ethdev: make stats and xstats reset callbacks return int
[dpdk.git] / drivers / net / e1000 / em_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <stdarg.h>
10
11 #include <rte_common.h>
12 #include <rte_interrupts.h>
13 #include <rte_byteorder.h>
14 #include <rte_debug.h>
15 #include <rte_pci.h>
16 #include <rte_bus_pci.h>
17 #include <rte_ether.h>
18 #include <rte_ethdev_driver.h>
19 #include <rte_ethdev_pci.h>
20 #include <rte_memory.h>
21 #include <rte_eal.h>
22 #include <rte_malloc.h>
23 #include <rte_dev.h>
24
25 #include "e1000_logs.h"
26 #include "base/e1000_api.h"
27 #include "e1000_ethdev.h"
28
29 #define EM_EIAC                 0x000DC
30
31 #define PMD_ROUNDUP(x,y)        (((x) + (y) - 1)/(y) * (y))
32
33
34 static int eth_em_configure(struct rte_eth_dev *dev);
35 static int eth_em_start(struct rte_eth_dev *dev);
36 static void eth_em_stop(struct rte_eth_dev *dev);
37 static void eth_em_close(struct rte_eth_dev *dev);
38 static int eth_em_promiscuous_enable(struct rte_eth_dev *dev);
39 static int eth_em_promiscuous_disable(struct rte_eth_dev *dev);
40 static void eth_em_allmulticast_enable(struct rte_eth_dev *dev);
41 static void eth_em_allmulticast_disable(struct rte_eth_dev *dev);
42 static int eth_em_link_update(struct rte_eth_dev *dev,
43                                 int wait_to_complete);
44 static int eth_em_stats_get(struct rte_eth_dev *dev,
45                                 struct rte_eth_stats *rte_stats);
46 static int eth_em_stats_reset(struct rte_eth_dev *dev);
47 static int eth_em_infos_get(struct rte_eth_dev *dev,
48                                 struct rte_eth_dev_info *dev_info);
49 static int eth_em_flow_ctrl_get(struct rte_eth_dev *dev,
50                                 struct rte_eth_fc_conf *fc_conf);
51 static int eth_em_flow_ctrl_set(struct rte_eth_dev *dev,
52                                 struct rte_eth_fc_conf *fc_conf);
53 static int eth_em_interrupt_setup(struct rte_eth_dev *dev);
54 static int eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev);
55 static int eth_em_interrupt_get_status(struct rte_eth_dev *dev);
56 static int eth_em_interrupt_action(struct rte_eth_dev *dev,
57                                    struct rte_intr_handle *handle);
58 static void eth_em_interrupt_handler(void *param);
59
60 static int em_hw_init(struct e1000_hw *hw);
61 static int em_hardware_init(struct e1000_hw *hw);
62 static void em_hw_control_acquire(struct e1000_hw *hw);
63 static void em_hw_control_release(struct e1000_hw *hw);
64 static void em_init_manageability(struct e1000_hw *hw);
65 static void em_release_manageability(struct e1000_hw *hw);
66
67 static int eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
68
69 static int eth_em_vlan_filter_set(struct rte_eth_dev *dev,
70                 uint16_t vlan_id, int on);
71 static int eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask);
72 static void em_vlan_hw_filter_enable(struct rte_eth_dev *dev);
73 static void em_vlan_hw_filter_disable(struct rte_eth_dev *dev);
74 static void em_vlan_hw_strip_enable(struct rte_eth_dev *dev);
75 static void em_vlan_hw_strip_disable(struct rte_eth_dev *dev);
76
77 /*
78 static void eth_em_vlan_filter_set(struct rte_eth_dev *dev,
79                                         uint16_t vlan_id, int on);
80 */
81
82 static int eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id);
83 static int eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id);
84 static void em_lsc_intr_disable(struct e1000_hw *hw);
85 static void em_rxq_intr_enable(struct e1000_hw *hw);
86 static void em_rxq_intr_disable(struct e1000_hw *hw);
87
88 static int eth_em_led_on(struct rte_eth_dev *dev);
89 static int eth_em_led_off(struct rte_eth_dev *dev);
90
91 static int em_get_rx_buffer_size(struct e1000_hw *hw);
92 static int eth_em_rar_set(struct rte_eth_dev *dev,
93                         struct rte_ether_addr *mac_addr,
94                         uint32_t index, uint32_t pool);
95 static void eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index);
96 static int eth_em_default_mac_addr_set(struct rte_eth_dev *dev,
97                                          struct rte_ether_addr *addr);
98
99 static int eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
100                                    struct rte_ether_addr *mc_addr_set,
101                                    uint32_t nb_mc_addr);
102
103 #define EM_FC_PAUSE_TIME 0x0680
104 #define EM_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
105 #define EM_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
106
107 static enum e1000_fc_mode em_fc_setting = e1000_fc_full;
108
109 /*
110  * The set of PCI devices this driver supports
111  */
112 static const struct rte_pci_id pci_id_em_map[] = {
113         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82540EM) },
114         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_COPPER) },
115         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82545EM_FIBER) },
116         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_COPPER) },
117         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_FIBER) },
118         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82546EB_QUAD_COPPER) },
119         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_COPPER) },
120         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_FIBER) },
121         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES) },
122         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_DUAL) },
123         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_SERDES_QUAD) },
124         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER) },
125         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571PT_QUAD_COPPER) },
126         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_FIBER) },
127         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82571EB_QUAD_COPPER_LP) },
128         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_COPPER) },
129         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_FIBER) },
130         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI_SERDES) },
131         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82572EI) },
132         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82573L) },
133         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574L) },
134         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82574LA) },
135         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82583V) },
136         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH2_LV_LM) },
137         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_LM) },
138         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPT_I217_V) },
139         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_LM) },
140         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LPTLP_I218_V) },
141         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM2) },
142         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V2) },
143         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_LM3) },
144         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_I218_V3) },
145         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM) },
146         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V) },
147         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM2) },
148         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V2) },
149         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_LBG_I219_LM3) },
150         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM4) },
151         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V4) },
152         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_LM5) },
153         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_SPT_I219_V5) },
154         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM6) },
155         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V6) },
156         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_LM7) },
157         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_PCH_CNP_I219_V7) },
158         { .vendor_id = 0, /* sentinel */ },
159 };
160
161 static const struct eth_dev_ops eth_em_ops = {
162         .dev_configure        = eth_em_configure,
163         .dev_start            = eth_em_start,
164         .dev_stop             = eth_em_stop,
165         .dev_close            = eth_em_close,
166         .promiscuous_enable   = eth_em_promiscuous_enable,
167         .promiscuous_disable  = eth_em_promiscuous_disable,
168         .allmulticast_enable  = eth_em_allmulticast_enable,
169         .allmulticast_disable = eth_em_allmulticast_disable,
170         .link_update          = eth_em_link_update,
171         .stats_get            = eth_em_stats_get,
172         .stats_reset          = eth_em_stats_reset,
173         .dev_infos_get        = eth_em_infos_get,
174         .mtu_set              = eth_em_mtu_set,
175         .vlan_filter_set      = eth_em_vlan_filter_set,
176         .vlan_offload_set     = eth_em_vlan_offload_set,
177         .rx_queue_setup       = eth_em_rx_queue_setup,
178         .rx_queue_release     = eth_em_rx_queue_release,
179         .rx_queue_count       = eth_em_rx_queue_count,
180         .rx_descriptor_done   = eth_em_rx_descriptor_done,
181         .rx_descriptor_status = eth_em_rx_descriptor_status,
182         .tx_descriptor_status = eth_em_tx_descriptor_status,
183         .tx_queue_setup       = eth_em_tx_queue_setup,
184         .tx_queue_release     = eth_em_tx_queue_release,
185         .rx_queue_intr_enable = eth_em_rx_queue_intr_enable,
186         .rx_queue_intr_disable = eth_em_rx_queue_intr_disable,
187         .dev_led_on           = eth_em_led_on,
188         .dev_led_off          = eth_em_led_off,
189         .flow_ctrl_get        = eth_em_flow_ctrl_get,
190         .flow_ctrl_set        = eth_em_flow_ctrl_set,
191         .mac_addr_set         = eth_em_default_mac_addr_set,
192         .mac_addr_add         = eth_em_rar_set,
193         .mac_addr_remove      = eth_em_rar_clear,
194         .set_mc_addr_list     = eth_em_set_mc_addr_list,
195         .rxq_info_get         = em_rxq_info_get,
196         .txq_info_get         = em_txq_info_get,
197 };
198
199
200 /**
201  *  eth_em_dev_is_ich8 - Check for ICH8 device
202  *  @hw: pointer to the HW structure
203  *
204  *  return TRUE for ICH8, otherwise FALSE
205  **/
206 static bool
207 eth_em_dev_is_ich8(struct e1000_hw *hw)
208 {
209         DEBUGFUNC("eth_em_dev_is_ich8");
210
211         switch (hw->device_id) {
212         case E1000_DEV_ID_PCH2_LV_LM:
213         case E1000_DEV_ID_PCH_LPT_I217_LM:
214         case E1000_DEV_ID_PCH_LPT_I217_V:
215         case E1000_DEV_ID_PCH_LPTLP_I218_LM:
216         case E1000_DEV_ID_PCH_LPTLP_I218_V:
217         case E1000_DEV_ID_PCH_I218_V2:
218         case E1000_DEV_ID_PCH_I218_LM2:
219         case E1000_DEV_ID_PCH_I218_V3:
220         case E1000_DEV_ID_PCH_I218_LM3:
221         case E1000_DEV_ID_PCH_SPT_I219_LM:
222         case E1000_DEV_ID_PCH_SPT_I219_V:
223         case E1000_DEV_ID_PCH_SPT_I219_LM2:
224         case E1000_DEV_ID_PCH_SPT_I219_V2:
225         case E1000_DEV_ID_PCH_LBG_I219_LM3:
226         case E1000_DEV_ID_PCH_SPT_I219_LM4:
227         case E1000_DEV_ID_PCH_SPT_I219_V4:
228         case E1000_DEV_ID_PCH_SPT_I219_LM5:
229         case E1000_DEV_ID_PCH_SPT_I219_V5:
230         case E1000_DEV_ID_PCH_CNP_I219_LM6:
231         case E1000_DEV_ID_PCH_CNP_I219_V6:
232         case E1000_DEV_ID_PCH_CNP_I219_LM7:
233         case E1000_DEV_ID_PCH_CNP_I219_V7:
234                 return 1;
235         default:
236                 return 0;
237         }
238 }
239
240 static int
241 eth_em_dev_init(struct rte_eth_dev *eth_dev)
242 {
243         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
244         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
245         struct e1000_adapter *adapter =
246                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
247         struct e1000_hw *hw =
248                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
249         struct e1000_vfta * shadow_vfta =
250                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
251
252         eth_dev->dev_ops = &eth_em_ops;
253         eth_dev->rx_pkt_burst = (eth_rx_burst_t)&eth_em_recv_pkts;
254         eth_dev->tx_pkt_burst = (eth_tx_burst_t)&eth_em_xmit_pkts;
255         eth_dev->tx_pkt_prepare = (eth_tx_prep_t)&eth_em_prep_pkts;
256
257         /* for secondary processes, we don't initialise any further as primary
258          * has already done this work. Only check we don't need a different
259          * RX function */
260         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
261                 if (eth_dev->data->scattered_rx)
262                         eth_dev->rx_pkt_burst =
263                                 (eth_rx_burst_t)&eth_em_recv_scattered_pkts;
264                 return 0;
265         }
266
267         rte_eth_copy_pci_info(eth_dev, pci_dev);
268
269         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
270         hw->device_id = pci_dev->id.device_id;
271         adapter->stopped = 0;
272
273         /* For ICH8 support we'll need to map the flash memory BAR */
274         if (eth_em_dev_is_ich8(hw))
275                 hw->flash_address = (void *)pci_dev->mem_resource[1].addr;
276
277         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS ||
278                         em_hw_init(hw) != 0) {
279                 PMD_INIT_LOG(ERR, "port_id %d vendorID=0x%x deviceID=0x%x: "
280                         "failed to init HW",
281                         eth_dev->data->port_id, pci_dev->id.vendor_id,
282                         pci_dev->id.device_id);
283                 return -ENODEV;
284         }
285
286         /* Allocate memory for storing MAC addresses */
287         eth_dev->data->mac_addrs = rte_zmalloc("e1000", RTE_ETHER_ADDR_LEN *
288                         hw->mac.rar_entry_count, 0);
289         if (eth_dev->data->mac_addrs == NULL) {
290                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
291                         "store MAC addresses",
292                         RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count);
293                 return -ENOMEM;
294         }
295
296         /* Copy the permanent MAC address */
297         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
298                 eth_dev->data->mac_addrs);
299
300         /* initialize the vfta */
301         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
302
303         PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
304                      eth_dev->data->port_id, pci_dev->id.vendor_id,
305                      pci_dev->id.device_id);
306
307         rte_intr_callback_register(intr_handle,
308                                    eth_em_interrupt_handler, eth_dev);
309
310         return 0;
311 }
312
313 static int
314 eth_em_dev_uninit(struct rte_eth_dev *eth_dev)
315 {
316         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
317         struct e1000_adapter *adapter =
318                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
319         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
320
321         PMD_INIT_FUNC_TRACE();
322
323         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
324                 return -EPERM;
325
326         if (adapter->stopped == 0)
327                 eth_em_close(eth_dev);
328
329         eth_dev->dev_ops = NULL;
330         eth_dev->rx_pkt_burst = NULL;
331         eth_dev->tx_pkt_burst = NULL;
332
333         /* disable uio intr before callback unregister */
334         rte_intr_disable(intr_handle);
335         rte_intr_callback_unregister(intr_handle,
336                                      eth_em_interrupt_handler, eth_dev);
337
338         return 0;
339 }
340
341 static int eth_em_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
342         struct rte_pci_device *pci_dev)
343 {
344         return rte_eth_dev_pci_generic_probe(pci_dev,
345                 sizeof(struct e1000_adapter), eth_em_dev_init);
346 }
347
348 static int eth_em_pci_remove(struct rte_pci_device *pci_dev)
349 {
350         return rte_eth_dev_pci_generic_remove(pci_dev, eth_em_dev_uninit);
351 }
352
353 static struct rte_pci_driver rte_em_pmd = {
354         .id_table = pci_id_em_map,
355         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
356         .probe = eth_em_pci_probe,
357         .remove = eth_em_pci_remove,
358 };
359
360 static int
361 em_hw_init(struct e1000_hw *hw)
362 {
363         int diag;
364
365         diag = hw->mac.ops.init_params(hw);
366         if (diag != 0) {
367                 PMD_INIT_LOG(ERR, "MAC Initialization Error");
368                 return diag;
369         }
370         diag = hw->nvm.ops.init_params(hw);
371         if (diag != 0) {
372                 PMD_INIT_LOG(ERR, "NVM Initialization Error");
373                 return diag;
374         }
375         diag = hw->phy.ops.init_params(hw);
376         if (diag != 0) {
377                 PMD_INIT_LOG(ERR, "PHY Initialization Error");
378                 return diag;
379         }
380         (void) e1000_get_bus_info(hw);
381
382         hw->mac.autoneg = 1;
383         hw->phy.autoneg_wait_to_complete = 0;
384         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
385
386         e1000_init_script_state_82541(hw, TRUE);
387         e1000_set_tbi_compatibility_82543(hw, TRUE);
388
389         /* Copper options */
390         if (hw->phy.media_type == e1000_media_type_copper) {
391                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
392                 hw->phy.disable_polarity_correction = 0;
393                 hw->phy.ms_type = e1000_ms_hw_default;
394         }
395
396         /*
397          * Start from a known state, this is important in reading the nvm
398          * and mac from that.
399          */
400         e1000_reset_hw(hw);
401
402         /* Make sure we have a good EEPROM before we read from it */
403         if (e1000_validate_nvm_checksum(hw) < 0) {
404                 /*
405                  * Some PCI-E parts fail the first check due to
406                  * the link being in sleep state, call it again,
407                  * if it fails a second time its a real issue.
408                  */
409                 diag = e1000_validate_nvm_checksum(hw);
410                 if (diag < 0) {
411                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
412                         goto error;
413                 }
414         }
415
416         /* Read the permanent MAC address out of the EEPROM */
417         diag = e1000_read_mac_addr(hw);
418         if (diag != 0) {
419                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
420                 goto error;
421         }
422
423         /* Now initialize the hardware */
424         diag = em_hardware_init(hw);
425         if (diag != 0) {
426                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
427                 goto error;
428         }
429
430         hw->mac.get_link_status = 1;
431
432         /* Indicate SOL/IDER usage */
433         diag = e1000_check_reset_block(hw);
434         if (diag < 0) {
435                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to "
436                         "SOL/IDER session");
437         }
438         return 0;
439
440 error:
441         em_hw_control_release(hw);
442         return diag;
443 }
444
445 static int
446 eth_em_configure(struct rte_eth_dev *dev)
447 {
448         struct e1000_interrupt *intr =
449                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
450
451         PMD_INIT_FUNC_TRACE();
452         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
453
454         PMD_INIT_FUNC_TRACE();
455
456         return 0;
457 }
458
459 static void
460 em_set_pba(struct e1000_hw *hw)
461 {
462         uint32_t pba;
463
464         /*
465          * Packet Buffer Allocation (PBA)
466          * Writing PBA sets the receive portion of the buffer
467          * the remainder is used for the transmit buffer.
468          * Devices before the 82547 had a Packet Buffer of 64K.
469          * After the 82547 the buffer was reduced to 40K.
470          */
471         switch (hw->mac.type) {
472                 case e1000_82547:
473                 case e1000_82547_rev_2:
474                 /* 82547: Total Packet Buffer is 40K */
475                         pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
476                         break;
477                 case e1000_82571:
478                 case e1000_82572:
479                 case e1000_80003es2lan:
480                         pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
481                         break;
482                 case e1000_82573: /* 82573: Total Packet Buffer is 32K */
483                         pba = E1000_PBA_12K; /* 12K for Rx, 20K for Tx */
484                         break;
485                 case e1000_82574:
486                 case e1000_82583:
487                         pba = E1000_PBA_20K; /* 20K for Rx, 20K for Tx */
488                         break;
489                 case e1000_ich8lan:
490                         pba = E1000_PBA_8K;
491                         break;
492                 case e1000_ich9lan:
493                 case e1000_ich10lan:
494                         pba = E1000_PBA_10K;
495                         break;
496                 case e1000_pchlan:
497                 case e1000_pch2lan:
498                 case e1000_pch_lpt:
499                 case e1000_pch_spt:
500                 case e1000_pch_cnp:
501                         pba = E1000_PBA_26K;
502                         break;
503                 default:
504                         pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
505         }
506
507         E1000_WRITE_REG(hw, E1000_PBA, pba);
508 }
509
510 static void
511 eth_em_rxtx_control(struct rte_eth_dev *dev,
512                     bool enable)
513 {
514         struct e1000_hw *hw =
515                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
516         uint32_t tctl, rctl;
517
518         tctl = E1000_READ_REG(hw, E1000_TCTL);
519         rctl = E1000_READ_REG(hw, E1000_RCTL);
520         if (enable) {
521                 /* enable Tx/Rx */
522                 tctl |= E1000_TCTL_EN;
523                 rctl |= E1000_RCTL_EN;
524         } else {
525                 /* disable Tx/Rx */
526                 tctl &= ~E1000_TCTL_EN;
527                 rctl &= ~E1000_RCTL_EN;
528         }
529         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
530         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
531         E1000_WRITE_FLUSH(hw);
532 }
533
534 static int
535 eth_em_start(struct rte_eth_dev *dev)
536 {
537         struct e1000_adapter *adapter =
538                 E1000_DEV_PRIVATE(dev->data->dev_private);
539         struct e1000_hw *hw =
540                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
541         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
542         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
543         int ret, mask;
544         uint32_t intr_vector = 0;
545         uint32_t *speeds;
546         int num_speeds;
547         bool autoneg;
548
549         PMD_INIT_FUNC_TRACE();
550
551         eth_em_stop(dev);
552
553         e1000_power_up_phy(hw);
554
555         /* Set default PBA value */
556         em_set_pba(hw);
557
558         /* Put the address into the Receive Address Array */
559         e1000_rar_set(hw, hw->mac.addr, 0);
560
561         /*
562          * With the 82571 adapter, RAR[0] may be overwritten
563          * when the other port is reset, we make a duplicate
564          * in RAR[14] for that eventuality, this assures
565          * the interface continues to function.
566          */
567         if (hw->mac.type == e1000_82571) {
568                 e1000_set_laa_state_82571(hw, TRUE);
569                 e1000_rar_set(hw, hw->mac.addr, E1000_RAR_ENTRIES - 1);
570         }
571
572         /* Initialize the hardware */
573         if (em_hardware_init(hw)) {
574                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
575                 return -EIO;
576         }
577
578         E1000_WRITE_REG(hw, E1000_VET, RTE_ETHER_TYPE_VLAN);
579
580         /* Configure for OS presence */
581         em_init_manageability(hw);
582
583         if (dev->data->dev_conf.intr_conf.rxq != 0) {
584                 intr_vector = dev->data->nb_rx_queues;
585                 if (rte_intr_efd_enable(intr_handle, intr_vector))
586                         return -1;
587         }
588
589         if (rte_intr_dp_is_en(intr_handle)) {
590                 intr_handle->intr_vec =
591                         rte_zmalloc("intr_vec",
592                                         dev->data->nb_rx_queues * sizeof(int), 0);
593                 if (intr_handle->intr_vec == NULL) {
594                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
595                                                 " intr_vec", dev->data->nb_rx_queues);
596                         return -ENOMEM;
597                 }
598
599                 /* enable rx interrupt */
600                 em_rxq_intr_enable(hw);
601         }
602
603         eth_em_tx_init(dev);
604
605         ret = eth_em_rx_init(dev);
606         if (ret) {
607                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
608                 em_dev_clear_queues(dev);
609                 return ret;
610         }
611
612         e1000_clear_hw_cntrs_base_generic(hw);
613
614         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
615                         ETH_VLAN_EXTEND_MASK;
616         ret = eth_em_vlan_offload_set(dev, mask);
617         if (ret) {
618                 PMD_INIT_LOG(ERR, "Unable to update vlan offload");
619                 em_dev_clear_queues(dev);
620                 return ret;
621         }
622
623         /* Set Interrupt Throttling Rate to maximum allowed value. */
624         E1000_WRITE_REG(hw, E1000_ITR, UINT16_MAX);
625
626         /* Setup link speed and duplex */
627         speeds = &dev->data->dev_conf.link_speeds;
628         if (*speeds == ETH_LINK_SPEED_AUTONEG) {
629                 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
630                 hw->mac.autoneg = 1;
631         } else {
632                 num_speeds = 0;
633                 autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
634
635                 /* Reset */
636                 hw->phy.autoneg_advertised = 0;
637
638                 if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
639                                 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
640                                 ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
641                         num_speeds = -1;
642                         goto error_invalid_config;
643                 }
644                 if (*speeds & ETH_LINK_SPEED_10M_HD) {
645                         hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
646                         num_speeds++;
647                 }
648                 if (*speeds & ETH_LINK_SPEED_10M) {
649                         hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
650                         num_speeds++;
651                 }
652                 if (*speeds & ETH_LINK_SPEED_100M_HD) {
653                         hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
654                         num_speeds++;
655                 }
656                 if (*speeds & ETH_LINK_SPEED_100M) {
657                         hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
658                         num_speeds++;
659                 }
660                 if (*speeds & ETH_LINK_SPEED_1G) {
661                         hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
662                         num_speeds++;
663                 }
664                 if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
665                         goto error_invalid_config;
666
667                 /* Set/reset the mac.autoneg based on the link speed,
668                  * fixed or not
669                  */
670                 if (!autoneg) {
671                         hw->mac.autoneg = 0;
672                         hw->mac.forced_speed_duplex =
673                                         hw->phy.autoneg_advertised;
674                 } else {
675                         hw->mac.autoneg = 1;
676                 }
677         }
678
679         e1000_setup_link(hw);
680
681         if (rte_intr_allow_others(intr_handle)) {
682                 /* check if lsc interrupt is enabled */
683                 if (dev->data->dev_conf.intr_conf.lsc != 0) {
684                         ret = eth_em_interrupt_setup(dev);
685                         if (ret) {
686                                 PMD_INIT_LOG(ERR, "Unable to setup interrupts");
687                                 em_dev_clear_queues(dev);
688                                 return ret;
689                         }
690                 }
691         } else {
692                 rte_intr_callback_unregister(intr_handle,
693                                                 eth_em_interrupt_handler,
694                                                 (void *)dev);
695                 if (dev->data->dev_conf.intr_conf.lsc != 0)
696                         PMD_INIT_LOG(INFO, "lsc won't enable because of"
697                                      " no intr multiplexn");
698         }
699         /* check if rxq interrupt is enabled */
700         if (dev->data->dev_conf.intr_conf.rxq != 0)
701                 eth_em_rxq_interrupt_setup(dev);
702
703         rte_intr_enable(intr_handle);
704
705         adapter->stopped = 0;
706
707         eth_em_rxtx_control(dev, true);
708         eth_em_link_update(dev, 0);
709
710         PMD_INIT_LOG(DEBUG, "<<");
711
712         return 0;
713
714 error_invalid_config:
715         PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
716                      dev->data->dev_conf.link_speeds, dev->data->port_id);
717         em_dev_clear_queues(dev);
718         return -EINVAL;
719 }
720
721 /*********************************************************************
722  *
723  *  This routine disables all traffic on the adapter by issuing a
724  *  global reset on the MAC.
725  *
726  **********************************************************************/
727 static void
728 eth_em_stop(struct rte_eth_dev *dev)
729 {
730         struct rte_eth_link link;
731         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
732         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
733         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
734
735         eth_em_rxtx_control(dev, false);
736         em_rxq_intr_disable(hw);
737         em_lsc_intr_disable(hw);
738
739         e1000_reset_hw(hw);
740
741         /* Flush desc rings for i219 */
742         if (hw->mac.type == e1000_pch_spt || hw->mac.type == e1000_pch_cnp)
743                 em_flush_desc_rings(dev);
744
745         if (hw->mac.type >= e1000_82544)
746                 E1000_WRITE_REG(hw, E1000_WUC, 0);
747
748         /* Power down the phy. Needed to make the link go down */
749         e1000_power_down_phy(hw);
750
751         em_dev_clear_queues(dev);
752
753         /* clear the recorded link status */
754         memset(&link, 0, sizeof(link));
755         rte_eth_linkstatus_set(dev, &link);
756
757         if (!rte_intr_allow_others(intr_handle))
758                 /* resume to the default handler */
759                 rte_intr_callback_register(intr_handle,
760                                            eth_em_interrupt_handler,
761                                            (void *)dev);
762
763         /* Clean datapath event and queue/vec mapping */
764         rte_intr_efd_disable(intr_handle);
765         if (intr_handle->intr_vec != NULL) {
766                 rte_free(intr_handle->intr_vec);
767                 intr_handle->intr_vec = NULL;
768         }
769 }
770
771 static void
772 eth_em_close(struct rte_eth_dev *dev)
773 {
774         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
775         struct e1000_adapter *adapter =
776                 E1000_DEV_PRIVATE(dev->data->dev_private);
777
778         eth_em_stop(dev);
779         adapter->stopped = 1;
780         em_dev_free_queues(dev);
781         e1000_phy_hw_reset(hw);
782         em_release_manageability(hw);
783         em_hw_control_release(hw);
784 }
785
786 static int
787 em_get_rx_buffer_size(struct e1000_hw *hw)
788 {
789         uint32_t rx_buf_size;
790
791         rx_buf_size = ((E1000_READ_REG(hw, E1000_PBA) & UINT16_MAX) << 10);
792         return rx_buf_size;
793 }
794
795 /*********************************************************************
796  *
797  *  Initialize the hardware
798  *
799  **********************************************************************/
800 static int
801 em_hardware_init(struct e1000_hw *hw)
802 {
803         uint32_t rx_buf_size;
804         int diag;
805
806         /* Issue a global reset */
807         e1000_reset_hw(hw);
808
809         /* Let the firmware know the OS is in control */
810         em_hw_control_acquire(hw);
811
812         /*
813          * These parameters control the automatic generation (Tx) and
814          * response (Rx) to Ethernet PAUSE frames.
815          * - High water mark should allow for at least two standard size (1518)
816          *   frames to be received after sending an XOFF.
817          * - Low water mark works best when it is very near the high water mark.
818          *   This allows the receiver to restart by sending XON when it has
819          *   drained a bit. Here we use an arbitrary value of 1500 which will
820          *   restart after one full frame is pulled from the buffer. There
821          *   could be several smaller frames in the buffer and if so they will
822          *   not trigger the XON until their total number reduces the buffer
823          *   by 1500.
824          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
825          */
826         rx_buf_size = em_get_rx_buffer_size(hw);
827
828         hw->fc.high_water = rx_buf_size -
829                 PMD_ROUNDUP(RTE_ETHER_MAX_LEN * 2, 1024);
830         hw->fc.low_water = hw->fc.high_water - 1500;
831
832         if (hw->mac.type == e1000_80003es2lan)
833                 hw->fc.pause_time = UINT16_MAX;
834         else
835                 hw->fc.pause_time = EM_FC_PAUSE_TIME;
836
837         hw->fc.send_xon = 1;
838
839         /* Set Flow control, use the tunable location if sane */
840         if (em_fc_setting <= e1000_fc_full)
841                 hw->fc.requested_mode = em_fc_setting;
842         else
843                 hw->fc.requested_mode = e1000_fc_none;
844
845         /* Workaround: no TX flow ctrl for PCH */
846         if (hw->mac.type == e1000_pchlan)
847                 hw->fc.requested_mode = e1000_fc_rx_pause;
848
849         /* Override - settings for PCH2LAN, ya its magic :) */
850         if (hw->mac.type == e1000_pch2lan) {
851                 hw->fc.high_water = 0x5C20;
852                 hw->fc.low_water = 0x5048;
853                 hw->fc.pause_time = 0x0650;
854                 hw->fc.refresh_time = 0x0400;
855         } else if (hw->mac.type == e1000_pch_lpt ||
856                    hw->mac.type == e1000_pch_spt ||
857                    hw->mac.type == e1000_pch_cnp) {
858                 hw->fc.requested_mode = e1000_fc_full;
859         }
860
861         diag = e1000_init_hw(hw);
862         if (diag < 0)
863                 return diag;
864         e1000_check_for_link(hw);
865         return 0;
866 }
867
868 /* This function is based on em_update_stats_counters() in e1000/if_em.c */
869 static int
870 eth_em_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
871 {
872         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
873         struct e1000_hw_stats *stats =
874                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
875         int pause_frames;
876
877         if(hw->phy.media_type == e1000_media_type_copper ||
878                         (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
879                 stats->symerrs += E1000_READ_REG(hw,E1000_SYMERRS);
880                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
881         }
882
883         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
884         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
885         stats->scc += E1000_READ_REG(hw, E1000_SCC);
886         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
887
888         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
889         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
890         stats->colc += E1000_READ_REG(hw, E1000_COLC);
891         stats->dc += E1000_READ_REG(hw, E1000_DC);
892         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
893         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
894         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
895
896         /*
897          * For watchdog management we need to know if we have been
898          * paused during the last interval, so capture that here.
899          */
900         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
901         stats->xoffrxc += pause_frames;
902         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
903         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
904         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
905         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
906         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
907         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
908         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
909         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
910         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
911         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
912         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
913         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
914
915         /*
916          * For the 64-bit byte counters the low dword must be read first.
917          * Both registers clear on the read of the high dword.
918          */
919
920         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
921         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
922         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
923         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
924
925         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
926         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
927         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
928         stats->roc += E1000_READ_REG(hw, E1000_ROC);
929         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
930
931         stats->tor += E1000_READ_REG(hw, E1000_TORH);
932         stats->tot += E1000_READ_REG(hw, E1000_TOTH);
933
934         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
935         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
936         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
937         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
938         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
939         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
940         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
941         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
942         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
943         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
944
945         /* Interrupt Counts */
946
947         if (hw->mac.type >= e1000_82571) {
948                 stats->iac += E1000_READ_REG(hw, E1000_IAC);
949                 stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
950                 stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
951                 stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
952                 stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
953                 stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
954                 stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
955                 stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
956                 stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
957         }
958
959         if (hw->mac.type >= e1000_82543) {
960                 stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
961                 stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
962                 stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
963                 stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
964                 stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
965                 stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
966         }
967
968         if (rte_stats == NULL)
969                 return -EINVAL;
970
971         /* Rx Errors */
972         rte_stats->imissed = stats->mpc;
973         rte_stats->ierrors = stats->crcerrs +
974                              stats->rlec + stats->ruc + stats->roc +
975                              stats->rxerrc + stats->algnerrc + stats->cexterr;
976
977         /* Tx Errors */
978         rte_stats->oerrors = stats->ecol + stats->latecol;
979
980         rte_stats->ipackets = stats->gprc;
981         rte_stats->opackets = stats->gptc;
982         rte_stats->ibytes   = stats->gorc;
983         rte_stats->obytes   = stats->gotc;
984         return 0;
985 }
986
987 static int
988 eth_em_stats_reset(struct rte_eth_dev *dev)
989 {
990         struct e1000_hw_stats *hw_stats =
991                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
992
993         /* HW registers are cleared on read */
994         eth_em_stats_get(dev, NULL);
995
996         /* Reset software totals */
997         memset(hw_stats, 0, sizeof(*hw_stats));
998
999         return 0;
1000 }
1001
1002 static int
1003 eth_em_rx_queue_intr_enable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
1004 {
1005         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1006         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1007         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1008
1009         em_rxq_intr_enable(hw);
1010         rte_intr_ack(intr_handle);
1011
1012         return 0;
1013 }
1014
1015 static int
1016 eth_em_rx_queue_intr_disable(struct rte_eth_dev *dev, __rte_unused uint16_t queue_id)
1017 {
1018         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1019
1020         em_rxq_intr_disable(hw);
1021
1022         return 0;
1023 }
1024
1025 uint32_t
1026 em_get_max_pktlen(struct rte_eth_dev *dev)
1027 {
1028         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1029
1030         switch (hw->mac.type) {
1031         case e1000_82571:
1032         case e1000_82572:
1033         case e1000_ich9lan:
1034         case e1000_ich10lan:
1035         case e1000_pch2lan:
1036         case e1000_pch_lpt:
1037         case e1000_pch_spt:
1038         case e1000_pch_cnp:
1039         case e1000_82574:
1040         case e1000_80003es2lan: /* 9K Jumbo Frame size */
1041         case e1000_82583:
1042                 return 0x2412;
1043         case e1000_pchlan:
1044                 return 0x1000;
1045         /* Adapters that do not support jumbo frames */
1046         case e1000_ich8lan:
1047                 return RTE_ETHER_MAX_LEN;
1048         default:
1049                 return MAX_JUMBO_FRAME_SIZE;
1050         }
1051 }
1052
1053 static int
1054 eth_em_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
1055 {
1056         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1057
1058         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
1059         dev_info->max_rx_pktlen = em_get_max_pktlen(dev);
1060         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
1061
1062         /*
1063          * Starting with 631xESB hw supports 2 TX/RX queues per port.
1064          * Unfortunatelly, all these nics have just one TX context.
1065          * So we have few choises for TX:
1066          * - Use just one TX queue.
1067          * - Allow cksum offload only for one TX queue.
1068          * - Don't allow TX cksum offload at all.
1069          * For now, option #1 was chosen.
1070          * To use second RX queue we have to use extended RX descriptor
1071          * (Multiple Receive Queues are mutually exclusive with UDP
1072          * fragmentation and are not supported when a legacy receive
1073          * descriptor format is used).
1074          * Which means separate RX routinies - as legacy nics (82540, 82545)
1075          * don't support extended RXD.
1076          * To avoid it we support just one RX queue for now (no RSS).
1077          */
1078
1079         dev_info->max_rx_queues = 1;
1080         dev_info->max_tx_queues = 1;
1081
1082         dev_info->rx_queue_offload_capa = em_get_rx_queue_offloads_capa(dev);
1083         dev_info->rx_offload_capa = em_get_rx_port_offloads_capa(dev) |
1084                                     dev_info->rx_queue_offload_capa;
1085         dev_info->tx_queue_offload_capa = em_get_tx_queue_offloads_capa(dev);
1086         dev_info->tx_offload_capa = em_get_tx_port_offloads_capa(dev) |
1087                                     dev_info->tx_queue_offload_capa;
1088
1089         dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
1090                 .nb_max = E1000_MAX_RING_DESC,
1091                 .nb_min = E1000_MIN_RING_DESC,
1092                 .nb_align = EM_RXD_ALIGN,
1093         };
1094
1095         dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
1096                 .nb_max = E1000_MAX_RING_DESC,
1097                 .nb_min = E1000_MIN_RING_DESC,
1098                 .nb_align = EM_TXD_ALIGN,
1099                 .nb_seg_max = EM_TX_MAX_SEG,
1100                 .nb_mtu_seg_max = EM_TX_MAX_MTU_SEG,
1101         };
1102
1103         dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1104                         ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1105                         ETH_LINK_SPEED_1G;
1106
1107         /* Preferred queue parameters */
1108         dev_info->default_rxportconf.nb_queues = 1;
1109         dev_info->default_txportconf.nb_queues = 1;
1110         dev_info->default_txportconf.ring_size = 256;
1111         dev_info->default_rxportconf.ring_size = 256;
1112
1113         return 0;
1114 }
1115
1116 /* return 0 means link status changed, -1 means not changed */
1117 static int
1118 eth_em_link_update(struct rte_eth_dev *dev, int wait_to_complete)
1119 {
1120         struct e1000_hw *hw =
1121                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1122         struct rte_eth_link link;
1123         int link_check, count;
1124
1125         link_check = 0;
1126         hw->mac.get_link_status = 1;
1127
1128         /* possible wait-to-complete in up to 9 seconds */
1129         for (count = 0; count < EM_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
1130                 /* Read the real link status */
1131                 switch (hw->phy.media_type) {
1132                 case e1000_media_type_copper:
1133                         /* Do the work to read phy */
1134                         e1000_check_for_link(hw);
1135                         link_check = !hw->mac.get_link_status;
1136                         break;
1137
1138                 case e1000_media_type_fiber:
1139                         e1000_check_for_link(hw);
1140                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
1141                                         E1000_STATUS_LU);
1142                         break;
1143
1144                 case e1000_media_type_internal_serdes:
1145                         e1000_check_for_link(hw);
1146                         link_check = hw->mac.serdes_has_link;
1147                         break;
1148
1149                 default:
1150                         break;
1151                 }
1152                 if (link_check || wait_to_complete == 0)
1153                         break;
1154                 rte_delay_ms(EM_LINK_UPDATE_CHECK_INTERVAL);
1155         }
1156         memset(&link, 0, sizeof(link));
1157
1158         /* Now we check if a transition has happened */
1159         if (link_check && (link.link_status == ETH_LINK_DOWN)) {
1160                 uint16_t duplex, speed;
1161                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1162                 link.link_duplex = (duplex == FULL_DUPLEX) ?
1163                                 ETH_LINK_FULL_DUPLEX :
1164                                 ETH_LINK_HALF_DUPLEX;
1165                 link.link_speed = speed;
1166                 link.link_status = ETH_LINK_UP;
1167                 link.link_autoneg = !(dev->data->dev_conf.link_speeds &
1168                                 ETH_LINK_SPEED_FIXED);
1169         } else if (!link_check && (link.link_status == ETH_LINK_UP)) {
1170                 link.link_speed = ETH_SPEED_NUM_NONE;
1171                 link.link_duplex = ETH_LINK_HALF_DUPLEX;
1172                 link.link_status = ETH_LINK_DOWN;
1173                 link.link_autoneg = ETH_LINK_FIXED;
1174         }
1175
1176         return rte_eth_linkstatus_set(dev, &link);
1177 }
1178
1179 /*
1180  * em_hw_control_acquire sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
1181  * For ASF and Pass Through versions of f/w this means
1182  * that the driver is loaded. For AMT version type f/w
1183  * this means that the network i/f is open.
1184  */
1185 static void
1186 em_hw_control_acquire(struct e1000_hw *hw)
1187 {
1188         uint32_t ctrl_ext, swsm;
1189
1190         /* Let firmware know the driver has taken over */
1191         if (hw->mac.type == e1000_82573) {
1192                 swsm = E1000_READ_REG(hw, E1000_SWSM);
1193                 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
1194
1195         } else {
1196                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1197                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1198                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1199         }
1200 }
1201
1202 /*
1203  * em_hw_control_release resets {CTRL_EXTT|FWSM}:DRV_LOAD bit.
1204  * For ASF and Pass Through versions of f/w this means that the
1205  * driver is no longer loaded. For AMT versions of the
1206  * f/w this means that the network i/f is closed.
1207  */
1208 static void
1209 em_hw_control_release(struct e1000_hw *hw)
1210 {
1211         uint32_t ctrl_ext, swsm;
1212
1213         /* Let firmware taken over control of h/w */
1214         if (hw->mac.type == e1000_82573) {
1215                 swsm = E1000_READ_REG(hw, E1000_SWSM);
1216                 E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1217         } else {
1218                 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1219                 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
1220                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1221         }
1222 }
1223
1224 /*
1225  * Bit of a misnomer, what this really means is
1226  * to enable OS management of the system... aka
1227  * to disable special hardware management features.
1228  */
1229 static void
1230 em_init_manageability(struct e1000_hw *hw)
1231 {
1232         if (e1000_enable_mng_pass_thru(hw)) {
1233                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
1234                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
1235
1236                 /* disable hardware interception of ARP */
1237                 manc &= ~(E1000_MANC_ARP_EN);
1238
1239                 /* enable receiving management packets to the host */
1240                 manc |= E1000_MANC_EN_MNG2HOST;
1241                 manc2h |= 1 << 5;  /* Mng Port 623 */
1242                 manc2h |= 1 << 6;  /* Mng Port 664 */
1243                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
1244                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1245         }
1246 }
1247
1248 /*
1249  * Give control back to hardware management
1250  * controller if there is one.
1251  */
1252 static void
1253 em_release_manageability(struct e1000_hw *hw)
1254 {
1255         uint32_t manc;
1256
1257         if (e1000_enable_mng_pass_thru(hw)) {
1258                 manc = E1000_READ_REG(hw, E1000_MANC);
1259
1260                 /* re-enable hardware interception of ARP */
1261                 manc |= E1000_MANC_ARP_EN;
1262                 manc &= ~E1000_MANC_EN_MNG2HOST;
1263
1264                 E1000_WRITE_REG(hw, E1000_MANC, manc);
1265         }
1266 }
1267
1268 static int
1269 eth_em_promiscuous_enable(struct rte_eth_dev *dev)
1270 {
1271         struct e1000_hw *hw =
1272                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1273         uint32_t rctl;
1274
1275         rctl = E1000_READ_REG(hw, E1000_RCTL);
1276         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
1277         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1278
1279         return 0;
1280 }
1281
1282 static int
1283 eth_em_promiscuous_disable(struct rte_eth_dev *dev)
1284 {
1285         struct e1000_hw *hw =
1286                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1287         uint32_t rctl;
1288
1289         rctl = E1000_READ_REG(hw, E1000_RCTL);
1290         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_SBP);
1291         if (dev->data->all_multicast == 1)
1292                 rctl |= E1000_RCTL_MPE;
1293         else
1294                 rctl &= (~E1000_RCTL_MPE);
1295         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1296
1297         return 0;
1298 }
1299
1300 static void
1301 eth_em_allmulticast_enable(struct rte_eth_dev *dev)
1302 {
1303         struct e1000_hw *hw =
1304                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1305         uint32_t rctl;
1306
1307         rctl = E1000_READ_REG(hw, E1000_RCTL);
1308         rctl |= E1000_RCTL_MPE;
1309         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1310 }
1311
1312 static void
1313 eth_em_allmulticast_disable(struct rte_eth_dev *dev)
1314 {
1315         struct e1000_hw *hw =
1316                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1317         uint32_t rctl;
1318
1319         if (dev->data->promiscuous == 1)
1320                 return; /* must remain in all_multicast mode */
1321         rctl = E1000_READ_REG(hw, E1000_RCTL);
1322         rctl &= (~E1000_RCTL_MPE);
1323         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1324 }
1325
1326 static int
1327 eth_em_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1328 {
1329         struct e1000_hw *hw =
1330                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1331         struct e1000_vfta * shadow_vfta =
1332                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1333         uint32_t vfta;
1334         uint32_t vid_idx;
1335         uint32_t vid_bit;
1336
1337         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
1338                               E1000_VFTA_ENTRY_MASK);
1339         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
1340         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
1341         if (on)
1342                 vfta |= vid_bit;
1343         else
1344                 vfta &= ~vid_bit;
1345         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
1346
1347         /* update local VFTA copy */
1348         shadow_vfta->vfta[vid_idx] = vfta;
1349
1350         return 0;
1351 }
1352
1353 static void
1354 em_vlan_hw_filter_disable(struct rte_eth_dev *dev)
1355 {
1356         struct e1000_hw *hw =
1357                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1358         uint32_t reg;
1359
1360         /* Filter Table Disable */
1361         reg = E1000_READ_REG(hw, E1000_RCTL);
1362         reg &= ~E1000_RCTL_CFIEN;
1363         reg &= ~E1000_RCTL_VFE;
1364         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1365 }
1366
1367 static void
1368 em_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1369 {
1370         struct e1000_hw *hw =
1371                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1372         struct e1000_vfta * shadow_vfta =
1373                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
1374         uint32_t reg;
1375         int i;
1376
1377         /* Filter Table Enable, CFI not used for packet acceptance */
1378         reg = E1000_READ_REG(hw, E1000_RCTL);
1379         reg &= ~E1000_RCTL_CFIEN;
1380         reg |= E1000_RCTL_VFE;
1381         E1000_WRITE_REG(hw, E1000_RCTL, reg);
1382
1383         /* restore vfta from local copy */
1384         for (i = 0; i < IGB_VFTA_SIZE; i++)
1385                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
1386 }
1387
1388 static void
1389 em_vlan_hw_strip_disable(struct rte_eth_dev *dev)
1390 {
1391         struct e1000_hw *hw =
1392                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1393         uint32_t reg;
1394
1395         /* VLAN Mode Disable */
1396         reg = E1000_READ_REG(hw, E1000_CTRL);
1397         reg &= ~E1000_CTRL_VME;
1398         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1399
1400 }
1401
1402 static void
1403 em_vlan_hw_strip_enable(struct rte_eth_dev *dev)
1404 {
1405         struct e1000_hw *hw =
1406                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1407         uint32_t reg;
1408
1409         /* VLAN Mode Enable */
1410         reg = E1000_READ_REG(hw, E1000_CTRL);
1411         reg |= E1000_CTRL_VME;
1412         E1000_WRITE_REG(hw, E1000_CTRL, reg);
1413 }
1414
1415 static int
1416 eth_em_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1417 {
1418         struct rte_eth_rxmode *rxmode;
1419
1420         rxmode = &dev->data->dev_conf.rxmode;
1421         if(mask & ETH_VLAN_STRIP_MASK){
1422                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1423                         em_vlan_hw_strip_enable(dev);
1424                 else
1425                         em_vlan_hw_strip_disable(dev);
1426         }
1427
1428         if(mask & ETH_VLAN_FILTER_MASK){
1429                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
1430                         em_vlan_hw_filter_enable(dev);
1431                 else
1432                         em_vlan_hw_filter_disable(dev);
1433         }
1434
1435         return 0;
1436 }
1437
1438 /*
1439  * It enables the interrupt mask and then enable the interrupt.
1440  *
1441  * @param dev
1442  *  Pointer to struct rte_eth_dev.
1443  *
1444  * @return
1445  *  - On success, zero.
1446  *  - On failure, a negative value.
1447  */
1448 static int
1449 eth_em_interrupt_setup(struct rte_eth_dev *dev)
1450 {
1451         uint32_t regval;
1452         struct e1000_hw *hw =
1453                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1454
1455         /* clear interrupt */
1456         E1000_READ_REG(hw, E1000_ICR);
1457         regval = E1000_READ_REG(hw, E1000_IMS);
1458         E1000_WRITE_REG(hw, E1000_IMS,
1459                         regval | E1000_ICR_LSC | E1000_ICR_OTHER);
1460         return 0;
1461 }
1462
1463 /*
1464  * It clears the interrupt causes and enables the interrupt.
1465  * It will be called once only during nic initialized.
1466  *
1467  * @param dev
1468  *  Pointer to struct rte_eth_dev.
1469  *
1470  * @return
1471  *  - On success, zero.
1472  *  - On failure, a negative value.
1473  */
1474 static int
1475 eth_em_rxq_interrupt_setup(struct rte_eth_dev *dev)
1476 {
1477         struct e1000_hw *hw =
1478         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1479
1480         E1000_READ_REG(hw, E1000_ICR);
1481         em_rxq_intr_enable(hw);
1482         return 0;
1483 }
1484
1485 /*
1486  * It enable receive packet interrupt.
1487  * @param hw
1488  * Pointer to struct e1000_hw
1489  *
1490  * @return
1491  */
1492 static void
1493 em_rxq_intr_enable(struct e1000_hw *hw)
1494 {
1495         E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_RXT0);
1496         E1000_WRITE_FLUSH(hw);
1497 }
1498
1499 /*
1500  * It disabled lsc interrupt.
1501  * @param hw
1502  * Pointer to struct e1000_hw
1503  *
1504  * @return
1505  */
1506 static void
1507 em_lsc_intr_disable(struct e1000_hw *hw)
1508 {
1509         E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_LSC | E1000_IMS_OTHER);
1510         E1000_WRITE_FLUSH(hw);
1511 }
1512
1513 /*
1514  * It disabled receive packet interrupt.
1515  * @param hw
1516  * Pointer to struct e1000_hw
1517  *
1518  * @return
1519  */
1520 static void
1521 em_rxq_intr_disable(struct e1000_hw *hw)
1522 {
1523         E1000_READ_REG(hw, E1000_ICR);
1524         E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
1525         E1000_WRITE_FLUSH(hw);
1526 }
1527
1528 /*
1529  * It reads ICR and gets interrupt causes, check it and set a bit flag
1530  * to update link status.
1531  *
1532  * @param dev
1533  *  Pointer to struct rte_eth_dev.
1534  *
1535  * @return
1536  *  - On success, zero.
1537  *  - On failure, a negative value.
1538  */
1539 static int
1540 eth_em_interrupt_get_status(struct rte_eth_dev *dev)
1541 {
1542         uint32_t icr;
1543         struct e1000_hw *hw =
1544                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1545         struct e1000_interrupt *intr =
1546                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1547
1548         /* read-on-clear nic registers here */
1549         icr = E1000_READ_REG(hw, E1000_ICR);
1550         if (icr & E1000_ICR_LSC) {
1551                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1552         }
1553
1554         return 0;
1555 }
1556
1557 /*
1558  * It executes link_update after knowing an interrupt is prsent.
1559  *
1560  * @param dev
1561  *  Pointer to struct rte_eth_dev.
1562  *
1563  * @return
1564  *  - On success, zero.
1565  *  - On failure, a negative value.
1566  */
1567 static int
1568 eth_em_interrupt_action(struct rte_eth_dev *dev,
1569                         struct rte_intr_handle *intr_handle)
1570 {
1571         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1572         struct e1000_hw *hw =
1573                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1574         struct e1000_interrupt *intr =
1575                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1576         struct rte_eth_link link;
1577         int ret;
1578
1579         if (!(intr->flags & E1000_FLAG_NEED_LINK_UPDATE))
1580                 return -1;
1581
1582         intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
1583         rte_intr_ack(intr_handle);
1584
1585         /* set get_link_status to check register later */
1586         hw->mac.get_link_status = 1;
1587         ret = eth_em_link_update(dev, 0);
1588
1589         /* check if link has changed */
1590         if (ret < 0)
1591                 return 0;
1592
1593         rte_eth_linkstatus_get(dev, &link);
1594
1595         if (link.link_status) {
1596                 PMD_INIT_LOG(INFO, " Port %d: Link Up - speed %u Mbps - %s",
1597                              dev->data->port_id, link.link_speed,
1598                              link.link_duplex == ETH_LINK_FULL_DUPLEX ?
1599                              "full-duplex" : "half-duplex");
1600         } else {
1601                 PMD_INIT_LOG(INFO, " Port %d: Link Down", dev->data->port_id);
1602         }
1603         PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
1604                      pci_dev->addr.domain, pci_dev->addr.bus,
1605                      pci_dev->addr.devid, pci_dev->addr.function);
1606
1607         return 0;
1608 }
1609
1610 /**
1611  * Interrupt handler which shall be registered at first.
1612  *
1613  * @param handle
1614  *  Pointer to interrupt handle.
1615  * @param param
1616  *  The address of parameter (struct rte_eth_dev *) regsitered before.
1617  *
1618  * @return
1619  *  void
1620  */
1621 static void
1622 eth_em_interrupt_handler(void *param)
1623 {
1624         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1625
1626         eth_em_interrupt_get_status(dev);
1627         eth_em_interrupt_action(dev, dev->intr_handle);
1628         _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
1629 }
1630
1631 static int
1632 eth_em_led_on(struct rte_eth_dev *dev)
1633 {
1634         struct e1000_hw *hw;
1635
1636         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1637         return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1638 }
1639
1640 static int
1641 eth_em_led_off(struct rte_eth_dev *dev)
1642 {
1643         struct e1000_hw *hw;
1644
1645         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1646         return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
1647 }
1648
1649 static int
1650 eth_em_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1651 {
1652         struct e1000_hw *hw;
1653         uint32_t ctrl;
1654         int tx_pause;
1655         int rx_pause;
1656
1657         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1658         fc_conf->pause_time = hw->fc.pause_time;
1659         fc_conf->high_water = hw->fc.high_water;
1660         fc_conf->low_water = hw->fc.low_water;
1661         fc_conf->send_xon = hw->fc.send_xon;
1662         fc_conf->autoneg = hw->mac.autoneg;
1663
1664         /*
1665          * Return rx_pause and tx_pause status according to actual setting of
1666          * the TFCE and RFCE bits in the CTRL register.
1667          */
1668         ctrl = E1000_READ_REG(hw, E1000_CTRL);
1669         if (ctrl & E1000_CTRL_TFCE)
1670                 tx_pause = 1;
1671         else
1672                 tx_pause = 0;
1673
1674         if (ctrl & E1000_CTRL_RFCE)
1675                 rx_pause = 1;
1676         else
1677                 rx_pause = 0;
1678
1679         if (rx_pause && tx_pause)
1680                 fc_conf->mode = RTE_FC_FULL;
1681         else if (rx_pause)
1682                 fc_conf->mode = RTE_FC_RX_PAUSE;
1683         else if (tx_pause)
1684                 fc_conf->mode = RTE_FC_TX_PAUSE;
1685         else
1686                 fc_conf->mode = RTE_FC_NONE;
1687
1688         return 0;
1689 }
1690
1691 static int
1692 eth_em_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
1693 {
1694         struct e1000_hw *hw;
1695         int err;
1696         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
1697                 e1000_fc_none,
1698                 e1000_fc_rx_pause,
1699                 e1000_fc_tx_pause,
1700                 e1000_fc_full
1701         };
1702         uint32_t rx_buf_size;
1703         uint32_t max_high_water;
1704         uint32_t rctl;
1705
1706         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1707         if (fc_conf->autoneg != hw->mac.autoneg)
1708                 return -ENOTSUP;
1709         rx_buf_size = em_get_rx_buffer_size(hw);
1710         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
1711
1712         /* At least reserve one Ethernet frame for watermark */
1713         max_high_water = rx_buf_size - RTE_ETHER_MAX_LEN;
1714         if ((fc_conf->high_water > max_high_water) ||
1715             (fc_conf->high_water < fc_conf->low_water)) {
1716                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
1717                 PMD_INIT_LOG(ERR, "high water must <= 0x%x", max_high_water);
1718                 return -EINVAL;
1719         }
1720
1721         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
1722         hw->fc.pause_time     = fc_conf->pause_time;
1723         hw->fc.high_water     = fc_conf->high_water;
1724         hw->fc.low_water      = fc_conf->low_water;
1725         hw->fc.send_xon       = fc_conf->send_xon;
1726
1727         err = e1000_setup_link_generic(hw);
1728         if (err == E1000_SUCCESS) {
1729
1730                 /* check if we want to forward MAC frames - driver doesn't have native
1731                  * capability to do that, so we'll write the registers ourselves */
1732
1733                 rctl = E1000_READ_REG(hw, E1000_RCTL);
1734
1735                 /* set or clear MFLCN.PMCF bit depending on configuration */
1736                 if (fc_conf->mac_ctrl_frame_fwd != 0)
1737                         rctl |= E1000_RCTL_PMCF;
1738                 else
1739                         rctl &= ~E1000_RCTL_PMCF;
1740
1741                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1742                 E1000_WRITE_FLUSH(hw);
1743
1744                 return 0;
1745         }
1746
1747         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
1748         return -EIO;
1749 }
1750
1751 static int
1752 eth_em_rar_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
1753                 uint32_t index, __rte_unused uint32_t pool)
1754 {
1755         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1756
1757         return e1000_rar_set(hw, mac_addr->addr_bytes, index);
1758 }
1759
1760 static void
1761 eth_em_rar_clear(struct rte_eth_dev *dev, uint32_t index)
1762 {
1763         uint8_t addr[RTE_ETHER_ADDR_LEN];
1764         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1765
1766         memset(addr, 0, sizeof(addr));
1767
1768         e1000_rar_set(hw, addr, index);
1769 }
1770
1771 static int
1772 eth_em_default_mac_addr_set(struct rte_eth_dev *dev,
1773                             struct rte_ether_addr *addr)
1774 {
1775         eth_em_rar_clear(dev, 0);
1776
1777         return eth_em_rar_set(dev, (void *)addr, 0, 0);
1778 }
1779
1780 static int
1781 eth_em_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1782 {
1783         struct rte_eth_dev_info dev_info;
1784         struct e1000_hw *hw;
1785         uint32_t frame_size;
1786         uint32_t rctl;
1787         int ret;
1788
1789         ret = eth_em_infos_get(dev, &dev_info);
1790         if (ret != 0)
1791                 return ret;
1792
1793         frame_size = mtu + RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN +
1794                 VLAN_TAG_SIZE;
1795
1796         /* check that mtu is within the allowed range */
1797         if (mtu < RTE_ETHER_MIN_MTU || frame_size > dev_info.max_rx_pktlen)
1798                 return -EINVAL;
1799
1800         /* refuse mtu that requires the support of scattered packets when this
1801          * feature has not been enabled before. */
1802         if (!dev->data->scattered_rx &&
1803             frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
1804                 return -EINVAL;
1805
1806         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1807         rctl = E1000_READ_REG(hw, E1000_RCTL);
1808
1809         /* switch to jumbo mode if needed */
1810         if (frame_size > RTE_ETHER_MAX_LEN) {
1811                 dev->data->dev_conf.rxmode.offloads |=
1812                         DEV_RX_OFFLOAD_JUMBO_FRAME;
1813                 rctl |= E1000_RCTL_LPE;
1814         } else {
1815                 dev->data->dev_conf.rxmode.offloads &=
1816                         ~DEV_RX_OFFLOAD_JUMBO_FRAME;
1817                 rctl &= ~E1000_RCTL_LPE;
1818         }
1819         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1820
1821         /* update max frame size */
1822         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
1823         return 0;
1824 }
1825
1826 static int
1827 eth_em_set_mc_addr_list(struct rte_eth_dev *dev,
1828                         struct rte_ether_addr *mc_addr_set,
1829                         uint32_t nb_mc_addr)
1830 {
1831         struct e1000_hw *hw;
1832
1833         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1834         e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
1835         return 0;
1836 }
1837
1838 RTE_PMD_REGISTER_PCI(net_e1000_em, rte_em_pmd);
1839 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_em, pci_id_em_map);
1840 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_em, "* igb_uio | uio_pci_generic | vfio-pci");
1841
1842 /* see e1000_logs.c */
1843 RTE_INIT(igb_init_log)
1844 {
1845         e1000_igb_init_log();
1846 }