ae43adeb1e6a2473a7b8173d3fcb8c73d44eea37
[dpdk.git] / drivers / net / e1000 / igb_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <stdarg.h>
10
11 #include <rte_common.h>
12 #include <rte_interrupts.h>
13 #include <rte_byteorder.h>
14 #include <rte_log.h>
15 #include <rte_debug.h>
16 #include <rte_pci.h>
17 #include <rte_bus_pci.h>
18 #include <rte_ether.h>
19 #include <rte_ethdev.h>
20 #include <rte_ethdev_pci.h>
21 #include <rte_memory.h>
22 #include <rte_eal.h>
23 #include <rte_atomic.h>
24 #include <rte_malloc.h>
25 #include <rte_dev.h>
26
27 #include "e1000_logs.h"
28 #include "base/e1000_api.h"
29 #include "e1000_ethdev.h"
30 #include "igb_regs.h"
31
32 /*
33  * Default values for port configuration
34  */
35 #define IGB_DEFAULT_RX_FREE_THRESH  32
36
37 #define IGB_DEFAULT_RX_PTHRESH      ((hw->mac.type == e1000_i354) ? 12 : 8)
38 #define IGB_DEFAULT_RX_HTHRESH      8
39 #define IGB_DEFAULT_RX_WTHRESH      ((hw->mac.type == e1000_82576) ? 1 : 4)
40
41 #define IGB_DEFAULT_TX_PTHRESH      ((hw->mac.type == e1000_i354) ? 20 : 8)
42 #define IGB_DEFAULT_TX_HTHRESH      1
43 #define IGB_DEFAULT_TX_WTHRESH      ((hw->mac.type == e1000_82576) ? 1 : 16)
44
45 #define IGB_HKEY_MAX_INDEX 10
46
47 /* Bit shift and mask */
48 #define IGB_4_BIT_WIDTH  (CHAR_BIT / 2)
49 #define IGB_4_BIT_MASK   RTE_LEN2MASK(IGB_4_BIT_WIDTH, uint8_t)
50 #define IGB_8_BIT_WIDTH  CHAR_BIT
51 #define IGB_8_BIT_MASK   UINT8_MAX
52
53 /* Additional timesync values. */
54 #define E1000_CYCLECOUNTER_MASK      0xffffffffffffffffULL
55 #define E1000_ETQF_FILTER_1588       3
56 #define IGB_82576_TSYNC_SHIFT        16
57 #define E1000_INCPERIOD_82576        (1 << E1000_TIMINCA_16NS_SHIFT)
58 #define E1000_INCVALUE_82576         (16 << IGB_82576_TSYNC_SHIFT)
59 #define E1000_TSAUXC_DISABLE_SYSTIME 0x80000000
60
61 #define E1000_VTIVAR_MISC                0x01740
62 #define E1000_VTIVAR_MISC_MASK           0xFF
63 #define E1000_VTIVAR_VALID               0x80
64 #define E1000_VTIVAR_MISC_MAILBOX        0
65 #define E1000_VTIVAR_MISC_INTR_MASK      0x3
66
67 /* External VLAN Enable bit mask */
68 #define E1000_CTRL_EXT_EXT_VLAN      (1 << 26)
69
70 /* External VLAN Ether Type bit mask and shift */
71 #define E1000_VET_VET_EXT            0xFFFF0000
72 #define E1000_VET_VET_EXT_SHIFT      16
73
74 static int  eth_igb_configure(struct rte_eth_dev *dev);
75 static int  eth_igb_start(struct rte_eth_dev *dev);
76 static void eth_igb_stop(struct rte_eth_dev *dev);
77 static int  eth_igb_dev_set_link_up(struct rte_eth_dev *dev);
78 static int  eth_igb_dev_set_link_down(struct rte_eth_dev *dev);
79 static void eth_igb_close(struct rte_eth_dev *dev);
80 static void eth_igb_promiscuous_enable(struct rte_eth_dev *dev);
81 static void eth_igb_promiscuous_disable(struct rte_eth_dev *dev);
82 static void eth_igb_allmulticast_enable(struct rte_eth_dev *dev);
83 static void eth_igb_allmulticast_disable(struct rte_eth_dev *dev);
84 static int  eth_igb_link_update(struct rte_eth_dev *dev,
85                                 int wait_to_complete);
86 static int eth_igb_stats_get(struct rte_eth_dev *dev,
87                                 struct rte_eth_stats *rte_stats);
88 static int eth_igb_xstats_get(struct rte_eth_dev *dev,
89                               struct rte_eth_xstat *xstats, unsigned n);
90 static int eth_igb_xstats_get_by_id(struct rte_eth_dev *dev,
91                 const uint64_t *ids,
92                 uint64_t *values, unsigned int n);
93 static int eth_igb_xstats_get_names(struct rte_eth_dev *dev,
94                                     struct rte_eth_xstat_name *xstats_names,
95                                     unsigned int size);
96 static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev,
97                 struct rte_eth_xstat_name *xstats_names, const uint64_t *ids,
98                 unsigned int limit);
99 static void eth_igb_stats_reset(struct rte_eth_dev *dev);
100 static void eth_igb_xstats_reset(struct rte_eth_dev *dev);
101 static int eth_igb_fw_version_get(struct rte_eth_dev *dev,
102                                    char *fw_version, size_t fw_size);
103 static void eth_igb_infos_get(struct rte_eth_dev *dev,
104                               struct rte_eth_dev_info *dev_info);
105 static const uint32_t *eth_igb_supported_ptypes_get(struct rte_eth_dev *dev);
106 static void eth_igbvf_infos_get(struct rte_eth_dev *dev,
107                                 struct rte_eth_dev_info *dev_info);
108 static int  eth_igb_flow_ctrl_get(struct rte_eth_dev *dev,
109                                 struct rte_eth_fc_conf *fc_conf);
110 static int  eth_igb_flow_ctrl_set(struct rte_eth_dev *dev,
111                                 struct rte_eth_fc_conf *fc_conf);
112 static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on);
113 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev);
114 static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev);
115 static int eth_igb_interrupt_action(struct rte_eth_dev *dev,
116                                     struct rte_intr_handle *handle);
117 static void eth_igb_interrupt_handler(void *param);
118 static int  igb_hardware_init(struct e1000_hw *hw);
119 static void igb_hw_control_acquire(struct e1000_hw *hw);
120 static void igb_hw_control_release(struct e1000_hw *hw);
121 static void igb_init_manageability(struct e1000_hw *hw);
122 static void igb_release_manageability(struct e1000_hw *hw);
123
124 static int  eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
125
126 static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev,
127                 uint16_t vlan_id, int on);
128 static int eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
129                                  enum rte_vlan_type vlan_type,
130                                  uint16_t tpid_id);
131 static int eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask);
132
133 static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev);
134 static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev);
135 static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev);
136 static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev);
137 static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev);
138 static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev);
139
140 static int eth_igb_led_on(struct rte_eth_dev *dev);
141 static int eth_igb_led_off(struct rte_eth_dev *dev);
142
143 static void igb_intr_disable(struct e1000_hw *hw);
144 static int  igb_get_rx_buffer_size(struct e1000_hw *hw);
145 static int eth_igb_rar_set(struct rte_eth_dev *dev,
146                            struct ether_addr *mac_addr,
147                            uint32_t index, uint32_t pool);
148 static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index);
149 static void eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
150                 struct ether_addr *addr);
151
152 static void igbvf_intr_disable(struct e1000_hw *hw);
153 static int igbvf_dev_configure(struct rte_eth_dev *dev);
154 static int igbvf_dev_start(struct rte_eth_dev *dev);
155 static void igbvf_dev_stop(struct rte_eth_dev *dev);
156 static void igbvf_dev_close(struct rte_eth_dev *dev);
157 static void igbvf_promiscuous_enable(struct rte_eth_dev *dev);
158 static void igbvf_promiscuous_disable(struct rte_eth_dev *dev);
159 static void igbvf_allmulticast_enable(struct rte_eth_dev *dev);
160 static void igbvf_allmulticast_disable(struct rte_eth_dev *dev);
161 static int eth_igbvf_link_update(struct e1000_hw *hw);
162 static int eth_igbvf_stats_get(struct rte_eth_dev *dev,
163                                 struct rte_eth_stats *rte_stats);
164 static int eth_igbvf_xstats_get(struct rte_eth_dev *dev,
165                                 struct rte_eth_xstat *xstats, unsigned n);
166 static int eth_igbvf_xstats_get_names(struct rte_eth_dev *dev,
167                                       struct rte_eth_xstat_name *xstats_names,
168                                       unsigned limit);
169 static void eth_igbvf_stats_reset(struct rte_eth_dev *dev);
170 static int igbvf_vlan_filter_set(struct rte_eth_dev *dev,
171                 uint16_t vlan_id, int on);
172 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on);
173 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on);
174 static void igbvf_default_mac_addr_set(struct rte_eth_dev *dev,
175                 struct ether_addr *addr);
176 static int igbvf_get_reg_length(struct rte_eth_dev *dev);
177 static int igbvf_get_regs(struct rte_eth_dev *dev,
178                 struct rte_dev_reg_info *regs);
179
180 static int eth_igb_rss_reta_update(struct rte_eth_dev *dev,
181                                    struct rte_eth_rss_reta_entry64 *reta_conf,
182                                    uint16_t reta_size);
183 static int eth_igb_rss_reta_query(struct rte_eth_dev *dev,
184                                   struct rte_eth_rss_reta_entry64 *reta_conf,
185                                   uint16_t reta_size);
186
187 static int eth_igb_syn_filter_get(struct rte_eth_dev *dev,
188                         struct rte_eth_syn_filter *filter);
189 static int eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
190                         enum rte_filter_op filter_op,
191                         void *arg);
192 static int igb_add_2tuple_filter(struct rte_eth_dev *dev,
193                         struct rte_eth_ntuple_filter *ntuple_filter);
194 static int igb_remove_2tuple_filter(struct rte_eth_dev *dev,
195                         struct rte_eth_ntuple_filter *ntuple_filter);
196 static int eth_igb_get_flex_filter(struct rte_eth_dev *dev,
197                         struct rte_eth_flex_filter *filter);
198 static int eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
199                         enum rte_filter_op filter_op,
200                         void *arg);
201 static int igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
202                         struct rte_eth_ntuple_filter *ntuple_filter);
203 static int igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
204                         struct rte_eth_ntuple_filter *ntuple_filter);
205 static int igb_get_ntuple_filter(struct rte_eth_dev *dev,
206                         struct rte_eth_ntuple_filter *filter);
207 static int igb_ntuple_filter_handle(struct rte_eth_dev *dev,
208                                 enum rte_filter_op filter_op,
209                                 void *arg);
210 static int igb_ethertype_filter_handle(struct rte_eth_dev *dev,
211                                 enum rte_filter_op filter_op,
212                                 void *arg);
213 static int igb_get_ethertype_filter(struct rte_eth_dev *dev,
214                         struct rte_eth_ethertype_filter *filter);
215 static int eth_igb_filter_ctrl(struct rte_eth_dev *dev,
216                      enum rte_filter_type filter_type,
217                      enum rte_filter_op filter_op,
218                      void *arg);
219 static int eth_igb_get_reg_length(struct rte_eth_dev *dev);
220 static int eth_igb_get_regs(struct rte_eth_dev *dev,
221                 struct rte_dev_reg_info *regs);
222 static int eth_igb_get_eeprom_length(struct rte_eth_dev *dev);
223 static int eth_igb_get_eeprom(struct rte_eth_dev *dev,
224                 struct rte_dev_eeprom_info *eeprom);
225 static int eth_igb_set_eeprom(struct rte_eth_dev *dev,
226                 struct rte_dev_eeprom_info *eeprom);
227 static int eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
228                                     struct ether_addr *mc_addr_set,
229                                     uint32_t nb_mc_addr);
230 static int igb_timesync_enable(struct rte_eth_dev *dev);
231 static int igb_timesync_disable(struct rte_eth_dev *dev);
232 static int igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
233                                           struct timespec *timestamp,
234                                           uint32_t flags);
235 static int igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
236                                           struct timespec *timestamp);
237 static int igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta);
238 static int igb_timesync_read_time(struct rte_eth_dev *dev,
239                                   struct timespec *timestamp);
240 static int igb_timesync_write_time(struct rte_eth_dev *dev,
241                                    const struct timespec *timestamp);
242 static int eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev,
243                                         uint16_t queue_id);
244 static int eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev,
245                                          uint16_t queue_id);
246 static void eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
247                                        uint8_t queue, uint8_t msix_vector);
248 static void eth_igb_write_ivar(struct e1000_hw *hw, uint8_t msix_vector,
249                                uint8_t index, uint8_t offset);
250 static void eth_igb_configure_msix_intr(struct rte_eth_dev *dev);
251 static void eth_igbvf_interrupt_handler(void *param);
252 static void igbvf_mbx_process(struct rte_eth_dev *dev);
253 static int igb_filter_restore(struct rte_eth_dev *dev);
254
255 /*
256  * Define VF Stats MACRO for Non "cleared on read" register
257  */
258 #define UPDATE_VF_STAT(reg, last, cur)            \
259 {                                                 \
260         u32 latest = E1000_READ_REG(hw, reg);     \
261         cur += (latest - last) & UINT_MAX;        \
262         last = latest;                            \
263 }
264
265 #define IGB_FC_PAUSE_TIME 0x0680
266 #define IGB_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
267 #define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
268
269 #define IGBVF_PMD_NAME "rte_igbvf_pmd"     /* PMD name */
270
271 static enum e1000_fc_mode igb_fc_setting = e1000_fc_full;
272
273 /*
274  * The set of PCI devices this driver supports
275  */
276 static const struct rte_pci_id pci_id_igb_map[] = {
277         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576) },
278         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_FIBER) },
279         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES) },
280         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER) },
281         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER_ET2) },
282         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS) },
283         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS_SERDES) },
284         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES_QUAD) },
285
286         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_COPPER) },
287         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_FIBER_SERDES) },
288         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575GB_QUAD_COPPER) },
289
290         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER) },
291         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_FIBER) },
292         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SERDES) },
293         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SGMII) },
294         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER_DUAL) },
295         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_QUAD_FIBER) },
296
297         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_COPPER) },
298         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_FIBER) },
299         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SERDES) },
300         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SGMII) },
301         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_DA4) },
302         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER) },
303         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_OEM1) },
304         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_IT) },
305         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_FIBER) },
306         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES) },
307         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SGMII) },
308         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_FLASHLESS) },
309         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES_FLASHLESS) },
310         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I211_COPPER) },
311         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
312         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_SGMII) },
313         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
314         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SGMII) },
315         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SERDES) },
316         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_BACKPLANE) },
317         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SFP) },
318         { .vendor_id = 0, /* sentinel */ },
319 };
320
321 /*
322  * The set of PCI devices this driver supports (for 82576&I350 VF)
323  */
324 static const struct rte_pci_id pci_id_igbvf_map[] = {
325         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF) },
326         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF_HV) },
327         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF) },
328         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF_HV) },
329         { .vendor_id = 0, /* sentinel */ },
330 };
331
332 static const struct rte_eth_desc_lim rx_desc_lim = {
333         .nb_max = E1000_MAX_RING_DESC,
334         .nb_min = E1000_MIN_RING_DESC,
335         .nb_align = IGB_RXD_ALIGN,
336 };
337
338 static const struct rte_eth_desc_lim tx_desc_lim = {
339         .nb_max = E1000_MAX_RING_DESC,
340         .nb_min = E1000_MIN_RING_DESC,
341         .nb_align = IGB_RXD_ALIGN,
342         .nb_seg_max = IGB_TX_MAX_SEG,
343         .nb_mtu_seg_max = IGB_TX_MAX_MTU_SEG,
344 };
345
346 static const struct eth_dev_ops eth_igb_ops = {
347         .dev_configure        = eth_igb_configure,
348         .dev_start            = eth_igb_start,
349         .dev_stop             = eth_igb_stop,
350         .dev_set_link_up      = eth_igb_dev_set_link_up,
351         .dev_set_link_down    = eth_igb_dev_set_link_down,
352         .dev_close            = eth_igb_close,
353         .promiscuous_enable   = eth_igb_promiscuous_enable,
354         .promiscuous_disable  = eth_igb_promiscuous_disable,
355         .allmulticast_enable  = eth_igb_allmulticast_enable,
356         .allmulticast_disable = eth_igb_allmulticast_disable,
357         .link_update          = eth_igb_link_update,
358         .stats_get            = eth_igb_stats_get,
359         .xstats_get           = eth_igb_xstats_get,
360         .xstats_get_by_id     = eth_igb_xstats_get_by_id,
361         .xstats_get_names_by_id = eth_igb_xstats_get_names_by_id,
362         .xstats_get_names     = eth_igb_xstats_get_names,
363         .stats_reset          = eth_igb_stats_reset,
364         .xstats_reset         = eth_igb_xstats_reset,
365         .fw_version_get       = eth_igb_fw_version_get,
366         .dev_infos_get        = eth_igb_infos_get,
367         .dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
368         .mtu_set              = eth_igb_mtu_set,
369         .vlan_filter_set      = eth_igb_vlan_filter_set,
370         .vlan_tpid_set        = eth_igb_vlan_tpid_set,
371         .vlan_offload_set     = eth_igb_vlan_offload_set,
372         .rx_queue_setup       = eth_igb_rx_queue_setup,
373         .rx_queue_intr_enable = eth_igb_rx_queue_intr_enable,
374         .rx_queue_intr_disable = eth_igb_rx_queue_intr_disable,
375         .rx_queue_release     = eth_igb_rx_queue_release,
376         .rx_queue_count       = eth_igb_rx_queue_count,
377         .rx_descriptor_done   = eth_igb_rx_descriptor_done,
378         .rx_descriptor_status = eth_igb_rx_descriptor_status,
379         .tx_descriptor_status = eth_igb_tx_descriptor_status,
380         .tx_queue_setup       = eth_igb_tx_queue_setup,
381         .tx_queue_release     = eth_igb_tx_queue_release,
382         .tx_done_cleanup      = eth_igb_tx_done_cleanup,
383         .dev_led_on           = eth_igb_led_on,
384         .dev_led_off          = eth_igb_led_off,
385         .flow_ctrl_get        = eth_igb_flow_ctrl_get,
386         .flow_ctrl_set        = eth_igb_flow_ctrl_set,
387         .mac_addr_add         = eth_igb_rar_set,
388         .mac_addr_remove      = eth_igb_rar_clear,
389         .mac_addr_set         = eth_igb_default_mac_addr_set,
390         .reta_update          = eth_igb_rss_reta_update,
391         .reta_query           = eth_igb_rss_reta_query,
392         .rss_hash_update      = eth_igb_rss_hash_update,
393         .rss_hash_conf_get    = eth_igb_rss_hash_conf_get,
394         .filter_ctrl          = eth_igb_filter_ctrl,
395         .set_mc_addr_list     = eth_igb_set_mc_addr_list,
396         .rxq_info_get         = igb_rxq_info_get,
397         .txq_info_get         = igb_txq_info_get,
398         .timesync_enable      = igb_timesync_enable,
399         .timesync_disable     = igb_timesync_disable,
400         .timesync_read_rx_timestamp = igb_timesync_read_rx_timestamp,
401         .timesync_read_tx_timestamp = igb_timesync_read_tx_timestamp,
402         .get_reg              = eth_igb_get_regs,
403         .get_eeprom_length    = eth_igb_get_eeprom_length,
404         .get_eeprom           = eth_igb_get_eeprom,
405         .set_eeprom           = eth_igb_set_eeprom,
406         .timesync_adjust_time = igb_timesync_adjust_time,
407         .timesync_read_time   = igb_timesync_read_time,
408         .timesync_write_time  = igb_timesync_write_time,
409 };
410
411 /*
412  * dev_ops for virtual function, bare necessities for basic vf
413  * operation have been implemented
414  */
415 static const struct eth_dev_ops igbvf_eth_dev_ops = {
416         .dev_configure        = igbvf_dev_configure,
417         .dev_start            = igbvf_dev_start,
418         .dev_stop             = igbvf_dev_stop,
419         .dev_close            = igbvf_dev_close,
420         .promiscuous_enable   = igbvf_promiscuous_enable,
421         .promiscuous_disable  = igbvf_promiscuous_disable,
422         .allmulticast_enable  = igbvf_allmulticast_enable,
423         .allmulticast_disable = igbvf_allmulticast_disable,
424         .link_update          = eth_igb_link_update,
425         .stats_get            = eth_igbvf_stats_get,
426         .xstats_get           = eth_igbvf_xstats_get,
427         .xstats_get_names     = eth_igbvf_xstats_get_names,
428         .stats_reset          = eth_igbvf_stats_reset,
429         .xstats_reset         = eth_igbvf_stats_reset,
430         .vlan_filter_set      = igbvf_vlan_filter_set,
431         .dev_infos_get        = eth_igbvf_infos_get,
432         .dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
433         .rx_queue_setup       = eth_igb_rx_queue_setup,
434         .rx_queue_release     = eth_igb_rx_queue_release,
435         .tx_queue_setup       = eth_igb_tx_queue_setup,
436         .tx_queue_release     = eth_igb_tx_queue_release,
437         .set_mc_addr_list     = eth_igb_set_mc_addr_list,
438         .rxq_info_get         = igb_rxq_info_get,
439         .txq_info_get         = igb_txq_info_get,
440         .mac_addr_set         = igbvf_default_mac_addr_set,
441         .get_reg              = igbvf_get_regs,
442 };
443
444 /* store statistics names and its offset in stats structure */
445 struct rte_igb_xstats_name_off {
446         char name[RTE_ETH_XSTATS_NAME_SIZE];
447         unsigned offset;
448 };
449
450 static const struct rte_igb_xstats_name_off rte_igb_stats_strings[] = {
451         {"rx_crc_errors", offsetof(struct e1000_hw_stats, crcerrs)},
452         {"rx_align_errors", offsetof(struct e1000_hw_stats, algnerrc)},
453         {"rx_symbol_errors", offsetof(struct e1000_hw_stats, symerrs)},
454         {"rx_missed_packets", offsetof(struct e1000_hw_stats, mpc)},
455         {"tx_single_collision_packets", offsetof(struct e1000_hw_stats, scc)},
456         {"tx_multiple_collision_packets", offsetof(struct e1000_hw_stats, mcc)},
457         {"tx_excessive_collision_packets", offsetof(struct e1000_hw_stats,
458                 ecol)},
459         {"tx_late_collisions", offsetof(struct e1000_hw_stats, latecol)},
460         {"tx_total_collisions", offsetof(struct e1000_hw_stats, colc)},
461         {"tx_deferred_packets", offsetof(struct e1000_hw_stats, dc)},
462         {"tx_no_carrier_sense_packets", offsetof(struct e1000_hw_stats, tncrs)},
463         {"rx_carrier_ext_errors", offsetof(struct e1000_hw_stats, cexterr)},
464         {"rx_length_errors", offsetof(struct e1000_hw_stats, rlec)},
465         {"rx_xon_packets", offsetof(struct e1000_hw_stats, xonrxc)},
466         {"tx_xon_packets", offsetof(struct e1000_hw_stats, xontxc)},
467         {"rx_xoff_packets", offsetof(struct e1000_hw_stats, xoffrxc)},
468         {"tx_xoff_packets", offsetof(struct e1000_hw_stats, xofftxc)},
469         {"rx_flow_control_unsupported_packets", offsetof(struct e1000_hw_stats,
470                 fcruc)},
471         {"rx_size_64_packets", offsetof(struct e1000_hw_stats, prc64)},
472         {"rx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, prc127)},
473         {"rx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, prc255)},
474         {"rx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, prc511)},
475         {"rx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
476                 prc1023)},
477         {"rx_size_1024_to_max_packets", offsetof(struct e1000_hw_stats,
478                 prc1522)},
479         {"rx_broadcast_packets", offsetof(struct e1000_hw_stats, bprc)},
480         {"rx_multicast_packets", offsetof(struct e1000_hw_stats, mprc)},
481         {"rx_undersize_errors", offsetof(struct e1000_hw_stats, ruc)},
482         {"rx_fragment_errors", offsetof(struct e1000_hw_stats, rfc)},
483         {"rx_oversize_errors", offsetof(struct e1000_hw_stats, roc)},
484         {"rx_jabber_errors", offsetof(struct e1000_hw_stats, rjc)},
485         {"rx_management_packets", offsetof(struct e1000_hw_stats, mgprc)},
486         {"rx_management_dropped", offsetof(struct e1000_hw_stats, mgpdc)},
487         {"tx_management_packets", offsetof(struct e1000_hw_stats, mgptc)},
488         {"rx_total_packets", offsetof(struct e1000_hw_stats, tpr)},
489         {"tx_total_packets", offsetof(struct e1000_hw_stats, tpt)},
490         {"rx_total_bytes", offsetof(struct e1000_hw_stats, tor)},
491         {"tx_total_bytes", offsetof(struct e1000_hw_stats, tot)},
492         {"tx_size_64_packets", offsetof(struct e1000_hw_stats, ptc64)},
493         {"tx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, ptc127)},
494         {"tx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, ptc255)},
495         {"tx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, ptc511)},
496         {"tx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
497                 ptc1023)},
498         {"tx_size_1023_to_max_packets", offsetof(struct e1000_hw_stats,
499                 ptc1522)},
500         {"tx_multicast_packets", offsetof(struct e1000_hw_stats, mptc)},
501         {"tx_broadcast_packets", offsetof(struct e1000_hw_stats, bptc)},
502         {"tx_tso_packets", offsetof(struct e1000_hw_stats, tsctc)},
503         {"tx_tso_errors", offsetof(struct e1000_hw_stats, tsctfc)},
504         {"rx_sent_to_host_packets", offsetof(struct e1000_hw_stats, rpthc)},
505         {"tx_sent_by_host_packets", offsetof(struct e1000_hw_stats, hgptc)},
506         {"rx_code_violation_packets", offsetof(struct e1000_hw_stats, scvpc)},
507
508         {"interrupt_assert_count", offsetof(struct e1000_hw_stats, iac)},
509 };
510
511 #define IGB_NB_XSTATS (sizeof(rte_igb_stats_strings) / \
512                 sizeof(rte_igb_stats_strings[0]))
513
514 static const struct rte_igb_xstats_name_off rte_igbvf_stats_strings[] = {
515         {"rx_multicast_packets", offsetof(struct e1000_vf_stats, mprc)},
516         {"rx_good_loopback_packets", offsetof(struct e1000_vf_stats, gprlbc)},
517         {"tx_good_loopback_packets", offsetof(struct e1000_vf_stats, gptlbc)},
518         {"rx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gorlbc)},
519         {"tx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gotlbc)},
520 };
521
522 #define IGBVF_NB_XSTATS (sizeof(rte_igbvf_stats_strings) / \
523                 sizeof(rte_igbvf_stats_strings[0]))
524
525 /**
526  * Atomically reads the link status information from global
527  * structure rte_eth_dev.
528  *
529  * @param dev
530  *   - Pointer to the structure rte_eth_dev to read from.
531  *   - Pointer to the buffer to be saved with the link status.
532  *
533  * @return
534  *   - On success, zero.
535  *   - On failure, negative value.
536  */
537 static inline int
538 rte_igb_dev_atomic_read_link_status(struct rte_eth_dev *dev,
539                                 struct rte_eth_link *link)
540 {
541         struct rte_eth_link *dst = link;
542         struct rte_eth_link *src = &(dev->data->dev_link);
543
544         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
545                                         *(uint64_t *)src) == 0)
546                 return -1;
547
548         return 0;
549 }
550
551 /**
552  * Atomically writes the link status information into global
553  * structure rte_eth_dev.
554  *
555  * @param dev
556  *   - Pointer to the structure rte_eth_dev to read from.
557  *   - Pointer to the buffer to be saved with the link status.
558  *
559  * @return
560  *   - On success, zero.
561  *   - On failure, negative value.
562  */
563 static inline int
564 rte_igb_dev_atomic_write_link_status(struct rte_eth_dev *dev,
565                                 struct rte_eth_link *link)
566 {
567         struct rte_eth_link *dst = &(dev->data->dev_link);
568         struct rte_eth_link *src = link;
569
570         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
571                                         *(uint64_t *)src) == 0)
572                 return -1;
573
574         return 0;
575 }
576
577 static inline void
578 igb_intr_enable(struct rte_eth_dev *dev)
579 {
580         struct e1000_interrupt *intr =
581                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
582         struct e1000_hw *hw =
583                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
584
585         E1000_WRITE_REG(hw, E1000_IMS, intr->mask);
586         E1000_WRITE_FLUSH(hw);
587 }
588
589 static void
590 igb_intr_disable(struct e1000_hw *hw)
591 {
592         E1000_WRITE_REG(hw, E1000_IMC, ~0);
593         E1000_WRITE_FLUSH(hw);
594 }
595
596 static inline void
597 igbvf_intr_enable(struct rte_eth_dev *dev)
598 {
599         struct e1000_hw *hw =
600                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
601
602         /* only for mailbox */
603         E1000_WRITE_REG(hw, E1000_EIAM, 1 << E1000_VTIVAR_MISC_MAILBOX);
604         E1000_WRITE_REG(hw, E1000_EIAC, 1 << E1000_VTIVAR_MISC_MAILBOX);
605         E1000_WRITE_REG(hw, E1000_EIMS, 1 << E1000_VTIVAR_MISC_MAILBOX);
606         E1000_WRITE_FLUSH(hw);
607 }
608
609 /* only for mailbox now. If RX/TX needed, should extend this function.  */
610 static void
611 igbvf_set_ivar_map(struct e1000_hw *hw, uint8_t msix_vector)
612 {
613         uint32_t tmp = 0;
614
615         /* mailbox */
616         tmp |= (msix_vector & E1000_VTIVAR_MISC_INTR_MASK);
617         tmp |= E1000_VTIVAR_VALID;
618         E1000_WRITE_REG(hw, E1000_VTIVAR_MISC, tmp);
619 }
620
621 static void
622 eth_igbvf_configure_msix_intr(struct rte_eth_dev *dev)
623 {
624         struct e1000_hw *hw =
625                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
626
627         /* Configure VF other cause ivar */
628         igbvf_set_ivar_map(hw, E1000_VTIVAR_MISC_MAILBOX);
629 }
630
631 static inline int32_t
632 igb_pf_reset_hw(struct e1000_hw *hw)
633 {
634         uint32_t ctrl_ext;
635         int32_t status;
636
637         status = e1000_reset_hw(hw);
638
639         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
640         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
641         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
642         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
643         E1000_WRITE_FLUSH(hw);
644
645         return status;
646 }
647
648 static void
649 igb_identify_hardware(struct rte_eth_dev *dev, struct rte_pci_device *pci_dev)
650 {
651         struct e1000_hw *hw =
652                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
653
654
655         hw->vendor_id = pci_dev->id.vendor_id;
656         hw->device_id = pci_dev->id.device_id;
657         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
658         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
659
660         e1000_set_mac_type(hw);
661
662         /* need to check if it is a vf device below */
663 }
664
665 static int
666 igb_reset_swfw_lock(struct e1000_hw *hw)
667 {
668         int ret_val;
669
670         /*
671          * Do mac ops initialization manually here, since we will need
672          * some function pointers set by this call.
673          */
674         ret_val = e1000_init_mac_params(hw);
675         if (ret_val)
676                 return ret_val;
677
678         /*
679          * SMBI lock should not fail in this early stage. If this is the case,
680          * it is due to an improper exit of the application.
681          * So force the release of the faulty lock.
682          */
683         if (e1000_get_hw_semaphore_generic(hw) < 0) {
684                 PMD_DRV_LOG(DEBUG, "SMBI lock released");
685         }
686         e1000_put_hw_semaphore_generic(hw);
687
688         if (hw->mac.ops.acquire_swfw_sync != NULL) {
689                 uint16_t mask;
690
691                 /*
692                  * Phy lock should not fail in this early stage. If this is the case,
693                  * it is due to an improper exit of the application.
694                  * So force the release of the faulty lock.
695                  */
696                 mask = E1000_SWFW_PHY0_SM << hw->bus.func;
697                 if (hw->bus.func > E1000_FUNC_1)
698                         mask <<= 2;
699                 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
700                         PMD_DRV_LOG(DEBUG, "SWFW phy%d lock released",
701                                     hw->bus.func);
702                 }
703                 hw->mac.ops.release_swfw_sync(hw, mask);
704
705                 /*
706                  * This one is more tricky since it is common to all ports; but
707                  * swfw_sync retries last long enough (1s) to be almost sure that if
708                  * lock can not be taken it is due to an improper lock of the
709                  * semaphore.
710                  */
711                 mask = E1000_SWFW_EEP_SM;
712                 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
713                         PMD_DRV_LOG(DEBUG, "SWFW common locks released");
714                 }
715                 hw->mac.ops.release_swfw_sync(hw, mask);
716         }
717
718         return E1000_SUCCESS;
719 }
720
721 /* Remove all ntuple filters of the device */
722 static int igb_ntuple_filter_uninit(struct rte_eth_dev *eth_dev)
723 {
724         struct e1000_filter_info *filter_info =
725                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
726         struct e1000_5tuple_filter *p_5tuple;
727         struct e1000_2tuple_filter *p_2tuple;
728
729         while ((p_5tuple = TAILQ_FIRST(&filter_info->fivetuple_list))) {
730                 TAILQ_REMOVE(&filter_info->fivetuple_list,
731                         p_5tuple, entries);
732                         rte_free(p_5tuple);
733         }
734         filter_info->fivetuple_mask = 0;
735         while ((p_2tuple = TAILQ_FIRST(&filter_info->twotuple_list))) {
736                 TAILQ_REMOVE(&filter_info->twotuple_list,
737                         p_2tuple, entries);
738                         rte_free(p_2tuple);
739         }
740         filter_info->twotuple_mask = 0;
741
742         return 0;
743 }
744
745 /* Remove all flex filters of the device */
746 static int igb_flex_filter_uninit(struct rte_eth_dev *eth_dev)
747 {
748         struct e1000_filter_info *filter_info =
749                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
750         struct e1000_flex_filter *p_flex;
751
752         while ((p_flex = TAILQ_FIRST(&filter_info->flex_list))) {
753                 TAILQ_REMOVE(&filter_info->flex_list, p_flex, entries);
754                 rte_free(p_flex);
755         }
756         filter_info->flex_mask = 0;
757
758         return 0;
759 }
760
761 static int
762 eth_igb_dev_init(struct rte_eth_dev *eth_dev)
763 {
764         int error = 0;
765         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
766         struct e1000_hw *hw =
767                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
768         struct e1000_vfta * shadow_vfta =
769                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
770         struct e1000_filter_info *filter_info =
771                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
772         struct e1000_adapter *adapter =
773                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
774
775         uint32_t ctrl_ext;
776
777         eth_dev->dev_ops = &eth_igb_ops;
778         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
779         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
780         eth_dev->tx_pkt_prepare = &eth_igb_prep_pkts;
781
782         /* for secondary processes, we don't initialise any further as primary
783          * has already done this work. Only check we don't need a different
784          * RX function */
785         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
786                 if (eth_dev->data->scattered_rx)
787                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
788                 return 0;
789         }
790
791         rte_eth_copy_pci_info(eth_dev, pci_dev);
792
793         hw->hw_addr= (void *)pci_dev->mem_resource[0].addr;
794
795         igb_identify_hardware(eth_dev, pci_dev);
796         if (e1000_setup_init_funcs(hw, FALSE) != E1000_SUCCESS) {
797                 error = -EIO;
798                 goto err_late;
799         }
800
801         e1000_get_bus_info(hw);
802
803         /* Reset any pending lock */
804         if (igb_reset_swfw_lock(hw) != E1000_SUCCESS) {
805                 error = -EIO;
806                 goto err_late;
807         }
808
809         /* Finish initialization */
810         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) {
811                 error = -EIO;
812                 goto err_late;
813         }
814
815         hw->mac.autoneg = 1;
816         hw->phy.autoneg_wait_to_complete = 0;
817         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
818
819         /* Copper options */
820         if (hw->phy.media_type == e1000_media_type_copper) {
821                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
822                 hw->phy.disable_polarity_correction = 0;
823                 hw->phy.ms_type = e1000_ms_hw_default;
824         }
825
826         /*
827          * Start from a known state, this is important in reading the nvm
828          * and mac from that.
829          */
830         igb_pf_reset_hw(hw);
831
832         /* Make sure we have a good EEPROM before we read from it */
833         if (e1000_validate_nvm_checksum(hw) < 0) {
834                 /*
835                  * Some PCI-E parts fail the first check due to
836                  * the link being in sleep state, call it again,
837                  * if it fails a second time its a real issue.
838                  */
839                 if (e1000_validate_nvm_checksum(hw) < 0) {
840                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
841                         error = -EIO;
842                         goto err_late;
843                 }
844         }
845
846         /* Read the permanent MAC address out of the EEPROM */
847         if (e1000_read_mac_addr(hw) != 0) {
848                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
849                 error = -EIO;
850                 goto err_late;
851         }
852
853         /* Allocate memory for storing MAC addresses */
854         eth_dev->data->mac_addrs = rte_zmalloc("e1000",
855                 ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0);
856         if (eth_dev->data->mac_addrs == NULL) {
857                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
858                                                 "store MAC addresses",
859                                 ETHER_ADDR_LEN * hw->mac.rar_entry_count);
860                 error = -ENOMEM;
861                 goto err_late;
862         }
863
864         /* Copy the permanent MAC address */
865         ether_addr_copy((struct ether_addr *)hw->mac.addr, &eth_dev->data->mac_addrs[0]);
866
867         /* initialize the vfta */
868         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
869
870         /* Now initialize the hardware */
871         if (igb_hardware_init(hw) != 0) {
872                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
873                 rte_free(eth_dev->data->mac_addrs);
874                 eth_dev->data->mac_addrs = NULL;
875                 error = -ENODEV;
876                 goto err_late;
877         }
878         hw->mac.get_link_status = 1;
879         adapter->stopped = 0;
880
881         /* Indicate SOL/IDER usage */
882         if (e1000_check_reset_block(hw) < 0) {
883                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to"
884                                         "SOL/IDER session");
885         }
886
887         /* initialize PF if max_vfs not zero */
888         igb_pf_host_init(eth_dev);
889
890         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
891         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
892         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
893         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
894         E1000_WRITE_FLUSH(hw);
895
896         PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
897                      eth_dev->data->port_id, pci_dev->id.vendor_id,
898                      pci_dev->id.device_id);
899
900         rte_intr_callback_register(&pci_dev->intr_handle,
901                                    eth_igb_interrupt_handler,
902                                    (void *)eth_dev);
903
904         /* enable uio/vfio intr/eventfd mapping */
905         rte_intr_enable(&pci_dev->intr_handle);
906
907         /* enable support intr */
908         igb_intr_enable(eth_dev);
909
910         /* initialize filter info */
911         memset(filter_info, 0,
912                sizeof(struct e1000_filter_info));
913
914         TAILQ_INIT(&filter_info->flex_list);
915         TAILQ_INIT(&filter_info->twotuple_list);
916         TAILQ_INIT(&filter_info->fivetuple_list);
917
918         TAILQ_INIT(&igb_filter_ntuple_list);
919         TAILQ_INIT(&igb_filter_ethertype_list);
920         TAILQ_INIT(&igb_filter_syn_list);
921         TAILQ_INIT(&igb_filter_flex_list);
922         TAILQ_INIT(&igb_filter_rss_list);
923         TAILQ_INIT(&igb_flow_list);
924
925         return 0;
926
927 err_late:
928         igb_hw_control_release(hw);
929
930         return error;
931 }
932
933 static int
934 eth_igb_dev_uninit(struct rte_eth_dev *eth_dev)
935 {
936         struct rte_pci_device *pci_dev;
937         struct rte_intr_handle *intr_handle;
938         struct e1000_hw *hw;
939         struct e1000_adapter *adapter =
940                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
941         struct e1000_filter_info *filter_info =
942                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
943
944         PMD_INIT_FUNC_TRACE();
945
946         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
947                 return -EPERM;
948
949         hw = E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
950         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
951         intr_handle = &pci_dev->intr_handle;
952
953         if (adapter->stopped == 0)
954                 eth_igb_close(eth_dev);
955
956         eth_dev->dev_ops = NULL;
957         eth_dev->rx_pkt_burst = NULL;
958         eth_dev->tx_pkt_burst = NULL;
959
960         /* Reset any pending lock */
961         igb_reset_swfw_lock(hw);
962
963         rte_free(eth_dev->data->mac_addrs);
964         eth_dev->data->mac_addrs = NULL;
965
966         /* uninitialize PF if max_vfs not zero */
967         igb_pf_host_uninit(eth_dev);
968
969         /* disable uio intr before callback unregister */
970         rte_intr_disable(intr_handle);
971         rte_intr_callback_unregister(intr_handle,
972                                      eth_igb_interrupt_handler, eth_dev);
973
974         /* clear the SYN filter info */
975         filter_info->syn_info = 0;
976
977         /* clear the ethertype filters info */
978         filter_info->ethertype_mask = 0;
979         memset(filter_info->ethertype_filters, 0,
980                 E1000_MAX_ETQF_FILTERS * sizeof(struct igb_ethertype_filter));
981
982         /* clear the rss filter info */
983         memset(&filter_info->rss_info, 0,
984                 sizeof(struct igb_rte_flow_rss_conf));
985
986         /* remove all ntuple filters of the device */
987         igb_ntuple_filter_uninit(eth_dev);
988
989         /* remove all flex filters of the device */
990         igb_flex_filter_uninit(eth_dev);
991
992         /* clear all the filters list */
993         igb_filterlist_flush(eth_dev);
994
995         return 0;
996 }
997
998 /*
999  * Virtual Function device init
1000  */
1001 static int
1002 eth_igbvf_dev_init(struct rte_eth_dev *eth_dev)
1003 {
1004         struct rte_pci_device *pci_dev;
1005         struct rte_intr_handle *intr_handle;
1006         struct e1000_adapter *adapter =
1007                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
1008         struct e1000_hw *hw =
1009                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
1010         int diag;
1011         struct ether_addr *perm_addr = (struct ether_addr *)hw->mac.perm_addr;
1012
1013         PMD_INIT_FUNC_TRACE();
1014
1015         eth_dev->dev_ops = &igbvf_eth_dev_ops;
1016         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
1017         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
1018         eth_dev->tx_pkt_prepare = &eth_igb_prep_pkts;
1019
1020         /* for secondary processes, we don't initialise any further as primary
1021          * has already done this work. Only check we don't need a different
1022          * RX function */
1023         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
1024                 if (eth_dev->data->scattered_rx)
1025                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
1026                 return 0;
1027         }
1028
1029         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1030         rte_eth_copy_pci_info(eth_dev, pci_dev);
1031
1032         hw->device_id = pci_dev->id.device_id;
1033         hw->vendor_id = pci_dev->id.vendor_id;
1034         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
1035         adapter->stopped = 0;
1036
1037         /* Initialize the shared code (base driver) */
1038         diag = e1000_setup_init_funcs(hw, TRUE);
1039         if (diag != 0) {
1040                 PMD_INIT_LOG(ERR, "Shared code init failed for igbvf: %d",
1041                         diag);
1042                 return -EIO;
1043         }
1044
1045         /* init_mailbox_params */
1046         hw->mbx.ops.init_params(hw);
1047
1048         /* Disable the interrupts for VF */
1049         igbvf_intr_disable(hw);
1050
1051         diag = hw->mac.ops.reset_hw(hw);
1052
1053         /* Allocate memory for storing MAC addresses */
1054         eth_dev->data->mac_addrs = rte_zmalloc("igbvf", ETHER_ADDR_LEN *
1055                 hw->mac.rar_entry_count, 0);
1056         if (eth_dev->data->mac_addrs == NULL) {
1057                 PMD_INIT_LOG(ERR,
1058                         "Failed to allocate %d bytes needed to store MAC "
1059                         "addresses",
1060                         ETHER_ADDR_LEN * hw->mac.rar_entry_count);
1061                 return -ENOMEM;
1062         }
1063
1064         /* Generate a random MAC address, if none was assigned by PF. */
1065         if (is_zero_ether_addr(perm_addr)) {
1066                 eth_random_addr(perm_addr->addr_bytes);
1067                 PMD_INIT_LOG(INFO, "\tVF MAC address not assigned by Host PF");
1068                 PMD_INIT_LOG(INFO, "\tAssign randomly generated MAC address "
1069                              "%02x:%02x:%02x:%02x:%02x:%02x",
1070                              perm_addr->addr_bytes[0],
1071                              perm_addr->addr_bytes[1],
1072                              perm_addr->addr_bytes[2],
1073                              perm_addr->addr_bytes[3],
1074                              perm_addr->addr_bytes[4],
1075                              perm_addr->addr_bytes[5]);
1076         }
1077
1078         diag = e1000_rar_set(hw, perm_addr->addr_bytes, 0);
1079         if (diag) {
1080                 rte_free(eth_dev->data->mac_addrs);
1081                 eth_dev->data->mac_addrs = NULL;
1082                 return diag;
1083         }
1084         /* Copy the permanent MAC address */
1085         ether_addr_copy((struct ether_addr *) hw->mac.perm_addr,
1086                         &eth_dev->data->mac_addrs[0]);
1087
1088         PMD_INIT_LOG(DEBUG, "port %d vendorID=0x%x deviceID=0x%x "
1089                      "mac.type=%s",
1090                      eth_dev->data->port_id, pci_dev->id.vendor_id,
1091                      pci_dev->id.device_id, "igb_mac_82576_vf");
1092
1093         intr_handle = &pci_dev->intr_handle;
1094         rte_intr_callback_register(intr_handle,
1095                                    eth_igbvf_interrupt_handler, eth_dev);
1096
1097         return 0;
1098 }
1099
1100 static int
1101 eth_igbvf_dev_uninit(struct rte_eth_dev *eth_dev)
1102 {
1103         struct e1000_adapter *adapter =
1104                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
1105         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1106
1107         PMD_INIT_FUNC_TRACE();
1108
1109         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1110                 return -EPERM;
1111
1112         if (adapter->stopped == 0)
1113                 igbvf_dev_close(eth_dev);
1114
1115         eth_dev->dev_ops = NULL;
1116         eth_dev->rx_pkt_burst = NULL;
1117         eth_dev->tx_pkt_burst = NULL;
1118
1119         rte_free(eth_dev->data->mac_addrs);
1120         eth_dev->data->mac_addrs = NULL;
1121
1122         /* disable uio intr before callback unregister */
1123         rte_intr_disable(&pci_dev->intr_handle);
1124         rte_intr_callback_unregister(&pci_dev->intr_handle,
1125                                      eth_igbvf_interrupt_handler,
1126                                      (void *)eth_dev);
1127
1128         return 0;
1129 }
1130
1131 static int eth_igb_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1132         struct rte_pci_device *pci_dev)
1133 {
1134         return rte_eth_dev_pci_generic_probe(pci_dev,
1135                 sizeof(struct e1000_adapter), eth_igb_dev_init);
1136 }
1137
1138 static int eth_igb_pci_remove(struct rte_pci_device *pci_dev)
1139 {
1140         return rte_eth_dev_pci_generic_remove(pci_dev, eth_igb_dev_uninit);
1141 }
1142
1143 static struct rte_pci_driver rte_igb_pmd = {
1144         .id_table = pci_id_igb_map,
1145         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
1146                      RTE_PCI_DRV_IOVA_AS_VA,
1147         .probe = eth_igb_pci_probe,
1148         .remove = eth_igb_pci_remove,
1149 };
1150
1151
1152 static int eth_igbvf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1153         struct rte_pci_device *pci_dev)
1154 {
1155         return rte_eth_dev_pci_generic_probe(pci_dev,
1156                 sizeof(struct e1000_adapter), eth_igbvf_dev_init);
1157 }
1158
1159 static int eth_igbvf_pci_remove(struct rte_pci_device *pci_dev)
1160 {
1161         return rte_eth_dev_pci_generic_remove(pci_dev, eth_igbvf_dev_uninit);
1162 }
1163
1164 /*
1165  * virtual function driver struct
1166  */
1167 static struct rte_pci_driver rte_igbvf_pmd = {
1168         .id_table = pci_id_igbvf_map,
1169         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_IOVA_AS_VA,
1170         .probe = eth_igbvf_pci_probe,
1171         .remove = eth_igbvf_pci_remove,
1172 };
1173
1174 static void
1175 igb_vmdq_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1176 {
1177         struct e1000_hw *hw =
1178                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1179         /* RCTL: enable VLAN filter since VMDq always use VLAN filter */
1180         uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
1181         rctl |= E1000_RCTL_VFE;
1182         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1183 }
1184
1185 static int
1186 igb_check_mq_mode(struct rte_eth_dev *dev)
1187 {
1188         enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
1189         enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
1190         uint16_t nb_rx_q = dev->data->nb_rx_queues;
1191         uint16_t nb_tx_q = dev->data->nb_tx_queues;
1192
1193         if ((rx_mq_mode & ETH_MQ_RX_DCB_FLAG) ||
1194             tx_mq_mode == ETH_MQ_TX_DCB ||
1195             tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
1196                 PMD_INIT_LOG(ERR, "DCB mode is not supported.");
1197                 return -EINVAL;
1198         }
1199         if (RTE_ETH_DEV_SRIOV(dev).active != 0) {
1200                 /* Check multi-queue mode.
1201                  * To no break software we accept ETH_MQ_RX_NONE as this might
1202                  * be used to turn off VLAN filter.
1203                  */
1204
1205                 if (rx_mq_mode == ETH_MQ_RX_NONE ||
1206                     rx_mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
1207                         dev->data->dev_conf.rxmode.mq_mode = ETH_MQ_RX_VMDQ_ONLY;
1208                         RTE_ETH_DEV_SRIOV(dev).nb_q_per_pool = 1;
1209                 } else {
1210                         /* Only support one queue on VFs.
1211                          * RSS together with SRIOV is not supported.
1212                          */
1213                         PMD_INIT_LOG(ERR, "SRIOV is active,"
1214                                         " wrong mq_mode rx %d.",
1215                                         rx_mq_mode);
1216                         return -EINVAL;
1217                 }
1218                 /* TX mode is not used here, so mode might be ignored.*/
1219                 if (tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
1220                         /* SRIOV only works in VMDq enable mode */
1221                         PMD_INIT_LOG(WARNING, "SRIOV is active,"
1222                                         " TX mode %d is not supported. "
1223                                         " Driver will behave as %d mode.",
1224                                         tx_mq_mode, ETH_MQ_TX_VMDQ_ONLY);
1225                 }
1226
1227                 /* check valid queue number */
1228                 if ((nb_rx_q > 1) || (nb_tx_q > 1)) {
1229                         PMD_INIT_LOG(ERR, "SRIOV is active,"
1230                                         " only support one queue on VFs.");
1231                         return -EINVAL;
1232                 }
1233         } else {
1234                 /* To no break software that set invalid mode, only display
1235                  * warning if invalid mode is used.
1236                  */
1237                 if (rx_mq_mode != ETH_MQ_RX_NONE &&
1238                     rx_mq_mode != ETH_MQ_RX_VMDQ_ONLY &&
1239                     rx_mq_mode != ETH_MQ_RX_RSS) {
1240                         /* RSS together with VMDq not supported*/
1241                         PMD_INIT_LOG(ERR, "RX mode %d is not supported.",
1242                                      rx_mq_mode);
1243                         return -EINVAL;
1244                 }
1245
1246                 if (tx_mq_mode != ETH_MQ_TX_NONE &&
1247                     tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
1248                         PMD_INIT_LOG(WARNING, "TX mode %d is not supported."
1249                                         " Due to txmode is meaningless in this"
1250                                         " driver, just ignore.",
1251                                         tx_mq_mode);
1252                 }
1253         }
1254         return 0;
1255 }
1256
1257 static int
1258 eth_igb_configure(struct rte_eth_dev *dev)
1259 {
1260         struct e1000_interrupt *intr =
1261                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1262         int ret;
1263
1264         PMD_INIT_FUNC_TRACE();
1265
1266         /* multipe queue mode checking */
1267         ret  = igb_check_mq_mode(dev);
1268         if (ret != 0) {
1269                 PMD_DRV_LOG(ERR, "igb_check_mq_mode fails with %d.",
1270                             ret);
1271                 return ret;
1272         }
1273
1274         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1275         PMD_INIT_FUNC_TRACE();
1276
1277         return 0;
1278 }
1279
1280 static void
1281 eth_igb_rxtx_control(struct rte_eth_dev *dev,
1282                      bool enable)
1283 {
1284         struct e1000_hw *hw =
1285                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1286         uint32_t tctl, rctl;
1287
1288         tctl = E1000_READ_REG(hw, E1000_TCTL);
1289         rctl = E1000_READ_REG(hw, E1000_RCTL);
1290
1291         if (enable) {
1292                 /* enable Tx/Rx */
1293                 tctl |= E1000_TCTL_EN;
1294                 rctl |= E1000_RCTL_EN;
1295         } else {
1296                 /* disable Tx/Rx */
1297                 tctl &= ~E1000_TCTL_EN;
1298                 rctl &= ~E1000_RCTL_EN;
1299         }
1300         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1301         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1302         E1000_WRITE_FLUSH(hw);
1303 }
1304
1305 static int
1306 eth_igb_start(struct rte_eth_dev *dev)
1307 {
1308         struct e1000_hw *hw =
1309                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1310         struct e1000_adapter *adapter =
1311                 E1000_DEV_PRIVATE(dev->data->dev_private);
1312         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1313         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1314         int ret, mask;
1315         uint32_t intr_vector = 0;
1316         uint32_t ctrl_ext;
1317         uint32_t *speeds;
1318         int num_speeds;
1319         bool autoneg;
1320
1321         PMD_INIT_FUNC_TRACE();
1322
1323         /* disable uio/vfio intr/eventfd mapping */
1324         rte_intr_disable(intr_handle);
1325
1326         /* Power up the phy. Needed to make the link go Up */
1327         eth_igb_dev_set_link_up(dev);
1328
1329         /*
1330          * Packet Buffer Allocation (PBA)
1331          * Writing PBA sets the receive portion of the buffer
1332          * the remainder is used for the transmit buffer.
1333          */
1334         if (hw->mac.type == e1000_82575) {
1335                 uint32_t pba;
1336
1337                 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1338                 E1000_WRITE_REG(hw, E1000_PBA, pba);
1339         }
1340
1341         /* Put the address into the Receive Address Array */
1342         e1000_rar_set(hw, hw->mac.addr, 0);
1343
1344         /* Initialize the hardware */
1345         if (igb_hardware_init(hw)) {
1346                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
1347                 return -EIO;
1348         }
1349         adapter->stopped = 0;
1350
1351         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN);
1352
1353         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1354         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
1355         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
1356         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1357         E1000_WRITE_FLUSH(hw);
1358
1359         /* configure PF module if SRIOV enabled */
1360         igb_pf_host_configure(dev);
1361
1362         /* check and configure queue intr-vector mapping */
1363         if ((rte_intr_cap_multiple(intr_handle) ||
1364              !RTE_ETH_DEV_SRIOV(dev).active) &&
1365             dev->data->dev_conf.intr_conf.rxq != 0) {
1366                 intr_vector = dev->data->nb_rx_queues;
1367                 if (rte_intr_efd_enable(intr_handle, intr_vector))
1368                         return -1;
1369         }
1370
1371         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
1372                 intr_handle->intr_vec =
1373                         rte_zmalloc("intr_vec",
1374                                     dev->data->nb_rx_queues * sizeof(int), 0);
1375                 if (intr_handle->intr_vec == NULL) {
1376                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
1377                                      " intr_vec", dev->data->nb_rx_queues);
1378                         return -ENOMEM;
1379                 }
1380         }
1381
1382         /* confiugre msix for rx interrupt */
1383         eth_igb_configure_msix_intr(dev);
1384
1385         /* Configure for OS presence */
1386         igb_init_manageability(hw);
1387
1388         eth_igb_tx_init(dev);
1389
1390         /* This can fail when allocating mbufs for descriptor rings */
1391         ret = eth_igb_rx_init(dev);
1392         if (ret) {
1393                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
1394                 igb_dev_clear_queues(dev);
1395                 return ret;
1396         }
1397
1398         e1000_clear_hw_cntrs_base_generic(hw);
1399
1400         /*
1401          * VLAN Offload Settings
1402          */
1403         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
1404                         ETH_VLAN_EXTEND_MASK;
1405         ret = eth_igb_vlan_offload_set(dev, mask);
1406         if (ret) {
1407                 PMD_INIT_LOG(ERR, "Unable to set vlan offload");
1408                 igb_dev_clear_queues(dev);
1409                 return ret;
1410         }
1411
1412         if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
1413                 /* Enable VLAN filter since VMDq always use VLAN filter */
1414                 igb_vmdq_vlan_hw_filter_enable(dev);
1415         }
1416
1417         if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) ||
1418                 (hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i210) ||
1419                 (hw->mac.type == e1000_i211)) {
1420                 /* Configure EITR with the maximum possible value (0xFFFF) */
1421                 E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF);
1422         }
1423
1424         /* Setup link speed and duplex */
1425         speeds = &dev->data->dev_conf.link_speeds;
1426         if (*speeds == ETH_LINK_SPEED_AUTONEG) {
1427                 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
1428                 hw->mac.autoneg = 1;
1429         } else {
1430                 num_speeds = 0;
1431                 autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
1432
1433                 /* Reset */
1434                 hw->phy.autoneg_advertised = 0;
1435
1436                 if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1437                                 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1438                                 ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
1439                         num_speeds = -1;
1440                         goto error_invalid_config;
1441                 }
1442                 if (*speeds & ETH_LINK_SPEED_10M_HD) {
1443                         hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
1444                         num_speeds++;
1445                 }
1446                 if (*speeds & ETH_LINK_SPEED_10M) {
1447                         hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
1448                         num_speeds++;
1449                 }
1450                 if (*speeds & ETH_LINK_SPEED_100M_HD) {
1451                         hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
1452                         num_speeds++;
1453                 }
1454                 if (*speeds & ETH_LINK_SPEED_100M) {
1455                         hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
1456                         num_speeds++;
1457                 }
1458                 if (*speeds & ETH_LINK_SPEED_1G) {
1459                         hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
1460                         num_speeds++;
1461                 }
1462                 if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
1463                         goto error_invalid_config;
1464
1465                 /* Set/reset the mac.autoneg based on the link speed,
1466                  * fixed or not
1467                  */
1468                 if (!autoneg) {
1469                         hw->mac.autoneg = 0;
1470                         hw->mac.forced_speed_duplex =
1471                                         hw->phy.autoneg_advertised;
1472                 } else {
1473                         hw->mac.autoneg = 1;
1474                 }
1475         }
1476
1477         e1000_setup_link(hw);
1478
1479         if (rte_intr_allow_others(intr_handle)) {
1480                 /* check if lsc interrupt is enabled */
1481                 if (dev->data->dev_conf.intr_conf.lsc != 0)
1482                         eth_igb_lsc_interrupt_setup(dev, TRUE);
1483                 else
1484                         eth_igb_lsc_interrupt_setup(dev, FALSE);
1485         } else {
1486                 rte_intr_callback_unregister(intr_handle,
1487                                              eth_igb_interrupt_handler,
1488                                              (void *)dev);
1489                 if (dev->data->dev_conf.intr_conf.lsc != 0)
1490                         PMD_INIT_LOG(INFO, "lsc won't enable because of"
1491                                      " no intr multiplex");
1492         }
1493
1494         /* check if rxq interrupt is enabled */
1495         if (dev->data->dev_conf.intr_conf.rxq != 0 &&
1496             rte_intr_dp_is_en(intr_handle))
1497                 eth_igb_rxq_interrupt_setup(dev);
1498
1499         /* enable uio/vfio intr/eventfd mapping */
1500         rte_intr_enable(intr_handle);
1501
1502         /* resume enabled intr since hw reset */
1503         igb_intr_enable(dev);
1504
1505         /* restore all types filter */
1506         igb_filter_restore(dev);
1507
1508         eth_igb_rxtx_control(dev, true);
1509         eth_igb_link_update(dev, 0);
1510
1511         PMD_INIT_LOG(DEBUG, "<<");
1512
1513         return 0;
1514
1515 error_invalid_config:
1516         PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
1517                      dev->data->dev_conf.link_speeds, dev->data->port_id);
1518         igb_dev_clear_queues(dev);
1519         return -EINVAL;
1520 }
1521
1522 /*********************************************************************
1523  *
1524  *  This routine disables all traffic on the adapter by issuing a
1525  *  global reset on the MAC.
1526  *
1527  **********************************************************************/
1528 static void
1529 eth_igb_stop(struct rte_eth_dev *dev)
1530 {
1531         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1532         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1533         struct rte_eth_link link;
1534         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1535
1536         eth_igb_rxtx_control(dev, false);
1537
1538         igb_intr_disable(hw);
1539
1540         /* disable intr eventfd mapping */
1541         rte_intr_disable(intr_handle);
1542
1543         igb_pf_reset_hw(hw);
1544         E1000_WRITE_REG(hw, E1000_WUC, 0);
1545
1546         /* Set bit for Go Link disconnect */
1547         if (hw->mac.type >= e1000_82580) {
1548                 uint32_t phpm_reg;
1549
1550                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1551                 phpm_reg |= E1000_82580_PM_GO_LINKD;
1552                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1553         }
1554
1555         /* Power down the phy. Needed to make the link go Down */
1556         eth_igb_dev_set_link_down(dev);
1557
1558         igb_dev_clear_queues(dev);
1559
1560         /* clear the recorded link status */
1561         memset(&link, 0, sizeof(link));
1562         rte_igb_dev_atomic_write_link_status(dev, &link);
1563
1564         if (!rte_intr_allow_others(intr_handle))
1565                 /* resume to the default handler */
1566                 rte_intr_callback_register(intr_handle,
1567                                            eth_igb_interrupt_handler,
1568                                            (void *)dev);
1569
1570         /* Clean datapath event and queue/vec mapping */
1571         rte_intr_efd_disable(intr_handle);
1572         if (intr_handle->intr_vec != NULL) {
1573                 rte_free(intr_handle->intr_vec);
1574                 intr_handle->intr_vec = NULL;
1575         }
1576 }
1577
1578 static int
1579 eth_igb_dev_set_link_up(struct rte_eth_dev *dev)
1580 {
1581         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1582
1583         if (hw->phy.media_type == e1000_media_type_copper)
1584                 e1000_power_up_phy(hw);
1585         else
1586                 e1000_power_up_fiber_serdes_link(hw);
1587
1588         return 0;
1589 }
1590
1591 static int
1592 eth_igb_dev_set_link_down(struct rte_eth_dev *dev)
1593 {
1594         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1595
1596         if (hw->phy.media_type == e1000_media_type_copper)
1597                 e1000_power_down_phy(hw);
1598         else
1599                 e1000_shutdown_fiber_serdes_link(hw);
1600
1601         return 0;
1602 }
1603
1604 static void
1605 eth_igb_close(struct rte_eth_dev *dev)
1606 {
1607         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1608         struct e1000_adapter *adapter =
1609                 E1000_DEV_PRIVATE(dev->data->dev_private);
1610         struct rte_eth_link link;
1611         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1612         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1613
1614         eth_igb_stop(dev);
1615         adapter->stopped = 1;
1616
1617         e1000_phy_hw_reset(hw);
1618         igb_release_manageability(hw);
1619         igb_hw_control_release(hw);
1620
1621         /* Clear bit for Go Link disconnect */
1622         if (hw->mac.type >= e1000_82580) {
1623                 uint32_t phpm_reg;
1624
1625                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1626                 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1627                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1628         }
1629
1630         igb_dev_free_queues(dev);
1631
1632         if (intr_handle->intr_vec) {
1633                 rte_free(intr_handle->intr_vec);
1634                 intr_handle->intr_vec = NULL;
1635         }
1636
1637         memset(&link, 0, sizeof(link));
1638         rte_igb_dev_atomic_write_link_status(dev, &link);
1639 }
1640
1641 static int
1642 igb_get_rx_buffer_size(struct e1000_hw *hw)
1643 {
1644         uint32_t rx_buf_size;
1645         if (hw->mac.type == e1000_82576) {
1646                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10;
1647         } else if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i350) {
1648                 /* PBS needs to be translated according to a lookup table */
1649                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf);
1650                 rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size);
1651                 rx_buf_size = (rx_buf_size << 10);
1652         } else if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
1653                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0x3f) << 10;
1654         } else {
1655                 rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10;
1656         }
1657
1658         return rx_buf_size;
1659 }
1660
1661 /*********************************************************************
1662  *
1663  *  Initialize the hardware
1664  *
1665  **********************************************************************/
1666 static int
1667 igb_hardware_init(struct e1000_hw *hw)
1668 {
1669         uint32_t rx_buf_size;
1670         int diag;
1671
1672         /* Let the firmware know the OS is in control */
1673         igb_hw_control_acquire(hw);
1674
1675         /*
1676          * These parameters control the automatic generation (Tx) and
1677          * response (Rx) to Ethernet PAUSE frames.
1678          * - High water mark should allow for at least two standard size (1518)
1679          *   frames to be received after sending an XOFF.
1680          * - Low water mark works best when it is very near the high water mark.
1681          *   This allows the receiver to restart by sending XON when it has
1682          *   drained a bit. Here we use an arbitrary value of 1500 which will
1683          *   restart after one full frame is pulled from the buffer. There
1684          *   could be several smaller frames in the buffer and if so they will
1685          *   not trigger the XON until their total number reduces the buffer
1686          *   by 1500.
1687          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1688          */
1689         rx_buf_size = igb_get_rx_buffer_size(hw);
1690
1691         hw->fc.high_water = rx_buf_size - (ETHER_MAX_LEN * 2);
1692         hw->fc.low_water = hw->fc.high_water - 1500;
1693         hw->fc.pause_time = IGB_FC_PAUSE_TIME;
1694         hw->fc.send_xon = 1;
1695
1696         /* Set Flow control, use the tunable location if sane */
1697         if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4))
1698                 hw->fc.requested_mode = igb_fc_setting;
1699         else
1700                 hw->fc.requested_mode = e1000_fc_none;
1701
1702         /* Issue a global reset */
1703         igb_pf_reset_hw(hw);
1704         E1000_WRITE_REG(hw, E1000_WUC, 0);
1705
1706         diag = e1000_init_hw(hw);
1707         if (diag < 0)
1708                 return diag;
1709
1710         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN);
1711         e1000_get_phy_info(hw);
1712         e1000_check_for_link(hw);
1713
1714         return 0;
1715 }
1716
1717 /* This function is based on igb_update_stats_counters() in igb/if_igb.c */
1718 static void
1719 igb_read_stats_registers(struct e1000_hw *hw, struct e1000_hw_stats *stats)
1720 {
1721         int pause_frames;
1722
1723         uint64_t old_gprc  = stats->gprc;
1724         uint64_t old_gptc  = stats->gptc;
1725         uint64_t old_tpr   = stats->tpr;
1726         uint64_t old_tpt   = stats->tpt;
1727         uint64_t old_rpthc = stats->rpthc;
1728         uint64_t old_hgptc = stats->hgptc;
1729
1730         if(hw->phy.media_type == e1000_media_type_copper ||
1731             (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1732                 stats->symerrs +=
1733                     E1000_READ_REG(hw,E1000_SYMERRS);
1734                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
1735         }
1736
1737         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
1738         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
1739         stats->scc += E1000_READ_REG(hw, E1000_SCC);
1740         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
1741
1742         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
1743         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
1744         stats->colc += E1000_READ_REG(hw, E1000_COLC);
1745         stats->dc += E1000_READ_REG(hw, E1000_DC);
1746         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
1747         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
1748         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
1749         /*
1750         ** For watchdog management we need to know if we have been
1751         ** paused during the last interval, so capture that here.
1752         */
1753         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
1754         stats->xoffrxc += pause_frames;
1755         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
1756         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
1757         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
1758         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
1759         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
1760         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
1761         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
1762         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
1763         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
1764         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
1765         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
1766         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
1767
1768         /* For the 64-bit byte counters the low dword must be read first. */
1769         /* Both registers clear on the read of the high dword */
1770
1771         /* Workaround CRC bytes included in size, take away 4 bytes/packet */
1772         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
1773         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
1774         stats->gorc -= (stats->gprc - old_gprc) * ETHER_CRC_LEN;
1775         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
1776         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
1777         stats->gotc -= (stats->gptc - old_gptc) * ETHER_CRC_LEN;
1778
1779         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
1780         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
1781         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
1782         stats->roc += E1000_READ_REG(hw, E1000_ROC);
1783         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
1784
1785         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
1786         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
1787
1788         stats->tor += E1000_READ_REG(hw, E1000_TORL);
1789         stats->tor += ((uint64_t)E1000_READ_REG(hw, E1000_TORH) << 32);
1790         stats->tor -= (stats->tpr - old_tpr) * ETHER_CRC_LEN;
1791         stats->tot += E1000_READ_REG(hw, E1000_TOTL);
1792         stats->tot += ((uint64_t)E1000_READ_REG(hw, E1000_TOTH) << 32);
1793         stats->tot -= (stats->tpt - old_tpt) * ETHER_CRC_LEN;
1794
1795         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
1796         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
1797         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
1798         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
1799         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
1800         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
1801         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
1802         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
1803
1804         /* Interrupt Counts */
1805
1806         stats->iac += E1000_READ_REG(hw, E1000_IAC);
1807         stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
1808         stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
1809         stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
1810         stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
1811         stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
1812         stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
1813         stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
1814         stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
1815
1816         /* Host to Card Statistics */
1817
1818         stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
1819         stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
1820         stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
1821         stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
1822         stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
1823         stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
1824         stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
1825         stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL);
1826         stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32);
1827         stats->hgorc -= (stats->rpthc - old_rpthc) * ETHER_CRC_LEN;
1828         stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL);
1829         stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32);
1830         stats->hgotc -= (stats->hgptc - old_hgptc) * ETHER_CRC_LEN;
1831         stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
1832         stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
1833         stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
1834
1835         stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
1836         stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
1837         stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
1838         stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
1839         stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
1840         stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
1841 }
1842
1843 static int
1844 eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
1845 {
1846         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1847         struct e1000_hw_stats *stats =
1848                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1849
1850         igb_read_stats_registers(hw, stats);
1851
1852         if (rte_stats == NULL)
1853                 return -EINVAL;
1854
1855         /* Rx Errors */
1856         rte_stats->imissed = stats->mpc;
1857         rte_stats->ierrors = stats->crcerrs +
1858                              stats->rlec + stats->ruc + stats->roc +
1859                              stats->rxerrc + stats->algnerrc + stats->cexterr;
1860
1861         /* Tx Errors */
1862         rte_stats->oerrors = stats->ecol + stats->latecol;
1863
1864         rte_stats->ipackets = stats->gprc;
1865         rte_stats->opackets = stats->gptc;
1866         rte_stats->ibytes   = stats->gorc;
1867         rte_stats->obytes   = stats->gotc;
1868         return 0;
1869 }
1870
1871 static void
1872 eth_igb_stats_reset(struct rte_eth_dev *dev)
1873 {
1874         struct e1000_hw_stats *hw_stats =
1875                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1876
1877         /* HW registers are cleared on read */
1878         eth_igb_stats_get(dev, NULL);
1879
1880         /* Reset software totals */
1881         memset(hw_stats, 0, sizeof(*hw_stats));
1882 }
1883
1884 static void
1885 eth_igb_xstats_reset(struct rte_eth_dev *dev)
1886 {
1887         struct e1000_hw_stats *stats =
1888                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1889
1890         /* HW registers are cleared on read */
1891         eth_igb_xstats_get(dev, NULL, IGB_NB_XSTATS);
1892
1893         /* Reset software totals */
1894         memset(stats, 0, sizeof(*stats));
1895 }
1896
1897 static int eth_igb_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
1898         struct rte_eth_xstat_name *xstats_names,
1899         __rte_unused unsigned int size)
1900 {
1901         unsigned i;
1902
1903         if (xstats_names == NULL)
1904                 return IGB_NB_XSTATS;
1905
1906         /* Note: limit checked in rte_eth_xstats_names() */
1907
1908         for (i = 0; i < IGB_NB_XSTATS; i++) {
1909                 snprintf(xstats_names[i].name, sizeof(xstats_names[i].name),
1910                          "%s", rte_igb_stats_strings[i].name);
1911         }
1912
1913         return IGB_NB_XSTATS;
1914 }
1915
1916 static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev,
1917                 struct rte_eth_xstat_name *xstats_names, const uint64_t *ids,
1918                 unsigned int limit)
1919 {
1920         unsigned int i;
1921
1922         if (!ids) {
1923                 if (xstats_names == NULL)
1924                         return IGB_NB_XSTATS;
1925
1926                 for (i = 0; i < IGB_NB_XSTATS; i++)
1927                         snprintf(xstats_names[i].name,
1928                                         sizeof(xstats_names[i].name),
1929                                         "%s", rte_igb_stats_strings[i].name);
1930
1931                 return IGB_NB_XSTATS;
1932
1933         } else {
1934                 struct rte_eth_xstat_name xstats_names_copy[IGB_NB_XSTATS];
1935
1936                 eth_igb_xstats_get_names_by_id(dev, xstats_names_copy, NULL,
1937                                 IGB_NB_XSTATS);
1938
1939                 for (i = 0; i < limit; i++) {
1940                         if (ids[i] >= IGB_NB_XSTATS) {
1941                                 PMD_INIT_LOG(ERR, "id value isn't valid");
1942                                 return -1;
1943                         }
1944                         strcpy(xstats_names[i].name,
1945                                         xstats_names_copy[ids[i]].name);
1946                 }
1947                 return limit;
1948         }
1949 }
1950
1951 static int
1952 eth_igb_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
1953                    unsigned n)
1954 {
1955         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1956         struct e1000_hw_stats *hw_stats =
1957                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1958         unsigned i;
1959
1960         if (n < IGB_NB_XSTATS)
1961                 return IGB_NB_XSTATS;
1962
1963         igb_read_stats_registers(hw, hw_stats);
1964
1965         /* If this is a reset xstats is NULL, and we have cleared the
1966          * registers by reading them.
1967          */
1968         if (!xstats)
1969                 return 0;
1970
1971         /* Extended stats */
1972         for (i = 0; i < IGB_NB_XSTATS; i++) {
1973                 xstats[i].id = i;
1974                 xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
1975                         rte_igb_stats_strings[i].offset);
1976         }
1977
1978         return IGB_NB_XSTATS;
1979 }
1980
1981 static int
1982 eth_igb_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
1983                 uint64_t *values, unsigned int n)
1984 {
1985         unsigned int i;
1986
1987         if (!ids) {
1988                 struct e1000_hw *hw =
1989                         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1990                 struct e1000_hw_stats *hw_stats =
1991                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1992
1993                 if (n < IGB_NB_XSTATS)
1994                         return IGB_NB_XSTATS;
1995
1996                 igb_read_stats_registers(hw, hw_stats);
1997
1998                 /* If this is a reset xstats is NULL, and we have cleared the
1999                  * registers by reading them.
2000                  */
2001                 if (!values)
2002                         return 0;
2003
2004                 /* Extended stats */
2005                 for (i = 0; i < IGB_NB_XSTATS; i++)
2006                         values[i] = *(uint64_t *)(((char *)hw_stats) +
2007                                         rte_igb_stats_strings[i].offset);
2008
2009                 return IGB_NB_XSTATS;
2010
2011         } else {
2012                 uint64_t values_copy[IGB_NB_XSTATS];
2013
2014                 eth_igb_xstats_get_by_id(dev, NULL, values_copy,
2015                                 IGB_NB_XSTATS);
2016
2017                 for (i = 0; i < n; i++) {
2018                         if (ids[i] >= IGB_NB_XSTATS) {
2019                                 PMD_INIT_LOG(ERR, "id value isn't valid");
2020                                 return -1;
2021                         }
2022                         values[i] = values_copy[ids[i]];
2023                 }
2024                 return n;
2025         }
2026 }
2027
2028 static void
2029 igbvf_read_stats_registers(struct e1000_hw *hw, struct e1000_vf_stats *hw_stats)
2030 {
2031         /* Good Rx packets, include VF loopback */
2032         UPDATE_VF_STAT(E1000_VFGPRC,
2033             hw_stats->last_gprc, hw_stats->gprc);
2034
2035         /* Good Rx octets, include VF loopback */
2036         UPDATE_VF_STAT(E1000_VFGORC,
2037             hw_stats->last_gorc, hw_stats->gorc);
2038
2039         /* Good Tx packets, include VF loopback */
2040         UPDATE_VF_STAT(E1000_VFGPTC,
2041             hw_stats->last_gptc, hw_stats->gptc);
2042
2043         /* Good Tx octets, include VF loopback */
2044         UPDATE_VF_STAT(E1000_VFGOTC,
2045             hw_stats->last_gotc, hw_stats->gotc);
2046
2047         /* Rx Multicst packets */
2048         UPDATE_VF_STAT(E1000_VFMPRC,
2049             hw_stats->last_mprc, hw_stats->mprc);
2050
2051         /* Good Rx loopback packets */
2052         UPDATE_VF_STAT(E1000_VFGPRLBC,
2053             hw_stats->last_gprlbc, hw_stats->gprlbc);
2054
2055         /* Good Rx loopback octets */
2056         UPDATE_VF_STAT(E1000_VFGORLBC,
2057             hw_stats->last_gorlbc, hw_stats->gorlbc);
2058
2059         /* Good Tx loopback packets */
2060         UPDATE_VF_STAT(E1000_VFGPTLBC,
2061             hw_stats->last_gptlbc, hw_stats->gptlbc);
2062
2063         /* Good Tx loopback octets */
2064         UPDATE_VF_STAT(E1000_VFGOTLBC,
2065             hw_stats->last_gotlbc, hw_stats->gotlbc);
2066 }
2067
2068 static int eth_igbvf_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
2069                                      struct rte_eth_xstat_name *xstats_names,
2070                                      __rte_unused unsigned limit)
2071 {
2072         unsigned i;
2073
2074         if (xstats_names != NULL)
2075                 for (i = 0; i < IGBVF_NB_XSTATS; i++) {
2076                         snprintf(xstats_names[i].name,
2077                                 sizeof(xstats_names[i].name), "%s",
2078                                 rte_igbvf_stats_strings[i].name);
2079                 }
2080         return IGBVF_NB_XSTATS;
2081 }
2082
2083 static int
2084 eth_igbvf_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
2085                      unsigned n)
2086 {
2087         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2088         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
2089                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2090         unsigned i;
2091
2092         if (n < IGBVF_NB_XSTATS)
2093                 return IGBVF_NB_XSTATS;
2094
2095         igbvf_read_stats_registers(hw, hw_stats);
2096
2097         if (!xstats)
2098                 return 0;
2099
2100         for (i = 0; i < IGBVF_NB_XSTATS; i++) {
2101                 xstats[i].id = i;
2102                 xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
2103                         rte_igbvf_stats_strings[i].offset);
2104         }
2105
2106         return IGBVF_NB_XSTATS;
2107 }
2108
2109 static int
2110 eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
2111 {
2112         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2113         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
2114                           E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2115
2116         igbvf_read_stats_registers(hw, hw_stats);
2117
2118         if (rte_stats == NULL)
2119                 return -EINVAL;
2120
2121         rte_stats->ipackets = hw_stats->gprc;
2122         rte_stats->ibytes = hw_stats->gorc;
2123         rte_stats->opackets = hw_stats->gptc;
2124         rte_stats->obytes = hw_stats->gotc;
2125         return 0;
2126 }
2127
2128 static void
2129 eth_igbvf_stats_reset(struct rte_eth_dev *dev)
2130 {
2131         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
2132                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2133
2134         /* Sync HW register to the last stats */
2135         eth_igbvf_stats_get(dev, NULL);
2136
2137         /* reset HW current stats*/
2138         memset(&hw_stats->gprc, 0, sizeof(*hw_stats) -
2139                offsetof(struct e1000_vf_stats, gprc));
2140 }
2141
2142 static int
2143 eth_igb_fw_version_get(struct rte_eth_dev *dev, char *fw_version,
2144                        size_t fw_size)
2145 {
2146         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2147         struct e1000_fw_version fw;
2148         int ret;
2149
2150         e1000_get_fw_version(hw, &fw);
2151
2152         switch (hw->mac.type) {
2153         case e1000_i210:
2154         case e1000_i211:
2155                 if (!(e1000_get_flash_presence_i210(hw))) {
2156                         ret = snprintf(fw_version, fw_size,
2157                                  "%2d.%2d-%d",
2158                                  fw.invm_major, fw.invm_minor,
2159                                  fw.invm_img_type);
2160                         break;
2161                 }
2162                 /* fall through */
2163         default:
2164                 /* if option rom is valid, display its version too */
2165                 if (fw.or_valid) {
2166                         ret = snprintf(fw_version, fw_size,
2167                                  "%d.%d, 0x%08x, %d.%d.%d",
2168                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2169                                  fw.or_major, fw.or_build, fw.or_patch);
2170                 /* no option rom */
2171                 } else {
2172                         if (fw.etrack_id != 0X0000) {
2173                                 ret = snprintf(fw_version, fw_size,
2174                                          "%d.%d, 0x%08x",
2175                                          fw.eep_major, fw.eep_minor,
2176                                          fw.etrack_id);
2177                         } else {
2178                                 ret = snprintf(fw_version, fw_size,
2179                                          "%d.%d.%d",
2180                                          fw.eep_major, fw.eep_minor,
2181                                          fw.eep_build);
2182                         }
2183                 }
2184                 break;
2185         }
2186
2187         ret += 1; /* add the size of '\0' */
2188         if (fw_size < (u32)ret)
2189                 return ret;
2190         else
2191                 return 0;
2192 }
2193
2194 static void
2195 eth_igb_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
2196 {
2197         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2198
2199         dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2200         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
2201         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
2202         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
2203         dev_info->rx_offload_capa =
2204                 DEV_RX_OFFLOAD_VLAN_STRIP |
2205                 DEV_RX_OFFLOAD_IPV4_CKSUM |
2206                 DEV_RX_OFFLOAD_UDP_CKSUM  |
2207                 DEV_RX_OFFLOAD_TCP_CKSUM;
2208         dev_info->tx_offload_capa =
2209                 DEV_TX_OFFLOAD_VLAN_INSERT |
2210                 DEV_TX_OFFLOAD_IPV4_CKSUM  |
2211                 DEV_TX_OFFLOAD_UDP_CKSUM   |
2212                 DEV_TX_OFFLOAD_TCP_CKSUM   |
2213                 DEV_TX_OFFLOAD_SCTP_CKSUM  |
2214                 DEV_TX_OFFLOAD_TCP_TSO;
2215
2216         switch (hw->mac.type) {
2217         case e1000_82575:
2218                 dev_info->max_rx_queues = 4;
2219                 dev_info->max_tx_queues = 4;
2220                 dev_info->max_vmdq_pools = 0;
2221                 break;
2222
2223         case e1000_82576:
2224                 dev_info->max_rx_queues = 16;
2225                 dev_info->max_tx_queues = 16;
2226                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2227                 dev_info->vmdq_queue_num = 16;
2228                 break;
2229
2230         case e1000_82580:
2231                 dev_info->max_rx_queues = 8;
2232                 dev_info->max_tx_queues = 8;
2233                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2234                 dev_info->vmdq_queue_num = 8;
2235                 break;
2236
2237         case e1000_i350:
2238                 dev_info->max_rx_queues = 8;
2239                 dev_info->max_tx_queues = 8;
2240                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2241                 dev_info->vmdq_queue_num = 8;
2242                 break;
2243
2244         case e1000_i354:
2245                 dev_info->max_rx_queues = 8;
2246                 dev_info->max_tx_queues = 8;
2247                 break;
2248
2249         case e1000_i210:
2250                 dev_info->max_rx_queues = 4;
2251                 dev_info->max_tx_queues = 4;
2252                 dev_info->max_vmdq_pools = 0;
2253                 break;
2254
2255         case e1000_i211:
2256                 dev_info->max_rx_queues = 2;
2257                 dev_info->max_tx_queues = 2;
2258                 dev_info->max_vmdq_pools = 0;
2259                 break;
2260
2261         default:
2262                 /* Should not happen */
2263                 break;
2264         }
2265         dev_info->hash_key_size = IGB_HKEY_MAX_INDEX * sizeof(uint32_t);
2266         dev_info->reta_size = ETH_RSS_RETA_SIZE_128;
2267         dev_info->flow_type_rss_offloads = IGB_RSS_OFFLOAD_ALL;
2268
2269         dev_info->default_rxconf = (struct rte_eth_rxconf) {
2270                 .rx_thresh = {
2271                         .pthresh = IGB_DEFAULT_RX_PTHRESH,
2272                         .hthresh = IGB_DEFAULT_RX_HTHRESH,
2273                         .wthresh = IGB_DEFAULT_RX_WTHRESH,
2274                 },
2275                 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
2276                 .rx_drop_en = 0,
2277         };
2278
2279         dev_info->default_txconf = (struct rte_eth_txconf) {
2280                 .tx_thresh = {
2281                         .pthresh = IGB_DEFAULT_TX_PTHRESH,
2282                         .hthresh = IGB_DEFAULT_TX_HTHRESH,
2283                         .wthresh = IGB_DEFAULT_TX_WTHRESH,
2284                 },
2285                 .txq_flags = 0,
2286         };
2287
2288         dev_info->rx_desc_lim = rx_desc_lim;
2289         dev_info->tx_desc_lim = tx_desc_lim;
2290
2291         dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
2292                         ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
2293                         ETH_LINK_SPEED_1G;
2294 }
2295
2296 static const uint32_t *
2297 eth_igb_supported_ptypes_get(struct rte_eth_dev *dev)
2298 {
2299         static const uint32_t ptypes[] = {
2300                 /* refers to igb_rxd_pkt_info_to_pkt_type() */
2301                 RTE_PTYPE_L2_ETHER,
2302                 RTE_PTYPE_L3_IPV4,
2303                 RTE_PTYPE_L3_IPV4_EXT,
2304                 RTE_PTYPE_L3_IPV6,
2305                 RTE_PTYPE_L3_IPV6_EXT,
2306                 RTE_PTYPE_L4_TCP,
2307                 RTE_PTYPE_L4_UDP,
2308                 RTE_PTYPE_L4_SCTP,
2309                 RTE_PTYPE_TUNNEL_IP,
2310                 RTE_PTYPE_INNER_L3_IPV6,
2311                 RTE_PTYPE_INNER_L3_IPV6_EXT,
2312                 RTE_PTYPE_INNER_L4_TCP,
2313                 RTE_PTYPE_INNER_L4_UDP,
2314                 RTE_PTYPE_UNKNOWN
2315         };
2316
2317         if (dev->rx_pkt_burst == eth_igb_recv_pkts ||
2318             dev->rx_pkt_burst == eth_igb_recv_scattered_pkts)
2319                 return ptypes;
2320         return NULL;
2321 }
2322
2323 static void
2324 eth_igbvf_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
2325 {
2326         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2327
2328         dev_info->pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2329         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
2330         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
2331         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
2332         dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP |
2333                                 DEV_RX_OFFLOAD_IPV4_CKSUM |
2334                                 DEV_RX_OFFLOAD_UDP_CKSUM  |
2335                                 DEV_RX_OFFLOAD_TCP_CKSUM;
2336         dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
2337                                 DEV_TX_OFFLOAD_IPV4_CKSUM  |
2338                                 DEV_TX_OFFLOAD_UDP_CKSUM   |
2339                                 DEV_TX_OFFLOAD_TCP_CKSUM   |
2340                                 DEV_TX_OFFLOAD_SCTP_CKSUM  |
2341                                 DEV_TX_OFFLOAD_TCP_TSO;
2342         switch (hw->mac.type) {
2343         case e1000_vfadapt:
2344                 dev_info->max_rx_queues = 2;
2345                 dev_info->max_tx_queues = 2;
2346                 break;
2347         case e1000_vfadapt_i350:
2348                 dev_info->max_rx_queues = 1;
2349                 dev_info->max_tx_queues = 1;
2350                 break;
2351         default:
2352                 /* Should not happen */
2353                 break;
2354         }
2355
2356         dev_info->default_rxconf = (struct rte_eth_rxconf) {
2357                 .rx_thresh = {
2358                         .pthresh = IGB_DEFAULT_RX_PTHRESH,
2359                         .hthresh = IGB_DEFAULT_RX_HTHRESH,
2360                         .wthresh = IGB_DEFAULT_RX_WTHRESH,
2361                 },
2362                 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
2363                 .rx_drop_en = 0,
2364         };
2365
2366         dev_info->default_txconf = (struct rte_eth_txconf) {
2367                 .tx_thresh = {
2368                         .pthresh = IGB_DEFAULT_TX_PTHRESH,
2369                         .hthresh = IGB_DEFAULT_TX_HTHRESH,
2370                         .wthresh = IGB_DEFAULT_TX_WTHRESH,
2371                 },
2372                 .txq_flags = 0,
2373         };
2374
2375         dev_info->rx_desc_lim = rx_desc_lim;
2376         dev_info->tx_desc_lim = tx_desc_lim;
2377 }
2378
2379 /* return 0 means link status changed, -1 means not changed */
2380 static int
2381 eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete)
2382 {
2383         struct e1000_hw *hw =
2384                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2385         struct rte_eth_link link, old;
2386         int link_check, count;
2387
2388         link_check = 0;
2389         hw->mac.get_link_status = 1;
2390
2391         /* possible wait-to-complete in up to 9 seconds */
2392         for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
2393                 /* Read the real link status */
2394                 switch (hw->phy.media_type) {
2395                 case e1000_media_type_copper:
2396                         /* Do the work to read phy */
2397                         e1000_check_for_link(hw);
2398                         link_check = !hw->mac.get_link_status;
2399                         break;
2400
2401                 case e1000_media_type_fiber:
2402                         e1000_check_for_link(hw);
2403                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
2404                                       E1000_STATUS_LU);
2405                         break;
2406
2407                 case e1000_media_type_internal_serdes:
2408                         e1000_check_for_link(hw);
2409                         link_check = hw->mac.serdes_has_link;
2410                         break;
2411
2412                 /* VF device is type_unknown */
2413                 case e1000_media_type_unknown:
2414                         eth_igbvf_link_update(hw);
2415                         link_check = !hw->mac.get_link_status;
2416                         break;
2417
2418                 default:
2419                         break;
2420                 }
2421                 if (link_check || wait_to_complete == 0)
2422                         break;
2423                 rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL);
2424         }
2425         memset(&link, 0, sizeof(link));
2426         rte_igb_dev_atomic_read_link_status(dev, &link);
2427         old = link;
2428
2429         /* Now we check if a transition has happened */
2430         if (link_check) {
2431                 uint16_t duplex, speed;
2432                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
2433                 link.link_duplex = (duplex == FULL_DUPLEX) ?
2434                                 ETH_LINK_FULL_DUPLEX :
2435                                 ETH_LINK_HALF_DUPLEX;
2436                 link.link_speed = speed;
2437                 link.link_status = ETH_LINK_UP;
2438                 link.link_autoneg = !(dev->data->dev_conf.link_speeds &
2439                                 ETH_LINK_SPEED_FIXED);
2440         } else if (!link_check) {
2441                 link.link_speed = 0;
2442                 link.link_duplex = ETH_LINK_HALF_DUPLEX;
2443                 link.link_status = ETH_LINK_DOWN;
2444                 link.link_autoneg = ETH_LINK_FIXED;
2445         }
2446         rte_igb_dev_atomic_write_link_status(dev, &link);
2447
2448         /* not changed */
2449         if (old.link_status == link.link_status)
2450                 return -1;
2451
2452         /* changed */
2453         return 0;
2454 }
2455
2456 /*
2457  * igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit.
2458  * For ASF and Pass Through versions of f/w this means
2459  * that the driver is loaded.
2460  */
2461 static void
2462 igb_hw_control_acquire(struct e1000_hw *hw)
2463 {
2464         uint32_t ctrl_ext;
2465
2466         /* Let firmware know the driver has taken over */
2467         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2468         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2469 }
2470
2471 /*
2472  * igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit.
2473  * For ASF and Pass Through versions of f/w this means that the
2474  * driver is no longer loaded.
2475  */
2476 static void
2477 igb_hw_control_release(struct e1000_hw *hw)
2478 {
2479         uint32_t ctrl_ext;
2480
2481         /* Let firmware taken over control of h/w */
2482         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2483         E1000_WRITE_REG(hw, E1000_CTRL_EXT,
2484                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2485 }
2486
2487 /*
2488  * Bit of a misnomer, what this really means is
2489  * to enable OS management of the system... aka
2490  * to disable special hardware management features.
2491  */
2492 static void
2493 igb_init_manageability(struct e1000_hw *hw)
2494 {
2495         if (e1000_enable_mng_pass_thru(hw)) {
2496                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
2497                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
2498
2499                 /* disable hardware interception of ARP */
2500                 manc &= ~(E1000_MANC_ARP_EN);
2501
2502                 /* enable receiving management packets to the host */
2503                 manc |= E1000_MANC_EN_MNG2HOST;
2504                 manc2h |= 1 << 5;  /* Mng Port 623 */
2505                 manc2h |= 1 << 6;  /* Mng Port 664 */
2506                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
2507                 E1000_WRITE_REG(hw, E1000_MANC, manc);
2508         }
2509 }
2510
2511 static void
2512 igb_release_manageability(struct e1000_hw *hw)
2513 {
2514         if (e1000_enable_mng_pass_thru(hw)) {
2515                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
2516
2517                 manc |= E1000_MANC_ARP_EN;
2518                 manc &= ~E1000_MANC_EN_MNG2HOST;
2519
2520                 E1000_WRITE_REG(hw, E1000_MANC, manc);
2521         }
2522 }
2523
2524 static void
2525 eth_igb_promiscuous_enable(struct rte_eth_dev *dev)
2526 {
2527         struct e1000_hw *hw =
2528                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2529         uint32_t rctl;
2530
2531         rctl = E1000_READ_REG(hw, E1000_RCTL);
2532         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2533         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2534 }
2535
2536 static void
2537 eth_igb_promiscuous_disable(struct rte_eth_dev *dev)
2538 {
2539         struct e1000_hw *hw =
2540                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2541         uint32_t rctl;
2542
2543         rctl = E1000_READ_REG(hw, E1000_RCTL);
2544         rctl &= (~E1000_RCTL_UPE);
2545         if (dev->data->all_multicast == 1)
2546                 rctl |= E1000_RCTL_MPE;
2547         else
2548                 rctl &= (~E1000_RCTL_MPE);
2549         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2550 }
2551
2552 static void
2553 eth_igb_allmulticast_enable(struct rte_eth_dev *dev)
2554 {
2555         struct e1000_hw *hw =
2556                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2557         uint32_t rctl;
2558
2559         rctl = E1000_READ_REG(hw, E1000_RCTL);
2560         rctl |= E1000_RCTL_MPE;
2561         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2562 }
2563
2564 static void
2565 eth_igb_allmulticast_disable(struct rte_eth_dev *dev)
2566 {
2567         struct e1000_hw *hw =
2568                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2569         uint32_t rctl;
2570
2571         if (dev->data->promiscuous == 1)
2572                 return; /* must remain in all_multicast mode */
2573         rctl = E1000_READ_REG(hw, E1000_RCTL);
2574         rctl &= (~E1000_RCTL_MPE);
2575         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2576 }
2577
2578 static int
2579 eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
2580 {
2581         struct e1000_hw *hw =
2582                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2583         struct e1000_vfta * shadow_vfta =
2584                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2585         uint32_t vfta;
2586         uint32_t vid_idx;
2587         uint32_t vid_bit;
2588
2589         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
2590                               E1000_VFTA_ENTRY_MASK);
2591         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
2592         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
2593         if (on)
2594                 vfta |= vid_bit;
2595         else
2596                 vfta &= ~vid_bit;
2597         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
2598
2599         /* update local VFTA copy */
2600         shadow_vfta->vfta[vid_idx] = vfta;
2601
2602         return 0;
2603 }
2604
2605 static int
2606 eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
2607                       enum rte_vlan_type vlan_type,
2608                       uint16_t tpid)
2609 {
2610         struct e1000_hw *hw =
2611                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2612         uint32_t reg, qinq;
2613
2614         qinq = E1000_READ_REG(hw, E1000_CTRL_EXT);
2615         qinq &= E1000_CTRL_EXT_EXT_VLAN;
2616
2617         /* only outer TPID of double VLAN can be configured*/
2618         if (qinq && vlan_type == ETH_VLAN_TYPE_OUTER) {
2619                 reg = E1000_READ_REG(hw, E1000_VET);
2620                 reg = (reg & (~E1000_VET_VET_EXT)) |
2621                         ((uint32_t)tpid << E1000_VET_VET_EXT_SHIFT);
2622                 E1000_WRITE_REG(hw, E1000_VET, reg);
2623
2624                 return 0;
2625         }
2626
2627         /* all other TPID values are read-only*/
2628         PMD_DRV_LOG(ERR, "Not supported");
2629
2630         return -ENOTSUP;
2631 }
2632
2633 static void
2634 igb_vlan_hw_filter_disable(struct rte_eth_dev *dev)
2635 {
2636         struct e1000_hw *hw =
2637                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2638         uint32_t reg;
2639
2640         /* Filter Table Disable */
2641         reg = E1000_READ_REG(hw, E1000_RCTL);
2642         reg &= ~E1000_RCTL_CFIEN;
2643         reg &= ~E1000_RCTL_VFE;
2644         E1000_WRITE_REG(hw, E1000_RCTL, reg);
2645 }
2646
2647 static void
2648 igb_vlan_hw_filter_enable(struct rte_eth_dev *dev)
2649 {
2650         struct e1000_hw *hw =
2651                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2652         struct e1000_vfta * shadow_vfta =
2653                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2654         uint32_t reg;
2655         int i;
2656
2657         /* Filter Table Enable, CFI not used for packet acceptance */
2658         reg = E1000_READ_REG(hw, E1000_RCTL);
2659         reg &= ~E1000_RCTL_CFIEN;
2660         reg |= E1000_RCTL_VFE;
2661         E1000_WRITE_REG(hw, E1000_RCTL, reg);
2662
2663         /* restore VFTA table */
2664         for (i = 0; i < IGB_VFTA_SIZE; i++)
2665                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
2666 }
2667
2668 static void
2669 igb_vlan_hw_strip_disable(struct rte_eth_dev *dev)
2670 {
2671         struct e1000_hw *hw =
2672                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2673         uint32_t reg;
2674
2675         /* VLAN Mode Disable */
2676         reg = E1000_READ_REG(hw, E1000_CTRL);
2677         reg &= ~E1000_CTRL_VME;
2678         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2679 }
2680
2681 static void
2682 igb_vlan_hw_strip_enable(struct rte_eth_dev *dev)
2683 {
2684         struct e1000_hw *hw =
2685                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2686         uint32_t reg;
2687
2688         /* VLAN Mode Enable */
2689         reg = E1000_READ_REG(hw, E1000_CTRL);
2690         reg |= E1000_CTRL_VME;
2691         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2692 }
2693
2694 static void
2695 igb_vlan_hw_extend_disable(struct rte_eth_dev *dev)
2696 {
2697         struct e1000_hw *hw =
2698                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2699         uint32_t reg;
2700
2701         /* CTRL_EXT: Extended VLAN */
2702         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2703         reg &= ~E1000_CTRL_EXT_EXTEND_VLAN;
2704         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2705
2706         /* Update maximum packet length */
2707         if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
2708                 E1000_WRITE_REG(hw, E1000_RLPML,
2709                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2710                                                 VLAN_TAG_SIZE);
2711 }
2712
2713 static void
2714 igb_vlan_hw_extend_enable(struct rte_eth_dev *dev)
2715 {
2716         struct e1000_hw *hw =
2717                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2718         uint32_t reg;
2719
2720         /* CTRL_EXT: Extended VLAN */
2721         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2722         reg |= E1000_CTRL_EXT_EXTEND_VLAN;
2723         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2724
2725         /* Update maximum packet length */
2726         if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
2727                 E1000_WRITE_REG(hw, E1000_RLPML,
2728                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2729                                                 2 * VLAN_TAG_SIZE);
2730 }
2731
2732 static int
2733 eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask)
2734 {
2735         if(mask & ETH_VLAN_STRIP_MASK){
2736                 if (dev->data->dev_conf.rxmode.hw_vlan_strip)
2737                         igb_vlan_hw_strip_enable(dev);
2738                 else
2739                         igb_vlan_hw_strip_disable(dev);
2740         }
2741
2742         if(mask & ETH_VLAN_FILTER_MASK){
2743                 if (dev->data->dev_conf.rxmode.hw_vlan_filter)
2744                         igb_vlan_hw_filter_enable(dev);
2745                 else
2746                         igb_vlan_hw_filter_disable(dev);
2747         }
2748
2749         if(mask & ETH_VLAN_EXTEND_MASK){
2750                 if (dev->data->dev_conf.rxmode.hw_vlan_extend)
2751                         igb_vlan_hw_extend_enable(dev);
2752                 else
2753                         igb_vlan_hw_extend_disable(dev);
2754         }
2755
2756         return 0;
2757 }
2758
2759
2760 /**
2761  * It enables the interrupt mask and then enable the interrupt.
2762  *
2763  * @param dev
2764  *  Pointer to struct rte_eth_dev.
2765  * @param on
2766  *  Enable or Disable
2767  *
2768  * @return
2769  *  - On success, zero.
2770  *  - On failure, a negative value.
2771  */
2772 static int
2773 eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on)
2774 {
2775         struct e1000_interrupt *intr =
2776                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2777
2778         if (on)
2779                 intr->mask |= E1000_ICR_LSC;
2780         else
2781                 intr->mask &= ~E1000_ICR_LSC;
2782
2783         return 0;
2784 }
2785
2786 /* It clears the interrupt causes and enables the interrupt.
2787  * It will be called once only during nic initialized.
2788  *
2789  * @param dev
2790  *  Pointer to struct rte_eth_dev.
2791  *
2792  * @return
2793  *  - On success, zero.
2794  *  - On failure, a negative value.
2795  */
2796 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev)
2797 {
2798         uint32_t mask, regval;
2799         struct e1000_hw *hw =
2800                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2801         struct rte_eth_dev_info dev_info;
2802
2803         memset(&dev_info, 0, sizeof(dev_info));
2804         eth_igb_infos_get(dev, &dev_info);
2805
2806         mask = 0xFFFFFFFF >> (32 - dev_info.max_rx_queues);
2807         regval = E1000_READ_REG(hw, E1000_EIMS);
2808         E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
2809
2810         return 0;
2811 }
2812
2813 /*
2814  * It reads ICR and gets interrupt causes, check it and set a bit flag
2815  * to update link status.
2816  *
2817  * @param dev
2818  *  Pointer to struct rte_eth_dev.
2819  *
2820  * @return
2821  *  - On success, zero.
2822  *  - On failure, a negative value.
2823  */
2824 static int
2825 eth_igb_interrupt_get_status(struct rte_eth_dev *dev)
2826 {
2827         uint32_t icr;
2828         struct e1000_hw *hw =
2829                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2830         struct e1000_interrupt *intr =
2831                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2832
2833         igb_intr_disable(hw);
2834
2835         /* read-on-clear nic registers here */
2836         icr = E1000_READ_REG(hw, E1000_ICR);
2837
2838         intr->flags = 0;
2839         if (icr & E1000_ICR_LSC) {
2840                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
2841         }
2842
2843         if (icr & E1000_ICR_VMMB)
2844                 intr->flags |= E1000_FLAG_MAILBOX;
2845
2846         return 0;
2847 }
2848
2849 /*
2850  * It executes link_update after knowing an interrupt is prsent.
2851  *
2852  * @param dev
2853  *  Pointer to struct rte_eth_dev.
2854  *
2855  * @return
2856  *  - On success, zero.
2857  *  - On failure, a negative value.
2858  */
2859 static int
2860 eth_igb_interrupt_action(struct rte_eth_dev *dev,
2861                          struct rte_intr_handle *intr_handle)
2862 {
2863         struct e1000_hw *hw =
2864                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2865         struct e1000_interrupt *intr =
2866                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2867         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2868         struct rte_eth_link link;
2869         int ret;
2870
2871         if (intr->flags & E1000_FLAG_MAILBOX) {
2872                 igb_pf_mbx_process(dev);
2873                 intr->flags &= ~E1000_FLAG_MAILBOX;
2874         }
2875
2876         igb_intr_enable(dev);
2877         rte_intr_enable(intr_handle);
2878
2879         if (intr->flags & E1000_FLAG_NEED_LINK_UPDATE) {
2880                 intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
2881
2882                 /* set get_link_status to check register later */
2883                 hw->mac.get_link_status = 1;
2884                 ret = eth_igb_link_update(dev, 0);
2885
2886                 /* check if link has changed */
2887                 if (ret < 0)
2888                         return 0;
2889
2890                 memset(&link, 0, sizeof(link));
2891                 rte_igb_dev_atomic_read_link_status(dev, &link);
2892                 if (link.link_status) {
2893                         PMD_INIT_LOG(INFO,
2894                                      " Port %d: Link Up - speed %u Mbps - %s",
2895                                      dev->data->port_id,
2896                                      (unsigned)link.link_speed,
2897                                      link.link_duplex == ETH_LINK_FULL_DUPLEX ?
2898                                      "full-duplex" : "half-duplex");
2899                 } else {
2900                         PMD_INIT_LOG(INFO, " Port %d: Link Down",
2901                                      dev->data->port_id);
2902                 }
2903
2904                 PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
2905                              pci_dev->addr.domain,
2906                              pci_dev->addr.bus,
2907                              pci_dev->addr.devid,
2908                              pci_dev->addr.function);
2909                 _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC,
2910                                               NULL);
2911         }
2912
2913         return 0;
2914 }
2915
2916 /**
2917  * Interrupt handler which shall be registered at first.
2918  *
2919  * @param handle
2920  *  Pointer to interrupt handle.
2921  * @param param
2922  *  The address of parameter (struct rte_eth_dev *) regsitered before.
2923  *
2924  * @return
2925  *  void
2926  */
2927 static void
2928 eth_igb_interrupt_handler(void *param)
2929 {
2930         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2931
2932         eth_igb_interrupt_get_status(dev);
2933         eth_igb_interrupt_action(dev, dev->intr_handle);
2934 }
2935
2936 static int
2937 eth_igbvf_interrupt_get_status(struct rte_eth_dev *dev)
2938 {
2939         uint32_t eicr;
2940         struct e1000_hw *hw =
2941                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2942         struct e1000_interrupt *intr =
2943                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2944
2945         igbvf_intr_disable(hw);
2946
2947         /* read-on-clear nic registers here */
2948         eicr = E1000_READ_REG(hw, E1000_EICR);
2949         intr->flags = 0;
2950
2951         if (eicr == E1000_VTIVAR_MISC_MAILBOX)
2952                 intr->flags |= E1000_FLAG_MAILBOX;
2953
2954         return 0;
2955 }
2956
2957 void igbvf_mbx_process(struct rte_eth_dev *dev)
2958 {
2959         struct e1000_hw *hw =
2960                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2961         struct e1000_mbx_info *mbx = &hw->mbx;
2962         u32 in_msg = 0;
2963
2964         if (mbx->ops.read(hw, &in_msg, 1, 0))
2965                 return;
2966
2967         /* PF reset VF event */
2968         if (in_msg == E1000_PF_CONTROL_MSG)
2969                 _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
2970                                               NULL);
2971 }
2972
2973 static int
2974 eth_igbvf_interrupt_action(struct rte_eth_dev *dev, struct rte_intr_handle *intr_handle)
2975 {
2976         struct e1000_interrupt *intr =
2977                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2978
2979         if (intr->flags & E1000_FLAG_MAILBOX) {
2980                 igbvf_mbx_process(dev);
2981                 intr->flags &= ~E1000_FLAG_MAILBOX;
2982         }
2983
2984         igbvf_intr_enable(dev);
2985         rte_intr_enable(intr_handle);
2986
2987         return 0;
2988 }
2989
2990 static void
2991 eth_igbvf_interrupt_handler(void *param)
2992 {
2993         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2994
2995         eth_igbvf_interrupt_get_status(dev);
2996         eth_igbvf_interrupt_action(dev, dev->intr_handle);
2997 }
2998
2999 static int
3000 eth_igb_led_on(struct rte_eth_dev *dev)
3001 {
3002         struct e1000_hw *hw;
3003
3004         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3005         return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
3006 }
3007
3008 static int
3009 eth_igb_led_off(struct rte_eth_dev *dev)
3010 {
3011         struct e1000_hw *hw;
3012
3013         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3014         return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
3015 }
3016
3017 static int
3018 eth_igb_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
3019 {
3020         struct e1000_hw *hw;
3021         uint32_t ctrl;
3022         int tx_pause;
3023         int rx_pause;
3024
3025         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3026         fc_conf->pause_time = hw->fc.pause_time;
3027         fc_conf->high_water = hw->fc.high_water;
3028         fc_conf->low_water = hw->fc.low_water;
3029         fc_conf->send_xon = hw->fc.send_xon;
3030         fc_conf->autoneg = hw->mac.autoneg;
3031
3032         /*
3033          * Return rx_pause and tx_pause status according to actual setting of
3034          * the TFCE and RFCE bits in the CTRL register.
3035          */
3036         ctrl = E1000_READ_REG(hw, E1000_CTRL);
3037         if (ctrl & E1000_CTRL_TFCE)
3038                 tx_pause = 1;
3039         else
3040                 tx_pause = 0;
3041
3042         if (ctrl & E1000_CTRL_RFCE)
3043                 rx_pause = 1;
3044         else
3045                 rx_pause = 0;
3046
3047         if (rx_pause && tx_pause)
3048                 fc_conf->mode = RTE_FC_FULL;
3049         else if (rx_pause)
3050                 fc_conf->mode = RTE_FC_RX_PAUSE;
3051         else if (tx_pause)
3052                 fc_conf->mode = RTE_FC_TX_PAUSE;
3053         else
3054                 fc_conf->mode = RTE_FC_NONE;
3055
3056         return 0;
3057 }
3058
3059 static int
3060 eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
3061 {
3062         struct e1000_hw *hw;
3063         int err;
3064         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
3065                 e1000_fc_none,
3066                 e1000_fc_rx_pause,
3067                 e1000_fc_tx_pause,
3068                 e1000_fc_full
3069         };
3070         uint32_t rx_buf_size;
3071         uint32_t max_high_water;
3072         uint32_t rctl;
3073
3074         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3075         if (fc_conf->autoneg != hw->mac.autoneg)
3076                 return -ENOTSUP;
3077         rx_buf_size = igb_get_rx_buffer_size(hw);
3078         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
3079
3080         /* At least reserve one Ethernet frame for watermark */
3081         max_high_water = rx_buf_size - ETHER_MAX_LEN;
3082         if ((fc_conf->high_water > max_high_water) ||
3083             (fc_conf->high_water < fc_conf->low_water)) {
3084                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
3085                 PMD_INIT_LOG(ERR, "high water must <=  0x%x", max_high_water);
3086                 return -EINVAL;
3087         }
3088
3089         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
3090         hw->fc.pause_time     = fc_conf->pause_time;
3091         hw->fc.high_water     = fc_conf->high_water;
3092         hw->fc.low_water      = fc_conf->low_water;
3093         hw->fc.send_xon       = fc_conf->send_xon;
3094
3095         err = e1000_setup_link_generic(hw);
3096         if (err == E1000_SUCCESS) {
3097
3098                 /* check if we want to forward MAC frames - driver doesn't have native
3099                  * capability to do that, so we'll write the registers ourselves */
3100
3101                 rctl = E1000_READ_REG(hw, E1000_RCTL);
3102
3103                 /* set or clear MFLCN.PMCF bit depending on configuration */
3104                 if (fc_conf->mac_ctrl_frame_fwd != 0)
3105                         rctl |= E1000_RCTL_PMCF;
3106                 else
3107                         rctl &= ~E1000_RCTL_PMCF;
3108
3109                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3110                 E1000_WRITE_FLUSH(hw);
3111
3112                 return 0;
3113         }
3114
3115         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
3116         return -EIO;
3117 }
3118
3119 #define E1000_RAH_POOLSEL_SHIFT      (18)
3120 static int
3121 eth_igb_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
3122                 uint32_t index, uint32_t pool)
3123 {
3124         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3125         uint32_t rah;
3126
3127         e1000_rar_set(hw, mac_addr->addr_bytes, index);
3128         rah = E1000_READ_REG(hw, E1000_RAH(index));
3129         rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + pool));
3130         E1000_WRITE_REG(hw, E1000_RAH(index), rah);
3131         return 0;
3132 }
3133
3134 static void
3135 eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index)
3136 {
3137         uint8_t addr[ETHER_ADDR_LEN];
3138         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3139
3140         memset(addr, 0, sizeof(addr));
3141
3142         e1000_rar_set(hw, addr, index);
3143 }
3144
3145 static void
3146 eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
3147                                 struct ether_addr *addr)
3148 {
3149         eth_igb_rar_clear(dev, 0);
3150
3151         eth_igb_rar_set(dev, (void *)addr, 0, 0);
3152 }
3153 /*
3154  * Virtual Function operations
3155  */
3156 static void
3157 igbvf_intr_disable(struct e1000_hw *hw)
3158 {
3159         PMD_INIT_FUNC_TRACE();
3160
3161         /* Clear interrupt mask to stop from interrupts being generated */
3162         E1000_WRITE_REG(hw, E1000_EIMC, 0xFFFF);
3163
3164         E1000_WRITE_FLUSH(hw);
3165 }
3166
3167 static void
3168 igbvf_stop_adapter(struct rte_eth_dev *dev)
3169 {
3170         u32 reg_val;
3171         u16 i;
3172         struct rte_eth_dev_info dev_info;
3173         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3174
3175         memset(&dev_info, 0, sizeof(dev_info));
3176         eth_igbvf_infos_get(dev, &dev_info);
3177
3178         /* Clear interrupt mask to stop from interrupts being generated */
3179         igbvf_intr_disable(hw);
3180
3181         /* Clear any pending interrupts, flush previous writes */
3182         E1000_READ_REG(hw, E1000_EICR);
3183
3184         /* Disable the transmit unit.  Each queue must be disabled. */
3185         for (i = 0; i < dev_info.max_tx_queues; i++)
3186                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), E1000_TXDCTL_SWFLSH);
3187
3188         /* Disable the receive unit by stopping each queue */
3189         for (i = 0; i < dev_info.max_rx_queues; i++) {
3190                 reg_val = E1000_READ_REG(hw, E1000_RXDCTL(i));
3191                 reg_val &= ~E1000_RXDCTL_QUEUE_ENABLE;
3192                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), reg_val);
3193                 while (E1000_READ_REG(hw, E1000_RXDCTL(i)) & E1000_RXDCTL_QUEUE_ENABLE)
3194                         ;
3195         }
3196
3197         /* flush all queues disables */
3198         E1000_WRITE_FLUSH(hw);
3199         msec_delay(2);
3200 }
3201
3202 static int eth_igbvf_link_update(struct e1000_hw *hw)
3203 {
3204         struct e1000_mbx_info *mbx = &hw->mbx;
3205         struct e1000_mac_info *mac = &hw->mac;
3206         int ret_val = E1000_SUCCESS;
3207
3208         PMD_INIT_LOG(DEBUG, "e1000_check_for_link_vf");
3209
3210         /*
3211          * We only want to run this if there has been a rst asserted.
3212          * in this case that could mean a link change, device reset,
3213          * or a virtual function reset
3214          */
3215
3216         /* If we were hit with a reset or timeout drop the link */
3217         if (!e1000_check_for_rst(hw, 0) || !mbx->timeout)
3218                 mac->get_link_status = TRUE;
3219
3220         if (!mac->get_link_status)
3221                 goto out;
3222
3223         /* if link status is down no point in checking to see if pf is up */
3224         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
3225                 goto out;
3226
3227         /* if we passed all the tests above then the link is up and we no
3228          * longer need to check for link */
3229         mac->get_link_status = FALSE;
3230
3231 out:
3232         return ret_val;
3233 }
3234
3235
3236 static int
3237 igbvf_dev_configure(struct rte_eth_dev *dev)
3238 {
3239         struct rte_eth_conf* conf = &dev->data->dev_conf;
3240
3241         PMD_INIT_LOG(DEBUG, "Configured Virtual Function port id: %d",
3242                      dev->data->port_id);
3243
3244         /*
3245          * VF has no ability to enable/disable HW CRC
3246          * Keep the persistent behavior the same as Host PF
3247          */
3248 #ifndef RTE_LIBRTE_E1000_PF_DISABLE_STRIP_CRC
3249         if (!conf->rxmode.hw_strip_crc) {
3250                 PMD_INIT_LOG(NOTICE, "VF can't disable HW CRC Strip");
3251                 conf->rxmode.hw_strip_crc = 1;
3252         }
3253 #else
3254         if (conf->rxmode.hw_strip_crc) {
3255                 PMD_INIT_LOG(NOTICE, "VF can't enable HW CRC Strip");
3256                 conf->rxmode.hw_strip_crc = 0;
3257         }
3258 #endif
3259
3260         return 0;
3261 }
3262
3263 static int
3264 igbvf_dev_start(struct rte_eth_dev *dev)
3265 {
3266         struct e1000_hw *hw =
3267                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3268         struct e1000_adapter *adapter =
3269                 E1000_DEV_PRIVATE(dev->data->dev_private);
3270         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3271         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3272         int ret;
3273         uint32_t intr_vector = 0;
3274
3275         PMD_INIT_FUNC_TRACE();
3276
3277         hw->mac.ops.reset_hw(hw);
3278         adapter->stopped = 0;
3279
3280         /* Set all vfta */
3281         igbvf_set_vfta_all(dev,1);
3282
3283         eth_igbvf_tx_init(dev);
3284
3285         /* This can fail when allocating mbufs for descriptor rings */
3286         ret = eth_igbvf_rx_init(dev);
3287         if (ret) {
3288                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
3289                 igb_dev_clear_queues(dev);
3290                 return ret;
3291         }
3292
3293         /* check and configure queue intr-vector mapping */
3294         if (dev->data->dev_conf.intr_conf.rxq != 0) {
3295                 intr_vector = dev->data->nb_rx_queues;
3296                 ret = rte_intr_efd_enable(intr_handle, intr_vector);
3297                 if (ret)
3298                         return ret;
3299         }
3300
3301         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
3302                 intr_handle->intr_vec =
3303                         rte_zmalloc("intr_vec",
3304                                     dev->data->nb_rx_queues * sizeof(int), 0);
3305                 if (!intr_handle->intr_vec) {
3306                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
3307                                      " intr_vec", dev->data->nb_rx_queues);
3308                         return -ENOMEM;
3309                 }
3310         }
3311
3312         eth_igbvf_configure_msix_intr(dev);
3313
3314         /* enable uio/vfio intr/eventfd mapping */
3315         rte_intr_enable(intr_handle);
3316
3317         /* resume enabled intr since hw reset */
3318         igbvf_intr_enable(dev);
3319
3320         return 0;
3321 }
3322
3323 static void
3324 igbvf_dev_stop(struct rte_eth_dev *dev)
3325 {
3326         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3327         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3328
3329         PMD_INIT_FUNC_TRACE();
3330
3331         igbvf_stop_adapter(dev);
3332
3333         /*
3334           * Clear what we set, but we still keep shadow_vfta to
3335           * restore after device starts
3336           */
3337         igbvf_set_vfta_all(dev,0);
3338
3339         igb_dev_clear_queues(dev);
3340
3341         /* disable intr eventfd mapping */
3342         rte_intr_disable(intr_handle);
3343
3344         /* Clean datapath event and queue/vec mapping */
3345         rte_intr_efd_disable(intr_handle);
3346         if (intr_handle->intr_vec) {
3347                 rte_free(intr_handle->intr_vec);
3348                 intr_handle->intr_vec = NULL;
3349         }
3350 }
3351
3352 static void
3353 igbvf_dev_close(struct rte_eth_dev *dev)
3354 {
3355         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3356         struct e1000_adapter *adapter =
3357                 E1000_DEV_PRIVATE(dev->data->dev_private);
3358         struct ether_addr addr;
3359
3360         PMD_INIT_FUNC_TRACE();
3361
3362         e1000_reset_hw(hw);
3363
3364         igbvf_dev_stop(dev);
3365         adapter->stopped = 1;
3366         igb_dev_free_queues(dev);
3367
3368         /**
3369          * reprogram the RAR with a zero mac address,
3370          * to ensure that the VF traffic goes to the PF
3371          * after stop, close and detach of the VF.
3372          **/
3373
3374         memset(&addr, 0, sizeof(addr));
3375         igbvf_default_mac_addr_set(dev, &addr);
3376 }
3377
3378 static void
3379 igbvf_promiscuous_enable(struct rte_eth_dev *dev)
3380 {
3381         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3382
3383         /* Set both unicast and multicast promisc */
3384         e1000_promisc_set_vf(hw, e1000_promisc_enabled);
3385 }
3386
3387 static void
3388 igbvf_promiscuous_disable(struct rte_eth_dev *dev)
3389 {
3390         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3391
3392         /* If in allmulticast mode leave multicast promisc */
3393         if (dev->data->all_multicast == 1)
3394                 e1000_promisc_set_vf(hw, e1000_promisc_multicast);
3395         else
3396                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
3397 }
3398
3399 static void
3400 igbvf_allmulticast_enable(struct rte_eth_dev *dev)
3401 {
3402         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3403
3404         /* In promiscuous mode multicast promisc already set */
3405         if (dev->data->promiscuous == 0)
3406                 e1000_promisc_set_vf(hw, e1000_promisc_multicast);
3407 }
3408
3409 static void
3410 igbvf_allmulticast_disable(struct rte_eth_dev *dev)
3411 {
3412         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3413
3414         /* In promiscuous mode leave multicast promisc enabled */
3415         if (dev->data->promiscuous == 0)
3416                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
3417 }
3418
3419 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on)
3420 {
3421         struct e1000_mbx_info *mbx = &hw->mbx;
3422         uint32_t msgbuf[2];
3423         s32 err;
3424
3425         /* After set vlan, vlan strip will also be enabled in igb driver*/
3426         msgbuf[0] = E1000_VF_SET_VLAN;
3427         msgbuf[1] = vid;
3428         /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
3429         if (on)
3430                 msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
3431
3432         err = mbx->ops.write_posted(hw, msgbuf, 2, 0);
3433         if (err)
3434                 goto mbx_err;
3435
3436         err = mbx->ops.read_posted(hw, msgbuf, 2, 0);
3437         if (err)
3438                 goto mbx_err;
3439
3440         msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
3441         if (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK))
3442                 err = -EINVAL;
3443
3444 mbx_err:
3445         return err;
3446 }
3447
3448 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on)
3449 {
3450         struct e1000_hw *hw =
3451                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3452         struct e1000_vfta * shadow_vfta =
3453                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
3454         int i = 0, j = 0, vfta = 0, mask = 1;
3455
3456         for (i = 0; i < IGB_VFTA_SIZE; i++){
3457                 vfta = shadow_vfta->vfta[i];
3458                 if(vfta){
3459                         mask = 1;
3460                         for (j = 0; j < 32; j++){
3461                                 if(vfta & mask)
3462                                         igbvf_set_vfta(hw,
3463                                                 (uint16_t)((i<<5)+j), on);
3464                                 mask<<=1;
3465                         }
3466                 }
3467         }
3468
3469 }
3470
3471 static int
3472 igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
3473 {
3474         struct e1000_hw *hw =
3475                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3476         struct e1000_vfta * shadow_vfta =
3477                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
3478         uint32_t vid_idx = 0;
3479         uint32_t vid_bit = 0;
3480         int ret = 0;
3481
3482         PMD_INIT_FUNC_TRACE();
3483
3484         /*vind is not used in VF driver, set to 0, check ixgbe_set_vfta_vf*/
3485         ret = igbvf_set_vfta(hw, vlan_id, !!on);
3486         if(ret){
3487                 PMD_INIT_LOG(ERR, "Unable to set VF vlan");
3488                 return ret;
3489         }
3490         vid_idx = (uint32_t) ((vlan_id >> 5) & 0x7F);
3491         vid_bit = (uint32_t) (1 << (vlan_id & 0x1F));
3492
3493         /*Save what we set and retore it after device reset*/
3494         if (on)
3495                 shadow_vfta->vfta[vid_idx] |= vid_bit;
3496         else
3497                 shadow_vfta->vfta[vid_idx] &= ~vid_bit;
3498
3499         return 0;
3500 }
3501
3502 static void
3503 igbvf_default_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *addr)
3504 {
3505         struct e1000_hw *hw =
3506                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3507
3508         /* index is not used by rar_set() */
3509         hw->mac.ops.rar_set(hw, (void *)addr, 0);
3510 }
3511
3512
3513 static int
3514 eth_igb_rss_reta_update(struct rte_eth_dev *dev,
3515                         struct rte_eth_rss_reta_entry64 *reta_conf,
3516                         uint16_t reta_size)
3517 {
3518         uint8_t i, j, mask;
3519         uint32_t reta, r;
3520         uint16_t idx, shift;
3521         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3522
3523         if (reta_size != ETH_RSS_RETA_SIZE_128) {
3524                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
3525                         "(%d) doesn't match the number hardware can supported "
3526                         "(%d)", reta_size, ETH_RSS_RETA_SIZE_128);
3527                 return -EINVAL;
3528         }
3529
3530         for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
3531                 idx = i / RTE_RETA_GROUP_SIZE;
3532                 shift = i % RTE_RETA_GROUP_SIZE;
3533                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
3534                                                 IGB_4_BIT_MASK);
3535                 if (!mask)
3536                         continue;
3537                 if (mask == IGB_4_BIT_MASK)
3538                         r = 0;
3539                 else
3540                         r = E1000_READ_REG(hw, E1000_RETA(i >> 2));
3541                 for (j = 0, reta = 0; j < IGB_4_BIT_WIDTH; j++) {
3542                         if (mask & (0x1 << j))
3543                                 reta |= reta_conf[idx].reta[shift + j] <<
3544                                                         (CHAR_BIT * j);
3545                         else
3546                                 reta |= r & (IGB_8_BIT_MASK << (CHAR_BIT * j));
3547                 }
3548                 E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
3549         }
3550
3551         return 0;
3552 }
3553
3554 static int
3555 eth_igb_rss_reta_query(struct rte_eth_dev *dev,
3556                        struct rte_eth_rss_reta_entry64 *reta_conf,
3557                        uint16_t reta_size)
3558 {
3559         uint8_t i, j, mask;
3560         uint32_t reta;
3561         uint16_t idx, shift;
3562         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3563
3564         if (reta_size != ETH_RSS_RETA_SIZE_128) {
3565                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
3566                         "(%d) doesn't match the number hardware can supported "
3567                         "(%d)", reta_size, ETH_RSS_RETA_SIZE_128);
3568                 return -EINVAL;
3569         }
3570
3571         for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
3572                 idx = i / RTE_RETA_GROUP_SIZE;
3573                 shift = i % RTE_RETA_GROUP_SIZE;
3574                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
3575                                                 IGB_4_BIT_MASK);
3576                 if (!mask)
3577                         continue;
3578                 reta = E1000_READ_REG(hw, E1000_RETA(i >> 2));
3579                 for (j = 0; j < IGB_4_BIT_WIDTH; j++) {
3580                         if (mask & (0x1 << j))
3581                                 reta_conf[idx].reta[shift + j] =
3582                                         ((reta >> (CHAR_BIT * j)) &
3583                                                 IGB_8_BIT_MASK);
3584                 }
3585         }
3586
3587         return 0;
3588 }
3589
3590 int
3591 eth_igb_syn_filter_set(struct rte_eth_dev *dev,
3592                         struct rte_eth_syn_filter *filter,
3593                         bool add)
3594 {
3595         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3596         struct e1000_filter_info *filter_info =
3597                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3598         uint32_t synqf, rfctl;
3599
3600         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
3601                 return -EINVAL;
3602
3603         synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
3604
3605         if (add) {
3606                 if (synqf & E1000_SYN_FILTER_ENABLE)
3607                         return -EINVAL;
3608
3609                 synqf = (uint32_t)(((filter->queue << E1000_SYN_FILTER_QUEUE_SHIFT) &
3610                         E1000_SYN_FILTER_QUEUE) | E1000_SYN_FILTER_ENABLE);
3611
3612                 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3613                 if (filter->hig_pri)
3614                         rfctl |= E1000_RFCTL_SYNQFP;
3615                 else
3616                         rfctl &= ~E1000_RFCTL_SYNQFP;
3617
3618                 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3619         } else {
3620                 if (!(synqf & E1000_SYN_FILTER_ENABLE))
3621                         return -ENOENT;
3622                 synqf = 0;
3623         }
3624
3625         filter_info->syn_info = synqf;
3626         E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
3627         E1000_WRITE_FLUSH(hw);
3628         return 0;
3629 }
3630
3631 static int
3632 eth_igb_syn_filter_get(struct rte_eth_dev *dev,
3633                         struct rte_eth_syn_filter *filter)
3634 {
3635         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3636         uint32_t synqf, rfctl;
3637
3638         synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
3639         if (synqf & E1000_SYN_FILTER_ENABLE) {
3640                 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3641                 filter->hig_pri = (rfctl & E1000_RFCTL_SYNQFP) ? 1 : 0;
3642                 filter->queue = (uint8_t)((synqf & E1000_SYN_FILTER_QUEUE) >>
3643                                 E1000_SYN_FILTER_QUEUE_SHIFT);
3644                 return 0;
3645         }
3646
3647         return -ENOENT;
3648 }
3649
3650 static int
3651 eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
3652                         enum rte_filter_op filter_op,
3653                         void *arg)
3654 {
3655         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3656         int ret;
3657
3658         MAC_TYPE_FILTER_SUP(hw->mac.type);
3659
3660         if (filter_op == RTE_ETH_FILTER_NOP)
3661                 return 0;
3662
3663         if (arg == NULL) {
3664                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
3665                             filter_op);
3666                 return -EINVAL;
3667         }
3668
3669         switch (filter_op) {
3670         case RTE_ETH_FILTER_ADD:
3671                 ret = eth_igb_syn_filter_set(dev,
3672                                 (struct rte_eth_syn_filter *)arg,
3673                                 TRUE);
3674                 break;
3675         case RTE_ETH_FILTER_DELETE:
3676                 ret = eth_igb_syn_filter_set(dev,
3677                                 (struct rte_eth_syn_filter *)arg,
3678                                 FALSE);
3679                 break;
3680         case RTE_ETH_FILTER_GET:
3681                 ret = eth_igb_syn_filter_get(dev,
3682                                 (struct rte_eth_syn_filter *)arg);
3683                 break;
3684         default:
3685                 PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op);
3686                 ret = -EINVAL;
3687                 break;
3688         }
3689
3690         return ret;
3691 }
3692
3693 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_2tuple_filter_info*/
3694 static inline int
3695 ntuple_filter_to_2tuple(struct rte_eth_ntuple_filter *filter,
3696                         struct e1000_2tuple_filter_info *filter_info)
3697 {
3698         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
3699                 return -EINVAL;
3700         if (filter->priority > E1000_2TUPLE_MAX_PRI)
3701                 return -EINVAL;  /* filter index is out of range. */
3702         if (filter->tcp_flags > TCP_FLAG_ALL)
3703                 return -EINVAL;  /* flags is invalid. */
3704
3705         switch (filter->dst_port_mask) {
3706         case UINT16_MAX:
3707                 filter_info->dst_port_mask = 0;
3708                 filter_info->dst_port = filter->dst_port;
3709                 break;
3710         case 0:
3711                 filter_info->dst_port_mask = 1;
3712                 break;
3713         default:
3714                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
3715                 return -EINVAL;
3716         }
3717
3718         switch (filter->proto_mask) {
3719         case UINT8_MAX:
3720                 filter_info->proto_mask = 0;
3721                 filter_info->proto = filter->proto;
3722                 break;
3723         case 0:
3724                 filter_info->proto_mask = 1;
3725                 break;
3726         default:
3727                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
3728                 return -EINVAL;
3729         }
3730
3731         filter_info->priority = (uint8_t)filter->priority;
3732         if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
3733                 filter_info->tcp_flags = filter->tcp_flags;
3734         else
3735                 filter_info->tcp_flags = 0;
3736
3737         return 0;
3738 }
3739
3740 static inline struct e1000_2tuple_filter *
3741 igb_2tuple_filter_lookup(struct e1000_2tuple_filter_list *filter_list,
3742                         struct e1000_2tuple_filter_info *key)
3743 {
3744         struct e1000_2tuple_filter *it;
3745
3746         TAILQ_FOREACH(it, filter_list, entries) {
3747                 if (memcmp(key, &it->filter_info,
3748                         sizeof(struct e1000_2tuple_filter_info)) == 0) {
3749                         return it;
3750                 }
3751         }
3752         return NULL;
3753 }
3754
3755 /* inject a igb 2tuple filter to HW */
3756 static inline void
3757 igb_inject_2uple_filter(struct rte_eth_dev *dev,
3758                            struct e1000_2tuple_filter *filter)
3759 {
3760         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3761         uint32_t ttqf = E1000_TTQF_DISABLE_MASK;
3762         uint32_t imir, imir_ext = E1000_IMIREXT_SIZE_BP;
3763         int i;
3764
3765         i = filter->index;
3766         imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
3767         if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
3768                 imir |= E1000_IMIR_PORT_BP;
3769         else
3770                 imir &= ~E1000_IMIR_PORT_BP;
3771
3772         imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
3773
3774         ttqf |= E1000_TTQF_QUEUE_ENABLE;
3775         ttqf |= (uint32_t)(filter->queue << E1000_TTQF_QUEUE_SHIFT);
3776         ttqf |= (uint32_t)(filter->filter_info.proto &
3777                                                 E1000_TTQF_PROTOCOL_MASK);
3778         if (filter->filter_info.proto_mask == 0)
3779                 ttqf &= ~E1000_TTQF_MASK_ENABLE;
3780
3781         /* tcp flags bits setting. */
3782         if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) {
3783                 if (filter->filter_info.tcp_flags & TCP_URG_FLAG)
3784                         imir_ext |= E1000_IMIREXT_CTRL_URG;
3785                 if (filter->filter_info.tcp_flags & TCP_ACK_FLAG)
3786                         imir_ext |= E1000_IMIREXT_CTRL_ACK;
3787                 if (filter->filter_info.tcp_flags & TCP_PSH_FLAG)
3788                         imir_ext |= E1000_IMIREXT_CTRL_PSH;
3789                 if (filter->filter_info.tcp_flags & TCP_RST_FLAG)
3790                         imir_ext |= E1000_IMIREXT_CTRL_RST;
3791                 if (filter->filter_info.tcp_flags & TCP_SYN_FLAG)
3792                         imir_ext |= E1000_IMIREXT_CTRL_SYN;
3793                 if (filter->filter_info.tcp_flags & TCP_FIN_FLAG)
3794                         imir_ext |= E1000_IMIREXT_CTRL_FIN;
3795         } else {
3796                 imir_ext |= E1000_IMIREXT_CTRL_BP;
3797         }
3798         E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
3799         E1000_WRITE_REG(hw, E1000_TTQF(i), ttqf);
3800         E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
3801 }
3802
3803 /*
3804  * igb_add_2tuple_filter - add a 2tuple filter
3805  *
3806  * @param
3807  * dev: Pointer to struct rte_eth_dev.
3808  * ntuple_filter: ponter to the filter that will be added.
3809  *
3810  * @return
3811  *    - On success, zero.
3812  *    - On failure, a negative value.
3813  */
3814 static int
3815 igb_add_2tuple_filter(struct rte_eth_dev *dev,
3816                         struct rte_eth_ntuple_filter *ntuple_filter)
3817 {
3818         struct e1000_filter_info *filter_info =
3819                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3820         struct e1000_2tuple_filter *filter;
3821         int i, ret;
3822
3823         filter = rte_zmalloc("e1000_2tuple_filter",
3824                         sizeof(struct e1000_2tuple_filter), 0);
3825         if (filter == NULL)
3826                 return -ENOMEM;
3827
3828         ret = ntuple_filter_to_2tuple(ntuple_filter,
3829                                       &filter->filter_info);
3830         if (ret < 0) {
3831                 rte_free(filter);
3832                 return ret;
3833         }
3834         if (igb_2tuple_filter_lookup(&filter_info->twotuple_list,
3835                                          &filter->filter_info) != NULL) {
3836                 PMD_DRV_LOG(ERR, "filter exists.");
3837                 rte_free(filter);
3838                 return -EEXIST;
3839         }
3840         filter->queue = ntuple_filter->queue;
3841
3842         /*
3843          * look for an unused 2tuple filter index,
3844          * and insert the filter to list.
3845          */
3846         for (i = 0; i < E1000_MAX_TTQF_FILTERS; i++) {
3847                 if (!(filter_info->twotuple_mask & (1 << i))) {
3848                         filter_info->twotuple_mask |= 1 << i;
3849                         filter->index = i;
3850                         TAILQ_INSERT_TAIL(&filter_info->twotuple_list,
3851                                           filter,
3852                                           entries);
3853                         break;
3854                 }
3855         }
3856         if (i >= E1000_MAX_TTQF_FILTERS) {
3857                 PMD_DRV_LOG(ERR, "2tuple filters are full.");
3858                 rte_free(filter);
3859                 return -ENOSYS;
3860         }
3861
3862         igb_inject_2uple_filter(dev, filter);
3863         return 0;
3864 }
3865
3866 int
3867 igb_delete_2tuple_filter(struct rte_eth_dev *dev,
3868                         struct e1000_2tuple_filter *filter)
3869 {
3870         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3871         struct e1000_filter_info *filter_info =
3872                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3873
3874         filter_info->twotuple_mask &= ~(1 << filter->index);
3875         TAILQ_REMOVE(&filter_info->twotuple_list, filter, entries);
3876         rte_free(filter);
3877
3878         E1000_WRITE_REG(hw, E1000_TTQF(filter->index), E1000_TTQF_DISABLE_MASK);
3879         E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
3880         E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
3881         return 0;
3882 }
3883
3884 /*
3885  * igb_remove_2tuple_filter - remove a 2tuple filter
3886  *
3887  * @param
3888  * dev: Pointer to struct rte_eth_dev.
3889  * ntuple_filter: ponter to the filter that will be removed.
3890  *
3891  * @return
3892  *    - On success, zero.
3893  *    - On failure, a negative value.
3894  */
3895 static int
3896 igb_remove_2tuple_filter(struct rte_eth_dev *dev,
3897                         struct rte_eth_ntuple_filter *ntuple_filter)
3898 {
3899         struct e1000_filter_info *filter_info =
3900                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3901         struct e1000_2tuple_filter_info filter_2tuple;
3902         struct e1000_2tuple_filter *filter;
3903         int ret;
3904
3905         memset(&filter_2tuple, 0, sizeof(struct e1000_2tuple_filter_info));
3906         ret = ntuple_filter_to_2tuple(ntuple_filter,
3907                                       &filter_2tuple);
3908         if (ret < 0)
3909                 return ret;
3910
3911         filter = igb_2tuple_filter_lookup(&filter_info->twotuple_list,
3912                                          &filter_2tuple);
3913         if (filter == NULL) {
3914                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
3915                 return -ENOENT;
3916         }
3917
3918         igb_delete_2tuple_filter(dev, filter);
3919
3920         return 0;
3921 }
3922
3923 /* inject a igb flex filter to HW */
3924 static inline void
3925 igb_inject_flex_filter(struct rte_eth_dev *dev,
3926                            struct e1000_flex_filter *filter)
3927 {
3928         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3929         uint32_t wufc, queueing;
3930         uint32_t reg_off;
3931         uint8_t i, j = 0;
3932
3933         wufc = E1000_READ_REG(hw, E1000_WUFC);
3934         if (filter->index < E1000_MAX_FHFT)
3935                 reg_off = E1000_FHFT(filter->index);
3936         else
3937                 reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT);
3938
3939         E1000_WRITE_REG(hw, E1000_WUFC, wufc | E1000_WUFC_FLEX_HQ |
3940                         (E1000_WUFC_FLX0 << filter->index));
3941         queueing = filter->filter_info.len |
3942                 (filter->queue << E1000_FHFT_QUEUEING_QUEUE_SHIFT) |
3943                 (filter->filter_info.priority <<
3944                         E1000_FHFT_QUEUEING_PRIO_SHIFT);
3945         E1000_WRITE_REG(hw, reg_off + E1000_FHFT_QUEUEING_OFFSET,
3946                         queueing);
3947
3948         for (i = 0; i < E1000_FLEX_FILTERS_MASK_SIZE; i++) {
3949                 E1000_WRITE_REG(hw, reg_off,
3950                                 filter->filter_info.dwords[j]);
3951                 reg_off += sizeof(uint32_t);
3952                 E1000_WRITE_REG(hw, reg_off,
3953                                 filter->filter_info.dwords[++j]);
3954                 reg_off += sizeof(uint32_t);
3955                 E1000_WRITE_REG(hw, reg_off,
3956                         (uint32_t)filter->filter_info.mask[i]);
3957                 reg_off += sizeof(uint32_t) * 2;
3958                 ++j;
3959         }
3960 }
3961
3962 static inline struct e1000_flex_filter *
3963 eth_igb_flex_filter_lookup(struct e1000_flex_filter_list *filter_list,
3964                         struct e1000_flex_filter_info *key)
3965 {
3966         struct e1000_flex_filter *it;
3967
3968         TAILQ_FOREACH(it, filter_list, entries) {
3969                 if (memcmp(key, &it->filter_info,
3970                         sizeof(struct e1000_flex_filter_info)) == 0)
3971                         return it;
3972         }
3973
3974         return NULL;
3975 }
3976
3977 /* remove a flex byte filter
3978  * @param
3979  * dev: Pointer to struct rte_eth_dev.
3980  * filter: the pointer of the filter will be removed.
3981  */
3982 void
3983 igb_remove_flex_filter(struct rte_eth_dev *dev,
3984                         struct e1000_flex_filter *filter)
3985 {
3986         struct e1000_filter_info *filter_info =
3987                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3988         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3989         uint32_t wufc, i;
3990         uint32_t reg_off;
3991
3992         wufc = E1000_READ_REG(hw, E1000_WUFC);
3993         if (filter->index < E1000_MAX_FHFT)
3994                 reg_off = E1000_FHFT(filter->index);
3995         else
3996                 reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT);
3997
3998         for (i = 0; i < E1000_FHFT_SIZE_IN_DWD; i++)
3999                 E1000_WRITE_REG(hw, reg_off + i * sizeof(uint32_t), 0);
4000
4001         E1000_WRITE_REG(hw, E1000_WUFC, wufc &
4002                 (~(E1000_WUFC_FLX0 << filter->index)));
4003
4004         filter_info->flex_mask &= ~(1 << filter->index);
4005         TAILQ_REMOVE(&filter_info->flex_list, filter, entries);
4006         rte_free(filter);
4007 }
4008
4009 int
4010 eth_igb_add_del_flex_filter(struct rte_eth_dev *dev,
4011                         struct rte_eth_flex_filter *filter,
4012                         bool add)
4013 {
4014         struct e1000_filter_info *filter_info =
4015                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4016         struct e1000_flex_filter *flex_filter, *it;
4017         uint32_t mask;
4018         uint8_t shift, i;
4019
4020         flex_filter = rte_zmalloc("e1000_flex_filter",
4021                         sizeof(struct e1000_flex_filter), 0);
4022         if (flex_filter == NULL)
4023                 return -ENOMEM;
4024
4025         flex_filter->filter_info.len = filter->len;
4026         flex_filter->filter_info.priority = filter->priority;
4027         memcpy(flex_filter->filter_info.dwords, filter->bytes, filter->len);
4028         for (i = 0; i < RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT; i++) {
4029                 mask = 0;
4030                 /* reverse bits in flex filter's mask*/
4031                 for (shift = 0; shift < CHAR_BIT; shift++) {
4032                         if (filter->mask[i] & (0x01 << shift))
4033                                 mask |= (0x80 >> shift);
4034                 }
4035                 flex_filter->filter_info.mask[i] = mask;
4036         }
4037
4038         it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
4039                                 &flex_filter->filter_info);
4040         if (it == NULL && !add) {
4041                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4042                 rte_free(flex_filter);
4043                 return -ENOENT;
4044         }
4045         if (it != NULL && add) {
4046                 PMD_DRV_LOG(ERR, "filter exists.");
4047                 rte_free(flex_filter);
4048                 return -EEXIST;
4049         }
4050
4051         if (add) {
4052                 flex_filter->queue = filter->queue;
4053                 /*
4054                  * look for an unused flex filter index
4055                  * and insert the filter into the list.
4056                  */
4057                 for (i = 0; i < E1000_MAX_FLEX_FILTERS; i++) {
4058                         if (!(filter_info->flex_mask & (1 << i))) {
4059                                 filter_info->flex_mask |= 1 << i;
4060                                 flex_filter->index = i;
4061                                 TAILQ_INSERT_TAIL(&filter_info->flex_list,
4062                                         flex_filter,
4063                                         entries);
4064                                 break;
4065                         }
4066                 }
4067                 if (i >= E1000_MAX_FLEX_FILTERS) {
4068                         PMD_DRV_LOG(ERR, "flex filters are full.");
4069                         rte_free(flex_filter);
4070                         return -ENOSYS;
4071                 }
4072
4073                 igb_inject_flex_filter(dev, flex_filter);
4074
4075         } else {
4076                 igb_remove_flex_filter(dev, it);
4077                 rte_free(flex_filter);
4078         }
4079
4080         return 0;
4081 }
4082
4083 static int
4084 eth_igb_get_flex_filter(struct rte_eth_dev *dev,
4085                         struct rte_eth_flex_filter *filter)
4086 {
4087         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4088         struct e1000_filter_info *filter_info =
4089                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4090         struct e1000_flex_filter flex_filter, *it;
4091         uint32_t wufc, queueing, wufc_en = 0;
4092
4093         memset(&flex_filter, 0, sizeof(struct e1000_flex_filter));
4094         flex_filter.filter_info.len = filter->len;
4095         flex_filter.filter_info.priority = filter->priority;
4096         memcpy(flex_filter.filter_info.dwords, filter->bytes, filter->len);
4097         memcpy(flex_filter.filter_info.mask, filter->mask,
4098                         RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT);
4099
4100         it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
4101                                 &flex_filter.filter_info);
4102         if (it == NULL) {
4103                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4104                 return -ENOENT;
4105         }
4106
4107         wufc = E1000_READ_REG(hw, E1000_WUFC);
4108         wufc_en = E1000_WUFC_FLEX_HQ | (E1000_WUFC_FLX0 << it->index);
4109
4110         if ((wufc & wufc_en) == wufc_en) {
4111                 uint32_t reg_off = 0;
4112                 if (it->index < E1000_MAX_FHFT)
4113                         reg_off = E1000_FHFT(it->index);
4114                 else
4115                         reg_off = E1000_FHFT_EXT(it->index - E1000_MAX_FHFT);
4116
4117                 queueing = E1000_READ_REG(hw,
4118                                 reg_off + E1000_FHFT_QUEUEING_OFFSET);
4119                 filter->len = queueing & E1000_FHFT_QUEUEING_LEN;
4120                 filter->priority = (queueing & E1000_FHFT_QUEUEING_PRIO) >>
4121                         E1000_FHFT_QUEUEING_PRIO_SHIFT;
4122                 filter->queue = (queueing & E1000_FHFT_QUEUEING_QUEUE) >>
4123                         E1000_FHFT_QUEUEING_QUEUE_SHIFT;
4124                 return 0;
4125         }
4126         return -ENOENT;
4127 }
4128
4129 static int
4130 eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
4131                         enum rte_filter_op filter_op,
4132                         void *arg)
4133 {
4134         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4135         struct rte_eth_flex_filter *filter;
4136         int ret = 0;
4137
4138         MAC_TYPE_FILTER_SUP_EXT(hw->mac.type);
4139
4140         if (filter_op == RTE_ETH_FILTER_NOP)
4141                 return ret;
4142
4143         if (arg == NULL) {
4144                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
4145                             filter_op);
4146                 return -EINVAL;
4147         }
4148
4149         filter = (struct rte_eth_flex_filter *)arg;
4150         if (filter->len == 0 || filter->len > E1000_MAX_FLEX_FILTER_LEN
4151             || filter->len % sizeof(uint64_t) != 0) {
4152                 PMD_DRV_LOG(ERR, "filter's length is out of range");
4153                 return -EINVAL;
4154         }
4155         if (filter->priority > E1000_MAX_FLEX_FILTER_PRI) {
4156                 PMD_DRV_LOG(ERR, "filter's priority is out of range");
4157                 return -EINVAL;
4158         }
4159
4160         switch (filter_op) {
4161         case RTE_ETH_FILTER_ADD:
4162                 ret = eth_igb_add_del_flex_filter(dev, filter, TRUE);
4163                 break;
4164         case RTE_ETH_FILTER_DELETE:
4165                 ret = eth_igb_add_del_flex_filter(dev, filter, FALSE);
4166                 break;
4167         case RTE_ETH_FILTER_GET:
4168                 ret = eth_igb_get_flex_filter(dev, filter);
4169                 break;
4170         default:
4171                 PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op);
4172                 ret = -EINVAL;
4173                 break;
4174         }
4175
4176         return ret;
4177 }
4178
4179 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_5tuple_filter_info*/
4180 static inline int
4181 ntuple_filter_to_5tuple_82576(struct rte_eth_ntuple_filter *filter,
4182                         struct e1000_5tuple_filter_info *filter_info)
4183 {
4184         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM_82576)
4185                 return -EINVAL;
4186         if (filter->priority > E1000_2TUPLE_MAX_PRI)
4187                 return -EINVAL;  /* filter index is out of range. */
4188         if (filter->tcp_flags > TCP_FLAG_ALL)
4189                 return -EINVAL;  /* flags is invalid. */
4190
4191         switch (filter->dst_ip_mask) {
4192         case UINT32_MAX:
4193                 filter_info->dst_ip_mask = 0;
4194                 filter_info->dst_ip = filter->dst_ip;
4195                 break;
4196         case 0:
4197                 filter_info->dst_ip_mask = 1;
4198                 break;
4199         default:
4200                 PMD_DRV_LOG(ERR, "invalid dst_ip mask.");
4201                 return -EINVAL;
4202         }
4203
4204         switch (filter->src_ip_mask) {
4205         case UINT32_MAX:
4206                 filter_info->src_ip_mask = 0;
4207                 filter_info->src_ip = filter->src_ip;
4208                 break;
4209         case 0:
4210                 filter_info->src_ip_mask = 1;
4211                 break;
4212         default:
4213                 PMD_DRV_LOG(ERR, "invalid src_ip mask.");
4214                 return -EINVAL;
4215         }
4216
4217         switch (filter->dst_port_mask) {
4218         case UINT16_MAX:
4219                 filter_info->dst_port_mask = 0;
4220                 filter_info->dst_port = filter->dst_port;
4221                 break;
4222         case 0:
4223                 filter_info->dst_port_mask = 1;
4224                 break;
4225         default:
4226                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
4227                 return -EINVAL;
4228         }
4229
4230         switch (filter->src_port_mask) {
4231         case UINT16_MAX:
4232                 filter_info->src_port_mask = 0;
4233                 filter_info->src_port = filter->src_port;
4234                 break;
4235         case 0:
4236                 filter_info->src_port_mask = 1;
4237                 break;
4238         default:
4239                 PMD_DRV_LOG(ERR, "invalid src_port mask.");
4240                 return -EINVAL;
4241         }
4242
4243         switch (filter->proto_mask) {
4244         case UINT8_MAX:
4245                 filter_info->proto_mask = 0;
4246                 filter_info->proto = filter->proto;
4247                 break;
4248         case 0:
4249                 filter_info->proto_mask = 1;
4250                 break;
4251         default:
4252                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
4253                 return -EINVAL;
4254         }
4255
4256         filter_info->priority = (uint8_t)filter->priority;
4257         if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
4258                 filter_info->tcp_flags = filter->tcp_flags;
4259         else
4260                 filter_info->tcp_flags = 0;
4261
4262         return 0;
4263 }
4264
4265 static inline struct e1000_5tuple_filter *
4266 igb_5tuple_filter_lookup_82576(struct e1000_5tuple_filter_list *filter_list,
4267                         struct e1000_5tuple_filter_info *key)
4268 {
4269         struct e1000_5tuple_filter *it;
4270
4271         TAILQ_FOREACH(it, filter_list, entries) {
4272                 if (memcmp(key, &it->filter_info,
4273                         sizeof(struct e1000_5tuple_filter_info)) == 0) {
4274                         return it;
4275                 }
4276         }
4277         return NULL;
4278 }
4279
4280 /* inject a igb 5-tuple filter to HW */
4281 static inline void
4282 igb_inject_5tuple_filter_82576(struct rte_eth_dev *dev,
4283                            struct e1000_5tuple_filter *filter)
4284 {
4285         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4286         uint32_t ftqf = E1000_FTQF_VF_BP | E1000_FTQF_MASK;
4287         uint32_t spqf, imir, imir_ext = E1000_IMIREXT_SIZE_BP;
4288         uint8_t i;
4289
4290         i = filter->index;
4291         ftqf |= filter->filter_info.proto & E1000_FTQF_PROTOCOL_MASK;
4292         if (filter->filter_info.src_ip_mask == 0) /* 0b means compare. */
4293                 ftqf &= ~E1000_FTQF_MASK_SOURCE_ADDR_BP;
4294         if (filter->filter_info.dst_ip_mask == 0)
4295                 ftqf &= ~E1000_FTQF_MASK_DEST_ADDR_BP;
4296         if (filter->filter_info.src_port_mask == 0)
4297                 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
4298         if (filter->filter_info.proto_mask == 0)
4299                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP;
4300         ftqf |= (filter->queue << E1000_FTQF_QUEUE_SHIFT) &
4301                 E1000_FTQF_QUEUE_MASK;
4302         ftqf |= E1000_FTQF_QUEUE_ENABLE;
4303         E1000_WRITE_REG(hw, E1000_FTQF(i), ftqf);
4304         E1000_WRITE_REG(hw, E1000_DAQF(i), filter->filter_info.dst_ip);
4305         E1000_WRITE_REG(hw, E1000_SAQF(i), filter->filter_info.src_ip);
4306
4307         spqf = filter->filter_info.src_port & E1000_SPQF_SRCPORT;
4308         E1000_WRITE_REG(hw, E1000_SPQF(i), spqf);
4309
4310         imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
4311         if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
4312                 imir |= E1000_IMIR_PORT_BP;
4313         else
4314                 imir &= ~E1000_IMIR_PORT_BP;
4315         imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
4316
4317         /* tcp flags bits setting. */
4318         if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) {
4319                 if (filter->filter_info.tcp_flags & TCP_URG_FLAG)
4320                         imir_ext |= E1000_IMIREXT_CTRL_URG;
4321                 if (filter->filter_info.tcp_flags & TCP_ACK_FLAG)
4322                         imir_ext |= E1000_IMIREXT_CTRL_ACK;
4323                 if (filter->filter_info.tcp_flags & TCP_PSH_FLAG)
4324                         imir_ext |= E1000_IMIREXT_CTRL_PSH;
4325                 if (filter->filter_info.tcp_flags & TCP_RST_FLAG)
4326                         imir_ext |= E1000_IMIREXT_CTRL_RST;
4327                 if (filter->filter_info.tcp_flags & TCP_SYN_FLAG)
4328                         imir_ext |= E1000_IMIREXT_CTRL_SYN;
4329                 if (filter->filter_info.tcp_flags & TCP_FIN_FLAG)
4330                         imir_ext |= E1000_IMIREXT_CTRL_FIN;
4331         } else {
4332                 imir_ext |= E1000_IMIREXT_CTRL_BP;
4333         }
4334         E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
4335         E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
4336 }
4337
4338 /*
4339  * igb_add_5tuple_filter_82576 - add a 5tuple filter
4340  *
4341  * @param
4342  * dev: Pointer to struct rte_eth_dev.
4343  * ntuple_filter: ponter to the filter that will be added.
4344  *
4345  * @return
4346  *    - On success, zero.
4347  *    - On failure, a negative value.
4348  */
4349 static int
4350 igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
4351                         struct rte_eth_ntuple_filter *ntuple_filter)
4352 {
4353         struct e1000_filter_info *filter_info =
4354                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4355         struct e1000_5tuple_filter *filter;
4356         uint8_t i;
4357         int ret;
4358
4359         filter = rte_zmalloc("e1000_5tuple_filter",
4360                         sizeof(struct e1000_5tuple_filter), 0);
4361         if (filter == NULL)
4362                 return -ENOMEM;
4363
4364         ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4365                                             &filter->filter_info);
4366         if (ret < 0) {
4367                 rte_free(filter);
4368                 return ret;
4369         }
4370
4371         if (igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
4372                                          &filter->filter_info) != NULL) {
4373                 PMD_DRV_LOG(ERR, "filter exists.");
4374                 rte_free(filter);
4375                 return -EEXIST;
4376         }
4377         filter->queue = ntuple_filter->queue;
4378
4379         /*
4380          * look for an unused 5tuple filter index,
4381          * and insert the filter to list.
4382          */
4383         for (i = 0; i < E1000_MAX_FTQF_FILTERS; i++) {
4384                 if (!(filter_info->fivetuple_mask & (1 << i))) {
4385                         filter_info->fivetuple_mask |= 1 << i;
4386                         filter->index = i;
4387                         TAILQ_INSERT_TAIL(&filter_info->fivetuple_list,
4388                                           filter,
4389                                           entries);
4390                         break;
4391                 }
4392         }
4393         if (i >= E1000_MAX_FTQF_FILTERS) {
4394                 PMD_DRV_LOG(ERR, "5tuple filters are full.");
4395                 rte_free(filter);
4396                 return -ENOSYS;
4397         }
4398
4399         igb_inject_5tuple_filter_82576(dev, filter);
4400         return 0;
4401 }
4402
4403 int
4404 igb_delete_5tuple_filter_82576(struct rte_eth_dev *dev,
4405                                 struct e1000_5tuple_filter *filter)
4406 {
4407         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4408         struct e1000_filter_info *filter_info =
4409                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4410
4411         filter_info->fivetuple_mask &= ~(1 << filter->index);
4412         TAILQ_REMOVE(&filter_info->fivetuple_list, filter, entries);
4413         rte_free(filter);
4414
4415         E1000_WRITE_REG(hw, E1000_FTQF(filter->index),
4416                         E1000_FTQF_VF_BP | E1000_FTQF_MASK);
4417         E1000_WRITE_REG(hw, E1000_DAQF(filter->index), 0);
4418         E1000_WRITE_REG(hw, E1000_SAQF(filter->index), 0);
4419         E1000_WRITE_REG(hw, E1000_SPQF(filter->index), 0);
4420         E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
4421         E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
4422         return 0;
4423 }
4424
4425 /*
4426  * igb_remove_5tuple_filter_82576 - remove a 5tuple filter
4427  *
4428  * @param
4429  * dev: Pointer to struct rte_eth_dev.
4430  * ntuple_filter: ponter to the filter that will be removed.
4431  *
4432  * @return
4433  *    - On success, zero.
4434  *    - On failure, a negative value.
4435  */
4436 static int
4437 igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
4438                                 struct rte_eth_ntuple_filter *ntuple_filter)
4439 {
4440         struct e1000_filter_info *filter_info =
4441                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4442         struct e1000_5tuple_filter_info filter_5tuple;
4443         struct e1000_5tuple_filter *filter;
4444         int ret;
4445
4446         memset(&filter_5tuple, 0, sizeof(struct e1000_5tuple_filter_info));
4447         ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4448                                             &filter_5tuple);
4449         if (ret < 0)
4450                 return ret;
4451
4452         filter = igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
4453                                          &filter_5tuple);
4454         if (filter == NULL) {
4455                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4456                 return -ENOENT;
4457         }
4458
4459         igb_delete_5tuple_filter_82576(dev, filter);
4460
4461         return 0;
4462 }
4463
4464 static int
4465 eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
4466 {
4467         uint32_t rctl;
4468         struct e1000_hw *hw;
4469         struct rte_eth_dev_info dev_info;
4470         uint32_t frame_size = mtu + (ETHER_HDR_LEN + ETHER_CRC_LEN +
4471                                      VLAN_TAG_SIZE);
4472
4473         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4474
4475 #ifdef RTE_LIBRTE_82571_SUPPORT
4476         /* XXX: not bigger than max_rx_pktlen */
4477         if (hw->mac.type == e1000_82571)
4478                 return -ENOTSUP;
4479 #endif
4480         eth_igb_infos_get(dev, &dev_info);
4481
4482         /* check that mtu is within the allowed range */
4483         if ((mtu < ETHER_MIN_MTU) ||
4484             (frame_size > dev_info.max_rx_pktlen))
4485                 return -EINVAL;
4486
4487         /* refuse mtu that requires the support of scattered packets when this
4488          * feature has not been enabled before. */
4489         if (!dev->data->scattered_rx &&
4490             frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
4491                 return -EINVAL;
4492
4493         rctl = E1000_READ_REG(hw, E1000_RCTL);
4494
4495         /* switch to jumbo mode if needed */
4496         if (frame_size > ETHER_MAX_LEN) {
4497                 dev->data->dev_conf.rxmode.jumbo_frame = 1;
4498                 rctl |= E1000_RCTL_LPE;
4499         } else {
4500                 dev->data->dev_conf.rxmode.jumbo_frame = 0;
4501                 rctl &= ~E1000_RCTL_LPE;
4502         }
4503         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
4504
4505         /* update max frame size */
4506         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
4507
4508         E1000_WRITE_REG(hw, E1000_RLPML,
4509                         dev->data->dev_conf.rxmode.max_rx_pkt_len);
4510
4511         return 0;
4512 }
4513
4514 /*
4515  * igb_add_del_ntuple_filter - add or delete a ntuple filter
4516  *
4517  * @param
4518  * dev: Pointer to struct rte_eth_dev.
4519  * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
4520  * add: if true, add filter, if false, remove filter
4521  *
4522  * @return
4523  *    - On success, zero.
4524  *    - On failure, a negative value.
4525  */
4526 int
4527 igb_add_del_ntuple_filter(struct rte_eth_dev *dev,
4528                         struct rte_eth_ntuple_filter *ntuple_filter,
4529                         bool add)
4530 {
4531         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4532         int ret;
4533
4534         switch (ntuple_filter->flags) {
4535         case RTE_5TUPLE_FLAGS:
4536         case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4537                 if (hw->mac.type != e1000_82576)
4538                         return -ENOTSUP;
4539                 if (add)
4540                         ret = igb_add_5tuple_filter_82576(dev,
4541                                                           ntuple_filter);
4542                 else
4543                         ret = igb_remove_5tuple_filter_82576(dev,
4544                                                              ntuple_filter);
4545                 break;
4546         case RTE_2TUPLE_FLAGS:
4547         case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4548                 if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350 &&
4549                         hw->mac.type != e1000_i210 &&
4550                         hw->mac.type != e1000_i211)
4551                         return -ENOTSUP;
4552                 if (add)
4553                         ret = igb_add_2tuple_filter(dev, ntuple_filter);
4554                 else
4555                         ret = igb_remove_2tuple_filter(dev, ntuple_filter);
4556                 break;
4557         default:
4558                 ret = -EINVAL;
4559                 break;
4560         }
4561
4562         return ret;
4563 }
4564
4565 /*
4566  * igb_get_ntuple_filter - get a ntuple filter
4567  *
4568  * @param
4569  * dev: Pointer to struct rte_eth_dev.
4570  * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
4571  *
4572  * @return
4573  *    - On success, zero.
4574  *    - On failure, a negative value.
4575  */
4576 static int
4577 igb_get_ntuple_filter(struct rte_eth_dev *dev,
4578                         struct rte_eth_ntuple_filter *ntuple_filter)
4579 {
4580         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4581         struct e1000_filter_info *filter_info =
4582                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4583         struct e1000_5tuple_filter_info filter_5tuple;
4584         struct e1000_2tuple_filter_info filter_2tuple;
4585         struct e1000_5tuple_filter *p_5tuple_filter;
4586         struct e1000_2tuple_filter *p_2tuple_filter;
4587         int ret;
4588
4589         switch (ntuple_filter->flags) {
4590         case RTE_5TUPLE_FLAGS:
4591         case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4592                 if (hw->mac.type != e1000_82576)
4593                         return -ENOTSUP;
4594                 memset(&filter_5tuple,
4595                         0,
4596                         sizeof(struct e1000_5tuple_filter_info));
4597                 ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4598                                                     &filter_5tuple);
4599                 if (ret < 0)
4600                         return ret;
4601                 p_5tuple_filter = igb_5tuple_filter_lookup_82576(
4602                                         &filter_info->fivetuple_list,
4603                                         &filter_5tuple);
4604                 if (p_5tuple_filter == NULL) {
4605                         PMD_DRV_LOG(ERR, "filter doesn't exist.");
4606                         return -ENOENT;
4607                 }
4608                 ntuple_filter->queue = p_5tuple_filter->queue;
4609                 break;
4610         case RTE_2TUPLE_FLAGS:
4611         case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4612                 if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350)
4613                         return -ENOTSUP;
4614                 memset(&filter_2tuple,
4615                         0,
4616                         sizeof(struct e1000_2tuple_filter_info));
4617                 ret = ntuple_filter_to_2tuple(ntuple_filter, &filter_2tuple);
4618                 if (ret < 0)
4619                         return ret;
4620                 p_2tuple_filter = igb_2tuple_filter_lookup(
4621                                         &filter_info->twotuple_list,
4622                                         &filter_2tuple);
4623                 if (p_2tuple_filter == NULL) {
4624                         PMD_DRV_LOG(ERR, "filter doesn't exist.");
4625                         return -ENOENT;
4626                 }
4627                 ntuple_filter->queue = p_2tuple_filter->queue;
4628                 break;
4629         default:
4630                 ret = -EINVAL;
4631                 break;
4632         }
4633
4634         return 0;
4635 }
4636
4637 /*
4638  * igb_ntuple_filter_handle - Handle operations for ntuple filter.
4639  * @dev: pointer to rte_eth_dev structure
4640  * @filter_op:operation will be taken.
4641  * @arg: a pointer to specific structure corresponding to the filter_op
4642  */
4643 static int
4644 igb_ntuple_filter_handle(struct rte_eth_dev *dev,
4645                                 enum rte_filter_op filter_op,
4646                                 void *arg)
4647 {
4648         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4649         int ret;
4650
4651         MAC_TYPE_FILTER_SUP(hw->mac.type);
4652
4653         if (filter_op == RTE_ETH_FILTER_NOP)
4654                 return 0;
4655
4656         if (arg == NULL) {
4657                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
4658                             filter_op);
4659                 return -EINVAL;
4660         }
4661
4662         switch (filter_op) {
4663         case RTE_ETH_FILTER_ADD:
4664                 ret = igb_add_del_ntuple_filter(dev,
4665                         (struct rte_eth_ntuple_filter *)arg,
4666                         TRUE);
4667                 break;
4668         case RTE_ETH_FILTER_DELETE:
4669                 ret = igb_add_del_ntuple_filter(dev,
4670                         (struct rte_eth_ntuple_filter *)arg,
4671                         FALSE);
4672                 break;
4673         case RTE_ETH_FILTER_GET:
4674                 ret = igb_get_ntuple_filter(dev,
4675                         (struct rte_eth_ntuple_filter *)arg);
4676                 break;
4677         default:
4678                 PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
4679                 ret = -EINVAL;
4680                 break;
4681         }
4682         return ret;
4683 }
4684
4685 static inline int
4686 igb_ethertype_filter_lookup(struct e1000_filter_info *filter_info,
4687                         uint16_t ethertype)
4688 {
4689         int i;
4690
4691         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
4692                 if (filter_info->ethertype_filters[i].ethertype == ethertype &&
4693                     (filter_info->ethertype_mask & (1 << i)))
4694                         return i;
4695         }
4696         return -1;
4697 }
4698
4699 static inline int
4700 igb_ethertype_filter_insert(struct e1000_filter_info *filter_info,
4701                         uint16_t ethertype, uint32_t etqf)
4702 {
4703         int i;
4704
4705         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
4706                 if (!(filter_info->ethertype_mask & (1 << i))) {
4707                         filter_info->ethertype_mask |= 1 << i;
4708                         filter_info->ethertype_filters[i].ethertype = ethertype;
4709                         filter_info->ethertype_filters[i].etqf = etqf;
4710                         return i;
4711                 }
4712         }
4713         return -1;
4714 }
4715
4716 int
4717 igb_ethertype_filter_remove(struct e1000_filter_info *filter_info,
4718                         uint8_t idx)
4719 {
4720         if (idx >= E1000_MAX_ETQF_FILTERS)
4721                 return -1;
4722         filter_info->ethertype_mask &= ~(1 << idx);
4723         filter_info->ethertype_filters[idx].ethertype = 0;
4724         filter_info->ethertype_filters[idx].etqf = 0;
4725         return idx;
4726 }
4727
4728
4729 int
4730 igb_add_del_ethertype_filter(struct rte_eth_dev *dev,
4731                         struct rte_eth_ethertype_filter *filter,
4732                         bool add)
4733 {
4734         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4735         struct e1000_filter_info *filter_info =
4736                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4737         uint32_t etqf = 0;
4738         int ret;
4739
4740         if (filter->ether_type == ETHER_TYPE_IPv4 ||
4741                 filter->ether_type == ETHER_TYPE_IPv6) {
4742                 PMD_DRV_LOG(ERR, "unsupported ether_type(0x%04x) in"
4743                         " ethertype filter.", filter->ether_type);
4744                 return -EINVAL;
4745         }
4746
4747         if (filter->flags & RTE_ETHTYPE_FLAGS_MAC) {
4748                 PMD_DRV_LOG(ERR, "mac compare is unsupported.");
4749                 return -EINVAL;
4750         }
4751         if (filter->flags & RTE_ETHTYPE_FLAGS_DROP) {
4752                 PMD_DRV_LOG(ERR, "drop option is unsupported.");
4753                 return -EINVAL;
4754         }
4755
4756         ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
4757         if (ret >= 0 && add) {
4758                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter exists.",
4759                             filter->ether_type);
4760                 return -EEXIST;
4761         }
4762         if (ret < 0 && !add) {
4763                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
4764                             filter->ether_type);
4765                 return -ENOENT;
4766         }
4767
4768         if (add) {
4769                 etqf |= E1000_ETQF_FILTER_ENABLE | E1000_ETQF_QUEUE_ENABLE;
4770                 etqf |= (uint32_t)(filter->ether_type & E1000_ETQF_ETHERTYPE);
4771                 etqf |= filter->queue << E1000_ETQF_QUEUE_SHIFT;
4772                 ret = igb_ethertype_filter_insert(filter_info,
4773                                 filter->ether_type, etqf);
4774                 if (ret < 0) {
4775                         PMD_DRV_LOG(ERR, "ethertype filters are full.");
4776                         return -ENOSYS;
4777                 }
4778         } else {
4779                 ret = igb_ethertype_filter_remove(filter_info, (uint8_t)ret);
4780                 if (ret < 0)
4781                         return -ENOSYS;
4782         }
4783         E1000_WRITE_REG(hw, E1000_ETQF(ret), etqf);
4784         E1000_WRITE_FLUSH(hw);
4785
4786         return 0;
4787 }
4788
4789 static int
4790 igb_get_ethertype_filter(struct rte_eth_dev *dev,
4791                         struct rte_eth_ethertype_filter *filter)
4792 {
4793         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4794         struct e1000_filter_info *filter_info =
4795                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4796         uint32_t etqf;
4797         int ret;
4798
4799         ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
4800         if (ret < 0) {
4801                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
4802                             filter->ether_type);
4803                 return -ENOENT;
4804         }
4805
4806         etqf = E1000_READ_REG(hw, E1000_ETQF(ret));
4807         if (etqf & E1000_ETQF_FILTER_ENABLE) {
4808                 filter->ether_type = etqf & E1000_ETQF_ETHERTYPE;
4809                 filter->flags = 0;
4810                 filter->queue = (etqf & E1000_ETQF_QUEUE) >>
4811                                 E1000_ETQF_QUEUE_SHIFT;
4812                 return 0;
4813         }
4814
4815         return -ENOENT;
4816 }
4817
4818 /*
4819  * igb_ethertype_filter_handle - Handle operations for ethertype filter.
4820  * @dev: pointer to rte_eth_dev structure
4821  * @filter_op:operation will be taken.
4822  * @arg: a pointer to specific structure corresponding to the filter_op
4823  */
4824 static int
4825 igb_ethertype_filter_handle(struct rte_eth_dev *dev,
4826                                 enum rte_filter_op filter_op,
4827                                 void *arg)
4828 {
4829         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4830         int ret;
4831
4832         MAC_TYPE_FILTER_SUP(hw->mac.type);
4833
4834         if (filter_op == RTE_ETH_FILTER_NOP)
4835                 return 0;
4836
4837         if (arg == NULL) {
4838                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
4839                             filter_op);
4840                 return -EINVAL;
4841         }
4842
4843         switch (filter_op) {
4844         case RTE_ETH_FILTER_ADD:
4845                 ret = igb_add_del_ethertype_filter(dev,
4846                         (struct rte_eth_ethertype_filter *)arg,
4847                         TRUE);
4848                 break;
4849         case RTE_ETH_FILTER_DELETE:
4850                 ret = igb_add_del_ethertype_filter(dev,
4851                         (struct rte_eth_ethertype_filter *)arg,
4852                         FALSE);
4853                 break;
4854         case RTE_ETH_FILTER_GET:
4855                 ret = igb_get_ethertype_filter(dev,
4856                         (struct rte_eth_ethertype_filter *)arg);
4857                 break;
4858         default:
4859                 PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
4860                 ret = -EINVAL;
4861                 break;
4862         }
4863         return ret;
4864 }
4865
4866 static int
4867 eth_igb_filter_ctrl(struct rte_eth_dev *dev,
4868                      enum rte_filter_type filter_type,
4869                      enum rte_filter_op filter_op,
4870                      void *arg)
4871 {
4872         int ret = 0;
4873
4874         switch (filter_type) {
4875         case RTE_ETH_FILTER_NTUPLE:
4876                 ret = igb_ntuple_filter_handle(dev, filter_op, arg);
4877                 break;
4878         case RTE_ETH_FILTER_ETHERTYPE:
4879                 ret = igb_ethertype_filter_handle(dev, filter_op, arg);
4880                 break;
4881         case RTE_ETH_FILTER_SYN:
4882                 ret = eth_igb_syn_filter_handle(dev, filter_op, arg);
4883                 break;
4884         case RTE_ETH_FILTER_FLEXIBLE:
4885                 ret = eth_igb_flex_filter_handle(dev, filter_op, arg);
4886                 break;
4887         case RTE_ETH_FILTER_GENERIC:
4888                 if (filter_op != RTE_ETH_FILTER_GET)
4889                         return -EINVAL;
4890                 *(const void **)arg = &igb_flow_ops;
4891                 break;
4892         default:
4893                 PMD_DRV_LOG(WARNING, "Filter type (%d) not supported",
4894                                                         filter_type);
4895                 break;
4896         }
4897
4898         return ret;
4899 }
4900
4901 static int
4902 eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
4903                          struct ether_addr *mc_addr_set,
4904                          uint32_t nb_mc_addr)
4905 {
4906         struct e1000_hw *hw;
4907
4908         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4909         e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
4910         return 0;
4911 }
4912
4913 static uint64_t
4914 igb_read_systime_cyclecounter(struct rte_eth_dev *dev)
4915 {
4916         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4917         uint64_t systime_cycles;
4918
4919         switch (hw->mac.type) {
4920         case e1000_i210:
4921         case e1000_i211:
4922                 /*
4923                  * Need to read System Time Residue Register to be able
4924                  * to read the other two registers.
4925                  */
4926                 E1000_READ_REG(hw, E1000_SYSTIMR);
4927                 /* SYSTIMEL stores ns and SYSTIMEH stores seconds. */
4928                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4929                 systime_cycles += (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
4930                                 * NSEC_PER_SEC;
4931                 break;
4932         case e1000_82580:
4933         case e1000_i350:
4934         case e1000_i354:
4935                 /*
4936                  * Need to read System Time Residue Register to be able
4937                  * to read the other two registers.
4938                  */
4939                 E1000_READ_REG(hw, E1000_SYSTIMR);
4940                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4941                 /* Only the 8 LSB are valid. */
4942                 systime_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_SYSTIMH)
4943                                 & 0xff) << 32;
4944                 break;
4945         default:
4946                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4947                 systime_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
4948                                 << 32;
4949                 break;
4950         }
4951
4952         return systime_cycles;
4953 }
4954
4955 static uint64_t
4956 igb_read_rx_tstamp_cyclecounter(struct rte_eth_dev *dev)
4957 {
4958         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4959         uint64_t rx_tstamp_cycles;
4960
4961         switch (hw->mac.type) {
4962         case e1000_i210:
4963         case e1000_i211:
4964                 /* RXSTMPL stores ns and RXSTMPH stores seconds. */
4965                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4966                 rx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
4967                                 * NSEC_PER_SEC;
4968                 break;
4969         case e1000_82580:
4970         case e1000_i350:
4971         case e1000_i354:
4972                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4973                 /* Only the 8 LSB are valid. */
4974                 rx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_RXSTMPH)
4975                                 & 0xff) << 32;
4976                 break;
4977         default:
4978                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4979                 rx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
4980                                 << 32;
4981                 break;
4982         }
4983
4984         return rx_tstamp_cycles;
4985 }
4986
4987 static uint64_t
4988 igb_read_tx_tstamp_cyclecounter(struct rte_eth_dev *dev)
4989 {
4990         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4991         uint64_t tx_tstamp_cycles;
4992
4993         switch (hw->mac.type) {
4994         case e1000_i210:
4995         case e1000_i211:
4996                 /* RXSTMPL stores ns and RXSTMPH stores seconds. */
4997                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
4998                 tx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
4999                                 * NSEC_PER_SEC;
5000                 break;
5001         case e1000_82580:
5002         case e1000_i350:
5003         case e1000_i354:
5004                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
5005                 /* Only the 8 LSB are valid. */
5006                 tx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_TXSTMPH)
5007                                 & 0xff) << 32;
5008                 break;
5009         default:
5010                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
5011                 tx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
5012                                 << 32;
5013                 break;
5014         }
5015
5016         return tx_tstamp_cycles;
5017 }
5018
5019 static void
5020 igb_start_timecounters(struct rte_eth_dev *dev)
5021 {
5022         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5023         struct e1000_adapter *adapter =
5024                 (struct e1000_adapter *)dev->data->dev_private;
5025         uint32_t incval = 1;
5026         uint32_t shift = 0;
5027         uint64_t mask = E1000_CYCLECOUNTER_MASK;
5028
5029         switch (hw->mac.type) {
5030         case e1000_82580:
5031         case e1000_i350:
5032         case e1000_i354:
5033                 /* 32 LSB bits + 8 MSB bits = 40 bits */
5034                 mask = (1ULL << 40) - 1;
5035                 /* fall-through */
5036         case e1000_i210:
5037         case e1000_i211:
5038                 /*
5039                  * Start incrementing the register
5040                  * used to timestamp PTP packets.
5041                  */
5042                 E1000_WRITE_REG(hw, E1000_TIMINCA, incval);
5043                 break;
5044         case e1000_82576:
5045                 incval = E1000_INCVALUE_82576;
5046                 shift = IGB_82576_TSYNC_SHIFT;
5047                 E1000_WRITE_REG(hw, E1000_TIMINCA,
5048                                 E1000_INCPERIOD_82576 | incval);
5049                 break;
5050         default:
5051                 /* Not supported */
5052                 return;
5053         }
5054
5055         memset(&adapter->systime_tc, 0, sizeof(struct rte_timecounter));
5056         memset(&adapter->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
5057         memset(&adapter->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
5058
5059         adapter->systime_tc.cc_mask = mask;
5060         adapter->systime_tc.cc_shift = shift;
5061         adapter->systime_tc.nsec_mask = (1ULL << shift) - 1;
5062
5063         adapter->rx_tstamp_tc.cc_mask = mask;
5064         adapter->rx_tstamp_tc.cc_shift = shift;
5065         adapter->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
5066
5067         adapter->tx_tstamp_tc.cc_mask = mask;
5068         adapter->tx_tstamp_tc.cc_shift = shift;
5069         adapter->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
5070 }
5071
5072 static int
5073 igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
5074 {
5075         struct e1000_adapter *adapter =
5076                         (struct e1000_adapter *)dev->data->dev_private;
5077
5078         adapter->systime_tc.nsec += delta;
5079         adapter->rx_tstamp_tc.nsec += delta;
5080         adapter->tx_tstamp_tc.nsec += delta;
5081
5082         return 0;
5083 }
5084
5085 static int
5086 igb_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
5087 {
5088         uint64_t ns;
5089         struct e1000_adapter *adapter =
5090                         (struct e1000_adapter *)dev->data->dev_private;
5091
5092         ns = rte_timespec_to_ns(ts);
5093
5094         /* Set the timecounters to a new value. */
5095         adapter->systime_tc.nsec = ns;
5096         adapter->rx_tstamp_tc.nsec = ns;
5097         adapter->tx_tstamp_tc.nsec = ns;
5098
5099         return 0;
5100 }
5101
5102 static int
5103 igb_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
5104 {
5105         uint64_t ns, systime_cycles;
5106         struct e1000_adapter *adapter =
5107                         (struct e1000_adapter *)dev->data->dev_private;
5108
5109         systime_cycles = igb_read_systime_cyclecounter(dev);
5110         ns = rte_timecounter_update(&adapter->systime_tc, systime_cycles);
5111         *ts = rte_ns_to_timespec(ns);
5112
5113         return 0;
5114 }
5115
5116 static int
5117 igb_timesync_enable(struct rte_eth_dev *dev)
5118 {
5119         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5120         uint32_t tsync_ctl;
5121         uint32_t tsauxc;
5122
5123         /* Stop the timesync system time. */
5124         E1000_WRITE_REG(hw, E1000_TIMINCA, 0x0);
5125         /* Reset the timesync system time value. */
5126         switch (hw->mac.type) {
5127         case e1000_82580:
5128         case e1000_i350:
5129         case e1000_i354:
5130         case e1000_i210:
5131         case e1000_i211:
5132                 E1000_WRITE_REG(hw, E1000_SYSTIMR, 0x0);
5133                 /* fall-through */
5134         case e1000_82576:
5135                 E1000_WRITE_REG(hw, E1000_SYSTIML, 0x0);
5136                 E1000_WRITE_REG(hw, E1000_SYSTIMH, 0x0);
5137                 break;
5138         default:
5139                 /* Not supported. */
5140                 return -ENOTSUP;
5141         }
5142
5143         /* Enable system time for it isn't on by default. */
5144         tsauxc = E1000_READ_REG(hw, E1000_TSAUXC);
5145         tsauxc &= ~E1000_TSAUXC_DISABLE_SYSTIME;
5146         E1000_WRITE_REG(hw, E1000_TSAUXC, tsauxc);
5147
5148         igb_start_timecounters(dev);
5149
5150         /* Enable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
5151         E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588),
5152                         (ETHER_TYPE_1588 |
5153                          E1000_ETQF_FILTER_ENABLE |
5154                          E1000_ETQF_1588));
5155
5156         /* Enable timestamping of received PTP packets. */
5157         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
5158         tsync_ctl |= E1000_TSYNCRXCTL_ENABLED;
5159         E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
5160
5161         /* Enable Timestamping of transmitted PTP packets. */
5162         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
5163         tsync_ctl |= E1000_TSYNCTXCTL_ENABLED;
5164         E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
5165
5166         return 0;
5167 }
5168
5169 static int
5170 igb_timesync_disable(struct rte_eth_dev *dev)
5171 {
5172         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5173         uint32_t tsync_ctl;
5174
5175         /* Disable timestamping of transmitted PTP packets. */
5176         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
5177         tsync_ctl &= ~E1000_TSYNCTXCTL_ENABLED;
5178         E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
5179
5180         /* Disable timestamping of received PTP packets. */
5181         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
5182         tsync_ctl &= ~E1000_TSYNCRXCTL_ENABLED;
5183         E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
5184
5185         /* Disable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
5186         E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588), 0);
5187
5188         /* Stop incrementating the System Time registers. */
5189         E1000_WRITE_REG(hw, E1000_TIMINCA, 0);
5190
5191         return 0;
5192 }
5193
5194 static int
5195 igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
5196                                struct timespec *timestamp,
5197                                uint32_t flags __rte_unused)
5198 {
5199         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5200         struct e1000_adapter *adapter =
5201                         (struct e1000_adapter *)dev->data->dev_private;
5202         uint32_t tsync_rxctl;
5203         uint64_t rx_tstamp_cycles;
5204         uint64_t ns;
5205
5206         tsync_rxctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
5207         if ((tsync_rxctl & E1000_TSYNCRXCTL_VALID) == 0)
5208                 return -EINVAL;
5209
5210         rx_tstamp_cycles = igb_read_rx_tstamp_cyclecounter(dev);
5211         ns = rte_timecounter_update(&adapter->rx_tstamp_tc, rx_tstamp_cycles);
5212         *timestamp = rte_ns_to_timespec(ns);
5213
5214         return  0;
5215 }
5216
5217 static int
5218 igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
5219                                struct timespec *timestamp)
5220 {
5221         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5222         struct e1000_adapter *adapter =
5223                         (struct e1000_adapter *)dev->data->dev_private;
5224         uint32_t tsync_txctl;
5225         uint64_t tx_tstamp_cycles;
5226         uint64_t ns;
5227
5228         tsync_txctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
5229         if ((tsync_txctl & E1000_TSYNCTXCTL_VALID) == 0)
5230                 return -EINVAL;
5231
5232         tx_tstamp_cycles = igb_read_tx_tstamp_cyclecounter(dev);
5233         ns = rte_timecounter_update(&adapter->tx_tstamp_tc, tx_tstamp_cycles);
5234         *timestamp = rte_ns_to_timespec(ns);
5235
5236         return  0;
5237 }
5238
5239 static int
5240 eth_igb_get_reg_length(struct rte_eth_dev *dev __rte_unused)
5241 {
5242         int count = 0;
5243         int g_ind = 0;
5244         const struct reg_info *reg_group;
5245
5246         while ((reg_group = igb_regs[g_ind++]))
5247                 count += igb_reg_group_count(reg_group);
5248
5249         return count;
5250 }
5251
5252 static int
5253 igbvf_get_reg_length(struct rte_eth_dev *dev __rte_unused)
5254 {
5255         int count = 0;
5256         int g_ind = 0;
5257         const struct reg_info *reg_group;
5258
5259         while ((reg_group = igbvf_regs[g_ind++]))
5260                 count += igb_reg_group_count(reg_group);
5261
5262         return count;
5263 }
5264
5265 static int
5266 eth_igb_get_regs(struct rte_eth_dev *dev,
5267         struct rte_dev_reg_info *regs)
5268 {
5269         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5270         uint32_t *data = regs->data;
5271         int g_ind = 0;
5272         int count = 0;
5273         const struct reg_info *reg_group;
5274
5275         if (data == NULL) {
5276                 regs->length = eth_igb_get_reg_length(dev);
5277                 regs->width = sizeof(uint32_t);
5278                 return 0;
5279         }
5280
5281         /* Support only full register dump */
5282         if ((regs->length == 0) ||
5283             (regs->length == (uint32_t)eth_igb_get_reg_length(dev))) {
5284                 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
5285                         hw->device_id;
5286                 while ((reg_group = igb_regs[g_ind++]))
5287                         count += igb_read_regs_group(dev, &data[count],
5288                                                         reg_group);
5289                 return 0;
5290         }
5291
5292         return -ENOTSUP;
5293 }
5294
5295 static int
5296 igbvf_get_regs(struct rte_eth_dev *dev,
5297         struct rte_dev_reg_info *regs)
5298 {
5299         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5300         uint32_t *data = regs->data;
5301         int g_ind = 0;
5302         int count = 0;
5303         const struct reg_info *reg_group;
5304
5305         if (data == NULL) {
5306                 regs->length = igbvf_get_reg_length(dev);
5307                 regs->width = sizeof(uint32_t);
5308                 return 0;
5309         }
5310
5311         /* Support only full register dump */
5312         if ((regs->length == 0) ||
5313             (regs->length == (uint32_t)igbvf_get_reg_length(dev))) {
5314                 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
5315                         hw->device_id;
5316                 while ((reg_group = igbvf_regs[g_ind++]))
5317                         count += igb_read_regs_group(dev, &data[count],
5318                                                         reg_group);
5319                 return 0;
5320         }
5321
5322         return -ENOTSUP;
5323 }
5324
5325 static int
5326 eth_igb_get_eeprom_length(struct rte_eth_dev *dev)
5327 {
5328         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5329
5330         /* Return unit is byte count */
5331         return hw->nvm.word_size * 2;
5332 }
5333
5334 static int
5335 eth_igb_get_eeprom(struct rte_eth_dev *dev,
5336         struct rte_dev_eeprom_info *in_eeprom)
5337 {
5338         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5339         struct e1000_nvm_info *nvm = &hw->nvm;
5340         uint16_t *data = in_eeprom->data;
5341         int first, length;
5342
5343         first = in_eeprom->offset >> 1;
5344         length = in_eeprom->length >> 1;
5345         if ((first >= hw->nvm.word_size) ||
5346             ((first + length) >= hw->nvm.word_size))
5347                 return -EINVAL;
5348
5349         in_eeprom->magic = hw->vendor_id |
5350                 ((uint32_t)hw->device_id << 16);
5351
5352         if ((nvm->ops.read) == NULL)
5353                 return -ENOTSUP;
5354
5355         return nvm->ops.read(hw, first, length, data);
5356 }
5357
5358 static int
5359 eth_igb_set_eeprom(struct rte_eth_dev *dev,
5360         struct rte_dev_eeprom_info *in_eeprom)
5361 {
5362         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5363         struct e1000_nvm_info *nvm = &hw->nvm;
5364         uint16_t *data = in_eeprom->data;
5365         int first, length;
5366
5367         first = in_eeprom->offset >> 1;
5368         length = in_eeprom->length >> 1;
5369         if ((first >= hw->nvm.word_size) ||
5370             ((first + length) >= hw->nvm.word_size))
5371                 return -EINVAL;
5372
5373         in_eeprom->magic = (uint32_t)hw->vendor_id |
5374                 ((uint32_t)hw->device_id << 16);
5375
5376         if ((nvm->ops.write) == NULL)
5377                 return -ENOTSUP;
5378         return nvm->ops.write(hw,  first, length, data);
5379 }
5380
5381 static int
5382 eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
5383 {
5384         struct e1000_hw *hw =
5385                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5386         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5387         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5388         uint32_t vec = E1000_MISC_VEC_ID;
5389
5390         if (rte_intr_allow_others(intr_handle))
5391                 vec = E1000_RX_VEC_START;
5392
5393         uint32_t mask = 1 << (queue_id + vec);
5394
5395         E1000_WRITE_REG(hw, E1000_EIMC, mask);
5396         E1000_WRITE_FLUSH(hw);
5397
5398         return 0;
5399 }
5400
5401 static int
5402 eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
5403 {
5404         struct e1000_hw *hw =
5405                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5406         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5407         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5408         uint32_t vec = E1000_MISC_VEC_ID;
5409
5410         if (rte_intr_allow_others(intr_handle))
5411                 vec = E1000_RX_VEC_START;
5412
5413         uint32_t mask = 1 << (queue_id + vec);
5414         uint32_t regval;
5415
5416         regval = E1000_READ_REG(hw, E1000_EIMS);
5417         E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
5418         E1000_WRITE_FLUSH(hw);
5419
5420         rte_intr_enable(intr_handle);
5421
5422         return 0;
5423 }
5424
5425 static void
5426 eth_igb_write_ivar(struct e1000_hw *hw, uint8_t  msix_vector,
5427                    uint8_t index, uint8_t offset)
5428 {
5429         uint32_t val = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
5430
5431         /* clear bits */
5432         val &= ~((uint32_t)0xFF << offset);
5433
5434         /* write vector and valid bit */
5435         val |= (msix_vector | E1000_IVAR_VALID) << offset;
5436
5437         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, val);
5438 }
5439
5440 static void
5441 eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
5442                            uint8_t queue, uint8_t msix_vector)
5443 {
5444         uint32_t tmp = 0;
5445
5446         if (hw->mac.type == e1000_82575) {
5447                 if (direction == 0)
5448                         tmp = E1000_EICR_RX_QUEUE0 << queue;
5449                 else if (direction == 1)
5450                         tmp = E1000_EICR_TX_QUEUE0 << queue;
5451                 E1000_WRITE_REG(hw, E1000_MSIXBM(msix_vector), tmp);
5452         } else if (hw->mac.type == e1000_82576) {
5453                 if ((direction == 0) || (direction == 1))
5454                         eth_igb_write_ivar(hw, msix_vector, queue & 0x7,
5455                                            ((queue & 0x8) << 1) +
5456                                            8 * direction);
5457         } else if ((hw->mac.type == e1000_82580) ||
5458                         (hw->mac.type == e1000_i350) ||
5459                         (hw->mac.type == e1000_i354) ||
5460                         (hw->mac.type == e1000_i210) ||
5461                         (hw->mac.type == e1000_i211)) {
5462                 if ((direction == 0) || (direction == 1))
5463                         eth_igb_write_ivar(hw, msix_vector,
5464                                            queue >> 1,
5465                                            ((queue & 0x1) << 4) +
5466                                            8 * direction);
5467         }
5468 }
5469
5470 /* Sets up the hardware to generate MSI-X interrupts properly
5471  * @hw
5472  *  board private structure
5473  */
5474 static void
5475 eth_igb_configure_msix_intr(struct rte_eth_dev *dev)
5476 {
5477         int queue_id;
5478         uint32_t tmpval, regval, intr_mask;
5479         struct e1000_hw *hw =
5480                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5481         uint32_t vec = E1000_MISC_VEC_ID;
5482         uint32_t base = E1000_MISC_VEC_ID;
5483         uint32_t misc_shift = 0;
5484         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5485         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5486
5487         /* won't configure msix register if no mapping is done
5488          * between intr vector and event fd
5489          */
5490         if (!rte_intr_dp_is_en(intr_handle))
5491                 return;
5492
5493         if (rte_intr_allow_others(intr_handle)) {
5494                 vec = base = E1000_RX_VEC_START;
5495                 misc_shift = 1;
5496         }
5497
5498         /* set interrupt vector for other causes */
5499         if (hw->mac.type == e1000_82575) {
5500                 tmpval = E1000_READ_REG(hw, E1000_CTRL_EXT);
5501                 /* enable MSI-X PBA support */
5502                 tmpval |= E1000_CTRL_EXT_PBA_CLR;
5503
5504                 /* Auto-Mask interrupts upon ICR read */
5505                 tmpval |= E1000_CTRL_EXT_EIAME;
5506                 tmpval |= E1000_CTRL_EXT_IRCA;
5507
5508                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmpval);
5509
5510                 /* enable msix_other interrupt */
5511                 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), 0, E1000_EIMS_OTHER);
5512                 regval = E1000_READ_REG(hw, E1000_EIAC);
5513                 E1000_WRITE_REG(hw, E1000_EIAC, regval | E1000_EIMS_OTHER);
5514                 regval = E1000_READ_REG(hw, E1000_EIAM);
5515                 E1000_WRITE_REG(hw, E1000_EIMS, regval | E1000_EIMS_OTHER);
5516         } else if ((hw->mac.type == e1000_82576) ||
5517                         (hw->mac.type == e1000_82580) ||
5518                         (hw->mac.type == e1000_i350) ||
5519                         (hw->mac.type == e1000_i354) ||
5520                         (hw->mac.type == e1000_i210) ||
5521                         (hw->mac.type == e1000_i211)) {
5522                 /* turn on MSI-X capability first */
5523                 E1000_WRITE_REG(hw, E1000_GPIE, E1000_GPIE_MSIX_MODE |
5524                                         E1000_GPIE_PBA | E1000_GPIE_EIAME |
5525                                         E1000_GPIE_NSICR);
5526                 intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
5527                         misc_shift;
5528                 regval = E1000_READ_REG(hw, E1000_EIAC);
5529                 E1000_WRITE_REG(hw, E1000_EIAC, regval | intr_mask);
5530
5531                 /* enable msix_other interrupt */
5532                 regval = E1000_READ_REG(hw, E1000_EIMS);
5533                 E1000_WRITE_REG(hw, E1000_EIMS, regval | intr_mask);
5534                 tmpval = (dev->data->nb_rx_queues | E1000_IVAR_VALID) << 8;
5535                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, tmpval);
5536         }
5537
5538         /* use EIAM to auto-mask when MSI-X interrupt
5539          * is asserted, this saves a register write for every interrupt
5540          */
5541         intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
5542                 misc_shift;
5543         regval = E1000_READ_REG(hw, E1000_EIAM);
5544         E1000_WRITE_REG(hw, E1000_EIAM, regval | intr_mask);
5545
5546         for (queue_id = 0; queue_id < dev->data->nb_rx_queues; queue_id++) {
5547                 eth_igb_assign_msix_vector(hw, 0, queue_id, vec);
5548                 intr_handle->intr_vec[queue_id] = vec;
5549                 if (vec < base + intr_handle->nb_efd - 1)
5550                         vec++;
5551         }
5552
5553         E1000_WRITE_FLUSH(hw);
5554 }
5555
5556 /* restore n-tuple filter */
5557 static inline void
5558 igb_ntuple_filter_restore(struct rte_eth_dev *dev)
5559 {
5560         struct e1000_filter_info *filter_info =
5561                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5562         struct e1000_5tuple_filter *p_5tuple;
5563         struct e1000_2tuple_filter *p_2tuple;
5564
5565         TAILQ_FOREACH(p_5tuple, &filter_info->fivetuple_list, entries) {
5566                 igb_inject_5tuple_filter_82576(dev, p_5tuple);
5567         }
5568
5569         TAILQ_FOREACH(p_2tuple, &filter_info->twotuple_list, entries) {
5570                 igb_inject_2uple_filter(dev, p_2tuple);
5571         }
5572 }
5573
5574 /* restore SYN filter */
5575 static inline void
5576 igb_syn_filter_restore(struct rte_eth_dev *dev)
5577 {
5578         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5579         struct e1000_filter_info *filter_info =
5580                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5581         uint32_t synqf;
5582
5583         synqf = filter_info->syn_info;
5584
5585         if (synqf & E1000_SYN_FILTER_ENABLE) {
5586                 E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
5587                 E1000_WRITE_FLUSH(hw);
5588         }
5589 }
5590
5591 /* restore ethernet type filter */
5592 static inline void
5593 igb_ethertype_filter_restore(struct rte_eth_dev *dev)
5594 {
5595         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5596         struct e1000_filter_info *filter_info =
5597                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5598         int i;
5599
5600         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
5601                 if (filter_info->ethertype_mask & (1 << i)) {
5602                         E1000_WRITE_REG(hw, E1000_ETQF(i),
5603                                 filter_info->ethertype_filters[i].etqf);
5604                         E1000_WRITE_FLUSH(hw);
5605                 }
5606         }
5607 }
5608
5609 /* restore flex byte filter */
5610 static inline void
5611 igb_flex_filter_restore(struct rte_eth_dev *dev)
5612 {
5613         struct e1000_filter_info *filter_info =
5614                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5615         struct e1000_flex_filter *flex_filter;
5616
5617         TAILQ_FOREACH(flex_filter, &filter_info->flex_list, entries) {
5618                 igb_inject_flex_filter(dev, flex_filter);
5619         }
5620 }
5621
5622 /* restore rss filter */
5623 static inline void
5624 igb_rss_filter_restore(struct rte_eth_dev *dev)
5625 {
5626         struct e1000_filter_info *filter_info =
5627                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5628
5629         if (filter_info->rss_info.num)
5630                 igb_config_rss_filter(dev, &filter_info->rss_info, TRUE);
5631 }
5632
5633 /* restore all types filter */
5634 static int
5635 igb_filter_restore(struct rte_eth_dev *dev)
5636 {
5637         igb_ntuple_filter_restore(dev);
5638         igb_ethertype_filter_restore(dev);
5639         igb_syn_filter_restore(dev);
5640         igb_flex_filter_restore(dev);
5641         igb_rss_filter_restore(dev);
5642
5643         return 0;
5644 }
5645
5646 RTE_PMD_REGISTER_PCI(net_e1000_igb, rte_igb_pmd);
5647 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb, pci_id_igb_map);
5648 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb, "* igb_uio | uio_pci_generic | vfio-pci");
5649 RTE_PMD_REGISTER_PCI(net_e1000_igb_vf, rte_igbvf_pmd);
5650 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb_vf, pci_id_igbvf_map);
5651 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb_vf, "* igb_uio | vfio-pci");