net: add rte prefix to ether defines
[dpdk.git] / drivers / net / e1000 / igb_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <stdarg.h>
10
11 #include <rte_common.h>
12 #include <rte_interrupts.h>
13 #include <rte_byteorder.h>
14 #include <rte_log.h>
15 #include <rte_debug.h>
16 #include <rte_pci.h>
17 #include <rte_bus_pci.h>
18 #include <rte_ether.h>
19 #include <rte_ethdev_driver.h>
20 #include <rte_ethdev_pci.h>
21 #include <rte_memory.h>
22 #include <rte_eal.h>
23 #include <rte_malloc.h>
24 #include <rte_dev.h>
25
26 #include "e1000_logs.h"
27 #include "base/e1000_api.h"
28 #include "e1000_ethdev.h"
29 #include "igb_regs.h"
30
31 /*
32  * Default values for port configuration
33  */
34 #define IGB_DEFAULT_RX_FREE_THRESH  32
35
36 #define IGB_DEFAULT_RX_PTHRESH      ((hw->mac.type == e1000_i354) ? 12 : 8)
37 #define IGB_DEFAULT_RX_HTHRESH      8
38 #define IGB_DEFAULT_RX_WTHRESH      ((hw->mac.type == e1000_82576) ? 1 : 4)
39
40 #define IGB_DEFAULT_TX_PTHRESH      ((hw->mac.type == e1000_i354) ? 20 : 8)
41 #define IGB_DEFAULT_TX_HTHRESH      1
42 #define IGB_DEFAULT_TX_WTHRESH      ((hw->mac.type == e1000_82576) ? 1 : 16)
43
44 /* Bit shift and mask */
45 #define IGB_4_BIT_WIDTH  (CHAR_BIT / 2)
46 #define IGB_4_BIT_MASK   RTE_LEN2MASK(IGB_4_BIT_WIDTH, uint8_t)
47 #define IGB_8_BIT_WIDTH  CHAR_BIT
48 #define IGB_8_BIT_MASK   UINT8_MAX
49
50 /* Additional timesync values. */
51 #define E1000_CYCLECOUNTER_MASK      0xffffffffffffffffULL
52 #define E1000_ETQF_FILTER_1588       3
53 #define IGB_82576_TSYNC_SHIFT        16
54 #define E1000_INCPERIOD_82576        (1 << E1000_TIMINCA_16NS_SHIFT)
55 #define E1000_INCVALUE_82576         (16 << IGB_82576_TSYNC_SHIFT)
56 #define E1000_TSAUXC_DISABLE_SYSTIME 0x80000000
57
58 #define E1000_VTIVAR_MISC                0x01740
59 #define E1000_VTIVAR_MISC_MASK           0xFF
60 #define E1000_VTIVAR_VALID               0x80
61 #define E1000_VTIVAR_MISC_MAILBOX        0
62 #define E1000_VTIVAR_MISC_INTR_MASK      0x3
63
64 /* External VLAN Enable bit mask */
65 #define E1000_CTRL_EXT_EXT_VLAN      (1 << 26)
66
67 /* External VLAN Ether Type bit mask and shift */
68 #define E1000_VET_VET_EXT            0xFFFF0000
69 #define E1000_VET_VET_EXT_SHIFT      16
70
71 static int  eth_igb_configure(struct rte_eth_dev *dev);
72 static int  eth_igb_start(struct rte_eth_dev *dev);
73 static void eth_igb_stop(struct rte_eth_dev *dev);
74 static int  eth_igb_dev_set_link_up(struct rte_eth_dev *dev);
75 static int  eth_igb_dev_set_link_down(struct rte_eth_dev *dev);
76 static void eth_igb_close(struct rte_eth_dev *dev);
77 static int eth_igb_reset(struct rte_eth_dev *dev);
78 static void eth_igb_promiscuous_enable(struct rte_eth_dev *dev);
79 static void eth_igb_promiscuous_disable(struct rte_eth_dev *dev);
80 static void eth_igb_allmulticast_enable(struct rte_eth_dev *dev);
81 static void eth_igb_allmulticast_disable(struct rte_eth_dev *dev);
82 static int  eth_igb_link_update(struct rte_eth_dev *dev,
83                                 int wait_to_complete);
84 static int eth_igb_stats_get(struct rte_eth_dev *dev,
85                                 struct rte_eth_stats *rte_stats);
86 static int eth_igb_xstats_get(struct rte_eth_dev *dev,
87                               struct rte_eth_xstat *xstats, unsigned n);
88 static int eth_igb_xstats_get_by_id(struct rte_eth_dev *dev,
89                 const uint64_t *ids,
90                 uint64_t *values, unsigned int n);
91 static int eth_igb_xstats_get_names(struct rte_eth_dev *dev,
92                                     struct rte_eth_xstat_name *xstats_names,
93                                     unsigned int size);
94 static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev,
95                 struct rte_eth_xstat_name *xstats_names, const uint64_t *ids,
96                 unsigned int limit);
97 static void eth_igb_stats_reset(struct rte_eth_dev *dev);
98 static void eth_igb_xstats_reset(struct rte_eth_dev *dev);
99 static int eth_igb_fw_version_get(struct rte_eth_dev *dev,
100                                    char *fw_version, size_t fw_size);
101 static void eth_igb_infos_get(struct rte_eth_dev *dev,
102                               struct rte_eth_dev_info *dev_info);
103 static const uint32_t *eth_igb_supported_ptypes_get(struct rte_eth_dev *dev);
104 static void eth_igbvf_infos_get(struct rte_eth_dev *dev,
105                                 struct rte_eth_dev_info *dev_info);
106 static int  eth_igb_flow_ctrl_get(struct rte_eth_dev *dev,
107                                 struct rte_eth_fc_conf *fc_conf);
108 static int  eth_igb_flow_ctrl_set(struct rte_eth_dev *dev,
109                                 struct rte_eth_fc_conf *fc_conf);
110 static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on);
111 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev);
112 static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev);
113 static int eth_igb_interrupt_action(struct rte_eth_dev *dev,
114                                     struct rte_intr_handle *handle);
115 static void eth_igb_interrupt_handler(void *param);
116 static int  igb_hardware_init(struct e1000_hw *hw);
117 static void igb_hw_control_acquire(struct e1000_hw *hw);
118 static void igb_hw_control_release(struct e1000_hw *hw);
119 static void igb_init_manageability(struct e1000_hw *hw);
120 static void igb_release_manageability(struct e1000_hw *hw);
121
122 static int  eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
123
124 static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev,
125                 uint16_t vlan_id, int on);
126 static int eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
127                                  enum rte_vlan_type vlan_type,
128                                  uint16_t tpid_id);
129 static int eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask);
130
131 static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev);
132 static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev);
133 static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev);
134 static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev);
135 static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev);
136 static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev);
137
138 static int eth_igb_led_on(struct rte_eth_dev *dev);
139 static int eth_igb_led_off(struct rte_eth_dev *dev);
140
141 static void igb_intr_disable(struct e1000_hw *hw);
142 static int  igb_get_rx_buffer_size(struct e1000_hw *hw);
143 static int eth_igb_rar_set(struct rte_eth_dev *dev,
144                            struct rte_ether_addr *mac_addr,
145                            uint32_t index, uint32_t pool);
146 static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index);
147 static int eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
148                 struct rte_ether_addr *addr);
149
150 static void igbvf_intr_disable(struct e1000_hw *hw);
151 static int igbvf_dev_configure(struct rte_eth_dev *dev);
152 static int igbvf_dev_start(struct rte_eth_dev *dev);
153 static void igbvf_dev_stop(struct rte_eth_dev *dev);
154 static void igbvf_dev_close(struct rte_eth_dev *dev);
155 static void igbvf_promiscuous_enable(struct rte_eth_dev *dev);
156 static void igbvf_promiscuous_disable(struct rte_eth_dev *dev);
157 static void igbvf_allmulticast_enable(struct rte_eth_dev *dev);
158 static void igbvf_allmulticast_disable(struct rte_eth_dev *dev);
159 static int eth_igbvf_link_update(struct e1000_hw *hw);
160 static int eth_igbvf_stats_get(struct rte_eth_dev *dev,
161                                 struct rte_eth_stats *rte_stats);
162 static int eth_igbvf_xstats_get(struct rte_eth_dev *dev,
163                                 struct rte_eth_xstat *xstats, unsigned n);
164 static int eth_igbvf_xstats_get_names(struct rte_eth_dev *dev,
165                                       struct rte_eth_xstat_name *xstats_names,
166                                       unsigned limit);
167 static void eth_igbvf_stats_reset(struct rte_eth_dev *dev);
168 static int igbvf_vlan_filter_set(struct rte_eth_dev *dev,
169                 uint16_t vlan_id, int on);
170 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on);
171 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on);
172 static int igbvf_default_mac_addr_set(struct rte_eth_dev *dev,
173                 struct rte_ether_addr *addr);
174 static int igbvf_get_reg_length(struct rte_eth_dev *dev);
175 static int igbvf_get_regs(struct rte_eth_dev *dev,
176                 struct rte_dev_reg_info *regs);
177
178 static int eth_igb_rss_reta_update(struct rte_eth_dev *dev,
179                                    struct rte_eth_rss_reta_entry64 *reta_conf,
180                                    uint16_t reta_size);
181 static int eth_igb_rss_reta_query(struct rte_eth_dev *dev,
182                                   struct rte_eth_rss_reta_entry64 *reta_conf,
183                                   uint16_t reta_size);
184
185 static int eth_igb_syn_filter_get(struct rte_eth_dev *dev,
186                         struct rte_eth_syn_filter *filter);
187 static int eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
188                         enum rte_filter_op filter_op,
189                         void *arg);
190 static int igb_add_2tuple_filter(struct rte_eth_dev *dev,
191                         struct rte_eth_ntuple_filter *ntuple_filter);
192 static int igb_remove_2tuple_filter(struct rte_eth_dev *dev,
193                         struct rte_eth_ntuple_filter *ntuple_filter);
194 static int eth_igb_get_flex_filter(struct rte_eth_dev *dev,
195                         struct rte_eth_flex_filter *filter);
196 static int eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
197                         enum rte_filter_op filter_op,
198                         void *arg);
199 static int igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
200                         struct rte_eth_ntuple_filter *ntuple_filter);
201 static int igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
202                         struct rte_eth_ntuple_filter *ntuple_filter);
203 static int igb_get_ntuple_filter(struct rte_eth_dev *dev,
204                         struct rte_eth_ntuple_filter *filter);
205 static int igb_ntuple_filter_handle(struct rte_eth_dev *dev,
206                                 enum rte_filter_op filter_op,
207                                 void *arg);
208 static int igb_ethertype_filter_handle(struct rte_eth_dev *dev,
209                                 enum rte_filter_op filter_op,
210                                 void *arg);
211 static int igb_get_ethertype_filter(struct rte_eth_dev *dev,
212                         struct rte_eth_ethertype_filter *filter);
213 static int eth_igb_filter_ctrl(struct rte_eth_dev *dev,
214                      enum rte_filter_type filter_type,
215                      enum rte_filter_op filter_op,
216                      void *arg);
217 static int eth_igb_get_reg_length(struct rte_eth_dev *dev);
218 static int eth_igb_get_regs(struct rte_eth_dev *dev,
219                 struct rte_dev_reg_info *regs);
220 static int eth_igb_get_eeprom_length(struct rte_eth_dev *dev);
221 static int eth_igb_get_eeprom(struct rte_eth_dev *dev,
222                 struct rte_dev_eeprom_info *eeprom);
223 static int eth_igb_set_eeprom(struct rte_eth_dev *dev,
224                 struct rte_dev_eeprom_info *eeprom);
225 static int eth_igb_get_module_info(struct rte_eth_dev *dev,
226                                    struct rte_eth_dev_module_info *modinfo);
227 static int eth_igb_get_module_eeprom(struct rte_eth_dev *dev,
228                                      struct rte_dev_eeprom_info *info);
229 static int eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
230                                     struct rte_ether_addr *mc_addr_set,
231                                     uint32_t nb_mc_addr);
232 static int igb_timesync_enable(struct rte_eth_dev *dev);
233 static int igb_timesync_disable(struct rte_eth_dev *dev);
234 static int igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
235                                           struct timespec *timestamp,
236                                           uint32_t flags);
237 static int igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
238                                           struct timespec *timestamp);
239 static int igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta);
240 static int igb_timesync_read_time(struct rte_eth_dev *dev,
241                                   struct timespec *timestamp);
242 static int igb_timesync_write_time(struct rte_eth_dev *dev,
243                                    const struct timespec *timestamp);
244 static int eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev,
245                                         uint16_t queue_id);
246 static int eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev,
247                                          uint16_t queue_id);
248 static void eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
249                                        uint8_t queue, uint8_t msix_vector);
250 static void eth_igb_write_ivar(struct e1000_hw *hw, uint8_t msix_vector,
251                                uint8_t index, uint8_t offset);
252 static void eth_igb_configure_msix_intr(struct rte_eth_dev *dev);
253 static void eth_igbvf_interrupt_handler(void *param);
254 static void igbvf_mbx_process(struct rte_eth_dev *dev);
255 static int igb_filter_restore(struct rte_eth_dev *dev);
256
257 /*
258  * Define VF Stats MACRO for Non "cleared on read" register
259  */
260 #define UPDATE_VF_STAT(reg, last, cur)            \
261 {                                                 \
262         u32 latest = E1000_READ_REG(hw, reg);     \
263         cur += (latest - last) & UINT_MAX;        \
264         last = latest;                            \
265 }
266
267 #define IGB_FC_PAUSE_TIME 0x0680
268 #define IGB_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
269 #define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
270
271 #define IGBVF_PMD_NAME "rte_igbvf_pmd"     /* PMD name */
272
273 static enum e1000_fc_mode igb_fc_setting = e1000_fc_full;
274
275 /*
276  * The set of PCI devices this driver supports
277  */
278 static const struct rte_pci_id pci_id_igb_map[] = {
279         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576) },
280         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_FIBER) },
281         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES) },
282         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER) },
283         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER_ET2) },
284         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS) },
285         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS_SERDES) },
286         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES_QUAD) },
287
288         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_COPPER) },
289         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_FIBER_SERDES) },
290         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575GB_QUAD_COPPER) },
291
292         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER) },
293         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_FIBER) },
294         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SERDES) },
295         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SGMII) },
296         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER_DUAL) },
297         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_QUAD_FIBER) },
298
299         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_COPPER) },
300         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_FIBER) },
301         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SERDES) },
302         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SGMII) },
303         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_DA4) },
304         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER) },
305         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_OEM1) },
306         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_IT) },
307         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_FIBER) },
308         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES) },
309         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SGMII) },
310         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_FLASHLESS) },
311         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES_FLASHLESS) },
312         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I211_COPPER) },
313         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
314         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_SGMII) },
315         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
316         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SGMII) },
317         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SERDES) },
318         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_BACKPLANE) },
319         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SFP) },
320         { .vendor_id = 0, /* sentinel */ },
321 };
322
323 /*
324  * The set of PCI devices this driver supports (for 82576&I350 VF)
325  */
326 static const struct rte_pci_id pci_id_igbvf_map[] = {
327         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF) },
328         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF_HV) },
329         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF) },
330         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF_HV) },
331         { .vendor_id = 0, /* sentinel */ },
332 };
333
334 static const struct rte_eth_desc_lim rx_desc_lim = {
335         .nb_max = E1000_MAX_RING_DESC,
336         .nb_min = E1000_MIN_RING_DESC,
337         .nb_align = IGB_RXD_ALIGN,
338 };
339
340 static const struct rte_eth_desc_lim tx_desc_lim = {
341         .nb_max = E1000_MAX_RING_DESC,
342         .nb_min = E1000_MIN_RING_DESC,
343         .nb_align = IGB_RXD_ALIGN,
344         .nb_seg_max = IGB_TX_MAX_SEG,
345         .nb_mtu_seg_max = IGB_TX_MAX_MTU_SEG,
346 };
347
348 static const struct eth_dev_ops eth_igb_ops = {
349         .dev_configure        = eth_igb_configure,
350         .dev_start            = eth_igb_start,
351         .dev_stop             = eth_igb_stop,
352         .dev_set_link_up      = eth_igb_dev_set_link_up,
353         .dev_set_link_down    = eth_igb_dev_set_link_down,
354         .dev_close            = eth_igb_close,
355         .dev_reset            = eth_igb_reset,
356         .promiscuous_enable   = eth_igb_promiscuous_enable,
357         .promiscuous_disable  = eth_igb_promiscuous_disable,
358         .allmulticast_enable  = eth_igb_allmulticast_enable,
359         .allmulticast_disable = eth_igb_allmulticast_disable,
360         .link_update          = eth_igb_link_update,
361         .stats_get            = eth_igb_stats_get,
362         .xstats_get           = eth_igb_xstats_get,
363         .xstats_get_by_id     = eth_igb_xstats_get_by_id,
364         .xstats_get_names_by_id = eth_igb_xstats_get_names_by_id,
365         .xstats_get_names     = eth_igb_xstats_get_names,
366         .stats_reset          = eth_igb_stats_reset,
367         .xstats_reset         = eth_igb_xstats_reset,
368         .fw_version_get       = eth_igb_fw_version_get,
369         .dev_infos_get        = eth_igb_infos_get,
370         .dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
371         .mtu_set              = eth_igb_mtu_set,
372         .vlan_filter_set      = eth_igb_vlan_filter_set,
373         .vlan_tpid_set        = eth_igb_vlan_tpid_set,
374         .vlan_offload_set     = eth_igb_vlan_offload_set,
375         .rx_queue_setup       = eth_igb_rx_queue_setup,
376         .rx_queue_intr_enable = eth_igb_rx_queue_intr_enable,
377         .rx_queue_intr_disable = eth_igb_rx_queue_intr_disable,
378         .rx_queue_release     = eth_igb_rx_queue_release,
379         .rx_queue_count       = eth_igb_rx_queue_count,
380         .rx_descriptor_done   = eth_igb_rx_descriptor_done,
381         .rx_descriptor_status = eth_igb_rx_descriptor_status,
382         .tx_descriptor_status = eth_igb_tx_descriptor_status,
383         .tx_queue_setup       = eth_igb_tx_queue_setup,
384         .tx_queue_release     = eth_igb_tx_queue_release,
385         .tx_done_cleanup      = eth_igb_tx_done_cleanup,
386         .dev_led_on           = eth_igb_led_on,
387         .dev_led_off          = eth_igb_led_off,
388         .flow_ctrl_get        = eth_igb_flow_ctrl_get,
389         .flow_ctrl_set        = eth_igb_flow_ctrl_set,
390         .mac_addr_add         = eth_igb_rar_set,
391         .mac_addr_remove      = eth_igb_rar_clear,
392         .mac_addr_set         = eth_igb_default_mac_addr_set,
393         .reta_update          = eth_igb_rss_reta_update,
394         .reta_query           = eth_igb_rss_reta_query,
395         .rss_hash_update      = eth_igb_rss_hash_update,
396         .rss_hash_conf_get    = eth_igb_rss_hash_conf_get,
397         .filter_ctrl          = eth_igb_filter_ctrl,
398         .set_mc_addr_list     = eth_igb_set_mc_addr_list,
399         .rxq_info_get         = igb_rxq_info_get,
400         .txq_info_get         = igb_txq_info_get,
401         .timesync_enable      = igb_timesync_enable,
402         .timesync_disable     = igb_timesync_disable,
403         .timesync_read_rx_timestamp = igb_timesync_read_rx_timestamp,
404         .timesync_read_tx_timestamp = igb_timesync_read_tx_timestamp,
405         .get_reg              = eth_igb_get_regs,
406         .get_eeprom_length    = eth_igb_get_eeprom_length,
407         .get_eeprom           = eth_igb_get_eeprom,
408         .set_eeprom           = eth_igb_set_eeprom,
409         .get_module_info      = eth_igb_get_module_info,
410         .get_module_eeprom    = eth_igb_get_module_eeprom,
411         .timesync_adjust_time = igb_timesync_adjust_time,
412         .timesync_read_time   = igb_timesync_read_time,
413         .timesync_write_time  = igb_timesync_write_time,
414 };
415
416 /*
417  * dev_ops for virtual function, bare necessities for basic vf
418  * operation have been implemented
419  */
420 static const struct eth_dev_ops igbvf_eth_dev_ops = {
421         .dev_configure        = igbvf_dev_configure,
422         .dev_start            = igbvf_dev_start,
423         .dev_stop             = igbvf_dev_stop,
424         .dev_close            = igbvf_dev_close,
425         .promiscuous_enable   = igbvf_promiscuous_enable,
426         .promiscuous_disable  = igbvf_promiscuous_disable,
427         .allmulticast_enable  = igbvf_allmulticast_enable,
428         .allmulticast_disable = igbvf_allmulticast_disable,
429         .link_update          = eth_igb_link_update,
430         .stats_get            = eth_igbvf_stats_get,
431         .xstats_get           = eth_igbvf_xstats_get,
432         .xstats_get_names     = eth_igbvf_xstats_get_names,
433         .stats_reset          = eth_igbvf_stats_reset,
434         .xstats_reset         = eth_igbvf_stats_reset,
435         .vlan_filter_set      = igbvf_vlan_filter_set,
436         .dev_infos_get        = eth_igbvf_infos_get,
437         .dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
438         .rx_queue_setup       = eth_igb_rx_queue_setup,
439         .rx_queue_release     = eth_igb_rx_queue_release,
440         .rx_descriptor_done   = eth_igb_rx_descriptor_done,
441         .rx_descriptor_status = eth_igb_rx_descriptor_status,
442         .tx_descriptor_status = eth_igb_tx_descriptor_status,
443         .tx_queue_setup       = eth_igb_tx_queue_setup,
444         .tx_queue_release     = eth_igb_tx_queue_release,
445         .set_mc_addr_list     = eth_igb_set_mc_addr_list,
446         .rxq_info_get         = igb_rxq_info_get,
447         .txq_info_get         = igb_txq_info_get,
448         .mac_addr_set         = igbvf_default_mac_addr_set,
449         .get_reg              = igbvf_get_regs,
450 };
451
452 /* store statistics names and its offset in stats structure */
453 struct rte_igb_xstats_name_off {
454         char name[RTE_ETH_XSTATS_NAME_SIZE];
455         unsigned offset;
456 };
457
458 static const struct rte_igb_xstats_name_off rte_igb_stats_strings[] = {
459         {"rx_crc_errors", offsetof(struct e1000_hw_stats, crcerrs)},
460         {"rx_align_errors", offsetof(struct e1000_hw_stats, algnerrc)},
461         {"rx_symbol_errors", offsetof(struct e1000_hw_stats, symerrs)},
462         {"rx_missed_packets", offsetof(struct e1000_hw_stats, mpc)},
463         {"tx_single_collision_packets", offsetof(struct e1000_hw_stats, scc)},
464         {"tx_multiple_collision_packets", offsetof(struct e1000_hw_stats, mcc)},
465         {"tx_excessive_collision_packets", offsetof(struct e1000_hw_stats,
466                 ecol)},
467         {"tx_late_collisions", offsetof(struct e1000_hw_stats, latecol)},
468         {"tx_total_collisions", offsetof(struct e1000_hw_stats, colc)},
469         {"tx_deferred_packets", offsetof(struct e1000_hw_stats, dc)},
470         {"tx_no_carrier_sense_packets", offsetof(struct e1000_hw_stats, tncrs)},
471         {"rx_carrier_ext_errors", offsetof(struct e1000_hw_stats, cexterr)},
472         {"rx_length_errors", offsetof(struct e1000_hw_stats, rlec)},
473         {"rx_xon_packets", offsetof(struct e1000_hw_stats, xonrxc)},
474         {"tx_xon_packets", offsetof(struct e1000_hw_stats, xontxc)},
475         {"rx_xoff_packets", offsetof(struct e1000_hw_stats, xoffrxc)},
476         {"tx_xoff_packets", offsetof(struct e1000_hw_stats, xofftxc)},
477         {"rx_flow_control_unsupported_packets", offsetof(struct e1000_hw_stats,
478                 fcruc)},
479         {"rx_size_64_packets", offsetof(struct e1000_hw_stats, prc64)},
480         {"rx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, prc127)},
481         {"rx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, prc255)},
482         {"rx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, prc511)},
483         {"rx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
484                 prc1023)},
485         {"rx_size_1024_to_max_packets", offsetof(struct e1000_hw_stats,
486                 prc1522)},
487         {"rx_broadcast_packets", offsetof(struct e1000_hw_stats, bprc)},
488         {"rx_multicast_packets", offsetof(struct e1000_hw_stats, mprc)},
489         {"rx_undersize_errors", offsetof(struct e1000_hw_stats, ruc)},
490         {"rx_fragment_errors", offsetof(struct e1000_hw_stats, rfc)},
491         {"rx_oversize_errors", offsetof(struct e1000_hw_stats, roc)},
492         {"rx_jabber_errors", offsetof(struct e1000_hw_stats, rjc)},
493         {"rx_management_packets", offsetof(struct e1000_hw_stats, mgprc)},
494         {"rx_management_dropped", offsetof(struct e1000_hw_stats, mgpdc)},
495         {"tx_management_packets", offsetof(struct e1000_hw_stats, mgptc)},
496         {"rx_total_packets", offsetof(struct e1000_hw_stats, tpr)},
497         {"tx_total_packets", offsetof(struct e1000_hw_stats, tpt)},
498         {"rx_total_bytes", offsetof(struct e1000_hw_stats, tor)},
499         {"tx_total_bytes", offsetof(struct e1000_hw_stats, tot)},
500         {"tx_size_64_packets", offsetof(struct e1000_hw_stats, ptc64)},
501         {"tx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, ptc127)},
502         {"tx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, ptc255)},
503         {"tx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, ptc511)},
504         {"tx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
505                 ptc1023)},
506         {"tx_size_1023_to_max_packets", offsetof(struct e1000_hw_stats,
507                 ptc1522)},
508         {"tx_multicast_packets", offsetof(struct e1000_hw_stats, mptc)},
509         {"tx_broadcast_packets", offsetof(struct e1000_hw_stats, bptc)},
510         {"tx_tso_packets", offsetof(struct e1000_hw_stats, tsctc)},
511         {"tx_tso_errors", offsetof(struct e1000_hw_stats, tsctfc)},
512         {"rx_sent_to_host_packets", offsetof(struct e1000_hw_stats, rpthc)},
513         {"tx_sent_by_host_packets", offsetof(struct e1000_hw_stats, hgptc)},
514         {"rx_code_violation_packets", offsetof(struct e1000_hw_stats, scvpc)},
515
516         {"interrupt_assert_count", offsetof(struct e1000_hw_stats, iac)},
517 };
518
519 #define IGB_NB_XSTATS (sizeof(rte_igb_stats_strings) / \
520                 sizeof(rte_igb_stats_strings[0]))
521
522 static const struct rte_igb_xstats_name_off rte_igbvf_stats_strings[] = {
523         {"rx_multicast_packets", offsetof(struct e1000_vf_stats, mprc)},
524         {"rx_good_loopback_packets", offsetof(struct e1000_vf_stats, gprlbc)},
525         {"tx_good_loopback_packets", offsetof(struct e1000_vf_stats, gptlbc)},
526         {"rx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gorlbc)},
527         {"tx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gotlbc)},
528 };
529
530 #define IGBVF_NB_XSTATS (sizeof(rte_igbvf_stats_strings) / \
531                 sizeof(rte_igbvf_stats_strings[0]))
532
533
534 static inline void
535 igb_intr_enable(struct rte_eth_dev *dev)
536 {
537         struct e1000_interrupt *intr =
538                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
539         struct e1000_hw *hw =
540                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
541
542         E1000_WRITE_REG(hw, E1000_IMS, intr->mask);
543         E1000_WRITE_FLUSH(hw);
544 }
545
546 static void
547 igb_intr_disable(struct e1000_hw *hw)
548 {
549         E1000_WRITE_REG(hw, E1000_IMC, ~0);
550         E1000_WRITE_FLUSH(hw);
551 }
552
553 static inline void
554 igbvf_intr_enable(struct rte_eth_dev *dev)
555 {
556         struct e1000_hw *hw =
557                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
558
559         /* only for mailbox */
560         E1000_WRITE_REG(hw, E1000_EIAM, 1 << E1000_VTIVAR_MISC_MAILBOX);
561         E1000_WRITE_REG(hw, E1000_EIAC, 1 << E1000_VTIVAR_MISC_MAILBOX);
562         E1000_WRITE_REG(hw, E1000_EIMS, 1 << E1000_VTIVAR_MISC_MAILBOX);
563         E1000_WRITE_FLUSH(hw);
564 }
565
566 /* only for mailbox now. If RX/TX needed, should extend this function.  */
567 static void
568 igbvf_set_ivar_map(struct e1000_hw *hw, uint8_t msix_vector)
569 {
570         uint32_t tmp = 0;
571
572         /* mailbox */
573         tmp |= (msix_vector & E1000_VTIVAR_MISC_INTR_MASK);
574         tmp |= E1000_VTIVAR_VALID;
575         E1000_WRITE_REG(hw, E1000_VTIVAR_MISC, tmp);
576 }
577
578 static void
579 eth_igbvf_configure_msix_intr(struct rte_eth_dev *dev)
580 {
581         struct e1000_hw *hw =
582                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
583
584         /* Configure VF other cause ivar */
585         igbvf_set_ivar_map(hw, E1000_VTIVAR_MISC_MAILBOX);
586 }
587
588 static inline int32_t
589 igb_pf_reset_hw(struct e1000_hw *hw)
590 {
591         uint32_t ctrl_ext;
592         int32_t status;
593
594         status = e1000_reset_hw(hw);
595
596         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
597         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
598         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
599         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
600         E1000_WRITE_FLUSH(hw);
601
602         return status;
603 }
604
605 static void
606 igb_identify_hardware(struct rte_eth_dev *dev, struct rte_pci_device *pci_dev)
607 {
608         struct e1000_hw *hw =
609                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
610
611
612         hw->vendor_id = pci_dev->id.vendor_id;
613         hw->device_id = pci_dev->id.device_id;
614         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
615         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
616
617         e1000_set_mac_type(hw);
618
619         /* need to check if it is a vf device below */
620 }
621
622 static int
623 igb_reset_swfw_lock(struct e1000_hw *hw)
624 {
625         int ret_val;
626
627         /*
628          * Do mac ops initialization manually here, since we will need
629          * some function pointers set by this call.
630          */
631         ret_val = e1000_init_mac_params(hw);
632         if (ret_val)
633                 return ret_val;
634
635         /*
636          * SMBI lock should not fail in this early stage. If this is the case,
637          * it is due to an improper exit of the application.
638          * So force the release of the faulty lock.
639          */
640         if (e1000_get_hw_semaphore_generic(hw) < 0) {
641                 PMD_DRV_LOG(DEBUG, "SMBI lock released");
642         }
643         e1000_put_hw_semaphore_generic(hw);
644
645         if (hw->mac.ops.acquire_swfw_sync != NULL) {
646                 uint16_t mask;
647
648                 /*
649                  * Phy lock should not fail in this early stage. If this is the case,
650                  * it is due to an improper exit of the application.
651                  * So force the release of the faulty lock.
652                  */
653                 mask = E1000_SWFW_PHY0_SM << hw->bus.func;
654                 if (hw->bus.func > E1000_FUNC_1)
655                         mask <<= 2;
656                 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
657                         PMD_DRV_LOG(DEBUG, "SWFW phy%d lock released",
658                                     hw->bus.func);
659                 }
660                 hw->mac.ops.release_swfw_sync(hw, mask);
661
662                 /*
663                  * This one is more tricky since it is common to all ports; but
664                  * swfw_sync retries last long enough (1s) to be almost sure that if
665                  * lock can not be taken it is due to an improper lock of the
666                  * semaphore.
667                  */
668                 mask = E1000_SWFW_EEP_SM;
669                 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
670                         PMD_DRV_LOG(DEBUG, "SWFW common locks released");
671                 }
672                 hw->mac.ops.release_swfw_sync(hw, mask);
673         }
674
675         return E1000_SUCCESS;
676 }
677
678 /* Remove all ntuple filters of the device */
679 static int igb_ntuple_filter_uninit(struct rte_eth_dev *eth_dev)
680 {
681         struct e1000_filter_info *filter_info =
682                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
683         struct e1000_5tuple_filter *p_5tuple;
684         struct e1000_2tuple_filter *p_2tuple;
685
686         while ((p_5tuple = TAILQ_FIRST(&filter_info->fivetuple_list))) {
687                 TAILQ_REMOVE(&filter_info->fivetuple_list,
688                         p_5tuple, entries);
689                         rte_free(p_5tuple);
690         }
691         filter_info->fivetuple_mask = 0;
692         while ((p_2tuple = TAILQ_FIRST(&filter_info->twotuple_list))) {
693                 TAILQ_REMOVE(&filter_info->twotuple_list,
694                         p_2tuple, entries);
695                         rte_free(p_2tuple);
696         }
697         filter_info->twotuple_mask = 0;
698
699         return 0;
700 }
701
702 /* Remove all flex filters of the device */
703 static int igb_flex_filter_uninit(struct rte_eth_dev *eth_dev)
704 {
705         struct e1000_filter_info *filter_info =
706                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
707         struct e1000_flex_filter *p_flex;
708
709         while ((p_flex = TAILQ_FIRST(&filter_info->flex_list))) {
710                 TAILQ_REMOVE(&filter_info->flex_list, p_flex, entries);
711                 rte_free(p_flex);
712         }
713         filter_info->flex_mask = 0;
714
715         return 0;
716 }
717
718 static int
719 eth_igb_dev_init(struct rte_eth_dev *eth_dev)
720 {
721         int error = 0;
722         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
723         struct e1000_hw *hw =
724                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
725         struct e1000_vfta * shadow_vfta =
726                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
727         struct e1000_filter_info *filter_info =
728                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
729         struct e1000_adapter *adapter =
730                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
731
732         uint32_t ctrl_ext;
733
734         eth_dev->dev_ops = &eth_igb_ops;
735         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
736         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
737         eth_dev->tx_pkt_prepare = &eth_igb_prep_pkts;
738
739         /* for secondary processes, we don't initialise any further as primary
740          * has already done this work. Only check we don't need a different
741          * RX function */
742         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
743                 if (eth_dev->data->scattered_rx)
744                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
745                 return 0;
746         }
747
748         rte_eth_copy_pci_info(eth_dev, pci_dev);
749
750         hw->hw_addr= (void *)pci_dev->mem_resource[0].addr;
751
752         igb_identify_hardware(eth_dev, pci_dev);
753         if (e1000_setup_init_funcs(hw, FALSE) != E1000_SUCCESS) {
754                 error = -EIO;
755                 goto err_late;
756         }
757
758         e1000_get_bus_info(hw);
759
760         /* Reset any pending lock */
761         if (igb_reset_swfw_lock(hw) != E1000_SUCCESS) {
762                 error = -EIO;
763                 goto err_late;
764         }
765
766         /* Finish initialization */
767         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) {
768                 error = -EIO;
769                 goto err_late;
770         }
771
772         hw->mac.autoneg = 1;
773         hw->phy.autoneg_wait_to_complete = 0;
774         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
775
776         /* Copper options */
777         if (hw->phy.media_type == e1000_media_type_copper) {
778                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
779                 hw->phy.disable_polarity_correction = 0;
780                 hw->phy.ms_type = e1000_ms_hw_default;
781         }
782
783         /*
784          * Start from a known state, this is important in reading the nvm
785          * and mac from that.
786          */
787         igb_pf_reset_hw(hw);
788
789         /* Make sure we have a good EEPROM before we read from it */
790         if (e1000_validate_nvm_checksum(hw) < 0) {
791                 /*
792                  * Some PCI-E parts fail the first check due to
793                  * the link being in sleep state, call it again,
794                  * if it fails a second time its a real issue.
795                  */
796                 if (e1000_validate_nvm_checksum(hw) < 0) {
797                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
798                         error = -EIO;
799                         goto err_late;
800                 }
801         }
802
803         /* Read the permanent MAC address out of the EEPROM */
804         if (e1000_read_mac_addr(hw) != 0) {
805                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
806                 error = -EIO;
807                 goto err_late;
808         }
809
810         /* Allocate memory for storing MAC addresses */
811         eth_dev->data->mac_addrs = rte_zmalloc("e1000",
812                 RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0);
813         if (eth_dev->data->mac_addrs == NULL) {
814                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
815                                                 "store MAC addresses",
816                                 RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count);
817                 error = -ENOMEM;
818                 goto err_late;
819         }
820
821         /* Copy the permanent MAC address */
822         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr, &eth_dev->data->mac_addrs[0]);
823
824         /* initialize the vfta */
825         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
826
827         /* Now initialize the hardware */
828         if (igb_hardware_init(hw) != 0) {
829                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
830                 rte_free(eth_dev->data->mac_addrs);
831                 eth_dev->data->mac_addrs = NULL;
832                 error = -ENODEV;
833                 goto err_late;
834         }
835         hw->mac.get_link_status = 1;
836         adapter->stopped = 0;
837
838         /* Indicate SOL/IDER usage */
839         if (e1000_check_reset_block(hw) < 0) {
840                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to"
841                                         "SOL/IDER session");
842         }
843
844         /* initialize PF if max_vfs not zero */
845         igb_pf_host_init(eth_dev);
846
847         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
848         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
849         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
850         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
851         E1000_WRITE_FLUSH(hw);
852
853         PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
854                      eth_dev->data->port_id, pci_dev->id.vendor_id,
855                      pci_dev->id.device_id);
856
857         rte_intr_callback_register(&pci_dev->intr_handle,
858                                    eth_igb_interrupt_handler,
859                                    (void *)eth_dev);
860
861         /* enable uio/vfio intr/eventfd mapping */
862         rte_intr_enable(&pci_dev->intr_handle);
863
864         /* enable support intr */
865         igb_intr_enable(eth_dev);
866
867         /* initialize filter info */
868         memset(filter_info, 0,
869                sizeof(struct e1000_filter_info));
870
871         TAILQ_INIT(&filter_info->flex_list);
872         TAILQ_INIT(&filter_info->twotuple_list);
873         TAILQ_INIT(&filter_info->fivetuple_list);
874
875         TAILQ_INIT(&igb_filter_ntuple_list);
876         TAILQ_INIT(&igb_filter_ethertype_list);
877         TAILQ_INIT(&igb_filter_syn_list);
878         TAILQ_INIT(&igb_filter_flex_list);
879         TAILQ_INIT(&igb_filter_rss_list);
880         TAILQ_INIT(&igb_flow_list);
881
882         return 0;
883
884 err_late:
885         igb_hw_control_release(hw);
886
887         return error;
888 }
889
890 static int
891 eth_igb_dev_uninit(struct rte_eth_dev *eth_dev)
892 {
893         struct rte_pci_device *pci_dev;
894         struct rte_intr_handle *intr_handle;
895         struct e1000_hw *hw;
896         struct e1000_adapter *adapter =
897                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
898         struct e1000_filter_info *filter_info =
899                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
900
901         PMD_INIT_FUNC_TRACE();
902
903         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
904                 return -EPERM;
905
906         hw = E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
907         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
908         intr_handle = &pci_dev->intr_handle;
909
910         if (adapter->stopped == 0)
911                 eth_igb_close(eth_dev);
912
913         eth_dev->dev_ops = NULL;
914         eth_dev->rx_pkt_burst = NULL;
915         eth_dev->tx_pkt_burst = NULL;
916
917         /* Reset any pending lock */
918         igb_reset_swfw_lock(hw);
919
920         rte_free(eth_dev->data->mac_addrs);
921         eth_dev->data->mac_addrs = NULL;
922
923         /* uninitialize PF if max_vfs not zero */
924         igb_pf_host_uninit(eth_dev);
925
926         /* disable uio intr before callback unregister */
927         rte_intr_disable(intr_handle);
928         rte_intr_callback_unregister(intr_handle,
929                                      eth_igb_interrupt_handler, eth_dev);
930
931         /* clear the SYN filter info */
932         filter_info->syn_info = 0;
933
934         /* clear the ethertype filters info */
935         filter_info->ethertype_mask = 0;
936         memset(filter_info->ethertype_filters, 0,
937                 E1000_MAX_ETQF_FILTERS * sizeof(struct igb_ethertype_filter));
938
939         /* clear the rss filter info */
940         memset(&filter_info->rss_info, 0,
941                 sizeof(struct igb_rte_flow_rss_conf));
942
943         /* remove all ntuple filters of the device */
944         igb_ntuple_filter_uninit(eth_dev);
945
946         /* remove all flex filters of the device */
947         igb_flex_filter_uninit(eth_dev);
948
949         /* clear all the filters list */
950         igb_filterlist_flush(eth_dev);
951
952         return 0;
953 }
954
955 /*
956  * Virtual Function device init
957  */
958 static int
959 eth_igbvf_dev_init(struct rte_eth_dev *eth_dev)
960 {
961         struct rte_pci_device *pci_dev;
962         struct rte_intr_handle *intr_handle;
963         struct e1000_adapter *adapter =
964                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
965         struct e1000_hw *hw =
966                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
967         int diag;
968         struct rte_ether_addr *perm_addr = (struct rte_ether_addr *)hw->mac.perm_addr;
969
970         PMD_INIT_FUNC_TRACE();
971
972         eth_dev->dev_ops = &igbvf_eth_dev_ops;
973         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
974         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
975         eth_dev->tx_pkt_prepare = &eth_igb_prep_pkts;
976
977         /* for secondary processes, we don't initialise any further as primary
978          * has already done this work. Only check we don't need a different
979          * RX function */
980         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
981                 if (eth_dev->data->scattered_rx)
982                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
983                 return 0;
984         }
985
986         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
987         rte_eth_copy_pci_info(eth_dev, pci_dev);
988
989         hw->device_id = pci_dev->id.device_id;
990         hw->vendor_id = pci_dev->id.vendor_id;
991         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
992         adapter->stopped = 0;
993
994         /* Initialize the shared code (base driver) */
995         diag = e1000_setup_init_funcs(hw, TRUE);
996         if (diag != 0) {
997                 PMD_INIT_LOG(ERR, "Shared code init failed for igbvf: %d",
998                         diag);
999                 return -EIO;
1000         }
1001
1002         /* init_mailbox_params */
1003         hw->mbx.ops.init_params(hw);
1004
1005         /* Disable the interrupts for VF */
1006         igbvf_intr_disable(hw);
1007
1008         diag = hw->mac.ops.reset_hw(hw);
1009
1010         /* Allocate memory for storing MAC addresses */
1011         eth_dev->data->mac_addrs = rte_zmalloc("igbvf", RTE_ETHER_ADDR_LEN *
1012                 hw->mac.rar_entry_count, 0);
1013         if (eth_dev->data->mac_addrs == NULL) {
1014                 PMD_INIT_LOG(ERR,
1015                         "Failed to allocate %d bytes needed to store MAC "
1016                         "addresses",
1017                         RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count);
1018                 return -ENOMEM;
1019         }
1020
1021         /* Generate a random MAC address, if none was assigned by PF. */
1022         if (rte_is_zero_ether_addr(perm_addr)) {
1023                 rte_eth_random_addr(perm_addr->addr_bytes);
1024                 PMD_INIT_LOG(INFO, "\tVF MAC address not assigned by Host PF");
1025                 PMD_INIT_LOG(INFO, "\tAssign randomly generated MAC address "
1026                              "%02x:%02x:%02x:%02x:%02x:%02x",
1027                              perm_addr->addr_bytes[0],
1028                              perm_addr->addr_bytes[1],
1029                              perm_addr->addr_bytes[2],
1030                              perm_addr->addr_bytes[3],
1031                              perm_addr->addr_bytes[4],
1032                              perm_addr->addr_bytes[5]);
1033         }
1034
1035         diag = e1000_rar_set(hw, perm_addr->addr_bytes, 0);
1036         if (diag) {
1037                 rte_free(eth_dev->data->mac_addrs);
1038                 eth_dev->data->mac_addrs = NULL;
1039                 return diag;
1040         }
1041         /* Copy the permanent MAC address */
1042         rte_ether_addr_copy((struct rte_ether_addr *) hw->mac.perm_addr,
1043                         &eth_dev->data->mac_addrs[0]);
1044
1045         PMD_INIT_LOG(DEBUG, "port %d vendorID=0x%x deviceID=0x%x "
1046                      "mac.type=%s",
1047                      eth_dev->data->port_id, pci_dev->id.vendor_id,
1048                      pci_dev->id.device_id, "igb_mac_82576_vf");
1049
1050         intr_handle = &pci_dev->intr_handle;
1051         rte_intr_callback_register(intr_handle,
1052                                    eth_igbvf_interrupt_handler, eth_dev);
1053
1054         return 0;
1055 }
1056
1057 static int
1058 eth_igbvf_dev_uninit(struct rte_eth_dev *eth_dev)
1059 {
1060         struct e1000_adapter *adapter =
1061                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
1062         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1063
1064         PMD_INIT_FUNC_TRACE();
1065
1066         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1067                 return -EPERM;
1068
1069         if (adapter->stopped == 0)
1070                 igbvf_dev_close(eth_dev);
1071
1072         eth_dev->dev_ops = NULL;
1073         eth_dev->rx_pkt_burst = NULL;
1074         eth_dev->tx_pkt_burst = NULL;
1075
1076         rte_free(eth_dev->data->mac_addrs);
1077         eth_dev->data->mac_addrs = NULL;
1078
1079         /* disable uio intr before callback unregister */
1080         rte_intr_disable(&pci_dev->intr_handle);
1081         rte_intr_callback_unregister(&pci_dev->intr_handle,
1082                                      eth_igbvf_interrupt_handler,
1083                                      (void *)eth_dev);
1084
1085         return 0;
1086 }
1087
1088 static int eth_igb_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1089         struct rte_pci_device *pci_dev)
1090 {
1091         return rte_eth_dev_pci_generic_probe(pci_dev,
1092                 sizeof(struct e1000_adapter), eth_igb_dev_init);
1093 }
1094
1095 static int eth_igb_pci_remove(struct rte_pci_device *pci_dev)
1096 {
1097         return rte_eth_dev_pci_generic_remove(pci_dev, eth_igb_dev_uninit);
1098 }
1099
1100 static struct rte_pci_driver rte_igb_pmd = {
1101         .id_table = pci_id_igb_map,
1102         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
1103                      RTE_PCI_DRV_IOVA_AS_VA,
1104         .probe = eth_igb_pci_probe,
1105         .remove = eth_igb_pci_remove,
1106 };
1107
1108
1109 static int eth_igbvf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1110         struct rte_pci_device *pci_dev)
1111 {
1112         return rte_eth_dev_pci_generic_probe(pci_dev,
1113                 sizeof(struct e1000_adapter), eth_igbvf_dev_init);
1114 }
1115
1116 static int eth_igbvf_pci_remove(struct rte_pci_device *pci_dev)
1117 {
1118         return rte_eth_dev_pci_generic_remove(pci_dev, eth_igbvf_dev_uninit);
1119 }
1120
1121 /*
1122  * virtual function driver struct
1123  */
1124 static struct rte_pci_driver rte_igbvf_pmd = {
1125         .id_table = pci_id_igbvf_map,
1126         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_IOVA_AS_VA,
1127         .probe = eth_igbvf_pci_probe,
1128         .remove = eth_igbvf_pci_remove,
1129 };
1130
1131 static void
1132 igb_vmdq_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1133 {
1134         struct e1000_hw *hw =
1135                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1136         /* RCTL: enable VLAN filter since VMDq always use VLAN filter */
1137         uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
1138         rctl |= E1000_RCTL_VFE;
1139         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1140 }
1141
1142 static int
1143 igb_check_mq_mode(struct rte_eth_dev *dev)
1144 {
1145         enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
1146         enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
1147         uint16_t nb_rx_q = dev->data->nb_rx_queues;
1148         uint16_t nb_tx_q = dev->data->nb_tx_queues;
1149
1150         if ((rx_mq_mode & ETH_MQ_RX_DCB_FLAG) ||
1151             tx_mq_mode == ETH_MQ_TX_DCB ||
1152             tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
1153                 PMD_INIT_LOG(ERR, "DCB mode is not supported.");
1154                 return -EINVAL;
1155         }
1156         if (RTE_ETH_DEV_SRIOV(dev).active != 0) {
1157                 /* Check multi-queue mode.
1158                  * To no break software we accept ETH_MQ_RX_NONE as this might
1159                  * be used to turn off VLAN filter.
1160                  */
1161
1162                 if (rx_mq_mode == ETH_MQ_RX_NONE ||
1163                     rx_mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
1164                         dev->data->dev_conf.rxmode.mq_mode = ETH_MQ_RX_VMDQ_ONLY;
1165                         RTE_ETH_DEV_SRIOV(dev).nb_q_per_pool = 1;
1166                 } else {
1167                         /* Only support one queue on VFs.
1168                          * RSS together with SRIOV is not supported.
1169                          */
1170                         PMD_INIT_LOG(ERR, "SRIOV is active,"
1171                                         " wrong mq_mode rx %d.",
1172                                         rx_mq_mode);
1173                         return -EINVAL;
1174                 }
1175                 /* TX mode is not used here, so mode might be ignored.*/
1176                 if (tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
1177                         /* SRIOV only works in VMDq enable mode */
1178                         PMD_INIT_LOG(WARNING, "SRIOV is active,"
1179                                         " TX mode %d is not supported. "
1180                                         " Driver will behave as %d mode.",
1181                                         tx_mq_mode, ETH_MQ_TX_VMDQ_ONLY);
1182                 }
1183
1184                 /* check valid queue number */
1185                 if ((nb_rx_q > 1) || (nb_tx_q > 1)) {
1186                         PMD_INIT_LOG(ERR, "SRIOV is active,"
1187                                         " only support one queue on VFs.");
1188                         return -EINVAL;
1189                 }
1190         } else {
1191                 /* To no break software that set invalid mode, only display
1192                  * warning if invalid mode is used.
1193                  */
1194                 if (rx_mq_mode != ETH_MQ_RX_NONE &&
1195                     rx_mq_mode != ETH_MQ_RX_VMDQ_ONLY &&
1196                     rx_mq_mode != ETH_MQ_RX_RSS) {
1197                         /* RSS together with VMDq not supported*/
1198                         PMD_INIT_LOG(ERR, "RX mode %d is not supported.",
1199                                      rx_mq_mode);
1200                         return -EINVAL;
1201                 }
1202
1203                 if (tx_mq_mode != ETH_MQ_TX_NONE &&
1204                     tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
1205                         PMD_INIT_LOG(WARNING, "TX mode %d is not supported."
1206                                         " Due to txmode is meaningless in this"
1207                                         " driver, just ignore.",
1208                                         tx_mq_mode);
1209                 }
1210         }
1211         return 0;
1212 }
1213
1214 static int
1215 eth_igb_configure(struct rte_eth_dev *dev)
1216 {
1217         struct e1000_interrupt *intr =
1218                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1219         int ret;
1220
1221         PMD_INIT_FUNC_TRACE();
1222
1223         /* multipe queue mode checking */
1224         ret  = igb_check_mq_mode(dev);
1225         if (ret != 0) {
1226                 PMD_DRV_LOG(ERR, "igb_check_mq_mode fails with %d.",
1227                             ret);
1228                 return ret;
1229         }
1230
1231         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1232         PMD_INIT_FUNC_TRACE();
1233
1234         return 0;
1235 }
1236
1237 static void
1238 eth_igb_rxtx_control(struct rte_eth_dev *dev,
1239                      bool enable)
1240 {
1241         struct e1000_hw *hw =
1242                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1243         uint32_t tctl, rctl;
1244
1245         tctl = E1000_READ_REG(hw, E1000_TCTL);
1246         rctl = E1000_READ_REG(hw, E1000_RCTL);
1247
1248         if (enable) {
1249                 /* enable Tx/Rx */
1250                 tctl |= E1000_TCTL_EN;
1251                 rctl |= E1000_RCTL_EN;
1252         } else {
1253                 /* disable Tx/Rx */
1254                 tctl &= ~E1000_TCTL_EN;
1255                 rctl &= ~E1000_RCTL_EN;
1256         }
1257         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1258         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1259         E1000_WRITE_FLUSH(hw);
1260 }
1261
1262 static int
1263 eth_igb_start(struct rte_eth_dev *dev)
1264 {
1265         struct e1000_hw *hw =
1266                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1267         struct e1000_adapter *adapter =
1268                 E1000_DEV_PRIVATE(dev->data->dev_private);
1269         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1270         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1271         int ret, mask;
1272         uint32_t intr_vector = 0;
1273         uint32_t ctrl_ext;
1274         uint32_t *speeds;
1275         int num_speeds;
1276         bool autoneg;
1277
1278         PMD_INIT_FUNC_TRACE();
1279
1280         /* disable uio/vfio intr/eventfd mapping */
1281         rte_intr_disable(intr_handle);
1282
1283         /* Power up the phy. Needed to make the link go Up */
1284         eth_igb_dev_set_link_up(dev);
1285
1286         /*
1287          * Packet Buffer Allocation (PBA)
1288          * Writing PBA sets the receive portion of the buffer
1289          * the remainder is used for the transmit buffer.
1290          */
1291         if (hw->mac.type == e1000_82575) {
1292                 uint32_t pba;
1293
1294                 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1295                 E1000_WRITE_REG(hw, E1000_PBA, pba);
1296         }
1297
1298         /* Put the address into the Receive Address Array */
1299         e1000_rar_set(hw, hw->mac.addr, 0);
1300
1301         /* Initialize the hardware */
1302         if (igb_hardware_init(hw)) {
1303                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
1304                 return -EIO;
1305         }
1306         adapter->stopped = 0;
1307
1308         E1000_WRITE_REG(hw, E1000_VET, RTE_ETHER_TYPE_VLAN << 16 | RTE_ETHER_TYPE_VLAN);
1309
1310         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1311         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
1312         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
1313         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1314         E1000_WRITE_FLUSH(hw);
1315
1316         /* configure PF module if SRIOV enabled */
1317         igb_pf_host_configure(dev);
1318
1319         /* check and configure queue intr-vector mapping */
1320         if ((rte_intr_cap_multiple(intr_handle) ||
1321              !RTE_ETH_DEV_SRIOV(dev).active) &&
1322             dev->data->dev_conf.intr_conf.rxq != 0) {
1323                 intr_vector = dev->data->nb_rx_queues;
1324                 if (rte_intr_efd_enable(intr_handle, intr_vector))
1325                         return -1;
1326         }
1327
1328         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
1329                 intr_handle->intr_vec =
1330                         rte_zmalloc("intr_vec",
1331                                     dev->data->nb_rx_queues * sizeof(int), 0);
1332                 if (intr_handle->intr_vec == NULL) {
1333                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
1334                                      " intr_vec", dev->data->nb_rx_queues);
1335                         return -ENOMEM;
1336                 }
1337         }
1338
1339         /* confiugre msix for rx interrupt */
1340         eth_igb_configure_msix_intr(dev);
1341
1342         /* Configure for OS presence */
1343         igb_init_manageability(hw);
1344
1345         eth_igb_tx_init(dev);
1346
1347         /* This can fail when allocating mbufs for descriptor rings */
1348         ret = eth_igb_rx_init(dev);
1349         if (ret) {
1350                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
1351                 igb_dev_clear_queues(dev);
1352                 return ret;
1353         }
1354
1355         e1000_clear_hw_cntrs_base_generic(hw);
1356
1357         /*
1358          * VLAN Offload Settings
1359          */
1360         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
1361                         ETH_VLAN_EXTEND_MASK;
1362         ret = eth_igb_vlan_offload_set(dev, mask);
1363         if (ret) {
1364                 PMD_INIT_LOG(ERR, "Unable to set vlan offload");
1365                 igb_dev_clear_queues(dev);
1366                 return ret;
1367         }
1368
1369         if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
1370                 /* Enable VLAN filter since VMDq always use VLAN filter */
1371                 igb_vmdq_vlan_hw_filter_enable(dev);
1372         }
1373
1374         if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) ||
1375                 (hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i210) ||
1376                 (hw->mac.type == e1000_i211)) {
1377                 /* Configure EITR with the maximum possible value (0xFFFF) */
1378                 E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF);
1379         }
1380
1381         /* Setup link speed and duplex */
1382         speeds = &dev->data->dev_conf.link_speeds;
1383         if (*speeds == ETH_LINK_SPEED_AUTONEG) {
1384                 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
1385                 hw->mac.autoneg = 1;
1386         } else {
1387                 num_speeds = 0;
1388                 autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
1389
1390                 /* Reset */
1391                 hw->phy.autoneg_advertised = 0;
1392
1393                 if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1394                                 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1395                                 ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
1396                         num_speeds = -1;
1397                         goto error_invalid_config;
1398                 }
1399                 if (*speeds & ETH_LINK_SPEED_10M_HD) {
1400                         hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
1401                         num_speeds++;
1402                 }
1403                 if (*speeds & ETH_LINK_SPEED_10M) {
1404                         hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
1405                         num_speeds++;
1406                 }
1407                 if (*speeds & ETH_LINK_SPEED_100M_HD) {
1408                         hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
1409                         num_speeds++;
1410                 }
1411                 if (*speeds & ETH_LINK_SPEED_100M) {
1412                         hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
1413                         num_speeds++;
1414                 }
1415                 if (*speeds & ETH_LINK_SPEED_1G) {
1416                         hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
1417                         num_speeds++;
1418                 }
1419                 if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
1420                         goto error_invalid_config;
1421
1422                 /* Set/reset the mac.autoneg based on the link speed,
1423                  * fixed or not
1424                  */
1425                 if (!autoneg) {
1426                         hw->mac.autoneg = 0;
1427                         hw->mac.forced_speed_duplex =
1428                                         hw->phy.autoneg_advertised;
1429                 } else {
1430                         hw->mac.autoneg = 1;
1431                 }
1432         }
1433
1434         e1000_setup_link(hw);
1435
1436         if (rte_intr_allow_others(intr_handle)) {
1437                 /* check if lsc interrupt is enabled */
1438                 if (dev->data->dev_conf.intr_conf.lsc != 0)
1439                         eth_igb_lsc_interrupt_setup(dev, TRUE);
1440                 else
1441                         eth_igb_lsc_interrupt_setup(dev, FALSE);
1442         } else {
1443                 rte_intr_callback_unregister(intr_handle,
1444                                              eth_igb_interrupt_handler,
1445                                              (void *)dev);
1446                 if (dev->data->dev_conf.intr_conf.lsc != 0)
1447                         PMD_INIT_LOG(INFO, "lsc won't enable because of"
1448                                      " no intr multiplex");
1449         }
1450
1451         /* check if rxq interrupt is enabled */
1452         if (dev->data->dev_conf.intr_conf.rxq != 0 &&
1453             rte_intr_dp_is_en(intr_handle))
1454                 eth_igb_rxq_interrupt_setup(dev);
1455
1456         /* enable uio/vfio intr/eventfd mapping */
1457         rte_intr_enable(intr_handle);
1458
1459         /* resume enabled intr since hw reset */
1460         igb_intr_enable(dev);
1461
1462         /* restore all types filter */
1463         igb_filter_restore(dev);
1464
1465         eth_igb_rxtx_control(dev, true);
1466         eth_igb_link_update(dev, 0);
1467
1468         PMD_INIT_LOG(DEBUG, "<<");
1469
1470         return 0;
1471
1472 error_invalid_config:
1473         PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
1474                      dev->data->dev_conf.link_speeds, dev->data->port_id);
1475         igb_dev_clear_queues(dev);
1476         return -EINVAL;
1477 }
1478
1479 /*********************************************************************
1480  *
1481  *  This routine disables all traffic on the adapter by issuing a
1482  *  global reset on the MAC.
1483  *
1484  **********************************************************************/
1485 static void
1486 eth_igb_stop(struct rte_eth_dev *dev)
1487 {
1488         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1489         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1490         struct rte_eth_link link;
1491         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1492
1493         eth_igb_rxtx_control(dev, false);
1494
1495         igb_intr_disable(hw);
1496
1497         /* disable intr eventfd mapping */
1498         rte_intr_disable(intr_handle);
1499
1500         igb_pf_reset_hw(hw);
1501         E1000_WRITE_REG(hw, E1000_WUC, 0);
1502
1503         /* Set bit for Go Link disconnect */
1504         if (hw->mac.type >= e1000_82580) {
1505                 uint32_t phpm_reg;
1506
1507                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1508                 phpm_reg |= E1000_82580_PM_GO_LINKD;
1509                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1510         }
1511
1512         /* Power down the phy. Needed to make the link go Down */
1513         eth_igb_dev_set_link_down(dev);
1514
1515         igb_dev_clear_queues(dev);
1516
1517         /* clear the recorded link status */
1518         memset(&link, 0, sizeof(link));
1519         rte_eth_linkstatus_set(dev, &link);
1520
1521         if (!rte_intr_allow_others(intr_handle))
1522                 /* resume to the default handler */
1523                 rte_intr_callback_register(intr_handle,
1524                                            eth_igb_interrupt_handler,
1525                                            (void *)dev);
1526
1527         /* Clean datapath event and queue/vec mapping */
1528         rte_intr_efd_disable(intr_handle);
1529         if (intr_handle->intr_vec != NULL) {
1530                 rte_free(intr_handle->intr_vec);
1531                 intr_handle->intr_vec = NULL;
1532         }
1533 }
1534
1535 static int
1536 eth_igb_dev_set_link_up(struct rte_eth_dev *dev)
1537 {
1538         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1539
1540         if (hw->phy.media_type == e1000_media_type_copper)
1541                 e1000_power_up_phy(hw);
1542         else
1543                 e1000_power_up_fiber_serdes_link(hw);
1544
1545         return 0;
1546 }
1547
1548 static int
1549 eth_igb_dev_set_link_down(struct rte_eth_dev *dev)
1550 {
1551         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1552
1553         if (hw->phy.media_type == e1000_media_type_copper)
1554                 e1000_power_down_phy(hw);
1555         else
1556                 e1000_shutdown_fiber_serdes_link(hw);
1557
1558         return 0;
1559 }
1560
1561 static void
1562 eth_igb_close(struct rte_eth_dev *dev)
1563 {
1564         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1565         struct e1000_adapter *adapter =
1566                 E1000_DEV_PRIVATE(dev->data->dev_private);
1567         struct rte_eth_link link;
1568         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1569         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1570
1571         eth_igb_stop(dev);
1572         adapter->stopped = 1;
1573
1574         e1000_phy_hw_reset(hw);
1575         igb_release_manageability(hw);
1576         igb_hw_control_release(hw);
1577
1578         /* Clear bit for Go Link disconnect */
1579         if (hw->mac.type >= e1000_82580) {
1580                 uint32_t phpm_reg;
1581
1582                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1583                 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1584                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1585         }
1586
1587         igb_dev_free_queues(dev);
1588
1589         if (intr_handle->intr_vec) {
1590                 rte_free(intr_handle->intr_vec);
1591                 intr_handle->intr_vec = NULL;
1592         }
1593
1594         memset(&link, 0, sizeof(link));
1595         rte_eth_linkstatus_set(dev, &link);
1596 }
1597
1598 /*
1599  * Reset PF device.
1600  */
1601 static int
1602 eth_igb_reset(struct rte_eth_dev *dev)
1603 {
1604         int ret;
1605
1606         /* When a DPDK PMD PF begin to reset PF port, it should notify all
1607          * its VF to make them align with it. The detailed notification
1608          * mechanism is PMD specific and is currently not implemented.
1609          * To avoid unexpected behavior in VF, currently reset of PF with
1610          * SR-IOV activation is not supported. It might be supported later.
1611          */
1612         if (dev->data->sriov.active)
1613                 return -ENOTSUP;
1614
1615         ret = eth_igb_dev_uninit(dev);
1616         if (ret)
1617                 return ret;
1618
1619         ret = eth_igb_dev_init(dev);
1620
1621         return ret;
1622 }
1623
1624
1625 static int
1626 igb_get_rx_buffer_size(struct e1000_hw *hw)
1627 {
1628         uint32_t rx_buf_size;
1629         if (hw->mac.type == e1000_82576) {
1630                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10;
1631         } else if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i350) {
1632                 /* PBS needs to be translated according to a lookup table */
1633                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf);
1634                 rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size);
1635                 rx_buf_size = (rx_buf_size << 10);
1636         } else if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
1637                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0x3f) << 10;
1638         } else {
1639                 rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10;
1640         }
1641
1642         return rx_buf_size;
1643 }
1644
1645 /*********************************************************************
1646  *
1647  *  Initialize the hardware
1648  *
1649  **********************************************************************/
1650 static int
1651 igb_hardware_init(struct e1000_hw *hw)
1652 {
1653         uint32_t rx_buf_size;
1654         int diag;
1655
1656         /* Let the firmware know the OS is in control */
1657         igb_hw_control_acquire(hw);
1658
1659         /*
1660          * These parameters control the automatic generation (Tx) and
1661          * response (Rx) to Ethernet PAUSE frames.
1662          * - High water mark should allow for at least two standard size (1518)
1663          *   frames to be received after sending an XOFF.
1664          * - Low water mark works best when it is very near the high water mark.
1665          *   This allows the receiver to restart by sending XON when it has
1666          *   drained a bit. Here we use an arbitrary value of 1500 which will
1667          *   restart after one full frame is pulled from the buffer. There
1668          *   could be several smaller frames in the buffer and if so they will
1669          *   not trigger the XON until their total number reduces the buffer
1670          *   by 1500.
1671          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1672          */
1673         rx_buf_size = igb_get_rx_buffer_size(hw);
1674
1675         hw->fc.high_water = rx_buf_size - (RTE_ETHER_MAX_LEN * 2);
1676         hw->fc.low_water = hw->fc.high_water - 1500;
1677         hw->fc.pause_time = IGB_FC_PAUSE_TIME;
1678         hw->fc.send_xon = 1;
1679
1680         /* Set Flow control, use the tunable location if sane */
1681         if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4))
1682                 hw->fc.requested_mode = igb_fc_setting;
1683         else
1684                 hw->fc.requested_mode = e1000_fc_none;
1685
1686         /* Issue a global reset */
1687         igb_pf_reset_hw(hw);
1688         E1000_WRITE_REG(hw, E1000_WUC, 0);
1689
1690         diag = e1000_init_hw(hw);
1691         if (diag < 0)
1692                 return diag;
1693
1694         E1000_WRITE_REG(hw, E1000_VET, RTE_ETHER_TYPE_VLAN << 16 | RTE_ETHER_TYPE_VLAN);
1695         e1000_get_phy_info(hw);
1696         e1000_check_for_link(hw);
1697
1698         return 0;
1699 }
1700
1701 /* This function is based on igb_update_stats_counters() in igb/if_igb.c */
1702 static void
1703 igb_read_stats_registers(struct e1000_hw *hw, struct e1000_hw_stats *stats)
1704 {
1705         int pause_frames;
1706
1707         uint64_t old_gprc  = stats->gprc;
1708         uint64_t old_gptc  = stats->gptc;
1709         uint64_t old_tpr   = stats->tpr;
1710         uint64_t old_tpt   = stats->tpt;
1711         uint64_t old_rpthc = stats->rpthc;
1712         uint64_t old_hgptc = stats->hgptc;
1713
1714         if(hw->phy.media_type == e1000_media_type_copper ||
1715             (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1716                 stats->symerrs +=
1717                     E1000_READ_REG(hw,E1000_SYMERRS);
1718                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
1719         }
1720
1721         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
1722         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
1723         stats->scc += E1000_READ_REG(hw, E1000_SCC);
1724         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
1725
1726         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
1727         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
1728         stats->colc += E1000_READ_REG(hw, E1000_COLC);
1729         stats->dc += E1000_READ_REG(hw, E1000_DC);
1730         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
1731         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
1732         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
1733         /*
1734         ** For watchdog management we need to know if we have been
1735         ** paused during the last interval, so capture that here.
1736         */
1737         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
1738         stats->xoffrxc += pause_frames;
1739         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
1740         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
1741         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
1742         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
1743         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
1744         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
1745         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
1746         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
1747         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
1748         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
1749         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
1750         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
1751
1752         /* For the 64-bit byte counters the low dword must be read first. */
1753         /* Both registers clear on the read of the high dword */
1754
1755         /* Workaround CRC bytes included in size, take away 4 bytes/packet */
1756         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
1757         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
1758         stats->gorc -= (stats->gprc - old_gprc) * RTE_ETHER_CRC_LEN;
1759         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
1760         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
1761         stats->gotc -= (stats->gptc - old_gptc) * RTE_ETHER_CRC_LEN;
1762
1763         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
1764         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
1765         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
1766         stats->roc += E1000_READ_REG(hw, E1000_ROC);
1767         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
1768
1769         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
1770         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
1771
1772         stats->tor += E1000_READ_REG(hw, E1000_TORL);
1773         stats->tor += ((uint64_t)E1000_READ_REG(hw, E1000_TORH) << 32);
1774         stats->tor -= (stats->tpr - old_tpr) * RTE_ETHER_CRC_LEN;
1775         stats->tot += E1000_READ_REG(hw, E1000_TOTL);
1776         stats->tot += ((uint64_t)E1000_READ_REG(hw, E1000_TOTH) << 32);
1777         stats->tot -= (stats->tpt - old_tpt) * RTE_ETHER_CRC_LEN;
1778
1779         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
1780         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
1781         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
1782         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
1783         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
1784         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
1785         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
1786         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
1787
1788         /* Interrupt Counts */
1789
1790         stats->iac += E1000_READ_REG(hw, E1000_IAC);
1791         stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
1792         stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
1793         stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
1794         stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
1795         stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
1796         stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
1797         stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
1798         stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
1799
1800         /* Host to Card Statistics */
1801
1802         stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
1803         stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
1804         stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
1805         stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
1806         stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
1807         stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
1808         stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
1809         stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL);
1810         stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32);
1811         stats->hgorc -= (stats->rpthc - old_rpthc) * RTE_ETHER_CRC_LEN;
1812         stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL);
1813         stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32);
1814         stats->hgotc -= (stats->hgptc - old_hgptc) * RTE_ETHER_CRC_LEN;
1815         stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
1816         stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
1817         stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
1818
1819         stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
1820         stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
1821         stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
1822         stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
1823         stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
1824         stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
1825 }
1826
1827 static int
1828 eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
1829 {
1830         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1831         struct e1000_hw_stats *stats =
1832                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1833
1834         igb_read_stats_registers(hw, stats);
1835
1836         if (rte_stats == NULL)
1837                 return -EINVAL;
1838
1839         /* Rx Errors */
1840         rte_stats->imissed = stats->mpc;
1841         rte_stats->ierrors = stats->crcerrs +
1842                              stats->rlec + stats->ruc + stats->roc +
1843                              stats->rxerrc + stats->algnerrc + stats->cexterr;
1844
1845         /* Tx Errors */
1846         rte_stats->oerrors = stats->ecol + stats->latecol;
1847
1848         rte_stats->ipackets = stats->gprc;
1849         rte_stats->opackets = stats->gptc;
1850         rte_stats->ibytes   = stats->gorc;
1851         rte_stats->obytes   = stats->gotc;
1852         return 0;
1853 }
1854
1855 static void
1856 eth_igb_stats_reset(struct rte_eth_dev *dev)
1857 {
1858         struct e1000_hw_stats *hw_stats =
1859                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1860
1861         /* HW registers are cleared on read */
1862         eth_igb_stats_get(dev, NULL);
1863
1864         /* Reset software totals */
1865         memset(hw_stats, 0, sizeof(*hw_stats));
1866 }
1867
1868 static void
1869 eth_igb_xstats_reset(struct rte_eth_dev *dev)
1870 {
1871         struct e1000_hw_stats *stats =
1872                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1873
1874         /* HW registers are cleared on read */
1875         eth_igb_xstats_get(dev, NULL, IGB_NB_XSTATS);
1876
1877         /* Reset software totals */
1878         memset(stats, 0, sizeof(*stats));
1879 }
1880
1881 static int eth_igb_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
1882         struct rte_eth_xstat_name *xstats_names,
1883         __rte_unused unsigned int size)
1884 {
1885         unsigned i;
1886
1887         if (xstats_names == NULL)
1888                 return IGB_NB_XSTATS;
1889
1890         /* Note: limit checked in rte_eth_xstats_names() */
1891
1892         for (i = 0; i < IGB_NB_XSTATS; i++) {
1893                 snprintf(xstats_names[i].name, sizeof(xstats_names[i].name),
1894                          "%s", rte_igb_stats_strings[i].name);
1895         }
1896
1897         return IGB_NB_XSTATS;
1898 }
1899
1900 static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev,
1901                 struct rte_eth_xstat_name *xstats_names, const uint64_t *ids,
1902                 unsigned int limit)
1903 {
1904         unsigned int i;
1905
1906         if (!ids) {
1907                 if (xstats_names == NULL)
1908                         return IGB_NB_XSTATS;
1909
1910                 for (i = 0; i < IGB_NB_XSTATS; i++)
1911                         snprintf(xstats_names[i].name,
1912                                         sizeof(xstats_names[i].name),
1913                                         "%s", rte_igb_stats_strings[i].name);
1914
1915                 return IGB_NB_XSTATS;
1916
1917         } else {
1918                 struct rte_eth_xstat_name xstats_names_copy[IGB_NB_XSTATS];
1919
1920                 eth_igb_xstats_get_names_by_id(dev, xstats_names_copy, NULL,
1921                                 IGB_NB_XSTATS);
1922
1923                 for (i = 0; i < limit; i++) {
1924                         if (ids[i] >= IGB_NB_XSTATS) {
1925                                 PMD_INIT_LOG(ERR, "id value isn't valid");
1926                                 return -1;
1927                         }
1928                         strcpy(xstats_names[i].name,
1929                                         xstats_names_copy[ids[i]].name);
1930                 }
1931                 return limit;
1932         }
1933 }
1934
1935 static int
1936 eth_igb_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
1937                    unsigned n)
1938 {
1939         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1940         struct e1000_hw_stats *hw_stats =
1941                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1942         unsigned i;
1943
1944         if (n < IGB_NB_XSTATS)
1945                 return IGB_NB_XSTATS;
1946
1947         igb_read_stats_registers(hw, hw_stats);
1948
1949         /* If this is a reset xstats is NULL, and we have cleared the
1950          * registers by reading them.
1951          */
1952         if (!xstats)
1953                 return 0;
1954
1955         /* Extended stats */
1956         for (i = 0; i < IGB_NB_XSTATS; i++) {
1957                 xstats[i].id = i;
1958                 xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
1959                         rte_igb_stats_strings[i].offset);
1960         }
1961
1962         return IGB_NB_XSTATS;
1963 }
1964
1965 static int
1966 eth_igb_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
1967                 uint64_t *values, unsigned int n)
1968 {
1969         unsigned int i;
1970
1971         if (!ids) {
1972                 struct e1000_hw *hw =
1973                         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1974                 struct e1000_hw_stats *hw_stats =
1975                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1976
1977                 if (n < IGB_NB_XSTATS)
1978                         return IGB_NB_XSTATS;
1979
1980                 igb_read_stats_registers(hw, hw_stats);
1981
1982                 /* If this is a reset xstats is NULL, and we have cleared the
1983                  * registers by reading them.
1984                  */
1985                 if (!values)
1986                         return 0;
1987
1988                 /* Extended stats */
1989                 for (i = 0; i < IGB_NB_XSTATS; i++)
1990                         values[i] = *(uint64_t *)(((char *)hw_stats) +
1991                                         rte_igb_stats_strings[i].offset);
1992
1993                 return IGB_NB_XSTATS;
1994
1995         } else {
1996                 uint64_t values_copy[IGB_NB_XSTATS];
1997
1998                 eth_igb_xstats_get_by_id(dev, NULL, values_copy,
1999                                 IGB_NB_XSTATS);
2000
2001                 for (i = 0; i < n; i++) {
2002                         if (ids[i] >= IGB_NB_XSTATS) {
2003                                 PMD_INIT_LOG(ERR, "id value isn't valid");
2004                                 return -1;
2005                         }
2006                         values[i] = values_copy[ids[i]];
2007                 }
2008                 return n;
2009         }
2010 }
2011
2012 static void
2013 igbvf_read_stats_registers(struct e1000_hw *hw, struct e1000_vf_stats *hw_stats)
2014 {
2015         /* Good Rx packets, include VF loopback */
2016         UPDATE_VF_STAT(E1000_VFGPRC,
2017             hw_stats->last_gprc, hw_stats->gprc);
2018
2019         /* Good Rx octets, include VF loopback */
2020         UPDATE_VF_STAT(E1000_VFGORC,
2021             hw_stats->last_gorc, hw_stats->gorc);
2022
2023         /* Good Tx packets, include VF loopback */
2024         UPDATE_VF_STAT(E1000_VFGPTC,
2025             hw_stats->last_gptc, hw_stats->gptc);
2026
2027         /* Good Tx octets, include VF loopback */
2028         UPDATE_VF_STAT(E1000_VFGOTC,
2029             hw_stats->last_gotc, hw_stats->gotc);
2030
2031         /* Rx Multicst packets */
2032         UPDATE_VF_STAT(E1000_VFMPRC,
2033             hw_stats->last_mprc, hw_stats->mprc);
2034
2035         /* Good Rx loopback packets */
2036         UPDATE_VF_STAT(E1000_VFGPRLBC,
2037             hw_stats->last_gprlbc, hw_stats->gprlbc);
2038
2039         /* Good Rx loopback octets */
2040         UPDATE_VF_STAT(E1000_VFGORLBC,
2041             hw_stats->last_gorlbc, hw_stats->gorlbc);
2042
2043         /* Good Tx loopback packets */
2044         UPDATE_VF_STAT(E1000_VFGPTLBC,
2045             hw_stats->last_gptlbc, hw_stats->gptlbc);
2046
2047         /* Good Tx loopback octets */
2048         UPDATE_VF_STAT(E1000_VFGOTLBC,
2049             hw_stats->last_gotlbc, hw_stats->gotlbc);
2050 }
2051
2052 static int eth_igbvf_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
2053                                      struct rte_eth_xstat_name *xstats_names,
2054                                      __rte_unused unsigned limit)
2055 {
2056         unsigned i;
2057
2058         if (xstats_names != NULL)
2059                 for (i = 0; i < IGBVF_NB_XSTATS; i++) {
2060                         snprintf(xstats_names[i].name,
2061                                 sizeof(xstats_names[i].name), "%s",
2062                                 rte_igbvf_stats_strings[i].name);
2063                 }
2064         return IGBVF_NB_XSTATS;
2065 }
2066
2067 static int
2068 eth_igbvf_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
2069                      unsigned n)
2070 {
2071         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2072         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
2073                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2074         unsigned i;
2075
2076         if (n < IGBVF_NB_XSTATS)
2077                 return IGBVF_NB_XSTATS;
2078
2079         igbvf_read_stats_registers(hw, hw_stats);
2080
2081         if (!xstats)
2082                 return 0;
2083
2084         for (i = 0; i < IGBVF_NB_XSTATS; i++) {
2085                 xstats[i].id = i;
2086                 xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
2087                         rte_igbvf_stats_strings[i].offset);
2088         }
2089
2090         return IGBVF_NB_XSTATS;
2091 }
2092
2093 static int
2094 eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
2095 {
2096         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2097         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
2098                           E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2099
2100         igbvf_read_stats_registers(hw, hw_stats);
2101
2102         if (rte_stats == NULL)
2103                 return -EINVAL;
2104
2105         rte_stats->ipackets = hw_stats->gprc;
2106         rte_stats->ibytes = hw_stats->gorc;
2107         rte_stats->opackets = hw_stats->gptc;
2108         rte_stats->obytes = hw_stats->gotc;
2109         return 0;
2110 }
2111
2112 static void
2113 eth_igbvf_stats_reset(struct rte_eth_dev *dev)
2114 {
2115         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
2116                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2117
2118         /* Sync HW register to the last stats */
2119         eth_igbvf_stats_get(dev, NULL);
2120
2121         /* reset HW current stats*/
2122         memset(&hw_stats->gprc, 0, sizeof(*hw_stats) -
2123                offsetof(struct e1000_vf_stats, gprc));
2124 }
2125
2126 static int
2127 eth_igb_fw_version_get(struct rte_eth_dev *dev, char *fw_version,
2128                        size_t fw_size)
2129 {
2130         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2131         struct e1000_fw_version fw;
2132         int ret;
2133
2134         e1000_get_fw_version(hw, &fw);
2135
2136         switch (hw->mac.type) {
2137         case e1000_i210:
2138         case e1000_i211:
2139                 if (!(e1000_get_flash_presence_i210(hw))) {
2140                         ret = snprintf(fw_version, fw_size,
2141                                  "%2d.%2d-%d",
2142                                  fw.invm_major, fw.invm_minor,
2143                                  fw.invm_img_type);
2144                         break;
2145                 }
2146                 /* fall through */
2147         default:
2148                 /* if option rom is valid, display its version too */
2149                 if (fw.or_valid) {
2150                         ret = snprintf(fw_version, fw_size,
2151                                  "%d.%d, 0x%08x, %d.%d.%d",
2152                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2153                                  fw.or_major, fw.or_build, fw.or_patch);
2154                 /* no option rom */
2155                 } else {
2156                         if (fw.etrack_id != 0X0000) {
2157                                 ret = snprintf(fw_version, fw_size,
2158                                          "%d.%d, 0x%08x",
2159                                          fw.eep_major, fw.eep_minor,
2160                                          fw.etrack_id);
2161                         } else {
2162                                 ret = snprintf(fw_version, fw_size,
2163                                          "%d.%d.%d",
2164                                          fw.eep_major, fw.eep_minor,
2165                                          fw.eep_build);
2166                         }
2167                 }
2168                 break;
2169         }
2170
2171         ret += 1; /* add the size of '\0' */
2172         if (fw_size < (u32)ret)
2173                 return ret;
2174         else
2175                 return 0;
2176 }
2177
2178 static void
2179 eth_igb_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
2180 {
2181         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2182
2183         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
2184         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
2185         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
2186         dev_info->rx_queue_offload_capa = igb_get_rx_queue_offloads_capa(dev);
2187         dev_info->rx_offload_capa = igb_get_rx_port_offloads_capa(dev) |
2188                                     dev_info->rx_queue_offload_capa;
2189         dev_info->tx_queue_offload_capa = igb_get_tx_queue_offloads_capa(dev);
2190         dev_info->tx_offload_capa = igb_get_tx_port_offloads_capa(dev) |
2191                                     dev_info->tx_queue_offload_capa;
2192
2193         switch (hw->mac.type) {
2194         case e1000_82575:
2195                 dev_info->max_rx_queues = 4;
2196                 dev_info->max_tx_queues = 4;
2197                 dev_info->max_vmdq_pools = 0;
2198                 break;
2199
2200         case e1000_82576:
2201                 dev_info->max_rx_queues = 16;
2202                 dev_info->max_tx_queues = 16;
2203                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2204                 dev_info->vmdq_queue_num = 16;
2205                 break;
2206
2207         case e1000_82580:
2208                 dev_info->max_rx_queues = 8;
2209                 dev_info->max_tx_queues = 8;
2210                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2211                 dev_info->vmdq_queue_num = 8;
2212                 break;
2213
2214         case e1000_i350:
2215                 dev_info->max_rx_queues = 8;
2216                 dev_info->max_tx_queues = 8;
2217                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2218                 dev_info->vmdq_queue_num = 8;
2219                 break;
2220
2221         case e1000_i354:
2222                 dev_info->max_rx_queues = 8;
2223                 dev_info->max_tx_queues = 8;
2224                 break;
2225
2226         case e1000_i210:
2227                 dev_info->max_rx_queues = 4;
2228                 dev_info->max_tx_queues = 4;
2229                 dev_info->max_vmdq_pools = 0;
2230                 break;
2231
2232         case e1000_i211:
2233                 dev_info->max_rx_queues = 2;
2234                 dev_info->max_tx_queues = 2;
2235                 dev_info->max_vmdq_pools = 0;
2236                 break;
2237
2238         default:
2239                 /* Should not happen */
2240                 break;
2241         }
2242         dev_info->hash_key_size = IGB_HKEY_MAX_INDEX * sizeof(uint32_t);
2243         dev_info->reta_size = ETH_RSS_RETA_SIZE_128;
2244         dev_info->flow_type_rss_offloads = IGB_RSS_OFFLOAD_ALL;
2245
2246         dev_info->default_rxconf = (struct rte_eth_rxconf) {
2247                 .rx_thresh = {
2248                         .pthresh = IGB_DEFAULT_RX_PTHRESH,
2249                         .hthresh = IGB_DEFAULT_RX_HTHRESH,
2250                         .wthresh = IGB_DEFAULT_RX_WTHRESH,
2251                 },
2252                 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
2253                 .rx_drop_en = 0,
2254                 .offloads = 0,
2255         };
2256
2257         dev_info->default_txconf = (struct rte_eth_txconf) {
2258                 .tx_thresh = {
2259                         .pthresh = IGB_DEFAULT_TX_PTHRESH,
2260                         .hthresh = IGB_DEFAULT_TX_HTHRESH,
2261                         .wthresh = IGB_DEFAULT_TX_WTHRESH,
2262                 },
2263                 .offloads = 0,
2264         };
2265
2266         dev_info->rx_desc_lim = rx_desc_lim;
2267         dev_info->tx_desc_lim = tx_desc_lim;
2268
2269         dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
2270                         ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
2271                         ETH_LINK_SPEED_1G;
2272 }
2273
2274 static const uint32_t *
2275 eth_igb_supported_ptypes_get(struct rte_eth_dev *dev)
2276 {
2277         static const uint32_t ptypes[] = {
2278                 /* refers to igb_rxd_pkt_info_to_pkt_type() */
2279                 RTE_PTYPE_L2_ETHER,
2280                 RTE_PTYPE_L3_IPV4,
2281                 RTE_PTYPE_L3_IPV4_EXT,
2282                 RTE_PTYPE_L3_IPV6,
2283                 RTE_PTYPE_L3_IPV6_EXT,
2284                 RTE_PTYPE_L4_TCP,
2285                 RTE_PTYPE_L4_UDP,
2286                 RTE_PTYPE_L4_SCTP,
2287                 RTE_PTYPE_TUNNEL_IP,
2288                 RTE_PTYPE_INNER_L3_IPV6,
2289                 RTE_PTYPE_INNER_L3_IPV6_EXT,
2290                 RTE_PTYPE_INNER_L4_TCP,
2291                 RTE_PTYPE_INNER_L4_UDP,
2292                 RTE_PTYPE_UNKNOWN
2293         };
2294
2295         if (dev->rx_pkt_burst == eth_igb_recv_pkts ||
2296             dev->rx_pkt_burst == eth_igb_recv_scattered_pkts)
2297                 return ptypes;
2298         return NULL;
2299 }
2300
2301 static void
2302 eth_igbvf_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
2303 {
2304         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2305
2306         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
2307         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
2308         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
2309         dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
2310                                 DEV_TX_OFFLOAD_IPV4_CKSUM  |
2311                                 DEV_TX_OFFLOAD_UDP_CKSUM   |
2312                                 DEV_TX_OFFLOAD_TCP_CKSUM   |
2313                                 DEV_TX_OFFLOAD_SCTP_CKSUM  |
2314                                 DEV_TX_OFFLOAD_TCP_TSO;
2315         switch (hw->mac.type) {
2316         case e1000_vfadapt:
2317                 dev_info->max_rx_queues = 2;
2318                 dev_info->max_tx_queues = 2;
2319                 break;
2320         case e1000_vfadapt_i350:
2321                 dev_info->max_rx_queues = 1;
2322                 dev_info->max_tx_queues = 1;
2323                 break;
2324         default:
2325                 /* Should not happen */
2326                 break;
2327         }
2328
2329         dev_info->rx_queue_offload_capa = igb_get_rx_queue_offloads_capa(dev);
2330         dev_info->rx_offload_capa = igb_get_rx_port_offloads_capa(dev) |
2331                                     dev_info->rx_queue_offload_capa;
2332         dev_info->tx_queue_offload_capa = igb_get_tx_queue_offloads_capa(dev);
2333         dev_info->tx_offload_capa = igb_get_tx_port_offloads_capa(dev) |
2334                                     dev_info->tx_queue_offload_capa;
2335
2336         dev_info->default_rxconf = (struct rte_eth_rxconf) {
2337                 .rx_thresh = {
2338                         .pthresh = IGB_DEFAULT_RX_PTHRESH,
2339                         .hthresh = IGB_DEFAULT_RX_HTHRESH,
2340                         .wthresh = IGB_DEFAULT_RX_WTHRESH,
2341                 },
2342                 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
2343                 .rx_drop_en = 0,
2344                 .offloads = 0,
2345         };
2346
2347         dev_info->default_txconf = (struct rte_eth_txconf) {
2348                 .tx_thresh = {
2349                         .pthresh = IGB_DEFAULT_TX_PTHRESH,
2350                         .hthresh = IGB_DEFAULT_TX_HTHRESH,
2351                         .wthresh = IGB_DEFAULT_TX_WTHRESH,
2352                 },
2353                 .offloads = 0,
2354         };
2355
2356         dev_info->rx_desc_lim = rx_desc_lim;
2357         dev_info->tx_desc_lim = tx_desc_lim;
2358 }
2359
2360 /* return 0 means link status changed, -1 means not changed */
2361 static int
2362 eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete)
2363 {
2364         struct e1000_hw *hw =
2365                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2366         struct rte_eth_link link;
2367         int link_check, count;
2368
2369         link_check = 0;
2370         hw->mac.get_link_status = 1;
2371
2372         /* possible wait-to-complete in up to 9 seconds */
2373         for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
2374                 /* Read the real link status */
2375                 switch (hw->phy.media_type) {
2376                 case e1000_media_type_copper:
2377                         /* Do the work to read phy */
2378                         e1000_check_for_link(hw);
2379                         link_check = !hw->mac.get_link_status;
2380                         break;
2381
2382                 case e1000_media_type_fiber:
2383                         e1000_check_for_link(hw);
2384                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
2385                                       E1000_STATUS_LU);
2386                         break;
2387
2388                 case e1000_media_type_internal_serdes:
2389                         e1000_check_for_link(hw);
2390                         link_check = hw->mac.serdes_has_link;
2391                         break;
2392
2393                 /* VF device is type_unknown */
2394                 case e1000_media_type_unknown:
2395                         eth_igbvf_link_update(hw);
2396                         link_check = !hw->mac.get_link_status;
2397                         break;
2398
2399                 default:
2400                         break;
2401                 }
2402                 if (link_check || wait_to_complete == 0)
2403                         break;
2404                 rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL);
2405         }
2406         memset(&link, 0, sizeof(link));
2407
2408         /* Now we check if a transition has happened */
2409         if (link_check) {
2410                 uint16_t duplex, speed;
2411                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
2412                 link.link_duplex = (duplex == FULL_DUPLEX) ?
2413                                 ETH_LINK_FULL_DUPLEX :
2414                                 ETH_LINK_HALF_DUPLEX;
2415                 link.link_speed = speed;
2416                 link.link_status = ETH_LINK_UP;
2417                 link.link_autoneg = !(dev->data->dev_conf.link_speeds &
2418                                 ETH_LINK_SPEED_FIXED);
2419         } else if (!link_check) {
2420                 link.link_speed = 0;
2421                 link.link_duplex = ETH_LINK_HALF_DUPLEX;
2422                 link.link_status = ETH_LINK_DOWN;
2423                 link.link_autoneg = ETH_LINK_FIXED;
2424         }
2425
2426         return rte_eth_linkstatus_set(dev, &link);
2427 }
2428
2429 /*
2430  * igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit.
2431  * For ASF and Pass Through versions of f/w this means
2432  * that the driver is loaded.
2433  */
2434 static void
2435 igb_hw_control_acquire(struct e1000_hw *hw)
2436 {
2437         uint32_t ctrl_ext;
2438
2439         /* Let firmware know the driver has taken over */
2440         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2441         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2442 }
2443
2444 /*
2445  * igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit.
2446  * For ASF and Pass Through versions of f/w this means that the
2447  * driver is no longer loaded.
2448  */
2449 static void
2450 igb_hw_control_release(struct e1000_hw *hw)
2451 {
2452         uint32_t ctrl_ext;
2453
2454         /* Let firmware taken over control of h/w */
2455         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2456         E1000_WRITE_REG(hw, E1000_CTRL_EXT,
2457                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2458 }
2459
2460 /*
2461  * Bit of a misnomer, what this really means is
2462  * to enable OS management of the system... aka
2463  * to disable special hardware management features.
2464  */
2465 static void
2466 igb_init_manageability(struct e1000_hw *hw)
2467 {
2468         if (e1000_enable_mng_pass_thru(hw)) {
2469                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
2470                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
2471
2472                 /* disable hardware interception of ARP */
2473                 manc &= ~(E1000_MANC_ARP_EN);
2474
2475                 /* enable receiving management packets to the host */
2476                 manc |= E1000_MANC_EN_MNG2HOST;
2477                 manc2h |= 1 << 5;  /* Mng Port 623 */
2478                 manc2h |= 1 << 6;  /* Mng Port 664 */
2479                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
2480                 E1000_WRITE_REG(hw, E1000_MANC, manc);
2481         }
2482 }
2483
2484 static void
2485 igb_release_manageability(struct e1000_hw *hw)
2486 {
2487         if (e1000_enable_mng_pass_thru(hw)) {
2488                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
2489
2490                 manc |= E1000_MANC_ARP_EN;
2491                 manc &= ~E1000_MANC_EN_MNG2HOST;
2492
2493                 E1000_WRITE_REG(hw, E1000_MANC, manc);
2494         }
2495 }
2496
2497 static void
2498 eth_igb_promiscuous_enable(struct rte_eth_dev *dev)
2499 {
2500         struct e1000_hw *hw =
2501                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2502         uint32_t rctl;
2503
2504         rctl = E1000_READ_REG(hw, E1000_RCTL);
2505         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2506         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2507 }
2508
2509 static void
2510 eth_igb_promiscuous_disable(struct rte_eth_dev *dev)
2511 {
2512         struct e1000_hw *hw =
2513                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2514         uint32_t rctl;
2515
2516         rctl = E1000_READ_REG(hw, E1000_RCTL);
2517         rctl &= (~E1000_RCTL_UPE);
2518         if (dev->data->all_multicast == 1)
2519                 rctl |= E1000_RCTL_MPE;
2520         else
2521                 rctl &= (~E1000_RCTL_MPE);
2522         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2523 }
2524
2525 static void
2526 eth_igb_allmulticast_enable(struct rte_eth_dev *dev)
2527 {
2528         struct e1000_hw *hw =
2529                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2530         uint32_t rctl;
2531
2532         rctl = E1000_READ_REG(hw, E1000_RCTL);
2533         rctl |= E1000_RCTL_MPE;
2534         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2535 }
2536
2537 static void
2538 eth_igb_allmulticast_disable(struct rte_eth_dev *dev)
2539 {
2540         struct e1000_hw *hw =
2541                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2542         uint32_t rctl;
2543
2544         if (dev->data->promiscuous == 1)
2545                 return; /* must remain in all_multicast mode */
2546         rctl = E1000_READ_REG(hw, E1000_RCTL);
2547         rctl &= (~E1000_RCTL_MPE);
2548         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2549 }
2550
2551 static int
2552 eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
2553 {
2554         struct e1000_hw *hw =
2555                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2556         struct e1000_vfta * shadow_vfta =
2557                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2558         uint32_t vfta;
2559         uint32_t vid_idx;
2560         uint32_t vid_bit;
2561
2562         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
2563                               E1000_VFTA_ENTRY_MASK);
2564         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
2565         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
2566         if (on)
2567                 vfta |= vid_bit;
2568         else
2569                 vfta &= ~vid_bit;
2570         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
2571
2572         /* update local VFTA copy */
2573         shadow_vfta->vfta[vid_idx] = vfta;
2574
2575         return 0;
2576 }
2577
2578 static int
2579 eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
2580                       enum rte_vlan_type vlan_type,
2581                       uint16_t tpid)
2582 {
2583         struct e1000_hw *hw =
2584                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2585         uint32_t reg, qinq;
2586
2587         qinq = E1000_READ_REG(hw, E1000_CTRL_EXT);
2588         qinq &= E1000_CTRL_EXT_EXT_VLAN;
2589
2590         /* only outer TPID of double VLAN can be configured*/
2591         if (qinq && vlan_type == ETH_VLAN_TYPE_OUTER) {
2592                 reg = E1000_READ_REG(hw, E1000_VET);
2593                 reg = (reg & (~E1000_VET_VET_EXT)) |
2594                         ((uint32_t)tpid << E1000_VET_VET_EXT_SHIFT);
2595                 E1000_WRITE_REG(hw, E1000_VET, reg);
2596
2597                 return 0;
2598         }
2599
2600         /* all other TPID values are read-only*/
2601         PMD_DRV_LOG(ERR, "Not supported");
2602
2603         return -ENOTSUP;
2604 }
2605
2606 static void
2607 igb_vlan_hw_filter_disable(struct rte_eth_dev *dev)
2608 {
2609         struct e1000_hw *hw =
2610                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2611         uint32_t reg;
2612
2613         /* Filter Table Disable */
2614         reg = E1000_READ_REG(hw, E1000_RCTL);
2615         reg &= ~E1000_RCTL_CFIEN;
2616         reg &= ~E1000_RCTL_VFE;
2617         E1000_WRITE_REG(hw, E1000_RCTL, reg);
2618 }
2619
2620 static void
2621 igb_vlan_hw_filter_enable(struct rte_eth_dev *dev)
2622 {
2623         struct e1000_hw *hw =
2624                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2625         struct e1000_vfta * shadow_vfta =
2626                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2627         uint32_t reg;
2628         int i;
2629
2630         /* Filter Table Enable, CFI not used for packet acceptance */
2631         reg = E1000_READ_REG(hw, E1000_RCTL);
2632         reg &= ~E1000_RCTL_CFIEN;
2633         reg |= E1000_RCTL_VFE;
2634         E1000_WRITE_REG(hw, E1000_RCTL, reg);
2635
2636         /* restore VFTA table */
2637         for (i = 0; i < IGB_VFTA_SIZE; i++)
2638                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
2639 }
2640
2641 static void
2642 igb_vlan_hw_strip_disable(struct rte_eth_dev *dev)
2643 {
2644         struct e1000_hw *hw =
2645                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2646         uint32_t reg;
2647
2648         /* VLAN Mode Disable */
2649         reg = E1000_READ_REG(hw, E1000_CTRL);
2650         reg &= ~E1000_CTRL_VME;
2651         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2652 }
2653
2654 static void
2655 igb_vlan_hw_strip_enable(struct rte_eth_dev *dev)
2656 {
2657         struct e1000_hw *hw =
2658                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2659         uint32_t reg;
2660
2661         /* VLAN Mode Enable */
2662         reg = E1000_READ_REG(hw, E1000_CTRL);
2663         reg |= E1000_CTRL_VME;
2664         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2665 }
2666
2667 static void
2668 igb_vlan_hw_extend_disable(struct rte_eth_dev *dev)
2669 {
2670         struct e1000_hw *hw =
2671                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2672         uint32_t reg;
2673
2674         /* CTRL_EXT: Extended VLAN */
2675         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2676         reg &= ~E1000_CTRL_EXT_EXTEND_VLAN;
2677         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2678
2679         /* Update maximum packet length */
2680         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
2681                 E1000_WRITE_REG(hw, E1000_RLPML,
2682                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2683                                                 VLAN_TAG_SIZE);
2684 }
2685
2686 static void
2687 igb_vlan_hw_extend_enable(struct rte_eth_dev *dev)
2688 {
2689         struct e1000_hw *hw =
2690                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2691         uint32_t reg;
2692
2693         /* CTRL_EXT: Extended VLAN */
2694         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2695         reg |= E1000_CTRL_EXT_EXTEND_VLAN;
2696         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2697
2698         /* Update maximum packet length */
2699         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
2700                 E1000_WRITE_REG(hw, E1000_RLPML,
2701                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2702                                                 2 * VLAN_TAG_SIZE);
2703 }
2704
2705 static int
2706 eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask)
2707 {
2708         struct rte_eth_rxmode *rxmode;
2709
2710         rxmode = &dev->data->dev_conf.rxmode;
2711         if(mask & ETH_VLAN_STRIP_MASK){
2712                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
2713                         igb_vlan_hw_strip_enable(dev);
2714                 else
2715                         igb_vlan_hw_strip_disable(dev);
2716         }
2717
2718         if(mask & ETH_VLAN_FILTER_MASK){
2719                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
2720                         igb_vlan_hw_filter_enable(dev);
2721                 else
2722                         igb_vlan_hw_filter_disable(dev);
2723         }
2724
2725         if(mask & ETH_VLAN_EXTEND_MASK){
2726                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
2727                         igb_vlan_hw_extend_enable(dev);
2728                 else
2729                         igb_vlan_hw_extend_disable(dev);
2730         }
2731
2732         return 0;
2733 }
2734
2735
2736 /**
2737  * It enables the interrupt mask and then enable the interrupt.
2738  *
2739  * @param dev
2740  *  Pointer to struct rte_eth_dev.
2741  * @param on
2742  *  Enable or Disable
2743  *
2744  * @return
2745  *  - On success, zero.
2746  *  - On failure, a negative value.
2747  */
2748 static int
2749 eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on)
2750 {
2751         struct e1000_interrupt *intr =
2752                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2753
2754         if (on)
2755                 intr->mask |= E1000_ICR_LSC;
2756         else
2757                 intr->mask &= ~E1000_ICR_LSC;
2758
2759         return 0;
2760 }
2761
2762 /* It clears the interrupt causes and enables the interrupt.
2763  * It will be called once only during nic initialized.
2764  *
2765  * @param dev
2766  *  Pointer to struct rte_eth_dev.
2767  *
2768  * @return
2769  *  - On success, zero.
2770  *  - On failure, a negative value.
2771  */
2772 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev)
2773 {
2774         uint32_t mask, regval;
2775         struct e1000_hw *hw =
2776                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2777         struct rte_eth_dev_info dev_info;
2778
2779         memset(&dev_info, 0, sizeof(dev_info));
2780         eth_igb_infos_get(dev, &dev_info);
2781
2782         mask = 0xFFFFFFFF >> (32 - dev_info.max_rx_queues);
2783         regval = E1000_READ_REG(hw, E1000_EIMS);
2784         E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
2785
2786         return 0;
2787 }
2788
2789 /*
2790  * It reads ICR and gets interrupt causes, check it and set a bit flag
2791  * to update link status.
2792  *
2793  * @param dev
2794  *  Pointer to struct rte_eth_dev.
2795  *
2796  * @return
2797  *  - On success, zero.
2798  *  - On failure, a negative value.
2799  */
2800 static int
2801 eth_igb_interrupt_get_status(struct rte_eth_dev *dev)
2802 {
2803         uint32_t icr;
2804         struct e1000_hw *hw =
2805                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2806         struct e1000_interrupt *intr =
2807                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2808
2809         igb_intr_disable(hw);
2810
2811         /* read-on-clear nic registers here */
2812         icr = E1000_READ_REG(hw, E1000_ICR);
2813
2814         intr->flags = 0;
2815         if (icr & E1000_ICR_LSC) {
2816                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
2817         }
2818
2819         if (icr & E1000_ICR_VMMB)
2820                 intr->flags |= E1000_FLAG_MAILBOX;
2821
2822         return 0;
2823 }
2824
2825 /*
2826  * It executes link_update after knowing an interrupt is prsent.
2827  *
2828  * @param dev
2829  *  Pointer to struct rte_eth_dev.
2830  *
2831  * @return
2832  *  - On success, zero.
2833  *  - On failure, a negative value.
2834  */
2835 static int
2836 eth_igb_interrupt_action(struct rte_eth_dev *dev,
2837                          struct rte_intr_handle *intr_handle)
2838 {
2839         struct e1000_hw *hw =
2840                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2841         struct e1000_interrupt *intr =
2842                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2843         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2844         struct rte_eth_link link;
2845         int ret;
2846
2847         if (intr->flags & E1000_FLAG_MAILBOX) {
2848                 igb_pf_mbx_process(dev);
2849                 intr->flags &= ~E1000_FLAG_MAILBOX;
2850         }
2851
2852         igb_intr_enable(dev);
2853         rte_intr_enable(intr_handle);
2854
2855         if (intr->flags & E1000_FLAG_NEED_LINK_UPDATE) {
2856                 intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
2857
2858                 /* set get_link_status to check register later */
2859                 hw->mac.get_link_status = 1;
2860                 ret = eth_igb_link_update(dev, 0);
2861
2862                 /* check if link has changed */
2863                 if (ret < 0)
2864                         return 0;
2865
2866                 rte_eth_linkstatus_get(dev, &link);
2867                 if (link.link_status) {
2868                         PMD_INIT_LOG(INFO,
2869                                      " Port %d: Link Up - speed %u Mbps - %s",
2870                                      dev->data->port_id,
2871                                      (unsigned)link.link_speed,
2872                                      link.link_duplex == ETH_LINK_FULL_DUPLEX ?
2873                                      "full-duplex" : "half-duplex");
2874                 } else {
2875                         PMD_INIT_LOG(INFO, " Port %d: Link Down",
2876                                      dev->data->port_id);
2877                 }
2878
2879                 PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
2880                              pci_dev->addr.domain,
2881                              pci_dev->addr.bus,
2882                              pci_dev->addr.devid,
2883                              pci_dev->addr.function);
2884                 _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC,
2885                                               NULL);
2886         }
2887
2888         return 0;
2889 }
2890
2891 /**
2892  * Interrupt handler which shall be registered at first.
2893  *
2894  * @param handle
2895  *  Pointer to interrupt handle.
2896  * @param param
2897  *  The address of parameter (struct rte_eth_dev *) regsitered before.
2898  *
2899  * @return
2900  *  void
2901  */
2902 static void
2903 eth_igb_interrupt_handler(void *param)
2904 {
2905         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2906
2907         eth_igb_interrupt_get_status(dev);
2908         eth_igb_interrupt_action(dev, dev->intr_handle);
2909 }
2910
2911 static int
2912 eth_igbvf_interrupt_get_status(struct rte_eth_dev *dev)
2913 {
2914         uint32_t eicr;
2915         struct e1000_hw *hw =
2916                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2917         struct e1000_interrupt *intr =
2918                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2919
2920         igbvf_intr_disable(hw);
2921
2922         /* read-on-clear nic registers here */
2923         eicr = E1000_READ_REG(hw, E1000_EICR);
2924         intr->flags = 0;
2925
2926         if (eicr == E1000_VTIVAR_MISC_MAILBOX)
2927                 intr->flags |= E1000_FLAG_MAILBOX;
2928
2929         return 0;
2930 }
2931
2932 void igbvf_mbx_process(struct rte_eth_dev *dev)
2933 {
2934         struct e1000_hw *hw =
2935                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2936         struct e1000_mbx_info *mbx = &hw->mbx;
2937         u32 in_msg = 0;
2938
2939         /* peek the message first */
2940         in_msg = E1000_READ_REG(hw, E1000_VMBMEM(0));
2941
2942         /* PF reset VF event */
2943         if (in_msg == E1000_PF_CONTROL_MSG) {
2944                 /* dummy mbx read to ack pf */
2945                 if (mbx->ops.read(hw, &in_msg, 1, 0))
2946                         return;
2947                 _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
2948                                               NULL);
2949         }
2950 }
2951
2952 static int
2953 eth_igbvf_interrupt_action(struct rte_eth_dev *dev, struct rte_intr_handle *intr_handle)
2954 {
2955         struct e1000_interrupt *intr =
2956                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2957
2958         if (intr->flags & E1000_FLAG_MAILBOX) {
2959                 igbvf_mbx_process(dev);
2960                 intr->flags &= ~E1000_FLAG_MAILBOX;
2961         }
2962
2963         igbvf_intr_enable(dev);
2964         rte_intr_enable(intr_handle);
2965
2966         return 0;
2967 }
2968
2969 static void
2970 eth_igbvf_interrupt_handler(void *param)
2971 {
2972         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2973
2974         eth_igbvf_interrupt_get_status(dev);
2975         eth_igbvf_interrupt_action(dev, dev->intr_handle);
2976 }
2977
2978 static int
2979 eth_igb_led_on(struct rte_eth_dev *dev)
2980 {
2981         struct e1000_hw *hw;
2982
2983         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2984         return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
2985 }
2986
2987 static int
2988 eth_igb_led_off(struct rte_eth_dev *dev)
2989 {
2990         struct e1000_hw *hw;
2991
2992         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2993         return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
2994 }
2995
2996 static int
2997 eth_igb_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
2998 {
2999         struct e1000_hw *hw;
3000         uint32_t ctrl;
3001         int tx_pause;
3002         int rx_pause;
3003
3004         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3005         fc_conf->pause_time = hw->fc.pause_time;
3006         fc_conf->high_water = hw->fc.high_water;
3007         fc_conf->low_water = hw->fc.low_water;
3008         fc_conf->send_xon = hw->fc.send_xon;
3009         fc_conf->autoneg = hw->mac.autoneg;
3010
3011         /*
3012          * Return rx_pause and tx_pause status according to actual setting of
3013          * the TFCE and RFCE bits in the CTRL register.
3014          */
3015         ctrl = E1000_READ_REG(hw, E1000_CTRL);
3016         if (ctrl & E1000_CTRL_TFCE)
3017                 tx_pause = 1;
3018         else
3019                 tx_pause = 0;
3020
3021         if (ctrl & E1000_CTRL_RFCE)
3022                 rx_pause = 1;
3023         else
3024                 rx_pause = 0;
3025
3026         if (rx_pause && tx_pause)
3027                 fc_conf->mode = RTE_FC_FULL;
3028         else if (rx_pause)
3029                 fc_conf->mode = RTE_FC_RX_PAUSE;
3030         else if (tx_pause)
3031                 fc_conf->mode = RTE_FC_TX_PAUSE;
3032         else
3033                 fc_conf->mode = RTE_FC_NONE;
3034
3035         return 0;
3036 }
3037
3038 static int
3039 eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
3040 {
3041         struct e1000_hw *hw;
3042         int err;
3043         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
3044                 e1000_fc_none,
3045                 e1000_fc_rx_pause,
3046                 e1000_fc_tx_pause,
3047                 e1000_fc_full
3048         };
3049         uint32_t rx_buf_size;
3050         uint32_t max_high_water;
3051         uint32_t rctl;
3052
3053         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3054         if (fc_conf->autoneg != hw->mac.autoneg)
3055                 return -ENOTSUP;
3056         rx_buf_size = igb_get_rx_buffer_size(hw);
3057         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
3058
3059         /* At least reserve one Ethernet frame for watermark */
3060         max_high_water = rx_buf_size - RTE_ETHER_MAX_LEN;
3061         if ((fc_conf->high_water > max_high_water) ||
3062             (fc_conf->high_water < fc_conf->low_water)) {
3063                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
3064                 PMD_INIT_LOG(ERR, "high water must <=  0x%x", max_high_water);
3065                 return -EINVAL;
3066         }
3067
3068         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
3069         hw->fc.pause_time     = fc_conf->pause_time;
3070         hw->fc.high_water     = fc_conf->high_water;
3071         hw->fc.low_water      = fc_conf->low_water;
3072         hw->fc.send_xon       = fc_conf->send_xon;
3073
3074         err = e1000_setup_link_generic(hw);
3075         if (err == E1000_SUCCESS) {
3076
3077                 /* check if we want to forward MAC frames - driver doesn't have native
3078                  * capability to do that, so we'll write the registers ourselves */
3079
3080                 rctl = E1000_READ_REG(hw, E1000_RCTL);
3081
3082                 /* set or clear MFLCN.PMCF bit depending on configuration */
3083                 if (fc_conf->mac_ctrl_frame_fwd != 0)
3084                         rctl |= E1000_RCTL_PMCF;
3085                 else
3086                         rctl &= ~E1000_RCTL_PMCF;
3087
3088                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3089                 E1000_WRITE_FLUSH(hw);
3090
3091                 return 0;
3092         }
3093
3094         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
3095         return -EIO;
3096 }
3097
3098 #define E1000_RAH_POOLSEL_SHIFT      (18)
3099 static int
3100 eth_igb_rar_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
3101                 uint32_t index, uint32_t pool)
3102 {
3103         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3104         uint32_t rah;
3105
3106         e1000_rar_set(hw, mac_addr->addr_bytes, index);
3107         rah = E1000_READ_REG(hw, E1000_RAH(index));
3108         rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + pool));
3109         E1000_WRITE_REG(hw, E1000_RAH(index), rah);
3110         return 0;
3111 }
3112
3113 static void
3114 eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index)
3115 {
3116         uint8_t addr[RTE_ETHER_ADDR_LEN];
3117         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3118
3119         memset(addr, 0, sizeof(addr));
3120
3121         e1000_rar_set(hw, addr, index);
3122 }
3123
3124 static int
3125 eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
3126                                 struct rte_ether_addr *addr)
3127 {
3128         eth_igb_rar_clear(dev, 0);
3129         eth_igb_rar_set(dev, (void *)addr, 0, 0);
3130
3131         return 0;
3132 }
3133 /*
3134  * Virtual Function operations
3135  */
3136 static void
3137 igbvf_intr_disable(struct e1000_hw *hw)
3138 {
3139         PMD_INIT_FUNC_TRACE();
3140
3141         /* Clear interrupt mask to stop from interrupts being generated */
3142         E1000_WRITE_REG(hw, E1000_EIMC, 0xFFFF);
3143
3144         E1000_WRITE_FLUSH(hw);
3145 }
3146
3147 static void
3148 igbvf_stop_adapter(struct rte_eth_dev *dev)
3149 {
3150         u32 reg_val;
3151         u16 i;
3152         struct rte_eth_dev_info dev_info;
3153         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3154
3155         memset(&dev_info, 0, sizeof(dev_info));
3156         eth_igbvf_infos_get(dev, &dev_info);
3157
3158         /* Clear interrupt mask to stop from interrupts being generated */
3159         igbvf_intr_disable(hw);
3160
3161         /* Clear any pending interrupts, flush previous writes */
3162         E1000_READ_REG(hw, E1000_EICR);
3163
3164         /* Disable the transmit unit.  Each queue must be disabled. */
3165         for (i = 0; i < dev_info.max_tx_queues; i++)
3166                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), E1000_TXDCTL_SWFLSH);
3167
3168         /* Disable the receive unit by stopping each queue */
3169         for (i = 0; i < dev_info.max_rx_queues; i++) {
3170                 reg_val = E1000_READ_REG(hw, E1000_RXDCTL(i));
3171                 reg_val &= ~E1000_RXDCTL_QUEUE_ENABLE;
3172                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), reg_val);
3173                 while (E1000_READ_REG(hw, E1000_RXDCTL(i)) & E1000_RXDCTL_QUEUE_ENABLE)
3174                         ;
3175         }
3176
3177         /* flush all queues disables */
3178         E1000_WRITE_FLUSH(hw);
3179         msec_delay(2);
3180 }
3181
3182 static int eth_igbvf_link_update(struct e1000_hw *hw)
3183 {
3184         struct e1000_mbx_info *mbx = &hw->mbx;
3185         struct e1000_mac_info *mac = &hw->mac;
3186         int ret_val = E1000_SUCCESS;
3187
3188         PMD_INIT_LOG(DEBUG, "e1000_check_for_link_vf");
3189
3190         /*
3191          * We only want to run this if there has been a rst asserted.
3192          * in this case that could mean a link change, device reset,
3193          * or a virtual function reset
3194          */
3195
3196         /* If we were hit with a reset or timeout drop the link */
3197         if (!e1000_check_for_rst(hw, 0) || !mbx->timeout)
3198                 mac->get_link_status = TRUE;
3199
3200         if (!mac->get_link_status)
3201                 goto out;
3202
3203         /* if link status is down no point in checking to see if pf is up */
3204         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
3205                 goto out;
3206
3207         /* if we passed all the tests above then the link is up and we no
3208          * longer need to check for link */
3209         mac->get_link_status = FALSE;
3210
3211 out:
3212         return ret_val;
3213 }
3214
3215
3216 static int
3217 igbvf_dev_configure(struct rte_eth_dev *dev)
3218 {
3219         struct rte_eth_conf* conf = &dev->data->dev_conf;
3220
3221         PMD_INIT_LOG(DEBUG, "Configured Virtual Function port id: %d",
3222                      dev->data->port_id);
3223
3224         /*
3225          * VF has no ability to enable/disable HW CRC
3226          * Keep the persistent behavior the same as Host PF
3227          */
3228 #ifndef RTE_LIBRTE_E1000_PF_DISABLE_STRIP_CRC
3229         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC) {
3230                 PMD_INIT_LOG(NOTICE, "VF can't disable HW CRC Strip");
3231                 conf->rxmode.offloads &= ~DEV_RX_OFFLOAD_KEEP_CRC;
3232         }
3233 #else
3234         if (!(conf->rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)) {
3235                 PMD_INIT_LOG(NOTICE, "VF can't enable HW CRC Strip");
3236                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_KEEP_CRC;
3237         }
3238 #endif
3239
3240         return 0;
3241 }
3242
3243 static int
3244 igbvf_dev_start(struct rte_eth_dev *dev)
3245 {
3246         struct e1000_hw *hw =
3247                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3248         struct e1000_adapter *adapter =
3249                 E1000_DEV_PRIVATE(dev->data->dev_private);
3250         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3251         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3252         int ret;
3253         uint32_t intr_vector = 0;
3254
3255         PMD_INIT_FUNC_TRACE();
3256
3257         hw->mac.ops.reset_hw(hw);
3258         adapter->stopped = 0;
3259
3260         /* Set all vfta */
3261         igbvf_set_vfta_all(dev,1);
3262
3263         eth_igbvf_tx_init(dev);
3264
3265         /* This can fail when allocating mbufs for descriptor rings */
3266         ret = eth_igbvf_rx_init(dev);
3267         if (ret) {
3268                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
3269                 igb_dev_clear_queues(dev);
3270                 return ret;
3271         }
3272
3273         /* check and configure queue intr-vector mapping */
3274         if (rte_intr_cap_multiple(intr_handle) &&
3275             dev->data->dev_conf.intr_conf.rxq) {
3276                 intr_vector = dev->data->nb_rx_queues;
3277                 ret = rte_intr_efd_enable(intr_handle, intr_vector);
3278                 if (ret)
3279                         return ret;
3280         }
3281
3282         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
3283                 intr_handle->intr_vec =
3284                         rte_zmalloc("intr_vec",
3285                                     dev->data->nb_rx_queues * sizeof(int), 0);
3286                 if (!intr_handle->intr_vec) {
3287                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
3288                                      " intr_vec", dev->data->nb_rx_queues);
3289                         return -ENOMEM;
3290                 }
3291         }
3292
3293         eth_igbvf_configure_msix_intr(dev);
3294
3295         /* enable uio/vfio intr/eventfd mapping */
3296         rte_intr_enable(intr_handle);
3297
3298         /* resume enabled intr since hw reset */
3299         igbvf_intr_enable(dev);
3300
3301         return 0;
3302 }
3303
3304 static void
3305 igbvf_dev_stop(struct rte_eth_dev *dev)
3306 {
3307         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3308         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3309
3310         PMD_INIT_FUNC_TRACE();
3311
3312         igbvf_stop_adapter(dev);
3313
3314         /*
3315           * Clear what we set, but we still keep shadow_vfta to
3316           * restore after device starts
3317           */
3318         igbvf_set_vfta_all(dev,0);
3319
3320         igb_dev_clear_queues(dev);
3321
3322         /* disable intr eventfd mapping */
3323         rte_intr_disable(intr_handle);
3324
3325         /* Clean datapath event and queue/vec mapping */
3326         rte_intr_efd_disable(intr_handle);
3327         if (intr_handle->intr_vec) {
3328                 rte_free(intr_handle->intr_vec);
3329                 intr_handle->intr_vec = NULL;
3330         }
3331 }
3332
3333 static void
3334 igbvf_dev_close(struct rte_eth_dev *dev)
3335 {
3336         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3337         struct e1000_adapter *adapter =
3338                 E1000_DEV_PRIVATE(dev->data->dev_private);
3339         struct rte_ether_addr addr;
3340
3341         PMD_INIT_FUNC_TRACE();
3342
3343         e1000_reset_hw(hw);
3344
3345         igbvf_dev_stop(dev);
3346         adapter->stopped = 1;
3347         igb_dev_free_queues(dev);
3348
3349         /**
3350          * reprogram the RAR with a zero mac address,
3351          * to ensure that the VF traffic goes to the PF
3352          * after stop, close and detach of the VF.
3353          **/
3354
3355         memset(&addr, 0, sizeof(addr));
3356         igbvf_default_mac_addr_set(dev, &addr);
3357 }
3358
3359 static void
3360 igbvf_promiscuous_enable(struct rte_eth_dev *dev)
3361 {
3362         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3363
3364         /* Set both unicast and multicast promisc */
3365         e1000_promisc_set_vf(hw, e1000_promisc_enabled);
3366 }
3367
3368 static void
3369 igbvf_promiscuous_disable(struct rte_eth_dev *dev)
3370 {
3371         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3372
3373         /* If in allmulticast mode leave multicast promisc */
3374         if (dev->data->all_multicast == 1)
3375                 e1000_promisc_set_vf(hw, e1000_promisc_multicast);
3376         else
3377                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
3378 }
3379
3380 static void
3381 igbvf_allmulticast_enable(struct rte_eth_dev *dev)
3382 {
3383         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3384
3385         /* In promiscuous mode multicast promisc already set */
3386         if (dev->data->promiscuous == 0)
3387                 e1000_promisc_set_vf(hw, e1000_promisc_multicast);
3388 }
3389
3390 static void
3391 igbvf_allmulticast_disable(struct rte_eth_dev *dev)
3392 {
3393         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3394
3395         /* In promiscuous mode leave multicast promisc enabled */
3396         if (dev->data->promiscuous == 0)
3397                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
3398 }
3399
3400 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on)
3401 {
3402         struct e1000_mbx_info *mbx = &hw->mbx;
3403         uint32_t msgbuf[2];
3404         s32 err;
3405
3406         /* After set vlan, vlan strip will also be enabled in igb driver*/
3407         msgbuf[0] = E1000_VF_SET_VLAN;
3408         msgbuf[1] = vid;
3409         /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
3410         if (on)
3411                 msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
3412
3413         err = mbx->ops.write_posted(hw, msgbuf, 2, 0);
3414         if (err)
3415                 goto mbx_err;
3416
3417         err = mbx->ops.read_posted(hw, msgbuf, 2, 0);
3418         if (err)
3419                 goto mbx_err;
3420
3421         msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
3422         if (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK))
3423                 err = -EINVAL;
3424
3425 mbx_err:
3426         return err;
3427 }
3428
3429 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on)
3430 {
3431         struct e1000_hw *hw =
3432                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3433         struct e1000_vfta * shadow_vfta =
3434                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
3435         int i = 0, j = 0, vfta = 0, mask = 1;
3436
3437         for (i = 0; i < IGB_VFTA_SIZE; i++){
3438                 vfta = shadow_vfta->vfta[i];
3439                 if(vfta){
3440                         mask = 1;
3441                         for (j = 0; j < 32; j++){
3442                                 if(vfta & mask)
3443                                         igbvf_set_vfta(hw,
3444                                                 (uint16_t)((i<<5)+j), on);
3445                                 mask<<=1;
3446                         }
3447                 }
3448         }
3449
3450 }
3451
3452 static int
3453 igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
3454 {
3455         struct e1000_hw *hw =
3456                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3457         struct e1000_vfta * shadow_vfta =
3458                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
3459         uint32_t vid_idx = 0;
3460         uint32_t vid_bit = 0;
3461         int ret = 0;
3462
3463         PMD_INIT_FUNC_TRACE();
3464
3465         /*vind is not used in VF driver, set to 0, check ixgbe_set_vfta_vf*/
3466         ret = igbvf_set_vfta(hw, vlan_id, !!on);
3467         if(ret){
3468                 PMD_INIT_LOG(ERR, "Unable to set VF vlan");
3469                 return ret;
3470         }
3471         vid_idx = (uint32_t) ((vlan_id >> 5) & 0x7F);
3472         vid_bit = (uint32_t) (1 << (vlan_id & 0x1F));
3473
3474         /*Save what we set and retore it after device reset*/
3475         if (on)
3476                 shadow_vfta->vfta[vid_idx] |= vid_bit;
3477         else
3478                 shadow_vfta->vfta[vid_idx] &= ~vid_bit;
3479
3480         return 0;
3481 }
3482
3483 static int
3484 igbvf_default_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *addr)
3485 {
3486         struct e1000_hw *hw =
3487                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3488
3489         /* index is not used by rar_set() */
3490         hw->mac.ops.rar_set(hw, (void *)addr, 0);
3491         return 0;
3492 }
3493
3494
3495 static int
3496 eth_igb_rss_reta_update(struct rte_eth_dev *dev,
3497                         struct rte_eth_rss_reta_entry64 *reta_conf,
3498                         uint16_t reta_size)
3499 {
3500         uint8_t i, j, mask;
3501         uint32_t reta, r;
3502         uint16_t idx, shift;
3503         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3504
3505         if (reta_size != ETH_RSS_RETA_SIZE_128) {
3506                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
3507                         "(%d) doesn't match the number hardware can supported "
3508                         "(%d)", reta_size, ETH_RSS_RETA_SIZE_128);
3509                 return -EINVAL;
3510         }
3511
3512         for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
3513                 idx = i / RTE_RETA_GROUP_SIZE;
3514                 shift = i % RTE_RETA_GROUP_SIZE;
3515                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
3516                                                 IGB_4_BIT_MASK);
3517                 if (!mask)
3518                         continue;
3519                 if (mask == IGB_4_BIT_MASK)
3520                         r = 0;
3521                 else
3522                         r = E1000_READ_REG(hw, E1000_RETA(i >> 2));
3523                 for (j = 0, reta = 0; j < IGB_4_BIT_WIDTH; j++) {
3524                         if (mask & (0x1 << j))
3525                                 reta |= reta_conf[idx].reta[shift + j] <<
3526                                                         (CHAR_BIT * j);
3527                         else
3528                                 reta |= r & (IGB_8_BIT_MASK << (CHAR_BIT * j));
3529                 }
3530                 E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
3531         }
3532
3533         return 0;
3534 }
3535
3536 static int
3537 eth_igb_rss_reta_query(struct rte_eth_dev *dev,
3538                        struct rte_eth_rss_reta_entry64 *reta_conf,
3539                        uint16_t reta_size)
3540 {
3541         uint8_t i, j, mask;
3542         uint32_t reta;
3543         uint16_t idx, shift;
3544         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3545
3546         if (reta_size != ETH_RSS_RETA_SIZE_128) {
3547                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
3548                         "(%d) doesn't match the number hardware can supported "
3549                         "(%d)", reta_size, ETH_RSS_RETA_SIZE_128);
3550                 return -EINVAL;
3551         }
3552
3553         for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
3554                 idx = i / RTE_RETA_GROUP_SIZE;
3555                 shift = i % RTE_RETA_GROUP_SIZE;
3556                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
3557                                                 IGB_4_BIT_MASK);
3558                 if (!mask)
3559                         continue;
3560                 reta = E1000_READ_REG(hw, E1000_RETA(i >> 2));
3561                 for (j = 0; j < IGB_4_BIT_WIDTH; j++) {
3562                         if (mask & (0x1 << j))
3563                                 reta_conf[idx].reta[shift + j] =
3564                                         ((reta >> (CHAR_BIT * j)) &
3565                                                 IGB_8_BIT_MASK);
3566                 }
3567         }
3568
3569         return 0;
3570 }
3571
3572 int
3573 eth_igb_syn_filter_set(struct rte_eth_dev *dev,
3574                         struct rte_eth_syn_filter *filter,
3575                         bool add)
3576 {
3577         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3578         struct e1000_filter_info *filter_info =
3579                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3580         uint32_t synqf, rfctl;
3581
3582         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
3583                 return -EINVAL;
3584
3585         synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
3586
3587         if (add) {
3588                 if (synqf & E1000_SYN_FILTER_ENABLE)
3589                         return -EINVAL;
3590
3591                 synqf = (uint32_t)(((filter->queue << E1000_SYN_FILTER_QUEUE_SHIFT) &
3592                         E1000_SYN_FILTER_QUEUE) | E1000_SYN_FILTER_ENABLE);
3593
3594                 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3595                 if (filter->hig_pri)
3596                         rfctl |= E1000_RFCTL_SYNQFP;
3597                 else
3598                         rfctl &= ~E1000_RFCTL_SYNQFP;
3599
3600                 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3601         } else {
3602                 if (!(synqf & E1000_SYN_FILTER_ENABLE))
3603                         return -ENOENT;
3604                 synqf = 0;
3605         }
3606
3607         filter_info->syn_info = synqf;
3608         E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
3609         E1000_WRITE_FLUSH(hw);
3610         return 0;
3611 }
3612
3613 static int
3614 eth_igb_syn_filter_get(struct rte_eth_dev *dev,
3615                         struct rte_eth_syn_filter *filter)
3616 {
3617         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3618         uint32_t synqf, rfctl;
3619
3620         synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
3621         if (synqf & E1000_SYN_FILTER_ENABLE) {
3622                 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3623                 filter->hig_pri = (rfctl & E1000_RFCTL_SYNQFP) ? 1 : 0;
3624                 filter->queue = (uint8_t)((synqf & E1000_SYN_FILTER_QUEUE) >>
3625                                 E1000_SYN_FILTER_QUEUE_SHIFT);
3626                 return 0;
3627         }
3628
3629         return -ENOENT;
3630 }
3631
3632 static int
3633 eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
3634                         enum rte_filter_op filter_op,
3635                         void *arg)
3636 {
3637         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3638         int ret;
3639
3640         MAC_TYPE_FILTER_SUP(hw->mac.type);
3641
3642         if (filter_op == RTE_ETH_FILTER_NOP)
3643                 return 0;
3644
3645         if (arg == NULL) {
3646                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
3647                             filter_op);
3648                 return -EINVAL;
3649         }
3650
3651         switch (filter_op) {
3652         case RTE_ETH_FILTER_ADD:
3653                 ret = eth_igb_syn_filter_set(dev,
3654                                 (struct rte_eth_syn_filter *)arg,
3655                                 TRUE);
3656                 break;
3657         case RTE_ETH_FILTER_DELETE:
3658                 ret = eth_igb_syn_filter_set(dev,
3659                                 (struct rte_eth_syn_filter *)arg,
3660                                 FALSE);
3661                 break;
3662         case RTE_ETH_FILTER_GET:
3663                 ret = eth_igb_syn_filter_get(dev,
3664                                 (struct rte_eth_syn_filter *)arg);
3665                 break;
3666         default:
3667                 PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op);
3668                 ret = -EINVAL;
3669                 break;
3670         }
3671
3672         return ret;
3673 }
3674
3675 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_2tuple_filter_info*/
3676 static inline int
3677 ntuple_filter_to_2tuple(struct rte_eth_ntuple_filter *filter,
3678                         struct e1000_2tuple_filter_info *filter_info)
3679 {
3680         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
3681                 return -EINVAL;
3682         if (filter->priority > E1000_2TUPLE_MAX_PRI)
3683                 return -EINVAL;  /* filter index is out of range. */
3684         if (filter->tcp_flags > TCP_FLAG_ALL)
3685                 return -EINVAL;  /* flags is invalid. */
3686
3687         switch (filter->dst_port_mask) {
3688         case UINT16_MAX:
3689                 filter_info->dst_port_mask = 0;
3690                 filter_info->dst_port = filter->dst_port;
3691                 break;
3692         case 0:
3693                 filter_info->dst_port_mask = 1;
3694                 break;
3695         default:
3696                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
3697                 return -EINVAL;
3698         }
3699
3700         switch (filter->proto_mask) {
3701         case UINT8_MAX:
3702                 filter_info->proto_mask = 0;
3703                 filter_info->proto = filter->proto;
3704                 break;
3705         case 0:
3706                 filter_info->proto_mask = 1;
3707                 break;
3708         default:
3709                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
3710                 return -EINVAL;
3711         }
3712
3713         filter_info->priority = (uint8_t)filter->priority;
3714         if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
3715                 filter_info->tcp_flags = filter->tcp_flags;
3716         else
3717                 filter_info->tcp_flags = 0;
3718
3719         return 0;
3720 }
3721
3722 static inline struct e1000_2tuple_filter *
3723 igb_2tuple_filter_lookup(struct e1000_2tuple_filter_list *filter_list,
3724                         struct e1000_2tuple_filter_info *key)
3725 {
3726         struct e1000_2tuple_filter *it;
3727
3728         TAILQ_FOREACH(it, filter_list, entries) {
3729                 if (memcmp(key, &it->filter_info,
3730                         sizeof(struct e1000_2tuple_filter_info)) == 0) {
3731                         return it;
3732                 }
3733         }
3734         return NULL;
3735 }
3736
3737 /* inject a igb 2tuple filter to HW */
3738 static inline void
3739 igb_inject_2uple_filter(struct rte_eth_dev *dev,
3740                            struct e1000_2tuple_filter *filter)
3741 {
3742         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3743         uint32_t ttqf = E1000_TTQF_DISABLE_MASK;
3744         uint32_t imir, imir_ext = E1000_IMIREXT_SIZE_BP;
3745         int i;
3746
3747         i = filter->index;
3748         imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
3749         if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
3750                 imir |= E1000_IMIR_PORT_BP;
3751         else
3752                 imir &= ~E1000_IMIR_PORT_BP;
3753
3754         imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
3755
3756         ttqf |= E1000_TTQF_QUEUE_ENABLE;
3757         ttqf |= (uint32_t)(filter->queue << E1000_TTQF_QUEUE_SHIFT);
3758         ttqf |= (uint32_t)(filter->filter_info.proto &
3759                                                 E1000_TTQF_PROTOCOL_MASK);
3760         if (filter->filter_info.proto_mask == 0)
3761                 ttqf &= ~E1000_TTQF_MASK_ENABLE;
3762
3763         /* tcp flags bits setting. */
3764         if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) {
3765                 if (filter->filter_info.tcp_flags & TCP_URG_FLAG)
3766                         imir_ext |= E1000_IMIREXT_CTRL_URG;
3767                 if (filter->filter_info.tcp_flags & TCP_ACK_FLAG)
3768                         imir_ext |= E1000_IMIREXT_CTRL_ACK;
3769                 if (filter->filter_info.tcp_flags & TCP_PSH_FLAG)
3770                         imir_ext |= E1000_IMIREXT_CTRL_PSH;
3771                 if (filter->filter_info.tcp_flags & TCP_RST_FLAG)
3772                         imir_ext |= E1000_IMIREXT_CTRL_RST;
3773                 if (filter->filter_info.tcp_flags & TCP_SYN_FLAG)
3774                         imir_ext |= E1000_IMIREXT_CTRL_SYN;
3775                 if (filter->filter_info.tcp_flags & TCP_FIN_FLAG)
3776                         imir_ext |= E1000_IMIREXT_CTRL_FIN;
3777         } else {
3778                 imir_ext |= E1000_IMIREXT_CTRL_BP;
3779         }
3780         E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
3781         E1000_WRITE_REG(hw, E1000_TTQF(i), ttqf);
3782         E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
3783 }
3784
3785 /*
3786  * igb_add_2tuple_filter - add a 2tuple filter
3787  *
3788  * @param
3789  * dev: Pointer to struct rte_eth_dev.
3790  * ntuple_filter: ponter to the filter that will be added.
3791  *
3792  * @return
3793  *    - On success, zero.
3794  *    - On failure, a negative value.
3795  */
3796 static int
3797 igb_add_2tuple_filter(struct rte_eth_dev *dev,
3798                         struct rte_eth_ntuple_filter *ntuple_filter)
3799 {
3800         struct e1000_filter_info *filter_info =
3801                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3802         struct e1000_2tuple_filter *filter;
3803         int i, ret;
3804
3805         filter = rte_zmalloc("e1000_2tuple_filter",
3806                         sizeof(struct e1000_2tuple_filter), 0);
3807         if (filter == NULL)
3808                 return -ENOMEM;
3809
3810         ret = ntuple_filter_to_2tuple(ntuple_filter,
3811                                       &filter->filter_info);
3812         if (ret < 0) {
3813                 rte_free(filter);
3814                 return ret;
3815         }
3816         if (igb_2tuple_filter_lookup(&filter_info->twotuple_list,
3817                                          &filter->filter_info) != NULL) {
3818                 PMD_DRV_LOG(ERR, "filter exists.");
3819                 rte_free(filter);
3820                 return -EEXIST;
3821         }
3822         filter->queue = ntuple_filter->queue;
3823
3824         /*
3825          * look for an unused 2tuple filter index,
3826          * and insert the filter to list.
3827          */
3828         for (i = 0; i < E1000_MAX_TTQF_FILTERS; i++) {
3829                 if (!(filter_info->twotuple_mask & (1 << i))) {
3830                         filter_info->twotuple_mask |= 1 << i;
3831                         filter->index = i;
3832                         TAILQ_INSERT_TAIL(&filter_info->twotuple_list,
3833                                           filter,
3834                                           entries);
3835                         break;
3836                 }
3837         }
3838         if (i >= E1000_MAX_TTQF_FILTERS) {
3839                 PMD_DRV_LOG(ERR, "2tuple filters are full.");
3840                 rte_free(filter);
3841                 return -ENOSYS;
3842         }
3843
3844         igb_inject_2uple_filter(dev, filter);
3845         return 0;
3846 }
3847
3848 int
3849 igb_delete_2tuple_filter(struct rte_eth_dev *dev,
3850                         struct e1000_2tuple_filter *filter)
3851 {
3852         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3853         struct e1000_filter_info *filter_info =
3854                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3855
3856         filter_info->twotuple_mask &= ~(1 << filter->index);
3857         TAILQ_REMOVE(&filter_info->twotuple_list, filter, entries);
3858         rte_free(filter);
3859
3860         E1000_WRITE_REG(hw, E1000_TTQF(filter->index), E1000_TTQF_DISABLE_MASK);
3861         E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
3862         E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
3863         return 0;
3864 }
3865
3866 /*
3867  * igb_remove_2tuple_filter - remove a 2tuple filter
3868  *
3869  * @param
3870  * dev: Pointer to struct rte_eth_dev.
3871  * ntuple_filter: ponter to the filter that will be removed.
3872  *
3873  * @return
3874  *    - On success, zero.
3875  *    - On failure, a negative value.
3876  */
3877 static int
3878 igb_remove_2tuple_filter(struct rte_eth_dev *dev,
3879                         struct rte_eth_ntuple_filter *ntuple_filter)
3880 {
3881         struct e1000_filter_info *filter_info =
3882                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3883         struct e1000_2tuple_filter_info filter_2tuple;
3884         struct e1000_2tuple_filter *filter;
3885         int ret;
3886
3887         memset(&filter_2tuple, 0, sizeof(struct e1000_2tuple_filter_info));
3888         ret = ntuple_filter_to_2tuple(ntuple_filter,
3889                                       &filter_2tuple);
3890         if (ret < 0)
3891                 return ret;
3892
3893         filter = igb_2tuple_filter_lookup(&filter_info->twotuple_list,
3894                                          &filter_2tuple);
3895         if (filter == NULL) {
3896                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
3897                 return -ENOENT;
3898         }
3899
3900         igb_delete_2tuple_filter(dev, filter);
3901
3902         return 0;
3903 }
3904
3905 /* inject a igb flex filter to HW */
3906 static inline void
3907 igb_inject_flex_filter(struct rte_eth_dev *dev,
3908                            struct e1000_flex_filter *filter)
3909 {
3910         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3911         uint32_t wufc, queueing;
3912         uint32_t reg_off;
3913         uint8_t i, j = 0;
3914
3915         wufc = E1000_READ_REG(hw, E1000_WUFC);
3916         if (filter->index < E1000_MAX_FHFT)
3917                 reg_off = E1000_FHFT(filter->index);
3918         else
3919                 reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT);
3920
3921         E1000_WRITE_REG(hw, E1000_WUFC, wufc | E1000_WUFC_FLEX_HQ |
3922                         (E1000_WUFC_FLX0 << filter->index));
3923         queueing = filter->filter_info.len |
3924                 (filter->queue << E1000_FHFT_QUEUEING_QUEUE_SHIFT) |
3925                 (filter->filter_info.priority <<
3926                         E1000_FHFT_QUEUEING_PRIO_SHIFT);
3927         E1000_WRITE_REG(hw, reg_off + E1000_FHFT_QUEUEING_OFFSET,
3928                         queueing);
3929
3930         for (i = 0; i < E1000_FLEX_FILTERS_MASK_SIZE; i++) {
3931                 E1000_WRITE_REG(hw, reg_off,
3932                                 filter->filter_info.dwords[j]);
3933                 reg_off += sizeof(uint32_t);
3934                 E1000_WRITE_REG(hw, reg_off,
3935                                 filter->filter_info.dwords[++j]);
3936                 reg_off += sizeof(uint32_t);
3937                 E1000_WRITE_REG(hw, reg_off,
3938                         (uint32_t)filter->filter_info.mask[i]);
3939                 reg_off += sizeof(uint32_t) * 2;
3940                 ++j;
3941         }
3942 }
3943
3944 static inline struct e1000_flex_filter *
3945 eth_igb_flex_filter_lookup(struct e1000_flex_filter_list *filter_list,
3946                         struct e1000_flex_filter_info *key)
3947 {
3948         struct e1000_flex_filter *it;
3949
3950         TAILQ_FOREACH(it, filter_list, entries) {
3951                 if (memcmp(key, &it->filter_info,
3952                         sizeof(struct e1000_flex_filter_info)) == 0)
3953                         return it;
3954         }
3955
3956         return NULL;
3957 }
3958
3959 /* remove a flex byte filter
3960  * @param
3961  * dev: Pointer to struct rte_eth_dev.
3962  * filter: the pointer of the filter will be removed.
3963  */
3964 void
3965 igb_remove_flex_filter(struct rte_eth_dev *dev,
3966                         struct e1000_flex_filter *filter)
3967 {
3968         struct e1000_filter_info *filter_info =
3969                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3970         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3971         uint32_t wufc, i;
3972         uint32_t reg_off;
3973
3974         wufc = E1000_READ_REG(hw, E1000_WUFC);
3975         if (filter->index < E1000_MAX_FHFT)
3976                 reg_off = E1000_FHFT(filter->index);
3977         else
3978                 reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT);
3979
3980         for (i = 0; i < E1000_FHFT_SIZE_IN_DWD; i++)
3981                 E1000_WRITE_REG(hw, reg_off + i * sizeof(uint32_t), 0);
3982
3983         E1000_WRITE_REG(hw, E1000_WUFC, wufc &
3984                 (~(E1000_WUFC_FLX0 << filter->index)));
3985
3986         filter_info->flex_mask &= ~(1 << filter->index);
3987         TAILQ_REMOVE(&filter_info->flex_list, filter, entries);
3988         rte_free(filter);
3989 }
3990
3991 int
3992 eth_igb_add_del_flex_filter(struct rte_eth_dev *dev,
3993                         struct rte_eth_flex_filter *filter,
3994                         bool add)
3995 {
3996         struct e1000_filter_info *filter_info =
3997                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3998         struct e1000_flex_filter *flex_filter, *it;
3999         uint32_t mask;
4000         uint8_t shift, i;
4001
4002         flex_filter = rte_zmalloc("e1000_flex_filter",
4003                         sizeof(struct e1000_flex_filter), 0);
4004         if (flex_filter == NULL)
4005                 return -ENOMEM;
4006
4007         flex_filter->filter_info.len = filter->len;
4008         flex_filter->filter_info.priority = filter->priority;
4009         memcpy(flex_filter->filter_info.dwords, filter->bytes, filter->len);
4010         for (i = 0; i < RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT; i++) {
4011                 mask = 0;
4012                 /* reverse bits in flex filter's mask*/
4013                 for (shift = 0; shift < CHAR_BIT; shift++) {
4014                         if (filter->mask[i] & (0x01 << shift))
4015                                 mask |= (0x80 >> shift);
4016                 }
4017                 flex_filter->filter_info.mask[i] = mask;
4018         }
4019
4020         it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
4021                                 &flex_filter->filter_info);
4022         if (it == NULL && !add) {
4023                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4024                 rte_free(flex_filter);
4025                 return -ENOENT;
4026         }
4027         if (it != NULL && add) {
4028                 PMD_DRV_LOG(ERR, "filter exists.");
4029                 rte_free(flex_filter);
4030                 return -EEXIST;
4031         }
4032
4033         if (add) {
4034                 flex_filter->queue = filter->queue;
4035                 /*
4036                  * look for an unused flex filter index
4037                  * and insert the filter into the list.
4038                  */
4039                 for (i = 0; i < E1000_MAX_FLEX_FILTERS; i++) {
4040                         if (!(filter_info->flex_mask & (1 << i))) {
4041                                 filter_info->flex_mask |= 1 << i;
4042                                 flex_filter->index = i;
4043                                 TAILQ_INSERT_TAIL(&filter_info->flex_list,
4044                                         flex_filter,
4045                                         entries);
4046                                 break;
4047                         }
4048                 }
4049                 if (i >= E1000_MAX_FLEX_FILTERS) {
4050                         PMD_DRV_LOG(ERR, "flex filters are full.");
4051                         rte_free(flex_filter);
4052                         return -ENOSYS;
4053                 }
4054
4055                 igb_inject_flex_filter(dev, flex_filter);
4056
4057         } else {
4058                 igb_remove_flex_filter(dev, it);
4059                 rte_free(flex_filter);
4060         }
4061
4062         return 0;
4063 }
4064
4065 static int
4066 eth_igb_get_flex_filter(struct rte_eth_dev *dev,
4067                         struct rte_eth_flex_filter *filter)
4068 {
4069         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4070         struct e1000_filter_info *filter_info =
4071                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4072         struct e1000_flex_filter flex_filter, *it;
4073         uint32_t wufc, queueing, wufc_en = 0;
4074
4075         memset(&flex_filter, 0, sizeof(struct e1000_flex_filter));
4076         flex_filter.filter_info.len = filter->len;
4077         flex_filter.filter_info.priority = filter->priority;
4078         memcpy(flex_filter.filter_info.dwords, filter->bytes, filter->len);
4079         memcpy(flex_filter.filter_info.mask, filter->mask,
4080                         RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT);
4081
4082         it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
4083                                 &flex_filter.filter_info);
4084         if (it == NULL) {
4085                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4086                 return -ENOENT;
4087         }
4088
4089         wufc = E1000_READ_REG(hw, E1000_WUFC);
4090         wufc_en = E1000_WUFC_FLEX_HQ | (E1000_WUFC_FLX0 << it->index);
4091
4092         if ((wufc & wufc_en) == wufc_en) {
4093                 uint32_t reg_off = 0;
4094                 if (it->index < E1000_MAX_FHFT)
4095                         reg_off = E1000_FHFT(it->index);
4096                 else
4097                         reg_off = E1000_FHFT_EXT(it->index - E1000_MAX_FHFT);
4098
4099                 queueing = E1000_READ_REG(hw,
4100                                 reg_off + E1000_FHFT_QUEUEING_OFFSET);
4101                 filter->len = queueing & E1000_FHFT_QUEUEING_LEN;
4102                 filter->priority = (queueing & E1000_FHFT_QUEUEING_PRIO) >>
4103                         E1000_FHFT_QUEUEING_PRIO_SHIFT;
4104                 filter->queue = (queueing & E1000_FHFT_QUEUEING_QUEUE) >>
4105                         E1000_FHFT_QUEUEING_QUEUE_SHIFT;
4106                 return 0;
4107         }
4108         return -ENOENT;
4109 }
4110
4111 static int
4112 eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
4113                         enum rte_filter_op filter_op,
4114                         void *arg)
4115 {
4116         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4117         struct rte_eth_flex_filter *filter;
4118         int ret = 0;
4119
4120         MAC_TYPE_FILTER_SUP_EXT(hw->mac.type);
4121
4122         if (filter_op == RTE_ETH_FILTER_NOP)
4123                 return ret;
4124
4125         if (arg == NULL) {
4126                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
4127                             filter_op);
4128                 return -EINVAL;
4129         }
4130
4131         filter = (struct rte_eth_flex_filter *)arg;
4132         if (filter->len == 0 || filter->len > E1000_MAX_FLEX_FILTER_LEN
4133             || filter->len % sizeof(uint64_t) != 0) {
4134                 PMD_DRV_LOG(ERR, "filter's length is out of range");
4135                 return -EINVAL;
4136         }
4137         if (filter->priority > E1000_MAX_FLEX_FILTER_PRI) {
4138                 PMD_DRV_LOG(ERR, "filter's priority is out of range");
4139                 return -EINVAL;
4140         }
4141
4142         switch (filter_op) {
4143         case RTE_ETH_FILTER_ADD:
4144                 ret = eth_igb_add_del_flex_filter(dev, filter, TRUE);
4145                 break;
4146         case RTE_ETH_FILTER_DELETE:
4147                 ret = eth_igb_add_del_flex_filter(dev, filter, FALSE);
4148                 break;
4149         case RTE_ETH_FILTER_GET:
4150                 ret = eth_igb_get_flex_filter(dev, filter);
4151                 break;
4152         default:
4153                 PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op);
4154                 ret = -EINVAL;
4155                 break;
4156         }
4157
4158         return ret;
4159 }
4160
4161 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_5tuple_filter_info*/
4162 static inline int
4163 ntuple_filter_to_5tuple_82576(struct rte_eth_ntuple_filter *filter,
4164                         struct e1000_5tuple_filter_info *filter_info)
4165 {
4166         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM_82576)
4167                 return -EINVAL;
4168         if (filter->priority > E1000_2TUPLE_MAX_PRI)
4169                 return -EINVAL;  /* filter index is out of range. */
4170         if (filter->tcp_flags > TCP_FLAG_ALL)
4171                 return -EINVAL;  /* flags is invalid. */
4172
4173         switch (filter->dst_ip_mask) {
4174         case UINT32_MAX:
4175                 filter_info->dst_ip_mask = 0;
4176                 filter_info->dst_ip = filter->dst_ip;
4177                 break;
4178         case 0:
4179                 filter_info->dst_ip_mask = 1;
4180                 break;
4181         default:
4182                 PMD_DRV_LOG(ERR, "invalid dst_ip mask.");
4183                 return -EINVAL;
4184         }
4185
4186         switch (filter->src_ip_mask) {
4187         case UINT32_MAX:
4188                 filter_info->src_ip_mask = 0;
4189                 filter_info->src_ip = filter->src_ip;
4190                 break;
4191         case 0:
4192                 filter_info->src_ip_mask = 1;
4193                 break;
4194         default:
4195                 PMD_DRV_LOG(ERR, "invalid src_ip mask.");
4196                 return -EINVAL;
4197         }
4198
4199         switch (filter->dst_port_mask) {
4200         case UINT16_MAX:
4201                 filter_info->dst_port_mask = 0;
4202                 filter_info->dst_port = filter->dst_port;
4203                 break;
4204         case 0:
4205                 filter_info->dst_port_mask = 1;
4206                 break;
4207         default:
4208                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
4209                 return -EINVAL;
4210         }
4211
4212         switch (filter->src_port_mask) {
4213         case UINT16_MAX:
4214                 filter_info->src_port_mask = 0;
4215                 filter_info->src_port = filter->src_port;
4216                 break;
4217         case 0:
4218                 filter_info->src_port_mask = 1;
4219                 break;
4220         default:
4221                 PMD_DRV_LOG(ERR, "invalid src_port mask.");
4222                 return -EINVAL;
4223         }
4224
4225         switch (filter->proto_mask) {
4226         case UINT8_MAX:
4227                 filter_info->proto_mask = 0;
4228                 filter_info->proto = filter->proto;
4229                 break;
4230         case 0:
4231                 filter_info->proto_mask = 1;
4232                 break;
4233         default:
4234                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
4235                 return -EINVAL;
4236         }
4237
4238         filter_info->priority = (uint8_t)filter->priority;
4239         if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
4240                 filter_info->tcp_flags = filter->tcp_flags;
4241         else
4242                 filter_info->tcp_flags = 0;
4243
4244         return 0;
4245 }
4246
4247 static inline struct e1000_5tuple_filter *
4248 igb_5tuple_filter_lookup_82576(struct e1000_5tuple_filter_list *filter_list,
4249                         struct e1000_5tuple_filter_info *key)
4250 {
4251         struct e1000_5tuple_filter *it;
4252
4253         TAILQ_FOREACH(it, filter_list, entries) {
4254                 if (memcmp(key, &it->filter_info,
4255                         sizeof(struct e1000_5tuple_filter_info)) == 0) {
4256                         return it;
4257                 }
4258         }
4259         return NULL;
4260 }
4261
4262 /* inject a igb 5-tuple filter to HW */
4263 static inline void
4264 igb_inject_5tuple_filter_82576(struct rte_eth_dev *dev,
4265                            struct e1000_5tuple_filter *filter)
4266 {
4267         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4268         uint32_t ftqf = E1000_FTQF_VF_BP | E1000_FTQF_MASK;
4269         uint32_t spqf, imir, imir_ext = E1000_IMIREXT_SIZE_BP;
4270         uint8_t i;
4271
4272         i = filter->index;
4273         ftqf |= filter->filter_info.proto & E1000_FTQF_PROTOCOL_MASK;
4274         if (filter->filter_info.src_ip_mask == 0) /* 0b means compare. */
4275                 ftqf &= ~E1000_FTQF_MASK_SOURCE_ADDR_BP;
4276         if (filter->filter_info.dst_ip_mask == 0)
4277                 ftqf &= ~E1000_FTQF_MASK_DEST_ADDR_BP;
4278         if (filter->filter_info.src_port_mask == 0)
4279                 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
4280         if (filter->filter_info.proto_mask == 0)
4281                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP;
4282         ftqf |= (filter->queue << E1000_FTQF_QUEUE_SHIFT) &
4283                 E1000_FTQF_QUEUE_MASK;
4284         ftqf |= E1000_FTQF_QUEUE_ENABLE;
4285         E1000_WRITE_REG(hw, E1000_FTQF(i), ftqf);
4286         E1000_WRITE_REG(hw, E1000_DAQF(i), filter->filter_info.dst_ip);
4287         E1000_WRITE_REG(hw, E1000_SAQF(i), filter->filter_info.src_ip);
4288
4289         spqf = filter->filter_info.src_port & E1000_SPQF_SRCPORT;
4290         E1000_WRITE_REG(hw, E1000_SPQF(i), spqf);
4291
4292         imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
4293         if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
4294                 imir |= E1000_IMIR_PORT_BP;
4295         else
4296                 imir &= ~E1000_IMIR_PORT_BP;
4297         imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
4298
4299         /* tcp flags bits setting. */
4300         if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) {
4301                 if (filter->filter_info.tcp_flags & TCP_URG_FLAG)
4302                         imir_ext |= E1000_IMIREXT_CTRL_URG;
4303                 if (filter->filter_info.tcp_flags & TCP_ACK_FLAG)
4304                         imir_ext |= E1000_IMIREXT_CTRL_ACK;
4305                 if (filter->filter_info.tcp_flags & TCP_PSH_FLAG)
4306                         imir_ext |= E1000_IMIREXT_CTRL_PSH;
4307                 if (filter->filter_info.tcp_flags & TCP_RST_FLAG)
4308                         imir_ext |= E1000_IMIREXT_CTRL_RST;
4309                 if (filter->filter_info.tcp_flags & TCP_SYN_FLAG)
4310                         imir_ext |= E1000_IMIREXT_CTRL_SYN;
4311                 if (filter->filter_info.tcp_flags & TCP_FIN_FLAG)
4312                         imir_ext |= E1000_IMIREXT_CTRL_FIN;
4313         } else {
4314                 imir_ext |= E1000_IMIREXT_CTRL_BP;
4315         }
4316         E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
4317         E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
4318 }
4319
4320 /*
4321  * igb_add_5tuple_filter_82576 - add a 5tuple filter
4322  *
4323  * @param
4324  * dev: Pointer to struct rte_eth_dev.
4325  * ntuple_filter: ponter to the filter that will be added.
4326  *
4327  * @return
4328  *    - On success, zero.
4329  *    - On failure, a negative value.
4330  */
4331 static int
4332 igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
4333                         struct rte_eth_ntuple_filter *ntuple_filter)
4334 {
4335         struct e1000_filter_info *filter_info =
4336                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4337         struct e1000_5tuple_filter *filter;
4338         uint8_t i;
4339         int ret;
4340
4341         filter = rte_zmalloc("e1000_5tuple_filter",
4342                         sizeof(struct e1000_5tuple_filter), 0);
4343         if (filter == NULL)
4344                 return -ENOMEM;
4345
4346         ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4347                                             &filter->filter_info);
4348         if (ret < 0) {
4349                 rte_free(filter);
4350                 return ret;
4351         }
4352
4353         if (igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
4354                                          &filter->filter_info) != NULL) {
4355                 PMD_DRV_LOG(ERR, "filter exists.");
4356                 rte_free(filter);
4357                 return -EEXIST;
4358         }
4359         filter->queue = ntuple_filter->queue;
4360
4361         /*
4362          * look for an unused 5tuple filter index,
4363          * and insert the filter to list.
4364          */
4365         for (i = 0; i < E1000_MAX_FTQF_FILTERS; i++) {
4366                 if (!(filter_info->fivetuple_mask & (1 << i))) {
4367                         filter_info->fivetuple_mask |= 1 << i;
4368                         filter->index = i;
4369                         TAILQ_INSERT_TAIL(&filter_info->fivetuple_list,
4370                                           filter,
4371                                           entries);
4372                         break;
4373                 }
4374         }
4375         if (i >= E1000_MAX_FTQF_FILTERS) {
4376                 PMD_DRV_LOG(ERR, "5tuple filters are full.");
4377                 rte_free(filter);
4378                 return -ENOSYS;
4379         }
4380
4381         igb_inject_5tuple_filter_82576(dev, filter);
4382         return 0;
4383 }
4384
4385 int
4386 igb_delete_5tuple_filter_82576(struct rte_eth_dev *dev,
4387                                 struct e1000_5tuple_filter *filter)
4388 {
4389         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4390         struct e1000_filter_info *filter_info =
4391                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4392
4393         filter_info->fivetuple_mask &= ~(1 << filter->index);
4394         TAILQ_REMOVE(&filter_info->fivetuple_list, filter, entries);
4395         rte_free(filter);
4396
4397         E1000_WRITE_REG(hw, E1000_FTQF(filter->index),
4398                         E1000_FTQF_VF_BP | E1000_FTQF_MASK);
4399         E1000_WRITE_REG(hw, E1000_DAQF(filter->index), 0);
4400         E1000_WRITE_REG(hw, E1000_SAQF(filter->index), 0);
4401         E1000_WRITE_REG(hw, E1000_SPQF(filter->index), 0);
4402         E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
4403         E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
4404         return 0;
4405 }
4406
4407 /*
4408  * igb_remove_5tuple_filter_82576 - remove a 5tuple filter
4409  *
4410  * @param
4411  * dev: Pointer to struct rte_eth_dev.
4412  * ntuple_filter: ponter to the filter that will be removed.
4413  *
4414  * @return
4415  *    - On success, zero.
4416  *    - On failure, a negative value.
4417  */
4418 static int
4419 igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
4420                                 struct rte_eth_ntuple_filter *ntuple_filter)
4421 {
4422         struct e1000_filter_info *filter_info =
4423                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4424         struct e1000_5tuple_filter_info filter_5tuple;
4425         struct e1000_5tuple_filter *filter;
4426         int ret;
4427
4428         memset(&filter_5tuple, 0, sizeof(struct e1000_5tuple_filter_info));
4429         ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4430                                             &filter_5tuple);
4431         if (ret < 0)
4432                 return ret;
4433
4434         filter = igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
4435                                          &filter_5tuple);
4436         if (filter == NULL) {
4437                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4438                 return -ENOENT;
4439         }
4440
4441         igb_delete_5tuple_filter_82576(dev, filter);
4442
4443         return 0;
4444 }
4445
4446 static int
4447 eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
4448 {
4449         uint32_t rctl;
4450         struct e1000_hw *hw;
4451         struct rte_eth_dev_info dev_info;
4452         uint32_t frame_size = mtu + (RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN +
4453                                      VLAN_TAG_SIZE);
4454
4455         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4456
4457 #ifdef RTE_LIBRTE_82571_SUPPORT
4458         /* XXX: not bigger than max_rx_pktlen */
4459         if (hw->mac.type == e1000_82571)
4460                 return -ENOTSUP;
4461 #endif
4462         eth_igb_infos_get(dev, &dev_info);
4463
4464         /* check that mtu is within the allowed range */
4465         if ((mtu < RTE_ETHER_MIN_MTU) ||
4466             (frame_size > dev_info.max_rx_pktlen))
4467                 return -EINVAL;
4468
4469         /* refuse mtu that requires the support of scattered packets when this
4470          * feature has not been enabled before. */
4471         if (!dev->data->scattered_rx &&
4472             frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
4473                 return -EINVAL;
4474
4475         rctl = E1000_READ_REG(hw, E1000_RCTL);
4476
4477         /* switch to jumbo mode if needed */
4478         if (frame_size > RTE_ETHER_MAX_LEN) {
4479                 dev->data->dev_conf.rxmode.offloads |=
4480                         DEV_RX_OFFLOAD_JUMBO_FRAME;
4481                 rctl |= E1000_RCTL_LPE;
4482         } else {
4483                 dev->data->dev_conf.rxmode.offloads &=
4484                         ~DEV_RX_OFFLOAD_JUMBO_FRAME;
4485                 rctl &= ~E1000_RCTL_LPE;
4486         }
4487         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
4488
4489         /* update max frame size */
4490         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
4491
4492         E1000_WRITE_REG(hw, E1000_RLPML,
4493                         dev->data->dev_conf.rxmode.max_rx_pkt_len);
4494
4495         return 0;
4496 }
4497
4498 /*
4499  * igb_add_del_ntuple_filter - add or delete a ntuple filter
4500  *
4501  * @param
4502  * dev: Pointer to struct rte_eth_dev.
4503  * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
4504  * add: if true, add filter, if false, remove filter
4505  *
4506  * @return
4507  *    - On success, zero.
4508  *    - On failure, a negative value.
4509  */
4510 int
4511 igb_add_del_ntuple_filter(struct rte_eth_dev *dev,
4512                         struct rte_eth_ntuple_filter *ntuple_filter,
4513                         bool add)
4514 {
4515         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4516         int ret;
4517
4518         switch (ntuple_filter->flags) {
4519         case RTE_5TUPLE_FLAGS:
4520         case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4521                 if (hw->mac.type != e1000_82576)
4522                         return -ENOTSUP;
4523                 if (add)
4524                         ret = igb_add_5tuple_filter_82576(dev,
4525                                                           ntuple_filter);
4526                 else
4527                         ret = igb_remove_5tuple_filter_82576(dev,
4528                                                              ntuple_filter);
4529                 break;
4530         case RTE_2TUPLE_FLAGS:
4531         case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4532                 if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350 &&
4533                         hw->mac.type != e1000_i210 &&
4534                         hw->mac.type != e1000_i211)
4535                         return -ENOTSUP;
4536                 if (add)
4537                         ret = igb_add_2tuple_filter(dev, ntuple_filter);
4538                 else
4539                         ret = igb_remove_2tuple_filter(dev, ntuple_filter);
4540                 break;
4541         default:
4542                 ret = -EINVAL;
4543                 break;
4544         }
4545
4546         return ret;
4547 }
4548
4549 /*
4550  * igb_get_ntuple_filter - get a ntuple filter
4551  *
4552  * @param
4553  * dev: Pointer to struct rte_eth_dev.
4554  * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
4555  *
4556  * @return
4557  *    - On success, zero.
4558  *    - On failure, a negative value.
4559  */
4560 static int
4561 igb_get_ntuple_filter(struct rte_eth_dev *dev,
4562                         struct rte_eth_ntuple_filter *ntuple_filter)
4563 {
4564         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4565         struct e1000_filter_info *filter_info =
4566                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4567         struct e1000_5tuple_filter_info filter_5tuple;
4568         struct e1000_2tuple_filter_info filter_2tuple;
4569         struct e1000_5tuple_filter *p_5tuple_filter;
4570         struct e1000_2tuple_filter *p_2tuple_filter;
4571         int ret;
4572
4573         switch (ntuple_filter->flags) {
4574         case RTE_5TUPLE_FLAGS:
4575         case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4576                 if (hw->mac.type != e1000_82576)
4577                         return -ENOTSUP;
4578                 memset(&filter_5tuple,
4579                         0,
4580                         sizeof(struct e1000_5tuple_filter_info));
4581                 ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4582                                                     &filter_5tuple);
4583                 if (ret < 0)
4584                         return ret;
4585                 p_5tuple_filter = igb_5tuple_filter_lookup_82576(
4586                                         &filter_info->fivetuple_list,
4587                                         &filter_5tuple);
4588                 if (p_5tuple_filter == NULL) {
4589                         PMD_DRV_LOG(ERR, "filter doesn't exist.");
4590                         return -ENOENT;
4591                 }
4592                 ntuple_filter->queue = p_5tuple_filter->queue;
4593                 break;
4594         case RTE_2TUPLE_FLAGS:
4595         case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4596                 if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350)
4597                         return -ENOTSUP;
4598                 memset(&filter_2tuple,
4599                         0,
4600                         sizeof(struct e1000_2tuple_filter_info));
4601                 ret = ntuple_filter_to_2tuple(ntuple_filter, &filter_2tuple);
4602                 if (ret < 0)
4603                         return ret;
4604                 p_2tuple_filter = igb_2tuple_filter_lookup(
4605                                         &filter_info->twotuple_list,
4606                                         &filter_2tuple);
4607                 if (p_2tuple_filter == NULL) {
4608                         PMD_DRV_LOG(ERR, "filter doesn't exist.");
4609                         return -ENOENT;
4610                 }
4611                 ntuple_filter->queue = p_2tuple_filter->queue;
4612                 break;
4613         default:
4614                 ret = -EINVAL;
4615                 break;
4616         }
4617
4618         return 0;
4619 }
4620
4621 /*
4622  * igb_ntuple_filter_handle - Handle operations for ntuple filter.
4623  * @dev: pointer to rte_eth_dev structure
4624  * @filter_op:operation will be taken.
4625  * @arg: a pointer to specific structure corresponding to the filter_op
4626  */
4627 static int
4628 igb_ntuple_filter_handle(struct rte_eth_dev *dev,
4629                                 enum rte_filter_op filter_op,
4630                                 void *arg)
4631 {
4632         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4633         int ret;
4634
4635         MAC_TYPE_FILTER_SUP(hw->mac.type);
4636
4637         if (filter_op == RTE_ETH_FILTER_NOP)
4638                 return 0;
4639
4640         if (arg == NULL) {
4641                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
4642                             filter_op);
4643                 return -EINVAL;
4644         }
4645
4646         switch (filter_op) {
4647         case RTE_ETH_FILTER_ADD:
4648                 ret = igb_add_del_ntuple_filter(dev,
4649                         (struct rte_eth_ntuple_filter *)arg,
4650                         TRUE);
4651                 break;
4652         case RTE_ETH_FILTER_DELETE:
4653                 ret = igb_add_del_ntuple_filter(dev,
4654                         (struct rte_eth_ntuple_filter *)arg,
4655                         FALSE);
4656                 break;
4657         case RTE_ETH_FILTER_GET:
4658                 ret = igb_get_ntuple_filter(dev,
4659                         (struct rte_eth_ntuple_filter *)arg);
4660                 break;
4661         default:
4662                 PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
4663                 ret = -EINVAL;
4664                 break;
4665         }
4666         return ret;
4667 }
4668
4669 static inline int
4670 igb_ethertype_filter_lookup(struct e1000_filter_info *filter_info,
4671                         uint16_t ethertype)
4672 {
4673         int i;
4674
4675         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
4676                 if (filter_info->ethertype_filters[i].ethertype == ethertype &&
4677                     (filter_info->ethertype_mask & (1 << i)))
4678                         return i;
4679         }
4680         return -1;
4681 }
4682
4683 static inline int
4684 igb_ethertype_filter_insert(struct e1000_filter_info *filter_info,
4685                         uint16_t ethertype, uint32_t etqf)
4686 {
4687         int i;
4688
4689         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
4690                 if (!(filter_info->ethertype_mask & (1 << i))) {
4691                         filter_info->ethertype_mask |= 1 << i;
4692                         filter_info->ethertype_filters[i].ethertype = ethertype;
4693                         filter_info->ethertype_filters[i].etqf = etqf;
4694                         return i;
4695                 }
4696         }
4697         return -1;
4698 }
4699
4700 int
4701 igb_ethertype_filter_remove(struct e1000_filter_info *filter_info,
4702                         uint8_t idx)
4703 {
4704         if (idx >= E1000_MAX_ETQF_FILTERS)
4705                 return -1;
4706         filter_info->ethertype_mask &= ~(1 << idx);
4707         filter_info->ethertype_filters[idx].ethertype = 0;
4708         filter_info->ethertype_filters[idx].etqf = 0;
4709         return idx;
4710 }
4711
4712
4713 int
4714 igb_add_del_ethertype_filter(struct rte_eth_dev *dev,
4715                         struct rte_eth_ethertype_filter *filter,
4716                         bool add)
4717 {
4718         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4719         struct e1000_filter_info *filter_info =
4720                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4721         uint32_t etqf = 0;
4722         int ret;
4723
4724         if (filter->ether_type == RTE_ETHER_TYPE_IPv4 ||
4725                 filter->ether_type == RTE_ETHER_TYPE_IPv6) {
4726                 PMD_DRV_LOG(ERR, "unsupported ether_type(0x%04x) in"
4727                         " ethertype filter.", filter->ether_type);
4728                 return -EINVAL;
4729         }
4730
4731         if (filter->flags & RTE_ETHTYPE_FLAGS_MAC) {
4732                 PMD_DRV_LOG(ERR, "mac compare is unsupported.");
4733                 return -EINVAL;
4734         }
4735         if (filter->flags & RTE_ETHTYPE_FLAGS_DROP) {
4736                 PMD_DRV_LOG(ERR, "drop option is unsupported.");
4737                 return -EINVAL;
4738         }
4739
4740         ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
4741         if (ret >= 0 && add) {
4742                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter exists.",
4743                             filter->ether_type);
4744                 return -EEXIST;
4745         }
4746         if (ret < 0 && !add) {
4747                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
4748                             filter->ether_type);
4749                 return -ENOENT;
4750         }
4751
4752         if (add) {
4753                 etqf |= E1000_ETQF_FILTER_ENABLE | E1000_ETQF_QUEUE_ENABLE;
4754                 etqf |= (uint32_t)(filter->ether_type & E1000_ETQF_ETHERTYPE);
4755                 etqf |= filter->queue << E1000_ETQF_QUEUE_SHIFT;
4756                 ret = igb_ethertype_filter_insert(filter_info,
4757                                 filter->ether_type, etqf);
4758                 if (ret < 0) {
4759                         PMD_DRV_LOG(ERR, "ethertype filters are full.");
4760                         return -ENOSYS;
4761                 }
4762         } else {
4763                 ret = igb_ethertype_filter_remove(filter_info, (uint8_t)ret);
4764                 if (ret < 0)
4765                         return -ENOSYS;
4766         }
4767         E1000_WRITE_REG(hw, E1000_ETQF(ret), etqf);
4768         E1000_WRITE_FLUSH(hw);
4769
4770         return 0;
4771 }
4772
4773 static int
4774 igb_get_ethertype_filter(struct rte_eth_dev *dev,
4775                         struct rte_eth_ethertype_filter *filter)
4776 {
4777         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4778         struct e1000_filter_info *filter_info =
4779                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4780         uint32_t etqf;
4781         int ret;
4782
4783         ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
4784         if (ret < 0) {
4785                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
4786                             filter->ether_type);
4787                 return -ENOENT;
4788         }
4789
4790         etqf = E1000_READ_REG(hw, E1000_ETQF(ret));
4791         if (etqf & E1000_ETQF_FILTER_ENABLE) {
4792                 filter->ether_type = etqf & E1000_ETQF_ETHERTYPE;
4793                 filter->flags = 0;
4794                 filter->queue = (etqf & E1000_ETQF_QUEUE) >>
4795                                 E1000_ETQF_QUEUE_SHIFT;
4796                 return 0;
4797         }
4798
4799         return -ENOENT;
4800 }
4801
4802 /*
4803  * igb_ethertype_filter_handle - Handle operations for ethertype filter.
4804  * @dev: pointer to rte_eth_dev structure
4805  * @filter_op:operation will be taken.
4806  * @arg: a pointer to specific structure corresponding to the filter_op
4807  */
4808 static int
4809 igb_ethertype_filter_handle(struct rte_eth_dev *dev,
4810                                 enum rte_filter_op filter_op,
4811                                 void *arg)
4812 {
4813         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4814         int ret;
4815
4816         MAC_TYPE_FILTER_SUP(hw->mac.type);
4817
4818         if (filter_op == RTE_ETH_FILTER_NOP)
4819                 return 0;
4820
4821         if (arg == NULL) {
4822                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
4823                             filter_op);
4824                 return -EINVAL;
4825         }
4826
4827         switch (filter_op) {
4828         case RTE_ETH_FILTER_ADD:
4829                 ret = igb_add_del_ethertype_filter(dev,
4830                         (struct rte_eth_ethertype_filter *)arg,
4831                         TRUE);
4832                 break;
4833         case RTE_ETH_FILTER_DELETE:
4834                 ret = igb_add_del_ethertype_filter(dev,
4835                         (struct rte_eth_ethertype_filter *)arg,
4836                         FALSE);
4837                 break;
4838         case RTE_ETH_FILTER_GET:
4839                 ret = igb_get_ethertype_filter(dev,
4840                         (struct rte_eth_ethertype_filter *)arg);
4841                 break;
4842         default:
4843                 PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
4844                 ret = -EINVAL;
4845                 break;
4846         }
4847         return ret;
4848 }
4849
4850 static int
4851 eth_igb_filter_ctrl(struct rte_eth_dev *dev,
4852                      enum rte_filter_type filter_type,
4853                      enum rte_filter_op filter_op,
4854                      void *arg)
4855 {
4856         int ret = 0;
4857
4858         switch (filter_type) {
4859         case RTE_ETH_FILTER_NTUPLE:
4860                 ret = igb_ntuple_filter_handle(dev, filter_op, arg);
4861                 break;
4862         case RTE_ETH_FILTER_ETHERTYPE:
4863                 ret = igb_ethertype_filter_handle(dev, filter_op, arg);
4864                 break;
4865         case RTE_ETH_FILTER_SYN:
4866                 ret = eth_igb_syn_filter_handle(dev, filter_op, arg);
4867                 break;
4868         case RTE_ETH_FILTER_FLEXIBLE:
4869                 ret = eth_igb_flex_filter_handle(dev, filter_op, arg);
4870                 break;
4871         case RTE_ETH_FILTER_GENERIC:
4872                 if (filter_op != RTE_ETH_FILTER_GET)
4873                         return -EINVAL;
4874                 *(const void **)arg = &igb_flow_ops;
4875                 break;
4876         default:
4877                 PMD_DRV_LOG(WARNING, "Filter type (%d) not supported",
4878                                                         filter_type);
4879                 break;
4880         }
4881
4882         return ret;
4883 }
4884
4885 static int
4886 eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
4887                          struct rte_ether_addr *mc_addr_set,
4888                          uint32_t nb_mc_addr)
4889 {
4890         struct e1000_hw *hw;
4891
4892         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4893         e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
4894         return 0;
4895 }
4896
4897 static uint64_t
4898 igb_read_systime_cyclecounter(struct rte_eth_dev *dev)
4899 {
4900         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4901         uint64_t systime_cycles;
4902
4903         switch (hw->mac.type) {
4904         case e1000_i210:
4905         case e1000_i211:
4906                 /*
4907                  * Need to read System Time Residue Register to be able
4908                  * to read the other two registers.
4909                  */
4910                 E1000_READ_REG(hw, E1000_SYSTIMR);
4911                 /* SYSTIMEL stores ns and SYSTIMEH stores seconds. */
4912                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4913                 systime_cycles += (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
4914                                 * NSEC_PER_SEC;
4915                 break;
4916         case e1000_82580:
4917         case e1000_i350:
4918         case e1000_i354:
4919                 /*
4920                  * Need to read System Time Residue Register to be able
4921                  * to read the other two registers.
4922                  */
4923                 E1000_READ_REG(hw, E1000_SYSTIMR);
4924                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4925                 /* Only the 8 LSB are valid. */
4926                 systime_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_SYSTIMH)
4927                                 & 0xff) << 32;
4928                 break;
4929         default:
4930                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4931                 systime_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
4932                                 << 32;
4933                 break;
4934         }
4935
4936         return systime_cycles;
4937 }
4938
4939 static uint64_t
4940 igb_read_rx_tstamp_cyclecounter(struct rte_eth_dev *dev)
4941 {
4942         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4943         uint64_t rx_tstamp_cycles;
4944
4945         switch (hw->mac.type) {
4946         case e1000_i210:
4947         case e1000_i211:
4948                 /* RXSTMPL stores ns and RXSTMPH stores seconds. */
4949                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4950                 rx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
4951                                 * NSEC_PER_SEC;
4952                 break;
4953         case e1000_82580:
4954         case e1000_i350:
4955         case e1000_i354:
4956                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4957                 /* Only the 8 LSB are valid. */
4958                 rx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_RXSTMPH)
4959                                 & 0xff) << 32;
4960                 break;
4961         default:
4962                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4963                 rx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
4964                                 << 32;
4965                 break;
4966         }
4967
4968         return rx_tstamp_cycles;
4969 }
4970
4971 static uint64_t
4972 igb_read_tx_tstamp_cyclecounter(struct rte_eth_dev *dev)
4973 {
4974         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4975         uint64_t tx_tstamp_cycles;
4976
4977         switch (hw->mac.type) {
4978         case e1000_i210:
4979         case e1000_i211:
4980                 /* RXSTMPL stores ns and RXSTMPH stores seconds. */
4981                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
4982                 tx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
4983                                 * NSEC_PER_SEC;
4984                 break;
4985         case e1000_82580:
4986         case e1000_i350:
4987         case e1000_i354:
4988                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
4989                 /* Only the 8 LSB are valid. */
4990                 tx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_TXSTMPH)
4991                                 & 0xff) << 32;
4992                 break;
4993         default:
4994                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
4995                 tx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
4996                                 << 32;
4997                 break;
4998         }
4999
5000         return tx_tstamp_cycles;
5001 }
5002
5003 static void
5004 igb_start_timecounters(struct rte_eth_dev *dev)
5005 {
5006         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5007         struct e1000_adapter *adapter =
5008                 (struct e1000_adapter *)dev->data->dev_private;
5009         uint32_t incval = 1;
5010         uint32_t shift = 0;
5011         uint64_t mask = E1000_CYCLECOUNTER_MASK;
5012
5013         switch (hw->mac.type) {
5014         case e1000_82580:
5015         case e1000_i350:
5016         case e1000_i354:
5017                 /* 32 LSB bits + 8 MSB bits = 40 bits */
5018                 mask = (1ULL << 40) - 1;
5019                 /* fall-through */
5020         case e1000_i210:
5021         case e1000_i211:
5022                 /*
5023                  * Start incrementing the register
5024                  * used to timestamp PTP packets.
5025                  */
5026                 E1000_WRITE_REG(hw, E1000_TIMINCA, incval);
5027                 break;
5028         case e1000_82576:
5029                 incval = E1000_INCVALUE_82576;
5030                 shift = IGB_82576_TSYNC_SHIFT;
5031                 E1000_WRITE_REG(hw, E1000_TIMINCA,
5032                                 E1000_INCPERIOD_82576 | incval);
5033                 break;
5034         default:
5035                 /* Not supported */
5036                 return;
5037         }
5038
5039         memset(&adapter->systime_tc, 0, sizeof(struct rte_timecounter));
5040         memset(&adapter->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
5041         memset(&adapter->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
5042
5043         adapter->systime_tc.cc_mask = mask;
5044         adapter->systime_tc.cc_shift = shift;
5045         adapter->systime_tc.nsec_mask = (1ULL << shift) - 1;
5046
5047         adapter->rx_tstamp_tc.cc_mask = mask;
5048         adapter->rx_tstamp_tc.cc_shift = shift;
5049         adapter->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
5050
5051         adapter->tx_tstamp_tc.cc_mask = mask;
5052         adapter->tx_tstamp_tc.cc_shift = shift;
5053         adapter->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
5054 }
5055
5056 static int
5057 igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
5058 {
5059         struct e1000_adapter *adapter =
5060                         (struct e1000_adapter *)dev->data->dev_private;
5061
5062         adapter->systime_tc.nsec += delta;
5063         adapter->rx_tstamp_tc.nsec += delta;
5064         adapter->tx_tstamp_tc.nsec += delta;
5065
5066         return 0;
5067 }
5068
5069 static int
5070 igb_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
5071 {
5072         uint64_t ns;
5073         struct e1000_adapter *adapter =
5074                         (struct e1000_adapter *)dev->data->dev_private;
5075
5076         ns = rte_timespec_to_ns(ts);
5077
5078         /* Set the timecounters to a new value. */
5079         adapter->systime_tc.nsec = ns;
5080         adapter->rx_tstamp_tc.nsec = ns;
5081         adapter->tx_tstamp_tc.nsec = ns;
5082
5083         return 0;
5084 }
5085
5086 static int
5087 igb_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
5088 {
5089         uint64_t ns, systime_cycles;
5090         struct e1000_adapter *adapter =
5091                         (struct e1000_adapter *)dev->data->dev_private;
5092
5093         systime_cycles = igb_read_systime_cyclecounter(dev);
5094         ns = rte_timecounter_update(&adapter->systime_tc, systime_cycles);
5095         *ts = rte_ns_to_timespec(ns);
5096
5097         return 0;
5098 }
5099
5100 static int
5101 igb_timesync_enable(struct rte_eth_dev *dev)
5102 {
5103         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5104         uint32_t tsync_ctl;
5105         uint32_t tsauxc;
5106
5107         /* Stop the timesync system time. */
5108         E1000_WRITE_REG(hw, E1000_TIMINCA, 0x0);
5109         /* Reset the timesync system time value. */
5110         switch (hw->mac.type) {
5111         case e1000_82580:
5112         case e1000_i350:
5113         case e1000_i354:
5114         case e1000_i210:
5115         case e1000_i211:
5116                 E1000_WRITE_REG(hw, E1000_SYSTIMR, 0x0);
5117                 /* fall-through */
5118         case e1000_82576:
5119                 E1000_WRITE_REG(hw, E1000_SYSTIML, 0x0);
5120                 E1000_WRITE_REG(hw, E1000_SYSTIMH, 0x0);
5121                 break;
5122         default:
5123                 /* Not supported. */
5124                 return -ENOTSUP;
5125         }
5126
5127         /* Enable system time for it isn't on by default. */
5128         tsauxc = E1000_READ_REG(hw, E1000_TSAUXC);
5129         tsauxc &= ~E1000_TSAUXC_DISABLE_SYSTIME;
5130         E1000_WRITE_REG(hw, E1000_TSAUXC, tsauxc);
5131
5132         igb_start_timecounters(dev);
5133
5134         /* Enable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
5135         E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588),
5136                         (RTE_ETHER_TYPE_1588 |
5137                          E1000_ETQF_FILTER_ENABLE |
5138                          E1000_ETQF_1588));
5139
5140         /* Enable timestamping of received PTP packets. */
5141         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
5142         tsync_ctl |= E1000_TSYNCRXCTL_ENABLED;
5143         E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
5144
5145         /* Enable Timestamping of transmitted PTP packets. */
5146         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
5147         tsync_ctl |= E1000_TSYNCTXCTL_ENABLED;
5148         E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
5149
5150         return 0;
5151 }
5152
5153 static int
5154 igb_timesync_disable(struct rte_eth_dev *dev)
5155 {
5156         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5157         uint32_t tsync_ctl;
5158
5159         /* Disable timestamping of transmitted PTP packets. */
5160         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
5161         tsync_ctl &= ~E1000_TSYNCTXCTL_ENABLED;
5162         E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
5163
5164         /* Disable timestamping of received PTP packets. */
5165         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
5166         tsync_ctl &= ~E1000_TSYNCRXCTL_ENABLED;
5167         E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
5168
5169         /* Disable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
5170         E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588), 0);
5171
5172         /* Stop incrementating the System Time registers. */
5173         E1000_WRITE_REG(hw, E1000_TIMINCA, 0);
5174
5175         return 0;
5176 }
5177
5178 static int
5179 igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
5180                                struct timespec *timestamp,
5181                                uint32_t flags __rte_unused)
5182 {
5183         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5184         struct e1000_adapter *adapter =
5185                         (struct e1000_adapter *)dev->data->dev_private;
5186         uint32_t tsync_rxctl;
5187         uint64_t rx_tstamp_cycles;
5188         uint64_t ns;
5189
5190         tsync_rxctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
5191         if ((tsync_rxctl & E1000_TSYNCRXCTL_VALID) == 0)
5192                 return -EINVAL;
5193
5194         rx_tstamp_cycles = igb_read_rx_tstamp_cyclecounter(dev);
5195         ns = rte_timecounter_update(&adapter->rx_tstamp_tc, rx_tstamp_cycles);
5196         *timestamp = rte_ns_to_timespec(ns);
5197
5198         return  0;
5199 }
5200
5201 static int
5202 igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
5203                                struct timespec *timestamp)
5204 {
5205         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5206         struct e1000_adapter *adapter =
5207                         (struct e1000_adapter *)dev->data->dev_private;
5208         uint32_t tsync_txctl;
5209         uint64_t tx_tstamp_cycles;
5210         uint64_t ns;
5211
5212         tsync_txctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
5213         if ((tsync_txctl & E1000_TSYNCTXCTL_VALID) == 0)
5214                 return -EINVAL;
5215
5216         tx_tstamp_cycles = igb_read_tx_tstamp_cyclecounter(dev);
5217         ns = rte_timecounter_update(&adapter->tx_tstamp_tc, tx_tstamp_cycles);
5218         *timestamp = rte_ns_to_timespec(ns);
5219
5220         return  0;
5221 }
5222
5223 static int
5224 eth_igb_get_reg_length(struct rte_eth_dev *dev __rte_unused)
5225 {
5226         int count = 0;
5227         int g_ind = 0;
5228         const struct reg_info *reg_group;
5229
5230         while ((reg_group = igb_regs[g_ind++]))
5231                 count += igb_reg_group_count(reg_group);
5232
5233         return count;
5234 }
5235
5236 static int
5237 igbvf_get_reg_length(struct rte_eth_dev *dev __rte_unused)
5238 {
5239         int count = 0;
5240         int g_ind = 0;
5241         const struct reg_info *reg_group;
5242
5243         while ((reg_group = igbvf_regs[g_ind++]))
5244                 count += igb_reg_group_count(reg_group);
5245
5246         return count;
5247 }
5248
5249 static int
5250 eth_igb_get_regs(struct rte_eth_dev *dev,
5251         struct rte_dev_reg_info *regs)
5252 {
5253         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5254         uint32_t *data = regs->data;
5255         int g_ind = 0;
5256         int count = 0;
5257         const struct reg_info *reg_group;
5258
5259         if (data == NULL) {
5260                 regs->length = eth_igb_get_reg_length(dev);
5261                 regs->width = sizeof(uint32_t);
5262                 return 0;
5263         }
5264
5265         /* Support only full register dump */
5266         if ((regs->length == 0) ||
5267             (regs->length == (uint32_t)eth_igb_get_reg_length(dev))) {
5268                 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
5269                         hw->device_id;
5270                 while ((reg_group = igb_regs[g_ind++]))
5271                         count += igb_read_regs_group(dev, &data[count],
5272                                                         reg_group);
5273                 return 0;
5274         }
5275
5276         return -ENOTSUP;
5277 }
5278
5279 static int
5280 igbvf_get_regs(struct rte_eth_dev *dev,
5281         struct rte_dev_reg_info *regs)
5282 {
5283         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5284         uint32_t *data = regs->data;
5285         int g_ind = 0;
5286         int count = 0;
5287         const struct reg_info *reg_group;
5288
5289         if (data == NULL) {
5290                 regs->length = igbvf_get_reg_length(dev);
5291                 regs->width = sizeof(uint32_t);
5292                 return 0;
5293         }
5294
5295         /* Support only full register dump */
5296         if ((regs->length == 0) ||
5297             (regs->length == (uint32_t)igbvf_get_reg_length(dev))) {
5298                 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
5299                         hw->device_id;
5300                 while ((reg_group = igbvf_regs[g_ind++]))
5301                         count += igb_read_regs_group(dev, &data[count],
5302                                                         reg_group);
5303                 return 0;
5304         }
5305
5306         return -ENOTSUP;
5307 }
5308
5309 static int
5310 eth_igb_get_eeprom_length(struct rte_eth_dev *dev)
5311 {
5312         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5313
5314         /* Return unit is byte count */
5315         return hw->nvm.word_size * 2;
5316 }
5317
5318 static int
5319 eth_igb_get_eeprom(struct rte_eth_dev *dev,
5320         struct rte_dev_eeprom_info *in_eeprom)
5321 {
5322         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5323         struct e1000_nvm_info *nvm = &hw->nvm;
5324         uint16_t *data = in_eeprom->data;
5325         int first, length;
5326
5327         first = in_eeprom->offset >> 1;
5328         length = in_eeprom->length >> 1;
5329         if ((first >= hw->nvm.word_size) ||
5330             ((first + length) >= hw->nvm.word_size))
5331                 return -EINVAL;
5332
5333         in_eeprom->magic = hw->vendor_id |
5334                 ((uint32_t)hw->device_id << 16);
5335
5336         if ((nvm->ops.read) == NULL)
5337                 return -ENOTSUP;
5338
5339         return nvm->ops.read(hw, first, length, data);
5340 }
5341
5342 static int
5343 eth_igb_set_eeprom(struct rte_eth_dev *dev,
5344         struct rte_dev_eeprom_info *in_eeprom)
5345 {
5346         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5347         struct e1000_nvm_info *nvm = &hw->nvm;
5348         uint16_t *data = in_eeprom->data;
5349         int first, length;
5350
5351         first = in_eeprom->offset >> 1;
5352         length = in_eeprom->length >> 1;
5353         if ((first >= hw->nvm.word_size) ||
5354             ((first + length) >= hw->nvm.word_size))
5355                 return -EINVAL;
5356
5357         in_eeprom->magic = (uint32_t)hw->vendor_id |
5358                 ((uint32_t)hw->device_id << 16);
5359
5360         if ((nvm->ops.write) == NULL)
5361                 return -ENOTSUP;
5362         return nvm->ops.write(hw,  first, length, data);
5363 }
5364
5365 static int
5366 eth_igb_get_module_info(struct rte_eth_dev *dev,
5367                         struct rte_eth_dev_module_info *modinfo)
5368 {
5369         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5370
5371         uint32_t status = 0;
5372         uint16_t sff8472_rev, addr_mode;
5373         bool page_swap = false;
5374
5375         if (hw->phy.media_type == e1000_media_type_copper ||
5376             hw->phy.media_type == e1000_media_type_unknown)
5377                 return -EOPNOTSUPP;
5378
5379         /* Check whether we support SFF-8472 or not */
5380         status = e1000_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
5381         if (status)
5382                 return -EIO;
5383
5384         /* addressing mode is not supported */
5385         status = e1000_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
5386         if (status)
5387                 return -EIO;
5388
5389         /* addressing mode is not supported */
5390         if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
5391                 PMD_DRV_LOG(ERR,
5392                             "Address change required to access page 0xA2, "
5393                             "but not supported. Please report the module "
5394                             "type to the driver maintainers.\n");
5395                 page_swap = true;
5396         }
5397
5398         if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
5399                 /* We have an SFP, but it does not support SFF-8472 */
5400                 modinfo->type = RTE_ETH_MODULE_SFF_8079;
5401                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8079_LEN;
5402         } else {
5403                 /* We have an SFP which supports a revision of SFF-8472 */
5404                 modinfo->type = RTE_ETH_MODULE_SFF_8472;
5405                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
5406         }
5407
5408         return 0;
5409 }
5410
5411 static int
5412 eth_igb_get_module_eeprom(struct rte_eth_dev *dev,
5413                           struct rte_dev_eeprom_info *info)
5414 {
5415         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5416
5417         uint32_t status = 0;
5418         uint16_t dataword[RTE_ETH_MODULE_SFF_8472_LEN / 2 + 1];
5419         u16 first_word, last_word;
5420         int i = 0;
5421
5422         if (info->length == 0)
5423                 return -EINVAL;
5424
5425         first_word = info->offset >> 1;
5426         last_word = (info->offset + info->length - 1) >> 1;
5427
5428         /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
5429         for (i = 0; i < last_word - first_word + 1; i++) {
5430                 status = e1000_read_phy_reg_i2c(hw, (first_word + i) * 2,
5431                                                 &dataword[i]);
5432                 if (status) {
5433                         /* Error occurred while reading module */
5434                         return -EIO;
5435                 }
5436
5437                 dataword[i] = rte_be_to_cpu_16(dataword[i]);
5438         }
5439
5440         memcpy(info->data, (u8 *)dataword + (info->offset & 1), info->length);
5441
5442         return 0;
5443 }
5444
5445 static int
5446 eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
5447 {
5448         struct e1000_hw *hw =
5449                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5450         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5451         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5452         uint32_t vec = E1000_MISC_VEC_ID;
5453
5454         if (rte_intr_allow_others(intr_handle))
5455                 vec = E1000_RX_VEC_START;
5456
5457         uint32_t mask = 1 << (queue_id + vec);
5458
5459         E1000_WRITE_REG(hw, E1000_EIMC, mask);
5460         E1000_WRITE_FLUSH(hw);
5461
5462         return 0;
5463 }
5464
5465 static int
5466 eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
5467 {
5468         struct e1000_hw *hw =
5469                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5470         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5471         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5472         uint32_t vec = E1000_MISC_VEC_ID;
5473
5474         if (rte_intr_allow_others(intr_handle))
5475                 vec = E1000_RX_VEC_START;
5476
5477         uint32_t mask = 1 << (queue_id + vec);
5478         uint32_t regval;
5479
5480         regval = E1000_READ_REG(hw, E1000_EIMS);
5481         E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
5482         E1000_WRITE_FLUSH(hw);
5483
5484         rte_intr_enable(intr_handle);
5485
5486         return 0;
5487 }
5488
5489 static void
5490 eth_igb_write_ivar(struct e1000_hw *hw, uint8_t  msix_vector,
5491                    uint8_t index, uint8_t offset)
5492 {
5493         uint32_t val = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
5494
5495         /* clear bits */
5496         val &= ~((uint32_t)0xFF << offset);
5497
5498         /* write vector and valid bit */
5499         val |= (msix_vector | E1000_IVAR_VALID) << offset;
5500
5501         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, val);
5502 }
5503
5504 static void
5505 eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
5506                            uint8_t queue, uint8_t msix_vector)
5507 {
5508         uint32_t tmp = 0;
5509
5510         if (hw->mac.type == e1000_82575) {
5511                 if (direction == 0)
5512                         tmp = E1000_EICR_RX_QUEUE0 << queue;
5513                 else if (direction == 1)
5514                         tmp = E1000_EICR_TX_QUEUE0 << queue;
5515                 E1000_WRITE_REG(hw, E1000_MSIXBM(msix_vector), tmp);
5516         } else if (hw->mac.type == e1000_82576) {
5517                 if ((direction == 0) || (direction == 1))
5518                         eth_igb_write_ivar(hw, msix_vector, queue & 0x7,
5519                                            ((queue & 0x8) << 1) +
5520                                            8 * direction);
5521         } else if ((hw->mac.type == e1000_82580) ||
5522                         (hw->mac.type == e1000_i350) ||
5523                         (hw->mac.type == e1000_i354) ||
5524                         (hw->mac.type == e1000_i210) ||
5525                         (hw->mac.type == e1000_i211)) {
5526                 if ((direction == 0) || (direction == 1))
5527                         eth_igb_write_ivar(hw, msix_vector,
5528                                            queue >> 1,
5529                                            ((queue & 0x1) << 4) +
5530                                            8 * direction);
5531         }
5532 }
5533
5534 /* Sets up the hardware to generate MSI-X interrupts properly
5535  * @hw
5536  *  board private structure
5537  */
5538 static void
5539 eth_igb_configure_msix_intr(struct rte_eth_dev *dev)
5540 {
5541         int queue_id;
5542         uint32_t tmpval, regval, intr_mask;
5543         struct e1000_hw *hw =
5544                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5545         uint32_t vec = E1000_MISC_VEC_ID;
5546         uint32_t base = E1000_MISC_VEC_ID;
5547         uint32_t misc_shift = 0;
5548         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5549         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5550
5551         /* won't configure msix register if no mapping is done
5552          * between intr vector and event fd
5553          */
5554         if (!rte_intr_dp_is_en(intr_handle))
5555                 return;
5556
5557         if (rte_intr_allow_others(intr_handle)) {
5558                 vec = base = E1000_RX_VEC_START;
5559                 misc_shift = 1;
5560         }
5561
5562         /* set interrupt vector for other causes */
5563         if (hw->mac.type == e1000_82575) {
5564                 tmpval = E1000_READ_REG(hw, E1000_CTRL_EXT);
5565                 /* enable MSI-X PBA support */
5566                 tmpval |= E1000_CTRL_EXT_PBA_CLR;
5567
5568                 /* Auto-Mask interrupts upon ICR read */
5569                 tmpval |= E1000_CTRL_EXT_EIAME;
5570                 tmpval |= E1000_CTRL_EXT_IRCA;
5571
5572                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmpval);
5573
5574                 /* enable msix_other interrupt */
5575                 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), 0, E1000_EIMS_OTHER);
5576                 regval = E1000_READ_REG(hw, E1000_EIAC);
5577                 E1000_WRITE_REG(hw, E1000_EIAC, regval | E1000_EIMS_OTHER);
5578                 regval = E1000_READ_REG(hw, E1000_EIAM);
5579                 E1000_WRITE_REG(hw, E1000_EIMS, regval | E1000_EIMS_OTHER);
5580         } else if ((hw->mac.type == e1000_82576) ||
5581                         (hw->mac.type == e1000_82580) ||
5582                         (hw->mac.type == e1000_i350) ||
5583                         (hw->mac.type == e1000_i354) ||
5584                         (hw->mac.type == e1000_i210) ||
5585                         (hw->mac.type == e1000_i211)) {
5586                 /* turn on MSI-X capability first */
5587                 E1000_WRITE_REG(hw, E1000_GPIE, E1000_GPIE_MSIX_MODE |
5588                                         E1000_GPIE_PBA | E1000_GPIE_EIAME |
5589                                         E1000_GPIE_NSICR);
5590                 intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
5591                         misc_shift;
5592                 regval = E1000_READ_REG(hw, E1000_EIAC);
5593                 E1000_WRITE_REG(hw, E1000_EIAC, regval | intr_mask);
5594
5595                 /* enable msix_other interrupt */
5596                 regval = E1000_READ_REG(hw, E1000_EIMS);
5597                 E1000_WRITE_REG(hw, E1000_EIMS, regval | intr_mask);
5598                 tmpval = (dev->data->nb_rx_queues | E1000_IVAR_VALID) << 8;
5599                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, tmpval);
5600         }
5601
5602         /* use EIAM to auto-mask when MSI-X interrupt
5603          * is asserted, this saves a register write for every interrupt
5604          */
5605         intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
5606                 misc_shift;
5607         regval = E1000_READ_REG(hw, E1000_EIAM);
5608         E1000_WRITE_REG(hw, E1000_EIAM, regval | intr_mask);
5609
5610         for (queue_id = 0; queue_id < dev->data->nb_rx_queues; queue_id++) {
5611                 eth_igb_assign_msix_vector(hw, 0, queue_id, vec);
5612                 intr_handle->intr_vec[queue_id] = vec;
5613                 if (vec < base + intr_handle->nb_efd - 1)
5614                         vec++;
5615         }
5616
5617         E1000_WRITE_FLUSH(hw);
5618 }
5619
5620 /* restore n-tuple filter */
5621 static inline void
5622 igb_ntuple_filter_restore(struct rte_eth_dev *dev)
5623 {
5624         struct e1000_filter_info *filter_info =
5625                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5626         struct e1000_5tuple_filter *p_5tuple;
5627         struct e1000_2tuple_filter *p_2tuple;
5628
5629         TAILQ_FOREACH(p_5tuple, &filter_info->fivetuple_list, entries) {
5630                 igb_inject_5tuple_filter_82576(dev, p_5tuple);
5631         }
5632
5633         TAILQ_FOREACH(p_2tuple, &filter_info->twotuple_list, entries) {
5634                 igb_inject_2uple_filter(dev, p_2tuple);
5635         }
5636 }
5637
5638 /* restore SYN filter */
5639 static inline void
5640 igb_syn_filter_restore(struct rte_eth_dev *dev)
5641 {
5642         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5643         struct e1000_filter_info *filter_info =
5644                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5645         uint32_t synqf;
5646
5647         synqf = filter_info->syn_info;
5648
5649         if (synqf & E1000_SYN_FILTER_ENABLE) {
5650                 E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
5651                 E1000_WRITE_FLUSH(hw);
5652         }
5653 }
5654
5655 /* restore ethernet type filter */
5656 static inline void
5657 igb_ethertype_filter_restore(struct rte_eth_dev *dev)
5658 {
5659         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5660         struct e1000_filter_info *filter_info =
5661                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5662         int i;
5663
5664         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
5665                 if (filter_info->ethertype_mask & (1 << i)) {
5666                         E1000_WRITE_REG(hw, E1000_ETQF(i),
5667                                 filter_info->ethertype_filters[i].etqf);
5668                         E1000_WRITE_FLUSH(hw);
5669                 }
5670         }
5671 }
5672
5673 /* restore flex byte filter */
5674 static inline void
5675 igb_flex_filter_restore(struct rte_eth_dev *dev)
5676 {
5677         struct e1000_filter_info *filter_info =
5678                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5679         struct e1000_flex_filter *flex_filter;
5680
5681         TAILQ_FOREACH(flex_filter, &filter_info->flex_list, entries) {
5682                 igb_inject_flex_filter(dev, flex_filter);
5683         }
5684 }
5685
5686 /* restore rss filter */
5687 static inline void
5688 igb_rss_filter_restore(struct rte_eth_dev *dev)
5689 {
5690         struct e1000_filter_info *filter_info =
5691                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5692
5693         if (filter_info->rss_info.conf.queue_num)
5694                 igb_config_rss_filter(dev, &filter_info->rss_info, TRUE);
5695 }
5696
5697 /* restore all types filter */
5698 static int
5699 igb_filter_restore(struct rte_eth_dev *dev)
5700 {
5701         igb_ntuple_filter_restore(dev);
5702         igb_ethertype_filter_restore(dev);
5703         igb_syn_filter_restore(dev);
5704         igb_flex_filter_restore(dev);
5705         igb_rss_filter_restore(dev);
5706
5707         return 0;
5708 }
5709
5710 RTE_PMD_REGISTER_PCI(net_e1000_igb, rte_igb_pmd);
5711 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb, pci_id_igb_map);
5712 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb, "* igb_uio | uio_pci_generic | vfio-pci");
5713 RTE_PMD_REGISTER_PCI(net_e1000_igb_vf, rte_igbvf_pmd);
5714 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb_vf, pci_id_igbvf_map);
5715 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb_vf, "* igb_uio | vfio-pci");
5716
5717 /* see e1000_logs.c */
5718 RTE_INIT(e1000_init_log)
5719 {
5720         e1000_igb_init_log();
5721 }