ethdev: replace bus specific struct with generic dev
[dpdk.git] / drivers / net / e1000 / em_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <stdarg.h>
10
11 #include <rte_common.h>
12 #include <rte_interrupts.h>
13 #include <rte_byteorder.h>
14 #include <rte_log.h>
15 #include <rte_debug.h>
16 #include <rte_pci.h>
17 #include <rte_bus_pci.h>
18 #include <rte_ether.h>
19 #include <rte_ethdev_driver.h>
20 #include <rte_ethdev_pci.h>
21 #include <rte_memory.h>
22 #include <rte_eal.h>
23 #include <rte_malloc.h>
24 #include <rte_dev.h>
25
26 #include "e1000_logs.h"
27 #include "base/e1000_api.h"
28 #include "e1000_ethdev.h"
29
30 #define EM_EIAC                 0x000DC
31
32 #define PMD_ROUNDUP(x,y)        (((x) + (y) - 1)/(y) * (y))
33
34
35 static int eth_em_configure(struct rte_eth_dev *dev);
36 static int eth_em_start(struct rte_eth_dev *dev);
37 static void eth_em_stop(struct rte_eth_dev *dev);
38 static void eth_em_close(struct rte_eth_dev *dev);
39 static void eth_em_promiscuous_enable(struct rte_eth_dev *dev);
40 static void eth_em_promiscuous_disable(struct rte_eth_dev *dev);
41 static void eth_em_allmulticast_enable(struct rte_eth_dev *dev);
42 static void eth_em_allmulticast_disable(struct rte_eth_dev *dev);
43 static int eth_em_link_update(struct rte_eth_dev *dev,
44                                 int wait_to_complete);
45 static int eth_em_stats_get(struct rte_eth_dev *dev,
46                                 struct rte_eth_stats *rte_stats);
47 static void eth_em_stats_reset(struct rte_eth_dev *dev);
48 static void eth_em_infos_get(struct rte_eth_dev *dev,
49                                 struct rte_eth_dev_info *dev_info);
50 static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev,
51                                 struct rte_eth_fc_conf *fc_conf);
52 static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
53                                 struct rte_eth_fc_conf *fc_conf);
54 static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
55 static int eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev);
56 static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
57 static int eth_em_interrupt_action(struct rte_eth_dev *dev,
58                                    struct rte_intr_handle *handle);
59 static void eth_em_interrupt_handler(void *param);
60
61 static int em_hw_init(struct e1000_hw *hw);
62 static int em_hardware_init(struct e1000_hw *hw);
63 static void em_hw_control_acquire(struct e1000_hw *hw);
64 static void em_hw_control_release(struct e1000_hw *hw);
65 static void em_init_manageability(struct e1000_hw *hw);
66 static void em_release_manageability(struct e1000_hw *hw);
67
68 static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
69
70 static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
71                 uint16_t vlan_id, int on);
72 static int eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
73 static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
74 static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
75 static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
76 static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
77
78 /*
79 static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
80                                         uint16_t vlan_id, int on);
81 */
82
83 static int eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id);
84 static int eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id);
85 static void em_lsc_intr_disable(struct e1000_hw *hw);
86 static void em_rxq_intr_enable(struct e1000_hw *hw);
87 static void em_rxq_intr_disable(struct e1000_hw *hw);
88
89 static int eth_em_led_on(struct rte_eth_dev *dev);
90 static int eth_em_led_off(struct rte_eth_dev *dev);
91
92 static int em_get_rx_buffer_size(struct e1000_hw *hw);
93 static int eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
94                           uint32_t index, uint32_t pool);
95 static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
96 static void eth_em_default_mac_addr_set(struct rte_eth_dev *dev,
97                                          struct ether_addr *addr);
98
99 static int eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
100                                    struct ether_addr *mc_addr_set,
101                                    uint32_t nb_mc_addr);
102
103 #define EM_FC_PAUSE_TIME 0x0680
104 #define EM_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
105 #define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
106
107 static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
108
109 int e1000_logtype_init;
110 int e1000_logtype_driver;
111
112 /*
113  * The set of PCI devices this driver supports
114  */
115 static const struct rte_pci_id pci_id_em_map[] = {
116         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82540EM) },
117         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_COPPER) },
118         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_FIBER) },
119         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_COPPER) },
120         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_FIBER) },
121         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_QUAD_COPPER) },
122         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_COPPER) },
123         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_FIBER) },
124         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES) },
125         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_DUAL) },
126         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_QUAD) },
127         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER) },
128         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571PT_QUAD_COPPER) },
129         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_FIBER) },
130         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER_LP) },
131         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_COPPER) },
132         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_FIBER) },
133         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_SERDES) },
134         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI) },
135         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82573L) },
136         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574L) },
137         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574LA) },
138         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82583V) },
139         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH2_LV_LM) },
140         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_LM) },
141         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_V) },
142         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_LM) },
143         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_V) },
144         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM2) },
145         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V2) },
146         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM3) },
147         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V3) },
148         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM) },
149         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V) },
150         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM2) },
151         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V2) },
152         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LBG_I219_LM3) },
153         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM4) },
154         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V4) },
155         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM5) },
156         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V5) },
157         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM6) },
158         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V6) },
159         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM7) },
160         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V7) },
161         { .vendor_id = 0, /* sentinel */ },
162 };
163
164 static const struct eth_dev_ops eth_em_ops = {
165         .dev_configure        = eth_em_configure,
166         .dev_start            = eth_em_start,
167         .dev_stop             = eth_em_stop,
168         .dev_close            = eth_em_close,
169         .promiscuous_enable   = eth_em_promiscuous_enable,
170         .promiscuous_disable  = eth_em_promiscuous_disable,
171         .allmulticast_enable  = eth_em_allmulticast_enable,
172         .allmulticast_disable = eth_em_allmulticast_disable,
173         .link_update          = eth_em_link_update,
174         .stats_get            = eth_em_stats_get,
175         .stats_reset          = eth_em_stats_reset,
176         .dev_infos_get        = eth_em_infos_get,
177         .mtu_set              = eth_em_mtu_set,
178         .vlan_filter_set      = eth_em_vlan_filter_set,
179         .vlan_offload_set     = eth_em_vlan_offload_set,
180         .rx_queue_setup       = eth_em_rx_queue_setup,
181         .rx_queue_release     = eth_em_rx_queue_release,
182         .rx_queue_count       = eth_em_rx_queue_count,
183         .rx_descriptor_done   = eth_em_rx_descriptor_done,
184         .rx_descriptor_status = eth_em_rx_descriptor_status,
185         .tx_descriptor_status = eth_em_tx_descriptor_status,
186         .tx_queue_setup       = eth_em_tx_queue_setup,
187         .tx_queue_release     = eth_em_tx_queue_release,
188         .rx_queue_intr_enable = eth_em_rx_queue_intr_enable,
189         .rx_queue_intr_disable = eth_em_rx_queue_intr_disable,
190         .dev_led_on           = eth_em_led_on,
191         .dev_led_off          = eth_em_led_off,
192         .flow_ctrl_get        = eth_em_flow_ctrl_get,
193         .flow_ctrl_set        = eth_em_flow_ctrl_set,
194         .mac_addr_set         = eth_em_default_mac_addr_set,
195         .mac_addr_add         = eth_em_rar_set,
196         .mac_addr_remove      = eth_em_rar_clear,
197         .set_mc_addr_list     = eth_em_set_mc_addr_list,
198         .rxq_info_get         = em_rxq_info_get,
199         .txq_info_get         = em_txq_info_get,
200 };
201
202
203 /**
204  *  eth_em_dev_is_ich8 - Check for ICH8 device
205  *  @hw: pointer to the HW structure
206  *
207  *  return TRUE for ICH8, otherwise FALSE
208  **/
209 static bool
210 eth_em_dev_is_ich8(struct e1000_hw *hw)
211 {
212         DEBUGFUNC("eth_em_dev_is_ich8");
213
214         switch (hw->device_id) {
215         case E1000_DEV_ID_PCH2_LV_LM:
216         case E1000_DEV_ID_PCH_LPT_I217_LM:
217         case E1000_DEV_ID_PCH_LPT_I217_V:
218         case E1000_DEV_ID_PCH_LPTLP_I218_LM:
219         case E1000_DEV_ID_PCH_LPTLP_I218_V:
220         case E1000_DEV_ID_PCH_I218_V2:
221         case E1000_DEV_ID_PCH_I218_LM2:
222         case E1000_DEV_ID_PCH_I218_V3:
223         case E1000_DEV_ID_PCH_I218_LM3:
224         case E1000_DEV_ID_PCH_SPT_I219_LM:
225         case E1000_DEV_ID_PCH_SPT_I219_V:
226         case E1000_DEV_ID_PCH_SPT_I219_LM2:
227         case E1000_DEV_ID_PCH_SPT_I219_V2:
228         case E1000_DEV_ID_PCH_LBG_I219_LM3:
229         case E1000_DEV_ID_PCH_SPT_I219_LM4:
230         case E1000_DEV_ID_PCH_SPT_I219_V4:
231         case E1000_DEV_ID_PCH_SPT_I219_LM5:
232         case E1000_DEV_ID_PCH_SPT_I219_V5:
233         case E1000_DEV_ID_PCH_CNP_I219_LM6:
234         case E1000_DEV_ID_PCH_CNP_I219_V6:
235         case E1000_DEV_ID_PCH_CNP_I219_LM7:
236         case E1000_DEV_ID_PCH_CNP_I219_V7:
237                 return 1;
238         default:
239                 return 0;
240         }
241 }
242
243 static int
244 eth_em_dev_init(struct rte_eth_dev *eth_dev)
245 {
246         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
247         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
248         struct e1000_adapter *adapter =
249                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
250         struct e1000_hw *hw =
251                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
252         struct e1000_vfta * shadow_vfta =
253                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
254
255         eth_dev->dev_ops = &eth_em_ops;
256         eth_dev->rx_pkt_burst = (eth_rx_burst_t)&eth_em_recv_pkts;
257         eth_dev->tx_pkt_burst = (eth_tx_burst_t)&eth_em_xmit_pkts;
258         eth_dev->tx_pkt_prepare = (eth_tx_prep_t)&eth_em_prep_pkts;
259
260         /* for secondary processes, we don't initialise any further as primary
261          * has already done this work. Only check we don't need a different
262          * RX function */
263         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
264                 if (eth_dev->data->scattered_rx)
265                         eth_dev->rx_pkt_burst =
266                                 (eth_rx_burst_t)&eth_em_recv_scattered_pkts;
267                 return 0;
268         }
269
270         rte_eth_copy_pci_info(eth_dev, pci_dev);
271
272         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
273         hw->device_id = pci_dev->id.device_id;
274         adapter->stopped = 0;
275
276         /* For ICH8 support we'll need to map the flash memory BAR */
277         if (eth_em_dev_is_ich8(hw))
278                 hw->flash_address = (void *)pci_dev->mem_resource[1].addr;
279
280         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
281                         em_hw_init(hw) != 0) {
282                 PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
283                         "failed to init HW",
284                         eth_dev->data->port_id, pci_dev->id.vendor_id,
285                         pci_dev->id.device_id);
286                 return -ENODEV;
287         }
288
289         /* Allocate memory for storing MAC addresses */
290         eth_dev->data->mac_addrs = rte_zmalloc("e1000", ETHER_ADDR_LEN *
291                         hw->mac.rar_entry_count, 0);
292         if (eth_dev->data->mac_addrs == NULL) {
293                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
294                         "store MAC addresses",
295                         ETHER_ADDR_LEN * hw->mac.rar_entry_count);
296                 return -ENOMEM;
297         }
298
299         /* Copy the permanent MAC address */
300         ether_addr_copy((struct ether_addr *) hw->mac.addr,
301                 eth_dev->data->mac_addrs);
302
303         /* initialize the vfta */
304         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
305
306         PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
307                      eth_dev->data->port_id, pci_dev->id.vendor_id,
308                      pci_dev->id.device_id);
309
310         rte_intr_callback_register(intr_handle,
311                                    eth_em_interrupt_handler, eth_dev);
312
313         return 0;
314 }
315
316 static int
317 eth_em_dev_uninit(struct rte_eth_dev *eth_dev)
318 {
319         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
320         struct e1000_adapter *adapter =
321                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
322         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
323
324         PMD_INIT_FUNC_TRACE();
325
326         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
327                 return -EPERM;
328
329         if (adapter->stopped == 0)
330                 eth_em_close(eth_dev);
331
332         eth_dev->dev_ops = NULL;
333         eth_dev->rx_pkt_burst = NULL;
334         eth_dev->tx_pkt_burst = NULL;
335
336         rte_free(eth_dev->data->mac_addrs);
337         eth_dev->data->mac_addrs = NULL;
338
339         /* disable uio intr before callback unregister */
340         rte_intr_disable(intr_handle);
341         rte_intr_callback_unregister(intr_handle,
342                                      eth_em_interrupt_handler, eth_dev);
343
344         return 0;
345 }
346
347 static int eth_em_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
348         struct rte_pci_device *pci_dev)
349 {
350         return rte_eth_dev_pci_generic_probe(pci_dev,
351                 sizeof(struct e1000_adapter), eth_em_dev_init);
352 }
353
354 static int eth_em_pci_remove(struct rte_pci_device *pci_dev)
355 {
356         return rte_eth_dev_pci_generic_remove(pci_dev, eth_em_dev_uninit);
357 }
358
359 static struct rte_pci_driver rte_em_pmd = {
360         .id_table = pci_id_em_map,
361         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
362                      RTE_PCI_DRV_IOVA_AS_VA,
363         .probe = eth_em_pci_probe,
364         .remove = eth_em_pci_remove,
365 };
366
367 static int
368 em_hw_init(struct e1000_hw *hw)
369 {
370         int diag;
371
372         diag = hw->mac.ops.init_params(hw);
373         if (diag != 0) {
374                 PMD_INIT_LOG(ERR, "MAC Initialization Error");
375                 return diag;
376         }
377         diag = hw->nvm.ops.init_params(hw);
378         if (diag != 0) {
379                 PMD_INIT_LOG(ERR, "NVM Initialization Error");
380                 return diag;
381         }
382         diag = hw->phy.ops.init_params(hw);
383         if (diag != 0) {
384                 PMD_INIT_LOG(ERR, "PHY Initialization Error");
385                 return diag;
386         }
387         (void) e1000_get_bus_info(hw);
388
389         hw->mac.autoneg = 1;
390         hw->phy.autoneg_wait_to_complete = 0;
391         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
392
393         e1000_init_script_state_82541(hw, TRUE);
394         e1000_set_tbi_compatibility_82543(hw, TRUE);
395
396         /* Copper options */
397         if (hw->phy.media_type == e1000_media_type_copper) {
398                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
399                 hw->phy.disable_polarity_correction = 0;
400                 hw->phy.ms_type = e1000_ms_hw_default;
401         }
402
403         /*
404          * Start from a known state, this is important in reading the nvm
405          * and mac from that.
406          */
407         e1000_reset_hw(hw);
408
409         /* Make sure we have a good EEPROM before we read from it */
410         if (e1000_validate_nvm_checksum(hw) < 0) {
411                 /*
412                  * Some PCI-E parts fail the first check due to
413                  * the link being in sleep state, call it again,
414                  * if it fails a second time its a real issue.
415                  */
416                 diag = e1000_validate_nvm_checksum(hw);
417                 if (diag < 0) {
418                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
419                         goto error;
420                 }
421         }
422
423         /* Read the permanent MAC address out of the EEPROM */
424         diag = e1000_read_mac_addr(hw);
425         if (diag != 0) {
426                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
427                 goto error;
428         }
429
430         /* Now initialize the hardware */
431         diag = em_hardware_init(hw);
432         if (diag != 0) {
433                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
434                 goto error;
435         }
436
437         hw->mac.get_link_status = 1;
438
439         /* Indicate SOL/IDER usage */
440         diag = e1000_check_reset_block(hw);
441         if (diag < 0) {
442                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
443                         "SOL/IDER session");
444         }
445         return 0;
446
447 error:
448         em_hw_control_release(hw);
449         return diag;
450 }
451
452 static int
453 eth_em_configure(struct rte_eth_dev *dev)
454 {
455         struct e1000_interrupt *intr =
456                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
457         struct rte_eth_dev_info dev_info;
458         uint64_t rx_offloads;
459         uint64_t tx_offloads;
460
461         PMD_INIT_FUNC_TRACE();
462         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
463
464         eth_em_infos_get(dev, &dev_info);
465         rx_offloads = dev->data->dev_conf.rxmode.offloads;
466         if ((rx_offloads & dev_info.rx_offload_capa) != rx_offloads) {
467                 PMD_DRV_LOG(ERR, "Some Rx offloads are not supported "
468                             "requested 0x%" PRIx64 " supported 0x%" PRIx64,
469                             rx_offloads, dev_info.rx_offload_capa);
470                 return -ENOTSUP;
471         }
472         tx_offloads = dev->data->dev_conf.txmode.offloads;
473         if ((tx_offloads & dev_info.tx_offload_capa) != tx_offloads) {
474                 PMD_DRV_LOG(ERR, "Some Tx offloads are not supported "
475                             "requested 0x%" PRIx64 " supported 0x%" PRIx64,
476                             tx_offloads, dev_info.tx_offload_capa);
477                 return -ENOTSUP;
478         }
479
480         PMD_INIT_FUNC_TRACE();
481
482         return 0;
483 }
484
485 static void
486 em_set_pba(struct e1000_hw *hw)
487 {
488         uint32_t pba;
489
490         /*
491          * Packet Buffer Allocation (PBA)
492          * Writing PBA sets the receive portion of the buffer
493          * the remainder is used for the transmit buffer.
494          * Devices before the 82547 had a Packet Buffer of 64K.
495          * After the 82547 the buffer was reduced to 40K.
496          */
497         switch (hw->mac.type) {
498                 case e1000_82547:
499                 case e1000_82547_rev_2:
500                 /* 82547: Total Packet Buffer is 40K */
501                         pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
502                         break;
503                 case e1000_82571:
504                 case e1000_82572:
505                 case e1000_80003es2lan:
506                         pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
507                         break;
508                 case e1000_82573: /* 82573: Total Packet Buffer is 32K */
509                         pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
510                         break;
511                 case e1000_82574:
512                 case e1000_82583:
513                         pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
514                         break;
515                 case e1000_ich8lan:
516                         pba = E1000_PBA_8K;
517                         break;
518                 case e1000_ich9lan:
519                 case e1000_ich10lan:
520                         pba = E1000_PBA_10K;
521                         break;
522                 case e1000_pchlan:
523                 case e1000_pch2lan:
524                 case e1000_pch_lpt:
525                 case e1000_pch_spt:
526                 case e1000_pch_cnp:
527                         pba = E1000_PBA_26K;
528                         break;
529                 default:
530                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
531         }
532
533         E1000_WRITE_REG(hw, E1000_PBA, pba);
534 }
535
536 static void
537 eth_em_rxtx_control(struct rte_eth_dev *dev,
538                     bool enable)
539 {
540         struct e1000_hw *hw =
541                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
542         uint32_t tctl, rctl;
543
544         tctl = E1000_READ_REG(hw, E1000_TCTL);
545         rctl = E1000_READ_REG(hw, E1000_RCTL);
546         if (enable) {
547                 /* enable Tx/Rx */
548                 tctl |= E1000_TCTL_EN;
549                 rctl |= E1000_RCTL_EN;
550         } else {
551                 /* disable Tx/Rx */
552                 tctl &= ~E1000_TCTL_EN;
553                 rctl &= ~E1000_RCTL_EN;
554         }
555         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
556         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
557         E1000_WRITE_FLUSH(hw);
558 }
559
560 static int
561 eth_em_start(struct rte_eth_dev *dev)
562 {
563         struct e1000_adapter *adapter =
564                 E1000_DEV_PRIVATE(dev->data->dev_private);
565         struct e1000_hw *hw =
566                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
567         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
568         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
569         int ret, mask;
570         uint32_t intr_vector = 0;
571         uint32_t *speeds;
572         int num_speeds;
573         bool autoneg;
574
575         PMD_INIT_FUNC_TRACE();
576
577         eth_em_stop(dev);
578
579         e1000_power_up_phy(hw);
580
581         /* Set default PBA value */
582         em_set_pba(hw);
583
584         /* Put the address into the Receive Address Array */
585         e1000_rar_set(hw, hw->mac.addr, 0);
586
587         /*
588          * With the 82571 adapter, RAR[0] may be overwritten
589          * when the other port is reset, we make a duplicate
590          * in RAR[14] for that eventuality, this assures
591          * the interface continues to function.
592          */
593         if (hw->mac.type == e1000_82571) {
594                 e1000_set_laa_state_82571(hw, TRUE);
595                 e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
596         }
597
598         /* Initialize the hardware */
599         if (em_hardware_init(hw)) {
600                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
601                 return -EIO;
602         }
603
604         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN);
605
606         /* Configure for OS presence */
607         em_init_manageability(hw);
608
609         if (dev->data->dev_conf.intr_conf.rxq != 0) {
610                 intr_vector = dev->data->nb_rx_queues;
611                 if (rte_intr_efd_enable(intr_handle, intr_vector))
612                         return -1;
613         }
614
615         if (rte_intr_dp_is_en(intr_handle)) {
616                 intr_handle->intr_vec =
617                         rte_zmalloc("intr_vec",
618                                         dev->data->nb_rx_queues * sizeof(int), 0);
619                 if (intr_handle->intr_vec == NULL) {
620                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
621                                                 " intr_vec", dev->data->nb_rx_queues);
622                         return -ENOMEM;
623                 }
624
625                 /* enable rx interrupt */
626                 em_rxq_intr_enable(hw);
627         }
628
629         eth_em_tx_init(dev);
630
631         ret = eth_em_rx_init(dev);
632         if (ret) {
633                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
634                 em_dev_clear_queues(dev);
635                 return ret;
636         }
637
638         e1000_clear_hw_cntrs_base_generic(hw);
639
640         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
641                         ETH_VLAN_EXTEND_MASK;
642         ret = eth_em_vlan_offload_set(dev, mask);
643         if (ret) {
644                 PMD_INIT_LOG(ERR, "Unable to update vlan offload");
645                 em_dev_clear_queues(dev);
646                 return ret;
647         }
648
649         /* Set Interrupt Throttling Rate to maximum allowed value. */
650         E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
651
652         /* Setup link speed and duplex */
653         speeds = &dev->data->dev_conf.link_speeds;
654         if (*speeds == ETH_LINK_SPEED_AUTONEG) {
655                 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
656                 hw->mac.autoneg = 1;
657         } else {
658                 num_speeds = 0;
659                 autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
660
661                 /* Reset */
662                 hw->phy.autoneg_advertised = 0;
663
664                 if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
665                                 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
666                                 ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
667                         num_speeds = -1;
668                         goto error_invalid_config;
669                 }
670                 if (*speeds & ETH_LINK_SPEED_10M_HD) {
671                         hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
672                         num_speeds++;
673                 }
674                 if (*speeds & ETH_LINK_SPEED_10M) {
675                         hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
676                         num_speeds++;
677                 }
678                 if (*speeds & ETH_LINK_SPEED_100M_HD) {
679                         hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
680                         num_speeds++;
681                 }
682                 if (*speeds & ETH_LINK_SPEED_100M) {
683                         hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
684                         num_speeds++;
685                 }
686                 if (*speeds & ETH_LINK_SPEED_1G) {
687                         hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
688                         num_speeds++;
689                 }
690                 if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
691                         goto error_invalid_config;
692
693                 /* Set/reset the mac.autoneg based on the link speed,
694                  * fixed or not
695                  */
696                 if (!autoneg) {
697                         hw->mac.autoneg = 0;
698                         hw->mac.forced_speed_duplex =
699                                         hw->phy.autoneg_advertised;
700                 } else {
701                         hw->mac.autoneg = 1;
702                 }
703         }
704
705         e1000_setup_link(hw);
706
707         if (rte_intr_allow_others(intr_handle)) {
708                 /* check if lsc interrupt is enabled */
709                 if (dev->data->dev_conf.intr_conf.lsc != 0) {
710                         ret = eth_em_interrupt_setup(dev);
711                         if (ret) {
712                                 PMD_INIT_LOG(ERR, "Unable to setup interrupts");
713                                 em_dev_clear_queues(dev);
714                                 return ret;
715                         }
716                 }
717         } else {
718                 rte_intr_callback_unregister(intr_handle,
719                                                 eth_em_interrupt_handler,
720                                                 (void *)dev);
721                 if (dev->data->dev_conf.intr_conf.lsc != 0)
722                         PMD_INIT_LOG(INFO, "lsc won't enable because of"
723                                      " no intr multiplexn");
724         }
725         /* check if rxq interrupt is enabled */
726         if (dev->data->dev_conf.intr_conf.rxq != 0)
727                 eth_em_rxq_interrupt_setup(dev);
728
729         rte_intr_enable(intr_handle);
730
731         adapter->stopped = 0;
732
733         eth_em_rxtx_control(dev, true);
734         eth_em_link_update(dev, 0);
735
736         PMD_INIT_LOG(DEBUG, "<<");
737
738         return 0;
739
740 error_invalid_config:
741         PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
742                      dev->data->dev_conf.link_speeds, dev->data->port_id);
743         em_dev_clear_queues(dev);
744         return -EINVAL;
745 }
746
747 /*********************************************************************
748  *
749  *  This routine disables all traffic on the adapter by issuing a
750  *  global reset on the MAC.
751  *
752  **********************************************************************/
753 static void
754 eth_em_stop(struct rte_eth_dev *dev)
755 {
756         struct rte_eth_link link;
757         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
758         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
759         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
760
761         eth_em_rxtx_control(dev, false);
762         em_rxq_intr_disable(hw);
763         em_lsc_intr_disable(hw);
764
765         e1000_reset_hw(hw);
766         if (hw->mac.type >= e1000_82544)
767                 E1000_WRITE_REG(hw, E1000_WUC, 0);
768
769         /* Power down the phy. Needed to make the link go down */
770         e1000_power_down_phy(hw);
771
772         em_dev_clear_queues(dev);
773
774         /* clear the recorded link status */
775         memset(&link, 0, sizeof(link));
776         rte_eth_linkstatus_set(dev, &link);
777
778         if (!rte_intr_allow_others(intr_handle))
779                 /* resume to the default handler */
780                 rte_intr_callback_register(intr_handle,
781                                            eth_em_interrupt_handler,
782                                            (void *)dev);
783
784         /* Clean datapath event and queue/vec mapping */
785         rte_intr_efd_disable(intr_handle);
786         if (intr_handle->intr_vec != NULL) {
787                 rte_free(intr_handle->intr_vec);
788                 intr_handle->intr_vec = NULL;
789         }
790 }
791
792 static void
793 eth_em_close(struct rte_eth_dev *dev)
794 {
795         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
796         struct e1000_adapter *adapter =
797                 E1000_DEV_PRIVATE(dev->data->dev_private);
798
799         eth_em_stop(dev);
800         adapter->stopped = 1;
801         em_dev_free_queues(dev);
802         e1000_phy_hw_reset(hw);
803         em_release_manageability(hw);
804         em_hw_control_release(hw);
805 }
806
807 static int
808 em_get_rx_buffer_size(struct e1000_hw *hw)
809 {
810         uint32_t rx_buf_size;
811
812         rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
813         return rx_buf_size;
814 }
815
816 /*********************************************************************
817  *
818  *  Initialize the hardware
819  *
820  **********************************************************************/
821 static int
822 em_hardware_init(struct e1000_hw *hw)
823 {
824         uint32_t rx_buf_size;
825         int diag;
826
827         /* Issue a global reset */
828         e1000_reset_hw(hw);
829
830         /* Let the firmware know the OS is in control */
831         em_hw_control_acquire(hw);
832
833         /*
834          * These parameters control the automatic generation (Tx) and
835          * response (Rx) to Ethernet PAUSE frames.
836          * - High water mark should allow for at least two standard size (1518)
837          *   frames to be received after sending an XOFF.
838          * - Low water mark works best when it is very near the high water mark.
839          *   This allows the receiver to restart by sending XON when it has
840          *   drained a bit. Here we use an arbitrary value of 1500 which will
841          *   restart after one full frame is pulled from the buffer. There
842          *   could be several smaller frames in the buffer and if so they will
843          *   not trigger the XON until their total number reduces the buffer
844          *   by 1500.
845          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
846          */
847         rx_buf_size = em_get_rx_buffer_size(hw);
848
849         hw->fc.high_water = rx_buf_size - PMD_ROUNDUP(ETHER_MAX_LEN * 2, 1024);
850         hw->fc.low_water = hw->fc.high_water - 1500;
851
852         if (hw->mac.type == e1000_80003es2lan)
853                 hw->fc.pause_time = UINT16_MAX;
854         else
855                 hw->fc.pause_time = EM_FC_PAUSE_TIME;
856
857         hw->fc.send_xon = 1;
858
859         /* Set Flow control, use the tunable location if sane */
860         if (em_fc_setting <= e1000_fc_full)
861                 hw->fc.requested_mode = em_fc_setting;
862         else
863                 hw->fc.requested_mode = e1000_fc_none;
864
865         /* Workaround: no TX flow ctrl for PCH */
866         if (hw->mac.type == e1000_pchlan)
867                 hw->fc.requested_mode = e1000_fc_rx_pause;
868
869         /* Override - settings for PCH2LAN, ya its magic :) */
870         if (hw->mac.type == e1000_pch2lan) {
871                 hw->fc.high_water = 0x5C20;
872                 hw->fc.low_water = 0x5048;
873                 hw->fc.pause_time = 0x0650;
874                 hw->fc.refresh_time = 0x0400;
875         } else if (hw->mac.type == e1000_pch_lpt ||
876                    hw->mac.type == e1000_pch_spt ||
877                    hw->mac.type == e1000_pch_cnp) {
878                 hw->fc.requested_mode = e1000_fc_full;
879         }
880
881         diag = e1000_init_hw(hw);
882         if (diag < 0)
883                 return diag;
884         e1000_check_for_link(hw);
885         return 0;
886 }
887
888 /* This function is based on em_update_stats_counters() in e1000/if_em.c */
889 static int
890 eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
891 {
892         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
893         struct e1000_hw_stats *stats =
894                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
895         int pause_frames;
896
897         if(hw->phy.media_type == e1000_media_type_copper ||
898                         (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
899                 stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
900                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
901         }
902
903         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
904         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
905         stats->scc += E1000_READ_REG(hw, E1000_SCC);
906         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
907
908         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
909         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
910         stats->colc += E1000_READ_REG(hw, E1000_COLC);
911         stats->dc += E1000_READ_REG(hw, E1000_DC);
912         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
913         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
914         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
915
916         /*
917          * For watchdog management we need to know if we have been
918          * paused during the last interval, so capture that here.
919          */
920         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
921         stats->xoffrxc += pause_frames;
922         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
923         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
924         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
925         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
926         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
927         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
928         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
929         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
930         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
931         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
932         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
933         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
934
935         /*
936          * For the 64-bit byte counters the low dword must be read first.
937          * Both registers clear on the read of the high dword.
938          */
939
940         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
941         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
942         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
943         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
944
945         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
946         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
947         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
948         stats->roc += E1000_READ_REG(hw, E1000_ROC);
949         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
950
951         stats->tor += E1000_READ_REG(hw, E1000_TORH);
952         stats->tot += E1000_READ_REG(hw, E1000_TOTH);
953
954         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
955         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
956         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
957         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
958         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
959         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
960         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
961         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
962         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
963         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
964
965         /* Interrupt Counts */
966
967         if (hw->mac.type >= e1000_82571) {
968                 stats->iac += E1000_READ_REG(hw, E1000_IAC);
969                 stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
970                 stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
971                 stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
972                 stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
973                 stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
974                 stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
975                 stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
976                 stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
977         }
978
979         if (hw->mac.type >= e1000_82543) {
980                 stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
981                 stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
982                 stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
983                 stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
984                 stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
985                 stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
986         }
987
988         if (rte_stats == NULL)
989                 return -EINVAL;
990
991         /* Rx Errors */
992         rte_stats->imissed = stats->mpc;
993         rte_stats->ierrors = stats->crcerrs +
994                              stats->rlec + stats->ruc + stats->roc +
995                              stats->rxerrc + stats->algnerrc + stats->cexterr;
996
997         /* Tx Errors */
998         rte_stats->oerrors = stats->ecol + stats->latecol;
999
1000         rte_stats->ipackets = stats->gprc;
1001         rte_stats->opackets = stats->gptc;
1002         rte_stats->ibytes   = stats->gorc;
1003         rte_stats->obytes   = stats->gotc;
1004         return 0;
1005 }
1006
1007 static void
1008 eth_em_stats_reset(struct rte_eth_dev *dev)
1009 {
1010         struct e1000_hw_stats *hw_stats =
1011                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1012
1013         /* HW registers are cleared on read */
1014         eth_em_stats_get(dev, NULL);
1015
1016         /* Reset software totals */
1017         memset(hw_stats, 0, sizeof(*hw_stats));
1018 }
1019
1020 static int
1021 eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
1022 {
1023         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1024         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1025         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1026
1027         em_rxq_intr_enable(hw);
1028         rte_intr_enable(intr_handle);
1029
1030         return 0;
1031 }
1032
1033 static int
1034 eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
1035 {
1036         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1037
1038         em_rxq_intr_disable(hw);
1039
1040         return 0;
1041 }
1042
1043 uint32_t
1044 em_get_max_pktlen(struct rte_eth_dev *dev)
1045 {
1046         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1047
1048         switch (hw->mac.type) {
1049         case e1000_82571:
1050         case e1000_82572:
1051         case e1000_ich9lan:
1052         case e1000_ich10lan:
1053         case e1000_pch2lan:
1054         case e1000_pch_lpt:
1055         case e1000_pch_spt:
1056         case e1000_pch_cnp:
1057         case e1000_82574:
1058         case e1000_80003es2lan: /* 9K Jumbo Frame size */
1059         case e1000_82583:
1060                 return 0x2412;
1061         case e1000_pchlan:
1062                 return 0x1000;
1063         /* Adapters that do not support jumbo frames */
1064         case e1000_ich8lan:
1065                 return ETHER_MAX_LEN;
1066         default:
1067                 return MAX_JUMBO_FRAME_SIZE;
1068         }
1069 }
1070
1071 static void
1072 eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
1073 {
1074         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1075
1076         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
1077         dev_info->max_rx_pktlen = em_get_max_pktlen(dev);
1078         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
1079
1080         /*
1081          * Starting with 631xESB hw supports 2 TX/RX queues per port.
1082          * Unfortunatelly, all these nics have just one TX context.
1083          * So we have few choises for TX:
1084          * - Use just one TX queue.
1085          * - Allow cksum offload only for one TX queue.
1086          * - Don't allow TX cksum offload at all.
1087          * For now, option #1 was chosen.
1088          * To use second RX queue we have to use extended RX descriptor
1089          * (Multiple Receive Queues are mutually exclusive with UDP
1090          * fragmentation and are not supported when a legacy receive
1091          * descriptor format is used).
1092          * Which means separate RX routinies - as legacy nics (82540, 82545)
1093          * don't support extended RXD.
1094          * To avoid it we support just one RX queue for now (no RSS).
1095          */
1096
1097         dev_info->max_rx_queues = 1;
1098         dev_info->max_tx_queues = 1;
1099
1100         dev_info->rx_queue_offload_capa = em_get_rx_queue_offloads_capa(dev);
1101         dev_info->rx_offload_capa = em_get_rx_port_offloads_capa(dev) |
1102                                     dev_info->rx_queue_offload_capa;
1103         dev_info->tx_queue_offload_capa = em_get_tx_queue_offloads_capa(dev);
1104         dev_info->tx_offload_capa = em_get_tx_port_offloads_capa(dev) |
1105                                     dev_info->tx_queue_offload_capa;
1106
1107         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
1108                 .nb_max = E1000_MAX_RING_DESC,
1109                 .nb_min = E1000_MIN_RING_DESC,
1110                 .nb_align = EM_RXD_ALIGN,
1111         };
1112
1113         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
1114                 .nb_max = E1000_MAX_RING_DESC,
1115                 .nb_min = E1000_MIN_RING_DESC,
1116                 .nb_align = EM_TXD_ALIGN,
1117                 .nb_seg_max = EM_TX_MAX_SEG,
1118                 .nb_mtu_seg_max = EM_TX_MAX_MTU_SEG,
1119         };
1120
1121         dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1122                         ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1123                         ETH_LINK_SPEED_1G;
1124 }
1125
1126 /* return 0 means link status changed, -1 means not changed */
1127 static int
1128 eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
1129 {
1130         struct e1000_hw *hw =
1131                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1132         struct rte_eth_link link;
1133         int link_check, count;
1134
1135         link_check = 0;
1136         hw->mac.get_link_status = 1;
1137
1138         /* possible wait-to-complete in up to 9 seconds */
1139         for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
1140                 /* Read the real link status */
1141                 switch (hw->phy.media_type) {
1142                 case e1000_media_type_copper:
1143                         /* Do the work to read phy */
1144                         e1000_check_for_link(hw);
1145                         link_check = !hw->mac.get_link_status;
1146                         break;
1147
1148                 case e1000_media_type_fiber:
1149                         e1000_check_for_link(hw);
1150                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1151                                         E1000_STATUS_LU);
1152                         break;
1153
1154                 case e1000_media_type_internal_serdes:
1155                         e1000_check_for_link(hw);
1156                         link_check = hw->mac.serdes_has_link;
1157                         break;
1158
1159                 default:
1160                         break;
1161                 }
1162                 if (link_check || wait_to_complete == 0)
1163                         break;
1164                 rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
1165         }
1166         memset(&link, 0, sizeof(link));
1167
1168         /* Now we check if a transition has happened */
1169         if (link_check && (link.link_status == ETH_LINK_DOWN)) {
1170                 uint16_t duplex, speed;
1171                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1172                 link.link_duplex = (duplex == FULL_DUPLEX) ?
1173                                 ETH_LINK_FULL_DUPLEX :
1174                                 ETH_LINK_HALF_DUPLEX;
1175                 link.link_speed = speed;
1176                 link.link_status = ETH_LINK_UP;
1177                 link.link_autoneg = !(dev->data->dev_conf.link_speeds &
1178                                 ETH_LINK_SPEED_FIXED);
1179         } else if (!link_check && (link.link_status == ETH_LINK_UP)) {
1180                 link.link_speed = 0;
1181                 link.link_duplex = ETH_LINK_HALF_DUPLEX;
1182                 link.link_status = ETH_LINK_DOWN;
1183                 link.link_autoneg = ETH_LINK_FIXED;
1184         }
1185
1186         return rte_eth_linkstatus_set(dev, &link);
1187 }
1188
1189 /*
1190  * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1191  * For ASF and Pass Through versions of f/w this means
1192  * that the driver is loaded. For AMT version type f/w
1193  * this means that the network i/f is open.
1194  */
1195 static void
1196 em_hw_control_acquire(struct e1000_hw *hw)
1197 {
1198         uint32_t ctrl_ext, swsm;
1199
1200         /* Let firmware know the driver has taken over */
1201         if (hw->mac.type == e1000_82573) {
1202                 swsm = E1000_READ_REG(hw, E1000_SWSM);
1203                 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
1204
1205         } else {
1206                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1207                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1208                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1209         }
1210 }
1211
1212 /*
1213  * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
1214  * For ASF and Pass Through versions of f/w this means that the
1215  * driver is no longer loaded. For AMT versions of the
1216  * f/w this means that the network i/f is closed.
1217  */
1218 static void
1219 em_hw_control_release(struct e1000_hw *hw)
1220 {
1221         uint32_t ctrl_ext, swsm;
1222
1223         /* Let firmware taken over control of h/w */
1224         if (hw->mac.type == e1000_82573) {
1225                 swsm = E1000_READ_REG(hw, E1000_SWSM);
1226                 E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1227         } else {
1228                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1229                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1230                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1231         }
1232 }
1233
1234 /*
1235  * Bit of a misnomer, what this really means is
1236  * to enable OS management of the system... aka
1237  * to disable special hardware management features.
1238  */
1239 static void
1240 em_init_manageability(struct e1000_hw *hw)
1241 {
1242         if (e1000_enable_mng_pass_thru(hw)) {
1243                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
1244                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
1245
1246                 /* disable hardware interception of ARP */
1247                 manc &= ~(E1000_MANC_ARP_EN);
1248
1249                 /* enable receiving management packets to the host */
1250                 manc |= E1000_MANC_EN_MNG2HOST;
1251                 manc2h |= 1 << 5;  /* Mng Port 623 */
1252                 manc2h |= 1 << 6;  /* Mng Port 664 */
1253                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
1254                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1255         }
1256 }
1257
1258 /*
1259  * Give control back to hardware management
1260  * controller if there is one.
1261  */
1262 static void
1263 em_release_manageability(struct e1000_hw *hw)
1264 {
1265         uint32_t manc;
1266
1267         if (e1000_enable_mng_pass_thru(hw)) {
1268                 manc = E1000_READ_REG(hw, E1000_MANC);
1269
1270                 /* re-enable hardware interception of ARP */
1271                 manc |= E1000_MANC_ARP_EN;
1272                 manc &= ~E1000_MANC_EN_MNG2HOST;
1273
1274                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1275         }
1276 }
1277
1278 static void
1279 eth_em_promiscuous_enable(struct rte_eth_dev *dev)
1280 {
1281         struct e1000_hw *hw =
1282                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1283         uint32_t rctl;
1284
1285         rctl = E1000_READ_REG(hw, E1000_RCTL);
1286         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1287         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1288 }
1289
1290 static void
1291 eth_em_promiscuous_disable(struct rte_eth_dev *dev)
1292 {
1293         struct e1000_hw *hw =
1294                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1295         uint32_t rctl;
1296
1297         rctl = E1000_READ_REG(hw, E1000_RCTL);
1298         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
1299         if (dev->data->all_multicast == 1)
1300                 rctl |= E1000_RCTL_MPE;
1301         else
1302                 rctl &= (~E1000_RCTL_MPE);
1303         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1304 }
1305
1306 static void
1307 eth_em_allmulticast_enable(struct rte_eth_dev *dev)
1308 {
1309         struct e1000_hw *hw =
1310                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1311         uint32_t rctl;
1312
1313         rctl = E1000_READ_REG(hw, E1000_RCTL);
1314         rctl |= E1000_RCTL_MPE;
1315         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1316 }
1317
1318 static void
1319 eth_em_allmulticast_disable(struct rte_eth_dev *dev)
1320 {
1321         struct e1000_hw *hw =
1322                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1323         uint32_t rctl;
1324
1325         if (dev->data->promiscuous == 1)
1326                 return; /* must remain in all_multicast mode */
1327         rctl = E1000_READ_REG(hw, E1000_RCTL);
1328         rctl &= (~E1000_RCTL_MPE);
1329         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1330 }
1331
1332 static int
1333 eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1334 {
1335         struct e1000_hw *hw =
1336                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1337         struct e1000_vfta * shadow_vfta =
1338                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1339         uint32_t vfta;
1340         uint32_t vid_idx;
1341         uint32_t vid_bit;
1342
1343         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
1344                               E1000_VFTA_ENTRY_MASK);
1345         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
1346         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
1347         if (on)
1348                 vfta |= vid_bit;
1349         else
1350                 vfta &= ~vid_bit;
1351         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
1352
1353         /* update local VFTA copy */
1354         shadow_vfta->vfta[vid_idx] = vfta;
1355
1356         return 0;
1357 }
1358
1359 static void
1360 em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
1361 {
1362         struct e1000_hw *hw =
1363                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1364         uint32_t reg;
1365
1366         /* Filter Table Disable */
1367         reg = E1000_READ_REG(hw, E1000_RCTL);
1368         reg &= ~E1000_RCTL_CFIEN;
1369         reg &= ~E1000_RCTL_VFE;
1370         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1371 }
1372
1373 static void
1374 em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1375 {
1376         struct e1000_hw *hw =
1377                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1378         struct e1000_vfta * shadow_vfta =
1379                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1380         uint32_t reg;
1381         int i;
1382
1383         /* Filter Table Enable, CFI not used for packet acceptance */
1384         reg = E1000_READ_REG(hw, E1000_RCTL);
1385         reg &= ~E1000_RCTL_CFIEN;
1386         reg |= E1000_RCTL_VFE;
1387         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1388
1389         /* restore vfta from local copy */
1390         for (i = 0; i < IGB_VFTA_SIZE; i++)
1391                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
1392 }
1393
1394 static void
1395 em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
1396 {
1397         struct e1000_hw *hw =
1398                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1399         uint32_t reg;
1400
1401         /* VLAN Mode Disable */
1402         reg = E1000_READ_REG(hw, E1000_CTRL);
1403         reg &= ~E1000_CTRL_VME;
1404         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1405
1406 }
1407
1408 static void
1409 em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
1410 {
1411         struct e1000_hw *hw =
1412                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1413         uint32_t reg;
1414
1415         /* VLAN Mode Enable */
1416         reg = E1000_READ_REG(hw, E1000_CTRL);
1417         reg |= E1000_CTRL_VME;
1418         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1419 }
1420
1421 static int
1422 eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1423 {
1424         struct rte_eth_rxmode *rxmode;
1425
1426         rxmode = &dev->data->dev_conf.rxmode;
1427         if(mask & ETH_VLAN_STRIP_MASK){
1428                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1429                         em_vlan_hw_strip_enable(dev);
1430                 else
1431                         em_vlan_hw_strip_disable(dev);
1432         }
1433
1434         if(mask & ETH_VLAN_FILTER_MASK){
1435                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
1436                         em_vlan_hw_filter_enable(dev);
1437                 else
1438                         em_vlan_hw_filter_disable(dev);
1439         }
1440
1441         return 0;
1442 }
1443
1444 /*
1445  * It enables the interrupt mask and then enable the interrupt.
1446  *
1447  * @param dev
1448  *  Pointer to struct rte_eth_dev.
1449  *
1450  * @return
1451  *  - On success, zero.
1452  *  - On failure, a negative value.
1453  */
1454 static int
1455 eth_em_interrupt_setup(struct rte_eth_dev *dev)
1456 {
1457         uint32_t regval;
1458         struct e1000_hw *hw =
1459                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1460
1461         /* clear interrupt */
1462         E1000_READ_REG(hw, E1000_ICR);
1463         regval = E1000_READ_REG(hw, E1000_IMS);
1464         E1000_WRITE_REG(hw, E1000_IMS, regval | E1000_ICR_LSC);
1465         return 0;
1466 }
1467
1468 /*
1469  * It clears the interrupt causes and enables the interrupt.
1470  * It will be called once only during nic initialized.
1471  *
1472  * @param dev
1473  *  Pointer to struct rte_eth_dev.
1474  *
1475  * @return
1476  *  - On success, zero.
1477  *  - On failure, a negative value.
1478  */
1479 static int
1480 eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev)
1481 {
1482         struct e1000_hw *hw =
1483         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1484
1485         E1000_READ_REG(hw, E1000_ICR);
1486         em_rxq_intr_enable(hw);
1487         return 0;
1488 }
1489
1490 /*
1491  * It enable receive packet interrupt.
1492  * @param hw
1493  * Pointer to struct e1000_hw
1494  *
1495  * @return
1496  */
1497 static void
1498 em_rxq_intr_enable(struct e1000_hw *hw)
1499 {
1500         E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_RXT0);
1501         E1000_WRITE_FLUSH(hw);
1502 }
1503
1504 /*
1505  * It disabled lsc interrupt.
1506  * @param hw
1507  * Pointer to struct e1000_hw
1508  *
1509  * @return
1510  */
1511 static void
1512 em_lsc_intr_disable(struct e1000_hw *hw)
1513 {
1514         E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_LSC);
1515         E1000_WRITE_FLUSH(hw);
1516 }
1517
1518 /*
1519  * It disabled receive packet interrupt.
1520  * @param hw
1521  * Pointer to struct e1000_hw
1522  *
1523  * @return
1524  */
1525 static void
1526 em_rxq_intr_disable(struct e1000_hw *hw)
1527 {
1528         E1000_READ_REG(hw, E1000_ICR);
1529         E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
1530         E1000_WRITE_FLUSH(hw);
1531 }
1532
1533 /*
1534  * It reads ICR and gets interrupt causes, check it and set a bit flag
1535  * to update link status.
1536  *
1537  * @param dev
1538  *  Pointer to struct rte_eth_dev.
1539  *
1540  * @return
1541  *  - On success, zero.
1542  *  - On failure, a negative value.
1543  */
1544 static int
1545 eth_em_interrupt_get_status(struct rte_eth_dev *dev)
1546 {
1547         uint32_t icr;
1548         struct e1000_hw *hw =
1549                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1550         struct e1000_interrupt *intr =
1551                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1552
1553         /* read-on-clear nic registers here */
1554         icr = E1000_READ_REG(hw, E1000_ICR);
1555         if (icr & E1000_ICR_LSC) {
1556                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1557         }
1558
1559         return 0;
1560 }
1561
1562 /*
1563  * It executes link_update after knowing an interrupt is prsent.
1564  *
1565  * @param dev
1566  *  Pointer to struct rte_eth_dev.
1567  *
1568  * @return
1569  *  - On success, zero.
1570  *  - On failure, a negative value.
1571  */
1572 static int
1573 eth_em_interrupt_action(struct rte_eth_dev *dev,
1574                         struct rte_intr_handle *intr_handle)
1575 {
1576         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1577         struct e1000_hw *hw =
1578                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1579         struct e1000_interrupt *intr =
1580                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1581         struct rte_eth_link link;
1582         int ret;
1583
1584         if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
1585                 return -1;
1586
1587         intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
1588         rte_intr_enable(intr_handle);
1589
1590         /* set get_link_status to check register later */
1591         hw->mac.get_link_status = 1;
1592         ret = eth_em_link_update(dev, 0);
1593
1594         /* check if link has changed */
1595         if (ret < 0)
1596                 return 0;
1597
1598         rte_eth_linkstatus_get(dev, &link);
1599
1600         if (link.link_status) {
1601                 PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s",
1602                              dev->data->port_id, link.link_speed,
1603                              link.link_duplex == ETH_LINK_FULL_DUPLEX ?
1604                              "full-duplex" : "half-duplex");
1605         } else {
1606                 PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id);
1607         }
1608         PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
1609                      pci_dev->addr.domain, pci_dev->addr.bus,
1610                      pci_dev->addr.devid, pci_dev->addr.function);
1611
1612         return 0;
1613 }
1614
1615 /**
1616  * Interrupt handler which shall be registered at first.
1617  *
1618  * @param handle
1619  *  Pointer to interrupt handle.
1620  * @param param
1621  *  The address of parameter (struct rte_eth_dev *) regsitered before.
1622  *
1623  * @return
1624  *  void
1625  */
1626 static void
1627 eth_em_interrupt_handler(void *param)
1628 {
1629         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1630
1631         eth_em_interrupt_get_status(dev);
1632         eth_em_interrupt_action(dev, dev->intr_handle);
1633         _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
1634 }
1635
1636 static int
1637 eth_em_led_on(struct rte_eth_dev *dev)
1638 {
1639         struct e1000_hw *hw;
1640
1641         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1642         return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1643 }
1644
1645 static int
1646 eth_em_led_off(struct rte_eth_dev *dev)
1647 {
1648         struct e1000_hw *hw;
1649
1650         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1651         return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1652 }
1653
1654 static int
1655 eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1656 {
1657         struct e1000_hw *hw;
1658         uint32_t ctrl;
1659         int tx_pause;
1660         int rx_pause;
1661
1662         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1663         fc_conf->pause_time = hw->fc.pause_time;
1664         fc_conf->high_water = hw->fc.high_water;
1665         fc_conf->low_water = hw->fc.low_water;
1666         fc_conf->send_xon = hw->fc.send_xon;
1667         fc_conf->autoneg = hw->mac.autoneg;
1668
1669         /*
1670          * Return rx_pause and tx_pause status according to actual setting of
1671          * the TFCE and RFCE bits in the CTRL register.
1672          */
1673         ctrl = E1000_READ_REG(hw, E1000_CTRL);
1674         if (ctrl & E1000_CTRL_TFCE)
1675                 tx_pause = 1;
1676         else
1677                 tx_pause = 0;
1678
1679         if (ctrl & E1000_CTRL_RFCE)
1680                 rx_pause = 1;
1681         else
1682                 rx_pause = 0;
1683
1684         if (rx_pause && tx_pause)
1685                 fc_conf->mode = RTE_FC_FULL;
1686         else if (rx_pause)
1687                 fc_conf->mode = RTE_FC_RX_PAUSE;
1688         else if (tx_pause)
1689                 fc_conf->mode = RTE_FC_TX_PAUSE;
1690         else
1691                 fc_conf->mode = RTE_FC_NONE;
1692
1693         return 0;
1694 }
1695
1696 static int
1697 eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1698 {
1699         struct e1000_hw *hw;
1700         int err;
1701         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
1702                 e1000_fc_none,
1703                 e1000_fc_rx_pause,
1704                 e1000_fc_tx_pause,
1705                 e1000_fc_full
1706         };
1707         uint32_t rx_buf_size;
1708         uint32_t max_high_water;
1709         uint32_t rctl;
1710
1711         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1712         if (fc_conf->autoneg != hw->mac.autoneg)
1713                 return -ENOTSUP;
1714         rx_buf_size = em_get_rx_buffer_size(hw);
1715         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
1716
1717         /* At least reserve one Ethernet frame for watermark */
1718         max_high_water = rx_buf_size - ETHER_MAX_LEN;
1719         if ((fc_conf->high_water > max_high_water) ||
1720             (fc_conf->high_water < fc_conf->low_water)) {
1721                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
1722                 PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
1723                 return -EINVAL;
1724         }
1725
1726         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
1727         hw->fc.pause_time     = fc_conf->pause_time;
1728         hw->fc.high_water     = fc_conf->high_water;
1729         hw->fc.low_water      = fc_conf->low_water;
1730         hw->fc.send_xon       = fc_conf->send_xon;
1731
1732         err = e1000_setup_link_generic(hw);
1733         if (err == E1000_SUCCESS) {
1734
1735                 /* check if we want to forward MAC frames - driver doesn't have native
1736                  * capability to do that, so we'll write the registers ourselves */
1737
1738                 rctl = E1000_READ_REG(hw, E1000_RCTL);
1739
1740                 /* set or clear MFLCN.PMCF bit depending on configuration */
1741                 if (fc_conf->mac_ctrl_frame_fwd != 0)
1742                         rctl |= E1000_RCTL_PMCF;
1743                 else
1744                         rctl &= ~E1000_RCTL_PMCF;
1745
1746                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1747                 E1000_WRITE_FLUSH(hw);
1748
1749                 return 0;
1750         }
1751
1752         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
1753         return -EIO;
1754 }
1755
1756 static int
1757 eth_em_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
1758                 uint32_t index, __rte_unused uint32_t pool)
1759 {
1760         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1761
1762         return e1000_rar_set(hw, mac_addr->addr_bytes, index);
1763 }
1764
1765 static void
1766 eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
1767 {
1768         uint8_t addr[ETHER_ADDR_LEN];
1769         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1770
1771         memset(addr, 0, sizeof(addr));
1772
1773         e1000_rar_set(hw, addr, index);
1774 }
1775
1776 static void
1777 eth_em_default_mac_addr_set(struct rte_eth_dev *dev,
1778                             struct ether_addr *addr)
1779 {
1780         eth_em_rar_clear(dev, 0);
1781
1782         eth_em_rar_set(dev, (void *)addr, 0, 0);
1783 }
1784
1785 static int
1786 eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1787 {
1788         struct rte_eth_dev_info dev_info;
1789         struct e1000_hw *hw;
1790         uint32_t frame_size;
1791         uint32_t rctl;
1792
1793         eth_em_infos_get(dev, &dev_info);
1794         frame_size = mtu + ETHER_HDR_LEN + ETHER_CRC_LEN + VLAN_TAG_SIZE;
1795
1796         /* check that mtu is within the allowed range */
1797         if ((mtu < ETHER_MIN_MTU) || (frame_size > dev_info.max_rx_pktlen))
1798                 return -EINVAL;
1799
1800         /* refuse mtu that requires the support of scattered packets when this
1801          * feature has not been enabled before. */
1802         if (!dev->data->scattered_rx &&
1803             frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
1804                 return -EINVAL;
1805
1806         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1807         rctl = E1000_READ_REG(hw, E1000_RCTL);
1808
1809         /* switch to jumbo mode if needed */
1810         if (frame_size > ETHER_MAX_LEN) {
1811                 dev->data->dev_conf.rxmode.offloads |=
1812                         DEV_RX_OFFLOAD_JUMBO_FRAME;
1813                 rctl |= E1000_RCTL_LPE;
1814         } else {
1815                 dev->data->dev_conf.rxmode.offloads &=
1816                         ~DEV_RX_OFFLOAD_JUMBO_FRAME;
1817                 rctl &= ~E1000_RCTL_LPE;
1818         }
1819         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1820
1821         /* update max frame size */
1822         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
1823         return 0;
1824 }
1825
1826 static int
1827 eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
1828                         struct ether_addr *mc_addr_set,
1829                         uint32_t nb_mc_addr)
1830 {
1831         struct e1000_hw *hw;
1832
1833         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1834         e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
1835         return 0;
1836 }
1837
1838 RTE_PMD_REGISTER_PCI(net_e1000_em, rte_em_pmd);
1839 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_em, pci_id_em_map);
1840 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_em, "* igb_uio | uio_pci_generic | vfio-pci");
1841
1842 RTE_INIT(e1000_init_log);
1843 static void
1844 e1000_init_log(void)
1845 {
1846         e1000_logtype_init = rte_log_register("pmd.net.e1000.init");
1847         if (e1000_logtype_init >= 0)
1848                 rte_log_set_level(e1000_logtype_init, RTE_LOG_NOTICE);
1849         e1000_logtype_driver = rte_log_register("pmd.net.e1000.driver");
1850         if (e1000_logtype_driver >= 0)
1851                 rte_log_set_level(e1000_logtype_driver, RTE_LOG_NOTICE);
1852 }