drivers/net: check process type in close operation
[dpdk.git] / drivers / net / e1000 / igb_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <stdarg.h>
10
11 #include <rte_string_fns.h>
12 #include <rte_common.h>
13 #include <rte_interrupts.h>
14 #include <rte_byteorder.h>
15 #include <rte_log.h>
16 #include <rte_debug.h>
17 #include <rte_pci.h>
18 #include <rte_bus_pci.h>
19 #include <rte_ether.h>
20 #include <rte_ethdev_driver.h>
21 #include <rte_ethdev_pci.h>
22 #include <rte_memory.h>
23 #include <rte_eal.h>
24 #include <rte_malloc.h>
25 #include <rte_dev.h>
26
27 #include "e1000_logs.h"
28 #include "base/e1000_api.h"
29 #include "e1000_ethdev.h"
30 #include "igb_regs.h"
31
32 /*
33  * Default values for port configuration
34  */
35 #define IGB_DEFAULT_RX_FREE_THRESH  32
36
37 #define IGB_DEFAULT_RX_PTHRESH      ((hw->mac.type == e1000_i354) ? 12 : 8)
38 #define IGB_DEFAULT_RX_HTHRESH      8
39 #define IGB_DEFAULT_RX_WTHRESH      ((hw->mac.type == e1000_82576) ? 1 : 4)
40
41 #define IGB_DEFAULT_TX_PTHRESH      ((hw->mac.type == e1000_i354) ? 20 : 8)
42 #define IGB_DEFAULT_TX_HTHRESH      1
43 #define IGB_DEFAULT_TX_WTHRESH      ((hw->mac.type == e1000_82576) ? 1 : 16)
44
45 /* Bit shift and mask */
46 #define IGB_4_BIT_WIDTH  (CHAR_BIT / 2)
47 #define IGB_4_BIT_MASK   RTE_LEN2MASK(IGB_4_BIT_WIDTH, uint8_t)
48 #define IGB_8_BIT_WIDTH  CHAR_BIT
49 #define IGB_8_BIT_MASK   UINT8_MAX
50
51 /* Additional timesync values. */
52 #define E1000_CYCLECOUNTER_MASK      0xffffffffffffffffULL
53 #define E1000_ETQF_FILTER_1588       3
54 #define IGB_82576_TSYNC_SHIFT        16
55 #define E1000_INCPERIOD_82576        (1 << E1000_TIMINCA_16NS_SHIFT)
56 #define E1000_INCVALUE_82576         (16 << IGB_82576_TSYNC_SHIFT)
57 #define E1000_TSAUXC_DISABLE_SYSTIME 0x80000000
58
59 #define E1000_VTIVAR_MISC                0x01740
60 #define E1000_VTIVAR_MISC_MASK           0xFF
61 #define E1000_VTIVAR_VALID               0x80
62 #define E1000_VTIVAR_MISC_MAILBOX        0
63 #define E1000_VTIVAR_MISC_INTR_MASK      0x3
64
65 /* External VLAN Enable bit mask */
66 #define E1000_CTRL_EXT_EXT_VLAN      (1 << 26)
67
68 /* External VLAN Ether Type bit mask and shift */
69 #define E1000_VET_VET_EXT            0xFFFF0000
70 #define E1000_VET_VET_EXT_SHIFT      16
71
72 /* MSI-X other interrupt vector */
73 #define IGB_MSIX_OTHER_INTR_VEC      0
74
75 static int  eth_igb_configure(struct rte_eth_dev *dev);
76 static int  eth_igb_start(struct rte_eth_dev *dev);
77 static void eth_igb_stop(struct rte_eth_dev *dev);
78 static int  eth_igb_dev_set_link_up(struct rte_eth_dev *dev);
79 static int  eth_igb_dev_set_link_down(struct rte_eth_dev *dev);
80 static int eth_igb_close(struct rte_eth_dev *dev);
81 static int eth_igb_reset(struct rte_eth_dev *dev);
82 static int  eth_igb_promiscuous_enable(struct rte_eth_dev *dev);
83 static int  eth_igb_promiscuous_disable(struct rte_eth_dev *dev);
84 static int  eth_igb_allmulticast_enable(struct rte_eth_dev *dev);
85 static int  eth_igb_allmulticast_disable(struct rte_eth_dev *dev);
86 static int  eth_igb_link_update(struct rte_eth_dev *dev,
87                                 int wait_to_complete);
88 static int eth_igb_stats_get(struct rte_eth_dev *dev,
89                                 struct rte_eth_stats *rte_stats);
90 static int eth_igb_xstats_get(struct rte_eth_dev *dev,
91                               struct rte_eth_xstat *xstats, unsigned n);
92 static int eth_igb_xstats_get_by_id(struct rte_eth_dev *dev,
93                 const uint64_t *ids,
94                 uint64_t *values, unsigned int n);
95 static int eth_igb_xstats_get_names(struct rte_eth_dev *dev,
96                                     struct rte_eth_xstat_name *xstats_names,
97                                     unsigned int size);
98 static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev,
99                 struct rte_eth_xstat_name *xstats_names, const uint64_t *ids,
100                 unsigned int limit);
101 static int eth_igb_stats_reset(struct rte_eth_dev *dev);
102 static int eth_igb_xstats_reset(struct rte_eth_dev *dev);
103 static int eth_igb_fw_version_get(struct rte_eth_dev *dev,
104                                    char *fw_version, size_t fw_size);
105 static int eth_igb_infos_get(struct rte_eth_dev *dev,
106                               struct rte_eth_dev_info *dev_info);
107 static const uint32_t *eth_igb_supported_ptypes_get(struct rte_eth_dev *dev);
108 static int eth_igbvf_infos_get(struct rte_eth_dev *dev,
109                                 struct rte_eth_dev_info *dev_info);
110 static int  eth_igb_flow_ctrl_get(struct rte_eth_dev *dev,
111                                 struct rte_eth_fc_conf *fc_conf);
112 static int  eth_igb_flow_ctrl_set(struct rte_eth_dev *dev,
113                                 struct rte_eth_fc_conf *fc_conf);
114 static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on);
115 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev);
116 static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev);
117 static int eth_igb_interrupt_action(struct rte_eth_dev *dev,
118                                     struct rte_intr_handle *handle);
119 static void eth_igb_interrupt_handler(void *param);
120 static int  igb_hardware_init(struct e1000_hw *hw);
121 static void igb_hw_control_acquire(struct e1000_hw *hw);
122 static void igb_hw_control_release(struct e1000_hw *hw);
123 static void igb_init_manageability(struct e1000_hw *hw);
124 static void igb_release_manageability(struct e1000_hw *hw);
125
126 static int  eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
127
128 static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev,
129                 uint16_t vlan_id, int on);
130 static int eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
131                                  enum rte_vlan_type vlan_type,
132                                  uint16_t tpid_id);
133 static int eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask);
134
135 static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev);
136 static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev);
137 static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev);
138 static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev);
139 static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev);
140 static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev);
141
142 static int eth_igb_led_on(struct rte_eth_dev *dev);
143 static int eth_igb_led_off(struct rte_eth_dev *dev);
144
145 static void igb_intr_disable(struct rte_eth_dev *dev);
146 static int  igb_get_rx_buffer_size(struct e1000_hw *hw);
147 static int eth_igb_rar_set(struct rte_eth_dev *dev,
148                            struct rte_ether_addr *mac_addr,
149                            uint32_t index, uint32_t pool);
150 static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index);
151 static int eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
152                 struct rte_ether_addr *addr);
153
154 static void igbvf_intr_disable(struct e1000_hw *hw);
155 static int igbvf_dev_configure(struct rte_eth_dev *dev);
156 static int igbvf_dev_start(struct rte_eth_dev *dev);
157 static void igbvf_dev_stop(struct rte_eth_dev *dev);
158 static int igbvf_dev_close(struct rte_eth_dev *dev);
159 static int igbvf_promiscuous_enable(struct rte_eth_dev *dev);
160 static int igbvf_promiscuous_disable(struct rte_eth_dev *dev);
161 static int igbvf_allmulticast_enable(struct rte_eth_dev *dev);
162 static int igbvf_allmulticast_disable(struct rte_eth_dev *dev);
163 static int eth_igbvf_link_update(struct e1000_hw *hw);
164 static int eth_igbvf_stats_get(struct rte_eth_dev *dev,
165                                 struct rte_eth_stats *rte_stats);
166 static int eth_igbvf_xstats_get(struct rte_eth_dev *dev,
167                                 struct rte_eth_xstat *xstats, unsigned n);
168 static int eth_igbvf_xstats_get_names(struct rte_eth_dev *dev,
169                                       struct rte_eth_xstat_name *xstats_names,
170                                       unsigned limit);
171 static int eth_igbvf_stats_reset(struct rte_eth_dev *dev);
172 static int igbvf_vlan_filter_set(struct rte_eth_dev *dev,
173                 uint16_t vlan_id, int on);
174 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on);
175 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on);
176 static int igbvf_default_mac_addr_set(struct rte_eth_dev *dev,
177                 struct rte_ether_addr *addr);
178 static int igbvf_get_reg_length(struct rte_eth_dev *dev);
179 static int igbvf_get_regs(struct rte_eth_dev *dev,
180                 struct rte_dev_reg_info *regs);
181
182 static int eth_igb_rss_reta_update(struct rte_eth_dev *dev,
183                                    struct rte_eth_rss_reta_entry64 *reta_conf,
184                                    uint16_t reta_size);
185 static int eth_igb_rss_reta_query(struct rte_eth_dev *dev,
186                                   struct rte_eth_rss_reta_entry64 *reta_conf,
187                                   uint16_t reta_size);
188
189 static int eth_igb_syn_filter_get(struct rte_eth_dev *dev,
190                         struct rte_eth_syn_filter *filter);
191 static int eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
192                         enum rte_filter_op filter_op,
193                         void *arg);
194 static int igb_add_2tuple_filter(struct rte_eth_dev *dev,
195                         struct rte_eth_ntuple_filter *ntuple_filter);
196 static int igb_remove_2tuple_filter(struct rte_eth_dev *dev,
197                         struct rte_eth_ntuple_filter *ntuple_filter);
198 static int eth_igb_get_flex_filter(struct rte_eth_dev *dev,
199                         struct rte_eth_flex_filter *filter);
200 static int eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
201                         enum rte_filter_op filter_op,
202                         void *arg);
203 static int igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
204                         struct rte_eth_ntuple_filter *ntuple_filter);
205 static int igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
206                         struct rte_eth_ntuple_filter *ntuple_filter);
207 static int igb_get_ntuple_filter(struct rte_eth_dev *dev,
208                         struct rte_eth_ntuple_filter *filter);
209 static int igb_ntuple_filter_handle(struct rte_eth_dev *dev,
210                                 enum rte_filter_op filter_op,
211                                 void *arg);
212 static int igb_ethertype_filter_handle(struct rte_eth_dev *dev,
213                                 enum rte_filter_op filter_op,
214                                 void *arg);
215 static int igb_get_ethertype_filter(struct rte_eth_dev *dev,
216                         struct rte_eth_ethertype_filter *filter);
217 static int eth_igb_filter_ctrl(struct rte_eth_dev *dev,
218                      enum rte_filter_type filter_type,
219                      enum rte_filter_op filter_op,
220                      void *arg);
221 static int eth_igb_get_reg_length(struct rte_eth_dev *dev);
222 static int eth_igb_get_regs(struct rte_eth_dev *dev,
223                 struct rte_dev_reg_info *regs);
224 static int eth_igb_get_eeprom_length(struct rte_eth_dev *dev);
225 static int eth_igb_get_eeprom(struct rte_eth_dev *dev,
226                 struct rte_dev_eeprom_info *eeprom);
227 static int eth_igb_set_eeprom(struct rte_eth_dev *dev,
228                 struct rte_dev_eeprom_info *eeprom);
229 static int eth_igb_get_module_info(struct rte_eth_dev *dev,
230                                    struct rte_eth_dev_module_info *modinfo);
231 static int eth_igb_get_module_eeprom(struct rte_eth_dev *dev,
232                                      struct rte_dev_eeprom_info *info);
233 static int eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
234                                     struct rte_ether_addr *mc_addr_set,
235                                     uint32_t nb_mc_addr);
236 static int igb_timesync_enable(struct rte_eth_dev *dev);
237 static int igb_timesync_disable(struct rte_eth_dev *dev);
238 static int igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
239                                           struct timespec *timestamp,
240                                           uint32_t flags);
241 static int igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
242                                           struct timespec *timestamp);
243 static int igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta);
244 static int igb_timesync_read_time(struct rte_eth_dev *dev,
245                                   struct timespec *timestamp);
246 static int igb_timesync_write_time(struct rte_eth_dev *dev,
247                                    const struct timespec *timestamp);
248 static int eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev,
249                                         uint16_t queue_id);
250 static int eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev,
251                                          uint16_t queue_id);
252 static void eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
253                                        uint8_t queue, uint8_t msix_vector);
254 static void eth_igb_write_ivar(struct e1000_hw *hw, uint8_t msix_vector,
255                                uint8_t index, uint8_t offset);
256 static void eth_igb_configure_msix_intr(struct rte_eth_dev *dev);
257 static void eth_igbvf_interrupt_handler(void *param);
258 static void igbvf_mbx_process(struct rte_eth_dev *dev);
259 static int igb_filter_restore(struct rte_eth_dev *dev);
260
261 /*
262  * Define VF Stats MACRO for Non "cleared on read" register
263  */
264 #define UPDATE_VF_STAT(reg, last, cur)            \
265 {                                                 \
266         u32 latest = E1000_READ_REG(hw, reg);     \
267         cur += (latest - last) & UINT_MAX;        \
268         last = latest;                            \
269 }
270
271 #define IGB_FC_PAUSE_TIME 0x0680
272 #define IGB_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
273 #define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
274
275 #define IGBVF_PMD_NAME "rte_igbvf_pmd"     /* PMD name */
276
277 static enum e1000_fc_mode igb_fc_setting = e1000_fc_full;
278
279 /*
280  * The set of PCI devices this driver supports
281  */
282 static const struct rte_pci_id pci_id_igb_map[] = {
283         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576) },
284         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_FIBER) },
285         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES) },
286         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER) },
287         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER_ET2) },
288         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS) },
289         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS_SERDES) },
290         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES_QUAD) },
291
292         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_COPPER) },
293         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_FIBER_SERDES) },
294         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575GB_QUAD_COPPER) },
295
296         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER) },
297         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_FIBER) },
298         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SERDES) },
299         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SGMII) },
300         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER_DUAL) },
301         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_QUAD_FIBER) },
302
303         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_COPPER) },
304         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_FIBER) },
305         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SERDES) },
306         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SGMII) },
307         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_DA4) },
308         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER) },
309         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_OEM1) },
310         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_IT) },
311         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_FIBER) },
312         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES) },
313         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SGMII) },
314         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_FLASHLESS) },
315         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES_FLASHLESS) },
316         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I211_COPPER) },
317         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
318         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_SGMII) },
319         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
320         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SGMII) },
321         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SERDES) },
322         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_BACKPLANE) },
323         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SFP) },
324         { .vendor_id = 0, /* sentinel */ },
325 };
326
327 /*
328  * The set of PCI devices this driver supports (for 82576&I350 VF)
329  */
330 static const struct rte_pci_id pci_id_igbvf_map[] = {
331         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF) },
332         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF_HV) },
333         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF) },
334         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF_HV) },
335         { .vendor_id = 0, /* sentinel */ },
336 };
337
338 static const struct rte_eth_desc_lim rx_desc_lim = {
339         .nb_max = E1000_MAX_RING_DESC,
340         .nb_min = E1000_MIN_RING_DESC,
341         .nb_align = IGB_RXD_ALIGN,
342 };
343
344 static const struct rte_eth_desc_lim tx_desc_lim = {
345         .nb_max = E1000_MAX_RING_DESC,
346         .nb_min = E1000_MIN_RING_DESC,
347         .nb_align = IGB_RXD_ALIGN,
348         .nb_seg_max = IGB_TX_MAX_SEG,
349         .nb_mtu_seg_max = IGB_TX_MAX_MTU_SEG,
350 };
351
352 static const struct eth_dev_ops eth_igb_ops = {
353         .dev_configure        = eth_igb_configure,
354         .dev_start            = eth_igb_start,
355         .dev_stop             = eth_igb_stop,
356         .dev_set_link_up      = eth_igb_dev_set_link_up,
357         .dev_set_link_down    = eth_igb_dev_set_link_down,
358         .dev_close            = eth_igb_close,
359         .dev_reset            = eth_igb_reset,
360         .promiscuous_enable   = eth_igb_promiscuous_enable,
361         .promiscuous_disable  = eth_igb_promiscuous_disable,
362         .allmulticast_enable  = eth_igb_allmulticast_enable,
363         .allmulticast_disable = eth_igb_allmulticast_disable,
364         .link_update          = eth_igb_link_update,
365         .stats_get            = eth_igb_stats_get,
366         .xstats_get           = eth_igb_xstats_get,
367         .xstats_get_by_id     = eth_igb_xstats_get_by_id,
368         .xstats_get_names_by_id = eth_igb_xstats_get_names_by_id,
369         .xstats_get_names     = eth_igb_xstats_get_names,
370         .stats_reset          = eth_igb_stats_reset,
371         .xstats_reset         = eth_igb_xstats_reset,
372         .fw_version_get       = eth_igb_fw_version_get,
373         .dev_infos_get        = eth_igb_infos_get,
374         .dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
375         .mtu_set              = eth_igb_mtu_set,
376         .vlan_filter_set      = eth_igb_vlan_filter_set,
377         .vlan_tpid_set        = eth_igb_vlan_tpid_set,
378         .vlan_offload_set     = eth_igb_vlan_offload_set,
379         .rx_queue_setup       = eth_igb_rx_queue_setup,
380         .rx_queue_intr_enable = eth_igb_rx_queue_intr_enable,
381         .rx_queue_intr_disable = eth_igb_rx_queue_intr_disable,
382         .rx_queue_release     = eth_igb_rx_queue_release,
383         .tx_queue_setup       = eth_igb_tx_queue_setup,
384         .tx_queue_release     = eth_igb_tx_queue_release,
385         .tx_done_cleanup      = eth_igb_tx_done_cleanup,
386         .dev_led_on           = eth_igb_led_on,
387         .dev_led_off          = eth_igb_led_off,
388         .flow_ctrl_get        = eth_igb_flow_ctrl_get,
389         .flow_ctrl_set        = eth_igb_flow_ctrl_set,
390         .mac_addr_add         = eth_igb_rar_set,
391         .mac_addr_remove      = eth_igb_rar_clear,
392         .mac_addr_set         = eth_igb_default_mac_addr_set,
393         .reta_update          = eth_igb_rss_reta_update,
394         .reta_query           = eth_igb_rss_reta_query,
395         .rss_hash_update      = eth_igb_rss_hash_update,
396         .rss_hash_conf_get    = eth_igb_rss_hash_conf_get,
397         .filter_ctrl          = eth_igb_filter_ctrl,
398         .set_mc_addr_list     = eth_igb_set_mc_addr_list,
399         .rxq_info_get         = igb_rxq_info_get,
400         .txq_info_get         = igb_txq_info_get,
401         .timesync_enable      = igb_timesync_enable,
402         .timesync_disable     = igb_timesync_disable,
403         .timesync_read_rx_timestamp = igb_timesync_read_rx_timestamp,
404         .timesync_read_tx_timestamp = igb_timesync_read_tx_timestamp,
405         .get_reg              = eth_igb_get_regs,
406         .get_eeprom_length    = eth_igb_get_eeprom_length,
407         .get_eeprom           = eth_igb_get_eeprom,
408         .set_eeprom           = eth_igb_set_eeprom,
409         .get_module_info      = eth_igb_get_module_info,
410         .get_module_eeprom    = eth_igb_get_module_eeprom,
411         .timesync_adjust_time = igb_timesync_adjust_time,
412         .timesync_read_time   = igb_timesync_read_time,
413         .timesync_write_time  = igb_timesync_write_time,
414 };
415
416 /*
417  * dev_ops for virtual function, bare necessities for basic vf
418  * operation have been implemented
419  */
420 static const struct eth_dev_ops igbvf_eth_dev_ops = {
421         .dev_configure        = igbvf_dev_configure,
422         .dev_start            = igbvf_dev_start,
423         .dev_stop             = igbvf_dev_stop,
424         .dev_close            = igbvf_dev_close,
425         .promiscuous_enable   = igbvf_promiscuous_enable,
426         .promiscuous_disable  = igbvf_promiscuous_disable,
427         .allmulticast_enable  = igbvf_allmulticast_enable,
428         .allmulticast_disable = igbvf_allmulticast_disable,
429         .link_update          = eth_igb_link_update,
430         .stats_get            = eth_igbvf_stats_get,
431         .xstats_get           = eth_igbvf_xstats_get,
432         .xstats_get_names     = eth_igbvf_xstats_get_names,
433         .stats_reset          = eth_igbvf_stats_reset,
434         .xstats_reset         = eth_igbvf_stats_reset,
435         .vlan_filter_set      = igbvf_vlan_filter_set,
436         .dev_infos_get        = eth_igbvf_infos_get,
437         .dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
438         .rx_queue_setup       = eth_igb_rx_queue_setup,
439         .rx_queue_release     = eth_igb_rx_queue_release,
440         .tx_queue_setup       = eth_igb_tx_queue_setup,
441         .tx_queue_release     = eth_igb_tx_queue_release,
442         .tx_done_cleanup      = eth_igb_tx_done_cleanup,
443         .set_mc_addr_list     = eth_igb_set_mc_addr_list,
444         .rxq_info_get         = igb_rxq_info_get,
445         .txq_info_get         = igb_txq_info_get,
446         .mac_addr_set         = igbvf_default_mac_addr_set,
447         .get_reg              = igbvf_get_regs,
448 };
449
450 /* store statistics names and its offset in stats structure */
451 struct rte_igb_xstats_name_off {
452         char name[RTE_ETH_XSTATS_NAME_SIZE];
453         unsigned offset;
454 };
455
456 static const struct rte_igb_xstats_name_off rte_igb_stats_strings[] = {
457         {"rx_crc_errors", offsetof(struct e1000_hw_stats, crcerrs)},
458         {"rx_align_errors", offsetof(struct e1000_hw_stats, algnerrc)},
459         {"rx_symbol_errors", offsetof(struct e1000_hw_stats, symerrs)},
460         {"rx_missed_packets", offsetof(struct e1000_hw_stats, mpc)},
461         {"tx_single_collision_packets", offsetof(struct e1000_hw_stats, scc)},
462         {"tx_multiple_collision_packets", offsetof(struct e1000_hw_stats, mcc)},
463         {"tx_excessive_collision_packets", offsetof(struct e1000_hw_stats,
464                 ecol)},
465         {"tx_late_collisions", offsetof(struct e1000_hw_stats, latecol)},
466         {"tx_total_collisions", offsetof(struct e1000_hw_stats, colc)},
467         {"tx_deferred_packets", offsetof(struct e1000_hw_stats, dc)},
468         {"tx_no_carrier_sense_packets", offsetof(struct e1000_hw_stats, tncrs)},
469         {"rx_carrier_ext_errors", offsetof(struct e1000_hw_stats, cexterr)},
470         {"rx_length_errors", offsetof(struct e1000_hw_stats, rlec)},
471         {"rx_xon_packets", offsetof(struct e1000_hw_stats, xonrxc)},
472         {"tx_xon_packets", offsetof(struct e1000_hw_stats, xontxc)},
473         {"rx_xoff_packets", offsetof(struct e1000_hw_stats, xoffrxc)},
474         {"tx_xoff_packets", offsetof(struct e1000_hw_stats, xofftxc)},
475         {"rx_flow_control_unsupported_packets", offsetof(struct e1000_hw_stats,
476                 fcruc)},
477         {"rx_size_64_packets", offsetof(struct e1000_hw_stats, prc64)},
478         {"rx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, prc127)},
479         {"rx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, prc255)},
480         {"rx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, prc511)},
481         {"rx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
482                 prc1023)},
483         {"rx_size_1024_to_max_packets", offsetof(struct e1000_hw_stats,
484                 prc1522)},
485         {"rx_broadcast_packets", offsetof(struct e1000_hw_stats, bprc)},
486         {"rx_multicast_packets", offsetof(struct e1000_hw_stats, mprc)},
487         {"rx_undersize_errors", offsetof(struct e1000_hw_stats, ruc)},
488         {"rx_fragment_errors", offsetof(struct e1000_hw_stats, rfc)},
489         {"rx_oversize_errors", offsetof(struct e1000_hw_stats, roc)},
490         {"rx_jabber_errors", offsetof(struct e1000_hw_stats, rjc)},
491         {"rx_management_packets", offsetof(struct e1000_hw_stats, mgprc)},
492         {"rx_management_dropped", offsetof(struct e1000_hw_stats, mgpdc)},
493         {"tx_management_packets", offsetof(struct e1000_hw_stats, mgptc)},
494         {"rx_total_packets", offsetof(struct e1000_hw_stats, tpr)},
495         {"tx_total_packets", offsetof(struct e1000_hw_stats, tpt)},
496         {"rx_total_bytes", offsetof(struct e1000_hw_stats, tor)},
497         {"tx_total_bytes", offsetof(struct e1000_hw_stats, tot)},
498         {"tx_size_64_packets", offsetof(struct e1000_hw_stats, ptc64)},
499         {"tx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, ptc127)},
500         {"tx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, ptc255)},
501         {"tx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, ptc511)},
502         {"tx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
503                 ptc1023)},
504         {"tx_size_1023_to_max_packets", offsetof(struct e1000_hw_stats,
505                 ptc1522)},
506         {"tx_multicast_packets", offsetof(struct e1000_hw_stats, mptc)},
507         {"tx_broadcast_packets", offsetof(struct e1000_hw_stats, bptc)},
508         {"tx_tso_packets", offsetof(struct e1000_hw_stats, tsctc)},
509         {"tx_tso_errors", offsetof(struct e1000_hw_stats, tsctfc)},
510         {"rx_sent_to_host_packets", offsetof(struct e1000_hw_stats, rpthc)},
511         {"tx_sent_by_host_packets", offsetof(struct e1000_hw_stats, hgptc)},
512         {"rx_code_violation_packets", offsetof(struct e1000_hw_stats, scvpc)},
513
514         {"interrupt_assert_count", offsetof(struct e1000_hw_stats, iac)},
515 };
516
517 #define IGB_NB_XSTATS (sizeof(rte_igb_stats_strings) / \
518                 sizeof(rte_igb_stats_strings[0]))
519
520 static const struct rte_igb_xstats_name_off rte_igbvf_stats_strings[] = {
521         {"rx_multicast_packets", offsetof(struct e1000_vf_stats, mprc)},
522         {"rx_good_loopback_packets", offsetof(struct e1000_vf_stats, gprlbc)},
523         {"tx_good_loopback_packets", offsetof(struct e1000_vf_stats, gptlbc)},
524         {"rx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gorlbc)},
525         {"tx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gotlbc)},
526 };
527
528 #define IGBVF_NB_XSTATS (sizeof(rte_igbvf_stats_strings) / \
529                 sizeof(rte_igbvf_stats_strings[0]))
530
531
532 static inline void
533 igb_intr_enable(struct rte_eth_dev *dev)
534 {
535         struct e1000_interrupt *intr =
536                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
537         struct e1000_hw *hw =
538                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
539         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
540         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
541
542         if (rte_intr_allow_others(intr_handle) &&
543                 dev->data->dev_conf.intr_conf.lsc != 0) {
544                 E1000_WRITE_REG(hw, E1000_EIMS, 1 << IGB_MSIX_OTHER_INTR_VEC);
545         }
546
547         E1000_WRITE_REG(hw, E1000_IMS, intr->mask);
548         E1000_WRITE_FLUSH(hw);
549 }
550
551 static void
552 igb_intr_disable(struct rte_eth_dev *dev)
553 {
554         struct e1000_hw *hw =
555                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
556         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
557         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
558
559         if (rte_intr_allow_others(intr_handle) &&
560                 dev->data->dev_conf.intr_conf.lsc != 0) {
561                 E1000_WRITE_REG(hw, E1000_EIMC, 1 << IGB_MSIX_OTHER_INTR_VEC);
562         }
563
564         E1000_WRITE_REG(hw, E1000_IMC, ~0);
565         E1000_WRITE_FLUSH(hw);
566 }
567
568 static inline void
569 igbvf_intr_enable(struct rte_eth_dev *dev)
570 {
571         struct e1000_hw *hw =
572                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
573
574         /* only for mailbox */
575         E1000_WRITE_REG(hw, E1000_EIAM, 1 << E1000_VTIVAR_MISC_MAILBOX);
576         E1000_WRITE_REG(hw, E1000_EIAC, 1 << E1000_VTIVAR_MISC_MAILBOX);
577         E1000_WRITE_REG(hw, E1000_EIMS, 1 << E1000_VTIVAR_MISC_MAILBOX);
578         E1000_WRITE_FLUSH(hw);
579 }
580
581 /* only for mailbox now. If RX/TX needed, should extend this function.  */
582 static void
583 igbvf_set_ivar_map(struct e1000_hw *hw, uint8_t msix_vector)
584 {
585         uint32_t tmp = 0;
586
587         /* mailbox */
588         tmp |= (msix_vector & E1000_VTIVAR_MISC_INTR_MASK);
589         tmp |= E1000_VTIVAR_VALID;
590         E1000_WRITE_REG(hw, E1000_VTIVAR_MISC, tmp);
591 }
592
593 static void
594 eth_igbvf_configure_msix_intr(struct rte_eth_dev *dev)
595 {
596         struct e1000_hw *hw =
597                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
598
599         /* Configure VF other cause ivar */
600         igbvf_set_ivar_map(hw, E1000_VTIVAR_MISC_MAILBOX);
601 }
602
603 static inline int32_t
604 igb_pf_reset_hw(struct e1000_hw *hw)
605 {
606         uint32_t ctrl_ext;
607         int32_t status;
608
609         status = e1000_reset_hw(hw);
610
611         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
612         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
613         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
614         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
615         E1000_WRITE_FLUSH(hw);
616
617         return status;
618 }
619
620 static void
621 igb_identify_hardware(struct rte_eth_dev *dev, struct rte_pci_device *pci_dev)
622 {
623         struct e1000_hw *hw =
624                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
625
626
627         hw->vendor_id = pci_dev->id.vendor_id;
628         hw->device_id = pci_dev->id.device_id;
629         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
630         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
631
632         e1000_set_mac_type(hw);
633
634         /* need to check if it is a vf device below */
635 }
636
637 static int
638 igb_reset_swfw_lock(struct e1000_hw *hw)
639 {
640         int ret_val;
641
642         /*
643          * Do mac ops initialization manually here, since we will need
644          * some function pointers set by this call.
645          */
646         ret_val = e1000_init_mac_params(hw);
647         if (ret_val)
648                 return ret_val;
649
650         /*
651          * SMBI lock should not fail in this early stage. If this is the case,
652          * it is due to an improper exit of the application.
653          * So force the release of the faulty lock.
654          */
655         if (e1000_get_hw_semaphore_generic(hw) < 0) {
656                 PMD_DRV_LOG(DEBUG, "SMBI lock released");
657         }
658         e1000_put_hw_semaphore_generic(hw);
659
660         if (hw->mac.ops.acquire_swfw_sync != NULL) {
661                 uint16_t mask;
662
663                 /*
664                  * Phy lock should not fail in this early stage. If this is the case,
665                  * it is due to an improper exit of the application.
666                  * So force the release of the faulty lock.
667                  */
668                 mask = E1000_SWFW_PHY0_SM << hw->bus.func;
669                 if (hw->bus.func > E1000_FUNC_1)
670                         mask <<= 2;
671                 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
672                         PMD_DRV_LOG(DEBUG, "SWFW phy%d lock released",
673                                     hw->bus.func);
674                 }
675                 hw->mac.ops.release_swfw_sync(hw, mask);
676
677                 /*
678                  * This one is more tricky since it is common to all ports; but
679                  * swfw_sync retries last long enough (1s) to be almost sure that if
680                  * lock can not be taken it is due to an improper lock of the
681                  * semaphore.
682                  */
683                 mask = E1000_SWFW_EEP_SM;
684                 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
685                         PMD_DRV_LOG(DEBUG, "SWFW common locks released");
686                 }
687                 hw->mac.ops.release_swfw_sync(hw, mask);
688         }
689
690         return E1000_SUCCESS;
691 }
692
693 /* Remove all ntuple filters of the device */
694 static int igb_ntuple_filter_uninit(struct rte_eth_dev *eth_dev)
695 {
696         struct e1000_filter_info *filter_info =
697                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
698         struct e1000_5tuple_filter *p_5tuple;
699         struct e1000_2tuple_filter *p_2tuple;
700
701         while ((p_5tuple = TAILQ_FIRST(&filter_info->fivetuple_list))) {
702                 TAILQ_REMOVE(&filter_info->fivetuple_list,
703                         p_5tuple, entries);
704                         rte_free(p_5tuple);
705         }
706         filter_info->fivetuple_mask = 0;
707         while ((p_2tuple = TAILQ_FIRST(&filter_info->twotuple_list))) {
708                 TAILQ_REMOVE(&filter_info->twotuple_list,
709                         p_2tuple, entries);
710                         rte_free(p_2tuple);
711         }
712         filter_info->twotuple_mask = 0;
713
714         return 0;
715 }
716
717 /* Remove all flex filters of the device */
718 static int igb_flex_filter_uninit(struct rte_eth_dev *eth_dev)
719 {
720         struct e1000_filter_info *filter_info =
721                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
722         struct e1000_flex_filter *p_flex;
723
724         while ((p_flex = TAILQ_FIRST(&filter_info->flex_list))) {
725                 TAILQ_REMOVE(&filter_info->flex_list, p_flex, entries);
726                 rte_free(p_flex);
727         }
728         filter_info->flex_mask = 0;
729
730         return 0;
731 }
732
733 static int
734 eth_igb_dev_init(struct rte_eth_dev *eth_dev)
735 {
736         int error = 0;
737         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
738         struct e1000_hw *hw =
739                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
740         struct e1000_vfta * shadow_vfta =
741                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
742         struct e1000_filter_info *filter_info =
743                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
744         struct e1000_adapter *adapter =
745                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
746
747         uint32_t ctrl_ext;
748
749         eth_dev->dev_ops = &eth_igb_ops;
750         eth_dev->rx_queue_count = eth_igb_rx_queue_count;
751         eth_dev->rx_descriptor_done   = eth_igb_rx_descriptor_done;
752         eth_dev->rx_descriptor_status = eth_igb_rx_descriptor_status;
753         eth_dev->tx_descriptor_status = eth_igb_tx_descriptor_status;
754         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
755         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
756         eth_dev->tx_pkt_prepare = &eth_igb_prep_pkts;
757
758         /* for secondary processes, we don't initialise any further as primary
759          * has already done this work. Only check we don't need a different
760          * RX function */
761         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
762                 if (eth_dev->data->scattered_rx)
763                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
764                 return 0;
765         }
766
767         rte_eth_copy_pci_info(eth_dev, pci_dev);
768
769         hw->hw_addr= (void *)pci_dev->mem_resource[0].addr;
770
771         igb_identify_hardware(eth_dev, pci_dev);
772         if (e1000_setup_init_funcs(hw, FALSE) != E1000_SUCCESS) {
773                 error = -EIO;
774                 goto err_late;
775         }
776
777         e1000_get_bus_info(hw);
778
779         /* Reset any pending lock */
780         if (igb_reset_swfw_lock(hw) != E1000_SUCCESS) {
781                 error = -EIO;
782                 goto err_late;
783         }
784
785         /* Finish initialization */
786         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) {
787                 error = -EIO;
788                 goto err_late;
789         }
790
791         hw->mac.autoneg = 1;
792         hw->phy.autoneg_wait_to_complete = 0;
793         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
794
795         /* Copper options */
796         if (hw->phy.media_type == e1000_media_type_copper) {
797                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
798                 hw->phy.disable_polarity_correction = 0;
799                 hw->phy.ms_type = e1000_ms_hw_default;
800         }
801
802         /*
803          * Start from a known state, this is important in reading the nvm
804          * and mac from that.
805          */
806         igb_pf_reset_hw(hw);
807
808         /* Make sure we have a good EEPROM before we read from it */
809         if (e1000_validate_nvm_checksum(hw) < 0) {
810                 /*
811                  * Some PCI-E parts fail the first check due to
812                  * the link being in sleep state, call it again,
813                  * if it fails a second time its a real issue.
814                  */
815                 if (e1000_validate_nvm_checksum(hw) < 0) {
816                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
817                         error = -EIO;
818                         goto err_late;
819                 }
820         }
821
822         /* Read the permanent MAC address out of the EEPROM */
823         if (e1000_read_mac_addr(hw) != 0) {
824                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
825                 error = -EIO;
826                 goto err_late;
827         }
828
829         /* Allocate memory for storing MAC addresses */
830         eth_dev->data->mac_addrs = rte_zmalloc("e1000",
831                 RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0);
832         if (eth_dev->data->mac_addrs == NULL) {
833                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
834                                                 "store MAC addresses",
835                                 RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count);
836                 error = -ENOMEM;
837                 goto err_late;
838         }
839
840         /* Copy the permanent MAC address */
841         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
842                         &eth_dev->data->mac_addrs[0]);
843
844         /* initialize the vfta */
845         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
846
847         /* Now initialize the hardware */
848         if (igb_hardware_init(hw) != 0) {
849                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
850                 rte_free(eth_dev->data->mac_addrs);
851                 eth_dev->data->mac_addrs = NULL;
852                 error = -ENODEV;
853                 goto err_late;
854         }
855         hw->mac.get_link_status = 1;
856         adapter->stopped = 0;
857
858         /* Indicate SOL/IDER usage */
859         if (e1000_check_reset_block(hw) < 0) {
860                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to"
861                                         "SOL/IDER session");
862         }
863
864         /* initialize PF if max_vfs not zero */
865         igb_pf_host_init(eth_dev);
866
867         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
868         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
869         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
870         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
871         E1000_WRITE_FLUSH(hw);
872
873         PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
874                      eth_dev->data->port_id, pci_dev->id.vendor_id,
875                      pci_dev->id.device_id);
876
877         rte_intr_callback_register(&pci_dev->intr_handle,
878                                    eth_igb_interrupt_handler,
879                                    (void *)eth_dev);
880
881         /* enable uio/vfio intr/eventfd mapping */
882         rte_intr_enable(&pci_dev->intr_handle);
883
884         /* enable support intr */
885         igb_intr_enable(eth_dev);
886
887         eth_igb_dev_set_link_down(eth_dev);
888
889         /* initialize filter info */
890         memset(filter_info, 0,
891                sizeof(struct e1000_filter_info));
892
893         TAILQ_INIT(&filter_info->flex_list);
894         TAILQ_INIT(&filter_info->twotuple_list);
895         TAILQ_INIT(&filter_info->fivetuple_list);
896
897         TAILQ_INIT(&igb_filter_ntuple_list);
898         TAILQ_INIT(&igb_filter_ethertype_list);
899         TAILQ_INIT(&igb_filter_syn_list);
900         TAILQ_INIT(&igb_filter_flex_list);
901         TAILQ_INIT(&igb_filter_rss_list);
902         TAILQ_INIT(&igb_flow_list);
903
904         return 0;
905
906 err_late:
907         igb_hw_control_release(hw);
908
909         return error;
910 }
911
912 static int
913 eth_igb_dev_uninit(struct rte_eth_dev *eth_dev)
914 {
915         PMD_INIT_FUNC_TRACE();
916
917         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
918                 return 0;
919
920         eth_igb_close(eth_dev);
921
922         return 0;
923 }
924
925 /*
926  * Virtual Function device init
927  */
928 static int
929 eth_igbvf_dev_init(struct rte_eth_dev *eth_dev)
930 {
931         struct rte_pci_device *pci_dev;
932         struct rte_intr_handle *intr_handle;
933         struct e1000_adapter *adapter =
934                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
935         struct e1000_hw *hw =
936                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
937         int diag;
938         struct rte_ether_addr *perm_addr =
939                 (struct rte_ether_addr *)hw->mac.perm_addr;
940
941         PMD_INIT_FUNC_TRACE();
942
943         eth_dev->dev_ops = &igbvf_eth_dev_ops;
944         eth_dev->rx_descriptor_done   = eth_igb_rx_descriptor_done;
945         eth_dev->rx_descriptor_status = eth_igb_rx_descriptor_status;
946         eth_dev->tx_descriptor_status = eth_igb_tx_descriptor_status;
947         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
948         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
949         eth_dev->tx_pkt_prepare = &eth_igb_prep_pkts;
950
951         /* for secondary processes, we don't initialise any further as primary
952          * has already done this work. Only check we don't need a different
953          * RX function */
954         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
955                 if (eth_dev->data->scattered_rx)
956                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
957                 return 0;
958         }
959
960         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
961         rte_eth_copy_pci_info(eth_dev, pci_dev);
962
963         hw->device_id = pci_dev->id.device_id;
964         hw->vendor_id = pci_dev->id.vendor_id;
965         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
966         adapter->stopped = 0;
967
968         /* Initialize the shared code (base driver) */
969         diag = e1000_setup_init_funcs(hw, TRUE);
970         if (diag != 0) {
971                 PMD_INIT_LOG(ERR, "Shared code init failed for igbvf: %d",
972                         diag);
973                 return -EIO;
974         }
975
976         /* init_mailbox_params */
977         hw->mbx.ops.init_params(hw);
978
979         /* Disable the interrupts for VF */
980         igbvf_intr_disable(hw);
981
982         diag = hw->mac.ops.reset_hw(hw);
983
984         /* Allocate memory for storing MAC addresses */
985         eth_dev->data->mac_addrs = rte_zmalloc("igbvf", RTE_ETHER_ADDR_LEN *
986                 hw->mac.rar_entry_count, 0);
987         if (eth_dev->data->mac_addrs == NULL) {
988                 PMD_INIT_LOG(ERR,
989                         "Failed to allocate %d bytes needed to store MAC "
990                         "addresses",
991                         RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count);
992                 return -ENOMEM;
993         }
994
995         /* Generate a random MAC address, if none was assigned by PF. */
996         if (rte_is_zero_ether_addr(perm_addr)) {
997                 rte_eth_random_addr(perm_addr->addr_bytes);
998                 PMD_INIT_LOG(INFO, "\tVF MAC address not assigned by Host PF");
999                 PMD_INIT_LOG(INFO, "\tAssign randomly generated MAC address "
1000                              "%02x:%02x:%02x:%02x:%02x:%02x",
1001                              perm_addr->addr_bytes[0],
1002                              perm_addr->addr_bytes[1],
1003                              perm_addr->addr_bytes[2],
1004                              perm_addr->addr_bytes[3],
1005                              perm_addr->addr_bytes[4],
1006                              perm_addr->addr_bytes[5]);
1007         }
1008
1009         diag = e1000_rar_set(hw, perm_addr->addr_bytes, 0);
1010         if (diag) {
1011                 rte_free(eth_dev->data->mac_addrs);
1012                 eth_dev->data->mac_addrs = NULL;
1013                 return diag;
1014         }
1015         /* Copy the permanent MAC address */
1016         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.perm_addr,
1017                         &eth_dev->data->mac_addrs[0]);
1018
1019         PMD_INIT_LOG(DEBUG, "port %d vendorID=0x%x deviceID=0x%x "
1020                      "mac.type=%s",
1021                      eth_dev->data->port_id, pci_dev->id.vendor_id,
1022                      pci_dev->id.device_id, "igb_mac_82576_vf");
1023
1024         intr_handle = &pci_dev->intr_handle;
1025         rte_intr_callback_register(intr_handle,
1026                                    eth_igbvf_interrupt_handler, eth_dev);
1027
1028         return 0;
1029 }
1030
1031 static int
1032 eth_igbvf_dev_uninit(struct rte_eth_dev *eth_dev)
1033 {
1034         PMD_INIT_FUNC_TRACE();
1035
1036         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1037                 return 0;
1038
1039         igbvf_dev_close(eth_dev);
1040
1041         return 0;
1042 }
1043
1044 static int eth_igb_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1045         struct rte_pci_device *pci_dev)
1046 {
1047         return rte_eth_dev_pci_generic_probe(pci_dev,
1048                 sizeof(struct e1000_adapter), eth_igb_dev_init);
1049 }
1050
1051 static int eth_igb_pci_remove(struct rte_pci_device *pci_dev)
1052 {
1053         return rte_eth_dev_pci_generic_remove(pci_dev, eth_igb_dev_uninit);
1054 }
1055
1056 static struct rte_pci_driver rte_igb_pmd = {
1057         .id_table = pci_id_igb_map,
1058         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
1059         .probe = eth_igb_pci_probe,
1060         .remove = eth_igb_pci_remove,
1061 };
1062
1063
1064 static int eth_igbvf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1065         struct rte_pci_device *pci_dev)
1066 {
1067         return rte_eth_dev_pci_generic_probe(pci_dev,
1068                 sizeof(struct e1000_adapter), eth_igbvf_dev_init);
1069 }
1070
1071 static int eth_igbvf_pci_remove(struct rte_pci_device *pci_dev)
1072 {
1073         return rte_eth_dev_pci_generic_remove(pci_dev, eth_igbvf_dev_uninit);
1074 }
1075
1076 /*
1077  * virtual function driver struct
1078  */
1079 static struct rte_pci_driver rte_igbvf_pmd = {
1080         .id_table = pci_id_igbvf_map,
1081         .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
1082         .probe = eth_igbvf_pci_probe,
1083         .remove = eth_igbvf_pci_remove,
1084 };
1085
1086 static void
1087 igb_vmdq_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1088 {
1089         struct e1000_hw *hw =
1090                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1091         /* RCTL: enable VLAN filter since VMDq always use VLAN filter */
1092         uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
1093         rctl |= E1000_RCTL_VFE;
1094         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1095 }
1096
1097 static int
1098 igb_check_mq_mode(struct rte_eth_dev *dev)
1099 {
1100         enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
1101         enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
1102         uint16_t nb_rx_q = dev->data->nb_rx_queues;
1103         uint16_t nb_tx_q = dev->data->nb_tx_queues;
1104
1105         if ((rx_mq_mode & ETH_MQ_RX_DCB_FLAG) ||
1106             tx_mq_mode == ETH_MQ_TX_DCB ||
1107             tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
1108                 PMD_INIT_LOG(ERR, "DCB mode is not supported.");
1109                 return -EINVAL;
1110         }
1111         if (RTE_ETH_DEV_SRIOV(dev).active != 0) {
1112                 /* Check multi-queue mode.
1113                  * To no break software we accept ETH_MQ_RX_NONE as this might
1114                  * be used to turn off VLAN filter.
1115                  */
1116
1117                 if (rx_mq_mode == ETH_MQ_RX_NONE ||
1118                     rx_mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
1119                         dev->data->dev_conf.rxmode.mq_mode = ETH_MQ_RX_VMDQ_ONLY;
1120                         RTE_ETH_DEV_SRIOV(dev).nb_q_per_pool = 1;
1121                 } else {
1122                         /* Only support one queue on VFs.
1123                          * RSS together with SRIOV is not supported.
1124                          */
1125                         PMD_INIT_LOG(ERR, "SRIOV is active,"
1126                                         " wrong mq_mode rx %d.",
1127                                         rx_mq_mode);
1128                         return -EINVAL;
1129                 }
1130                 /* TX mode is not used here, so mode might be ignored.*/
1131                 if (tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
1132                         /* SRIOV only works in VMDq enable mode */
1133                         PMD_INIT_LOG(WARNING, "SRIOV is active,"
1134                                         " TX mode %d is not supported. "
1135                                         " Driver will behave as %d mode.",
1136                                         tx_mq_mode, ETH_MQ_TX_VMDQ_ONLY);
1137                 }
1138
1139                 /* check valid queue number */
1140                 if ((nb_rx_q > 1) || (nb_tx_q > 1)) {
1141                         PMD_INIT_LOG(ERR, "SRIOV is active,"
1142                                         " only support one queue on VFs.");
1143                         return -EINVAL;
1144                 }
1145         } else {
1146                 /* To no break software that set invalid mode, only display
1147                  * warning if invalid mode is used.
1148                  */
1149                 if (rx_mq_mode != ETH_MQ_RX_NONE &&
1150                     rx_mq_mode != ETH_MQ_RX_VMDQ_ONLY &&
1151                     rx_mq_mode != ETH_MQ_RX_RSS) {
1152                         /* RSS together with VMDq not supported*/
1153                         PMD_INIT_LOG(ERR, "RX mode %d is not supported.",
1154                                      rx_mq_mode);
1155                         return -EINVAL;
1156                 }
1157
1158                 if (tx_mq_mode != ETH_MQ_TX_NONE &&
1159                     tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
1160                         PMD_INIT_LOG(WARNING, "TX mode %d is not supported."
1161                                         " Due to txmode is meaningless in this"
1162                                         " driver, just ignore.",
1163                                         tx_mq_mode);
1164                 }
1165         }
1166         return 0;
1167 }
1168
1169 static int
1170 eth_igb_configure(struct rte_eth_dev *dev)
1171 {
1172         struct e1000_interrupt *intr =
1173                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1174         int ret;
1175
1176         PMD_INIT_FUNC_TRACE();
1177
1178         if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
1179                 dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
1180
1181         /* multipe queue mode checking */
1182         ret  = igb_check_mq_mode(dev);
1183         if (ret != 0) {
1184                 PMD_DRV_LOG(ERR, "igb_check_mq_mode fails with %d.",
1185                             ret);
1186                 return ret;
1187         }
1188
1189         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1190         PMD_INIT_FUNC_TRACE();
1191
1192         return 0;
1193 }
1194
1195 static void
1196 eth_igb_rxtx_control(struct rte_eth_dev *dev,
1197                      bool enable)
1198 {
1199         struct e1000_hw *hw =
1200                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1201         uint32_t tctl, rctl;
1202
1203         tctl = E1000_READ_REG(hw, E1000_TCTL);
1204         rctl = E1000_READ_REG(hw, E1000_RCTL);
1205
1206         if (enable) {
1207                 /* enable Tx/Rx */
1208                 tctl |= E1000_TCTL_EN;
1209                 rctl |= E1000_RCTL_EN;
1210         } else {
1211                 /* disable Tx/Rx */
1212                 tctl &= ~E1000_TCTL_EN;
1213                 rctl &= ~E1000_RCTL_EN;
1214         }
1215         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1216         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1217         E1000_WRITE_FLUSH(hw);
1218 }
1219
1220 static int
1221 eth_igb_start(struct rte_eth_dev *dev)
1222 {
1223         struct e1000_hw *hw =
1224                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1225         struct e1000_adapter *adapter =
1226                 E1000_DEV_PRIVATE(dev->data->dev_private);
1227         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1228         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1229         int ret, mask;
1230         uint32_t intr_vector = 0;
1231         uint32_t ctrl_ext;
1232         uint32_t *speeds;
1233         int num_speeds;
1234         bool autoneg;
1235
1236         PMD_INIT_FUNC_TRACE();
1237
1238         /* disable uio/vfio intr/eventfd mapping */
1239         rte_intr_disable(intr_handle);
1240
1241         /* Power up the phy. Needed to make the link go Up */
1242         eth_igb_dev_set_link_up(dev);
1243
1244         /*
1245          * Packet Buffer Allocation (PBA)
1246          * Writing PBA sets the receive portion of the buffer
1247          * the remainder is used for the transmit buffer.
1248          */
1249         if (hw->mac.type == e1000_82575) {
1250                 uint32_t pba;
1251
1252                 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1253                 E1000_WRITE_REG(hw, E1000_PBA, pba);
1254         }
1255
1256         /* Put the address into the Receive Address Array */
1257         e1000_rar_set(hw, hw->mac.addr, 0);
1258
1259         /* Initialize the hardware */
1260         if (igb_hardware_init(hw)) {
1261                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
1262                 return -EIO;
1263         }
1264         adapter->stopped = 0;
1265
1266         E1000_WRITE_REG(hw, E1000_VET,
1267                         RTE_ETHER_TYPE_VLAN << 16 | RTE_ETHER_TYPE_VLAN);
1268
1269         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1270         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
1271         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
1272         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1273         E1000_WRITE_FLUSH(hw);
1274
1275         /* configure PF module if SRIOV enabled */
1276         igb_pf_host_configure(dev);
1277
1278         /* check and configure queue intr-vector mapping */
1279         if ((rte_intr_cap_multiple(intr_handle) ||
1280              !RTE_ETH_DEV_SRIOV(dev).active) &&
1281             dev->data->dev_conf.intr_conf.rxq != 0) {
1282                 intr_vector = dev->data->nb_rx_queues;
1283                 if (rte_intr_efd_enable(intr_handle, intr_vector))
1284                         return -1;
1285         }
1286
1287         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
1288                 intr_handle->intr_vec =
1289                         rte_zmalloc("intr_vec",
1290                                     dev->data->nb_rx_queues * sizeof(int), 0);
1291                 if (intr_handle->intr_vec == NULL) {
1292                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
1293                                      " intr_vec", dev->data->nb_rx_queues);
1294                         return -ENOMEM;
1295                 }
1296         }
1297
1298         /* confiugre msix for rx interrupt */
1299         eth_igb_configure_msix_intr(dev);
1300
1301         /* Configure for OS presence */
1302         igb_init_manageability(hw);
1303
1304         eth_igb_tx_init(dev);
1305
1306         /* This can fail when allocating mbufs for descriptor rings */
1307         ret = eth_igb_rx_init(dev);
1308         if (ret) {
1309                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
1310                 igb_dev_clear_queues(dev);
1311                 return ret;
1312         }
1313
1314         e1000_clear_hw_cntrs_base_generic(hw);
1315
1316         /*
1317          * VLAN Offload Settings
1318          */
1319         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
1320                         ETH_VLAN_EXTEND_MASK;
1321         ret = eth_igb_vlan_offload_set(dev, mask);
1322         if (ret) {
1323                 PMD_INIT_LOG(ERR, "Unable to set vlan offload");
1324                 igb_dev_clear_queues(dev);
1325                 return ret;
1326         }
1327
1328         if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
1329                 /* Enable VLAN filter since VMDq always use VLAN filter */
1330                 igb_vmdq_vlan_hw_filter_enable(dev);
1331         }
1332
1333         if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) ||
1334                 (hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i210) ||
1335                 (hw->mac.type == e1000_i211)) {
1336                 /* Configure EITR with the maximum possible value (0xFFFF) */
1337                 E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF);
1338         }
1339
1340         /* Setup link speed and duplex */
1341         speeds = &dev->data->dev_conf.link_speeds;
1342         if (*speeds == ETH_LINK_SPEED_AUTONEG) {
1343                 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
1344                 hw->mac.autoneg = 1;
1345         } else {
1346                 num_speeds = 0;
1347                 autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
1348
1349                 /* Reset */
1350                 hw->phy.autoneg_advertised = 0;
1351
1352                 if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1353                                 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1354                                 ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
1355                         num_speeds = -1;
1356                         goto error_invalid_config;
1357                 }
1358                 if (*speeds & ETH_LINK_SPEED_10M_HD) {
1359                         hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
1360                         num_speeds++;
1361                 }
1362                 if (*speeds & ETH_LINK_SPEED_10M) {
1363                         hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
1364                         num_speeds++;
1365                 }
1366                 if (*speeds & ETH_LINK_SPEED_100M_HD) {
1367                         hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
1368                         num_speeds++;
1369                 }
1370                 if (*speeds & ETH_LINK_SPEED_100M) {
1371                         hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
1372                         num_speeds++;
1373                 }
1374                 if (*speeds & ETH_LINK_SPEED_1G) {
1375                         hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
1376                         num_speeds++;
1377                 }
1378                 if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
1379                         goto error_invalid_config;
1380
1381                 /* Set/reset the mac.autoneg based on the link speed,
1382                  * fixed or not
1383                  */
1384                 if (!autoneg) {
1385                         hw->mac.autoneg = 0;
1386                         hw->mac.forced_speed_duplex =
1387                                         hw->phy.autoneg_advertised;
1388                 } else {
1389                         hw->mac.autoneg = 1;
1390                 }
1391         }
1392
1393         e1000_setup_link(hw);
1394
1395         if (rte_intr_allow_others(intr_handle)) {
1396                 /* check if lsc interrupt is enabled */
1397                 if (dev->data->dev_conf.intr_conf.lsc != 0)
1398                         eth_igb_lsc_interrupt_setup(dev, TRUE);
1399                 else
1400                         eth_igb_lsc_interrupt_setup(dev, FALSE);
1401         } else {
1402                 rte_intr_callback_unregister(intr_handle,
1403                                              eth_igb_interrupt_handler,
1404                                              (void *)dev);
1405                 if (dev->data->dev_conf.intr_conf.lsc != 0)
1406                         PMD_INIT_LOG(INFO, "lsc won't enable because of"
1407                                      " no intr multiplex");
1408         }
1409
1410         /* check if rxq interrupt is enabled */
1411         if (dev->data->dev_conf.intr_conf.rxq != 0 &&
1412             rte_intr_dp_is_en(intr_handle))
1413                 eth_igb_rxq_interrupt_setup(dev);
1414
1415         /* enable uio/vfio intr/eventfd mapping */
1416         rte_intr_enable(intr_handle);
1417
1418         /* resume enabled intr since hw reset */
1419         igb_intr_enable(dev);
1420
1421         /* restore all types filter */
1422         igb_filter_restore(dev);
1423
1424         eth_igb_rxtx_control(dev, true);
1425         eth_igb_link_update(dev, 0);
1426
1427         PMD_INIT_LOG(DEBUG, "<<");
1428
1429         return 0;
1430
1431 error_invalid_config:
1432         PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
1433                      dev->data->dev_conf.link_speeds, dev->data->port_id);
1434         igb_dev_clear_queues(dev);
1435         return -EINVAL;
1436 }
1437
1438 /*********************************************************************
1439  *
1440  *  This routine disables all traffic on the adapter by issuing a
1441  *  global reset on the MAC.
1442  *
1443  **********************************************************************/
1444 static void
1445 eth_igb_stop(struct rte_eth_dev *dev)
1446 {
1447         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1448         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1449         struct rte_eth_link link;
1450         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1451         struct e1000_adapter *adapter =
1452                 E1000_DEV_PRIVATE(dev->data->dev_private);
1453
1454         if (adapter->stopped)
1455                 return;
1456
1457         eth_igb_rxtx_control(dev, false);
1458
1459         igb_intr_disable(dev);
1460
1461         /* disable intr eventfd mapping */
1462         rte_intr_disable(intr_handle);
1463
1464         igb_pf_reset_hw(hw);
1465         E1000_WRITE_REG(hw, E1000_WUC, 0);
1466
1467         /* Set bit for Go Link disconnect if PHY reset is not blocked */
1468         if (hw->mac.type >= e1000_82580 &&
1469             (e1000_check_reset_block(hw) != E1000_BLK_PHY_RESET)) {
1470                 uint32_t phpm_reg;
1471
1472                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1473                 phpm_reg |= E1000_82580_PM_GO_LINKD;
1474                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1475         }
1476
1477         /* Power down the phy. Needed to make the link go Down */
1478         eth_igb_dev_set_link_down(dev);
1479
1480         igb_dev_clear_queues(dev);
1481
1482         /* clear the recorded link status */
1483         memset(&link, 0, sizeof(link));
1484         rte_eth_linkstatus_set(dev, &link);
1485
1486         if (!rte_intr_allow_others(intr_handle))
1487                 /* resume to the default handler */
1488                 rte_intr_callback_register(intr_handle,
1489                                            eth_igb_interrupt_handler,
1490                                            (void *)dev);
1491
1492         /* Clean datapath event and queue/vec mapping */
1493         rte_intr_efd_disable(intr_handle);
1494         if (intr_handle->intr_vec != NULL) {
1495                 rte_free(intr_handle->intr_vec);
1496                 intr_handle->intr_vec = NULL;
1497         }
1498
1499         adapter->stopped = true;
1500 }
1501
1502 static int
1503 eth_igb_dev_set_link_up(struct rte_eth_dev *dev)
1504 {
1505         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1506
1507         if (hw->phy.media_type == e1000_media_type_copper)
1508                 e1000_power_up_phy(hw);
1509         else
1510                 e1000_power_up_fiber_serdes_link(hw);
1511
1512         return 0;
1513 }
1514
1515 static int
1516 eth_igb_dev_set_link_down(struct rte_eth_dev *dev)
1517 {
1518         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1519
1520         if (hw->phy.media_type == e1000_media_type_copper)
1521                 e1000_power_down_phy(hw);
1522         else
1523                 e1000_shutdown_fiber_serdes_link(hw);
1524
1525         return 0;
1526 }
1527
1528 static int
1529 eth_igb_close(struct rte_eth_dev *dev)
1530 {
1531         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1532         struct rte_eth_link link;
1533         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1534         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1535         struct e1000_filter_info *filter_info =
1536                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
1537
1538         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1539                 return 0;
1540
1541         eth_igb_stop(dev);
1542
1543         e1000_phy_hw_reset(hw);
1544         igb_release_manageability(hw);
1545         igb_hw_control_release(hw);
1546
1547         /* Clear bit for Go Link disconnect if PHY reset is not blocked */
1548         if (hw->mac.type >= e1000_82580 &&
1549             (e1000_check_reset_block(hw) != E1000_BLK_PHY_RESET)) {
1550                 uint32_t phpm_reg;
1551
1552                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1553                 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1554                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1555         }
1556
1557         igb_dev_free_queues(dev);
1558
1559         if (intr_handle->intr_vec) {
1560                 rte_free(intr_handle->intr_vec);
1561                 intr_handle->intr_vec = NULL;
1562         }
1563
1564         memset(&link, 0, sizeof(link));
1565         rte_eth_linkstatus_set(dev, &link);
1566
1567         dev->dev_ops = NULL;
1568         dev->rx_pkt_burst = NULL;
1569         dev->tx_pkt_burst = NULL;
1570
1571         /* Reset any pending lock */
1572         igb_reset_swfw_lock(hw);
1573
1574         /* uninitialize PF if max_vfs not zero */
1575         igb_pf_host_uninit(dev);
1576
1577         rte_intr_callback_unregister(intr_handle,
1578                                      eth_igb_interrupt_handler, dev);
1579
1580         /* clear the SYN filter info */
1581         filter_info->syn_info = 0;
1582
1583         /* clear the ethertype filters info */
1584         filter_info->ethertype_mask = 0;
1585         memset(filter_info->ethertype_filters, 0,
1586                 E1000_MAX_ETQF_FILTERS * sizeof(struct igb_ethertype_filter));
1587
1588         /* clear the rss filter info */
1589         memset(&filter_info->rss_info, 0,
1590                 sizeof(struct igb_rte_flow_rss_conf));
1591
1592         /* remove all ntuple filters of the device */
1593         igb_ntuple_filter_uninit(dev);
1594
1595         /* remove all flex filters of the device */
1596         igb_flex_filter_uninit(dev);
1597
1598         /* clear all the filters list */
1599         igb_filterlist_flush(dev);
1600
1601         return 0;
1602 }
1603
1604 /*
1605  * Reset PF device.
1606  */
1607 static int
1608 eth_igb_reset(struct rte_eth_dev *dev)
1609 {
1610         int ret;
1611
1612         /* When a DPDK PMD PF begin to reset PF port, it should notify all
1613          * its VF to make them align with it. The detailed notification
1614          * mechanism is PMD specific and is currently not implemented.
1615          * To avoid unexpected behavior in VF, currently reset of PF with
1616          * SR-IOV activation is not supported. It might be supported later.
1617          */
1618         if (dev->data->sriov.active)
1619                 return -ENOTSUP;
1620
1621         ret = eth_igb_dev_uninit(dev);
1622         if (ret)
1623                 return ret;
1624
1625         ret = eth_igb_dev_init(dev);
1626
1627         return ret;
1628 }
1629
1630
1631 static int
1632 igb_get_rx_buffer_size(struct e1000_hw *hw)
1633 {
1634         uint32_t rx_buf_size;
1635         if (hw->mac.type == e1000_82576) {
1636                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10;
1637         } else if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i350) {
1638                 /* PBS needs to be translated according to a lookup table */
1639                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf);
1640                 rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size);
1641                 rx_buf_size = (rx_buf_size << 10);
1642         } else if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
1643                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0x3f) << 10;
1644         } else {
1645                 rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10;
1646         }
1647
1648         return rx_buf_size;
1649 }
1650
1651 /*********************************************************************
1652  *
1653  *  Initialize the hardware
1654  *
1655  **********************************************************************/
1656 static int
1657 igb_hardware_init(struct e1000_hw *hw)
1658 {
1659         uint32_t rx_buf_size;
1660         int diag;
1661
1662         /* Let the firmware know the OS is in control */
1663         igb_hw_control_acquire(hw);
1664
1665         /*
1666          * These parameters control the automatic generation (Tx) and
1667          * response (Rx) to Ethernet PAUSE frames.
1668          * - High water mark should allow for at least two standard size (1518)
1669          *   frames to be received after sending an XOFF.
1670          * - Low water mark works best when it is very near the high water mark.
1671          *   This allows the receiver to restart by sending XON when it has
1672          *   drained a bit. Here we use an arbitrary value of 1500 which will
1673          *   restart after one full frame is pulled from the buffer. There
1674          *   could be several smaller frames in the buffer and if so they will
1675          *   not trigger the XON until their total number reduces the buffer
1676          *   by 1500.
1677          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1678          */
1679         rx_buf_size = igb_get_rx_buffer_size(hw);
1680
1681         hw->fc.high_water = rx_buf_size - (RTE_ETHER_MAX_LEN * 2);
1682         hw->fc.low_water = hw->fc.high_water - 1500;
1683         hw->fc.pause_time = IGB_FC_PAUSE_TIME;
1684         hw->fc.send_xon = 1;
1685
1686         /* Set Flow control, use the tunable location if sane */
1687         if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4))
1688                 hw->fc.requested_mode = igb_fc_setting;
1689         else
1690                 hw->fc.requested_mode = e1000_fc_none;
1691
1692         /* Issue a global reset */
1693         igb_pf_reset_hw(hw);
1694         E1000_WRITE_REG(hw, E1000_WUC, 0);
1695
1696         diag = e1000_init_hw(hw);
1697         if (diag < 0)
1698                 return diag;
1699
1700         E1000_WRITE_REG(hw, E1000_VET,
1701                         RTE_ETHER_TYPE_VLAN << 16 | RTE_ETHER_TYPE_VLAN);
1702         e1000_get_phy_info(hw);
1703         e1000_check_for_link(hw);
1704
1705         return 0;
1706 }
1707
1708 /* This function is based on igb_update_stats_counters() in igb/if_igb.c */
1709 static void
1710 igb_read_stats_registers(struct e1000_hw *hw, struct e1000_hw_stats *stats)
1711 {
1712         int pause_frames;
1713
1714         uint64_t old_gprc  = stats->gprc;
1715         uint64_t old_gptc  = stats->gptc;
1716         uint64_t old_tpr   = stats->tpr;
1717         uint64_t old_tpt   = stats->tpt;
1718         uint64_t old_rpthc = stats->rpthc;
1719         uint64_t old_hgptc = stats->hgptc;
1720
1721         if(hw->phy.media_type == e1000_media_type_copper ||
1722             (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1723                 stats->symerrs +=
1724                     E1000_READ_REG(hw,E1000_SYMERRS);
1725                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
1726         }
1727
1728         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
1729         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
1730         stats->scc += E1000_READ_REG(hw, E1000_SCC);
1731         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
1732
1733         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
1734         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
1735         stats->colc += E1000_READ_REG(hw, E1000_COLC);
1736         stats->dc += E1000_READ_REG(hw, E1000_DC);
1737         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
1738         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
1739         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
1740         /*
1741         ** For watchdog management we need to know if we have been
1742         ** paused during the last interval, so capture that here.
1743         */
1744         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
1745         stats->xoffrxc += pause_frames;
1746         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
1747         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
1748         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
1749         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
1750         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
1751         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
1752         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
1753         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
1754         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
1755         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
1756         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
1757         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
1758
1759         /* For the 64-bit byte counters the low dword must be read first. */
1760         /* Both registers clear on the read of the high dword */
1761
1762         /* Workaround CRC bytes included in size, take away 4 bytes/packet */
1763         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
1764         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
1765         stats->gorc -= (stats->gprc - old_gprc) * RTE_ETHER_CRC_LEN;
1766         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
1767         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
1768         stats->gotc -= (stats->gptc - old_gptc) * RTE_ETHER_CRC_LEN;
1769
1770         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
1771         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
1772         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
1773         stats->roc += E1000_READ_REG(hw, E1000_ROC);
1774         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
1775
1776         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
1777         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
1778
1779         stats->tor += E1000_READ_REG(hw, E1000_TORL);
1780         stats->tor += ((uint64_t)E1000_READ_REG(hw, E1000_TORH) << 32);
1781         stats->tor -= (stats->tpr - old_tpr) * RTE_ETHER_CRC_LEN;
1782         stats->tot += E1000_READ_REG(hw, E1000_TOTL);
1783         stats->tot += ((uint64_t)E1000_READ_REG(hw, E1000_TOTH) << 32);
1784         stats->tot -= (stats->tpt - old_tpt) * RTE_ETHER_CRC_LEN;
1785
1786         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
1787         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
1788         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
1789         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
1790         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
1791         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
1792         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
1793         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
1794
1795         /* Interrupt Counts */
1796
1797         stats->iac += E1000_READ_REG(hw, E1000_IAC);
1798         stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
1799         stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
1800         stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
1801         stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
1802         stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
1803         stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
1804         stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
1805         stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
1806
1807         /* Host to Card Statistics */
1808
1809         stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
1810         stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
1811         stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
1812         stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
1813         stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
1814         stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
1815         stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
1816         stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL);
1817         stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32);
1818         stats->hgorc -= (stats->rpthc - old_rpthc) * RTE_ETHER_CRC_LEN;
1819         stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL);
1820         stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32);
1821         stats->hgotc -= (stats->hgptc - old_hgptc) * RTE_ETHER_CRC_LEN;
1822         stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
1823         stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
1824         stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
1825
1826         stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
1827         stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
1828         stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
1829         stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
1830         stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
1831         stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
1832 }
1833
1834 static int
1835 eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
1836 {
1837         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1838         struct e1000_hw_stats *stats =
1839                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1840
1841         igb_read_stats_registers(hw, stats);
1842
1843         if (rte_stats == NULL)
1844                 return -EINVAL;
1845
1846         /* Rx Errors */
1847         rte_stats->imissed = stats->mpc;
1848         rte_stats->ierrors = stats->crcerrs +
1849                              stats->rlec + stats->ruc + stats->roc +
1850                              stats->rxerrc + stats->algnerrc + stats->cexterr;
1851
1852         /* Tx Errors */
1853         rte_stats->oerrors = stats->ecol + stats->latecol;
1854
1855         rte_stats->ipackets = stats->gprc;
1856         rte_stats->opackets = stats->gptc;
1857         rte_stats->ibytes   = stats->gorc;
1858         rte_stats->obytes   = stats->gotc;
1859         return 0;
1860 }
1861
1862 static int
1863 eth_igb_stats_reset(struct rte_eth_dev *dev)
1864 {
1865         struct e1000_hw_stats *hw_stats =
1866                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1867
1868         /* HW registers are cleared on read */
1869         eth_igb_stats_get(dev, NULL);
1870
1871         /* Reset software totals */
1872         memset(hw_stats, 0, sizeof(*hw_stats));
1873
1874         return 0;
1875 }
1876
1877 static int
1878 eth_igb_xstats_reset(struct rte_eth_dev *dev)
1879 {
1880         struct e1000_hw_stats *stats =
1881                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1882
1883         /* HW registers are cleared on read */
1884         eth_igb_xstats_get(dev, NULL, IGB_NB_XSTATS);
1885
1886         /* Reset software totals */
1887         memset(stats, 0, sizeof(*stats));
1888
1889         return 0;
1890 }
1891
1892 static int eth_igb_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
1893         struct rte_eth_xstat_name *xstats_names,
1894         __rte_unused unsigned int size)
1895 {
1896         unsigned i;
1897
1898         if (xstats_names == NULL)
1899                 return IGB_NB_XSTATS;
1900
1901         /* Note: limit checked in rte_eth_xstats_names() */
1902
1903         for (i = 0; i < IGB_NB_XSTATS; i++) {
1904                 strlcpy(xstats_names[i].name, rte_igb_stats_strings[i].name,
1905                         sizeof(xstats_names[i].name));
1906         }
1907
1908         return IGB_NB_XSTATS;
1909 }
1910
1911 static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev,
1912                 struct rte_eth_xstat_name *xstats_names, const uint64_t *ids,
1913                 unsigned int limit)
1914 {
1915         unsigned int i;
1916
1917         if (!ids) {
1918                 if (xstats_names == NULL)
1919                         return IGB_NB_XSTATS;
1920
1921                 for (i = 0; i < IGB_NB_XSTATS; i++)
1922                         strlcpy(xstats_names[i].name,
1923                                 rte_igb_stats_strings[i].name,
1924                                 sizeof(xstats_names[i].name));
1925
1926                 return IGB_NB_XSTATS;
1927
1928         } else {
1929                 struct rte_eth_xstat_name xstats_names_copy[IGB_NB_XSTATS];
1930
1931                 eth_igb_xstats_get_names_by_id(dev, xstats_names_copy, NULL,
1932                                 IGB_NB_XSTATS);
1933
1934                 for (i = 0; i < limit; i++) {
1935                         if (ids[i] >= IGB_NB_XSTATS) {
1936                                 PMD_INIT_LOG(ERR, "id value isn't valid");
1937                                 return -1;
1938                         }
1939                         strcpy(xstats_names[i].name,
1940                                         xstats_names_copy[ids[i]].name);
1941                 }
1942                 return limit;
1943         }
1944 }
1945
1946 static int
1947 eth_igb_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
1948                    unsigned n)
1949 {
1950         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1951         struct e1000_hw_stats *hw_stats =
1952                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1953         unsigned i;
1954
1955         if (n < IGB_NB_XSTATS)
1956                 return IGB_NB_XSTATS;
1957
1958         igb_read_stats_registers(hw, hw_stats);
1959
1960         /* If this is a reset xstats is NULL, and we have cleared the
1961          * registers by reading them.
1962          */
1963         if (!xstats)
1964                 return 0;
1965
1966         /* Extended stats */
1967         for (i = 0; i < IGB_NB_XSTATS; i++) {
1968                 xstats[i].id = i;
1969                 xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
1970                         rte_igb_stats_strings[i].offset);
1971         }
1972
1973         return IGB_NB_XSTATS;
1974 }
1975
1976 static int
1977 eth_igb_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
1978                 uint64_t *values, unsigned int n)
1979 {
1980         unsigned int i;
1981
1982         if (!ids) {
1983                 struct e1000_hw *hw =
1984                         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1985                 struct e1000_hw_stats *hw_stats =
1986                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1987
1988                 if (n < IGB_NB_XSTATS)
1989                         return IGB_NB_XSTATS;
1990
1991                 igb_read_stats_registers(hw, hw_stats);
1992
1993                 /* If this is a reset xstats is NULL, and we have cleared the
1994                  * registers by reading them.
1995                  */
1996                 if (!values)
1997                         return 0;
1998
1999                 /* Extended stats */
2000                 for (i = 0; i < IGB_NB_XSTATS; i++)
2001                         values[i] = *(uint64_t *)(((char *)hw_stats) +
2002                                         rte_igb_stats_strings[i].offset);
2003
2004                 return IGB_NB_XSTATS;
2005
2006         } else {
2007                 uint64_t values_copy[IGB_NB_XSTATS];
2008
2009                 eth_igb_xstats_get_by_id(dev, NULL, values_copy,
2010                                 IGB_NB_XSTATS);
2011
2012                 for (i = 0; i < n; i++) {
2013                         if (ids[i] >= IGB_NB_XSTATS) {
2014                                 PMD_INIT_LOG(ERR, "id value isn't valid");
2015                                 return -1;
2016                         }
2017                         values[i] = values_copy[ids[i]];
2018                 }
2019                 return n;
2020         }
2021 }
2022
2023 static void
2024 igbvf_read_stats_registers(struct e1000_hw *hw, struct e1000_vf_stats *hw_stats)
2025 {
2026         /* Good Rx packets, include VF loopback */
2027         UPDATE_VF_STAT(E1000_VFGPRC,
2028             hw_stats->last_gprc, hw_stats->gprc);
2029
2030         /* Good Rx octets, include VF loopback */
2031         UPDATE_VF_STAT(E1000_VFGORC,
2032             hw_stats->last_gorc, hw_stats->gorc);
2033
2034         /* Good Tx packets, include VF loopback */
2035         UPDATE_VF_STAT(E1000_VFGPTC,
2036             hw_stats->last_gptc, hw_stats->gptc);
2037
2038         /* Good Tx octets, include VF loopback */
2039         UPDATE_VF_STAT(E1000_VFGOTC,
2040             hw_stats->last_gotc, hw_stats->gotc);
2041
2042         /* Rx Multicst packets */
2043         UPDATE_VF_STAT(E1000_VFMPRC,
2044             hw_stats->last_mprc, hw_stats->mprc);
2045
2046         /* Good Rx loopback packets */
2047         UPDATE_VF_STAT(E1000_VFGPRLBC,
2048             hw_stats->last_gprlbc, hw_stats->gprlbc);
2049
2050         /* Good Rx loopback octets */
2051         UPDATE_VF_STAT(E1000_VFGORLBC,
2052             hw_stats->last_gorlbc, hw_stats->gorlbc);
2053
2054         /* Good Tx loopback packets */
2055         UPDATE_VF_STAT(E1000_VFGPTLBC,
2056             hw_stats->last_gptlbc, hw_stats->gptlbc);
2057
2058         /* Good Tx loopback octets */
2059         UPDATE_VF_STAT(E1000_VFGOTLBC,
2060             hw_stats->last_gotlbc, hw_stats->gotlbc);
2061 }
2062
2063 static int eth_igbvf_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
2064                                      struct rte_eth_xstat_name *xstats_names,
2065                                      __rte_unused unsigned limit)
2066 {
2067         unsigned i;
2068
2069         if (xstats_names != NULL)
2070                 for (i = 0; i < IGBVF_NB_XSTATS; i++) {
2071                         strlcpy(xstats_names[i].name,
2072                                 rte_igbvf_stats_strings[i].name,
2073                                 sizeof(xstats_names[i].name));
2074                 }
2075         return IGBVF_NB_XSTATS;
2076 }
2077
2078 static int
2079 eth_igbvf_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
2080                      unsigned n)
2081 {
2082         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2083         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
2084                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2085         unsigned i;
2086
2087         if (n < IGBVF_NB_XSTATS)
2088                 return IGBVF_NB_XSTATS;
2089
2090         igbvf_read_stats_registers(hw, hw_stats);
2091
2092         if (!xstats)
2093                 return 0;
2094
2095         for (i = 0; i < IGBVF_NB_XSTATS; i++) {
2096                 xstats[i].id = i;
2097                 xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
2098                         rte_igbvf_stats_strings[i].offset);
2099         }
2100
2101         return IGBVF_NB_XSTATS;
2102 }
2103
2104 static int
2105 eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
2106 {
2107         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2108         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
2109                           E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2110
2111         igbvf_read_stats_registers(hw, hw_stats);
2112
2113         if (rte_stats == NULL)
2114                 return -EINVAL;
2115
2116         rte_stats->ipackets = hw_stats->gprc;
2117         rte_stats->ibytes = hw_stats->gorc;
2118         rte_stats->opackets = hw_stats->gptc;
2119         rte_stats->obytes = hw_stats->gotc;
2120         return 0;
2121 }
2122
2123 static int
2124 eth_igbvf_stats_reset(struct rte_eth_dev *dev)
2125 {
2126         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
2127                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2128
2129         /* Sync HW register to the last stats */
2130         eth_igbvf_stats_get(dev, NULL);
2131
2132         /* reset HW current stats*/
2133         memset(&hw_stats->gprc, 0, sizeof(*hw_stats) -
2134                offsetof(struct e1000_vf_stats, gprc));
2135
2136         return 0;
2137 }
2138
2139 static int
2140 eth_igb_fw_version_get(struct rte_eth_dev *dev, char *fw_version,
2141                        size_t fw_size)
2142 {
2143         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2144         struct e1000_fw_version fw;
2145         int ret;
2146
2147         e1000_get_fw_version(hw, &fw);
2148
2149         switch (hw->mac.type) {
2150         case e1000_i210:
2151         case e1000_i211:
2152                 if (!(e1000_get_flash_presence_i210(hw))) {
2153                         ret = snprintf(fw_version, fw_size,
2154                                  "%2d.%2d-%d",
2155                                  fw.invm_major, fw.invm_minor,
2156                                  fw.invm_img_type);
2157                         break;
2158                 }
2159                 /* fall through */
2160         default:
2161                 /* if option rom is valid, display its version too */
2162                 if (fw.or_valid) {
2163                         ret = snprintf(fw_version, fw_size,
2164                                  "%d.%d, 0x%08x, %d.%d.%d",
2165                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2166                                  fw.or_major, fw.or_build, fw.or_patch);
2167                 /* no option rom */
2168                 } else {
2169                         if (fw.etrack_id != 0X0000) {
2170                                 ret = snprintf(fw_version, fw_size,
2171                                          "%d.%d, 0x%08x",
2172                                          fw.eep_major, fw.eep_minor,
2173                                          fw.etrack_id);
2174                         } else {
2175                                 ret = snprintf(fw_version, fw_size,
2176                                          "%d.%d.%d",
2177                                          fw.eep_major, fw.eep_minor,
2178                                          fw.eep_build);
2179                         }
2180                 }
2181                 break;
2182         }
2183
2184         ret += 1; /* add the size of '\0' */
2185         if (fw_size < (u32)ret)
2186                 return ret;
2187         else
2188                 return 0;
2189 }
2190
2191 static int
2192 eth_igb_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
2193 {
2194         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2195
2196         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
2197         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
2198         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
2199         dev_info->rx_queue_offload_capa = igb_get_rx_queue_offloads_capa(dev);
2200         dev_info->rx_offload_capa = igb_get_rx_port_offloads_capa(dev) |
2201                                     dev_info->rx_queue_offload_capa;
2202         dev_info->tx_queue_offload_capa = igb_get_tx_queue_offloads_capa(dev);
2203         dev_info->tx_offload_capa = igb_get_tx_port_offloads_capa(dev) |
2204                                     dev_info->tx_queue_offload_capa;
2205
2206         switch (hw->mac.type) {
2207         case e1000_82575:
2208                 dev_info->max_rx_queues = 4;
2209                 dev_info->max_tx_queues = 4;
2210                 dev_info->max_vmdq_pools = 0;
2211                 break;
2212
2213         case e1000_82576:
2214                 dev_info->max_rx_queues = 16;
2215                 dev_info->max_tx_queues = 16;
2216                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2217                 dev_info->vmdq_queue_num = 16;
2218                 break;
2219
2220         case e1000_82580:
2221                 dev_info->max_rx_queues = 8;
2222                 dev_info->max_tx_queues = 8;
2223                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2224                 dev_info->vmdq_queue_num = 8;
2225                 break;
2226
2227         case e1000_i350:
2228                 dev_info->max_rx_queues = 8;
2229                 dev_info->max_tx_queues = 8;
2230                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2231                 dev_info->vmdq_queue_num = 8;
2232                 break;
2233
2234         case e1000_i354:
2235                 dev_info->max_rx_queues = 8;
2236                 dev_info->max_tx_queues = 8;
2237                 break;
2238
2239         case e1000_i210:
2240                 dev_info->max_rx_queues = 4;
2241                 dev_info->max_tx_queues = 4;
2242                 dev_info->max_vmdq_pools = 0;
2243                 break;
2244
2245         case e1000_i211:
2246                 dev_info->max_rx_queues = 2;
2247                 dev_info->max_tx_queues = 2;
2248                 dev_info->max_vmdq_pools = 0;
2249                 break;
2250
2251         default:
2252                 /* Should not happen */
2253                 return -EINVAL;
2254         }
2255         dev_info->hash_key_size = IGB_HKEY_MAX_INDEX * sizeof(uint32_t);
2256         dev_info->reta_size = ETH_RSS_RETA_SIZE_128;
2257         dev_info->flow_type_rss_offloads = IGB_RSS_OFFLOAD_ALL;
2258
2259         dev_info->default_rxconf = (struct rte_eth_rxconf) {
2260                 .rx_thresh = {
2261                         .pthresh = IGB_DEFAULT_RX_PTHRESH,
2262                         .hthresh = IGB_DEFAULT_RX_HTHRESH,
2263                         .wthresh = IGB_DEFAULT_RX_WTHRESH,
2264                 },
2265                 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
2266                 .rx_drop_en = 0,
2267                 .offloads = 0,
2268         };
2269
2270         dev_info->default_txconf = (struct rte_eth_txconf) {
2271                 .tx_thresh = {
2272                         .pthresh = IGB_DEFAULT_TX_PTHRESH,
2273                         .hthresh = IGB_DEFAULT_TX_HTHRESH,
2274                         .wthresh = IGB_DEFAULT_TX_WTHRESH,
2275                 },
2276                 .offloads = 0,
2277         };
2278
2279         dev_info->rx_desc_lim = rx_desc_lim;
2280         dev_info->tx_desc_lim = tx_desc_lim;
2281
2282         dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
2283                         ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
2284                         ETH_LINK_SPEED_1G;
2285
2286         dev_info->max_mtu = dev_info->max_rx_pktlen - E1000_ETH_OVERHEAD;
2287         dev_info->min_mtu = RTE_ETHER_MIN_MTU;
2288
2289         return 0;
2290 }
2291
2292 static const uint32_t *
2293 eth_igb_supported_ptypes_get(struct rte_eth_dev *dev)
2294 {
2295         static const uint32_t ptypes[] = {
2296                 /* refers to igb_rxd_pkt_info_to_pkt_type() */
2297                 RTE_PTYPE_L2_ETHER,
2298                 RTE_PTYPE_L3_IPV4,
2299                 RTE_PTYPE_L3_IPV4_EXT,
2300                 RTE_PTYPE_L3_IPV6,
2301                 RTE_PTYPE_L3_IPV6_EXT,
2302                 RTE_PTYPE_L4_TCP,
2303                 RTE_PTYPE_L4_UDP,
2304                 RTE_PTYPE_L4_SCTP,
2305                 RTE_PTYPE_TUNNEL_IP,
2306                 RTE_PTYPE_INNER_L3_IPV6,
2307                 RTE_PTYPE_INNER_L3_IPV6_EXT,
2308                 RTE_PTYPE_INNER_L4_TCP,
2309                 RTE_PTYPE_INNER_L4_UDP,
2310                 RTE_PTYPE_UNKNOWN
2311         };
2312
2313         if (dev->rx_pkt_burst == eth_igb_recv_pkts ||
2314             dev->rx_pkt_burst == eth_igb_recv_scattered_pkts)
2315                 return ptypes;
2316         return NULL;
2317 }
2318
2319 static int
2320 eth_igbvf_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
2321 {
2322         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2323
2324         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
2325         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
2326         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
2327         dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
2328                                 DEV_TX_OFFLOAD_IPV4_CKSUM  |
2329                                 DEV_TX_OFFLOAD_UDP_CKSUM   |
2330                                 DEV_TX_OFFLOAD_TCP_CKSUM   |
2331                                 DEV_TX_OFFLOAD_SCTP_CKSUM  |
2332                                 DEV_TX_OFFLOAD_TCP_TSO;
2333         switch (hw->mac.type) {
2334         case e1000_vfadapt:
2335                 dev_info->max_rx_queues = 2;
2336                 dev_info->max_tx_queues = 2;
2337                 break;
2338         case e1000_vfadapt_i350:
2339                 dev_info->max_rx_queues = 1;
2340                 dev_info->max_tx_queues = 1;
2341                 break;
2342         default:
2343                 /* Should not happen */
2344                 return -EINVAL;
2345         }
2346
2347         dev_info->rx_queue_offload_capa = igb_get_rx_queue_offloads_capa(dev);
2348         dev_info->rx_offload_capa = igb_get_rx_port_offloads_capa(dev) |
2349                                     dev_info->rx_queue_offload_capa;
2350         dev_info->tx_queue_offload_capa = igb_get_tx_queue_offloads_capa(dev);
2351         dev_info->tx_offload_capa = igb_get_tx_port_offloads_capa(dev) |
2352                                     dev_info->tx_queue_offload_capa;
2353
2354         dev_info->default_rxconf = (struct rte_eth_rxconf) {
2355                 .rx_thresh = {
2356                         .pthresh = IGB_DEFAULT_RX_PTHRESH,
2357                         .hthresh = IGB_DEFAULT_RX_HTHRESH,
2358                         .wthresh = IGB_DEFAULT_RX_WTHRESH,
2359                 },
2360                 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
2361                 .rx_drop_en = 0,
2362                 .offloads = 0,
2363         };
2364
2365         dev_info->default_txconf = (struct rte_eth_txconf) {
2366                 .tx_thresh = {
2367                         .pthresh = IGB_DEFAULT_TX_PTHRESH,
2368                         .hthresh = IGB_DEFAULT_TX_HTHRESH,
2369                         .wthresh = IGB_DEFAULT_TX_WTHRESH,
2370                 },
2371                 .offloads = 0,
2372         };
2373
2374         dev_info->rx_desc_lim = rx_desc_lim;
2375         dev_info->tx_desc_lim = tx_desc_lim;
2376
2377         return 0;
2378 }
2379
2380 /* return 0 means link status changed, -1 means not changed */
2381 static int
2382 eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete)
2383 {
2384         struct e1000_hw *hw =
2385                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2386         struct rte_eth_link link;
2387         int link_check, count;
2388
2389         link_check = 0;
2390         hw->mac.get_link_status = 1;
2391
2392         /* possible wait-to-complete in up to 9 seconds */
2393         for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
2394                 /* Read the real link status */
2395                 switch (hw->phy.media_type) {
2396                 case e1000_media_type_copper:
2397                         /* Do the work to read phy */
2398                         e1000_check_for_link(hw);
2399                         link_check = !hw->mac.get_link_status;
2400                         break;
2401
2402                 case e1000_media_type_fiber:
2403                         e1000_check_for_link(hw);
2404                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
2405                                       E1000_STATUS_LU);
2406                         break;
2407
2408                 case e1000_media_type_internal_serdes:
2409                         e1000_check_for_link(hw);
2410                         link_check = hw->mac.serdes_has_link;
2411                         break;
2412
2413                 /* VF device is type_unknown */
2414                 case e1000_media_type_unknown:
2415                         eth_igbvf_link_update(hw);
2416                         link_check = !hw->mac.get_link_status;
2417                         break;
2418
2419                 default:
2420                         break;
2421                 }
2422                 if (link_check || wait_to_complete == 0)
2423                         break;
2424                 rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL);
2425         }
2426         memset(&link, 0, sizeof(link));
2427
2428         /* Now we check if a transition has happened */
2429         if (link_check) {
2430                 uint16_t duplex, speed;
2431                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
2432                 link.link_duplex = (duplex == FULL_DUPLEX) ?
2433                                 ETH_LINK_FULL_DUPLEX :
2434                                 ETH_LINK_HALF_DUPLEX;
2435                 link.link_speed = speed;
2436                 link.link_status = ETH_LINK_UP;
2437                 link.link_autoneg = !(dev->data->dev_conf.link_speeds &
2438                                 ETH_LINK_SPEED_FIXED);
2439         } else if (!link_check) {
2440                 link.link_speed = 0;
2441                 link.link_duplex = ETH_LINK_HALF_DUPLEX;
2442                 link.link_status = ETH_LINK_DOWN;
2443                 link.link_autoneg = ETH_LINK_FIXED;
2444         }
2445
2446         return rte_eth_linkstatus_set(dev, &link);
2447 }
2448
2449 /*
2450  * igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit.
2451  * For ASF and Pass Through versions of f/w this means
2452  * that the driver is loaded.
2453  */
2454 static void
2455 igb_hw_control_acquire(struct e1000_hw *hw)
2456 {
2457         uint32_t ctrl_ext;
2458
2459         /* Let firmware know the driver has taken over */
2460         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2461         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2462 }
2463
2464 /*
2465  * igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit.
2466  * For ASF and Pass Through versions of f/w this means that the
2467  * driver is no longer loaded.
2468  */
2469 static void
2470 igb_hw_control_release(struct e1000_hw *hw)
2471 {
2472         uint32_t ctrl_ext;
2473
2474         /* Let firmware taken over control of h/w */
2475         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2476         E1000_WRITE_REG(hw, E1000_CTRL_EXT,
2477                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2478 }
2479
2480 /*
2481  * Bit of a misnomer, what this really means is
2482  * to enable OS management of the system... aka
2483  * to disable special hardware management features.
2484  */
2485 static void
2486 igb_init_manageability(struct e1000_hw *hw)
2487 {
2488         if (e1000_enable_mng_pass_thru(hw)) {
2489                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
2490                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
2491
2492                 /* disable hardware interception of ARP */
2493                 manc &= ~(E1000_MANC_ARP_EN);
2494
2495                 /* enable receiving management packets to the host */
2496                 manc |= E1000_MANC_EN_MNG2HOST;
2497                 manc2h |= 1 << 5;  /* Mng Port 623 */
2498                 manc2h |= 1 << 6;  /* Mng Port 664 */
2499                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
2500                 E1000_WRITE_REG(hw, E1000_MANC, manc);
2501         }
2502 }
2503
2504 static void
2505 igb_release_manageability(struct e1000_hw *hw)
2506 {
2507         if (e1000_enable_mng_pass_thru(hw)) {
2508                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
2509
2510                 manc |= E1000_MANC_ARP_EN;
2511                 manc &= ~E1000_MANC_EN_MNG2HOST;
2512
2513                 E1000_WRITE_REG(hw, E1000_MANC, manc);
2514         }
2515 }
2516
2517 static int
2518 eth_igb_promiscuous_enable(struct rte_eth_dev *dev)
2519 {
2520         struct e1000_hw *hw =
2521                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2522         uint32_t rctl;
2523
2524         rctl = E1000_READ_REG(hw, E1000_RCTL);
2525         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2526         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2527
2528         return 0;
2529 }
2530
2531 static int
2532 eth_igb_promiscuous_disable(struct rte_eth_dev *dev)
2533 {
2534         struct e1000_hw *hw =
2535                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2536         uint32_t rctl;
2537
2538         rctl = E1000_READ_REG(hw, E1000_RCTL);
2539         rctl &= (~E1000_RCTL_UPE);
2540         if (dev->data->all_multicast == 1)
2541                 rctl |= E1000_RCTL_MPE;
2542         else
2543                 rctl &= (~E1000_RCTL_MPE);
2544         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2545
2546         return 0;
2547 }
2548
2549 static int
2550 eth_igb_allmulticast_enable(struct rte_eth_dev *dev)
2551 {
2552         struct e1000_hw *hw =
2553                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2554         uint32_t rctl;
2555
2556         rctl = E1000_READ_REG(hw, E1000_RCTL);
2557         rctl |= E1000_RCTL_MPE;
2558         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2559
2560         return 0;
2561 }
2562
2563 static int
2564 eth_igb_allmulticast_disable(struct rte_eth_dev *dev)
2565 {
2566         struct e1000_hw *hw =
2567                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2568         uint32_t rctl;
2569
2570         if (dev->data->promiscuous == 1)
2571                 return 0; /* must remain in all_multicast mode */
2572         rctl = E1000_READ_REG(hw, E1000_RCTL);
2573         rctl &= (~E1000_RCTL_MPE);
2574         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2575
2576         return 0;
2577 }
2578
2579 static int
2580 eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
2581 {
2582         struct e1000_hw *hw =
2583                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2584         struct e1000_vfta * shadow_vfta =
2585                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2586         uint32_t vfta;
2587         uint32_t vid_idx;
2588         uint32_t vid_bit;
2589
2590         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
2591                               E1000_VFTA_ENTRY_MASK);
2592         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
2593         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
2594         if (on)
2595                 vfta |= vid_bit;
2596         else
2597                 vfta &= ~vid_bit;
2598         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
2599
2600         /* update local VFTA copy */
2601         shadow_vfta->vfta[vid_idx] = vfta;
2602
2603         return 0;
2604 }
2605
2606 static int
2607 eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
2608                       enum rte_vlan_type vlan_type,
2609                       uint16_t tpid)
2610 {
2611         struct e1000_hw *hw =
2612                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2613         uint32_t reg, qinq;
2614
2615         qinq = E1000_READ_REG(hw, E1000_CTRL_EXT);
2616         qinq &= E1000_CTRL_EXT_EXT_VLAN;
2617
2618         /* only outer TPID of double VLAN can be configured*/
2619         if (qinq && vlan_type == ETH_VLAN_TYPE_OUTER) {
2620                 reg = E1000_READ_REG(hw, E1000_VET);
2621                 reg = (reg & (~E1000_VET_VET_EXT)) |
2622                         ((uint32_t)tpid << E1000_VET_VET_EXT_SHIFT);
2623                 E1000_WRITE_REG(hw, E1000_VET, reg);
2624
2625                 return 0;
2626         }
2627
2628         /* all other TPID values are read-only*/
2629         PMD_DRV_LOG(ERR, "Not supported");
2630
2631         return -ENOTSUP;
2632 }
2633
2634 static void
2635 igb_vlan_hw_filter_disable(struct rte_eth_dev *dev)
2636 {
2637         struct e1000_hw *hw =
2638                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2639         uint32_t reg;
2640
2641         /* Filter Table Disable */
2642         reg = E1000_READ_REG(hw, E1000_RCTL);
2643         reg &= ~E1000_RCTL_CFIEN;
2644         reg &= ~E1000_RCTL_VFE;
2645         E1000_WRITE_REG(hw, E1000_RCTL, reg);
2646 }
2647
2648 static void
2649 igb_vlan_hw_filter_enable(struct rte_eth_dev *dev)
2650 {
2651         struct e1000_hw *hw =
2652                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2653         struct e1000_vfta * shadow_vfta =
2654                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2655         uint32_t reg;
2656         int i;
2657
2658         /* Filter Table Enable, CFI not used for packet acceptance */
2659         reg = E1000_READ_REG(hw, E1000_RCTL);
2660         reg &= ~E1000_RCTL_CFIEN;
2661         reg |= E1000_RCTL_VFE;
2662         E1000_WRITE_REG(hw, E1000_RCTL, reg);
2663
2664         /* restore VFTA table */
2665         for (i = 0; i < IGB_VFTA_SIZE; i++)
2666                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
2667 }
2668
2669 static void
2670 igb_vlan_hw_strip_disable(struct rte_eth_dev *dev)
2671 {
2672         struct e1000_hw *hw =
2673                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2674         uint32_t reg;
2675
2676         /* VLAN Mode Disable */
2677         reg = E1000_READ_REG(hw, E1000_CTRL);
2678         reg &= ~E1000_CTRL_VME;
2679         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2680 }
2681
2682 static void
2683 igb_vlan_hw_strip_enable(struct rte_eth_dev *dev)
2684 {
2685         struct e1000_hw *hw =
2686                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2687         uint32_t reg;
2688
2689         /* VLAN Mode Enable */
2690         reg = E1000_READ_REG(hw, E1000_CTRL);
2691         reg |= E1000_CTRL_VME;
2692         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2693 }
2694
2695 static void
2696 igb_vlan_hw_extend_disable(struct rte_eth_dev *dev)
2697 {
2698         struct e1000_hw *hw =
2699                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2700         uint32_t reg;
2701
2702         /* CTRL_EXT: Extended VLAN */
2703         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2704         reg &= ~E1000_CTRL_EXT_EXTEND_VLAN;
2705         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2706
2707         /* Update maximum packet length */
2708         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
2709                 E1000_WRITE_REG(hw, E1000_RLPML,
2710                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2711                                                 VLAN_TAG_SIZE);
2712 }
2713
2714 static void
2715 igb_vlan_hw_extend_enable(struct rte_eth_dev *dev)
2716 {
2717         struct e1000_hw *hw =
2718                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2719         uint32_t reg;
2720
2721         /* CTRL_EXT: Extended VLAN */
2722         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2723         reg |= E1000_CTRL_EXT_EXTEND_VLAN;
2724         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2725
2726         /* Update maximum packet length */
2727         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
2728                 E1000_WRITE_REG(hw, E1000_RLPML,
2729                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2730                                                 2 * VLAN_TAG_SIZE);
2731 }
2732
2733 static int
2734 eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask)
2735 {
2736         struct rte_eth_rxmode *rxmode;
2737
2738         rxmode = &dev->data->dev_conf.rxmode;
2739         if(mask & ETH_VLAN_STRIP_MASK){
2740                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
2741                         igb_vlan_hw_strip_enable(dev);
2742                 else
2743                         igb_vlan_hw_strip_disable(dev);
2744         }
2745
2746         if(mask & ETH_VLAN_FILTER_MASK){
2747                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
2748                         igb_vlan_hw_filter_enable(dev);
2749                 else
2750                         igb_vlan_hw_filter_disable(dev);
2751         }
2752
2753         if(mask & ETH_VLAN_EXTEND_MASK){
2754                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
2755                         igb_vlan_hw_extend_enable(dev);
2756                 else
2757                         igb_vlan_hw_extend_disable(dev);
2758         }
2759
2760         return 0;
2761 }
2762
2763
2764 /**
2765  * It enables the interrupt mask and then enable the interrupt.
2766  *
2767  * @param dev
2768  *  Pointer to struct rte_eth_dev.
2769  * @param on
2770  *  Enable or Disable
2771  *
2772  * @return
2773  *  - On success, zero.
2774  *  - On failure, a negative value.
2775  */
2776 static int
2777 eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on)
2778 {
2779         struct e1000_interrupt *intr =
2780                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2781
2782         if (on)
2783                 intr->mask |= E1000_ICR_LSC;
2784         else
2785                 intr->mask &= ~E1000_ICR_LSC;
2786
2787         return 0;
2788 }
2789
2790 /* It clears the interrupt causes and enables the interrupt.
2791  * It will be called once only during nic initialized.
2792  *
2793  * @param dev
2794  *  Pointer to struct rte_eth_dev.
2795  *
2796  * @return
2797  *  - On success, zero.
2798  *  - On failure, a negative value.
2799  */
2800 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev)
2801 {
2802         uint32_t mask, regval;
2803         int ret;
2804         struct e1000_hw *hw =
2805                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2806         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2807         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2808         int misc_shift = rte_intr_allow_others(intr_handle) ? 1 : 0;
2809         struct rte_eth_dev_info dev_info;
2810
2811         memset(&dev_info, 0, sizeof(dev_info));
2812         ret = eth_igb_infos_get(dev, &dev_info);
2813         if (ret != 0)
2814                 return ret;
2815
2816         mask = (0xFFFFFFFF >> (32 - dev_info.max_rx_queues)) << misc_shift;
2817         regval = E1000_READ_REG(hw, E1000_EIMS);
2818         E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
2819
2820         return 0;
2821 }
2822
2823 /*
2824  * It reads ICR and gets interrupt causes, check it and set a bit flag
2825  * to update link status.
2826  *
2827  * @param dev
2828  *  Pointer to struct rte_eth_dev.
2829  *
2830  * @return
2831  *  - On success, zero.
2832  *  - On failure, a negative value.
2833  */
2834 static int
2835 eth_igb_interrupt_get_status(struct rte_eth_dev *dev)
2836 {
2837         uint32_t icr;
2838         struct e1000_hw *hw =
2839                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2840         struct e1000_interrupt *intr =
2841                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2842
2843         igb_intr_disable(dev);
2844
2845         /* read-on-clear nic registers here */
2846         icr = E1000_READ_REG(hw, E1000_ICR);
2847
2848         intr->flags = 0;
2849         if (icr & E1000_ICR_LSC) {
2850                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
2851         }
2852
2853         if (icr & E1000_ICR_VMMB)
2854                 intr->flags |= E1000_FLAG_MAILBOX;
2855
2856         return 0;
2857 }
2858
2859 /*
2860  * It executes link_update after knowing an interrupt is prsent.
2861  *
2862  * @param dev
2863  *  Pointer to struct rte_eth_dev.
2864  *
2865  * @return
2866  *  - On success, zero.
2867  *  - On failure, a negative value.
2868  */
2869 static int
2870 eth_igb_interrupt_action(struct rte_eth_dev *dev,
2871                          struct rte_intr_handle *intr_handle)
2872 {
2873         struct e1000_hw *hw =
2874                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2875         struct e1000_interrupt *intr =
2876                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2877         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2878         struct rte_eth_link link;
2879         int ret;
2880
2881         if (intr->flags & E1000_FLAG_MAILBOX) {
2882                 igb_pf_mbx_process(dev);
2883                 intr->flags &= ~E1000_FLAG_MAILBOX;
2884         }
2885
2886         igb_intr_enable(dev);
2887         rte_intr_ack(intr_handle);
2888
2889         if (intr->flags & E1000_FLAG_NEED_LINK_UPDATE) {
2890                 intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
2891
2892                 /* set get_link_status to check register later */
2893                 hw->mac.get_link_status = 1;
2894                 ret = eth_igb_link_update(dev, 0);
2895
2896                 /* check if link has changed */
2897                 if (ret < 0)
2898                         return 0;
2899
2900                 rte_eth_linkstatus_get(dev, &link);
2901                 if (link.link_status) {
2902                         PMD_INIT_LOG(INFO,
2903                                      " Port %d: Link Up - speed %u Mbps - %s",
2904                                      dev->data->port_id,
2905                                      (unsigned)link.link_speed,
2906                                      link.link_duplex == ETH_LINK_FULL_DUPLEX ?
2907                                      "full-duplex" : "half-duplex");
2908                 } else {
2909                         PMD_INIT_LOG(INFO, " Port %d: Link Down",
2910                                      dev->data->port_id);
2911                 }
2912
2913                 PMD_INIT_LOG(DEBUG, "PCI Address: " PCI_PRI_FMT,
2914                              pci_dev->addr.domain,
2915                              pci_dev->addr.bus,
2916                              pci_dev->addr.devid,
2917                              pci_dev->addr.function);
2918                 rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
2919         }
2920
2921         return 0;
2922 }
2923
2924 /**
2925  * Interrupt handler which shall be registered at first.
2926  *
2927  * @param handle
2928  *  Pointer to interrupt handle.
2929  * @param param
2930  *  The address of parameter (struct rte_eth_dev *) regsitered before.
2931  *
2932  * @return
2933  *  void
2934  */
2935 static void
2936 eth_igb_interrupt_handler(void *param)
2937 {
2938         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2939
2940         eth_igb_interrupt_get_status(dev);
2941         eth_igb_interrupt_action(dev, dev->intr_handle);
2942 }
2943
2944 static int
2945 eth_igbvf_interrupt_get_status(struct rte_eth_dev *dev)
2946 {
2947         uint32_t eicr;
2948         struct e1000_hw *hw =
2949                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2950         struct e1000_interrupt *intr =
2951                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2952
2953         igbvf_intr_disable(hw);
2954
2955         /* read-on-clear nic registers here */
2956         eicr = E1000_READ_REG(hw, E1000_EICR);
2957         intr->flags = 0;
2958
2959         if (eicr == E1000_VTIVAR_MISC_MAILBOX)
2960                 intr->flags |= E1000_FLAG_MAILBOX;
2961
2962         return 0;
2963 }
2964
2965 void igbvf_mbx_process(struct rte_eth_dev *dev)
2966 {
2967         struct e1000_hw *hw =
2968                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2969         struct e1000_mbx_info *mbx = &hw->mbx;
2970         u32 in_msg = 0;
2971
2972         /* peek the message first */
2973         in_msg = E1000_READ_REG(hw, E1000_VMBMEM(0));
2974
2975         /* PF reset VF event */
2976         if (in_msg == E1000_PF_CONTROL_MSG) {
2977                 /* dummy mbx read to ack pf */
2978                 if (mbx->ops.read(hw, &in_msg, 1, 0))
2979                         return;
2980                 rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
2981                                              NULL);
2982         }
2983 }
2984
2985 static int
2986 eth_igbvf_interrupt_action(struct rte_eth_dev *dev, struct rte_intr_handle *intr_handle)
2987 {
2988         struct e1000_interrupt *intr =
2989                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2990
2991         if (intr->flags & E1000_FLAG_MAILBOX) {
2992                 igbvf_mbx_process(dev);
2993                 intr->flags &= ~E1000_FLAG_MAILBOX;
2994         }
2995
2996         igbvf_intr_enable(dev);
2997         rte_intr_ack(intr_handle);
2998
2999         return 0;
3000 }
3001
3002 static void
3003 eth_igbvf_interrupt_handler(void *param)
3004 {
3005         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
3006
3007         eth_igbvf_interrupt_get_status(dev);
3008         eth_igbvf_interrupt_action(dev, dev->intr_handle);
3009 }
3010
3011 static int
3012 eth_igb_led_on(struct rte_eth_dev *dev)
3013 {
3014         struct e1000_hw *hw;
3015
3016         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3017         return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
3018 }
3019
3020 static int
3021 eth_igb_led_off(struct rte_eth_dev *dev)
3022 {
3023         struct e1000_hw *hw;
3024
3025         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3026         return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
3027 }
3028
3029 static int
3030 eth_igb_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
3031 {
3032         struct e1000_hw *hw;
3033         uint32_t ctrl;
3034         int tx_pause;
3035         int rx_pause;
3036
3037         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3038         fc_conf->pause_time = hw->fc.pause_time;
3039         fc_conf->high_water = hw->fc.high_water;
3040         fc_conf->low_water = hw->fc.low_water;
3041         fc_conf->send_xon = hw->fc.send_xon;
3042         fc_conf->autoneg = hw->mac.autoneg;
3043
3044         /*
3045          * Return rx_pause and tx_pause status according to actual setting of
3046          * the TFCE and RFCE bits in the CTRL register.
3047          */
3048         ctrl = E1000_READ_REG(hw, E1000_CTRL);
3049         if (ctrl & E1000_CTRL_TFCE)
3050                 tx_pause = 1;
3051         else
3052                 tx_pause = 0;
3053
3054         if (ctrl & E1000_CTRL_RFCE)
3055                 rx_pause = 1;
3056         else
3057                 rx_pause = 0;
3058
3059         if (rx_pause && tx_pause)
3060                 fc_conf->mode = RTE_FC_FULL;
3061         else if (rx_pause)
3062                 fc_conf->mode = RTE_FC_RX_PAUSE;
3063         else if (tx_pause)
3064                 fc_conf->mode = RTE_FC_TX_PAUSE;
3065         else
3066                 fc_conf->mode = RTE_FC_NONE;
3067
3068         return 0;
3069 }
3070
3071 static int
3072 eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
3073 {
3074         struct e1000_hw *hw;
3075         int err;
3076         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
3077                 e1000_fc_none,
3078                 e1000_fc_rx_pause,
3079                 e1000_fc_tx_pause,
3080                 e1000_fc_full
3081         };
3082         uint32_t rx_buf_size;
3083         uint32_t max_high_water;
3084         uint32_t rctl;
3085
3086         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3087         if (fc_conf->autoneg != hw->mac.autoneg)
3088                 return -ENOTSUP;
3089         rx_buf_size = igb_get_rx_buffer_size(hw);
3090         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
3091
3092         /* At least reserve one Ethernet frame for watermark */
3093         max_high_water = rx_buf_size - RTE_ETHER_MAX_LEN;
3094         if ((fc_conf->high_water > max_high_water) ||
3095             (fc_conf->high_water < fc_conf->low_water)) {
3096                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
3097                 PMD_INIT_LOG(ERR, "high water must <=  0x%x", max_high_water);
3098                 return -EINVAL;
3099         }
3100
3101         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
3102         hw->fc.pause_time     = fc_conf->pause_time;
3103         hw->fc.high_water     = fc_conf->high_water;
3104         hw->fc.low_water      = fc_conf->low_water;
3105         hw->fc.send_xon       = fc_conf->send_xon;
3106
3107         err = e1000_setup_link_generic(hw);
3108         if (err == E1000_SUCCESS) {
3109
3110                 /* check if we want to forward MAC frames - driver doesn't have native
3111                  * capability to do that, so we'll write the registers ourselves */
3112
3113                 rctl = E1000_READ_REG(hw, E1000_RCTL);
3114
3115                 /* set or clear MFLCN.PMCF bit depending on configuration */
3116                 if (fc_conf->mac_ctrl_frame_fwd != 0)
3117                         rctl |= E1000_RCTL_PMCF;
3118                 else
3119                         rctl &= ~E1000_RCTL_PMCF;
3120
3121                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3122                 E1000_WRITE_FLUSH(hw);
3123
3124                 return 0;
3125         }
3126
3127         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
3128         return -EIO;
3129 }
3130
3131 #define E1000_RAH_POOLSEL_SHIFT      (18)
3132 static int
3133 eth_igb_rar_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
3134                 uint32_t index, uint32_t pool)
3135 {
3136         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3137         uint32_t rah;
3138
3139         e1000_rar_set(hw, mac_addr->addr_bytes, index);
3140         rah = E1000_READ_REG(hw, E1000_RAH(index));
3141         rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + pool));
3142         E1000_WRITE_REG(hw, E1000_RAH(index), rah);
3143         return 0;
3144 }
3145
3146 static void
3147 eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index)
3148 {
3149         uint8_t addr[RTE_ETHER_ADDR_LEN];
3150         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3151
3152         memset(addr, 0, sizeof(addr));
3153
3154         e1000_rar_set(hw, addr, index);
3155 }
3156
3157 static int
3158 eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
3159                                 struct rte_ether_addr *addr)
3160 {
3161         eth_igb_rar_clear(dev, 0);
3162         eth_igb_rar_set(dev, (void *)addr, 0, 0);
3163
3164         return 0;
3165 }
3166 /*
3167  * Virtual Function operations
3168  */
3169 static void
3170 igbvf_intr_disable(struct e1000_hw *hw)
3171 {
3172         PMD_INIT_FUNC_TRACE();
3173
3174         /* Clear interrupt mask to stop from interrupts being generated */
3175         E1000_WRITE_REG(hw, E1000_EIMC, 0xFFFF);
3176
3177         E1000_WRITE_FLUSH(hw);
3178 }
3179
3180 static void
3181 igbvf_stop_adapter(struct rte_eth_dev *dev)
3182 {
3183         u32 reg_val;
3184         u16 i;
3185         struct rte_eth_dev_info dev_info;
3186         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3187         int ret;
3188
3189         memset(&dev_info, 0, sizeof(dev_info));
3190         ret = eth_igbvf_infos_get(dev, &dev_info);
3191         if (ret != 0)
3192                 return;
3193
3194         /* Clear interrupt mask to stop from interrupts being generated */
3195         igbvf_intr_disable(hw);
3196
3197         /* Clear any pending interrupts, flush previous writes */
3198         E1000_READ_REG(hw, E1000_EICR);
3199
3200         /* Disable the transmit unit.  Each queue must be disabled. */
3201         for (i = 0; i < dev_info.max_tx_queues; i++)
3202                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), E1000_TXDCTL_SWFLSH);
3203
3204         /* Disable the receive unit by stopping each queue */
3205         for (i = 0; i < dev_info.max_rx_queues; i++) {
3206                 reg_val = E1000_READ_REG(hw, E1000_RXDCTL(i));
3207                 reg_val &= ~E1000_RXDCTL_QUEUE_ENABLE;
3208                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), reg_val);
3209                 while (E1000_READ_REG(hw, E1000_RXDCTL(i)) & E1000_RXDCTL_QUEUE_ENABLE)
3210                         ;
3211         }
3212
3213         /* flush all queues disables */
3214         E1000_WRITE_FLUSH(hw);
3215         msec_delay(2);
3216 }
3217
3218 static int eth_igbvf_link_update(struct e1000_hw *hw)
3219 {
3220         struct e1000_mbx_info *mbx = &hw->mbx;
3221         struct e1000_mac_info *mac = &hw->mac;
3222         int ret_val = E1000_SUCCESS;
3223
3224         PMD_INIT_LOG(DEBUG, "e1000_check_for_link_vf");
3225
3226         /*
3227          * We only want to run this if there has been a rst asserted.
3228          * in this case that could mean a link change, device reset,
3229          * or a virtual function reset
3230          */
3231
3232         /* If we were hit with a reset or timeout drop the link */
3233         if (!e1000_check_for_rst(hw, 0) || !mbx->timeout)
3234                 mac->get_link_status = TRUE;
3235
3236         if (!mac->get_link_status)
3237                 goto out;
3238
3239         /* if link status is down no point in checking to see if pf is up */
3240         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
3241                 goto out;
3242
3243         /* if we passed all the tests above then the link is up and we no
3244          * longer need to check for link */
3245         mac->get_link_status = FALSE;
3246
3247 out:
3248         return ret_val;
3249 }
3250
3251
3252 static int
3253 igbvf_dev_configure(struct rte_eth_dev *dev)
3254 {
3255         struct rte_eth_conf* conf = &dev->data->dev_conf;
3256
3257         PMD_INIT_LOG(DEBUG, "Configured Virtual Function port id: %d",
3258                      dev->data->port_id);
3259
3260         if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
3261                 dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
3262
3263         /*
3264          * VF has no ability to enable/disable HW CRC
3265          * Keep the persistent behavior the same as Host PF
3266          */
3267 #ifndef RTE_LIBRTE_E1000_PF_DISABLE_STRIP_CRC
3268         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC) {
3269                 PMD_INIT_LOG(NOTICE, "VF can't disable HW CRC Strip");
3270                 conf->rxmode.offloads &= ~DEV_RX_OFFLOAD_KEEP_CRC;
3271         }
3272 #else
3273         if (!(conf->rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)) {
3274                 PMD_INIT_LOG(NOTICE, "VF can't enable HW CRC Strip");
3275                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_KEEP_CRC;
3276         }
3277 #endif
3278
3279         return 0;
3280 }
3281
3282 static int
3283 igbvf_dev_start(struct rte_eth_dev *dev)
3284 {
3285         struct e1000_hw *hw =
3286                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3287         struct e1000_adapter *adapter =
3288                 E1000_DEV_PRIVATE(dev->data->dev_private);
3289         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3290         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3291         int ret;
3292         uint32_t intr_vector = 0;
3293
3294         PMD_INIT_FUNC_TRACE();
3295
3296         hw->mac.ops.reset_hw(hw);
3297         adapter->stopped = 0;
3298
3299         /* Set all vfta */
3300         igbvf_set_vfta_all(dev,1);
3301
3302         eth_igbvf_tx_init(dev);
3303
3304         /* This can fail when allocating mbufs for descriptor rings */
3305         ret = eth_igbvf_rx_init(dev);
3306         if (ret) {
3307                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
3308                 igb_dev_clear_queues(dev);
3309                 return ret;
3310         }
3311
3312         /* check and configure queue intr-vector mapping */
3313         if (rte_intr_cap_multiple(intr_handle) &&
3314             dev->data->dev_conf.intr_conf.rxq) {
3315                 intr_vector = dev->data->nb_rx_queues;
3316                 ret = rte_intr_efd_enable(intr_handle, intr_vector);
3317                 if (ret)
3318                         return ret;
3319         }
3320
3321         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
3322                 intr_handle->intr_vec =
3323                         rte_zmalloc("intr_vec",
3324                                     dev->data->nb_rx_queues * sizeof(int), 0);
3325                 if (!intr_handle->intr_vec) {
3326                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
3327                                      " intr_vec", dev->data->nb_rx_queues);
3328                         return -ENOMEM;
3329                 }
3330         }
3331
3332         eth_igbvf_configure_msix_intr(dev);
3333
3334         /* enable uio/vfio intr/eventfd mapping */
3335         rte_intr_enable(intr_handle);
3336
3337         /* resume enabled intr since hw reset */
3338         igbvf_intr_enable(dev);
3339
3340         return 0;
3341 }
3342
3343 static void
3344 igbvf_dev_stop(struct rte_eth_dev *dev)
3345 {
3346         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3347         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3348         struct e1000_adapter *adapter =
3349                 E1000_DEV_PRIVATE(dev->data->dev_private);
3350
3351         if (adapter->stopped)
3352                 return;
3353
3354         PMD_INIT_FUNC_TRACE();
3355
3356         igbvf_stop_adapter(dev);
3357
3358         /*
3359           * Clear what we set, but we still keep shadow_vfta to
3360           * restore after device starts
3361           */
3362         igbvf_set_vfta_all(dev,0);
3363
3364         igb_dev_clear_queues(dev);
3365
3366         /* disable intr eventfd mapping */
3367         rte_intr_disable(intr_handle);
3368
3369         /* Clean datapath event and queue/vec mapping */
3370         rte_intr_efd_disable(intr_handle);
3371         if (intr_handle->intr_vec) {
3372                 rte_free(intr_handle->intr_vec);
3373                 intr_handle->intr_vec = NULL;
3374         }
3375
3376         adapter->stopped = true;
3377 }
3378
3379 static int
3380 igbvf_dev_close(struct rte_eth_dev *dev)
3381 {
3382         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3383         struct rte_ether_addr addr;
3384         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3385
3386         PMD_INIT_FUNC_TRACE();
3387
3388         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3389                 return 0;
3390
3391         e1000_reset_hw(hw);
3392
3393         igbvf_dev_stop(dev);
3394
3395         igb_dev_free_queues(dev);
3396
3397         /**
3398          * reprogram the RAR with a zero mac address,
3399          * to ensure that the VF traffic goes to the PF
3400          * after stop, close and detach of the VF.
3401          **/
3402
3403         memset(&addr, 0, sizeof(addr));
3404         igbvf_default_mac_addr_set(dev, &addr);
3405
3406         dev->dev_ops = NULL;
3407         dev->rx_pkt_burst = NULL;
3408         dev->tx_pkt_burst = NULL;
3409
3410         rte_intr_callback_unregister(&pci_dev->intr_handle,
3411                                      eth_igbvf_interrupt_handler,
3412                                      (void *)dev);
3413
3414         return 0;
3415 }
3416
3417 static int
3418 igbvf_promiscuous_enable(struct rte_eth_dev *dev)
3419 {
3420         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3421
3422         /* Set both unicast and multicast promisc */
3423         e1000_promisc_set_vf(hw, e1000_promisc_enabled);
3424
3425         return 0;
3426 }
3427
3428 static int
3429 igbvf_promiscuous_disable(struct rte_eth_dev *dev)
3430 {
3431         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3432
3433         /* If in allmulticast mode leave multicast promisc */
3434         if (dev->data->all_multicast == 1)
3435                 e1000_promisc_set_vf(hw, e1000_promisc_multicast);
3436         else
3437                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
3438
3439         return 0;
3440 }
3441
3442 static int
3443 igbvf_allmulticast_enable(struct rte_eth_dev *dev)
3444 {
3445         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3446
3447         /* In promiscuous mode multicast promisc already set */
3448         if (dev->data->promiscuous == 0)
3449                 e1000_promisc_set_vf(hw, e1000_promisc_multicast);
3450
3451         return 0;
3452 }
3453
3454 static int
3455 igbvf_allmulticast_disable(struct rte_eth_dev *dev)
3456 {
3457         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3458
3459         /* In promiscuous mode leave multicast promisc enabled */
3460         if (dev->data->promiscuous == 0)
3461                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
3462
3463         return 0;
3464 }
3465
3466 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on)
3467 {
3468         struct e1000_mbx_info *mbx = &hw->mbx;
3469         uint32_t msgbuf[2];
3470         s32 err;
3471
3472         /* After set vlan, vlan strip will also be enabled in igb driver*/
3473         msgbuf[0] = E1000_VF_SET_VLAN;
3474         msgbuf[1] = vid;
3475         /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
3476         if (on)
3477                 msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
3478
3479         err = mbx->ops.write_posted(hw, msgbuf, 2, 0);
3480         if (err)
3481                 goto mbx_err;
3482
3483         err = mbx->ops.read_posted(hw, msgbuf, 2, 0);
3484         if (err)
3485                 goto mbx_err;
3486
3487         msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
3488         if (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK))
3489                 err = -EINVAL;
3490
3491 mbx_err:
3492         return err;
3493 }
3494
3495 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on)
3496 {
3497         struct e1000_hw *hw =
3498                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3499         struct e1000_vfta * shadow_vfta =
3500                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
3501         int i = 0, j = 0, vfta = 0, mask = 1;
3502
3503         for (i = 0; i < IGB_VFTA_SIZE; i++){
3504                 vfta = shadow_vfta->vfta[i];
3505                 if(vfta){
3506                         mask = 1;
3507                         for (j = 0; j < 32; j++){
3508                                 if(vfta & mask)
3509                                         igbvf_set_vfta(hw,
3510                                                 (uint16_t)((i<<5)+j), on);
3511                                 mask<<=1;
3512                         }
3513                 }
3514         }
3515
3516 }
3517
3518 static int
3519 igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
3520 {
3521         struct e1000_hw *hw =
3522                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3523         struct e1000_vfta * shadow_vfta =
3524                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
3525         uint32_t vid_idx = 0;
3526         uint32_t vid_bit = 0;
3527         int ret = 0;
3528
3529         PMD_INIT_FUNC_TRACE();
3530
3531         /*vind is not used in VF driver, set to 0, check ixgbe_set_vfta_vf*/
3532         ret = igbvf_set_vfta(hw, vlan_id, !!on);
3533         if(ret){
3534                 PMD_INIT_LOG(ERR, "Unable to set VF vlan");
3535                 return ret;
3536         }
3537         vid_idx = (uint32_t) ((vlan_id >> 5) & 0x7F);
3538         vid_bit = (uint32_t) (1 << (vlan_id & 0x1F));
3539
3540         /*Save what we set and retore it after device reset*/
3541         if (on)
3542                 shadow_vfta->vfta[vid_idx] |= vid_bit;
3543         else
3544                 shadow_vfta->vfta[vid_idx] &= ~vid_bit;
3545
3546         return 0;
3547 }
3548
3549 static int
3550 igbvf_default_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *addr)
3551 {
3552         struct e1000_hw *hw =
3553                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3554
3555         /* index is not used by rar_set() */
3556         hw->mac.ops.rar_set(hw, (void *)addr, 0);
3557         return 0;
3558 }
3559
3560
3561 static int
3562 eth_igb_rss_reta_update(struct rte_eth_dev *dev,
3563                         struct rte_eth_rss_reta_entry64 *reta_conf,
3564                         uint16_t reta_size)
3565 {
3566         uint8_t i, j, mask;
3567         uint32_t reta, r;
3568         uint16_t idx, shift;
3569         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3570
3571         if (reta_size != ETH_RSS_RETA_SIZE_128) {
3572                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
3573                         "(%d) doesn't match the number hardware can supported "
3574                         "(%d)", reta_size, ETH_RSS_RETA_SIZE_128);
3575                 return -EINVAL;
3576         }
3577
3578         for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
3579                 idx = i / RTE_RETA_GROUP_SIZE;
3580                 shift = i % RTE_RETA_GROUP_SIZE;
3581                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
3582                                                 IGB_4_BIT_MASK);
3583                 if (!mask)
3584                         continue;
3585                 if (mask == IGB_4_BIT_MASK)
3586                         r = 0;
3587                 else
3588                         r = E1000_READ_REG(hw, E1000_RETA(i >> 2));
3589                 for (j = 0, reta = 0; j < IGB_4_BIT_WIDTH; j++) {
3590                         if (mask & (0x1 << j))
3591                                 reta |= reta_conf[idx].reta[shift + j] <<
3592                                                         (CHAR_BIT * j);
3593                         else
3594                                 reta |= r & (IGB_8_BIT_MASK << (CHAR_BIT * j));
3595                 }
3596                 E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
3597         }
3598
3599         return 0;
3600 }
3601
3602 static int
3603 eth_igb_rss_reta_query(struct rte_eth_dev *dev,
3604                        struct rte_eth_rss_reta_entry64 *reta_conf,
3605                        uint16_t reta_size)
3606 {
3607         uint8_t i, j, mask;
3608         uint32_t reta;
3609         uint16_t idx, shift;
3610         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3611
3612         if (reta_size != ETH_RSS_RETA_SIZE_128) {
3613                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
3614                         "(%d) doesn't match the number hardware can supported "
3615                         "(%d)", reta_size, ETH_RSS_RETA_SIZE_128);
3616                 return -EINVAL;
3617         }
3618
3619         for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
3620                 idx = i / RTE_RETA_GROUP_SIZE;
3621                 shift = i % RTE_RETA_GROUP_SIZE;
3622                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
3623                                                 IGB_4_BIT_MASK);
3624                 if (!mask)
3625                         continue;
3626                 reta = E1000_READ_REG(hw, E1000_RETA(i >> 2));
3627                 for (j = 0; j < IGB_4_BIT_WIDTH; j++) {
3628                         if (mask & (0x1 << j))
3629                                 reta_conf[idx].reta[shift + j] =
3630                                         ((reta >> (CHAR_BIT * j)) &
3631                                                 IGB_8_BIT_MASK);
3632                 }
3633         }
3634
3635         return 0;
3636 }
3637
3638 int
3639 eth_igb_syn_filter_set(struct rte_eth_dev *dev,
3640                         struct rte_eth_syn_filter *filter,
3641                         bool add)
3642 {
3643         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3644         struct e1000_filter_info *filter_info =
3645                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3646         uint32_t synqf, rfctl;
3647
3648         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
3649                 return -EINVAL;
3650
3651         synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
3652
3653         if (add) {
3654                 if (synqf & E1000_SYN_FILTER_ENABLE)
3655                         return -EINVAL;
3656
3657                 synqf = (uint32_t)(((filter->queue << E1000_SYN_FILTER_QUEUE_SHIFT) &
3658                         E1000_SYN_FILTER_QUEUE) | E1000_SYN_FILTER_ENABLE);
3659
3660                 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3661                 if (filter->hig_pri)
3662                         rfctl |= E1000_RFCTL_SYNQFP;
3663                 else
3664                         rfctl &= ~E1000_RFCTL_SYNQFP;
3665
3666                 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3667         } else {
3668                 if (!(synqf & E1000_SYN_FILTER_ENABLE))
3669                         return -ENOENT;
3670                 synqf = 0;
3671         }
3672
3673         filter_info->syn_info = synqf;
3674         E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
3675         E1000_WRITE_FLUSH(hw);
3676         return 0;
3677 }
3678
3679 static int
3680 eth_igb_syn_filter_get(struct rte_eth_dev *dev,
3681                         struct rte_eth_syn_filter *filter)
3682 {
3683         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3684         uint32_t synqf, rfctl;
3685
3686         synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
3687         if (synqf & E1000_SYN_FILTER_ENABLE) {
3688                 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3689                 filter->hig_pri = (rfctl & E1000_RFCTL_SYNQFP) ? 1 : 0;
3690                 filter->queue = (uint8_t)((synqf & E1000_SYN_FILTER_QUEUE) >>
3691                                 E1000_SYN_FILTER_QUEUE_SHIFT);
3692                 return 0;
3693         }
3694
3695         return -ENOENT;
3696 }
3697
3698 static int
3699 eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
3700                         enum rte_filter_op filter_op,
3701                         void *arg)
3702 {
3703         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3704         int ret;
3705
3706         MAC_TYPE_FILTER_SUP(hw->mac.type);
3707
3708         if (filter_op == RTE_ETH_FILTER_NOP)
3709                 return 0;
3710
3711         if (arg == NULL) {
3712                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
3713                             filter_op);
3714                 return -EINVAL;
3715         }
3716
3717         switch (filter_op) {
3718         case RTE_ETH_FILTER_ADD:
3719                 ret = eth_igb_syn_filter_set(dev,
3720                                 (struct rte_eth_syn_filter *)arg,
3721                                 TRUE);
3722                 break;
3723         case RTE_ETH_FILTER_DELETE:
3724                 ret = eth_igb_syn_filter_set(dev,
3725                                 (struct rte_eth_syn_filter *)arg,
3726                                 FALSE);
3727                 break;
3728         case RTE_ETH_FILTER_GET:
3729                 ret = eth_igb_syn_filter_get(dev,
3730                                 (struct rte_eth_syn_filter *)arg);
3731                 break;
3732         default:
3733                 PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op);
3734                 ret = -EINVAL;
3735                 break;
3736         }
3737
3738         return ret;
3739 }
3740
3741 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_2tuple_filter_info*/
3742 static inline int
3743 ntuple_filter_to_2tuple(struct rte_eth_ntuple_filter *filter,
3744                         struct e1000_2tuple_filter_info *filter_info)
3745 {
3746         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
3747                 return -EINVAL;
3748         if (filter->priority > E1000_2TUPLE_MAX_PRI)
3749                 return -EINVAL;  /* filter index is out of range. */
3750         if (filter->tcp_flags > RTE_NTUPLE_TCP_FLAGS_MASK)
3751                 return -EINVAL;  /* flags is invalid. */
3752
3753         switch (filter->dst_port_mask) {
3754         case UINT16_MAX:
3755                 filter_info->dst_port_mask = 0;
3756                 filter_info->dst_port = filter->dst_port;
3757                 break;
3758         case 0:
3759                 filter_info->dst_port_mask = 1;
3760                 break;
3761         default:
3762                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
3763                 return -EINVAL;
3764         }
3765
3766         switch (filter->proto_mask) {
3767         case UINT8_MAX:
3768                 filter_info->proto_mask = 0;
3769                 filter_info->proto = filter->proto;
3770                 break;
3771         case 0:
3772                 filter_info->proto_mask = 1;
3773                 break;
3774         default:
3775                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
3776                 return -EINVAL;
3777         }
3778
3779         filter_info->priority = (uint8_t)filter->priority;
3780         if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
3781                 filter_info->tcp_flags = filter->tcp_flags;
3782         else
3783                 filter_info->tcp_flags = 0;
3784
3785         return 0;
3786 }
3787
3788 static inline struct e1000_2tuple_filter *
3789 igb_2tuple_filter_lookup(struct e1000_2tuple_filter_list *filter_list,
3790                         struct e1000_2tuple_filter_info *key)
3791 {
3792         struct e1000_2tuple_filter *it;
3793
3794         TAILQ_FOREACH(it, filter_list, entries) {
3795                 if (memcmp(key, &it->filter_info,
3796                         sizeof(struct e1000_2tuple_filter_info)) == 0) {
3797                         return it;
3798                 }
3799         }
3800         return NULL;
3801 }
3802
3803 /* inject a igb 2tuple filter to HW */
3804 static inline void
3805 igb_inject_2uple_filter(struct rte_eth_dev *dev,
3806                            struct e1000_2tuple_filter *filter)
3807 {
3808         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3809         uint32_t ttqf = E1000_TTQF_DISABLE_MASK;
3810         uint32_t imir, imir_ext = E1000_IMIREXT_SIZE_BP;
3811         int i;
3812
3813         i = filter->index;
3814         imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
3815         if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
3816                 imir |= E1000_IMIR_PORT_BP;
3817         else
3818                 imir &= ~E1000_IMIR_PORT_BP;
3819
3820         imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
3821
3822         ttqf |= E1000_TTQF_QUEUE_ENABLE;
3823         ttqf |= (uint32_t)(filter->queue << E1000_TTQF_QUEUE_SHIFT);
3824         ttqf |= (uint32_t)(filter->filter_info.proto &
3825                                                 E1000_TTQF_PROTOCOL_MASK);
3826         if (filter->filter_info.proto_mask == 0)
3827                 ttqf &= ~E1000_TTQF_MASK_ENABLE;
3828
3829         /* tcp flags bits setting. */
3830         if (filter->filter_info.tcp_flags & RTE_NTUPLE_TCP_FLAGS_MASK) {
3831                 if (filter->filter_info.tcp_flags & RTE_TCP_URG_FLAG)
3832                         imir_ext |= E1000_IMIREXT_CTRL_URG;
3833                 if (filter->filter_info.tcp_flags & RTE_TCP_ACK_FLAG)
3834                         imir_ext |= E1000_IMIREXT_CTRL_ACK;
3835                 if (filter->filter_info.tcp_flags & RTE_TCP_PSH_FLAG)
3836                         imir_ext |= E1000_IMIREXT_CTRL_PSH;
3837                 if (filter->filter_info.tcp_flags & RTE_TCP_RST_FLAG)
3838                         imir_ext |= E1000_IMIREXT_CTRL_RST;
3839                 if (filter->filter_info.tcp_flags & RTE_TCP_SYN_FLAG)
3840                         imir_ext |= E1000_IMIREXT_CTRL_SYN;
3841                 if (filter->filter_info.tcp_flags & RTE_TCP_FIN_FLAG)
3842                         imir_ext |= E1000_IMIREXT_CTRL_FIN;
3843         } else {
3844                 imir_ext |= E1000_IMIREXT_CTRL_BP;
3845         }
3846         E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
3847         E1000_WRITE_REG(hw, E1000_TTQF(i), ttqf);
3848         E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
3849 }
3850
3851 /*
3852  * igb_add_2tuple_filter - add a 2tuple filter
3853  *
3854  * @param
3855  * dev: Pointer to struct rte_eth_dev.
3856  * ntuple_filter: ponter to the filter that will be added.
3857  *
3858  * @return
3859  *    - On success, zero.
3860  *    - On failure, a negative value.
3861  */
3862 static int
3863 igb_add_2tuple_filter(struct rte_eth_dev *dev,
3864                         struct rte_eth_ntuple_filter *ntuple_filter)
3865 {
3866         struct e1000_filter_info *filter_info =
3867                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3868         struct e1000_2tuple_filter *filter;
3869         int i, ret;
3870
3871         filter = rte_zmalloc("e1000_2tuple_filter",
3872                         sizeof(struct e1000_2tuple_filter), 0);
3873         if (filter == NULL)
3874                 return -ENOMEM;
3875
3876         ret = ntuple_filter_to_2tuple(ntuple_filter,
3877                                       &filter->filter_info);
3878         if (ret < 0) {
3879                 rte_free(filter);
3880                 return ret;
3881         }
3882         if (igb_2tuple_filter_lookup(&filter_info->twotuple_list,
3883                                          &filter->filter_info) != NULL) {
3884                 PMD_DRV_LOG(ERR, "filter exists.");
3885                 rte_free(filter);
3886                 return -EEXIST;
3887         }
3888         filter->queue = ntuple_filter->queue;
3889
3890         /*
3891          * look for an unused 2tuple filter index,
3892          * and insert the filter to list.
3893          */
3894         for (i = 0; i < E1000_MAX_TTQF_FILTERS; i++) {
3895                 if (!(filter_info->twotuple_mask & (1 << i))) {
3896                         filter_info->twotuple_mask |= 1 << i;
3897                         filter->index = i;
3898                         TAILQ_INSERT_TAIL(&filter_info->twotuple_list,
3899                                           filter,
3900                                           entries);
3901                         break;
3902                 }
3903         }
3904         if (i >= E1000_MAX_TTQF_FILTERS) {
3905                 PMD_DRV_LOG(ERR, "2tuple filters are full.");
3906                 rte_free(filter);
3907                 return -ENOSYS;
3908         }
3909
3910         igb_inject_2uple_filter(dev, filter);
3911         return 0;
3912 }
3913
3914 int
3915 igb_delete_2tuple_filter(struct rte_eth_dev *dev,
3916                         struct e1000_2tuple_filter *filter)
3917 {
3918         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3919         struct e1000_filter_info *filter_info =
3920                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3921
3922         filter_info->twotuple_mask &= ~(1 << filter->index);
3923         TAILQ_REMOVE(&filter_info->twotuple_list, filter, entries);
3924         rte_free(filter);
3925
3926         E1000_WRITE_REG(hw, E1000_TTQF(filter->index), E1000_TTQF_DISABLE_MASK);
3927         E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
3928         E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
3929         return 0;
3930 }
3931
3932 /*
3933  * igb_remove_2tuple_filter - remove a 2tuple filter
3934  *
3935  * @param
3936  * dev: Pointer to struct rte_eth_dev.
3937  * ntuple_filter: ponter to the filter that will be removed.
3938  *
3939  * @return
3940  *    - On success, zero.
3941  *    - On failure, a negative value.
3942  */
3943 static int
3944 igb_remove_2tuple_filter(struct rte_eth_dev *dev,
3945                         struct rte_eth_ntuple_filter *ntuple_filter)
3946 {
3947         struct e1000_filter_info *filter_info =
3948                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3949         struct e1000_2tuple_filter_info filter_2tuple;
3950         struct e1000_2tuple_filter *filter;
3951         int ret;
3952
3953         memset(&filter_2tuple, 0, sizeof(struct e1000_2tuple_filter_info));
3954         ret = ntuple_filter_to_2tuple(ntuple_filter,
3955                                       &filter_2tuple);
3956         if (ret < 0)
3957                 return ret;
3958
3959         filter = igb_2tuple_filter_lookup(&filter_info->twotuple_list,
3960                                          &filter_2tuple);
3961         if (filter == NULL) {
3962                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
3963                 return -ENOENT;
3964         }
3965
3966         igb_delete_2tuple_filter(dev, filter);
3967
3968         return 0;
3969 }
3970
3971 /* inject a igb flex filter to HW */
3972 static inline void
3973 igb_inject_flex_filter(struct rte_eth_dev *dev,
3974                            struct e1000_flex_filter *filter)
3975 {
3976         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3977         uint32_t wufc, queueing;
3978         uint32_t reg_off;
3979         uint8_t i, j = 0;
3980
3981         wufc = E1000_READ_REG(hw, E1000_WUFC);
3982         if (filter->index < E1000_MAX_FHFT)
3983                 reg_off = E1000_FHFT(filter->index);
3984         else
3985                 reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT);
3986
3987         E1000_WRITE_REG(hw, E1000_WUFC, wufc | E1000_WUFC_FLEX_HQ |
3988                         (E1000_WUFC_FLX0 << filter->index));
3989         queueing = filter->filter_info.len |
3990                 (filter->queue << E1000_FHFT_QUEUEING_QUEUE_SHIFT) |
3991                 (filter->filter_info.priority <<
3992                         E1000_FHFT_QUEUEING_PRIO_SHIFT);
3993         E1000_WRITE_REG(hw, reg_off + E1000_FHFT_QUEUEING_OFFSET,
3994                         queueing);
3995
3996         for (i = 0; i < E1000_FLEX_FILTERS_MASK_SIZE; i++) {
3997                 E1000_WRITE_REG(hw, reg_off,
3998                                 filter->filter_info.dwords[j]);
3999                 reg_off += sizeof(uint32_t);
4000                 E1000_WRITE_REG(hw, reg_off,
4001                                 filter->filter_info.dwords[++j]);
4002                 reg_off += sizeof(uint32_t);
4003                 E1000_WRITE_REG(hw, reg_off,
4004                         (uint32_t)filter->filter_info.mask[i]);
4005                 reg_off += sizeof(uint32_t) * 2;
4006                 ++j;
4007         }
4008 }
4009
4010 static inline struct e1000_flex_filter *
4011 eth_igb_flex_filter_lookup(struct e1000_flex_filter_list *filter_list,
4012                         struct e1000_flex_filter_info *key)
4013 {
4014         struct e1000_flex_filter *it;
4015
4016         TAILQ_FOREACH(it, filter_list, entries) {
4017                 if (memcmp(key, &it->filter_info,
4018                         sizeof(struct e1000_flex_filter_info)) == 0)
4019                         return it;
4020         }
4021
4022         return NULL;
4023 }
4024
4025 /* remove a flex byte filter
4026  * @param
4027  * dev: Pointer to struct rte_eth_dev.
4028  * filter: the pointer of the filter will be removed.
4029  */
4030 void
4031 igb_remove_flex_filter(struct rte_eth_dev *dev,
4032                         struct e1000_flex_filter *filter)
4033 {
4034         struct e1000_filter_info *filter_info =
4035                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4036         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4037         uint32_t wufc, i;
4038         uint32_t reg_off;
4039
4040         wufc = E1000_READ_REG(hw, E1000_WUFC);
4041         if (filter->index < E1000_MAX_FHFT)
4042                 reg_off = E1000_FHFT(filter->index);
4043         else
4044                 reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT);
4045
4046         for (i = 0; i < E1000_FHFT_SIZE_IN_DWD; i++)
4047                 E1000_WRITE_REG(hw, reg_off + i * sizeof(uint32_t), 0);
4048
4049         E1000_WRITE_REG(hw, E1000_WUFC, wufc &
4050                 (~(E1000_WUFC_FLX0 << filter->index)));
4051
4052         filter_info->flex_mask &= ~(1 << filter->index);
4053         TAILQ_REMOVE(&filter_info->flex_list, filter, entries);
4054         rte_free(filter);
4055 }
4056
4057 int
4058 eth_igb_add_del_flex_filter(struct rte_eth_dev *dev,
4059                         struct rte_eth_flex_filter *filter,
4060                         bool add)
4061 {
4062         struct e1000_filter_info *filter_info =
4063                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4064         struct e1000_flex_filter *flex_filter, *it;
4065         uint32_t mask;
4066         uint8_t shift, i;
4067
4068         flex_filter = rte_zmalloc("e1000_flex_filter",
4069                         sizeof(struct e1000_flex_filter), 0);
4070         if (flex_filter == NULL)
4071                 return -ENOMEM;
4072
4073         flex_filter->filter_info.len = filter->len;
4074         flex_filter->filter_info.priority = filter->priority;
4075         memcpy(flex_filter->filter_info.dwords, filter->bytes, filter->len);
4076         for (i = 0; i < RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT; i++) {
4077                 mask = 0;
4078                 /* reverse bits in flex filter's mask*/
4079                 for (shift = 0; shift < CHAR_BIT; shift++) {
4080                         if (filter->mask[i] & (0x01 << shift))
4081                                 mask |= (0x80 >> shift);
4082                 }
4083                 flex_filter->filter_info.mask[i] = mask;
4084         }
4085
4086         it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
4087                                 &flex_filter->filter_info);
4088         if (it == NULL && !add) {
4089                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4090                 rte_free(flex_filter);
4091                 return -ENOENT;
4092         }
4093         if (it != NULL && add) {
4094                 PMD_DRV_LOG(ERR, "filter exists.");
4095                 rte_free(flex_filter);
4096                 return -EEXIST;
4097         }
4098
4099         if (add) {
4100                 flex_filter->queue = filter->queue;
4101                 /*
4102                  * look for an unused flex filter index
4103                  * and insert the filter into the list.
4104                  */
4105                 for (i = 0; i < E1000_MAX_FLEX_FILTERS; i++) {
4106                         if (!(filter_info->flex_mask & (1 << i))) {
4107                                 filter_info->flex_mask |= 1 << i;
4108                                 flex_filter->index = i;
4109                                 TAILQ_INSERT_TAIL(&filter_info->flex_list,
4110                                         flex_filter,
4111                                         entries);
4112                                 break;
4113                         }
4114                 }
4115                 if (i >= E1000_MAX_FLEX_FILTERS) {
4116                         PMD_DRV_LOG(ERR, "flex filters are full.");
4117                         rte_free(flex_filter);
4118                         return -ENOSYS;
4119                 }
4120
4121                 igb_inject_flex_filter(dev, flex_filter);
4122
4123         } else {
4124                 igb_remove_flex_filter(dev, it);
4125                 rte_free(flex_filter);
4126         }
4127
4128         return 0;
4129 }
4130
4131 static int
4132 eth_igb_get_flex_filter(struct rte_eth_dev *dev,
4133                         struct rte_eth_flex_filter *filter)
4134 {
4135         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4136         struct e1000_filter_info *filter_info =
4137                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4138         struct e1000_flex_filter flex_filter, *it;
4139         uint32_t wufc, queueing, wufc_en = 0;
4140
4141         memset(&flex_filter, 0, sizeof(struct e1000_flex_filter));
4142         flex_filter.filter_info.len = filter->len;
4143         flex_filter.filter_info.priority = filter->priority;
4144         memcpy(flex_filter.filter_info.dwords, filter->bytes, filter->len);
4145         memcpy(flex_filter.filter_info.mask, filter->mask,
4146                         RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT);
4147
4148         it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
4149                                 &flex_filter.filter_info);
4150         if (it == NULL) {
4151                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4152                 return -ENOENT;
4153         }
4154
4155         wufc = E1000_READ_REG(hw, E1000_WUFC);
4156         wufc_en = E1000_WUFC_FLEX_HQ | (E1000_WUFC_FLX0 << it->index);
4157
4158         if ((wufc & wufc_en) == wufc_en) {
4159                 uint32_t reg_off = 0;
4160                 if (it->index < E1000_MAX_FHFT)
4161                         reg_off = E1000_FHFT(it->index);
4162                 else
4163                         reg_off = E1000_FHFT_EXT(it->index - E1000_MAX_FHFT);
4164
4165                 queueing = E1000_READ_REG(hw,
4166                                 reg_off + E1000_FHFT_QUEUEING_OFFSET);
4167                 filter->len = queueing & E1000_FHFT_QUEUEING_LEN;
4168                 filter->priority = (queueing & E1000_FHFT_QUEUEING_PRIO) >>
4169                         E1000_FHFT_QUEUEING_PRIO_SHIFT;
4170                 filter->queue = (queueing & E1000_FHFT_QUEUEING_QUEUE) >>
4171                         E1000_FHFT_QUEUEING_QUEUE_SHIFT;
4172                 return 0;
4173         }
4174         return -ENOENT;
4175 }
4176
4177 static int
4178 eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
4179                         enum rte_filter_op filter_op,
4180                         void *arg)
4181 {
4182         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4183         struct rte_eth_flex_filter *filter;
4184         int ret = 0;
4185
4186         MAC_TYPE_FILTER_SUP_EXT(hw->mac.type);
4187
4188         if (filter_op == RTE_ETH_FILTER_NOP)
4189                 return ret;
4190
4191         if (arg == NULL) {
4192                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
4193                             filter_op);
4194                 return -EINVAL;
4195         }
4196
4197         filter = (struct rte_eth_flex_filter *)arg;
4198         if (filter->len == 0 || filter->len > E1000_MAX_FLEX_FILTER_LEN
4199             || filter->len % sizeof(uint64_t) != 0) {
4200                 PMD_DRV_LOG(ERR, "filter's length is out of range");
4201                 return -EINVAL;
4202         }
4203         if (filter->priority > E1000_MAX_FLEX_FILTER_PRI) {
4204                 PMD_DRV_LOG(ERR, "filter's priority is out of range");
4205                 return -EINVAL;
4206         }
4207
4208         switch (filter_op) {
4209         case RTE_ETH_FILTER_ADD:
4210                 ret = eth_igb_add_del_flex_filter(dev, filter, TRUE);
4211                 break;
4212         case RTE_ETH_FILTER_DELETE:
4213                 ret = eth_igb_add_del_flex_filter(dev, filter, FALSE);
4214                 break;
4215         case RTE_ETH_FILTER_GET:
4216                 ret = eth_igb_get_flex_filter(dev, filter);
4217                 break;
4218         default:
4219                 PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op);
4220                 ret = -EINVAL;
4221                 break;
4222         }
4223
4224         return ret;
4225 }
4226
4227 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_5tuple_filter_info*/
4228 static inline int
4229 ntuple_filter_to_5tuple_82576(struct rte_eth_ntuple_filter *filter,
4230                         struct e1000_5tuple_filter_info *filter_info)
4231 {
4232         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM_82576)
4233                 return -EINVAL;
4234         if (filter->priority > E1000_2TUPLE_MAX_PRI)
4235                 return -EINVAL;  /* filter index is out of range. */
4236         if (filter->tcp_flags > RTE_NTUPLE_TCP_FLAGS_MASK)
4237                 return -EINVAL;  /* flags is invalid. */
4238
4239         switch (filter->dst_ip_mask) {
4240         case UINT32_MAX:
4241                 filter_info->dst_ip_mask = 0;
4242                 filter_info->dst_ip = filter->dst_ip;
4243                 break;
4244         case 0:
4245                 filter_info->dst_ip_mask = 1;
4246                 break;
4247         default:
4248                 PMD_DRV_LOG(ERR, "invalid dst_ip mask.");
4249                 return -EINVAL;
4250         }
4251
4252         switch (filter->src_ip_mask) {
4253         case UINT32_MAX:
4254                 filter_info->src_ip_mask = 0;
4255                 filter_info->src_ip = filter->src_ip;
4256                 break;
4257         case 0:
4258                 filter_info->src_ip_mask = 1;
4259                 break;
4260         default:
4261                 PMD_DRV_LOG(ERR, "invalid src_ip mask.");
4262                 return -EINVAL;
4263         }
4264
4265         switch (filter->dst_port_mask) {
4266         case UINT16_MAX:
4267                 filter_info->dst_port_mask = 0;
4268                 filter_info->dst_port = filter->dst_port;
4269                 break;
4270         case 0:
4271                 filter_info->dst_port_mask = 1;
4272                 break;
4273         default:
4274                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
4275                 return -EINVAL;
4276         }
4277
4278         switch (filter->src_port_mask) {
4279         case UINT16_MAX:
4280                 filter_info->src_port_mask = 0;
4281                 filter_info->src_port = filter->src_port;
4282                 break;
4283         case 0:
4284                 filter_info->src_port_mask = 1;
4285                 break;
4286         default:
4287                 PMD_DRV_LOG(ERR, "invalid src_port mask.");
4288                 return -EINVAL;
4289         }
4290
4291         switch (filter->proto_mask) {
4292         case UINT8_MAX:
4293                 filter_info->proto_mask = 0;
4294                 filter_info->proto = filter->proto;
4295                 break;
4296         case 0:
4297                 filter_info->proto_mask = 1;
4298                 break;
4299         default:
4300                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
4301                 return -EINVAL;
4302         }
4303
4304         filter_info->priority = (uint8_t)filter->priority;
4305         if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
4306                 filter_info->tcp_flags = filter->tcp_flags;
4307         else
4308                 filter_info->tcp_flags = 0;
4309
4310         return 0;
4311 }
4312
4313 static inline struct e1000_5tuple_filter *
4314 igb_5tuple_filter_lookup_82576(struct e1000_5tuple_filter_list *filter_list,
4315                         struct e1000_5tuple_filter_info *key)
4316 {
4317         struct e1000_5tuple_filter *it;
4318
4319         TAILQ_FOREACH(it, filter_list, entries) {
4320                 if (memcmp(key, &it->filter_info,
4321                         sizeof(struct e1000_5tuple_filter_info)) == 0) {
4322                         return it;
4323                 }
4324         }
4325         return NULL;
4326 }
4327
4328 /* inject a igb 5-tuple filter to HW */
4329 static inline void
4330 igb_inject_5tuple_filter_82576(struct rte_eth_dev *dev,
4331                            struct e1000_5tuple_filter *filter)
4332 {
4333         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4334         uint32_t ftqf = E1000_FTQF_VF_BP | E1000_FTQF_MASK;
4335         uint32_t spqf, imir, imir_ext = E1000_IMIREXT_SIZE_BP;
4336         uint8_t i;
4337
4338         i = filter->index;
4339         ftqf |= filter->filter_info.proto & E1000_FTQF_PROTOCOL_MASK;
4340         if (filter->filter_info.src_ip_mask == 0) /* 0b means compare. */
4341                 ftqf &= ~E1000_FTQF_MASK_SOURCE_ADDR_BP;
4342         if (filter->filter_info.dst_ip_mask == 0)
4343                 ftqf &= ~E1000_FTQF_MASK_DEST_ADDR_BP;
4344         if (filter->filter_info.src_port_mask == 0)
4345                 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
4346         if (filter->filter_info.proto_mask == 0)
4347                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP;
4348         ftqf |= (filter->queue << E1000_FTQF_QUEUE_SHIFT) &
4349                 E1000_FTQF_QUEUE_MASK;
4350         ftqf |= E1000_FTQF_QUEUE_ENABLE;
4351         E1000_WRITE_REG(hw, E1000_FTQF(i), ftqf);
4352         E1000_WRITE_REG(hw, E1000_DAQF(i), filter->filter_info.dst_ip);
4353         E1000_WRITE_REG(hw, E1000_SAQF(i), filter->filter_info.src_ip);
4354
4355         spqf = filter->filter_info.src_port & E1000_SPQF_SRCPORT;
4356         E1000_WRITE_REG(hw, E1000_SPQF(i), spqf);
4357
4358         imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
4359         if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
4360                 imir |= E1000_IMIR_PORT_BP;
4361         else
4362                 imir &= ~E1000_IMIR_PORT_BP;
4363         imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
4364
4365         /* tcp flags bits setting. */
4366         if (filter->filter_info.tcp_flags & RTE_NTUPLE_TCP_FLAGS_MASK) {
4367                 if (filter->filter_info.tcp_flags & RTE_TCP_URG_FLAG)
4368                         imir_ext |= E1000_IMIREXT_CTRL_URG;
4369                 if (filter->filter_info.tcp_flags & RTE_TCP_ACK_FLAG)
4370                         imir_ext |= E1000_IMIREXT_CTRL_ACK;
4371                 if (filter->filter_info.tcp_flags & RTE_TCP_PSH_FLAG)
4372                         imir_ext |= E1000_IMIREXT_CTRL_PSH;
4373                 if (filter->filter_info.tcp_flags & RTE_TCP_RST_FLAG)
4374                         imir_ext |= E1000_IMIREXT_CTRL_RST;
4375                 if (filter->filter_info.tcp_flags & RTE_TCP_SYN_FLAG)
4376                         imir_ext |= E1000_IMIREXT_CTRL_SYN;
4377                 if (filter->filter_info.tcp_flags & RTE_TCP_FIN_FLAG)
4378                         imir_ext |= E1000_IMIREXT_CTRL_FIN;
4379         } else {
4380                 imir_ext |= E1000_IMIREXT_CTRL_BP;
4381         }
4382         E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
4383         E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
4384 }
4385
4386 /*
4387  * igb_add_5tuple_filter_82576 - add a 5tuple filter
4388  *
4389  * @param
4390  * dev: Pointer to struct rte_eth_dev.
4391  * ntuple_filter: ponter to the filter that will be added.
4392  *
4393  * @return
4394  *    - On success, zero.
4395  *    - On failure, a negative value.
4396  */
4397 static int
4398 igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
4399                         struct rte_eth_ntuple_filter *ntuple_filter)
4400 {
4401         struct e1000_filter_info *filter_info =
4402                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4403         struct e1000_5tuple_filter *filter;
4404         uint8_t i;
4405         int ret;
4406
4407         filter = rte_zmalloc("e1000_5tuple_filter",
4408                         sizeof(struct e1000_5tuple_filter), 0);
4409         if (filter == NULL)
4410                 return -ENOMEM;
4411
4412         ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4413                                             &filter->filter_info);
4414         if (ret < 0) {
4415                 rte_free(filter);
4416                 return ret;
4417         }
4418
4419         if (igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
4420                                          &filter->filter_info) != NULL) {
4421                 PMD_DRV_LOG(ERR, "filter exists.");
4422                 rte_free(filter);
4423                 return -EEXIST;
4424         }
4425         filter->queue = ntuple_filter->queue;
4426
4427         /*
4428          * look for an unused 5tuple filter index,
4429          * and insert the filter to list.
4430          */
4431         for (i = 0; i < E1000_MAX_FTQF_FILTERS; i++) {
4432                 if (!(filter_info->fivetuple_mask & (1 << i))) {
4433                         filter_info->fivetuple_mask |= 1 << i;
4434                         filter->index = i;
4435                         TAILQ_INSERT_TAIL(&filter_info->fivetuple_list,
4436                                           filter,
4437                                           entries);
4438                         break;
4439                 }
4440         }
4441         if (i >= E1000_MAX_FTQF_FILTERS) {
4442                 PMD_DRV_LOG(ERR, "5tuple filters are full.");
4443                 rte_free(filter);
4444                 return -ENOSYS;
4445         }
4446
4447         igb_inject_5tuple_filter_82576(dev, filter);
4448         return 0;
4449 }
4450
4451 int
4452 igb_delete_5tuple_filter_82576(struct rte_eth_dev *dev,
4453                                 struct e1000_5tuple_filter *filter)
4454 {
4455         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4456         struct e1000_filter_info *filter_info =
4457                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4458
4459         filter_info->fivetuple_mask &= ~(1 << filter->index);
4460         TAILQ_REMOVE(&filter_info->fivetuple_list, filter, entries);
4461         rte_free(filter);
4462
4463         E1000_WRITE_REG(hw, E1000_FTQF(filter->index),
4464                         E1000_FTQF_VF_BP | E1000_FTQF_MASK);
4465         E1000_WRITE_REG(hw, E1000_DAQF(filter->index), 0);
4466         E1000_WRITE_REG(hw, E1000_SAQF(filter->index), 0);
4467         E1000_WRITE_REG(hw, E1000_SPQF(filter->index), 0);
4468         E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
4469         E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
4470         return 0;
4471 }
4472
4473 /*
4474  * igb_remove_5tuple_filter_82576 - remove a 5tuple filter
4475  *
4476  * @param
4477  * dev: Pointer to struct rte_eth_dev.
4478  * ntuple_filter: ponter to the filter that will be removed.
4479  *
4480  * @return
4481  *    - On success, zero.
4482  *    - On failure, a negative value.
4483  */
4484 static int
4485 igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
4486                                 struct rte_eth_ntuple_filter *ntuple_filter)
4487 {
4488         struct e1000_filter_info *filter_info =
4489                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4490         struct e1000_5tuple_filter_info filter_5tuple;
4491         struct e1000_5tuple_filter *filter;
4492         int ret;
4493
4494         memset(&filter_5tuple, 0, sizeof(struct e1000_5tuple_filter_info));
4495         ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4496                                             &filter_5tuple);
4497         if (ret < 0)
4498                 return ret;
4499
4500         filter = igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
4501                                          &filter_5tuple);
4502         if (filter == NULL) {
4503                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4504                 return -ENOENT;
4505         }
4506
4507         igb_delete_5tuple_filter_82576(dev, filter);
4508
4509         return 0;
4510 }
4511
4512 static int
4513 eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
4514 {
4515         uint32_t rctl;
4516         struct e1000_hw *hw;
4517         struct rte_eth_dev_info dev_info;
4518         uint32_t frame_size = mtu + E1000_ETH_OVERHEAD;
4519         int ret;
4520
4521         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4522
4523 #ifdef RTE_LIBRTE_82571_SUPPORT
4524         /* XXX: not bigger than max_rx_pktlen */
4525         if (hw->mac.type == e1000_82571)
4526                 return -ENOTSUP;
4527 #endif
4528         ret = eth_igb_infos_get(dev, &dev_info);
4529         if (ret != 0)
4530                 return ret;
4531
4532         /* check that mtu is within the allowed range */
4533         if (mtu < RTE_ETHER_MIN_MTU ||
4534                         frame_size > dev_info.max_rx_pktlen)
4535                 return -EINVAL;
4536
4537         /* refuse mtu that requires the support of scattered packets when this
4538          * feature has not been enabled before. */
4539         if (!dev->data->scattered_rx &&
4540             frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
4541                 return -EINVAL;
4542
4543         rctl = E1000_READ_REG(hw, E1000_RCTL);
4544
4545         /* switch to jumbo mode if needed */
4546         if (frame_size > RTE_ETHER_MAX_LEN) {
4547                 dev->data->dev_conf.rxmode.offloads |=
4548                         DEV_RX_OFFLOAD_JUMBO_FRAME;
4549                 rctl |= E1000_RCTL_LPE;
4550         } else {
4551                 dev->data->dev_conf.rxmode.offloads &=
4552                         ~DEV_RX_OFFLOAD_JUMBO_FRAME;
4553                 rctl &= ~E1000_RCTL_LPE;
4554         }
4555         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
4556
4557         /* update max frame size */
4558         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
4559
4560         E1000_WRITE_REG(hw, E1000_RLPML,
4561                         dev->data->dev_conf.rxmode.max_rx_pkt_len);
4562
4563         return 0;
4564 }
4565
4566 /*
4567  * igb_add_del_ntuple_filter - add or delete a ntuple filter
4568  *
4569  * @param
4570  * dev: Pointer to struct rte_eth_dev.
4571  * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
4572  * add: if true, add filter, if false, remove filter
4573  *
4574  * @return
4575  *    - On success, zero.
4576  *    - On failure, a negative value.
4577  */
4578 int
4579 igb_add_del_ntuple_filter(struct rte_eth_dev *dev,
4580                         struct rte_eth_ntuple_filter *ntuple_filter,
4581                         bool add)
4582 {
4583         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4584         int ret;
4585
4586         switch (ntuple_filter->flags) {
4587         case RTE_5TUPLE_FLAGS:
4588         case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4589                 if (hw->mac.type != e1000_82576)
4590                         return -ENOTSUP;
4591                 if (add)
4592                         ret = igb_add_5tuple_filter_82576(dev,
4593                                                           ntuple_filter);
4594                 else
4595                         ret = igb_remove_5tuple_filter_82576(dev,
4596                                                              ntuple_filter);
4597                 break;
4598         case RTE_2TUPLE_FLAGS:
4599         case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4600                 if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350 &&
4601                         hw->mac.type != e1000_i210 &&
4602                         hw->mac.type != e1000_i211)
4603                         return -ENOTSUP;
4604                 if (add)
4605                         ret = igb_add_2tuple_filter(dev, ntuple_filter);
4606                 else
4607                         ret = igb_remove_2tuple_filter(dev, ntuple_filter);
4608                 break;
4609         default:
4610                 ret = -EINVAL;
4611                 break;
4612         }
4613
4614         return ret;
4615 }
4616
4617 /*
4618  * igb_get_ntuple_filter - get a ntuple filter
4619  *
4620  * @param
4621  * dev: Pointer to struct rte_eth_dev.
4622  * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
4623  *
4624  * @return
4625  *    - On success, zero.
4626  *    - On failure, a negative value.
4627  */
4628 static int
4629 igb_get_ntuple_filter(struct rte_eth_dev *dev,
4630                         struct rte_eth_ntuple_filter *ntuple_filter)
4631 {
4632         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4633         struct e1000_filter_info *filter_info =
4634                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4635         struct e1000_5tuple_filter_info filter_5tuple;
4636         struct e1000_2tuple_filter_info filter_2tuple;
4637         struct e1000_5tuple_filter *p_5tuple_filter;
4638         struct e1000_2tuple_filter *p_2tuple_filter;
4639         int ret;
4640
4641         switch (ntuple_filter->flags) {
4642         case RTE_5TUPLE_FLAGS:
4643         case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4644                 if (hw->mac.type != e1000_82576)
4645                         return -ENOTSUP;
4646                 memset(&filter_5tuple,
4647                         0,
4648                         sizeof(struct e1000_5tuple_filter_info));
4649                 ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4650                                                     &filter_5tuple);
4651                 if (ret < 0)
4652                         return ret;
4653                 p_5tuple_filter = igb_5tuple_filter_lookup_82576(
4654                                         &filter_info->fivetuple_list,
4655                                         &filter_5tuple);
4656                 if (p_5tuple_filter == NULL) {
4657                         PMD_DRV_LOG(ERR, "filter doesn't exist.");
4658                         return -ENOENT;
4659                 }
4660                 ntuple_filter->queue = p_5tuple_filter->queue;
4661                 break;
4662         case RTE_2TUPLE_FLAGS:
4663         case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4664                 if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350)
4665                         return -ENOTSUP;
4666                 memset(&filter_2tuple,
4667                         0,
4668                         sizeof(struct e1000_2tuple_filter_info));
4669                 ret = ntuple_filter_to_2tuple(ntuple_filter, &filter_2tuple);
4670                 if (ret < 0)
4671                         return ret;
4672                 p_2tuple_filter = igb_2tuple_filter_lookup(
4673                                         &filter_info->twotuple_list,
4674                                         &filter_2tuple);
4675                 if (p_2tuple_filter == NULL) {
4676                         PMD_DRV_LOG(ERR, "filter doesn't exist.");
4677                         return -ENOENT;
4678                 }
4679                 ntuple_filter->queue = p_2tuple_filter->queue;
4680                 break;
4681         default:
4682                 ret = -EINVAL;
4683                 break;
4684         }
4685
4686         return 0;
4687 }
4688
4689 /*
4690  * igb_ntuple_filter_handle - Handle operations for ntuple filter.
4691  * @dev: pointer to rte_eth_dev structure
4692  * @filter_op:operation will be taken.
4693  * @arg: a pointer to specific structure corresponding to the filter_op
4694  */
4695 static int
4696 igb_ntuple_filter_handle(struct rte_eth_dev *dev,
4697                                 enum rte_filter_op filter_op,
4698                                 void *arg)
4699 {
4700         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4701         int ret;
4702
4703         MAC_TYPE_FILTER_SUP(hw->mac.type);
4704
4705         if (filter_op == RTE_ETH_FILTER_NOP)
4706                 return 0;
4707
4708         if (arg == NULL) {
4709                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
4710                             filter_op);
4711                 return -EINVAL;
4712         }
4713
4714         switch (filter_op) {
4715         case RTE_ETH_FILTER_ADD:
4716                 ret = igb_add_del_ntuple_filter(dev,
4717                         (struct rte_eth_ntuple_filter *)arg,
4718                         TRUE);
4719                 break;
4720         case RTE_ETH_FILTER_DELETE:
4721                 ret = igb_add_del_ntuple_filter(dev,
4722                         (struct rte_eth_ntuple_filter *)arg,
4723                         FALSE);
4724                 break;
4725         case RTE_ETH_FILTER_GET:
4726                 ret = igb_get_ntuple_filter(dev,
4727                         (struct rte_eth_ntuple_filter *)arg);
4728                 break;
4729         default:
4730                 PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
4731                 ret = -EINVAL;
4732                 break;
4733         }
4734         return ret;
4735 }
4736
4737 static inline int
4738 igb_ethertype_filter_lookup(struct e1000_filter_info *filter_info,
4739                         uint16_t ethertype)
4740 {
4741         int i;
4742
4743         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
4744                 if (filter_info->ethertype_filters[i].ethertype == ethertype &&
4745                     (filter_info->ethertype_mask & (1 << i)))
4746                         return i;
4747         }
4748         return -1;
4749 }
4750
4751 static inline int
4752 igb_ethertype_filter_insert(struct e1000_filter_info *filter_info,
4753                         uint16_t ethertype, uint32_t etqf)
4754 {
4755         int i;
4756
4757         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
4758                 if (!(filter_info->ethertype_mask & (1 << i))) {
4759                         filter_info->ethertype_mask |= 1 << i;
4760                         filter_info->ethertype_filters[i].ethertype = ethertype;
4761                         filter_info->ethertype_filters[i].etqf = etqf;
4762                         return i;
4763                 }
4764         }
4765         return -1;
4766 }
4767
4768 int
4769 igb_ethertype_filter_remove(struct e1000_filter_info *filter_info,
4770                         uint8_t idx)
4771 {
4772         if (idx >= E1000_MAX_ETQF_FILTERS)
4773                 return -1;
4774         filter_info->ethertype_mask &= ~(1 << idx);
4775         filter_info->ethertype_filters[idx].ethertype = 0;
4776         filter_info->ethertype_filters[idx].etqf = 0;
4777         return idx;
4778 }
4779
4780
4781 int
4782 igb_add_del_ethertype_filter(struct rte_eth_dev *dev,
4783                         struct rte_eth_ethertype_filter *filter,
4784                         bool add)
4785 {
4786         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4787         struct e1000_filter_info *filter_info =
4788                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4789         uint32_t etqf = 0;
4790         int ret;
4791
4792         if (filter->ether_type == RTE_ETHER_TYPE_IPV4 ||
4793                 filter->ether_type == RTE_ETHER_TYPE_IPV6) {
4794                 PMD_DRV_LOG(ERR, "unsupported ether_type(0x%04x) in"
4795                         " ethertype filter.", filter->ether_type);
4796                 return -EINVAL;
4797         }
4798
4799         if (filter->flags & RTE_ETHTYPE_FLAGS_MAC) {
4800                 PMD_DRV_LOG(ERR, "mac compare is unsupported.");
4801                 return -EINVAL;
4802         }
4803         if (filter->flags & RTE_ETHTYPE_FLAGS_DROP) {
4804                 PMD_DRV_LOG(ERR, "drop option is unsupported.");
4805                 return -EINVAL;
4806         }
4807
4808         ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
4809         if (ret >= 0 && add) {
4810                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter exists.",
4811                             filter->ether_type);
4812                 return -EEXIST;
4813         }
4814         if (ret < 0 && !add) {
4815                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
4816                             filter->ether_type);
4817                 return -ENOENT;
4818         }
4819
4820         if (add) {
4821                 etqf |= E1000_ETQF_FILTER_ENABLE | E1000_ETQF_QUEUE_ENABLE;
4822                 etqf |= (uint32_t)(filter->ether_type & E1000_ETQF_ETHERTYPE);
4823                 etqf |= filter->queue << E1000_ETQF_QUEUE_SHIFT;
4824                 ret = igb_ethertype_filter_insert(filter_info,
4825                                 filter->ether_type, etqf);
4826                 if (ret < 0) {
4827                         PMD_DRV_LOG(ERR, "ethertype filters are full.");
4828                         return -ENOSYS;
4829                 }
4830         } else {
4831                 ret = igb_ethertype_filter_remove(filter_info, (uint8_t)ret);
4832                 if (ret < 0)
4833                         return -ENOSYS;
4834         }
4835         E1000_WRITE_REG(hw, E1000_ETQF(ret), etqf);
4836         E1000_WRITE_FLUSH(hw);
4837
4838         return 0;
4839 }
4840
4841 static int
4842 igb_get_ethertype_filter(struct rte_eth_dev *dev,
4843                         struct rte_eth_ethertype_filter *filter)
4844 {
4845         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4846         struct e1000_filter_info *filter_info =
4847                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4848         uint32_t etqf;
4849         int ret;
4850
4851         ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
4852         if (ret < 0) {
4853                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
4854                             filter->ether_type);
4855                 return -ENOENT;
4856         }
4857
4858         etqf = E1000_READ_REG(hw, E1000_ETQF(ret));
4859         if (etqf & E1000_ETQF_FILTER_ENABLE) {
4860                 filter->ether_type = etqf & E1000_ETQF_ETHERTYPE;
4861                 filter->flags = 0;
4862                 filter->queue = (etqf & E1000_ETQF_QUEUE) >>
4863                                 E1000_ETQF_QUEUE_SHIFT;
4864                 return 0;
4865         }
4866
4867         return -ENOENT;
4868 }
4869
4870 /*
4871  * igb_ethertype_filter_handle - Handle operations for ethertype filter.
4872  * @dev: pointer to rte_eth_dev structure
4873  * @filter_op:operation will be taken.
4874  * @arg: a pointer to specific structure corresponding to the filter_op
4875  */
4876 static int
4877 igb_ethertype_filter_handle(struct rte_eth_dev *dev,
4878                                 enum rte_filter_op filter_op,
4879                                 void *arg)
4880 {
4881         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4882         int ret;
4883
4884         MAC_TYPE_FILTER_SUP(hw->mac.type);
4885
4886         if (filter_op == RTE_ETH_FILTER_NOP)
4887                 return 0;
4888
4889         if (arg == NULL) {
4890                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
4891                             filter_op);
4892                 return -EINVAL;
4893         }
4894
4895         switch (filter_op) {
4896         case RTE_ETH_FILTER_ADD:
4897                 ret = igb_add_del_ethertype_filter(dev,
4898                         (struct rte_eth_ethertype_filter *)arg,
4899                         TRUE);
4900                 break;
4901         case RTE_ETH_FILTER_DELETE:
4902                 ret = igb_add_del_ethertype_filter(dev,
4903                         (struct rte_eth_ethertype_filter *)arg,
4904                         FALSE);
4905                 break;
4906         case RTE_ETH_FILTER_GET:
4907                 ret = igb_get_ethertype_filter(dev,
4908                         (struct rte_eth_ethertype_filter *)arg);
4909                 break;
4910         default:
4911                 PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
4912                 ret = -EINVAL;
4913                 break;
4914         }
4915         return ret;
4916 }
4917
4918 static int
4919 eth_igb_filter_ctrl(struct rte_eth_dev *dev,
4920                      enum rte_filter_type filter_type,
4921                      enum rte_filter_op filter_op,
4922                      void *arg)
4923 {
4924         int ret = 0;
4925
4926         switch (filter_type) {
4927         case RTE_ETH_FILTER_NTUPLE:
4928                 ret = igb_ntuple_filter_handle(dev, filter_op, arg);
4929                 break;
4930         case RTE_ETH_FILTER_ETHERTYPE:
4931                 ret = igb_ethertype_filter_handle(dev, filter_op, arg);
4932                 break;
4933         case RTE_ETH_FILTER_SYN:
4934                 ret = eth_igb_syn_filter_handle(dev, filter_op, arg);
4935                 break;
4936         case RTE_ETH_FILTER_FLEXIBLE:
4937                 ret = eth_igb_flex_filter_handle(dev, filter_op, arg);
4938                 break;
4939         case RTE_ETH_FILTER_GENERIC:
4940                 if (filter_op != RTE_ETH_FILTER_GET)
4941                         return -EINVAL;
4942                 *(const void **)arg = &igb_flow_ops;
4943                 break;
4944         default:
4945                 PMD_DRV_LOG(WARNING, "Filter type (%d) not supported",
4946                                                         filter_type);
4947                 break;
4948         }
4949
4950         return ret;
4951 }
4952
4953 static int
4954 eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
4955                          struct rte_ether_addr *mc_addr_set,
4956                          uint32_t nb_mc_addr)
4957 {
4958         struct e1000_hw *hw;
4959
4960         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4961         e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
4962         return 0;
4963 }
4964
4965 static uint64_t
4966 igb_read_systime_cyclecounter(struct rte_eth_dev *dev)
4967 {
4968         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4969         uint64_t systime_cycles;
4970
4971         switch (hw->mac.type) {
4972         case e1000_i210:
4973         case e1000_i211:
4974                 /*
4975                  * Need to read System Time Residue Register to be able
4976                  * to read the other two registers.
4977                  */
4978                 E1000_READ_REG(hw, E1000_SYSTIMR);
4979                 /* SYSTIMEL stores ns and SYSTIMEH stores seconds. */
4980                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4981                 systime_cycles += (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
4982                                 * NSEC_PER_SEC;
4983                 break;
4984         case e1000_82580:
4985         case e1000_i350:
4986         case e1000_i354:
4987                 /*
4988                  * Need to read System Time Residue Register to be able
4989                  * to read the other two registers.
4990                  */
4991                 E1000_READ_REG(hw, E1000_SYSTIMR);
4992                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4993                 /* Only the 8 LSB are valid. */
4994                 systime_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_SYSTIMH)
4995                                 & 0xff) << 32;
4996                 break;
4997         default:
4998                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4999                 systime_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
5000                                 << 32;
5001                 break;
5002         }
5003
5004         return systime_cycles;
5005 }
5006
5007 static uint64_t
5008 igb_read_rx_tstamp_cyclecounter(struct rte_eth_dev *dev)
5009 {
5010         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5011         uint64_t rx_tstamp_cycles;
5012
5013         switch (hw->mac.type) {
5014         case e1000_i210:
5015         case e1000_i211:
5016                 /* RXSTMPL stores ns and RXSTMPH stores seconds. */
5017                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
5018                 rx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
5019                                 * NSEC_PER_SEC;
5020                 break;
5021         case e1000_82580:
5022         case e1000_i350:
5023         case e1000_i354:
5024                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
5025                 /* Only the 8 LSB are valid. */
5026                 rx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_RXSTMPH)
5027                                 & 0xff) << 32;
5028                 break;
5029         default:
5030                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
5031                 rx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
5032                                 << 32;
5033                 break;
5034         }
5035
5036         return rx_tstamp_cycles;
5037 }
5038
5039 static uint64_t
5040 igb_read_tx_tstamp_cyclecounter(struct rte_eth_dev *dev)
5041 {
5042         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5043         uint64_t tx_tstamp_cycles;
5044
5045         switch (hw->mac.type) {
5046         case e1000_i210:
5047         case e1000_i211:
5048                 /* RXSTMPL stores ns and RXSTMPH stores seconds. */
5049                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
5050                 tx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
5051                                 * NSEC_PER_SEC;
5052                 break;
5053         case e1000_82580:
5054         case e1000_i350:
5055         case e1000_i354:
5056                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
5057                 /* Only the 8 LSB are valid. */
5058                 tx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_TXSTMPH)
5059                                 & 0xff) << 32;
5060                 break;
5061         default:
5062                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
5063                 tx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
5064                                 << 32;
5065                 break;
5066         }
5067
5068         return tx_tstamp_cycles;
5069 }
5070
5071 static void
5072 igb_start_timecounters(struct rte_eth_dev *dev)
5073 {
5074         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5075         struct e1000_adapter *adapter = dev->data->dev_private;
5076         uint32_t incval = 1;
5077         uint32_t shift = 0;
5078         uint64_t mask = E1000_CYCLECOUNTER_MASK;
5079
5080         switch (hw->mac.type) {
5081         case e1000_82580:
5082         case e1000_i350:
5083         case e1000_i354:
5084                 /* 32 LSB bits + 8 MSB bits = 40 bits */
5085                 mask = (1ULL << 40) - 1;
5086                 /* fall-through */
5087         case e1000_i210:
5088         case e1000_i211:
5089                 /*
5090                  * Start incrementing the register
5091                  * used to timestamp PTP packets.
5092                  */
5093                 E1000_WRITE_REG(hw, E1000_TIMINCA, incval);
5094                 break;
5095         case e1000_82576:
5096                 incval = E1000_INCVALUE_82576;
5097                 shift = IGB_82576_TSYNC_SHIFT;
5098                 E1000_WRITE_REG(hw, E1000_TIMINCA,
5099                                 E1000_INCPERIOD_82576 | incval);
5100                 break;
5101         default:
5102                 /* Not supported */
5103                 return;
5104         }
5105
5106         memset(&adapter->systime_tc, 0, sizeof(struct rte_timecounter));
5107         memset(&adapter->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
5108         memset(&adapter->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
5109
5110         adapter->systime_tc.cc_mask = mask;
5111         adapter->systime_tc.cc_shift = shift;
5112         adapter->systime_tc.nsec_mask = (1ULL << shift) - 1;
5113
5114         adapter->rx_tstamp_tc.cc_mask = mask;
5115         adapter->rx_tstamp_tc.cc_shift = shift;
5116         adapter->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
5117
5118         adapter->tx_tstamp_tc.cc_mask = mask;
5119         adapter->tx_tstamp_tc.cc_shift = shift;
5120         adapter->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
5121 }
5122
5123 static int
5124 igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
5125 {
5126         struct e1000_adapter *adapter = dev->data->dev_private;
5127
5128         adapter->systime_tc.nsec += delta;
5129         adapter->rx_tstamp_tc.nsec += delta;
5130         adapter->tx_tstamp_tc.nsec += delta;
5131
5132         return 0;
5133 }
5134
5135 static int
5136 igb_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
5137 {
5138         uint64_t ns;
5139         struct e1000_adapter *adapter = dev->data->dev_private;
5140
5141         ns = rte_timespec_to_ns(ts);
5142
5143         /* Set the timecounters to a new value. */
5144         adapter->systime_tc.nsec = ns;
5145         adapter->rx_tstamp_tc.nsec = ns;
5146         adapter->tx_tstamp_tc.nsec = ns;
5147
5148         return 0;
5149 }
5150
5151 static int
5152 igb_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
5153 {
5154         uint64_t ns, systime_cycles;
5155         struct e1000_adapter *adapter = dev->data->dev_private;
5156
5157         systime_cycles = igb_read_systime_cyclecounter(dev);
5158         ns = rte_timecounter_update(&adapter->systime_tc, systime_cycles);
5159         *ts = rte_ns_to_timespec(ns);
5160
5161         return 0;
5162 }
5163
5164 static int
5165 igb_timesync_enable(struct rte_eth_dev *dev)
5166 {
5167         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5168         uint32_t tsync_ctl;
5169         uint32_t tsauxc;
5170
5171         /* Stop the timesync system time. */
5172         E1000_WRITE_REG(hw, E1000_TIMINCA, 0x0);
5173         /* Reset the timesync system time value. */
5174         switch (hw->mac.type) {
5175         case e1000_82580:
5176         case e1000_i350:
5177         case e1000_i354:
5178         case e1000_i210:
5179         case e1000_i211:
5180                 E1000_WRITE_REG(hw, E1000_SYSTIMR, 0x0);
5181                 /* fall-through */
5182         case e1000_82576:
5183                 E1000_WRITE_REG(hw, E1000_SYSTIML, 0x0);
5184                 E1000_WRITE_REG(hw, E1000_SYSTIMH, 0x0);
5185                 break;
5186         default:
5187                 /* Not supported. */
5188                 return -ENOTSUP;
5189         }
5190
5191         /* Enable system time for it isn't on by default. */
5192         tsauxc = E1000_READ_REG(hw, E1000_TSAUXC);
5193         tsauxc &= ~E1000_TSAUXC_DISABLE_SYSTIME;
5194         E1000_WRITE_REG(hw, E1000_TSAUXC, tsauxc);
5195
5196         igb_start_timecounters(dev);
5197
5198         /* Enable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
5199         E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588),
5200                         (RTE_ETHER_TYPE_1588 |
5201                          E1000_ETQF_FILTER_ENABLE |
5202                          E1000_ETQF_1588));
5203
5204         /* Enable timestamping of received PTP packets. */
5205         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
5206         tsync_ctl |= E1000_TSYNCRXCTL_ENABLED;
5207         E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
5208
5209         /* Enable Timestamping of transmitted PTP packets. */
5210         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
5211         tsync_ctl |= E1000_TSYNCTXCTL_ENABLED;
5212         E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
5213
5214         return 0;
5215 }
5216
5217 static int
5218 igb_timesync_disable(struct rte_eth_dev *dev)
5219 {
5220         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5221         uint32_t tsync_ctl;
5222
5223         /* Disable timestamping of transmitted PTP packets. */
5224         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
5225         tsync_ctl &= ~E1000_TSYNCTXCTL_ENABLED;
5226         E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
5227
5228         /* Disable timestamping of received PTP packets. */
5229         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
5230         tsync_ctl &= ~E1000_TSYNCRXCTL_ENABLED;
5231         E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
5232
5233         /* Disable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
5234         E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588), 0);
5235
5236         /* Stop incrementating the System Time registers. */
5237         E1000_WRITE_REG(hw, E1000_TIMINCA, 0);
5238
5239         return 0;
5240 }
5241
5242 static int
5243 igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
5244                                struct timespec *timestamp,
5245                                uint32_t flags __rte_unused)
5246 {
5247         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5248         struct e1000_adapter *adapter = dev->data->dev_private;
5249         uint32_t tsync_rxctl;
5250         uint64_t rx_tstamp_cycles;
5251         uint64_t ns;
5252
5253         tsync_rxctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
5254         if ((tsync_rxctl & E1000_TSYNCRXCTL_VALID) == 0)
5255                 return -EINVAL;
5256
5257         rx_tstamp_cycles = igb_read_rx_tstamp_cyclecounter(dev);
5258         ns = rte_timecounter_update(&adapter->rx_tstamp_tc, rx_tstamp_cycles);
5259         *timestamp = rte_ns_to_timespec(ns);
5260
5261         return  0;
5262 }
5263
5264 static int
5265 igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
5266                                struct timespec *timestamp)
5267 {
5268         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5269         struct e1000_adapter *adapter = dev->data->dev_private;
5270         uint32_t tsync_txctl;
5271         uint64_t tx_tstamp_cycles;
5272         uint64_t ns;
5273
5274         tsync_txctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
5275         if ((tsync_txctl & E1000_TSYNCTXCTL_VALID) == 0)
5276                 return -EINVAL;
5277
5278         tx_tstamp_cycles = igb_read_tx_tstamp_cyclecounter(dev);
5279         ns = rte_timecounter_update(&adapter->tx_tstamp_tc, tx_tstamp_cycles);
5280         *timestamp = rte_ns_to_timespec(ns);
5281
5282         return  0;
5283 }
5284
5285 static int
5286 eth_igb_get_reg_length(struct rte_eth_dev *dev __rte_unused)
5287 {
5288         int count = 0;
5289         int g_ind = 0;
5290         const struct reg_info *reg_group;
5291
5292         while ((reg_group = igb_regs[g_ind++]))
5293                 count += igb_reg_group_count(reg_group);
5294
5295         return count;
5296 }
5297
5298 static int
5299 igbvf_get_reg_length(struct rte_eth_dev *dev __rte_unused)
5300 {
5301         int count = 0;
5302         int g_ind = 0;
5303         const struct reg_info *reg_group;
5304
5305         while ((reg_group = igbvf_regs[g_ind++]))
5306                 count += igb_reg_group_count(reg_group);
5307
5308         return count;
5309 }
5310
5311 static int
5312 eth_igb_get_regs(struct rte_eth_dev *dev,
5313         struct rte_dev_reg_info *regs)
5314 {
5315         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5316         uint32_t *data = regs->data;
5317         int g_ind = 0;
5318         int count = 0;
5319         const struct reg_info *reg_group;
5320
5321         if (data == NULL) {
5322                 regs->length = eth_igb_get_reg_length(dev);
5323                 regs->width = sizeof(uint32_t);
5324                 return 0;
5325         }
5326
5327         /* Support only full register dump */
5328         if ((regs->length == 0) ||
5329             (regs->length == (uint32_t)eth_igb_get_reg_length(dev))) {
5330                 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
5331                         hw->device_id;
5332                 while ((reg_group = igb_regs[g_ind++]))
5333                         count += igb_read_regs_group(dev, &data[count],
5334                                                         reg_group);
5335                 return 0;
5336         }
5337
5338         return -ENOTSUP;
5339 }
5340
5341 static int
5342 igbvf_get_regs(struct rte_eth_dev *dev,
5343         struct rte_dev_reg_info *regs)
5344 {
5345         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5346         uint32_t *data = regs->data;
5347         int g_ind = 0;
5348         int count = 0;
5349         const struct reg_info *reg_group;
5350
5351         if (data == NULL) {
5352                 regs->length = igbvf_get_reg_length(dev);
5353                 regs->width = sizeof(uint32_t);
5354                 return 0;
5355         }
5356
5357         /* Support only full register dump */
5358         if ((regs->length == 0) ||
5359             (regs->length == (uint32_t)igbvf_get_reg_length(dev))) {
5360                 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
5361                         hw->device_id;
5362                 while ((reg_group = igbvf_regs[g_ind++]))
5363                         count += igb_read_regs_group(dev, &data[count],
5364                                                         reg_group);
5365                 return 0;
5366         }
5367
5368         return -ENOTSUP;
5369 }
5370
5371 static int
5372 eth_igb_get_eeprom_length(struct rte_eth_dev *dev)
5373 {
5374         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5375
5376         /* Return unit is byte count */
5377         return hw->nvm.word_size * 2;
5378 }
5379
5380 static int
5381 eth_igb_get_eeprom(struct rte_eth_dev *dev,
5382         struct rte_dev_eeprom_info *in_eeprom)
5383 {
5384         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5385         struct e1000_nvm_info *nvm = &hw->nvm;
5386         uint16_t *data = in_eeprom->data;
5387         int first, length;
5388
5389         first = in_eeprom->offset >> 1;
5390         length = in_eeprom->length >> 1;
5391         if ((first >= hw->nvm.word_size) ||
5392             ((first + length) >= hw->nvm.word_size))
5393                 return -EINVAL;
5394
5395         in_eeprom->magic = hw->vendor_id |
5396                 ((uint32_t)hw->device_id << 16);
5397
5398         if ((nvm->ops.read) == NULL)
5399                 return -ENOTSUP;
5400
5401         return nvm->ops.read(hw, first, length, data);
5402 }
5403
5404 static int
5405 eth_igb_set_eeprom(struct rte_eth_dev *dev,
5406         struct rte_dev_eeprom_info *in_eeprom)
5407 {
5408         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5409         struct e1000_nvm_info *nvm = &hw->nvm;
5410         uint16_t *data = in_eeprom->data;
5411         int first, length;
5412
5413         first = in_eeprom->offset >> 1;
5414         length = in_eeprom->length >> 1;
5415         if ((first >= hw->nvm.word_size) ||
5416             ((first + length) >= hw->nvm.word_size))
5417                 return -EINVAL;
5418
5419         in_eeprom->magic = (uint32_t)hw->vendor_id |
5420                 ((uint32_t)hw->device_id << 16);
5421
5422         if ((nvm->ops.write) == NULL)
5423                 return -ENOTSUP;
5424         return nvm->ops.write(hw,  first, length, data);
5425 }
5426
5427 static int
5428 eth_igb_get_module_info(struct rte_eth_dev *dev,
5429                         struct rte_eth_dev_module_info *modinfo)
5430 {
5431         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5432
5433         uint32_t status = 0;
5434         uint16_t sff8472_rev, addr_mode;
5435         bool page_swap = false;
5436
5437         if (hw->phy.media_type == e1000_media_type_copper ||
5438             hw->phy.media_type == e1000_media_type_unknown)
5439                 return -EOPNOTSUPP;
5440
5441         /* Check whether we support SFF-8472 or not */
5442         status = e1000_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
5443         if (status)
5444                 return -EIO;
5445
5446         /* addressing mode is not supported */
5447         status = e1000_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
5448         if (status)
5449                 return -EIO;
5450
5451         /* addressing mode is not supported */
5452         if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
5453                 PMD_DRV_LOG(ERR,
5454                             "Address change required to access page 0xA2, "
5455                             "but not supported. Please report the module "
5456                             "type to the driver maintainers.\n");
5457                 page_swap = true;
5458         }
5459
5460         if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
5461                 /* We have an SFP, but it does not support SFF-8472 */
5462                 modinfo->type = RTE_ETH_MODULE_SFF_8079;
5463                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8079_LEN;
5464         } else {
5465                 /* We have an SFP which supports a revision of SFF-8472 */
5466                 modinfo->type = RTE_ETH_MODULE_SFF_8472;
5467                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
5468         }
5469
5470         return 0;
5471 }
5472
5473 static int
5474 eth_igb_get_module_eeprom(struct rte_eth_dev *dev,
5475                           struct rte_dev_eeprom_info *info)
5476 {
5477         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5478
5479         uint32_t status = 0;
5480         uint16_t dataword[RTE_ETH_MODULE_SFF_8472_LEN / 2 + 1];
5481         u16 first_word, last_word;
5482         int i = 0;
5483
5484         if (info->length == 0)
5485                 return -EINVAL;
5486
5487         first_word = info->offset >> 1;
5488         last_word = (info->offset + info->length - 1) >> 1;
5489
5490         /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
5491         for (i = 0; i < last_word - first_word + 1; i++) {
5492                 status = e1000_read_phy_reg_i2c(hw, (first_word + i) * 2,
5493                                                 &dataword[i]);
5494                 if (status) {
5495                         /* Error occurred while reading module */
5496                         return -EIO;
5497                 }
5498
5499                 dataword[i] = rte_be_to_cpu_16(dataword[i]);
5500         }
5501
5502         memcpy(info->data, (u8 *)dataword + (info->offset & 1), info->length);
5503
5504         return 0;
5505 }
5506
5507 static int
5508 eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
5509 {
5510         struct e1000_hw *hw =
5511                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5512         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5513         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5514         uint32_t vec = E1000_MISC_VEC_ID;
5515
5516         if (rte_intr_allow_others(intr_handle))
5517                 vec = E1000_RX_VEC_START;
5518
5519         uint32_t mask = 1 << (queue_id + vec);
5520
5521         E1000_WRITE_REG(hw, E1000_EIMC, mask);
5522         E1000_WRITE_FLUSH(hw);
5523
5524         return 0;
5525 }
5526
5527 static int
5528 eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
5529 {
5530         struct e1000_hw *hw =
5531                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5532         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5533         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5534         uint32_t vec = E1000_MISC_VEC_ID;
5535
5536         if (rte_intr_allow_others(intr_handle))
5537                 vec = E1000_RX_VEC_START;
5538
5539         uint32_t mask = 1 << (queue_id + vec);
5540         uint32_t regval;
5541
5542         regval = E1000_READ_REG(hw, E1000_EIMS);
5543         E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
5544         E1000_WRITE_FLUSH(hw);
5545
5546         rte_intr_ack(intr_handle);
5547
5548         return 0;
5549 }
5550
5551 static void
5552 eth_igb_write_ivar(struct e1000_hw *hw, uint8_t  msix_vector,
5553                    uint8_t index, uint8_t offset)
5554 {
5555         uint32_t val = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
5556
5557         /* clear bits */
5558         val &= ~((uint32_t)0xFF << offset);
5559
5560         /* write vector and valid bit */
5561         val |= (msix_vector | E1000_IVAR_VALID) << offset;
5562
5563         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, val);
5564 }
5565
5566 static void
5567 eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
5568                            uint8_t queue, uint8_t msix_vector)
5569 {
5570         uint32_t tmp = 0;
5571
5572         if (hw->mac.type == e1000_82575) {
5573                 if (direction == 0)
5574                         tmp = E1000_EICR_RX_QUEUE0 << queue;
5575                 else if (direction == 1)
5576                         tmp = E1000_EICR_TX_QUEUE0 << queue;
5577                 E1000_WRITE_REG(hw, E1000_MSIXBM(msix_vector), tmp);
5578         } else if (hw->mac.type == e1000_82576) {
5579                 if ((direction == 0) || (direction == 1))
5580                         eth_igb_write_ivar(hw, msix_vector, queue & 0x7,
5581                                            ((queue & 0x8) << 1) +
5582                                            8 * direction);
5583         } else if ((hw->mac.type == e1000_82580) ||
5584                         (hw->mac.type == e1000_i350) ||
5585                         (hw->mac.type == e1000_i354) ||
5586                         (hw->mac.type == e1000_i210) ||
5587                         (hw->mac.type == e1000_i211)) {
5588                 if ((direction == 0) || (direction == 1))
5589                         eth_igb_write_ivar(hw, msix_vector,
5590                                            queue >> 1,
5591                                            ((queue & 0x1) << 4) +
5592                                            8 * direction);
5593         }
5594 }
5595
5596 /* Sets up the hardware to generate MSI-X interrupts properly
5597  * @hw
5598  *  board private structure
5599  */
5600 static void
5601 eth_igb_configure_msix_intr(struct rte_eth_dev *dev)
5602 {
5603         int queue_id;
5604         uint32_t tmpval, regval, intr_mask;
5605         struct e1000_hw *hw =
5606                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5607         uint32_t vec = E1000_MISC_VEC_ID;
5608         uint32_t base = E1000_MISC_VEC_ID;
5609         uint32_t misc_shift = 0;
5610         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5611         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5612
5613         /* won't configure msix register if no mapping is done
5614          * between intr vector and event fd
5615          */
5616         if (!rte_intr_dp_is_en(intr_handle))
5617                 return;
5618
5619         if (rte_intr_allow_others(intr_handle)) {
5620                 vec = base = E1000_RX_VEC_START;
5621                 misc_shift = 1;
5622         }
5623
5624         /* set interrupt vector for other causes */
5625         if (hw->mac.type == e1000_82575) {
5626                 tmpval = E1000_READ_REG(hw, E1000_CTRL_EXT);
5627                 /* enable MSI-X PBA support */
5628                 tmpval |= E1000_CTRL_EXT_PBA_CLR;
5629
5630                 /* Auto-Mask interrupts upon ICR read */
5631                 tmpval |= E1000_CTRL_EXT_EIAME;
5632                 tmpval |= E1000_CTRL_EXT_IRCA;
5633
5634                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmpval);
5635
5636                 /* enable msix_other interrupt */
5637                 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), 0, E1000_EIMS_OTHER);
5638                 regval = E1000_READ_REG(hw, E1000_EIAC);
5639                 E1000_WRITE_REG(hw, E1000_EIAC, regval | E1000_EIMS_OTHER);
5640                 regval = E1000_READ_REG(hw, E1000_EIAM);
5641                 E1000_WRITE_REG(hw, E1000_EIMS, regval | E1000_EIMS_OTHER);
5642         } else if ((hw->mac.type == e1000_82576) ||
5643                         (hw->mac.type == e1000_82580) ||
5644                         (hw->mac.type == e1000_i350) ||
5645                         (hw->mac.type == e1000_i354) ||
5646                         (hw->mac.type == e1000_i210) ||
5647                         (hw->mac.type == e1000_i211)) {
5648                 /* turn on MSI-X capability first */
5649                 E1000_WRITE_REG(hw, E1000_GPIE, E1000_GPIE_MSIX_MODE |
5650                                         E1000_GPIE_PBA | E1000_GPIE_EIAME |
5651                                         E1000_GPIE_NSICR);
5652                 intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
5653                         misc_shift;
5654
5655                 if (dev->data->dev_conf.intr_conf.lsc != 0)
5656                         intr_mask |= (1 << IGB_MSIX_OTHER_INTR_VEC);
5657
5658                 regval = E1000_READ_REG(hw, E1000_EIAC);
5659                 E1000_WRITE_REG(hw, E1000_EIAC, regval | intr_mask);
5660
5661                 /* enable msix_other interrupt */
5662                 regval = E1000_READ_REG(hw, E1000_EIMS);
5663                 E1000_WRITE_REG(hw, E1000_EIMS, regval | intr_mask);
5664                 tmpval = (IGB_MSIX_OTHER_INTR_VEC | E1000_IVAR_VALID) << 8;
5665                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, tmpval);
5666         }
5667
5668         /* use EIAM to auto-mask when MSI-X interrupt
5669          * is asserted, this saves a register write for every interrupt
5670          */
5671         intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
5672                 misc_shift;
5673
5674         if (dev->data->dev_conf.intr_conf.lsc != 0)
5675                 intr_mask |= (1 << IGB_MSIX_OTHER_INTR_VEC);
5676
5677         regval = E1000_READ_REG(hw, E1000_EIAM);
5678         E1000_WRITE_REG(hw, E1000_EIAM, regval | intr_mask);
5679
5680         for (queue_id = 0; queue_id < dev->data->nb_rx_queues; queue_id++) {
5681                 eth_igb_assign_msix_vector(hw, 0, queue_id, vec);
5682                 intr_handle->intr_vec[queue_id] = vec;
5683                 if (vec < base + intr_handle->nb_efd - 1)
5684                         vec++;
5685         }
5686
5687         E1000_WRITE_FLUSH(hw);
5688 }
5689
5690 /* restore n-tuple filter */
5691 static inline void
5692 igb_ntuple_filter_restore(struct rte_eth_dev *dev)
5693 {
5694         struct e1000_filter_info *filter_info =
5695                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5696         struct e1000_5tuple_filter *p_5tuple;
5697         struct e1000_2tuple_filter *p_2tuple;
5698
5699         TAILQ_FOREACH(p_5tuple, &filter_info->fivetuple_list, entries) {
5700                 igb_inject_5tuple_filter_82576(dev, p_5tuple);
5701         }
5702
5703         TAILQ_FOREACH(p_2tuple, &filter_info->twotuple_list, entries) {
5704                 igb_inject_2uple_filter(dev, p_2tuple);
5705         }
5706 }
5707
5708 /* restore SYN filter */
5709 static inline void
5710 igb_syn_filter_restore(struct rte_eth_dev *dev)
5711 {
5712         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5713         struct e1000_filter_info *filter_info =
5714                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5715         uint32_t synqf;
5716
5717         synqf = filter_info->syn_info;
5718
5719         if (synqf & E1000_SYN_FILTER_ENABLE) {
5720                 E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
5721                 E1000_WRITE_FLUSH(hw);
5722         }
5723 }
5724
5725 /* restore ethernet type filter */
5726 static inline void
5727 igb_ethertype_filter_restore(struct rte_eth_dev *dev)
5728 {
5729         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5730         struct e1000_filter_info *filter_info =
5731                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5732         int i;
5733
5734         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
5735                 if (filter_info->ethertype_mask & (1 << i)) {
5736                         E1000_WRITE_REG(hw, E1000_ETQF(i),
5737                                 filter_info->ethertype_filters[i].etqf);
5738                         E1000_WRITE_FLUSH(hw);
5739                 }
5740         }
5741 }
5742
5743 /* restore flex byte filter */
5744 static inline void
5745 igb_flex_filter_restore(struct rte_eth_dev *dev)
5746 {
5747         struct e1000_filter_info *filter_info =
5748                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5749         struct e1000_flex_filter *flex_filter;
5750
5751         TAILQ_FOREACH(flex_filter, &filter_info->flex_list, entries) {
5752                 igb_inject_flex_filter(dev, flex_filter);
5753         }
5754 }
5755
5756 /* restore rss filter */
5757 static inline void
5758 igb_rss_filter_restore(struct rte_eth_dev *dev)
5759 {
5760         struct e1000_filter_info *filter_info =
5761                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5762
5763         if (filter_info->rss_info.conf.queue_num)
5764                 igb_config_rss_filter(dev, &filter_info->rss_info, TRUE);
5765 }
5766
5767 /* restore all types filter */
5768 static int
5769 igb_filter_restore(struct rte_eth_dev *dev)
5770 {
5771         igb_ntuple_filter_restore(dev);
5772         igb_ethertype_filter_restore(dev);
5773         igb_syn_filter_restore(dev);
5774         igb_flex_filter_restore(dev);
5775         igb_rss_filter_restore(dev);
5776
5777         return 0;
5778 }
5779
5780 RTE_PMD_REGISTER_PCI(net_e1000_igb, rte_igb_pmd);
5781 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb, pci_id_igb_map);
5782 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb, "* igb_uio | uio_pci_generic | vfio-pci");
5783 RTE_PMD_REGISTER_PCI(net_e1000_igb_vf, rte_igbvf_pmd);
5784 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb_vf, pci_id_igbvf_map);
5785 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb_vf, "* igb_uio | vfio-pci");
5786
5787 /* see e1000_logs.c */
5788 RTE_INIT(e1000_init_log)
5789 {
5790         e1000_igb_init_log();
5791 }