 case E1000_DEV_ID_PCH_SPT_I219_LM4:
226 case E1000_DEV_ID_PCH_SPT_I219_V4:
227 case E1000_DEV_ID_PCH_SPT_I219_LM5:
228 case E1000_DEV_ID_PCH_SPT_I219_V5:
229 case E1000_DEV_ID_PCH_CNP_I219_LM6:
230 case E1000_DEV_ID_PCH_CNP_I219_V6:
231 case E1000_DEV_ID_PCH_CNP_I219_LM7:
232 case E1000_DEV_ID_PCH_CNP_I219_V7:
240 eth_em_dev_init(struct rte_eth_dev *eth_dev)
242 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
243 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
244 struct e1000_adapter *adapter =
245 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
246 struct e1000_hw *hw =
247 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
248 struct e1000_vfta * shadow_vfta =
249 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
251 eth_dev->dev_ops = ð_em_ops;
252 eth_dev->rx_pkt_burst = (eth_rx_burst_t)ð_em_recv_pkts;
253 eth_dev->tx_pkt_burst = (eth_tx_burst_t)ð_em_xmit_pkts;
254 eth_dev->tx_pkt_prepare = (eth_tx_prep_t)ð_em_prep_pkts;
256 /* for secondary processes, we don't initialise any further as primary
257 * has already done this work. Only check we don't need a different
259 if (rte_eal_process_type() != RTE_PROC_PRIMARY){
260 if (eth_dev->data->scattered_rx)
261 eth_dev->rx_pkt_burst =
262 (eth_rx_burst_t)ð_em_recv_scattered_pkts;
266 rte_eth_copy_pci_info(eth_dev, pci_dev);
268 hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
269 hw->device_id = pci_dev->id.device_id;
270 adapter->stopped = 0;
272 /* For ICH8 support we'll need to map the flash memory BAR */
273 if (eth_em_dev_is_ich8(hw))
274 hw->flash_address = (void *)pci_dev->mem_resource[1].addr;
276 if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
277 em_hw_init(hw) != 0) {
278 PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
280 eth_dev->data->port_id, pci_dev->id.vendor_id,
281 pci_dev->id.device_id);
285 /* Allocate memory for storing MAC addresses */
286 eth_dev->data->mac_addrs = rte_zmalloc("e1000", ETHER_ADDR_LEN *
287 hw->mac.rar_entry_count, 0);
288 if (eth_dev->data->mac_addrs == NULL) {
289 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
290 "store MAC addresses",
291 ETHER_ADDR_LEN * hw->mac.rar_entry_count);
295 /* Copy the permanent MAC address */
296 ether_addr_copy((struct ether_addr *) hw->mac.addr,
297 eth_dev->data->mac_addrs);
299 /* initialize the vfta */
300 memset(shadow_vfta, 0, sizeof(*shadow_vfta));
302 PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
303 eth_dev->data->port_id, pci_dev->id.vendor_id,
304 pci_dev->id.device_id);
306 rte_intr_callback_register(intr_handle,
307 eth_em_interrupt_handler, eth_dev);
313 eth_em_dev_uninit(struct rte_eth_dev *eth_dev)
315 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
316 struct e1000_adapter *adapter =
317 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
318 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
320 PMD_INIT_FUNC_TRACE();
322 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
325 if (adapter->stopped == 0)
326 eth_em_close(eth_dev);
328 eth_dev->dev_ops = NULL;
329 eth_dev->rx_pkt_burst = NULL;
330 eth_dev->tx_pkt_burst = NULL;
332 /* disable uio intr before callback unregister */
333 rte_intr_disable(intr_handle);
334 rte_intr_callback_unregister(intr_handle,
335 eth_em_interrupt_handler, eth_dev);
340 static int eth_em_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
341 struct rte_pci_device *pci_dev)
343 return rte_eth_dev_pci_generic_probe(pci_dev,
344 sizeof(struct e1000_adapter), eth_em_dev_init);
347 static int eth_em_pci_remove(struct rte_pci_device *pci_dev)
349 return rte_eth_dev_pci_generic_remove(pci_dev, eth_em_dev_uninit);
352 static struct rte_pci_driver rte_em_pmd = {
353 .id_table = pci_id_em_map,
354 .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
355 RTE_PCI_DRV_IOVA_AS_VA,
356 .probe = eth_em_pci_probe,
357 .remove = eth_em_pci_remove,
361 em_hw_init(struct e1000_hw *hw)
365 diag = hw->mac.ops.init_params(hw);
367 PMD_INIT_LOG(ERR, "MAC Initialization Error");
370 diag = hw->nvm.ops.init_params(hw);
372 PMD_INIT_LOG(ERR, "NVM Initialization Error");
375 diag = hw->phy.ops.init_params(hw);
377 PMD_INIT_LOG(ERR, "PHY Initialization Error");
380 (void) e1000_get_bus_info(hw);
383 hw->phy.autoneg_wait_to_complete = 0;
384 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
386 e1000_init_script_state_82541(hw, TRUE);
387 e1000_set_tbi_compatibility_82543(hw, TRUE);
390 if (hw->phy.media_type == e1000_media_type_copper) {
391 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
392 hw->phy.disable_polarity_correction = 0;
393 hw->phy.ms_type = e1000_ms_hw_default;
397 * Start from a known state, this is important in reading the nvm
402 /* Make sure we have a good EEPROM before we read from it */
403 if (e1000_validate_nvm_checksum(hw) < 0) {
405 * Some PCI-E parts fail the first check due to
406 * the link being in sleep state, call it again,
407 * if it fails a second time its a real issue.
409 diag = e1000_validate_nvm_checksum(hw);
411 PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
416 /* Read the permanent MAC address out of the EEPROM */
417 diag = e1000_read_mac_addr(hw);
419 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
423 /* Now initialize the hardware */
424 diag = em_hardware_init(hw);
426 PMD_INIT_LOG(ERR, "Hardware initialization failed");
430 hw->mac.get_link_status = 1;
432 /* Indicate SOL/IDER usage */
433 diag = e1000_check_reset_block(hw);
435 PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
441 em_hw_control_release(hw);
446 eth_em_configure(struct rte_eth_dev *dev)
448 struct e1000_interrupt *intr =
449 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
451 PMD_INIT_FUNC_TRACE();
452 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
454 PMD_INIT_FUNC_TRACE();
460 em_set_pba(struct e1000_hw *hw)
465 * Packet Buffer Allocation (PBA)
466 * Writing PBA sets the receive portion of the buffer
467 * the remainder is used for the transmit buffer.
468 * Devices before the 82547 had a Packet Buffer of 64K.
469 * After the 82547 the buffer was reduced to 40K.
471 switch (hw->mac.type) {
473 case e1000_82547_rev_2:
474 /* 82547: Total Packet Buffer is 40K */
475 pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
479 case e1000_80003es2lan:
480 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
482 case e1000_82573: /* 82573: Total Packet Buffer is 32K */
483 pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
487 pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
504 pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
507 E1000_WRITE_REG(hw, E1000_PBA, pba);
511 eth_em_rxtx_control(struct rte_eth_dev *dev,
514 struct e1000_hw *hw =
515 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
518 tctl = E1000_READ_REG(hw, E1000_TCTL);
519 rctl = E1000_READ_REG(hw, E1000_RCTL);
522 tctl |= E1000_TCTL_EN;
523 rctl |= E1000_RCTL_EN;
526 tctl &= ~E1000_TCTL_EN;
527 rctl &= ~E1000_RCTL_EN;
529 E1000_WRITE_REG(hw, E1000_TCTL, tctl);
530 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
531 E1000_WRITE_FLUSH(hw);
535 eth_em_start(struct rte_eth_dev *dev)
537 struct e1000_adapter *adapter =
538 E1000_DEV_PRIVATE(dev->data->dev_private);
539 struct e1000_hw *hw =
540 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
541 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
542 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
544 uint32_t intr_vector = 0;
549 PMD_INIT_FUNC_TRACE();
553 e1000_power_up_phy(hw);
555 /* Set default PBA value */
558 /* Put the address into the Receive Address Array */
559 e1000_rar_set(hw, hw->mac.addr, 0);
562 * With the 82571 adapter, RAR[0] may be overwritten
563 * when the other port is reset, we make a duplicate
564 * in RAR[14] for that eventuality, this assures
565 * the interface continues to function.
567 if (hw->mac.type == e1000_82571) {
568 e1000_set_laa_state_82571(hw, TRUE);
569 e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
572 /* Initialize the hardware */
573 if (em_hardware_init(hw)) {
574 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
578 E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
580 /* Configure for OS presence */
581 em_init_manageability(hw);
583 if (dev->data->dev_conf.intr_conf.rxq != 0) {
584 intr_vector = dev->data->nb_rx_queues;
585 if (rte_intr_efd_enable(intr_handle, intr_vector))
589 if (rte_intr_dp_is_en(intr_handle)) {
590 intr_handle->intr_vec =
591 rte_zmalloc("intr_vec",
592 dev->data->nb_rx_queues * sizeof(int), 0);
593 if (intr_handle->intr_vec == NULL) {
594 PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
595 " intr_vec", dev->data->nb_rx_queues);
599 /* enable rx interrupt */
600 em_rxq_intr_enable(hw);
605 ret = eth_em_rx_init(dev);
607 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
608 em_dev_clear_queues(dev);
612 e1000_clear_hw_cntrs_base_generic(hw);
614 mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
615 ETH_VLAN_EXTEND_MASK;
616 ret = eth_em_vlan_offload_set(dev, mask);
618 PMD_INIT_LOG(ERR, "Unable to update vlan offload");
619 em_dev_clear_queues(dev);
623 /* Set Interrupt Throttling Rate to maximum allowed value. */
624 E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
626 /* Setup link speed and duplex */
627 speeds = &dev->data->dev_conf.link_speeds;
628 if (*speeds == ETH_LINK_SPEED_AUTONEG) {
629 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
633 autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
636 hw->phy.autoneg_advertised = 0;
638 if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
639 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
640 ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
642 goto error_invalid_config;
644 if (*speeds & ETH_LINK_SPEED_10M_HD) {
645 hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
648 if (*speeds & ETH_LINK_SPEED_10M) {
649 hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
652 if (*speeds & ETH_LINK_SPEED_100M_HD) {
653 hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
656 if (*speeds & ETH_LINK_SPEED_100M) {
657 hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
660 if (*speeds & ETH_LINK_SPEED_1G) {
661 hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
664 if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
665 goto error_invalid_config;
667 /* Set/reset the mac.autoneg based on the link speed,
672 hw->mac.forced_speed_duplex =
673 hw->phy.autoneg_advertised;
679 e1000_setup_link(hw);
681 if (rte_intr_allow_others(intr_handle)) {
682 /* check if lsc interrupt is enabled */
683 if (dev->data->dev_conf.intr_conf.lsc != 0) {
684 ret = eth_em_interrupt_setup(dev);
686 PMD_INIT_LOG(ERR, "Unable to setup interrupts");
687 em_dev_clear_queues(dev);
692 rte_intr_callback_unregister(intr_handle,
693 eth_em_interrupt_handler,
695 if (dev->data->dev_conf.intr_conf.lsc != 0)
696 PMD_INIT_LOG(INFO, "lsc won't enable because of"
697 " no intr multiplexn");
699 /* check if rxq interrupt is enabled */
700 if (dev->data->dev_conf.intr_conf.rxq != 0)
701 eth_em_rxq_interrupt_setup(dev);
703 rte_intr_enable(intr_handle);
705 adapter->stopped = 0;
707 eth_em_rxtx_control(dev, true);
708 eth_em_link_update(dev, 0);
710 PMD_INIT_LOG(DEBUG, "<<");
714 error_invalid_config:
715 PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
716 dev->data->dev_conf.link_speeds, dev->data->port_id);
717 em_dev_clear_queues(dev);
721 /*********************************************************************
723 * This routine disables all traffic on the adapter by issuing a
724 * global reset on the MAC.
726 **********************************************************************/
728 eth_em_stop(struct rte_eth_dev *dev)
730 struct rte_eth_link link;
731 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
732 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
733 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
735 eth_em_rxtx_control(dev, false);
736 em_rxq_intr_disable(hw);
737 em_lsc_intr_disable(hw);
740 if (hw->mac.type >= e1000_82544)
741 E1000_WRITE_REG(hw, E1000_WUC, 0);
743 /* Power down the phy. Needed to make the link go down */
744 e1000_power_down_phy(hw);
746 em_dev_clear_queues(dev);
748 /* clear the recorded link status */
749 memset(&link, 0, sizeof(link));
750 rte_eth_linkstatus_set(dev, &link);
752 if (!rte_intr_allow_others(intr_handle))
753 /* resume to the default handler */
754 rte_intr_callback_register(intr_handle,
755 eth_em_interrupt_handler,
758 /* Clean datapath event and queue/vec mapping */
759 rte_intr_efd_disable(intr_handle);
760 if (intr_handle->intr_vec != NULL) {
761 rte_free(intr_handle->intr_vec);
762 intr_handle->intr_vec = NULL;
767 eth_em_close(struct rte_eth_dev *dev)
769 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
770 struct e1000_adapter *adapter =
771 E1000_DEV_PRIVATE(dev->data->dev_private);
774 adapter->stopped = 1;
775 em_dev_free_queues(dev);
776 e1000_phy_hw_reset(hw);
777 em_release_manageability(hw);
778 em_hw_control_release(hw);
782 em_get_rx_buffer_size(struct e1000_hw *hw)
784 uint32_t rx_buf_size;
786 rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
790 /*********************************************************************
792 * Initialize the hardware
794 **********************************************************************/
796 em_hardware_init(struct e1000_hw *hw)
798 uint32_t rx_buf_size;
801 /* Issue a global reset */
804 /* Let the firmware know the OS is in control */
805 em_hw_control_acquire(hw);
808 * These parameters control the automatic generation (Tx) and
809 * response (Rx) to Ethernet PAUSE frames.
810 * - High water mark should allow for at least two standard size (1518)
811 * frames to be received after sending an XOFF.
812 * - Low water mark works best when it is very near the high water mark.
813 * This allows the receiver to restart by sending XON when it has
814 * drained a bit. Here we use an arbitrary value of 1500 which will
815 * restart after one full frame is pulled from the buffer. There
816 * could be several smaller frames in the buffer and if so they will
817 * not trigger the XON until their total number reduces the buffer
819 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
821 rx_buf_size = em_get_rx_buffer_size(hw);
823 hw->fc.high_water = rx_buf_size - PMD_ROUNDUP(ETHER_MAX_LEN * 2, 1024);
824 hw->fc.low_water = hw->fc.high_water - 1500;
826 if (hw->mac.type == e1000_80003es2lan)
827 hw->fc.pause_time = UINT16_MAX;
829 hw->fc.pause_time = EM_FC_PAUSE_TIME;
833 /* Set Flow control, use the tunable location if sane */
834 if (em_fc_setting <= e1000_fc_full)
835 hw->fc.requested_mode = em_fc_setting;
837 hw->fc.requested_mode = e1000_fc_none;
839 /* Workaround: no TX flow ctrl for PCH */
840 if (hw->mac.type == e1000_pchlan)
841 hw->fc.requested_mode = e1000_fc_rx_pause;
843 /* Override - settings for PCH2LAN, ya its magic :) */
844 if (hw->mac.type == e1000_pch2lan) {
845 hw->fc.high_water = 0x5C20;
846 hw->fc.low_water = 0x5048;
847 hw->fc.pause_time = 0x0650;
848 hw->fc.refresh_time = 0x0400;
849 } else if (hw->mac.type == e1000_pch_lpt ||
850 hw->mac.type == e1000_pch_spt ||
851 hw->mac.type == e1000_pch_cnp) {
852 hw->fc.requested_mode = e1000_fc_full;
855 diag = e1000_init_hw(hw);
858 e1000_check_for_link(hw);
862 /* This function is based on em_update_stats_counters() in e1000/if_em.c */
864 eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
866 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
867 struct e1000_hw_stats *stats =
868 E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
871 if(hw->phy.media_type == e1000_media_type_copper ||
872 (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
873 stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
874 stats->sec += E1000_READ_REG(hw, E1000_SEC);
877 stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
878 stats->mpc += E1000_READ_REG(hw, E1000_MPC);
879 stats->scc += E1000_READ_REG(hw, E1000_SCC);
880 stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
882 stats->mcc += E1000_READ_REG(hw, E1000_MCC);
883 stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
884 stats->colc += E1000_READ_REG(hw, E1000_COLC);
885 stats->dc += E1000_READ_REG(hw, E1000_DC);
886 stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
887 stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
888 stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
891 * For watchdog management we need to know if we have been
892 * paused during the last interval, so capture that here.
894 pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
895 stats->xoffrxc += pause_frames;
896 stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
897 stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
898 stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
899 stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
900 stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
901 stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
902 stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
903 stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
904 stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
905 stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
906 stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
907 stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
910 * For the 64-bit byte counters the low dword must be read first.
911 * Both registers clear on the read of the high dword.
914 stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
915 stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
916 stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
917 stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
919 stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
920 stats->ruc += E1000_READ_REG(hw, E1000_RUC);
921 stats->rfc += E1000_READ_REG(hw, E1000_RFC);
922 stats->roc += E1000_READ_REG(hw, E1000_ROC);
923 stats->rjc += E1000_READ_REG(hw, E1000_RJC);
925 stats->tor += E1000_READ_REG(hw, E1000_TORH);
926 stats->tot += E1000_READ_REG(hw, E1000_TOTH);
928 stats->tpr += E1000_READ_REG(hw, E1000_TPR);
929 stats->tpt += E1000_READ_REG(hw, E1000_TPT);
930 stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
931 stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
932 stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
933 stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
934 stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
935 stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
936 stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
937 stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
939 /* Interrupt Counts */
941 if (hw->mac.type >= e1000_82571) {
942 stats->iac += E1000_READ_REG(hw, E1000_IAC);
943 stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
944 stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
945 stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
946 stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
947 stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
948 stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
949 stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
950 stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
953 if (hw->mac.type >= e1000_82543) {
954 stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
955 stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
956 stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
957 stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
958 stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
959 stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
962 if (rte_stats == NULL)
966 rte_stats->imissed = stats->mpc;
967 rte_stats->ierrors = stats->crcerrs +
968 stats->rlec + stats->ruc + stats->roc +
969 stats->rxerrc + stats->algnerrc + stats->cexterr;
972 rte_stats->oerrors = stats->ecol + stats->latecol;
974 rte_stats->ipackets = stats->gprc;
975 rte_stats->opackets = stats->gptc;
976 rte_stats->ibytes = stats->gorc;
977 rte_stats->obytes = stats->gotc;
982 eth_em_stats_reset(struct rte_eth_dev *dev)
984 struct e1000_hw_stats *hw_stats =
985 E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
987 /* HW registers are cleared on read */
988 eth_em_stats_get(dev, NULL);
990 /* Reset software totals */
991 memset(hw_stats, 0, sizeof(*hw_stats));
995 eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
997 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
998 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
999 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1001 em_rxq_intr_enable(hw);
1002 rte_intr_enable(intr_handle);
1008 eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
1010 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1012 em_rxq_intr_disable(hw);
1018 em_get_max_pktlen(struct rte_eth_dev *dev)
1020 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1022 switch (hw->mac.type) {
1026 case e1000_ich10lan:
1032 case e1000_80003es2lan: /* 9K Jumbo Frame size */
1037 /* Adapters that do not support jumbo frames */
1039 return ETHER_MAX_LEN;
1041 return MAX_JUMBO_FRAME_SIZE;
1046 eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
1048 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1050 dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
1051 dev_info->max_rx_pktlen = em_get_max_pktlen(dev);
1052 dev_info->max_mac_addrs = hw->mac.rar_entry_count;
1055 * Starting with 631xESB hw supports 2 TX/RX queues per port.
1056 * Unfortunatelly, all these nics have just one TX context.
1057 * So we have few choises for TX:
1058 * - Use just one TX queue.
1059 * - Allow cksum offload only for one TX queue.
1060 * - Don't allow TX cksum offload at all.
1061 * For now, option #1 was chosen.
1062 * To use second RX queue we have to use extended RX descriptor
1063 * (Multiple Receive Queues are mutually exclusive with UDP
1064 * fragmentation and are not supported when a legacy receive
1065 * descriptor format is used).
1066 * Which means separate RX routinies - as legacy nics (82540, 82545)
1067 * don't support extended RXD.
1068 * To avoid it we support just one RX queue for now (no RSS).
1071 dev_info->max_rx_queues = 1;
1072 dev_info->max_tx_queues = 1;
1074 dev_info->rx_queue_offload_capa = em_get_rx_queue_offloads_capa(dev);
1075 dev_info->rx_offload_capa = em_get_rx_port_offloads_capa(dev) |
1076 dev_info->rx_queue_offload_capa;
1077 dev_info->tx_queue_offload_capa = em_get_tx_queue_offloads_capa(dev);
1078 dev_info->tx_offload_capa = em_get_tx_port_offloads_capa(dev) |
1079 dev_info->tx_queue_offload_capa;
1081 dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
1082 .nb_max = E1000_MAX_RING_DESC,
1083 .nb_min = E1000_MIN_RING_DESC,
1084 .nb_align = EM_RXD_ALIGN,
1087 dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
1088 .nb_max = E1000_MAX_RING_DESC,
1089 .nb_min = E1000_MIN_RING_DESC,
1090 .nb_align = EM_TXD_ALIGN,
1091 .nb_seg_max = EM_TX_MAX_SEG,
1092 .nb_mtu_seg_max = EM_TX_MAX_MTU_SEG,
1095 dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1096 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1099 /* Preferred queue parameters */
1100 dev_info->default_rxportconf.nb_queues = 1;
1101 dev_info->default_txportconf.nb_queues = 1;
1102 dev_info->default_txportconf.ring_size = 256;
1103 dev_info->default_rxportconf.ring_size = 256;
1106 /* return 0 means link status changed, -1 means not changed */
1108 eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
1110 struct e1000_hw *hw =
1111 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1112 struct rte_eth_link link;
1113 int link_check, count;
1116 hw->mac.get_link_status = 1;
1118 /* possible wait-to-complete in up to 9 seconds */
1119 for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
1120 /* Read the real link status */
1121 switch (hw->phy.media_type) {
1122 case e1000_media_type_copper:
1123 /* Do the work to read phy */
1124 e1000_check_for_link(hw);
1125 link_check = !hw->mac.get_link_status;
1128 case e1000_media_type_fiber:
1129 e1000_check_for_link(hw);
1130 link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1134 case e1000_media_type_internal_serdes:
1135 e1000_check_for_link(hw);
1136 link_check = hw->mac.serdes_has_link;
1142 if (link_check || wait_to_complete == 0)
1144 rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
1146 memset(&link, 0, sizeof(link));
1148 /* Now we check if a transition has happened */
1149 if (link_check && (link.link_status == ETH_LINK_DOWN)) {
1150 uint16_t duplex, speed;
1151 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1152 link.link_duplex = (duplex == FULL_DUPLEX) ?
1153 ETH_LINK_FULL_DUPLEX :
1154 ETH_LINK_HALF_DUPLEX;
1155 link.link_speed = speed;
1156 link.link_status = ETH_LINK_UP;
1157 link.link_autoneg = !(dev->data->dev_conf.link_speeds &
1158 ETH_LINK_SPEED_FIXED);
1159 } else if (!link_check && (link.link_status == ETH_LINK_UP)) {
1160 link.link_speed = ETH_SPEED_NUM_NONE;
1161 link.link_duplex = ETH_LINK_HALF_DUPLEX;
1162 link.link_status = ETH_LINK_DOWN;
1163 link.link_autoneg = ETH_LINK_FIXED;
1166 return rte_eth_linkstatus_set(dev, &link);
1170 * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1171 * For ASF and Pass Through versions of f/w this means
1172 * that the driver is loaded. For AMT version type f/w
1173 * this means that the network i/f is open.
1176 em_hw_control_acquire(struct e1000_hw *hw)
1178 uint32_t ctrl_ext, swsm;
1180 /* Let firmware know the driver has taken over */
1181 if (hw->mac.type == e1000_82573) {
1182 swsm = E1000_READ_REG(hw, E1000_SWSM);
1183 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
1186 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1187 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1188 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1193 * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
1194 * For ASF and Pass Through versions of f/w this means that the
1195 * driver is no longer loaded. For AMT versions of the
1196 * f/w this means that the network i/f is closed.
1199 em_hw_control_release(struct e1000_hw *hw)
1201 uint32_t ctrl_ext, swsm;
1203 /* Let firmware taken over control of h/w */
1204 if (hw->mac.type == e1000_82573) {
1205 swsm = E1000_READ_REG(hw, E1000_SWSM);
1206 E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1208 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1209 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1210 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1215 * Bit of a misnomer, what this really means is
1216 * to enable OS management of the system... aka
1217 * to disable special hardware management features.
1220 em_init_manageability(struct e1000_hw *hw)
1222 if (e1000_enable_mng_pass_thru(hw)) {
1223 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
1224 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
1226 /* disable hardware interception of ARP */
1227 manc &= ~(E1000_MANC_ARP_EN);
1229 /* enable receiving management packets to the host */
1230 manc |= E1000_MANC_EN_MNG2HOST;
1231 manc2h |= 1 << 5; /* Mng Port 623 */
1232 manc2h |= 1 << 6; /* Mng Port 664 */
1233 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
1234 E1000_WRITE_REG(hw, E1000_MANC, manc);
1239 * Give control back to hardware management
1240 * controller if there is one.
1243 em_release_manageability(struct e1000_hw *hw)
1247 if (e1000_enable_mng_pass_thru(hw)) {
1248 manc = E1000_READ_REG(hw, E1000_MANC);
1250 /* re-enable hardware interception of ARP */
1251 manc |= E1000_MANC_ARP_EN;
1252 manc &= ~E1000_MANC_EN_MNG2HOST;
1254 E1000_WRITE_REG(hw, E1000_MANC, manc);
1259 eth_em_promiscuous_enable(struct rte_eth_dev *dev)
1261 struct e1000_hw *hw =
1262 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1265 rctl = E1000_READ_REG(hw, E1000_RCTL);
1266 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1267 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1271 eth_em_promiscuous_disable(struct rte_eth_dev *dev)
1273 struct e1000_hw *hw =
1274 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1277 rctl = E1000_READ_REG(hw, E1000_RCTL);
1278 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
1279 if (dev->data->all_multicast == 1)
1280 rctl |= E1000_RCTL_MPE;
1282 rctl &= (~E1000_RCTL_MPE);
1283 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1287 eth_em_allmulticast_enable(struct rte_eth_dev *dev)
1289 struct e1000_hw *hw =
1290 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1293 rctl = E1000_READ_REG(hw, E1000_RCTL);
1294 rctl |= E1000_RCTL_MPE;
1295 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1299 eth_em_allmulticast_disable(struct rte_eth_dev *dev)
1301 struct e1000_hw *hw =
1302 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1305 if (dev->data->promiscuous == 1)
1306 return; /* must remain in all_multicast mode */
1307 rctl = E1000_READ_REG(hw, E1000_RCTL);
1308 rctl &= (~E1000_RCTL_MPE);
1309 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1313 eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1315 struct e1000_hw *hw =
1316 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1317 struct e1000_vfta * shadow_vfta =
1318 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1323 vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
1324 E1000_VFTA_ENTRY_MASK);
1325 vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
1326 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
1331 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
1333 /* update local VFTA copy */
1334 shadow_vfta->vfta[vid_idx] = vfta;
1340 em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
1342 struct e1000_hw *hw =
1343 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1346 /* Filter Table Disable */
1347 reg = E1000_READ_REG(hw, E1000_RCTL);
1348 reg &= ~E1000_RCTL_CFIEN;
1349 reg &= ~E1000_RCTL_VFE;
1350 E1000_WRITE_REG(hw, E1000_RCTL, reg);
1354 em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1356 struct e1000_hw *hw =
1357 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1358 struct e1000_vfta * shadow_vfta =
1359 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1363 /* Filter Table Enable, CFI not used for packet acceptance */
1364 reg = E1000_READ_REG(hw, E1000_RCTL);
1365 reg &= ~E1000_RCTL_CFIEN;
1366 reg |= E1000_RCTL_VFE;
1367 E1000_WRITE_REG(hw, E1000_RCTL, reg);
1369 /* restore vfta from local copy */
1370 for (i = 0; i < IGB_VFTA_SIZE; i++)
1371 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
1375 em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
1377 struct e1000_hw *hw =
1378 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1381 /* VLAN Mode Disable */
1382 reg = E1000_READ_REG(hw, E1000_CTRL);
1383 reg &= ~E1000_CTRL_VME;
1384 E1000_WRITE_REG(hw, E1000_CTRL, reg);
1389 em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
1391 struct e1000_hw *hw =
1392 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1395 /* VLAN Mode Enable */
1396 reg = E1000_READ_REG(hw, E1000_CTRL);
1397 reg |= E1000_CTRL_VME;
1398 E1000_WRITE_REG(hw, E1000_CTRL, reg);
1402 eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1404 struct rte_eth_rxmode *rxmode;
1406 rxmode = &dev->data->dev_conf.rxmode;
1407 if(mask & ETH_VLAN_STRIP_MASK){
1408 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1409 em_vlan_hw_strip_enable(dev);
1411 em_vlan_hw_strip_disable(dev);
1414 if(mask & ETH_VLAN_FILTER_MASK){
1415 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
1416 em_vlan_hw_filter_enable(dev);
1418 em_vlan_hw_filter_disable(dev);
1425 * It enables the interrupt mask and then enable the interrupt.
1428 * Pointer to struct rte_eth_dev.
1431 * - On success, zero.
1432 * - On failure, a negative value.
1435 eth_em_interrupt_setup(struct rte_eth_dev *dev)
1438 struct e1000_hw *hw =
1439 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1441 /* clear interrupt */
1442 E1000_READ_REG(hw, E1000_ICR);
1443 regval = E1000_READ_REG(hw, E1000_IMS);
1444 E1000_WRITE_REG(hw, E1000_IMS,
1445 regval | E1000_ICR_LSC | E1000_ICR_OTHER);
1450 * It clears the interrupt causes and enables the interrupt.
1451 * It will be called once only during nic initialized.
1454 * Pointer to struct rte_eth_dev.
1457 * - On success, zero.
1458 * - On failure, a negative value.
1461 eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev)
1463 struct e1000_hw *hw =
1464 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1466 E1000_READ_REG(hw, E1000_ICR);
1467 em_rxq_intr_enable(hw);
1472 * It enable receive packet interrupt.
1474 * Pointer to struct e1000_hw
1479 em_rxq_intr_enable(struct e1000_hw *hw)
1481 E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_RXT0);
1482 E1000_WRITE_FLUSH(hw);
1486 * It disabled lsc interrupt.
1488 * Pointer to struct e1000_hw
1493 em_lsc_intr_disable(struct e1000_hw *hw)
1495 E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_LSC | E1000_IMS_OTHER);
1496 E1000_WRITE_FLUSH(hw);
1500 * It disabled receive packet interrupt.
1502 * Pointer to struct e1000_hw
1507 em_rxq_intr_disable(struct e1000_hw *hw)
1509 E1000_READ_REG(hw, E1000_ICR);
1510 E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
1511 E1000_WRITE_FLUSH(hw);
1515 * It reads ICR and gets interrupt causes, check it and set a bit flag
1516 * to update link status.
1519 * Pointer to struct rte_eth_dev.
1522 * - On success, zero.
1523 * - On failure, a negative value.
1526 eth_em_interrupt_get_status(struct rte_eth_dev *dev)
1529 struct e1000_hw *hw =
1530 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1531 struct e1000_interrupt *intr =
1532 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1534 /* read-on-clear nic registers here */
1535 icr = E1000_READ_REG(hw, E1000_ICR);
1536 if (icr & E1000_ICR_LSC) {
1537 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1544 * It executes link_update after knowing an interrupt is prsent.
1547 * Pointer to struct rte_eth_dev.
1550 * - On success, zero.
1551 * - On failure, a negative value.
1554 eth_em_interrupt_action(struct rte_eth_dev *dev,
1555 struct rte_intr_handle *intr_handle)
1557 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1558 struct e1000_hw *hw =
1559 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1560 struct e1000_interrupt *intr =
1561 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1562 struct rte_eth_link link;
1565 if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
1568 intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
1569 rte_intr_enable(intr_handle);
1571 /* set get_link_status to check register later */
1572 hw->mac.get_link_status = 1;
1573 ret = eth_em_link_update(dev, 0);
1575 /* check if link has changed */
1579 rte_eth_linkstatus_get(dev, &link);
1581 if (link.link_status) {
1582 PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s",
1583 dev->data->port_id, link.link_speed,
1584 link.link_duplex == ETH_LINK_FULL_DUPLEX ?
1585 "full-duplex" : "half-duplex");
1587 PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id);
1589 PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
1590 pci_dev->addr.domain, pci_dev->addr.bus,
1591 pci_dev->addr.devid, pci_dev->addr.function);
1597 * Interrupt handler which shall be registered at first.
1600 * Pointer to interrupt handle.
1602 * The address of parameter (struct rte_eth_dev *) regsitered before.
1608 eth_em_interrupt_handler(void *param)
1610 struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1612 eth_em_interrupt_get_status(dev);
1613 eth_em_interrupt_action(dev, dev->intr_handle);
1614 _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
1618 eth_em_led_on(struct rte_eth_dev *dev)
1620 struct e1000_hw *hw;
1622 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1623 return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1627 eth_em_led_off(struct rte_eth_dev *dev)
1629 struct e1000_hw *hw;
1631 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1632 return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1636 eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1638 struct e1000_hw *hw;
1643 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1644 fc_conf->pause_time = hw->fc.pause_time;
1645 fc_conf->high_water = hw->fc.high_water;
1646 fc_conf->low_water = hw->fc.low_water;
1647 fc_conf->send_xon = hw->fc.send_xon;
1648 fc_conf->autoneg = hw->mac.autoneg;
1651 * Return rx_pause and tx_pause status according to actual setting of
1652 * the TFCE and RFCE bits in the CTRL register.
1654 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1655 if (ctrl & E1000_CTRL_TFCE)
1660 if (ctrl & E1000_CTRL_RFCE)
1665 if (rx_pause && tx_pause)
1666 fc_conf->mode = RTE_FC_FULL;
1668 fc_conf->mode = RTE_FC_RX_PAUSE;
1670 fc_conf->mode = RTE_FC_TX_PAUSE;
1672 fc_conf->mode = RTE_FC_NONE;
1678 eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1680 struct e1000_hw *hw;
1682 enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
1688 uint32_t rx_buf_size;
1689 uint32_t max_high_water;
1692 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1693 if (fc_conf->autoneg != hw->mac.autoneg)
1695 rx_buf_size = em_get_rx_buffer_size(hw);
1696 PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
1698 /* At least reserve one Ethernet frame for watermark */
1699 max_high_water = rx_buf_size - ETHER_MAX_LEN;
1700 if ((fc_conf->high_water > max_high_water) ||
1701 (fc_conf->high_water < fc_conf->low_water)) {
1702 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
1703 PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
1707 hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
1708 hw->fc.pause_time = fc_conf->pause_time;
1709 hw->fc.high_water = fc_conf->high_water;
1710 hw->fc.low_water = fc_conf->low_water;
1711 hw->fc.send_xon = fc_conf->send_xon;
1713 err = e1000_setup_link_generic(hw);
1714 if (err == E1000_SUCCESS) {
1716 /* check if we want to forward MAC frames - driver doesn't have native
1717 * capability to do that, so we'll write the registers ourselves */
1719 rctl = E1000_READ_REG(hw, E1000_RCTL);
1721 /* set or clear MFLCN.PMCF bit depending on configuration */
1722 if (fc_conf->mac_ctrl_frame_fwd != 0)
1723 rctl |= E1000_RCTL_PMCF;
1725 rctl &= ~E1000_RCTL_PMCF;
1727 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1728 E1000_WRITE_FLUSH(hw);
1733 PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
1738 eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
1739 uint32_t index, __rte_unused uint32_t pool)
1741 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1743 return e1000_rar_set(hw, mac_addr->addr_bytes, index);
1747 eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
1749 uint8_t addr[ETHER_ADDR_LEN];
1750 struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1752 memset(addr, 0, sizeof(addr));
1754 e1000_rar_set(hw, addr, index);
1758 eth_em_default_mac_addr_set(struct rte_eth_dev *dev,
1759 struct ether_addr *addr)
1761 eth_em_rar_clear(dev, 0);
1763 return eth_em_rar_set(dev, (void *)addr, 0, 0);
1767 eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1769 struct rte_eth_dev_info dev_info;
1770 struct e1000_hw *hw;
1771 uint32_t frame_size;
1774 eth_em_infos_get(dev, &dev_info);
1775 frame_size = mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE;
1777 /* check that mtu is within the allowed range */
1778 if ((mtu < ETHER_MIN_MTU) || (frame_size > dev_info.max_rx_pktlen))
1781 /* refuse mtu that requires the support of scattered packets when this
1782 * feature has not been enabled before. */
1783 if (!dev->data->scattered_rx &&
1784 frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
1787 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1788 rctl = E1000_READ_REG(hw, E1000_RCTL);
1790 /* switch to jumbo mode if needed */
1791 if (frame_size > ETHER_MAX_LEN) {
1792 dev->data->dev_conf.rxmode.offloads |=
1793 DEV_RX_OFFLOAD_JUMBO_FRAME;
1794 rctl |= E1000_RCTL_LPE;
1796 dev->data->dev_conf.rxmode.offloads &=
1797 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
1798 rctl &= ~E1000_RCTL_LPE;
1800 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1802 /* update max frame size */
1803 dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
1808 eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
1809 struct ether_addr *mc_addr_set,
1810 uint32_t nb_mc_addr)
1812 struct e1000_hw *hw;
1814 hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1815 e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
1819 RTE_PMD_REGISTER_PCI(net_e1000_em, rte_em_pmd);
1820 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_em, pci_id_em_map);
1821 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_em, "* igb_uio | uio_pci_generic | vfio-pci");
1823 /* see e1000_logs.c */
1824 RTE_INIT(igb_init_log)
1826 e1000_igb_init_log();