dd9238a616918309861644218da309b2e1ecf998
[dpdk.git] / drivers / net / e1000 / em_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <stdarg.h>
10
11 #include <rte_common.h>
12 #include <rte_interrupts.h>
13 #include <rte_byteorder.h>
14 #include <rte_debug.h>
15 #include <rte_pci.h>
16 #include <rte_bus_pci.h>
17 #include <rte_ether.h>
18 #include <rte_ethdev_driver.h>
19 #include <rte_ethdev_pci.h>
20 #include <rte_memory.h>
21 #include <rte_eal.h>
22 #include <rte_malloc.h>
23 #include <rte_dev.h>
24
25 #include "e1000_logs.h"
26 #include "base/e1000_api.h"
27 #include "e1000_ethdev.h"
28
29 #define EM_EIAC                 0x000DC
30
31 #define PMD_ROUNDUP(x,y)        (((x) + (y) - 1)/(y) * (y))
32
33
34 static int eth_em_configure(struct rte_eth_dev *dev);
35 static int eth_em_start(struct rte_eth_dev *dev);
36 static void eth_em_stop(struct rte_eth_dev *dev);
37 static int eth_em_close(struct rte_eth_dev *dev);
38 static int eth_em_promiscuous_enable(struct rte_eth_dev *dev);
39 static int eth_em_promiscuous_disable(struct rte_eth_dev *dev);
40 static int eth_em_allmulticast_enable(struct rte_eth_dev *dev);
41 static int eth_em_allmulticast_disable(struct rte_eth_dev *dev);
42 static int eth_em_link_update(struct rte_eth_dev *dev,
43                                 int wait_to_complete);
44 static int eth_em_stats_get(struct rte_eth_dev *dev,
45                                 struct rte_eth_stats *rte_stats);
46 static int eth_em_stats_reset(struct rte_eth_dev *dev);
47 static int eth_em_infos_get(struct rte_eth_dev *dev,
48                                 struct rte_eth_dev_info *dev_info);
49 static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev,
50                                 struct rte_eth_fc_conf *fc_conf);
51 static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
52                                 struct rte_eth_fc_conf *fc_conf);
53 static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
54 static int eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev);
55 static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
56 static int eth_em_interrupt_action(struct rte_eth_dev *dev,
57                                    struct rte_intr_handle *handle);
58 static void eth_em_interrupt_handler(void *param);
59
60 static int em_hw_init(struct e1000_hw *hw);
61 static int em_hardware_init(struct e1000_hw *hw);
62 static void em_hw_control_acquire(struct e1000_hw *hw);
63 static void em_hw_control_release(struct e1000_hw *hw);
64 static void em_init_manageability(struct e1000_hw *hw);
65 static void em_release_manageability(struct e1000_hw *hw);
66
67 static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
68
69 static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
70                 uint16_t vlan_id, int on);
71 static int eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
72 static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
73 static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
74 static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
75 static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
76
77 /*
78 static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
79                                         uint16_t vlan_id, int on);
80 */
81
82 static int eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id);
83 static int eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id);
84 static void em_lsc_intr_disable(struct e1000_hw *hw);
85 static void em_rxq_intr_enable(struct e1000_hw *hw);
86 static void em_rxq_intr_disable(struct e1000_hw *hw);
87
88 static int eth_em_led_on(struct rte_eth_dev *dev);
89 static int eth_em_led_off(struct rte_eth_dev *dev);
90
91 static int em_get_rx_buffer_size(struct e1000_hw *hw);
92 static int eth_em_rar_set(struct rte_eth_dev *dev,
93                         struct rte_ether_addr *mac_addr,
94                         uint32_t index, uint32_t pool);
95 static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
96 static int eth_em_default_mac_addr_set(struct rte_eth_dev *dev,
97                                          struct rte_ether_addr *addr);
98
99 static int eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
100                                    struct rte_ether_addr *mc_addr_set,
101                                    uint32_t nb_mc_addr);
102
103 #define EM_FC_PAUSE_TIME 0x0680
104 #define EM_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
105 #define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
106
107 static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
108
109 /*
110  * The set of PCI devices this driver supports
111  */
112 static const struct rte_pci_id pci_id_em_map[] = {
113         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82540EM) },
114         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_COPPER) },
115         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_FIBER) },
116         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_COPPER) },
117         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_FIBER) },
118         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_QUAD_COPPER) },
119         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_COPPER) },
120         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_FIBER) },
121         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES) },
122         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_DUAL) },
123         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_QUAD) },
124         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER) },
125         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571PT_QUAD_COPPER) },
126         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_FIBER) },
127         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER_LP) },
128         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_COPPER) },
129         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_FIBER) },
130         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_SERDES) },
131         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI) },
132         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82573L) },
133         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574L) },
134         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574LA) },
135         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82583V) },
136         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH2_LV_LM) },
137         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_LM) },
138         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_V) },
139         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_LM) },
140         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_V) },
141         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM2) },
142         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V2) },
143         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM3) },
144         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V3) },
145         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM) },
146         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V) },
147         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM2) },
148         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V2) },
149         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LBG_I219_LM3) },
150         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM4) },
151         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V4) },
152         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM5) },
153         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V5) },
154         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM6) },
155         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V6) },
156         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM7) },
157         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V7) },
158         { .vendor_id = 0, /* sentinel */ },
159 };
160
161 static const struct eth_dev_ops eth_em_ops = {
162         .dev_configure        = eth_em_configure,
163         .dev_start            = eth_em_start,
164         .dev_stop             = eth_em_stop,
165         .dev_close            = eth_em_close,
166         .promiscuous_enable   = eth_em_promiscuous_enable,
167         .promiscuous_disable  = eth_em_promiscuous_disable,
168         .allmulticast_enable  = eth_em_allmulticast_enable,
169         .allmulticast_disable = eth_em_allmulticast_disable,
170         .link_update          = eth_em_link_update,
171         .stats_get            = eth_em_stats_get,
172         .stats_reset          = eth_em_stats_reset,
173         .dev_infos_get        = eth_em_infos_get,
174         .mtu_set              = eth_em_mtu_set,
175         .vlan_filter_set      = eth_em_vlan_filter_set,
176         .vlan_offload_set     = eth_em_vlan_offload_set,
177         .rx_queue_setup       = eth_em_rx_queue_setup,
178         .rx_queue_release     = eth_em_rx_queue_release,
179         .tx_queue_setup       = eth_em_tx_queue_setup,
180         .tx_queue_release     = eth_em_tx_queue_release,
181         .rx_queue_intr_enable = eth_em_rx_queue_intr_enable,
182         .rx_queue_intr_disable = eth_em_rx_queue_intr_disable,
183         .dev_led_on           = eth_em_led_on,
184         .dev_led_off          = eth_em_led_off,
185         .flow_ctrl_get        = eth_em_flow_ctrl_get,
186         .flow_ctrl_set        = eth_em_flow_ctrl_set,
187         .mac_addr_set         = eth_em_default_mac_addr_set,
188         .mac_addr_add         = eth_em_rar_set,
189         .mac_addr_remove      = eth_em_rar_clear,
190         .set_mc_addr_list     = eth_em_set_mc_addr_list,
191         .rxq_info_get         = em_rxq_info_get,
192         .txq_info_get         = em_txq_info_get,
193 };
194
195
196 /**
197  *  eth_em_dev_is_ich8 - Check for ICH8 device
198  *  @hw: pointer to the HW structure
199  *
200  *  return TRUE for ICH8, otherwise FALSE
201  **/
202 static bool
203 eth_em_dev_is_ich8(struct e1000_hw *hw)
204 {
205         DEBUGFUNC("eth_em_dev_is_ich8");
206
207         switch (hw->device_id) {
208         case E1000_DEV_ID_PCH2_LV_LM:
209         case E1000_DEV_ID_PCH_LPT_I217_LM:
210         case E1000_DEV_ID_PCH_LPT_I217_V:
211         case E1000_DEV_ID_PCH_LPTLP_I218_LM:
212         case E1000_DEV_ID_PCH_LPTLP_I218_V:
213         case E1000_DEV_ID_PCH_I218_V2:
214         case E1000_DEV_ID_PCH_I218_LM2:
215         case E1000_DEV_ID_PCH_I218_V3:
216         case E1000_DEV_ID_PCH_I218_LM3:
217         case E1000_DEV_ID_PCH_SPT_I219_LM:
218         case E1000_DEV_ID_PCH_SPT_I219_V:
219         case E1000_DEV_ID_PCH_SPT_I219_LM2:
220         case E1000_DEV_ID_PCH_SPT_I219_V2:
221         case E1000_DEV_ID_PCH_LBG_I219_LM3:
222         case E1000_DEV_ID_PCH_SPT_I219_LM4:
223         case E1000_DEV_ID_PCH_SPT_I219_V4:
224         case E1000_DEV_ID_PCH_SPT_I219_LM5:
225         case E1000_DEV_ID_PCH_SPT_I219_V5:
226         case E1000_DEV_ID_PCH_CNP_I219_LM6:
227         case E1000_DEV_ID_PCH_CNP_I219_V6:
228         case E1000_DEV_ID_PCH_CNP_I219_LM7:
229         case E1000_DEV_ID_PCH_CNP_I219_V7:
230                 return 1;
231         default:
232                 return 0;
233         }
234 }
235
236 static int
237 eth_em_dev_init(struct rte_eth_dev *eth_dev)
238 {
239         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
240         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
241         struct e1000_adapter *adapter =
242                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
243         struct e1000_hw *hw =
244                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
245         struct e1000_vfta * shadow_vfta =
246                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
247
248         eth_dev->dev_ops = &eth_em_ops;
249         eth_dev->rx_queue_count = eth_em_rx_queue_count;
250         eth_dev->rx_descriptor_done   = eth_em_rx_descriptor_done;
251         eth_dev->rx_descriptor_status = eth_em_rx_descriptor_status;
252         eth_dev->tx_descriptor_status = eth_em_tx_descriptor_status;
253         eth_dev->rx_pkt_burst = (eth_rx_burst_t)&eth_em_recv_pkts;
254         eth_dev->tx_pkt_burst = (eth_tx_burst_t)&eth_em_xmit_pkts;
255         eth_dev->tx_pkt_prepare = (eth_tx_prep_t)&eth_em_prep_pkts;
256
257         /* for secondary processes, we don't initialise any further as primary
258          * has already done this work. Only check we don't need a different
259          * RX function */
260         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
261                 if (eth_dev->data->scattered_rx)
262                         eth_dev->rx_pkt_burst =
263                                 (eth_rx_burst_t)&eth_em_recv_scattered_pkts;
264                 return 0;
265         }
266
267         rte_eth_copy_pci_info(eth_dev, pci_dev);
268
269         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
270         hw->device_id = pci_dev->id.device_id;
271         adapter->stopped = 0;
272
273         /* For ICH8 support we'll need to map the flash memory BAR */
274         if (eth_em_dev_is_ich8(hw))
275                 hw->flash_address = (void *)pci_dev->mem_resource[1].addr;
276
277         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
278                         em_hw_init(hw) != 0) {
279                 PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
280                         "failed to init HW",
281                         eth_dev->data->port_id, pci_dev->id.vendor_id,
282                         pci_dev->id.device_id);
283                 return -ENODEV;
284         }
285
286         /* Allocate memory for storing MAC addresses */
287         eth_dev->data->mac_addrs = rte_zmalloc("e1000", RTE_ETHER_ADDR_LEN *
288                         hw->mac.rar_entry_count, 0);
289         if (eth_dev->data->mac_addrs == NULL) {
290                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
291                         "store MAC addresses",
292                         RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count);
293                 return -ENOMEM;
294         }
295
296         /* Copy the permanent MAC address */
297         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
298                 eth_dev->data->mac_addrs);
299
300         /* initialize the vfta */
301         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
302
303         PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
304                      eth_dev->data->port_id, pci_dev->id.vendor_id,
305                      pci_dev->id.device_id);
306
307         rte_intr_callback_register(intr_handle,
308                                    eth_em_interrupt_handler, eth_dev);
309
310         return 0;
311 }
312
313 static int
314 eth_em_dev_uninit(struct rte_eth_dev *eth_dev)
315 {
316         PMD_INIT_FUNC_TRACE();
317
318         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
319                 return 0;
320
321         eth_em_close(eth_dev);
322
323         return 0;
324 }
325
326 static int eth_em_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
327         struct rte_pci_device *pci_dev)
328 {
329         return rte_eth_dev_pci_generic_probe(pci_dev,
330                 sizeof(struct e1000_adapter), eth_em_dev_init);
331 }
332
333 static int eth_em_pci_remove(struct rte_pci_device *pci_dev)
334 {
335         return rte_eth_dev_pci_generic_remove(pci_dev, eth_em_dev_uninit);
336 }
337
338 static struct rte_pci_driver rte_em_pmd = {
339         .id_table = pci_id_em_map,
340         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
341         .probe = eth_em_pci_probe,
342         .remove = eth_em_pci_remove,
343 };
344
345 static int
346 em_hw_init(struct e1000_hw *hw)
347 {
348         int diag;
349
350         diag = hw->mac.ops.init_params(hw);
351         if (diag != 0) {
352                 PMD_INIT_LOG(ERR, "MAC Initialization Error");
353                 return diag;
354         }
355         diag = hw->nvm.ops.init_params(hw);
356         if (diag != 0) {
357                 PMD_INIT_LOG(ERR, "NVM Initialization Error");
358                 return diag;
359         }
360         diag = hw->phy.ops.init_params(hw);
361         if (diag != 0) {
362                 PMD_INIT_LOG(ERR, "PHY Initialization Error");
363                 return diag;
364         }
365         (void) e1000_get_bus_info(hw);
366
367         hw->mac.autoneg = 1;
368         hw->phy.autoneg_wait_to_complete = 0;
369         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
370
371         e1000_init_script_state_82541(hw, TRUE);
372         e1000_set_tbi_compatibility_82543(hw, TRUE);
373
374         /* Copper options */
375         if (hw->phy.media_type == e1000_media_type_copper) {
376                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
377                 hw->phy.disable_polarity_correction = 0;
378                 hw->phy.ms_type = e1000_ms_hw_default;
379         }
380
381         /*
382          * Start from a known state, this is important in reading the nvm
383          * and mac from that.
384          */
385         e1000_reset_hw(hw);
386
387         /* Make sure we have a good EEPROM before we read from it */
388         if (e1000_validate_nvm_checksum(hw) < 0) {
389                 /*
390                  * Some PCI-E parts fail the first check due to
391                  * the link being in sleep state, call it again,
392                  * if it fails a second time its a real issue.
393                  */
394                 diag = e1000_validate_nvm_checksum(hw);
395                 if (diag < 0) {
396                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
397                         goto error;
398                 }
399         }
400
401         /* Read the permanent MAC address out of the EEPROM */
402         diag = e1000_read_mac_addr(hw);
403         if (diag != 0) {
404                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
405                 goto error;
406         }
407
408         /* Now initialize the hardware */
409         diag = em_hardware_init(hw);
410         if (diag != 0) {
411                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
412                 goto error;
413         }
414
415         hw->mac.get_link_status = 1;
416
417         /* Indicate SOL/IDER usage */
418         diag = e1000_check_reset_block(hw);
419         if (diag < 0) {
420                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
421                         "SOL/IDER session");
422         }
423         return 0;
424
425 error:
426         em_hw_control_release(hw);
427         return diag;
428 }
429
430 static int
431 eth_em_configure(struct rte_eth_dev *dev)
432 {
433         struct e1000_interrupt *intr =
434                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
435
436         PMD_INIT_FUNC_TRACE();
437         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
438
439         PMD_INIT_FUNC_TRACE();
440
441         return 0;
442 }
443
444 static void
445 em_set_pba(struct e1000_hw *hw)
446 {
447         uint32_t pba;
448
449         /*
450          * Packet Buffer Allocation (PBA)
451          * Writing PBA sets the receive portion of the buffer
452          * the remainder is used for the transmit buffer.
453          * Devices before the 82547 had a Packet Buffer of 64K.
454          * After the 82547 the buffer was reduced to 40K.
455          */
456         switch (hw->mac.type) {
457                 case e1000_82547:
458                 case e1000_82547_rev_2:
459                 /* 82547: Total Packet Buffer is 40K */
460                         pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
461                         break;
462                 case e1000_82571:
463                 case e1000_82572:
464                 case e1000_80003es2lan:
465                         pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
466                         break;
467                 case e1000_82573: /* 82573: Total Packet Buffer is 32K */
468                         pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
469                         break;
470                 case e1000_82574:
471                 case e1000_82583:
472                         pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
473                         break;
474                 case e1000_ich8lan:
475                         pba = E1000_PBA_8K;
476                         break;
477                 case e1000_ich9lan:
478                 case e1000_ich10lan:
479                         pba = E1000_PBA_10K;
480                         break;
481                 case e1000_pchlan:
482                 case e1000_pch2lan:
483                 case e1000_pch_lpt:
484                 case e1000_pch_spt:
485                 case e1000_pch_cnp:
486                         pba = E1000_PBA_26K;
487                         break;
488                 default:
489                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
490         }
491
492         E1000_WRITE_REG(hw, E1000_PBA, pba);
493 }
494
495 static void
496 eth_em_rxtx_control(struct rte_eth_dev *dev,
497                     bool enable)
498 {
499         struct e1000_hw *hw =
500                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
501         uint32_t tctl, rctl;
502
503         tctl = E1000_READ_REG(hw, E1000_TCTL);
504         rctl = E1000_READ_REG(hw, E1000_RCTL);
505         if (enable) {
506                 /* enable Tx/Rx */
507                 tctl |= E1000_TCTL_EN;
508                 rctl |= E1000_RCTL_EN;
509         } else {
510                 /* disable Tx/Rx */
511                 tctl &= ~E1000_TCTL_EN;
512                 rctl &= ~E1000_RCTL_EN;
513         }
514         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
515         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
516         E1000_WRITE_FLUSH(hw);
517 }
518
519 static int
520 eth_em_start(struct rte_eth_dev *dev)
521 {
522         struct e1000_adapter *adapter =
523                 E1000_DEV_PRIVATE(dev->data->dev_private);
524         struct e1000_hw *hw =
525                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
526         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
527         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
528         int ret, mask;
529         uint32_t intr_vector = 0;
530         uint32_t *speeds;
531         int num_speeds;
532         bool autoneg;
533
534         PMD_INIT_FUNC_TRACE();
535
536         eth_em_stop(dev);
537
538         e1000_power_up_phy(hw);
539
540         /* Set default PBA value */
541         em_set_pba(hw);
542
543         /* Put the address into the Receive Address Array */
544         e1000_rar_set(hw, hw->mac.addr, 0);
545
546         /*
547          * With the 82571 adapter, RAR[0] may be overwritten
548          * when the other port is reset, we make a duplicate
549          * in RAR[14] for that eventuality, this assures
550          * the interface continues to function.
551          */
552         if (hw->mac.type == e1000_82571) {
553                 e1000_set_laa_state_82571(hw, TRUE);
554                 e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
555         }
556
557         /* Initialize the hardware */
558         if (em_hardware_init(hw)) {
559                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
560                 return -EIO;
561         }
562
563         E1000_WRITE_REG(hw, E1000_VET, RTE_ETHER_TYPE_VLAN);
564
565         /* Configure for OS presence */
566         em_init_manageability(hw);
567
568         if (dev->data->dev_conf.intr_conf.rxq != 0) {
569                 intr_vector = dev->data->nb_rx_queues;
570                 if (rte_intr_efd_enable(intr_handle, intr_vector))
571                         return -1;
572         }
573
574         if (rte_intr_dp_is_en(intr_handle)) {
575                 intr_handle->intr_vec =
576                         rte_zmalloc("intr_vec",
577                                         dev->data->nb_rx_queues * sizeof(int), 0);
578                 if (intr_handle->intr_vec == NULL) {
579                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
580                                                 " intr_vec", dev->data->nb_rx_queues);
581                         return -ENOMEM;
582                 }
583
584                 /* enable rx interrupt */
585                 em_rxq_intr_enable(hw);
586         }
587
588         eth_em_tx_init(dev);
589
590         ret = eth_em_rx_init(dev);
591         if (ret) {
592                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
593                 em_dev_clear_queues(dev);
594                 return ret;
595         }
596
597         e1000_clear_hw_cntrs_base_generic(hw);
598
599         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
600                         ETH_VLAN_EXTEND_MASK;
601         ret = eth_em_vlan_offload_set(dev, mask);
602         if (ret) {
603                 PMD_INIT_LOG(ERR, "Unable to update vlan offload");
604                 em_dev_clear_queues(dev);
605                 return ret;
606         }
607
608         /* Set Interrupt Throttling Rate to maximum allowed value. */
609         E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
610
611         /* Setup link speed and duplex */
612         speeds = &dev->data->dev_conf.link_speeds;
613         if (*speeds == ETH_LINK_SPEED_AUTONEG) {
614                 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
615                 hw->mac.autoneg = 1;
616         } else {
617                 num_speeds = 0;
618                 autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
619
620                 /* Reset */
621                 hw->phy.autoneg_advertised = 0;
622
623                 if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
624                                 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
625                                 ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
626                         num_speeds = -1;
627                         goto error_invalid_config;
628                 }
629                 if (*speeds & ETH_LINK_SPEED_10M_HD) {
630                         hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
631                         num_speeds++;
632                 }
633                 if (*speeds & ETH_LINK_SPEED_10M) {
634                         hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
635                         num_speeds++;
636                 }
637                 if (*speeds & ETH_LINK_SPEED_100M_HD) {
638                         hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
639                         num_speeds++;
640                 }
641                 if (*speeds & ETH_LINK_SPEED_100M) {
642                         hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
643                         num_speeds++;
644                 }
645                 if (*speeds & ETH_LINK_SPEED_1G) {
646                         hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
647                         num_speeds++;
648                 }
649                 if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
650                         goto error_invalid_config;
651
652                 /* Set/reset the mac.autoneg based on the link speed,
653                  * fixed or not
654                  */
655                 if (!autoneg) {
656                         hw->mac.autoneg = 0;
657                         hw->mac.forced_speed_duplex =
658                                         hw->phy.autoneg_advertised;
659                 } else {
660                         hw->mac.autoneg = 1;
661                 }
662         }
663
664         e1000_setup_link(hw);
665
666         if (rte_intr_allow_others(intr_handle)) {
667                 /* check if lsc interrupt is enabled */
668                 if (dev->data->dev_conf.intr_conf.lsc != 0) {
669                         ret = eth_em_interrupt_setup(dev);
670                         if (ret) {
671                                 PMD_INIT_LOG(ERR, "Unable to setup interrupts");
672                                 em_dev_clear_queues(dev);
673                                 return ret;
674                         }
675                 }
676         } else {
677                 rte_intr_callback_unregister(intr_handle,
678                                                 eth_em_interrupt_handler,
679                                                 (void *)dev);
680                 if (dev->data->dev_conf.intr_conf.lsc != 0)
681                         PMD_INIT_LOG(INFO, "lsc won't enable because of"
682                                      " no intr multiplexn");
683         }
684         /* check if rxq interrupt is enabled */
685         if (dev->data->dev_conf.intr_conf.rxq != 0)
686                 eth_em_rxq_interrupt_setup(dev);
687
688         rte_intr_enable(intr_handle);
689
690         adapter->stopped = 0;
691
692         eth_em_rxtx_control(dev, true);
693         eth_em_link_update(dev, 0);
694
695         PMD_INIT_LOG(DEBUG, "<<");
696
697         return 0;
698
699 error_invalid_config:
700         PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
701                      dev->data->dev_conf.link_speeds, dev->data->port_id);
702         em_dev_clear_queues(dev);
703         return -EINVAL;
704 }
705
706 /*********************************************************************
707  *
708  *  This routine disables all traffic on the adapter by issuing a
709  *  global reset on the MAC.
710  *
711  **********************************************************************/
712 static void
713 eth_em_stop(struct rte_eth_dev *dev)
714 {
715         struct rte_eth_link link;
716         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
717         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
718         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
719
720         dev->data->dev_started = 0;
721
722         eth_em_rxtx_control(dev, false);
723         em_rxq_intr_disable(hw);
724         em_lsc_intr_disable(hw);
725
726         e1000_reset_hw(hw);
727
728         /* Flush desc rings for i219 */
729         if (hw->mac.type == e1000_pch_spt || hw->mac.type == e1000_pch_cnp)
730                 em_flush_desc_rings(dev);
731
732         if (hw->mac.type >= e1000_82544)
733                 E1000_WRITE_REG(hw, E1000_WUC, 0);
734
735         /* Power down the phy. Needed to make the link go down */
736         e1000_power_down_phy(hw);
737
738         em_dev_clear_queues(dev);
739
740         /* clear the recorded link status */
741         memset(&link, 0, sizeof(link));
742         rte_eth_linkstatus_set(dev, &link);
743
744         if (!rte_intr_allow_others(intr_handle))
745                 /* resume to the default handler */
746                 rte_intr_callback_register(intr_handle,
747                                            eth_em_interrupt_handler,
748                                            (void *)dev);
749
750         /* Clean datapath event and queue/vec mapping */
751         rte_intr_efd_disable(intr_handle);
752         if (intr_handle->intr_vec != NULL) {
753                 rte_free(intr_handle->intr_vec);
754                 intr_handle->intr_vec = NULL;
755         }
756 }
757
758 static int
759 eth_em_close(struct rte_eth_dev *dev)
760 {
761         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
762         struct e1000_adapter *adapter =
763                 E1000_DEV_PRIVATE(dev->data->dev_private);
764         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
765         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
766
767         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
768                 return 0;
769
770         eth_em_stop(dev);
771         adapter->stopped = 1;
772         em_dev_free_queues(dev);
773         e1000_phy_hw_reset(hw);
774         em_release_manageability(hw);
775         em_hw_control_release(hw);
776
777         dev->dev_ops = NULL;
778         dev->rx_pkt_burst = NULL;
779         dev->tx_pkt_burst = NULL;
780
781         /* disable uio intr before callback unregister */
782         rte_intr_disable(intr_handle);
783         rte_intr_callback_unregister(intr_handle,
784                                      eth_em_interrupt_handler, dev);
785
786         return 0;
787 }
788
789 static int
790 em_get_rx_buffer_size(struct e1000_hw *hw)
791 {
792         uint32_t rx_buf_size;
793
794         rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
795         return rx_buf_size;
796 }
797
798 /*********************************************************************
799  *
800  *  Initialize the hardware
801  *
802  **********************************************************************/
803 static int
804 em_hardware_init(struct e1000_hw *hw)
805 {
806         uint32_t rx_buf_size;
807         int diag;
808
809         /* Issue a global reset */
810         e1000_reset_hw(hw);
811
812         /* Let the firmware know the OS is in control */
813         em_hw_control_acquire(hw);
814
815         /*
816          * These parameters control the automatic generation (Tx) and
817          * response (Rx) to Ethernet PAUSE frames.
818          * - High water mark should allow for at least two standard size (1518)
819          *   frames to be received after sending an XOFF.
820          * - Low water mark works best when it is very near the high water mark.
821          *   This allows the receiver to restart by sending XON when it has
822          *   drained a bit. Here we use an arbitrary value of 1500 which will
823          *   restart after one full frame is pulled from the buffer. There
824          *   could be several smaller frames in the buffer and if so they will
825          *   not trigger the XON until their total number reduces the buffer
826          *   by 1500.
827          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
828          */
829         rx_buf_size = em_get_rx_buffer_size(hw);
830
831         hw->fc.high_water = rx_buf_size -
832                 PMD_ROUNDUP(RTE_ETHER_MAX_LEN * 2, 1024);
833         hw->fc.low_water = hw->fc.high_water - 1500;
834
835         if (hw->mac.type == e1000_80003es2lan)
836                 hw->fc.pause_time = UINT16_MAX;
837         else
838                 hw->fc.pause_time = EM_FC_PAUSE_TIME;
839
840         hw->fc.send_xon = 1;
841
842         /* Set Flow control, use the tunable location if sane */
843         if (em_fc_setting <= e1000_fc_full)
844                 hw->fc.requested_mode = em_fc_setting;
845         else
846                 hw->fc.requested_mode = e1000_fc_none;
847
848         /* Workaround: no TX flow ctrl for PCH */
849         if (hw->mac.type == e1000_pchlan)
850                 hw->fc.requested_mode = e1000_fc_rx_pause;
851
852         /* Override - settings for PCH2LAN, ya its magic :) */
853         if (hw->mac.type == e1000_pch2lan) {
854                 hw->fc.high_water = 0x5C20;
855                 hw->fc.low_water = 0x5048;
856                 hw->fc.pause_time = 0x0650;
857                 hw->fc.refresh_time = 0x0400;
858         } else if (hw->mac.type == e1000_pch_lpt ||
859                    hw->mac.type == e1000_pch_spt ||
860                    hw->mac.type == e1000_pch_cnp) {
861                 hw->fc.requested_mode = e1000_fc_full;
862         }
863
864         diag = e1000_init_hw(hw);
865         if (diag < 0)
866                 return diag;
867         e1000_check_for_link(hw);
868         return 0;
869 }
870
871 /* This function is based on em_update_stats_counters() in e1000/if_em.c */
872 static int
873 eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
874 {
875         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
876         struct e1000_hw_stats *stats =
877                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
878         int pause_frames;
879
880         if(hw->phy.media_type == e1000_media_type_copper ||
881                         (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
882                 stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
883                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
884         }
885
886         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
887         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
888         stats->scc += E1000_READ_REG(hw, E1000_SCC);
889         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
890
891         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
892         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
893         stats->colc += E1000_READ_REG(hw, E1000_COLC);
894         stats->dc += E1000_READ_REG(hw, E1000_DC);
895         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
896         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
897         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
898
899         /*
900          * For watchdog management we need to know if we have been
901          * paused during the last interval, so capture that here.
902          */
903         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
904         stats->xoffrxc += pause_frames;
905         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
906         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
907         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
908         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
909         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
910         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
911         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
912         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
913         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
914         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
915         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
916         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
917
918         /*
919          * For the 64-bit byte counters the low dword must be read first.
920          * Both registers clear on the read of the high dword.
921          */
922
923         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
924         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
925         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
926         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
927
928         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
929         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
930         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
931         stats->roc += E1000_READ_REG(hw, E1000_ROC);
932         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
933
934         stats->tor += E1000_READ_REG(hw, E1000_TORH);
935         stats->tot += E1000_READ_REG(hw, E1000_TOTH);
936
937         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
938         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
939         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
940         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
941         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
942         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
943         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
944         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
945         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
946         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
947
948         /* Interrupt Counts */
949
950         if (hw->mac.type >= e1000_82571) {
951                 stats->iac += E1000_READ_REG(hw, E1000_IAC);
952                 stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
953                 stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
954                 stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
955                 stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
956                 stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
957                 stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
958                 stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
959                 stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
960         }
961
962         if (hw->mac.type >= e1000_82543) {
963                 stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
964                 stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
965                 stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
966                 stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
967                 stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
968                 stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
969         }
970
971         if (rte_stats == NULL)
972                 return -EINVAL;
973
974         /* Rx Errors */
975         rte_stats->imissed = stats->mpc;
976         rte_stats->ierrors = stats->crcerrs +
977                              stats->rlec + stats->ruc + stats->roc +
978                              stats->rxerrc + stats->algnerrc + stats->cexterr;
979
980         /* Tx Errors */
981         rte_stats->oerrors = stats->ecol + stats->latecol;
982
983         rte_stats->ipackets = stats->gprc;
984         rte_stats->opackets = stats->gptc;
985         rte_stats->ibytes   = stats->gorc;
986         rte_stats->obytes   = stats->gotc;
987         return 0;
988 }
989
990 static int
991 eth_em_stats_reset(struct rte_eth_dev *dev)
992 {
993         struct e1000_hw_stats *hw_stats =
994                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
995
996         /* HW registers are cleared on read */
997         eth_em_stats_get(dev, NULL);
998
999         /* Reset software totals */
1000         memset(hw_stats, 0, sizeof(*hw_stats));
1001
1002         return 0;
1003 }
1004
1005 static int
1006 eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
1007 {
1008         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1009         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1010         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1011
1012         em_rxq_intr_enable(hw);
1013         rte_intr_ack(intr_handle);
1014
1015         return 0;
1016 }
1017
1018 static int
1019 eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
1020 {
1021         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1022
1023         em_rxq_intr_disable(hw);
1024
1025         return 0;
1026 }
1027
1028 uint32_t
1029 em_get_max_pktlen(struct rte_eth_dev *dev)
1030 {
1031         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1032
1033         switch (hw->mac.type) {
1034         case e1000_82571:
1035         case e1000_82572:
1036         case e1000_ich9lan:
1037         case e1000_ich10lan:
1038         case e1000_pch2lan:
1039         case e1000_pch_lpt:
1040         case e1000_pch_spt:
1041         case e1000_pch_cnp:
1042         case e1000_82574:
1043         case e1000_80003es2lan: /* 9K Jumbo Frame size */
1044         case e1000_82583:
1045                 return 0x2412;
1046         case e1000_pchlan:
1047                 return 0x1000;
1048         /* Adapters that do not support jumbo frames */
1049         case e1000_ich8lan:
1050                 return RTE_ETHER_MAX_LEN;
1051         default:
1052                 return MAX_JUMBO_FRAME_SIZE;
1053         }
1054 }
1055
1056 static int
1057 eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
1058 {
1059         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1060
1061         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
1062         dev_info->max_rx_pktlen = em_get_max_pktlen(dev);
1063         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
1064
1065         /*
1066          * Starting with 631xESB hw supports 2 TX/RX queues per port.
1067          * Unfortunatelly, all these nics have just one TX context.
1068          * So we have few choises for TX:
1069          * - Use just one TX queue.
1070          * - Allow cksum offload only for one TX queue.
1071          * - Don't allow TX cksum offload at all.
1072          * For now, option #1 was chosen.
1073          * To use second RX queue we have to use extended RX descriptor
1074          * (Multiple Receive Queues are mutually exclusive with UDP
1075          * fragmentation and are not supported when a legacy receive
1076          * descriptor format is used).
1077          * Which means separate RX routinies - as legacy nics (82540, 82545)
1078          * don't support extended RXD.
1079          * To avoid it we support just one RX queue for now (no RSS).
1080          */
1081
1082         dev_info->max_rx_queues = 1;
1083         dev_info->max_tx_queues = 1;
1084
1085         dev_info->rx_queue_offload_capa = em_get_rx_queue_offloads_capa(dev);
1086         dev_info->rx_offload_capa = em_get_rx_port_offloads_capa(dev) |
1087                                     dev_info->rx_queue_offload_capa;
1088         dev_info->tx_queue_offload_capa = em_get_tx_queue_offloads_capa(dev);
1089         dev_info->tx_offload_capa = em_get_tx_port_offloads_capa(dev) |
1090                                     dev_info->tx_queue_offload_capa;
1091
1092         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
1093                 .nb_max = E1000_MAX_RING_DESC,
1094                 .nb_min = E1000_MIN_RING_DESC,
1095                 .nb_align = EM_RXD_ALIGN,
1096         };
1097
1098         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
1099                 .nb_max = E1000_MAX_RING_DESC,
1100                 .nb_min = E1000_MIN_RING_DESC,
1101                 .nb_align = EM_TXD_ALIGN,
1102                 .nb_seg_max = EM_TX_MAX_SEG,
1103                 .nb_mtu_seg_max = EM_TX_MAX_MTU_SEG,
1104         };
1105
1106         dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1107                         ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1108                         ETH_LINK_SPEED_1G;
1109
1110         /* Preferred queue parameters */
1111         dev_info->default_rxportconf.nb_queues = 1;
1112         dev_info->default_txportconf.nb_queues = 1;
1113         dev_info->default_txportconf.ring_size = 256;
1114         dev_info->default_rxportconf.ring_size = 256;
1115
1116         return 0;
1117 }
1118
1119 /* return 0 means link status changed, -1 means not changed */
1120 static int
1121 eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
1122 {
1123         struct e1000_hw *hw =
1124                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1125         struct rte_eth_link link;
1126         int link_up, count;
1127
1128         link_up = 0;
1129         hw->mac.get_link_status = 1;
1130
1131         /* possible wait-to-complete in up to 9 seconds */
1132         for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
1133                 /* Read the real link status */
1134                 switch (hw->phy.media_type) {
1135                 case e1000_media_type_copper:
1136                         /* Do the work to read phy */
1137                         e1000_check_for_link(hw);
1138                         link_up = !hw->mac.get_link_status;
1139                         break;
1140
1141                 case e1000_media_type_fiber:
1142                         e1000_check_for_link(hw);
1143                         link_up = (E1000_READ_REG(hw, E1000_STATUS) &
1144                                         E1000_STATUS_LU);
1145                         break;
1146
1147                 case e1000_media_type_internal_serdes:
1148                         e1000_check_for_link(hw);
1149                         link_up = hw->mac.serdes_has_link;
1150                         break;
1151
1152                 default:
1153                         break;
1154                 }
1155                 if (link_up || wait_to_complete == 0)
1156                         break;
1157                 rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
1158         }
1159         memset(&link, 0, sizeof(link));
1160
1161         /* Now we check if a transition has happened */
1162         if (link_up) {
1163                 uint16_t duplex, speed;
1164                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1165                 link.link_duplex = (duplex == FULL_DUPLEX) ?
1166                                 ETH_LINK_FULL_DUPLEX :
1167                                 ETH_LINK_HALF_DUPLEX;
1168                 link.link_speed = speed;
1169                 link.link_status = ETH_LINK_UP;
1170                 link.link_autoneg = !(dev->data->dev_conf.link_speeds &
1171                                 ETH_LINK_SPEED_FIXED);
1172         } else {
1173                 link.link_speed = ETH_SPEED_NUM_NONE;
1174                 link.link_duplex = ETH_LINK_HALF_DUPLEX;
1175                 link.link_status = ETH_LINK_DOWN;
1176                 link.link_autoneg = ETH_LINK_FIXED;
1177         }
1178
1179         return rte_eth_linkstatus_set(dev, &link);
1180 }
1181
1182 /*
1183  * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1184  * For ASF and Pass Through versions of f/w this means
1185  * that the driver is loaded. For AMT version type f/w
1186  * this means that the network i/f is open.
1187  */
1188 static void
1189 em_hw_control_acquire(struct e1000_hw *hw)
1190 {
1191         uint32_t ctrl_ext, swsm;
1192
1193         /* Let firmware know the driver has taken over */
1194         if (hw->mac.type == e1000_82573) {
1195                 swsm = E1000_READ_REG(hw, E1000_SWSM);
1196                 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
1197
1198         } else {
1199                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1200                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1201                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1202         }
1203 }
1204
1205 /*
1206  * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
1207  * For ASF and Pass Through versions of f/w this means that the
1208  * driver is no longer loaded. For AMT versions of the
1209  * f/w this means that the network i/f is closed.
1210  */
1211 static void
1212 em_hw_control_release(struct e1000_hw *hw)
1213 {
1214         uint32_t ctrl_ext, swsm;
1215
1216         /* Let firmware taken over control of h/w */
1217         if (hw->mac.type == e1000_82573) {
1218                 swsm = E1000_READ_REG(hw, E1000_SWSM);
1219                 E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1220         } else {
1221                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1222                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1223                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1224         }
1225 }
1226
1227 /*
1228  * Bit of a misnomer, what this really means is
1229  * to enable OS management of the system... aka
1230  * to disable special hardware management features.
1231  */
1232 static void
1233 em_init_manageability(struct e1000_hw *hw)
1234 {
1235         if (e1000_enable_mng_pass_thru(hw)) {
1236                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
1237                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
1238
1239                 /* disable hardware interception of ARP */
1240                 manc &= ~(E1000_MANC_ARP_EN);
1241
1242                 /* enable receiving management packets to the host */
1243                 manc |= E1000_MANC_EN_MNG2HOST;
1244                 manc2h |= 1 << 5;  /* Mng Port 623 */
1245                 manc2h |= 1 << 6;  /* Mng Port 664 */
1246                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
1247                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1248         }
1249 }
1250
1251 /*
1252  * Give control back to hardware management
1253  * controller if there is one.
1254  */
1255 static void
1256 em_release_manageability(struct e1000_hw *hw)
1257 {
1258         uint32_t manc;
1259
1260         if (e1000_enable_mng_pass_thru(hw)) {
1261                 manc = E1000_READ_REG(hw, E1000_MANC);
1262
1263                 /* re-enable hardware interception of ARP */
1264                 manc |= E1000_MANC_ARP_EN;
1265                 manc &= ~E1000_MANC_EN_MNG2HOST;
1266
1267                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1268         }
1269 }
1270
1271 static int
1272 eth_em_promiscuous_enable(struct rte_eth_dev *dev)
1273 {
1274         struct e1000_hw *hw =
1275                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1276         uint32_t rctl;
1277
1278         rctl = E1000_READ_REG(hw, E1000_RCTL);
1279         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1280         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1281
1282         return 0;
1283 }
1284
1285 static int
1286 eth_em_promiscuous_disable(struct rte_eth_dev *dev)
1287 {
1288         struct e1000_hw *hw =
1289                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1290         uint32_t rctl;
1291
1292         rctl = E1000_READ_REG(hw, E1000_RCTL);
1293         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
1294         if (dev->data->all_multicast == 1)
1295                 rctl |= E1000_RCTL_MPE;
1296         else
1297                 rctl &= (~E1000_RCTL_MPE);
1298         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1299
1300         return 0;
1301 }
1302
1303 static int
1304 eth_em_allmulticast_enable(struct rte_eth_dev *dev)
1305 {
1306         struct e1000_hw *hw =
1307                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1308         uint32_t rctl;
1309
1310         rctl = E1000_READ_REG(hw, E1000_RCTL);
1311         rctl |= E1000_RCTL_MPE;
1312         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1313
1314         return 0;
1315 }
1316
1317 static int
1318 eth_em_allmulticast_disable(struct rte_eth_dev *dev)
1319 {
1320         struct e1000_hw *hw =
1321                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1322         uint32_t rctl;
1323
1324         if (dev->data->promiscuous == 1)
1325                 return 0; /* must remain in all_multicast mode */
1326         rctl = E1000_READ_REG(hw, E1000_RCTL);
1327         rctl &= (~E1000_RCTL_MPE);
1328         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1329
1330         return 0;
1331 }
1332
1333 static int
1334 eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1335 {
1336         struct e1000_hw *hw =
1337                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1338         struct e1000_vfta * shadow_vfta =
1339                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1340         uint32_t vfta;
1341         uint32_t vid_idx;
1342         uint32_t vid_bit;
1343
1344         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
1345                               E1000_VFTA_ENTRY_MASK);
1346         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
1347         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
1348         if (on)
1349                 vfta |= vid_bit;
1350         else
1351                 vfta &= ~vid_bit;
1352         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
1353
1354         /* update local VFTA copy */
1355         shadow_vfta->vfta[vid_idx] = vfta;
1356
1357         return 0;
1358 }
1359
1360 static void
1361 em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
1362 {
1363         struct e1000_hw *hw =
1364                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1365         uint32_t reg;
1366
1367         /* Filter Table Disable */
1368         reg = E1000_READ_REG(hw, E1000_RCTL);
1369         reg &= ~E1000_RCTL_CFIEN;
1370         reg &= ~E1000_RCTL_VFE;
1371         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1372 }
1373
1374 static void
1375 em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1376 {
1377         struct e1000_hw *hw =
1378                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1379         struct e1000_vfta * shadow_vfta =
1380                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1381         uint32_t reg;
1382         int i;
1383
1384         /* Filter Table Enable, CFI not used for packet acceptance */
1385         reg = E1000_READ_REG(hw, E1000_RCTL);
1386         reg &= ~E1000_RCTL_CFIEN;
1387         reg |= E1000_RCTL_VFE;
1388         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1389
1390         /* restore vfta from local copy */
1391         for (i = 0; i < IGB_VFTA_SIZE; i++)
1392                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
1393 }
1394
1395 static void
1396 em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
1397 {
1398         struct e1000_hw *hw =
1399                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1400         uint32_t reg;
1401
1402         /* VLAN Mode Disable */
1403         reg = E1000_READ_REG(hw, E1000_CTRL);
1404         reg &= ~E1000_CTRL_VME;
1405         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1406
1407 }
1408
1409 static void
1410 em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
1411 {
1412         struct e1000_hw *hw =
1413                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1414         uint32_t reg;
1415
1416         /* VLAN Mode Enable */
1417         reg = E1000_READ_REG(hw, E1000_CTRL);
1418         reg |= E1000_CTRL_VME;
1419         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1420 }
1421
1422 static int
1423 eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1424 {
1425         struct rte_eth_rxmode *rxmode;
1426
1427         rxmode = &dev->data->dev_conf.rxmode;
1428         if(mask & ETH_VLAN_STRIP_MASK){
1429                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1430                         em_vlan_hw_strip_enable(dev);
1431                 else
1432                         em_vlan_hw_strip_disable(dev);
1433         }
1434
1435         if(mask & ETH_VLAN_FILTER_MASK){
1436                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
1437                         em_vlan_hw_filter_enable(dev);
1438                 else
1439                         em_vlan_hw_filter_disable(dev);
1440         }
1441
1442         return 0;
1443 }
1444
1445 /*
1446  * It enables the interrupt mask and then enable the interrupt.
1447  *
1448  * @param dev
1449  *  Pointer to struct rte_eth_dev.
1450  *
1451  * @return
1452  *  - On success, zero.
1453  *  - On failure, a negative value.
1454  */
1455 static int
1456 eth_em_interrupt_setup(struct rte_eth_dev *dev)
1457 {
1458         uint32_t regval;
1459         struct e1000_hw *hw =
1460                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1461
1462         /* clear interrupt */
1463         E1000_READ_REG(hw, E1000_ICR);
1464         regval = E1000_READ_REG(hw, E1000_IMS);
1465         E1000_WRITE_REG(hw, E1000_IMS,
1466                         regval | E1000_ICR_LSC | E1000_ICR_OTHER);
1467         return 0;
1468 }
1469
1470 /*
1471  * It clears the interrupt causes and enables the interrupt.
1472  * It will be called once only during nic initialized.
1473  *
1474  * @param dev
1475  *  Pointer to struct rte_eth_dev.
1476  *
1477  * @return
1478  *  - On success, zero.
1479  *  - On failure, a negative value.
1480  */
1481 static int
1482 eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev)
1483 {
1484         struct e1000_hw *hw =
1485         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1486
1487         E1000_READ_REG(hw, E1000_ICR);
1488         em_rxq_intr_enable(hw);
1489         return 0;
1490 }
1491
1492 /*
1493  * It enable receive packet interrupt.
1494  * @param hw
1495  * Pointer to struct e1000_hw
1496  *
1497  * @return
1498  */
1499 static void
1500 em_rxq_intr_enable(struct e1000_hw *hw)
1501 {
1502         E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_RXT0);
1503         E1000_WRITE_FLUSH(hw);
1504 }
1505
1506 /*
1507  * It disabled lsc interrupt.
1508  * @param hw
1509  * Pointer to struct e1000_hw
1510  *
1511  * @return
1512  */
1513 static void
1514 em_lsc_intr_disable(struct e1000_hw *hw)
1515 {
1516         E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_LSC | E1000_IMS_OTHER);
1517         E1000_WRITE_FLUSH(hw);
1518 }
1519
1520 /*
1521  * It disabled receive packet interrupt.
1522  * @param hw
1523  * Pointer to struct e1000_hw
1524  *
1525  * @return
1526  */
1527 static void
1528 em_rxq_intr_disable(struct e1000_hw *hw)
1529 {
1530         E1000_READ_REG(hw, E1000_ICR);
1531         E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
1532         E1000_WRITE_FLUSH(hw);
1533 }
1534
1535 /*
1536  * It reads ICR and gets interrupt causes, check it and set a bit flag
1537  * to update link status.
1538  *
1539  * @param dev
1540  *  Pointer to struct rte_eth_dev.
1541  *
1542  * @return
1543  *  - On success, zero.
1544  *  - On failure, a negative value.
1545  */
1546 static int
1547 eth_em_interrupt_get_status(struct rte_eth_dev *dev)
1548 {
1549         uint32_t icr;
1550         struct e1000_hw *hw =
1551                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1552         struct e1000_interrupt *intr =
1553                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1554
1555         /* read-on-clear nic registers here */
1556         icr = E1000_READ_REG(hw, E1000_ICR);
1557         if (icr & E1000_ICR_LSC) {
1558                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1559         }
1560
1561         return 0;
1562 }
1563
1564 /*
1565  * It executes link_update after knowing an interrupt is prsent.
1566  *
1567  * @param dev
1568  *  Pointer to struct rte_eth_dev.
1569  *
1570  * @return
1571  *  - On success, zero.
1572  *  - On failure, a negative value.
1573  */
1574 static int
1575 eth_em_interrupt_action(struct rte_eth_dev *dev,
1576                         struct rte_intr_handle *intr_handle)
1577 {
1578         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1579         struct e1000_hw *hw =
1580                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1581         struct e1000_interrupt *intr =
1582                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1583         struct rte_eth_link link;
1584         int ret;
1585
1586         if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
1587                 return -1;
1588
1589         intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
1590         rte_intr_ack(intr_handle);
1591
1592         /* set get_link_status to check register later */
1593         hw->mac.get_link_status = 1;
1594         ret = eth_em_link_update(dev, 0);
1595
1596         /* check if link has changed */
1597         if (ret < 0)
1598                 return 0;
1599
1600         rte_eth_linkstatus_get(dev, &link);
1601
1602         if (link.link_status) {
1603                 PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s",
1604                              dev->data->port_id, link.link_speed,
1605                              link.link_duplex == ETH_LINK_FULL_DUPLEX ?
1606                              "full-duplex" : "half-duplex");
1607         } else {
1608                 PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id);
1609         }
1610         PMD_INIT_LOG(DEBUG, "PCI Address: " PCI_PRI_FMT,
1611                      pci_dev->addr.domain, pci_dev->addr.bus,
1612                      pci_dev->addr.devid, pci_dev->addr.function);
1613
1614         return 0;
1615 }
1616
1617 /**
1618  * Interrupt handler which shall be registered at first.
1619  *
1620  * @param handle
1621  *  Pointer to interrupt handle.
1622  * @param param
1623  *  The address of parameter (struct rte_eth_dev *) regsitered before.
1624  *
1625  * @return
1626  *  void
1627  */
1628 static void
1629 eth_em_interrupt_handler(void *param)
1630 {
1631         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1632
1633         eth_em_interrupt_get_status(dev);
1634         eth_em_interrupt_action(dev, dev->intr_handle);
1635         rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
1636 }
1637
1638 static int
1639 eth_em_led_on(struct rte_eth_dev *dev)
1640 {
1641         struct e1000_hw *hw;
1642
1643         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1644         return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1645 }
1646
1647 static int
1648 eth_em_led_off(struct rte_eth_dev *dev)
1649 {
1650         struct e1000_hw *hw;
1651
1652         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1653         return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1654 }
1655
1656 static int
1657 eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1658 {
1659         struct e1000_hw *hw;
1660         uint32_t ctrl;
1661         int tx_pause;
1662         int rx_pause;
1663
1664         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1665         fc_conf->pause_time = hw->fc.pause_time;
1666         fc_conf->high_water = hw->fc.high_water;
1667         fc_conf->low_water = hw->fc.low_water;
1668         fc_conf->send_xon = hw->fc.send_xon;
1669         fc_conf->autoneg = hw->mac.autoneg;
1670
1671         /*
1672          * Return rx_pause and tx_pause status according to actual setting of
1673          * the TFCE and RFCE bits in the CTRL register.
1674          */
1675         ctrl = E1000_READ_REG(hw, E1000_CTRL);
1676         if (ctrl & E1000_CTRL_TFCE)
1677                 tx_pause = 1;
1678         else
1679                 tx_pause = 0;
1680
1681         if (ctrl & E1000_CTRL_RFCE)
1682                 rx_pause = 1;
1683         else
1684                 rx_pause = 0;
1685
1686         if (rx_pause && tx_pause)
1687                 fc_conf->mode = RTE_FC_FULL;
1688         else if (rx_pause)
1689                 fc_conf->mode = RTE_FC_RX_PAUSE;
1690         else if (tx_pause)
1691                 fc_conf->mode = RTE_FC_TX_PAUSE;
1692         else
1693                 fc_conf->mode = RTE_FC_NONE;
1694
1695         return 0;
1696 }
1697
1698 static int
1699 eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1700 {
1701         struct e1000_hw *hw;
1702         int err;
1703         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
1704                 e1000_fc_none,
1705                 e1000_fc_rx_pause,
1706                 e1000_fc_tx_pause,
1707                 e1000_fc_full
1708         };
1709         uint32_t rx_buf_size;
1710         uint32_t max_high_water;
1711         uint32_t rctl;
1712
1713         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1714         if (fc_conf->autoneg != hw->mac.autoneg)
1715                 return -ENOTSUP;
1716         rx_buf_size = em_get_rx_buffer_size(hw);
1717         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
1718
1719         /* At least reserve one Ethernet frame for watermark */
1720         max_high_water = rx_buf_size - RTE_ETHER_MAX_LEN;
1721         if ((fc_conf->high_water > max_high_water) ||
1722             (fc_conf->high_water < fc_conf->low_water)) {
1723                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
1724                 PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
1725                 return -EINVAL;
1726         }
1727
1728         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
1729         hw->fc.pause_time     = fc_conf->pause_time;
1730         hw->fc.high_water     = fc_conf->high_water;
1731         hw->fc.low_water      = fc_conf->low_water;
1732         hw->fc.send_xon       = fc_conf->send_xon;
1733
1734         err = e1000_setup_link_generic(hw);
1735         if (err == E1000_SUCCESS) {
1736
1737                 /* check if we want to forward MAC frames - driver doesn't have native
1738                  * capability to do that, so we'll write the registers ourselves */
1739
1740                 rctl = E1000_READ_REG(hw, E1000_RCTL);
1741
1742                 /* set or clear MFLCN.PMCF bit depending on configuration */
1743                 if (fc_conf->mac_ctrl_frame_fwd != 0)
1744                         rctl |= E1000_RCTL_PMCF;
1745                 else
1746                         rctl &= ~E1000_RCTL_PMCF;
1747
1748                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1749                 E1000_WRITE_FLUSH(hw);
1750
1751                 return 0;
1752         }
1753
1754         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
1755         return -EIO;
1756 }
1757
1758 static int
1759 eth_em_rar_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
1760                 uint32_t index, __rte_unused uint32_t pool)
1761 {
1762         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1763
1764         return e1000_rar_set(hw, mac_addr->addr_bytes, index);
1765 }
1766
1767 static void
1768 eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
1769 {
1770         uint8_t addr[RTE_ETHER_ADDR_LEN];
1771         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1772
1773         memset(addr, 0, sizeof(addr));
1774
1775         e1000_rar_set(hw, addr, index);
1776 }
1777
1778 static int
1779 eth_em_default_mac_addr_set(struct rte_eth_dev *dev,
1780                             struct rte_ether_addr *addr)
1781 {
1782         eth_em_rar_clear(dev, 0);
1783
1784         return eth_em_rar_set(dev, (void *)addr, 0, 0);
1785 }
1786
1787 static int
1788 eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1789 {
1790         struct rte_eth_dev_info dev_info;
1791         struct e1000_hw *hw;
1792         uint32_t frame_size;
1793         uint32_t rctl;
1794         int ret;
1795
1796         ret = eth_em_infos_get(dev, &dev_info);
1797         if (ret != 0)
1798                 return ret;
1799
1800         frame_size = mtu + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN +
1801                 VLAN_TAG_SIZE;
1802
1803         /* check that mtu is within the allowed range */
1804         if (mtu < RTE_ETHER_MIN_MTU || frame_size > dev_info.max_rx_pktlen)
1805                 return -EINVAL;
1806
1807         /* refuse mtu that requires the support of scattered packets when this
1808          * feature has not been enabled before. */
1809         if (!dev->data->scattered_rx &&
1810             frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
1811                 return -EINVAL;
1812
1813         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1814         rctl = E1000_READ_REG(hw, E1000_RCTL);
1815
1816         /* switch to jumbo mode if needed */
1817         if (frame_size > RTE_ETHER_MAX_LEN) {
1818                 dev->data->dev_conf.rxmode.offloads |=
1819                         DEV_RX_OFFLOAD_JUMBO_FRAME;
1820                 rctl |= E1000_RCTL_LPE;
1821         } else {
1822                 dev->data->dev_conf.rxmode.offloads &=
1823                         ~DEV_RX_OFFLOAD_JUMBO_FRAME;
1824                 rctl &= ~E1000_RCTL_LPE;
1825         }
1826         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1827
1828         /* update max frame size */
1829         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
1830         return 0;
1831 }
1832
1833 static int
1834 eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
1835                         struct rte_ether_addr *mc_addr_set,
1836                         uint32_t nb_mc_addr)
1837 {
1838         struct e1000_hw *hw;
1839
1840         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1841         e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
1842         return 0;
1843 }
1844
1845 RTE_PMD_REGISTER_PCI(net_e1000_em, rte_em_pmd);
1846 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_em, pci_id_em_map);
1847 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_em, "* igb_uio | uio_pci_generic | vfio-pci");
1848
1849 /* see e1000_logs.c */
1850 RTE_INIT(igb_init_log)
1851 {
1852         e1000_igb_init_log();
1853 }