fec2b4289aa84bed0440719f252cc7b09cc1b854
[dpdk.git] / drivers / net / e1000 / igb_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <stdarg.h>
10
11 #include <rte_string_fns.h>
12 #include <rte_common.h>
13 #include <rte_interrupts.h>
14 #include <rte_byteorder.h>
15 #include <rte_log.h>
16 #include <rte_debug.h>
17 #include <rte_pci.h>
18 #include <rte_bus_pci.h>
19 #include <rte_ether.h>
20 #include <rte_ethdev_driver.h>
21 #include <rte_ethdev_pci.h>
22 #include <rte_memory.h>
23 #include <rte_eal.h>
24 #include <rte_malloc.h>
25 #include <rte_dev.h>
26
27 #include "e1000_logs.h"
28 #include "base/e1000_api.h"
29 #include "e1000_ethdev.h"
30 #include "igb_regs.h"
31
32 /*
33  * Default values for port configuration
34  */
35 #define IGB_DEFAULT_RX_FREE_THRESH  32
36
37 #define IGB_DEFAULT_RX_PTHRESH      ((hw->mac.type == e1000_i354) ? 12 : 8)
38 #define IGB_DEFAULT_RX_HTHRESH      8
39 #define IGB_DEFAULT_RX_WTHRESH      ((hw->mac.type == e1000_82576) ? 1 : 4)
40
41 #define IGB_DEFAULT_TX_PTHRESH      ((hw->mac.type == e1000_i354) ? 20 : 8)
42 #define IGB_DEFAULT_TX_HTHRESH      1
43 #define IGB_DEFAULT_TX_WTHRESH      ((hw->mac.type == e1000_82576) ? 1 : 16)
44
45 /* Bit shift and mask */
46 #define IGB_4_BIT_WIDTH  (CHAR_BIT / 2)
47 #define IGB_4_BIT_MASK   RTE_LEN2MASK(IGB_4_BIT_WIDTH, uint8_t)
48 #define IGB_8_BIT_WIDTH  CHAR_BIT
49 #define IGB_8_BIT_MASK   UINT8_MAX
50
51 /* Additional timesync values. */
52 #define E1000_CYCLECOUNTER_MASK      0xffffffffffffffffULL
53 #define E1000_ETQF_FILTER_1588       3
54 #define IGB_82576_TSYNC_SHIFT        16
55 #define E1000_INCPERIOD_82576        (1 << E1000_TIMINCA_16NS_SHIFT)
56 #define E1000_INCVALUE_82576         (16 << IGB_82576_TSYNC_SHIFT)
57 #define E1000_TSAUXC_DISABLE_SYSTIME 0x80000000
58
59 #define E1000_VTIVAR_MISC                0x01740
60 #define E1000_VTIVAR_MISC_MASK           0xFF
61 #define E1000_VTIVAR_VALID               0x80
62 #define E1000_VTIVAR_MISC_MAILBOX        0
63 #define E1000_VTIVAR_MISC_INTR_MASK      0x3
64
65 /* External VLAN Enable bit mask */
66 #define E1000_CTRL_EXT_EXT_VLAN      (1 << 26)
67
68 /* External VLAN Ether Type bit mask and shift */
69 #define E1000_VET_VET_EXT            0xFFFF0000
70 #define E1000_VET_VET_EXT_SHIFT      16
71
72 /* MSI-X other interrupt vector */
73 #define IGB_MSIX_OTHER_INTR_VEC      0
74
75 static int  eth_igb_configure(struct rte_eth_dev *dev);
76 static int  eth_igb_start(struct rte_eth_dev *dev);
77 static void eth_igb_stop(struct rte_eth_dev *dev);
78 static int  eth_igb_dev_set_link_up(struct rte_eth_dev *dev);
79 static int  eth_igb_dev_set_link_down(struct rte_eth_dev *dev);
80 static void eth_igb_close(struct rte_eth_dev *dev);
81 static int eth_igb_reset(struct rte_eth_dev *dev);
82 static void eth_igb_promiscuous_enable(struct rte_eth_dev *dev);
83 static void eth_igb_promiscuous_disable(struct rte_eth_dev *dev);
84 static void eth_igb_allmulticast_enable(struct rte_eth_dev *dev);
85 static void eth_igb_allmulticast_disable(struct rte_eth_dev *dev);
86 static int  eth_igb_link_update(struct rte_eth_dev *dev,
87                                 int wait_to_complete);
88 static int eth_igb_stats_get(struct rte_eth_dev *dev,
89                                 struct rte_eth_stats *rte_stats);
90 static int eth_igb_xstats_get(struct rte_eth_dev *dev,
91                               struct rte_eth_xstat *xstats, unsigned n);
92 static int eth_igb_xstats_get_by_id(struct rte_eth_dev *dev,
93                 const uint64_t *ids,
94                 uint64_t *values, unsigned int n);
95 static int eth_igb_xstats_get_names(struct rte_eth_dev *dev,
96                                     struct rte_eth_xstat_name *xstats_names,
97                                     unsigned int size);
98 static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev,
99                 struct rte_eth_xstat_name *xstats_names, const uint64_t *ids,
100                 unsigned int limit);
101 static void eth_igb_stats_reset(struct rte_eth_dev *dev);
102 static void eth_igb_xstats_reset(struct rte_eth_dev *dev);
103 static int eth_igb_fw_version_get(struct rte_eth_dev *dev,
104                                    char *fw_version, size_t fw_size);
105 static void eth_igb_infos_get(struct rte_eth_dev *dev,
106                               struct rte_eth_dev_info *dev_info);
107 static const uint32_t *eth_igb_supported_ptypes_get(struct rte_eth_dev *dev);
108 static void eth_igbvf_infos_get(struct rte_eth_dev *dev,
109                                 struct rte_eth_dev_info *dev_info);
110 static int  eth_igb_flow_ctrl_get(struct rte_eth_dev *dev,
111                                 struct rte_eth_fc_conf *fc_conf);
112 static int  eth_igb_flow_ctrl_set(struct rte_eth_dev *dev,
113                                 struct rte_eth_fc_conf *fc_conf);
114 static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on);
115 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev);
116 static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev);
117 static int eth_igb_interrupt_action(struct rte_eth_dev *dev,
118                                     struct rte_intr_handle *handle);
119 static void eth_igb_interrupt_handler(void *param);
120 static int  igb_hardware_init(struct e1000_hw *hw);
121 static void igb_hw_control_acquire(struct e1000_hw *hw);
122 static void igb_hw_control_release(struct e1000_hw *hw);
123 static void igb_init_manageability(struct e1000_hw *hw);
124 static void igb_release_manageability(struct e1000_hw *hw);
125
126 static int  eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
127
128 static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev,
129                 uint16_t vlan_id, int on);
130 static int eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
131                                  enum rte_vlan_type vlan_type,
132                                  uint16_t tpid_id);
133 static int eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask);
134
135 static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev);
136 static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev);
137 static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev);
138 static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev);
139 static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev);
140 static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev);
141
142 static int eth_igb_led_on(struct rte_eth_dev *dev);
143 static int eth_igb_led_off(struct rte_eth_dev *dev);
144
145 static void igb_intr_disable(struct rte_eth_dev *dev);
146 static int  igb_get_rx_buffer_size(struct e1000_hw *hw);
147 static int eth_igb_rar_set(struct rte_eth_dev *dev,
148                            struct rte_ether_addr *mac_addr,
149                            uint32_t index, uint32_t pool);
150 static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index);
151 static int eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
152                 struct rte_ether_addr *addr);
153
154 static void igbvf_intr_disable(struct e1000_hw *hw);
155 static int igbvf_dev_configure(struct rte_eth_dev *dev);
156 static int igbvf_dev_start(struct rte_eth_dev *dev);
157 static void igbvf_dev_stop(struct rte_eth_dev *dev);
158 static void igbvf_dev_close(struct rte_eth_dev *dev);
159 static void igbvf_promiscuous_enable(struct rte_eth_dev *dev);
160 static void igbvf_promiscuous_disable(struct rte_eth_dev *dev);
161 static void igbvf_allmulticast_enable(struct rte_eth_dev *dev);
162 static void igbvf_allmulticast_disable(struct rte_eth_dev *dev);
163 static int eth_igbvf_link_update(struct e1000_hw *hw);
164 static int eth_igbvf_stats_get(struct rte_eth_dev *dev,
165                                 struct rte_eth_stats *rte_stats);
166 static int eth_igbvf_xstats_get(struct rte_eth_dev *dev,
167                                 struct rte_eth_xstat *xstats, unsigned n);
168 static int eth_igbvf_xstats_get_names(struct rte_eth_dev *dev,
169                                       struct rte_eth_xstat_name *xstats_names,
170                                       unsigned limit);
171 static void eth_igbvf_stats_reset(struct rte_eth_dev *dev);
172 static int igbvf_vlan_filter_set(struct rte_eth_dev *dev,
173                 uint16_t vlan_id, int on);
174 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on);
175 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on);
176 static int igbvf_default_mac_addr_set(struct rte_eth_dev *dev,
177                 struct rte_ether_addr *addr);
178 static int igbvf_get_reg_length(struct rte_eth_dev *dev);
179 static int igbvf_get_regs(struct rte_eth_dev *dev,
180                 struct rte_dev_reg_info *regs);
181
182 static int eth_igb_rss_reta_update(struct rte_eth_dev *dev,
183                                    struct rte_eth_rss_reta_entry64 *reta_conf,
184                                    uint16_t reta_size);
185 static int eth_igb_rss_reta_query(struct rte_eth_dev *dev,
186                                   struct rte_eth_rss_reta_entry64 *reta_conf,
187                                   uint16_t reta_size);
188
189 static int eth_igb_syn_filter_get(struct rte_eth_dev *dev,
190                         struct rte_eth_syn_filter *filter);
191 static int eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
192                         enum rte_filter_op filter_op,
193                         void *arg);
194 static int igb_add_2tuple_filter(struct rte_eth_dev *dev,
195                         struct rte_eth_ntuple_filter *ntuple_filter);
196 static int igb_remove_2tuple_filter(struct rte_eth_dev *dev,
197                         struct rte_eth_ntuple_filter *ntuple_filter);
198 static int eth_igb_get_flex_filter(struct rte_eth_dev *dev,
199                         struct rte_eth_flex_filter *filter);
200 static int eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
201                         enum rte_filter_op filter_op,
202                         void *arg);
203 static int igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
204                         struct rte_eth_ntuple_filter *ntuple_filter);
205 static int igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
206                         struct rte_eth_ntuple_filter *ntuple_filter);
207 static int igb_get_ntuple_filter(struct rte_eth_dev *dev,
208                         struct rte_eth_ntuple_filter *filter);
209 static int igb_ntuple_filter_handle(struct rte_eth_dev *dev,
210                                 enum rte_filter_op filter_op,
211                                 void *arg);
212 static int igb_ethertype_filter_handle(struct rte_eth_dev *dev,
213                                 enum rte_filter_op filter_op,
214                                 void *arg);
215 static int igb_get_ethertype_filter(struct rte_eth_dev *dev,
216                         struct rte_eth_ethertype_filter *filter);
217 static int eth_igb_filter_ctrl(struct rte_eth_dev *dev,
218                      enum rte_filter_type filter_type,
219                      enum rte_filter_op filter_op,
220                      void *arg);
221 static int eth_igb_get_reg_length(struct rte_eth_dev *dev);
222 static int eth_igb_get_regs(struct rte_eth_dev *dev,
223                 struct rte_dev_reg_info *regs);
224 static int eth_igb_get_eeprom_length(struct rte_eth_dev *dev);
225 static int eth_igb_get_eeprom(struct rte_eth_dev *dev,
226                 struct rte_dev_eeprom_info *eeprom);
227 static int eth_igb_set_eeprom(struct rte_eth_dev *dev,
228                 struct rte_dev_eeprom_info *eeprom);
229 static int eth_igb_get_module_info(struct rte_eth_dev *dev,
230                                    struct rte_eth_dev_module_info *modinfo);
231 static int eth_igb_get_module_eeprom(struct rte_eth_dev *dev,
232                                      struct rte_dev_eeprom_info *info);
233 static int eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
234                                     struct rte_ether_addr *mc_addr_set,
235                                     uint32_t nb_mc_addr);
236 static int igb_timesync_enable(struct rte_eth_dev *dev);
237 static int igb_timesync_disable(struct rte_eth_dev *dev);
238 static int igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
239                                           struct timespec *timestamp,
240                                           uint32_t flags);
241 static int igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
242                                           struct timespec *timestamp);
243 static int igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta);
244 static int igb_timesync_read_time(struct rte_eth_dev *dev,
245                                   struct timespec *timestamp);
246 static int igb_timesync_write_time(struct rte_eth_dev *dev,
247                                    const struct timespec *timestamp);
248 static int eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev,
249                                         uint16_t queue_id);
250 static int eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev,
251                                          uint16_t queue_id);
252 static void eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
253                                        uint8_t queue, uint8_t msix_vector);
254 static void eth_igb_write_ivar(struct e1000_hw *hw, uint8_t msix_vector,
255                                uint8_t index, uint8_t offset);
256 static void eth_igb_configure_msix_intr(struct rte_eth_dev *dev);
257 static void eth_igbvf_interrupt_handler(void *param);
258 static void igbvf_mbx_process(struct rte_eth_dev *dev);
259 static int igb_filter_restore(struct rte_eth_dev *dev);
260
261 /*
262  * Define VF Stats MACRO for Non "cleared on read" register
263  */
264 #define UPDATE_VF_STAT(reg, last, cur)            \
265 {                                                 \
266         u32 latest = E1000_READ_REG(hw, reg);     \
267         cur += (latest - last) & UINT_MAX;        \
268         last = latest;                            \
269 }
270
271 #define IGB_FC_PAUSE_TIME 0x0680
272 #define IGB_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
273 #define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
274
275 #define IGBVF_PMD_NAME "rte_igbvf_pmd"     /* PMD name */
276
277 static enum e1000_fc_mode igb_fc_setting = e1000_fc_full;
278
279 /*
280  * The set of PCI devices this driver supports
281  */
282 static const struct rte_pci_id pci_id_igb_map[] = {
283         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576) },
284         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_FIBER) },
285         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES) },
286         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER) },
287         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER_ET2) },
288         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS) },
289         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS_SERDES) },
290         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES_QUAD) },
291
292         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_COPPER) },
293         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_FIBER_SERDES) },
294         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575GB_QUAD_COPPER) },
295
296         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER) },
297         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_FIBER) },
298         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SERDES) },
299         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SGMII) },
300         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER_DUAL) },
301         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_QUAD_FIBER) },
302
303         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_COPPER) },
304         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_FIBER) },
305         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SERDES) },
306         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SGMII) },
307         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_DA4) },
308         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER) },
309         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_OEM1) },
310         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_IT) },
311         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_FIBER) },
312         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES) },
313         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SGMII) },
314         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_FLASHLESS) },
315         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES_FLASHLESS) },
316         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I211_COPPER) },
317         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
318         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_SGMII) },
319         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
320         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SGMII) },
321         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SERDES) },
322         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_BACKPLANE) },
323         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SFP) },
324         { .vendor_id = 0, /* sentinel */ },
325 };
326
327 /*
328  * The set of PCI devices this driver supports (for 82576&I350 VF)
329  */
330 static const struct rte_pci_id pci_id_igbvf_map[] = {
331         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF) },
332         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF_HV) },
333         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF) },
334         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF_HV) },
335         { .vendor_id = 0, /* sentinel */ },
336 };
337
338 static const struct rte_eth_desc_lim rx_desc_lim = {
339         .nb_max = E1000_MAX_RING_DESC,
340         .nb_min = E1000_MIN_RING_DESC,
341         .nb_align = IGB_RXD_ALIGN,
342 };
343
344 static const struct rte_eth_desc_lim tx_desc_lim = {
345         .nb_max = E1000_MAX_RING_DESC,
346         .nb_min = E1000_MIN_RING_DESC,
347         .nb_align = IGB_RXD_ALIGN,
348         .nb_seg_max = IGB_TX_MAX_SEG,
349         .nb_mtu_seg_max = IGB_TX_MAX_MTU_SEG,
350 };
351
352 static const struct eth_dev_ops eth_igb_ops = {
353         .dev_configure        = eth_igb_configure,
354         .dev_start            = eth_igb_start,
355         .dev_stop             = eth_igb_stop,
356         .dev_set_link_up      = eth_igb_dev_set_link_up,
357         .dev_set_link_down    = eth_igb_dev_set_link_down,
358         .dev_close            = eth_igb_close,
359         .dev_reset            = eth_igb_reset,
360         .promiscuous_enable   = eth_igb_promiscuous_enable,
361         .promiscuous_disable  = eth_igb_promiscuous_disable,
362         .allmulticast_enable  = eth_igb_allmulticast_enable,
363         .allmulticast_disable = eth_igb_allmulticast_disable,
364         .link_update          = eth_igb_link_update,
365         .stats_get            = eth_igb_stats_get,
366         .xstats_get           = eth_igb_xstats_get,
367         .xstats_get_by_id     = eth_igb_xstats_get_by_id,
368         .xstats_get_names_by_id = eth_igb_xstats_get_names_by_id,
369         .xstats_get_names     = eth_igb_xstats_get_names,
370         .stats_reset          = eth_igb_stats_reset,
371         .xstats_reset         = eth_igb_xstats_reset,
372         .fw_version_get       = eth_igb_fw_version_get,
373         .dev_infos_get        = eth_igb_infos_get,
374         .dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
375         .mtu_set              = eth_igb_mtu_set,
376         .vlan_filter_set      = eth_igb_vlan_filter_set,
377         .vlan_tpid_set        = eth_igb_vlan_tpid_set,
378         .vlan_offload_set     = eth_igb_vlan_offload_set,
379         .rx_queue_setup       = eth_igb_rx_queue_setup,
380         .rx_queue_intr_enable = eth_igb_rx_queue_intr_enable,
381         .rx_queue_intr_disable = eth_igb_rx_queue_intr_disable,
382         .rx_queue_release     = eth_igb_rx_queue_release,
383         .rx_queue_count       = eth_igb_rx_queue_count,
384         .rx_descriptor_done   = eth_igb_rx_descriptor_done,
385         .rx_descriptor_status = eth_igb_rx_descriptor_status,
386         .tx_descriptor_status = eth_igb_tx_descriptor_status,
387         .tx_queue_setup       = eth_igb_tx_queue_setup,
388         .tx_queue_release     = eth_igb_tx_queue_release,
389         .tx_done_cleanup      = eth_igb_tx_done_cleanup,
390         .dev_led_on           = eth_igb_led_on,
391         .dev_led_off          = eth_igb_led_off,
392         .flow_ctrl_get        = eth_igb_flow_ctrl_get,
393         .flow_ctrl_set        = eth_igb_flow_ctrl_set,
394         .mac_addr_add         = eth_igb_rar_set,
395         .mac_addr_remove      = eth_igb_rar_clear,
396         .mac_addr_set         = eth_igb_default_mac_addr_set,
397         .reta_update          = eth_igb_rss_reta_update,
398         .reta_query           = eth_igb_rss_reta_query,
399         .rss_hash_update      = eth_igb_rss_hash_update,
400         .rss_hash_conf_get    = eth_igb_rss_hash_conf_get,
401         .filter_ctrl          = eth_igb_filter_ctrl,
402         .set_mc_addr_list     = eth_igb_set_mc_addr_list,
403         .rxq_info_get         = igb_rxq_info_get,
404         .txq_info_get         = igb_txq_info_get,
405         .timesync_enable      = igb_timesync_enable,
406         .timesync_disable     = igb_timesync_disable,
407         .timesync_read_rx_timestamp = igb_timesync_read_rx_timestamp,
408         .timesync_read_tx_timestamp = igb_timesync_read_tx_timestamp,
409         .get_reg              = eth_igb_get_regs,
410         .get_eeprom_length    = eth_igb_get_eeprom_length,
411         .get_eeprom           = eth_igb_get_eeprom,
412         .set_eeprom           = eth_igb_set_eeprom,
413         .get_module_info      = eth_igb_get_module_info,
414         .get_module_eeprom    = eth_igb_get_module_eeprom,
415         .timesync_adjust_time = igb_timesync_adjust_time,
416         .timesync_read_time   = igb_timesync_read_time,
417         .timesync_write_time  = igb_timesync_write_time,
418 };
419
420 /*
421  * dev_ops for virtual function, bare necessities for basic vf
422  * operation have been implemented
423  */
424 static const struct eth_dev_ops igbvf_eth_dev_ops = {
425         .dev_configure        = igbvf_dev_configure,
426         .dev_start            = igbvf_dev_start,
427         .dev_stop             = igbvf_dev_stop,
428         .dev_close            = igbvf_dev_close,
429         .promiscuous_enable   = igbvf_promiscuous_enable,
430         .promiscuous_disable  = igbvf_promiscuous_disable,
431         .allmulticast_enable  = igbvf_allmulticast_enable,
432         .allmulticast_disable = igbvf_allmulticast_disable,
433         .link_update          = eth_igb_link_update,
434         .stats_get            = eth_igbvf_stats_get,
435         .xstats_get           = eth_igbvf_xstats_get,
436         .xstats_get_names     = eth_igbvf_xstats_get_names,
437         .stats_reset          = eth_igbvf_stats_reset,
438         .xstats_reset         = eth_igbvf_stats_reset,
439         .vlan_filter_set      = igbvf_vlan_filter_set,
440         .dev_infos_get        = eth_igbvf_infos_get,
441         .dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
442         .rx_queue_setup       = eth_igb_rx_queue_setup,
443         .rx_queue_release     = eth_igb_rx_queue_release,
444         .rx_descriptor_done   = eth_igb_rx_descriptor_done,
445         .rx_descriptor_status = eth_igb_rx_descriptor_status,
446         .tx_descriptor_status = eth_igb_tx_descriptor_status,
447         .tx_queue_setup       = eth_igb_tx_queue_setup,
448         .tx_queue_release     = eth_igb_tx_queue_release,
449         .set_mc_addr_list     = eth_igb_set_mc_addr_list,
450         .rxq_info_get         = igb_rxq_info_get,
451         .txq_info_get         = igb_txq_info_get,
452         .mac_addr_set         = igbvf_default_mac_addr_set,
453         .get_reg              = igbvf_get_regs,
454 };
455
456 /* store statistics names and its offset in stats structure */
457 struct rte_igb_xstats_name_off {
458         char name[RTE_ETH_XSTATS_NAME_SIZE];
459         unsigned offset;
460 };
461
462 static const struct rte_igb_xstats_name_off rte_igb_stats_strings[] = {
463         {"rx_crc_errors", offsetof(struct e1000_hw_stats, crcerrs)},
464         {"rx_align_errors", offsetof(struct e1000_hw_stats, algnerrc)},
465         {"rx_symbol_errors", offsetof(struct e1000_hw_stats, symerrs)},
466         {"rx_missed_packets", offsetof(struct e1000_hw_stats, mpc)},
467         {"tx_single_collision_packets", offsetof(struct e1000_hw_stats, scc)},
468         {"tx_multiple_collision_packets", offsetof(struct e1000_hw_stats, mcc)},
469         {"tx_excessive_collision_packets", offsetof(struct e1000_hw_stats,
470                 ecol)},
471         {"tx_late_collisions", offsetof(struct e1000_hw_stats, latecol)},
472         {"tx_total_collisions", offsetof(struct e1000_hw_stats, colc)},
473         {"tx_deferred_packets", offsetof(struct e1000_hw_stats, dc)},
474         {"tx_no_carrier_sense_packets", offsetof(struct e1000_hw_stats, tncrs)},
475         {"rx_carrier_ext_errors", offsetof(struct e1000_hw_stats, cexterr)},
476         {"rx_length_errors", offsetof(struct e1000_hw_stats, rlec)},
477         {"rx_xon_packets", offsetof(struct e1000_hw_stats, xonrxc)},
478         {"tx_xon_packets", offsetof(struct e1000_hw_stats, xontxc)},
479         {"rx_xoff_packets", offsetof(struct e1000_hw_stats, xoffrxc)},
480         {"tx_xoff_packets", offsetof(struct e1000_hw_stats, xofftxc)},
481         {"rx_flow_control_unsupported_packets", offsetof(struct e1000_hw_stats,
482                 fcruc)},
483         {"rx_size_64_packets", offsetof(struct e1000_hw_stats, prc64)},
484         {"rx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, prc127)},
485         {"rx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, prc255)},
486         {"rx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, prc511)},
487         {"rx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
488                 prc1023)},
489         {"rx_size_1024_to_max_packets", offsetof(struct e1000_hw_stats,
490                 prc1522)},
491         {"rx_broadcast_packets", offsetof(struct e1000_hw_stats, bprc)},
492         {"rx_multicast_packets", offsetof(struct e1000_hw_stats, mprc)},
493         {"rx_undersize_errors", offsetof(struct e1000_hw_stats, ruc)},
494         {"rx_fragment_errors", offsetof(struct e1000_hw_stats, rfc)},
495         {"rx_oversize_errors", offsetof(struct e1000_hw_stats, roc)},
496         {"rx_jabber_errors", offsetof(struct e1000_hw_stats, rjc)},
497         {"rx_management_packets", offsetof(struct e1000_hw_stats, mgprc)},
498         {"rx_management_dropped", offsetof(struct e1000_hw_stats, mgpdc)},
499         {"tx_management_packets", offsetof(struct e1000_hw_stats, mgptc)},
500         {"rx_total_packets", offsetof(struct e1000_hw_stats, tpr)},
501         {"tx_total_packets", offsetof(struct e1000_hw_stats, tpt)},
502         {"rx_total_bytes", offsetof(struct e1000_hw_stats, tor)},
503         {"tx_total_bytes", offsetof(struct e1000_hw_stats, tot)},
504         {"tx_size_64_packets", offsetof(struct e1000_hw_stats, ptc64)},
505         {"tx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, ptc127)},
506         {"tx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, ptc255)},
507         {"tx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, ptc511)},
508         {"tx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
509                 ptc1023)},
510         {"tx_size_1023_to_max_packets", offsetof(struct e1000_hw_stats,
511                 ptc1522)},
512         {"tx_multicast_packets", offsetof(struct e1000_hw_stats, mptc)},
513         {"tx_broadcast_packets", offsetof(struct e1000_hw_stats, bptc)},
514         {"tx_tso_packets", offsetof(struct e1000_hw_stats, tsctc)},
515         {"tx_tso_errors", offsetof(struct e1000_hw_stats, tsctfc)},
516         {"rx_sent_to_host_packets", offsetof(struct e1000_hw_stats, rpthc)},
517         {"tx_sent_by_host_packets", offsetof(struct e1000_hw_stats, hgptc)},
518         {"rx_code_violation_packets", offsetof(struct e1000_hw_stats, scvpc)},
519
520         {"interrupt_assert_count", offsetof(struct e1000_hw_stats, iac)},
521 };
522
523 #define IGB_NB_XSTATS (sizeof(rte_igb_stats_strings) / \
524                 sizeof(rte_igb_stats_strings[0]))
525
526 static const struct rte_igb_xstats_name_off rte_igbvf_stats_strings[] = {
527         {"rx_multicast_packets", offsetof(struct e1000_vf_stats, mprc)},
528         {"rx_good_loopback_packets", offsetof(struct e1000_vf_stats, gprlbc)},
529         {"tx_good_loopback_packets", offsetof(struct e1000_vf_stats, gptlbc)},
530         {"rx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gorlbc)},
531         {"tx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gotlbc)},
532 };
533
534 #define IGBVF_NB_XSTATS (sizeof(rte_igbvf_stats_strings) / \
535                 sizeof(rte_igbvf_stats_strings[0]))
536
537
538 static inline void
539 igb_intr_enable(struct rte_eth_dev *dev)
540 {
541         struct e1000_interrupt *intr =
542                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
543         struct e1000_hw *hw =
544                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
545         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
546         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
547
548         if (rte_intr_allow_others(intr_handle) &&
549                 dev->data->dev_conf.intr_conf.lsc != 0) {
550                 E1000_WRITE_REG(hw, E1000_EIMS, 1 << IGB_MSIX_OTHER_INTR_VEC);
551         }
552
553         E1000_WRITE_REG(hw, E1000_IMS, intr->mask);
554         E1000_WRITE_FLUSH(hw);
555 }
556
557 static void
558 igb_intr_disable(struct rte_eth_dev *dev)
559 {
560         struct e1000_hw *hw =
561                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
562         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
563         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
564
565         if (rte_intr_allow_others(intr_handle) &&
566                 dev->data->dev_conf.intr_conf.lsc != 0) {
567                 E1000_WRITE_REG(hw, E1000_EIMC, 1 << IGB_MSIX_OTHER_INTR_VEC);
568         }
569
570         E1000_WRITE_REG(hw, E1000_IMC, ~0);
571         E1000_WRITE_FLUSH(hw);
572 }
573
574 static inline void
575 igbvf_intr_enable(struct rte_eth_dev *dev)
576 {
577         struct e1000_hw *hw =
578                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
579
580         /* only for mailbox */
581         E1000_WRITE_REG(hw, E1000_EIAM, 1 << E1000_VTIVAR_MISC_MAILBOX);
582         E1000_WRITE_REG(hw, E1000_EIAC, 1 << E1000_VTIVAR_MISC_MAILBOX);
583         E1000_WRITE_REG(hw, E1000_EIMS, 1 << E1000_VTIVAR_MISC_MAILBOX);
584         E1000_WRITE_FLUSH(hw);
585 }
586
587 /* only for mailbox now. If RX/TX needed, should extend this function.  */
588 static void
589 igbvf_set_ivar_map(struct e1000_hw *hw, uint8_t msix_vector)
590 {
591         uint32_t tmp = 0;
592
593         /* mailbox */
594         tmp |= (msix_vector & E1000_VTIVAR_MISC_INTR_MASK);
595         tmp |= E1000_VTIVAR_VALID;
596         E1000_WRITE_REG(hw, E1000_VTIVAR_MISC, tmp);
597 }
598
599 static void
600 eth_igbvf_configure_msix_intr(struct rte_eth_dev *dev)
601 {
602         struct e1000_hw *hw =
603                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
604
605         /* Configure VF other cause ivar */
606         igbvf_set_ivar_map(hw, E1000_VTIVAR_MISC_MAILBOX);
607 }
608
609 static inline int32_t
610 igb_pf_reset_hw(struct e1000_hw *hw)
611 {
612         uint32_t ctrl_ext;
613         int32_t status;
614
615         status = e1000_reset_hw(hw);
616
617         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
618         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
619         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
620         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
621         E1000_WRITE_FLUSH(hw);
622
623         return status;
624 }
625
626 static void
627 igb_identify_hardware(struct rte_eth_dev *dev, struct rte_pci_device *pci_dev)
628 {
629         struct e1000_hw *hw =
630                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
631
632
633         hw->vendor_id = pci_dev->id.vendor_id;
634         hw->device_id = pci_dev->id.device_id;
635         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
636         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
637
638         e1000_set_mac_type(hw);
639
640         /* need to check if it is a vf device below */
641 }
642
643 static int
644 igb_reset_swfw_lock(struct e1000_hw *hw)
645 {
646         int ret_val;
647
648         /*
649          * Do mac ops initialization manually here, since we will need
650          * some function pointers set by this call.
651          */
652         ret_val = e1000_init_mac_params(hw);
653         if (ret_val)
654                 return ret_val;
655
656         /*
657          * SMBI lock should not fail in this early stage. If this is the case,
658          * it is due to an improper exit of the application.
659          * So force the release of the faulty lock.
660          */
661         if (e1000_get_hw_semaphore_generic(hw) < 0) {
662                 PMD_DRV_LOG(DEBUG, "SMBI lock released");
663         }
664         e1000_put_hw_semaphore_generic(hw);
665
666         if (hw->mac.ops.acquire_swfw_sync != NULL) {
667                 uint16_t mask;
668
669                 /*
670                  * Phy lock should not fail in this early stage. If this is the case,
671                  * it is due to an improper exit of the application.
672                  * So force the release of the faulty lock.
673                  */
674                 mask = E1000_SWFW_PHY0_SM << hw->bus.func;
675                 if (hw->bus.func > E1000_FUNC_1)
676                         mask <<= 2;
677                 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
678                         PMD_DRV_LOG(DEBUG, "SWFW phy%d lock released",
679                                     hw->bus.func);
680                 }
681                 hw->mac.ops.release_swfw_sync(hw, mask);
682
683                 /*
684                  * This one is more tricky since it is common to all ports; but
685                  * swfw_sync retries last long enough (1s) to be almost sure that if
686                  * lock can not be taken it is due to an improper lock of the
687                  * semaphore.
688                  */
689                 mask = E1000_SWFW_EEP_SM;
690                 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
691                         PMD_DRV_LOG(DEBUG, "SWFW common locks released");
692                 }
693                 hw->mac.ops.release_swfw_sync(hw, mask);
694         }
695
696         return E1000_SUCCESS;
697 }
698
699 /* Remove all ntuple filters of the device */
700 static int igb_ntuple_filter_uninit(struct rte_eth_dev *eth_dev)
701 {
702         struct e1000_filter_info *filter_info =
703                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
704         struct e1000_5tuple_filter *p_5tuple;
705         struct e1000_2tuple_filter *p_2tuple;
706
707         while ((p_5tuple = TAILQ_FIRST(&filter_info->fivetuple_list))) {
708                 TAILQ_REMOVE(&filter_info->fivetuple_list,
709                         p_5tuple, entries);
710                         rte_free(p_5tuple);
711         }
712         filter_info->fivetuple_mask = 0;
713         while ((p_2tuple = TAILQ_FIRST(&filter_info->twotuple_list))) {
714                 TAILQ_REMOVE(&filter_info->twotuple_list,
715                         p_2tuple, entries);
716                         rte_free(p_2tuple);
717         }
718         filter_info->twotuple_mask = 0;
719
720         return 0;
721 }
722
723 /* Remove all flex filters of the device */
724 static int igb_flex_filter_uninit(struct rte_eth_dev *eth_dev)
725 {
726         struct e1000_filter_info *filter_info =
727                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
728         struct e1000_flex_filter *p_flex;
729
730         while ((p_flex = TAILQ_FIRST(&filter_info->flex_list))) {
731                 TAILQ_REMOVE(&filter_info->flex_list, p_flex, entries);
732                 rte_free(p_flex);
733         }
734         filter_info->flex_mask = 0;
735
736         return 0;
737 }
738
739 static int
740 eth_igb_dev_init(struct rte_eth_dev *eth_dev)
741 {
742         int error = 0;
743         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
744         struct e1000_hw *hw =
745                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
746         struct e1000_vfta * shadow_vfta =
747                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
748         struct e1000_filter_info *filter_info =
749                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
750         struct e1000_adapter *adapter =
751                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
752
753         uint32_t ctrl_ext;
754
755         eth_dev->dev_ops = &eth_igb_ops;
756         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
757         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
758         eth_dev->tx_pkt_prepare = &eth_igb_prep_pkts;
759
760         /* for secondary processes, we don't initialise any further as primary
761          * has already done this work. Only check we don't need a different
762          * RX function */
763         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
764                 if (eth_dev->data->scattered_rx)
765                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
766                 return 0;
767         }
768
769         rte_eth_copy_pci_info(eth_dev, pci_dev);
770
771         hw->hw_addr= (void *)pci_dev->mem_resource[0].addr;
772
773         igb_identify_hardware(eth_dev, pci_dev);
774         if (e1000_setup_init_funcs(hw, FALSE) != E1000_SUCCESS) {
775                 error = -EIO;
776                 goto err_late;
777         }
778
779         e1000_get_bus_info(hw);
780
781         /* Reset any pending lock */
782         if (igb_reset_swfw_lock(hw) != E1000_SUCCESS) {
783                 error = -EIO;
784                 goto err_late;
785         }
786
787         /* Finish initialization */
788         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) {
789                 error = -EIO;
790                 goto err_late;
791         }
792
793         hw->mac.autoneg = 1;
794         hw->phy.autoneg_wait_to_complete = 0;
795         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
796
797         /* Copper options */
798         if (hw->phy.media_type == e1000_media_type_copper) {
799                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
800                 hw->phy.disable_polarity_correction = 0;
801                 hw->phy.ms_type = e1000_ms_hw_default;
802         }
803
804         /*
805          * Start from a known state, this is important in reading the nvm
806          * and mac from that.
807          */
808         igb_pf_reset_hw(hw);
809
810         /* Make sure we have a good EEPROM before we read from it */
811         if (e1000_validate_nvm_checksum(hw) < 0) {
812                 /*
813                  * Some PCI-E parts fail the first check due to
814                  * the link being in sleep state, call it again,
815                  * if it fails a second time its a real issue.
816                  */
817                 if (e1000_validate_nvm_checksum(hw) < 0) {
818                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
819                         error = -EIO;
820                         goto err_late;
821                 }
822         }
823
824         /* Read the permanent MAC address out of the EEPROM */
825         if (e1000_read_mac_addr(hw) != 0) {
826                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
827                 error = -EIO;
828                 goto err_late;
829         }
830
831         /* Allocate memory for storing MAC addresses */
832         eth_dev->data->mac_addrs = rte_zmalloc("e1000",
833                 RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0);
834         if (eth_dev->data->mac_addrs == NULL) {
835                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
836                                                 "store MAC addresses",
837                                 RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count);
838                 error = -ENOMEM;
839                 goto err_late;
840         }
841
842         /* Copy the permanent MAC address */
843         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
844                         &eth_dev->data->mac_addrs[0]);
845
846         /* initialize the vfta */
847         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
848
849         /* Now initialize the hardware */
850         if (igb_hardware_init(hw) != 0) {
851                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
852                 rte_free(eth_dev->data->mac_addrs);
853                 eth_dev->data->mac_addrs = NULL;
854                 error = -ENODEV;
855                 goto err_late;
856         }
857         hw->mac.get_link_status = 1;
858         adapter->stopped = 0;
859
860         /* Indicate SOL/IDER usage */
861         if (e1000_check_reset_block(hw) < 0) {
862                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to"
863                                         "SOL/IDER session");
864         }
865
866         /* initialize PF if max_vfs not zero */
867         igb_pf_host_init(eth_dev);
868
869         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
870         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
871         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
872         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
873         E1000_WRITE_FLUSH(hw);
874
875         PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
876                      eth_dev->data->port_id, pci_dev->id.vendor_id,
877                      pci_dev->id.device_id);
878
879         rte_intr_callback_register(&pci_dev->intr_handle,
880                                    eth_igb_interrupt_handler,
881                                    (void *)eth_dev);
882
883         /* enable uio/vfio intr/eventfd mapping */
884         rte_intr_enable(&pci_dev->intr_handle);
885
886         /* enable support intr */
887         igb_intr_enable(eth_dev);
888
889         /* initialize filter info */
890         memset(filter_info, 0,
891                sizeof(struct e1000_filter_info));
892
893         TAILQ_INIT(&filter_info->flex_list);
894         TAILQ_INIT(&filter_info->twotuple_list);
895         TAILQ_INIT(&filter_info->fivetuple_list);
896
897         TAILQ_INIT(&igb_filter_ntuple_list);
898         TAILQ_INIT(&igb_filter_ethertype_list);
899         TAILQ_INIT(&igb_filter_syn_list);
900         TAILQ_INIT(&igb_filter_flex_list);
901         TAILQ_INIT(&igb_filter_rss_list);
902         TAILQ_INIT(&igb_flow_list);
903
904         return 0;
905
906 err_late:
907         igb_hw_control_release(hw);
908
909         return error;
910 }
911
912 static int
913 eth_igb_dev_uninit(struct rte_eth_dev *eth_dev)
914 {
915         struct rte_pci_device *pci_dev;
916         struct rte_intr_handle *intr_handle;
917         struct e1000_hw *hw;
918         struct e1000_adapter *adapter =
919                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
920         struct e1000_filter_info *filter_info =
921                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
922
923         PMD_INIT_FUNC_TRACE();
924
925         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
926                 return -EPERM;
927
928         hw = E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
929         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
930         intr_handle = &pci_dev->intr_handle;
931
932         if (adapter->stopped == 0)
933                 eth_igb_close(eth_dev);
934
935         eth_dev->dev_ops = NULL;
936         eth_dev->rx_pkt_burst = NULL;
937         eth_dev->tx_pkt_burst = NULL;
938
939         /* Reset any pending lock */
940         igb_reset_swfw_lock(hw);
941
942         /* uninitialize PF if max_vfs not zero */
943         igb_pf_host_uninit(eth_dev);
944
945         /* disable uio intr before callback unregister */
946         rte_intr_disable(intr_handle);
947         rte_intr_callback_unregister(intr_handle,
948                                      eth_igb_interrupt_handler, eth_dev);
949
950         /* clear the SYN filter info */
951         filter_info->syn_info = 0;
952
953         /* clear the ethertype filters info */
954         filter_info->ethertype_mask = 0;
955         memset(filter_info->ethertype_filters, 0,
956                 E1000_MAX_ETQF_FILTERS * sizeof(struct igb_ethertype_filter));
957
958         /* clear the rss filter info */
959         memset(&filter_info->rss_info, 0,
960                 sizeof(struct igb_rte_flow_rss_conf));
961
962         /* remove all ntuple filters of the device */
963         igb_ntuple_filter_uninit(eth_dev);
964
965         /* remove all flex filters of the device */
966         igb_flex_filter_uninit(eth_dev);
967
968         /* clear all the filters list */
969         igb_filterlist_flush(eth_dev);
970
971         return 0;
972 }
973
974 /*
975  * Virtual Function device init
976  */
977 static int
978 eth_igbvf_dev_init(struct rte_eth_dev *eth_dev)
979 {
980         struct rte_pci_device *pci_dev;
981         struct rte_intr_handle *intr_handle;
982         struct e1000_adapter *adapter =
983                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
984         struct e1000_hw *hw =
985                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
986         int diag;
987         struct rte_ether_addr *perm_addr =
988                 (struct rte_ether_addr *)hw->mac.perm_addr;
989
990         PMD_INIT_FUNC_TRACE();
991
992         eth_dev->dev_ops = &igbvf_eth_dev_ops;
993         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
994         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
995         eth_dev->tx_pkt_prepare = &eth_igb_prep_pkts;
996
997         /* for secondary processes, we don't initialise any further as primary
998          * has already done this work. Only check we don't need a different
999          * RX function */
1000         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
1001                 if (eth_dev->data->scattered_rx)
1002                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
1003                 return 0;
1004         }
1005
1006         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1007         rte_eth_copy_pci_info(eth_dev, pci_dev);
1008
1009         hw->device_id = pci_dev->id.device_id;
1010         hw->vendor_id = pci_dev->id.vendor_id;
1011         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
1012         adapter->stopped = 0;
1013
1014         /* Initialize the shared code (base driver) */
1015         diag = e1000_setup_init_funcs(hw, TRUE);
1016         if (diag != 0) {
1017                 PMD_INIT_LOG(ERR, "Shared code init failed for igbvf: %d",
1018                         diag);
1019                 return -EIO;
1020         }
1021
1022         /* init_mailbox_params */
1023         hw->mbx.ops.init_params(hw);
1024
1025         /* Disable the interrupts for VF */
1026         igbvf_intr_disable(hw);
1027
1028         diag = hw->mac.ops.reset_hw(hw);
1029
1030         /* Allocate memory for storing MAC addresses */
1031         eth_dev->data->mac_addrs = rte_zmalloc("igbvf", RTE_ETHER_ADDR_LEN *
1032                 hw->mac.rar_entry_count, 0);
1033         if (eth_dev->data->mac_addrs == NULL) {
1034                 PMD_INIT_LOG(ERR,
1035                         "Failed to allocate %d bytes needed to store MAC "
1036                         "addresses",
1037                         RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count);
1038                 return -ENOMEM;
1039         }
1040
1041         /* Generate a random MAC address, if none was assigned by PF. */
1042         if (rte_is_zero_ether_addr(perm_addr)) {
1043                 rte_eth_random_addr(perm_addr->addr_bytes);
1044                 PMD_INIT_LOG(INFO, "\tVF MAC address not assigned by Host PF");
1045                 PMD_INIT_LOG(INFO, "\tAssign randomly generated MAC address "
1046                              "%02x:%02x:%02x:%02x:%02x:%02x",
1047                              perm_addr->addr_bytes[0],
1048                              perm_addr->addr_bytes[1],
1049                              perm_addr->addr_bytes[2],
1050                              perm_addr->addr_bytes[3],
1051                              perm_addr->addr_bytes[4],
1052                              perm_addr->addr_bytes[5]);
1053         }
1054
1055         diag = e1000_rar_set(hw, perm_addr->addr_bytes, 0);
1056         if (diag) {
1057                 rte_free(eth_dev->data->mac_addrs);
1058                 eth_dev->data->mac_addrs = NULL;
1059                 return diag;
1060         }
1061         /* Copy the permanent MAC address */
1062         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.perm_addr,
1063                         &eth_dev->data->mac_addrs[0]);
1064
1065         PMD_INIT_LOG(DEBUG, "port %d vendorID=0x%x deviceID=0x%x "
1066                      "mac.type=%s",
1067                      eth_dev->data->port_id, pci_dev->id.vendor_id,
1068                      pci_dev->id.device_id, "igb_mac_82576_vf");
1069
1070         intr_handle = &pci_dev->intr_handle;
1071         rte_intr_callback_register(intr_handle,
1072                                    eth_igbvf_interrupt_handler, eth_dev);
1073
1074         return 0;
1075 }
1076
1077 static int
1078 eth_igbvf_dev_uninit(struct rte_eth_dev *eth_dev)
1079 {
1080         struct e1000_adapter *adapter =
1081                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
1082         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1083
1084         PMD_INIT_FUNC_TRACE();
1085
1086         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1087                 return -EPERM;
1088
1089         if (adapter->stopped == 0)
1090                 igbvf_dev_close(eth_dev);
1091
1092         eth_dev->dev_ops = NULL;
1093         eth_dev->rx_pkt_burst = NULL;
1094         eth_dev->tx_pkt_burst = NULL;
1095
1096         /* disable uio intr before callback unregister */
1097         rte_intr_disable(&pci_dev->intr_handle);
1098         rte_intr_callback_unregister(&pci_dev->intr_handle,
1099                                      eth_igbvf_interrupt_handler,
1100                                      (void *)eth_dev);
1101
1102         return 0;
1103 }
1104
1105 static int eth_igb_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1106         struct rte_pci_device *pci_dev)
1107 {
1108         return rte_eth_dev_pci_generic_probe(pci_dev,
1109                 sizeof(struct e1000_adapter), eth_igb_dev_init);
1110 }
1111
1112 static int eth_igb_pci_remove(struct rte_pci_device *pci_dev)
1113 {
1114         return rte_eth_dev_pci_generic_remove(pci_dev, eth_igb_dev_uninit);
1115 }
1116
1117 static struct rte_pci_driver rte_igb_pmd = {
1118         .id_table = pci_id_igb_map,
1119         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
1120         .probe = eth_igb_pci_probe,
1121         .remove = eth_igb_pci_remove,
1122 };
1123
1124
1125 static int eth_igbvf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1126         struct rte_pci_device *pci_dev)
1127 {
1128         return rte_eth_dev_pci_generic_probe(pci_dev,
1129                 sizeof(struct e1000_adapter), eth_igbvf_dev_init);
1130 }
1131
1132 static int eth_igbvf_pci_remove(struct rte_pci_device *pci_dev)
1133 {
1134         return rte_eth_dev_pci_generic_remove(pci_dev, eth_igbvf_dev_uninit);
1135 }
1136
1137 /*
1138  * virtual function driver struct
1139  */
1140 static struct rte_pci_driver rte_igbvf_pmd = {
1141         .id_table = pci_id_igbvf_map,
1142         .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
1143         .probe = eth_igbvf_pci_probe,
1144         .remove = eth_igbvf_pci_remove,
1145 };
1146
1147 static void
1148 igb_vmdq_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1149 {
1150         struct e1000_hw *hw =
1151                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1152         /* RCTL: enable VLAN filter since VMDq always use VLAN filter */
1153         uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
1154         rctl |= E1000_RCTL_VFE;
1155         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1156 }
1157
1158 static int
1159 igb_check_mq_mode(struct rte_eth_dev *dev)
1160 {
1161         enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
1162         enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
1163         uint16_t nb_rx_q = dev->data->nb_rx_queues;
1164         uint16_t nb_tx_q = dev->data->nb_tx_queues;
1165
1166         if ((rx_mq_mode & ETH_MQ_RX_DCB_FLAG) ||
1167             tx_mq_mode == ETH_MQ_TX_DCB ||
1168             tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
1169                 PMD_INIT_LOG(ERR, "DCB mode is not supported.");
1170                 return -EINVAL;
1171         }
1172         if (RTE_ETH_DEV_SRIOV(dev).active != 0) {
1173                 /* Check multi-queue mode.
1174                  * To no break software we accept ETH_MQ_RX_NONE as this might
1175                  * be used to turn off VLAN filter.
1176                  */
1177
1178                 if (rx_mq_mode == ETH_MQ_RX_NONE ||
1179                     rx_mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
1180                         dev->data->dev_conf.rxmode.mq_mode = ETH_MQ_RX_VMDQ_ONLY;
1181                         RTE_ETH_DEV_SRIOV(dev).nb_q_per_pool = 1;
1182                 } else {
1183                         /* Only support one queue on VFs.
1184                          * RSS together with SRIOV is not supported.
1185                          */
1186                         PMD_INIT_LOG(ERR, "SRIOV is active,"
1187                                         " wrong mq_mode rx %d.",
1188                                         rx_mq_mode);
1189                         return -EINVAL;
1190                 }
1191                 /* TX mode is not used here, so mode might be ignored.*/
1192                 if (tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
1193                         /* SRIOV only works in VMDq enable mode */
1194                         PMD_INIT_LOG(WARNING, "SRIOV is active,"
1195                                         " TX mode %d is not supported. "
1196                                         " Driver will behave as %d mode.",
1197                                         tx_mq_mode, ETH_MQ_TX_VMDQ_ONLY);
1198                 }
1199
1200                 /* check valid queue number */
1201                 if ((nb_rx_q > 1) || (nb_tx_q > 1)) {
1202                         PMD_INIT_LOG(ERR, "SRIOV is active,"
1203                                         " only support one queue on VFs.");
1204                         return -EINVAL;
1205                 }
1206         } else {
1207                 /* To no break software that set invalid mode, only display
1208                  * warning if invalid mode is used.
1209                  */
1210                 if (rx_mq_mode != ETH_MQ_RX_NONE &&
1211                     rx_mq_mode != ETH_MQ_RX_VMDQ_ONLY &&
1212                     rx_mq_mode != ETH_MQ_RX_RSS) {
1213                         /* RSS together with VMDq not supported*/
1214                         PMD_INIT_LOG(ERR, "RX mode %d is not supported.",
1215                                      rx_mq_mode);
1216                         return -EINVAL;
1217                 }
1218
1219                 if (tx_mq_mode != ETH_MQ_TX_NONE &&
1220                     tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
1221                         PMD_INIT_LOG(WARNING, "TX mode %d is not supported."
1222                                         " Due to txmode is meaningless in this"
1223                                         " driver, just ignore.",
1224                                         tx_mq_mode);
1225                 }
1226         }
1227         return 0;
1228 }
1229
1230 static int
1231 eth_igb_configure(struct rte_eth_dev *dev)
1232 {
1233         struct e1000_interrupt *intr =
1234                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1235         int ret;
1236
1237         PMD_INIT_FUNC_TRACE();
1238
1239         /* multipe queue mode checking */
1240         ret  = igb_check_mq_mode(dev);
1241         if (ret != 0) {
1242                 PMD_DRV_LOG(ERR, "igb_check_mq_mode fails with %d.",
1243                             ret);
1244                 return ret;
1245         }
1246
1247         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1248         PMD_INIT_FUNC_TRACE();
1249
1250         return 0;
1251 }
1252
1253 static void
1254 eth_igb_rxtx_control(struct rte_eth_dev *dev,
1255                      bool enable)
1256 {
1257         struct e1000_hw *hw =
1258                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1259         uint32_t tctl, rctl;
1260
1261         tctl = E1000_READ_REG(hw, E1000_TCTL);
1262         rctl = E1000_READ_REG(hw, E1000_RCTL);
1263
1264         if (enable) {
1265                 /* enable Tx/Rx */
1266                 tctl |= E1000_TCTL_EN;
1267                 rctl |= E1000_RCTL_EN;
1268         } else {
1269                 /* disable Tx/Rx */
1270                 tctl &= ~E1000_TCTL_EN;
1271                 rctl &= ~E1000_RCTL_EN;
1272         }
1273         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1274         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1275         E1000_WRITE_FLUSH(hw);
1276 }
1277
1278 static int
1279 eth_igb_start(struct rte_eth_dev *dev)
1280 {
1281         struct e1000_hw *hw =
1282                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1283         struct e1000_adapter *adapter =
1284                 E1000_DEV_PRIVATE(dev->data->dev_private);
1285         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1286         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1287         int ret, mask;
1288         uint32_t intr_vector = 0;
1289         uint32_t ctrl_ext;
1290         uint32_t *speeds;
1291         int num_speeds;
1292         bool autoneg;
1293
1294         PMD_INIT_FUNC_TRACE();
1295
1296         /* disable uio/vfio intr/eventfd mapping */
1297         rte_intr_disable(intr_handle);
1298
1299         /* Power up the phy. Needed to make the link go Up */
1300         eth_igb_dev_set_link_up(dev);
1301
1302         /*
1303          * Packet Buffer Allocation (PBA)
1304          * Writing PBA sets the receive portion of the buffer
1305          * the remainder is used for the transmit buffer.
1306          */
1307         if (hw->mac.type == e1000_82575) {
1308                 uint32_t pba;
1309
1310                 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1311                 E1000_WRITE_REG(hw, E1000_PBA, pba);
1312         }
1313
1314         /* Put the address into the Receive Address Array */
1315         e1000_rar_set(hw, hw->mac.addr, 0);
1316
1317         /* Initialize the hardware */
1318         if (igb_hardware_init(hw)) {
1319                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
1320                 return -EIO;
1321         }
1322         adapter->stopped = 0;
1323
1324         E1000_WRITE_REG(hw, E1000_VET,
1325                         RTE_ETHER_TYPE_VLAN << 16 | RTE_ETHER_TYPE_VLAN);
1326
1327         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1328         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
1329         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
1330         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1331         E1000_WRITE_FLUSH(hw);
1332
1333         /* configure PF module if SRIOV enabled */
1334         igb_pf_host_configure(dev);
1335
1336         /* check and configure queue intr-vector mapping */
1337         if ((rte_intr_cap_multiple(intr_handle) ||
1338              !RTE_ETH_DEV_SRIOV(dev).active) &&
1339             dev->data->dev_conf.intr_conf.rxq != 0) {
1340                 intr_vector = dev->data->nb_rx_queues;
1341                 if (rte_intr_efd_enable(intr_handle, intr_vector))
1342                         return -1;
1343         }
1344
1345         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
1346                 intr_handle->intr_vec =
1347                         rte_zmalloc("intr_vec",
1348                                     dev->data->nb_rx_queues * sizeof(int), 0);
1349                 if (intr_handle->intr_vec == NULL) {
1350                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
1351                                      " intr_vec", dev->data->nb_rx_queues);
1352                         return -ENOMEM;
1353                 }
1354         }
1355
1356         /* confiugre msix for rx interrupt */
1357         eth_igb_configure_msix_intr(dev);
1358
1359         /* Configure for OS presence */
1360         igb_init_manageability(hw);
1361
1362         eth_igb_tx_init(dev);
1363
1364         /* This can fail when allocating mbufs for descriptor rings */
1365         ret = eth_igb_rx_init(dev);
1366         if (ret) {
1367                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
1368                 igb_dev_clear_queues(dev);
1369                 return ret;
1370         }
1371
1372         e1000_clear_hw_cntrs_base_generic(hw);
1373
1374         /*
1375          * VLAN Offload Settings
1376          */
1377         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
1378                         ETH_VLAN_EXTEND_MASK;
1379         ret = eth_igb_vlan_offload_set(dev, mask);
1380         if (ret) {
1381                 PMD_INIT_LOG(ERR, "Unable to set vlan offload");
1382                 igb_dev_clear_queues(dev);
1383                 return ret;
1384         }
1385
1386         if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
1387                 /* Enable VLAN filter since VMDq always use VLAN filter */
1388                 igb_vmdq_vlan_hw_filter_enable(dev);
1389         }
1390
1391         if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) ||
1392                 (hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i210) ||
1393                 (hw->mac.type == e1000_i211)) {
1394                 /* Configure EITR with the maximum possible value (0xFFFF) */
1395                 E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF);
1396         }
1397
1398         /* Setup link speed and duplex */
1399         speeds = &dev->data->dev_conf.link_speeds;
1400         if (*speeds == ETH_LINK_SPEED_AUTONEG) {
1401                 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
1402                 hw->mac.autoneg = 1;
1403         } else {
1404                 num_speeds = 0;
1405                 autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
1406
1407                 /* Reset */
1408                 hw->phy.autoneg_advertised = 0;
1409
1410                 if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1411                                 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1412                                 ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
1413                         num_speeds = -1;
1414                         goto error_invalid_config;
1415                 }
1416                 if (*speeds & ETH_LINK_SPEED_10M_HD) {
1417                         hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
1418                         num_speeds++;
1419                 }
1420                 if (*speeds & ETH_LINK_SPEED_10M) {
1421                         hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
1422                         num_speeds++;
1423                 }
1424                 if (*speeds & ETH_LINK_SPEED_100M_HD) {
1425                         hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
1426                         num_speeds++;
1427                 }
1428                 if (*speeds & ETH_LINK_SPEED_100M) {
1429                         hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
1430                         num_speeds++;
1431                 }
1432                 if (*speeds & ETH_LINK_SPEED_1G) {
1433                         hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
1434                         num_speeds++;
1435                 }
1436                 if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
1437                         goto error_invalid_config;
1438
1439                 /* Set/reset the mac.autoneg based on the link speed,
1440                  * fixed or not
1441                  */
1442                 if (!autoneg) {
1443                         hw->mac.autoneg = 0;
1444                         hw->mac.forced_speed_duplex =
1445                                         hw->phy.autoneg_advertised;
1446                 } else {
1447                         hw->mac.autoneg = 1;
1448                 }
1449         }
1450
1451         e1000_setup_link(hw);
1452
1453         if (rte_intr_allow_others(intr_handle)) {
1454                 /* check if lsc interrupt is enabled */
1455                 if (dev->data->dev_conf.intr_conf.lsc != 0)
1456                         eth_igb_lsc_interrupt_setup(dev, TRUE);
1457                 else
1458                         eth_igb_lsc_interrupt_setup(dev, FALSE);
1459         } else {
1460                 rte_intr_callback_unregister(intr_handle,
1461                                              eth_igb_interrupt_handler,
1462                                              (void *)dev);
1463                 if (dev->data->dev_conf.intr_conf.lsc != 0)
1464                         PMD_INIT_LOG(INFO, "lsc won't enable because of"
1465                                      " no intr multiplex");
1466         }
1467
1468         /* check if rxq interrupt is enabled */
1469         if (dev->data->dev_conf.intr_conf.rxq != 0 &&
1470             rte_intr_dp_is_en(intr_handle))
1471                 eth_igb_rxq_interrupt_setup(dev);
1472
1473         /* enable uio/vfio intr/eventfd mapping */
1474         rte_intr_enable(intr_handle);
1475
1476         /* resume enabled intr since hw reset */
1477         igb_intr_enable(dev);
1478
1479         /* restore all types filter */
1480         igb_filter_restore(dev);
1481
1482         eth_igb_rxtx_control(dev, true);
1483         eth_igb_link_update(dev, 0);
1484
1485         PMD_INIT_LOG(DEBUG, "<<");
1486
1487         return 0;
1488
1489 error_invalid_config:
1490         PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
1491                      dev->data->dev_conf.link_speeds, dev->data->port_id);
1492         igb_dev_clear_queues(dev);
1493         return -EINVAL;
1494 }
1495
1496 /*********************************************************************
1497  *
1498  *  This routine disables all traffic on the adapter by issuing a
1499  *  global reset on the MAC.
1500  *
1501  **********************************************************************/
1502 static void
1503 eth_igb_stop(struct rte_eth_dev *dev)
1504 {
1505         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1506         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1507         struct rte_eth_link link;
1508         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1509
1510         eth_igb_rxtx_control(dev, false);
1511
1512         igb_intr_disable(dev);
1513
1514         /* disable intr eventfd mapping */
1515         rte_intr_disable(intr_handle);
1516
1517         igb_pf_reset_hw(hw);
1518         E1000_WRITE_REG(hw, E1000_WUC, 0);
1519
1520         /* Set bit for Go Link disconnect */
1521         if (hw->mac.type >= e1000_82580) {
1522                 uint32_t phpm_reg;
1523
1524                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1525                 phpm_reg |= E1000_82580_PM_GO_LINKD;
1526                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1527         }
1528
1529         /* Power down the phy. Needed to make the link go Down */
1530         eth_igb_dev_set_link_down(dev);
1531
1532         igb_dev_clear_queues(dev);
1533
1534         /* clear the recorded link status */
1535         memset(&link, 0, sizeof(link));
1536         rte_eth_linkstatus_set(dev, &link);
1537
1538         if (!rte_intr_allow_others(intr_handle))
1539                 /* resume to the default handler */
1540                 rte_intr_callback_register(intr_handle,
1541                                            eth_igb_interrupt_handler,
1542                                            (void *)dev);
1543
1544         /* Clean datapath event and queue/vec mapping */
1545         rte_intr_efd_disable(intr_handle);
1546         if (intr_handle->intr_vec != NULL) {
1547                 rte_free(intr_handle->intr_vec);
1548                 intr_handle->intr_vec = NULL;
1549         }
1550 }
1551
1552 static int
1553 eth_igb_dev_set_link_up(struct rte_eth_dev *dev)
1554 {
1555         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1556
1557         if (hw->phy.media_type == e1000_media_type_copper)
1558                 e1000_power_up_phy(hw);
1559         else
1560                 e1000_power_up_fiber_serdes_link(hw);
1561
1562         return 0;
1563 }
1564
1565 static int
1566 eth_igb_dev_set_link_down(struct rte_eth_dev *dev)
1567 {
1568         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1569
1570         if (hw->phy.media_type == e1000_media_type_copper)
1571                 e1000_power_down_phy(hw);
1572         else
1573                 e1000_shutdown_fiber_serdes_link(hw);
1574
1575         return 0;
1576 }
1577
1578 static void
1579 eth_igb_close(struct rte_eth_dev *dev)
1580 {
1581         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1582         struct e1000_adapter *adapter =
1583                 E1000_DEV_PRIVATE(dev->data->dev_private);
1584         struct rte_eth_link link;
1585         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1586         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1587
1588         eth_igb_stop(dev);
1589         adapter->stopped = 1;
1590
1591         e1000_phy_hw_reset(hw);
1592         igb_release_manageability(hw);
1593         igb_hw_control_release(hw);
1594
1595         /* Clear bit for Go Link disconnect */
1596         if (hw->mac.type >= e1000_82580) {
1597                 uint32_t phpm_reg;
1598
1599                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1600                 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1601                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1602         }
1603
1604         igb_dev_free_queues(dev);
1605
1606         if (intr_handle->intr_vec) {
1607                 rte_free(intr_handle->intr_vec);
1608                 intr_handle->intr_vec = NULL;
1609         }
1610
1611         memset(&link, 0, sizeof(link));
1612         rte_eth_linkstatus_set(dev, &link);
1613 }
1614
1615 /*
1616  * Reset PF device.
1617  */
1618 static int
1619 eth_igb_reset(struct rte_eth_dev *dev)
1620 {
1621         int ret;
1622
1623         /* When a DPDK PMD PF begin to reset PF port, it should notify all
1624          * its VF to make them align with it. The detailed notification
1625          * mechanism is PMD specific and is currently not implemented.
1626          * To avoid unexpected behavior in VF, currently reset of PF with
1627          * SR-IOV activation is not supported. It might be supported later.
1628          */
1629         if (dev->data->sriov.active)
1630                 return -ENOTSUP;
1631
1632         ret = eth_igb_dev_uninit(dev);
1633         if (ret)
1634                 return ret;
1635
1636         ret = eth_igb_dev_init(dev);
1637
1638         return ret;
1639 }
1640
1641
1642 static int
1643 igb_get_rx_buffer_size(struct e1000_hw *hw)
1644 {
1645         uint32_t rx_buf_size;
1646         if (hw->mac.type == e1000_82576) {
1647                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10;
1648         } else if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i350) {
1649                 /* PBS needs to be translated according to a lookup table */
1650                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf);
1651                 rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size);
1652                 rx_buf_size = (rx_buf_size << 10);
1653         } else if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
1654                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0x3f) << 10;
1655         } else {
1656                 rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10;
1657         }
1658
1659         return rx_buf_size;
1660 }
1661
1662 /*********************************************************************
1663  *
1664  *  Initialize the hardware
1665  *
1666  **********************************************************************/
1667 static int
1668 igb_hardware_init(struct e1000_hw *hw)
1669 {
1670         uint32_t rx_buf_size;
1671         int diag;
1672
1673         /* Let the firmware know the OS is in control */
1674         igb_hw_control_acquire(hw);
1675
1676         /*
1677          * These parameters control the automatic generation (Tx) and
1678          * response (Rx) to Ethernet PAUSE frames.
1679          * - High water mark should allow for at least two standard size (1518)
1680          *   frames to be received after sending an XOFF.
1681          * - Low water mark works best when it is very near the high water mark.
1682          *   This allows the receiver to restart by sending XON when it has
1683          *   drained a bit. Here we use an arbitrary value of 1500 which will
1684          *   restart after one full frame is pulled from the buffer. There
1685          *   could be several smaller frames in the buffer and if so they will
1686          *   not trigger the XON until their total number reduces the buffer
1687          *   by 1500.
1688          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1689          */
1690         rx_buf_size = igb_get_rx_buffer_size(hw);
1691
1692         hw->fc.high_water = rx_buf_size - (RTE_ETHER_MAX_LEN * 2);
1693         hw->fc.low_water = hw->fc.high_water - 1500;
1694         hw->fc.pause_time = IGB_FC_PAUSE_TIME;
1695         hw->fc.send_xon = 1;
1696
1697         /* Set Flow control, use the tunable location if sane */
1698         if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4))
1699                 hw->fc.requested_mode = igb_fc_setting;
1700         else
1701                 hw->fc.requested_mode = e1000_fc_none;
1702
1703         /* Issue a global reset */
1704         igb_pf_reset_hw(hw);
1705         E1000_WRITE_REG(hw, E1000_WUC, 0);
1706
1707         diag = e1000_init_hw(hw);
1708         if (diag < 0)
1709                 return diag;
1710
1711         E1000_WRITE_REG(hw, E1000_VET,
1712                         RTE_ETHER_TYPE_VLAN << 16 | RTE_ETHER_TYPE_VLAN);
1713         e1000_get_phy_info(hw);
1714         e1000_check_for_link(hw);
1715
1716         return 0;
1717 }
1718
1719 /* This function is based on igb_update_stats_counters() in igb/if_igb.c */
1720 static void
1721 igb_read_stats_registers(struct e1000_hw *hw, struct e1000_hw_stats *stats)
1722 {
1723         int pause_frames;
1724
1725         uint64_t old_gprc  = stats->gprc;
1726         uint64_t old_gptc  = stats->gptc;
1727         uint64_t old_tpr   = stats->tpr;
1728         uint64_t old_tpt   = stats->tpt;
1729         uint64_t old_rpthc = stats->rpthc;
1730         uint64_t old_hgptc = stats->hgptc;
1731
1732         if(hw->phy.media_type == e1000_media_type_copper ||
1733             (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1734                 stats->symerrs +=
1735                     E1000_READ_REG(hw,E1000_SYMERRS);
1736                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
1737         }
1738
1739         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
1740         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
1741         stats->scc += E1000_READ_REG(hw, E1000_SCC);
1742         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
1743
1744         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
1745         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
1746         stats->colc += E1000_READ_REG(hw, E1000_COLC);
1747         stats->dc += E1000_READ_REG(hw, E1000_DC);
1748         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
1749         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
1750         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
1751         /*
1752         ** For watchdog management we need to know if we have been
1753         ** paused during the last interval, so capture that here.
1754         */
1755         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
1756         stats->xoffrxc += pause_frames;
1757         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
1758         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
1759         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
1760         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
1761         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
1762         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
1763         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
1764         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
1765         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
1766         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
1767         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
1768         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
1769
1770         /* For the 64-bit byte counters the low dword must be read first. */
1771         /* Both registers clear on the read of the high dword */
1772
1773         /* Workaround CRC bytes included in size, take away 4 bytes/packet */
1774         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
1775         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
1776         stats->gorc -= (stats->gprc - old_gprc) * RTE_ETHER_CRC_LEN;
1777         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
1778         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
1779         stats->gotc -= (stats->gptc - old_gptc) * RTE_ETHER_CRC_LEN;
1780
1781         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
1782         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
1783         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
1784         stats->roc += E1000_READ_REG(hw, E1000_ROC);
1785         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
1786
1787         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
1788         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
1789
1790         stats->tor += E1000_READ_REG(hw, E1000_TORL);
1791         stats->tor += ((uint64_t)E1000_READ_REG(hw, E1000_TORH) << 32);
1792         stats->tor -= (stats->tpr - old_tpr) * RTE_ETHER_CRC_LEN;
1793         stats->tot += E1000_READ_REG(hw, E1000_TOTL);
1794         stats->tot += ((uint64_t)E1000_READ_REG(hw, E1000_TOTH) << 32);
1795         stats->tot -= (stats->tpt - old_tpt) * RTE_ETHER_CRC_LEN;
1796
1797         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
1798         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
1799         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
1800         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
1801         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
1802         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
1803         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
1804         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
1805
1806         /* Interrupt Counts */
1807
1808         stats->iac += E1000_READ_REG(hw, E1000_IAC);
1809         stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
1810         stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
1811         stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
1812         stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
1813         stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
1814         stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
1815         stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
1816         stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
1817
1818         /* Host to Card Statistics */
1819
1820         stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
1821         stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
1822         stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
1823         stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
1824         stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
1825         stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
1826         stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
1827         stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL);
1828         stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32);
1829         stats->hgorc -= (stats->rpthc - old_rpthc) * RTE_ETHER_CRC_LEN;
1830         stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL);
1831         stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32);
1832         stats->hgotc -= (stats->hgptc - old_hgptc) * RTE_ETHER_CRC_LEN;
1833         stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
1834         stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
1835         stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
1836
1837         stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
1838         stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
1839         stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
1840         stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
1841         stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
1842         stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
1843 }
1844
1845 static int
1846 eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
1847 {
1848         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1849         struct e1000_hw_stats *stats =
1850                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1851
1852         igb_read_stats_registers(hw, stats);
1853
1854         if (rte_stats == NULL)
1855                 return -EINVAL;
1856
1857         /* Rx Errors */
1858         rte_stats->imissed = stats->mpc;
1859         rte_stats->ierrors = stats->crcerrs +
1860                              stats->rlec + stats->ruc + stats->roc +
1861                              stats->rxerrc + stats->algnerrc + stats->cexterr;
1862
1863         /* Tx Errors */
1864         rte_stats->oerrors = stats->ecol + stats->latecol;
1865
1866         rte_stats->ipackets = stats->gprc;
1867         rte_stats->opackets = stats->gptc;
1868         rte_stats->ibytes   = stats->gorc;
1869         rte_stats->obytes   = stats->gotc;
1870         return 0;
1871 }
1872
1873 static void
1874 eth_igb_stats_reset(struct rte_eth_dev *dev)
1875 {
1876         struct e1000_hw_stats *hw_stats =
1877                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1878
1879         /* HW registers are cleared on read */
1880         eth_igb_stats_get(dev, NULL);
1881
1882         /* Reset software totals */
1883         memset(hw_stats, 0, sizeof(*hw_stats));
1884 }
1885
1886 static void
1887 eth_igb_xstats_reset(struct rte_eth_dev *dev)
1888 {
1889         struct e1000_hw_stats *stats =
1890                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1891
1892         /* HW registers are cleared on read */
1893         eth_igb_xstats_get(dev, NULL, IGB_NB_XSTATS);
1894
1895         /* Reset software totals */
1896         memset(stats, 0, sizeof(*stats));
1897 }
1898
1899 static int eth_igb_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
1900         struct rte_eth_xstat_name *xstats_names,
1901         __rte_unused unsigned int size)
1902 {
1903         unsigned i;
1904
1905         if (xstats_names == NULL)
1906                 return IGB_NB_XSTATS;
1907
1908         /* Note: limit checked in rte_eth_xstats_names() */
1909
1910         for (i = 0; i < IGB_NB_XSTATS; i++) {
1911                 strlcpy(xstats_names[i].name, rte_igb_stats_strings[i].name,
1912                         sizeof(xstats_names[i].name));
1913         }
1914
1915         return IGB_NB_XSTATS;
1916 }
1917
1918 static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev,
1919                 struct rte_eth_xstat_name *xstats_names, const uint64_t *ids,
1920                 unsigned int limit)
1921 {
1922         unsigned int i;
1923
1924         if (!ids) {
1925                 if (xstats_names == NULL)
1926                         return IGB_NB_XSTATS;
1927
1928                 for (i = 0; i < IGB_NB_XSTATS; i++)
1929                         strlcpy(xstats_names[i].name,
1930                                 rte_igb_stats_strings[i].name,
1931                                 sizeof(xstats_names[i].name));
1932
1933                 return IGB_NB_XSTATS;
1934
1935         } else {
1936                 struct rte_eth_xstat_name xstats_names_copy[IGB_NB_XSTATS];
1937
1938                 eth_igb_xstats_get_names_by_id(dev, xstats_names_copy, NULL,
1939                                 IGB_NB_XSTATS);
1940
1941                 for (i = 0; i < limit; i++) {
1942                         if (ids[i] >= IGB_NB_XSTATS) {
1943                                 PMD_INIT_LOG(ERR, "id value isn't valid");
1944                                 return -1;
1945                         }
1946                         strcpy(xstats_names[i].name,
1947                                         xstats_names_copy[ids[i]].name);
1948                 }
1949                 return limit;
1950         }
1951 }
1952
1953 static int
1954 eth_igb_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
1955                    unsigned n)
1956 {
1957         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1958         struct e1000_hw_stats *hw_stats =
1959                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1960         unsigned i;
1961
1962         if (n < IGB_NB_XSTATS)
1963                 return IGB_NB_XSTATS;
1964
1965         igb_read_stats_registers(hw, hw_stats);
1966
1967         /* If this is a reset xstats is NULL, and we have cleared the
1968          * registers by reading them.
1969          */
1970         if (!xstats)
1971                 return 0;
1972
1973         /* Extended stats */
1974         for (i = 0; i < IGB_NB_XSTATS; i++) {
1975                 xstats[i].id = i;
1976                 xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
1977                         rte_igb_stats_strings[i].offset);
1978         }
1979
1980         return IGB_NB_XSTATS;
1981 }
1982
1983 static int
1984 eth_igb_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
1985                 uint64_t *values, unsigned int n)
1986 {
1987         unsigned int i;
1988
1989         if (!ids) {
1990                 struct e1000_hw *hw =
1991                         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1992                 struct e1000_hw_stats *hw_stats =
1993                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1994
1995                 if (n < IGB_NB_XSTATS)
1996                         return IGB_NB_XSTATS;
1997
1998                 igb_read_stats_registers(hw, hw_stats);
1999
2000                 /* If this is a reset xstats is NULL, and we have cleared the
2001                  * registers by reading them.
2002                  */
2003                 if (!values)
2004                         return 0;
2005
2006                 /* Extended stats */
2007                 for (i = 0; i < IGB_NB_XSTATS; i++)
2008                         values[i] = *(uint64_t *)(((char *)hw_stats) +
2009                                         rte_igb_stats_strings[i].offset);
2010
2011                 return IGB_NB_XSTATS;
2012
2013         } else {
2014                 uint64_t values_copy[IGB_NB_XSTATS];
2015
2016                 eth_igb_xstats_get_by_id(dev, NULL, values_copy,
2017                                 IGB_NB_XSTATS);
2018
2019                 for (i = 0; i < n; i++) {
2020                         if (ids[i] >= IGB_NB_XSTATS) {
2021                                 PMD_INIT_LOG(ERR, "id value isn't valid");
2022                                 return -1;
2023                         }
2024                         values[i] = values_copy[ids[i]];
2025                 }
2026                 return n;
2027         }
2028 }
2029
2030 static void
2031 igbvf_read_stats_registers(struct e1000_hw *hw, struct e1000_vf_stats *hw_stats)
2032 {
2033         /* Good Rx packets, include VF loopback */
2034         UPDATE_VF_STAT(E1000_VFGPRC,
2035             hw_stats->last_gprc, hw_stats->gprc);
2036
2037         /* Good Rx octets, include VF loopback */
2038         UPDATE_VF_STAT(E1000_VFGORC,
2039             hw_stats->last_gorc, hw_stats->gorc);
2040
2041         /* Good Tx packets, include VF loopback */
2042         UPDATE_VF_STAT(E1000_VFGPTC,
2043             hw_stats->last_gptc, hw_stats->gptc);
2044
2045         /* Good Tx octets, include VF loopback */
2046         UPDATE_VF_STAT(E1000_VFGOTC,
2047             hw_stats->last_gotc, hw_stats->gotc);
2048
2049         /* Rx Multicst packets */
2050         UPDATE_VF_STAT(E1000_VFMPRC,
2051             hw_stats->last_mprc, hw_stats->mprc);
2052
2053         /* Good Rx loopback packets */
2054         UPDATE_VF_STAT(E1000_VFGPRLBC,
2055             hw_stats->last_gprlbc, hw_stats->gprlbc);
2056
2057         /* Good Rx loopback octets */
2058         UPDATE_VF_STAT(E1000_VFGORLBC,
2059             hw_stats->last_gorlbc, hw_stats->gorlbc);
2060
2061         /* Good Tx loopback packets */
2062         UPDATE_VF_STAT(E1000_VFGPTLBC,
2063             hw_stats->last_gptlbc, hw_stats->gptlbc);
2064
2065         /* Good Tx loopback octets */
2066         UPDATE_VF_STAT(E1000_VFGOTLBC,
2067             hw_stats->last_gotlbc, hw_stats->gotlbc);
2068 }
2069
2070 static int eth_igbvf_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
2071                                      struct rte_eth_xstat_name *xstats_names,
2072                                      __rte_unused unsigned limit)
2073 {
2074         unsigned i;
2075
2076         if (xstats_names != NULL)
2077                 for (i = 0; i < IGBVF_NB_XSTATS; i++) {
2078                         strlcpy(xstats_names[i].name,
2079                                 rte_igbvf_stats_strings[i].name,
2080                                 sizeof(xstats_names[i].name));
2081                 }
2082         return IGBVF_NB_XSTATS;
2083 }
2084
2085 static int
2086 eth_igbvf_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
2087                      unsigned n)
2088 {
2089         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2090         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
2091                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2092         unsigned i;
2093
2094         if (n < IGBVF_NB_XSTATS)
2095                 return IGBVF_NB_XSTATS;
2096
2097         igbvf_read_stats_registers(hw, hw_stats);
2098
2099         if (!xstats)
2100                 return 0;
2101
2102         for (i = 0; i < IGBVF_NB_XSTATS; i++) {
2103                 xstats[i].id = i;
2104                 xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
2105                         rte_igbvf_stats_strings[i].offset);
2106         }
2107
2108         return IGBVF_NB_XSTATS;
2109 }
2110
2111 static int
2112 eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
2113 {
2114         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2115         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
2116                           E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2117
2118         igbvf_read_stats_registers(hw, hw_stats);
2119
2120         if (rte_stats == NULL)
2121                 return -EINVAL;
2122
2123         rte_stats->ipackets = hw_stats->gprc;
2124         rte_stats->ibytes = hw_stats->gorc;
2125         rte_stats->opackets = hw_stats->gptc;
2126         rte_stats->obytes = hw_stats->gotc;
2127         return 0;
2128 }
2129
2130 static void
2131 eth_igbvf_stats_reset(struct rte_eth_dev *dev)
2132 {
2133         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
2134                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2135
2136         /* Sync HW register to the last stats */
2137         eth_igbvf_stats_get(dev, NULL);
2138
2139         /* reset HW current stats*/
2140         memset(&hw_stats->gprc, 0, sizeof(*hw_stats) -
2141                offsetof(struct e1000_vf_stats, gprc));
2142 }
2143
2144 static int
2145 eth_igb_fw_version_get(struct rte_eth_dev *dev, char *fw_version,
2146                        size_t fw_size)
2147 {
2148         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2149         struct e1000_fw_version fw;
2150         int ret;
2151
2152         e1000_get_fw_version(hw, &fw);
2153
2154         switch (hw->mac.type) {
2155         case e1000_i210:
2156         case e1000_i211:
2157                 if (!(e1000_get_flash_presence_i210(hw))) {
2158                         ret = snprintf(fw_version, fw_size,
2159                                  "%2d.%2d-%d",
2160                                  fw.invm_major, fw.invm_minor,
2161                                  fw.invm_img_type);
2162                         break;
2163                 }
2164                 /* fall through */
2165         default:
2166                 /* if option rom is valid, display its version too */
2167                 if (fw.or_valid) {
2168                         ret = snprintf(fw_version, fw_size,
2169                                  "%d.%d, 0x%08x, %d.%d.%d",
2170                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2171                                  fw.or_major, fw.or_build, fw.or_patch);
2172                 /* no option rom */
2173                 } else {
2174                         if (fw.etrack_id != 0X0000) {
2175                                 ret = snprintf(fw_version, fw_size,
2176                                          "%d.%d, 0x%08x",
2177                                          fw.eep_major, fw.eep_minor,
2178                                          fw.etrack_id);
2179                         } else {
2180                                 ret = snprintf(fw_version, fw_size,
2181                                          "%d.%d.%d",
2182                                          fw.eep_major, fw.eep_minor,
2183                                          fw.eep_build);
2184                         }
2185                 }
2186                 break;
2187         }
2188
2189         ret += 1; /* add the size of '\0' */
2190         if (fw_size < (u32)ret)
2191                 return ret;
2192         else
2193                 return 0;
2194 }
2195
2196 static void
2197 eth_igb_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
2198 {
2199         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2200
2201         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
2202         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
2203         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
2204         dev_info->rx_queue_offload_capa = igb_get_rx_queue_offloads_capa(dev);
2205         dev_info->rx_offload_capa = igb_get_rx_port_offloads_capa(dev) |
2206                                     dev_info->rx_queue_offload_capa;
2207         dev_info->tx_queue_offload_capa = igb_get_tx_queue_offloads_capa(dev);
2208         dev_info->tx_offload_capa = igb_get_tx_port_offloads_capa(dev) |
2209                                     dev_info->tx_queue_offload_capa;
2210
2211         switch (hw->mac.type) {
2212         case e1000_82575:
2213                 dev_info->max_rx_queues = 4;
2214                 dev_info->max_tx_queues = 4;
2215                 dev_info->max_vmdq_pools = 0;
2216                 break;
2217
2218         case e1000_82576:
2219                 dev_info->max_rx_queues = 16;
2220                 dev_info->max_tx_queues = 16;
2221                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2222                 dev_info->vmdq_queue_num = 16;
2223                 break;
2224
2225         case e1000_82580:
2226                 dev_info->max_rx_queues = 8;
2227                 dev_info->max_tx_queues = 8;
2228                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2229                 dev_info->vmdq_queue_num = 8;
2230                 break;
2231
2232         case e1000_i350:
2233                 dev_info->max_rx_queues = 8;
2234                 dev_info->max_tx_queues = 8;
2235                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2236                 dev_info->vmdq_queue_num = 8;
2237                 break;
2238
2239         case e1000_i354:
2240                 dev_info->max_rx_queues = 8;
2241                 dev_info->max_tx_queues = 8;
2242                 break;
2243
2244         case e1000_i210:
2245                 dev_info->max_rx_queues = 4;
2246                 dev_info->max_tx_queues = 4;
2247                 dev_info->max_vmdq_pools = 0;
2248                 break;
2249
2250         case e1000_i211:
2251                 dev_info->max_rx_queues = 2;
2252                 dev_info->max_tx_queues = 2;
2253                 dev_info->max_vmdq_pools = 0;
2254                 break;
2255
2256         default:
2257                 /* Should not happen */
2258                 break;
2259         }
2260         dev_info->hash_key_size = IGB_HKEY_MAX_INDEX * sizeof(uint32_t);
2261         dev_info->reta_size = ETH_RSS_RETA_SIZE_128;
2262         dev_info->flow_type_rss_offloads = IGB_RSS_OFFLOAD_ALL;
2263
2264         dev_info->default_rxconf = (struct rte_eth_rxconf) {
2265                 .rx_thresh = {
2266                         .pthresh = IGB_DEFAULT_RX_PTHRESH,
2267                         .hthresh = IGB_DEFAULT_RX_HTHRESH,
2268                         .wthresh = IGB_DEFAULT_RX_WTHRESH,
2269                 },
2270                 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
2271                 .rx_drop_en = 0,
2272                 .offloads = 0,
2273         };
2274
2275         dev_info->default_txconf = (struct rte_eth_txconf) {
2276                 .tx_thresh = {
2277                         .pthresh = IGB_DEFAULT_TX_PTHRESH,
2278                         .hthresh = IGB_DEFAULT_TX_HTHRESH,
2279                         .wthresh = IGB_DEFAULT_TX_WTHRESH,
2280                 },
2281                 .offloads = 0,
2282         };
2283
2284         dev_info->rx_desc_lim = rx_desc_lim;
2285         dev_info->tx_desc_lim = tx_desc_lim;
2286
2287         dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
2288                         ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
2289                         ETH_LINK_SPEED_1G;
2290
2291         dev_info->max_mtu = dev_info->max_rx_pktlen - E1000_ETH_OVERHEAD;
2292         dev_info->min_mtu = RTE_ETHER_MIN_MTU;
2293
2294 }
2295
2296 static const uint32_t *
2297 eth_igb_supported_ptypes_get(struct rte_eth_dev *dev)
2298 {
2299         static const uint32_t ptypes[] = {
2300                 /* refers to igb_rxd_pkt_info_to_pkt_type() */
2301                 RTE_PTYPE_L2_ETHER,
2302                 RTE_PTYPE_L3_IPV4,
2303                 RTE_PTYPE_L3_IPV4_EXT,
2304                 RTE_PTYPE_L3_IPV6,
2305                 RTE_PTYPE_L3_IPV6_EXT,
2306                 RTE_PTYPE_L4_TCP,
2307                 RTE_PTYPE_L4_UDP,
2308                 RTE_PTYPE_L4_SCTP,
2309                 RTE_PTYPE_TUNNEL_IP,
2310                 RTE_PTYPE_INNER_L3_IPV6,
2311                 RTE_PTYPE_INNER_L3_IPV6_EXT,
2312                 RTE_PTYPE_INNER_L4_TCP,
2313                 RTE_PTYPE_INNER_L4_UDP,
2314                 RTE_PTYPE_UNKNOWN
2315         };
2316
2317         if (dev->rx_pkt_burst == eth_igb_recv_pkts ||
2318             dev->rx_pkt_burst == eth_igb_recv_scattered_pkts)
2319                 return ptypes;
2320         return NULL;
2321 }
2322
2323 static void
2324 eth_igbvf_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
2325 {
2326         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2327
2328         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
2329         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
2330         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
2331         dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
2332                                 DEV_TX_OFFLOAD_IPV4_CKSUM  |
2333                                 DEV_TX_OFFLOAD_UDP_CKSUM   |
2334                                 DEV_TX_OFFLOAD_TCP_CKSUM   |
2335                                 DEV_TX_OFFLOAD_SCTP_CKSUM  |
2336                                 DEV_TX_OFFLOAD_TCP_TSO;
2337         switch (hw->mac.type) {
2338         case e1000_vfadapt:
2339                 dev_info->max_rx_queues = 2;
2340                 dev_info->max_tx_queues = 2;
2341                 break;
2342         case e1000_vfadapt_i350:
2343                 dev_info->max_rx_queues = 1;
2344                 dev_info->max_tx_queues = 1;
2345                 break;
2346         default:
2347                 /* Should not happen */
2348                 break;
2349         }
2350
2351         dev_info->rx_queue_offload_capa = igb_get_rx_queue_offloads_capa(dev);
2352         dev_info->rx_offload_capa = igb_get_rx_port_offloads_capa(dev) |
2353                                     dev_info->rx_queue_offload_capa;
2354         dev_info->tx_queue_offload_capa = igb_get_tx_queue_offloads_capa(dev);
2355         dev_info->tx_offload_capa = igb_get_tx_port_offloads_capa(dev) |
2356                                     dev_info->tx_queue_offload_capa;
2357
2358         dev_info->default_rxconf = (struct rte_eth_rxconf) {
2359                 .rx_thresh = {
2360                         .pthresh = IGB_DEFAULT_RX_PTHRESH,
2361                         .hthresh = IGB_DEFAULT_RX_HTHRESH,
2362                         .wthresh = IGB_DEFAULT_RX_WTHRESH,
2363                 },
2364                 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
2365                 .rx_drop_en = 0,
2366                 .offloads = 0,
2367         };
2368
2369         dev_info->default_txconf = (struct rte_eth_txconf) {
2370                 .tx_thresh = {
2371                         .pthresh = IGB_DEFAULT_TX_PTHRESH,
2372                         .hthresh = IGB_DEFAULT_TX_HTHRESH,
2373                         .wthresh = IGB_DEFAULT_TX_WTHRESH,
2374                 },
2375                 .offloads = 0,
2376         };
2377
2378         dev_info->rx_desc_lim = rx_desc_lim;
2379         dev_info->tx_desc_lim = tx_desc_lim;
2380 }
2381
2382 /* return 0 means link status changed, -1 means not changed */
2383 static int
2384 eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete)
2385 {
2386         struct e1000_hw *hw =
2387                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2388         struct rte_eth_link link;
2389         int link_check, count;
2390
2391         link_check = 0;
2392         hw->mac.get_link_status = 1;
2393
2394         /* possible wait-to-complete in up to 9 seconds */
2395         for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
2396                 /* Read the real link status */
2397                 switch (hw->phy.media_type) {
2398                 case e1000_media_type_copper:
2399                         /* Do the work to read phy */
2400                         e1000_check_for_link(hw);
2401                         link_check = !hw->mac.get_link_status;
2402                         break;
2403
2404                 case e1000_media_type_fiber:
2405                         e1000_check_for_link(hw);
2406                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
2407                                       E1000_STATUS_LU);
2408                         break;
2409
2410                 case e1000_media_type_internal_serdes:
2411                         e1000_check_for_link(hw);
2412                         link_check = hw->mac.serdes_has_link;
2413                         break;
2414
2415                 /* VF device is type_unknown */
2416                 case e1000_media_type_unknown:
2417                         eth_igbvf_link_update(hw);
2418                         link_check = !hw->mac.get_link_status;
2419                         break;
2420
2421                 default:
2422                         break;
2423                 }
2424                 if (link_check || wait_to_complete == 0)
2425                         break;
2426                 rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL);
2427         }
2428         memset(&link, 0, sizeof(link));
2429
2430         /* Now we check if a transition has happened */
2431         if (link_check) {
2432                 uint16_t duplex, speed;
2433                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
2434                 link.link_duplex = (duplex == FULL_DUPLEX) ?
2435                                 ETH_LINK_FULL_DUPLEX :
2436                                 ETH_LINK_HALF_DUPLEX;
2437                 link.link_speed = speed;
2438                 link.link_status = ETH_LINK_UP;
2439                 link.link_autoneg = !(dev->data->dev_conf.link_speeds &
2440                                 ETH_LINK_SPEED_FIXED);
2441         } else if (!link_check) {
2442                 link.link_speed = 0;
2443                 link.link_duplex = ETH_LINK_HALF_DUPLEX;
2444                 link.link_status = ETH_LINK_DOWN;
2445                 link.link_autoneg = ETH_LINK_FIXED;
2446         }
2447
2448         return rte_eth_linkstatus_set(dev, &link);
2449 }
2450
2451 /*
2452  * igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit.
2453  * For ASF and Pass Through versions of f/w this means
2454  * that the driver is loaded.
2455  */
2456 static void
2457 igb_hw_control_acquire(struct e1000_hw *hw)
2458 {
2459         uint32_t ctrl_ext;
2460
2461         /* Let firmware know the driver has taken over */
2462         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2463         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2464 }
2465
2466 /*
2467  * igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit.
2468  * For ASF and Pass Through versions of f/w this means that the
2469  * driver is no longer loaded.
2470  */
2471 static void
2472 igb_hw_control_release(struct e1000_hw *hw)
2473 {
2474         uint32_t ctrl_ext;
2475
2476         /* Let firmware taken over control of h/w */
2477         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2478         E1000_WRITE_REG(hw, E1000_CTRL_EXT,
2479                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2480 }
2481
2482 /*
2483  * Bit of a misnomer, what this really means is
2484  * to enable OS management of the system... aka
2485  * to disable special hardware management features.
2486  */
2487 static void
2488 igb_init_manageability(struct e1000_hw *hw)
2489 {
2490         if (e1000_enable_mng_pass_thru(hw)) {
2491                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
2492                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
2493
2494                 /* disable hardware interception of ARP */
2495                 manc &= ~(E1000_MANC_ARP_EN);
2496
2497                 /* enable receiving management packets to the host */
2498                 manc |= E1000_MANC_EN_MNG2HOST;
2499                 manc2h |= 1 << 5;  /* Mng Port 623 */
2500                 manc2h |= 1 << 6;  /* Mng Port 664 */
2501                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
2502                 E1000_WRITE_REG(hw, E1000_MANC, manc);
2503         }
2504 }
2505
2506 static void
2507 igb_release_manageability(struct e1000_hw *hw)
2508 {
2509         if (e1000_enable_mng_pass_thru(hw)) {
2510                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
2511
2512                 manc |= E1000_MANC_ARP_EN;
2513                 manc &= ~E1000_MANC_EN_MNG2HOST;
2514
2515                 E1000_WRITE_REG(hw, E1000_MANC, manc);
2516         }
2517 }
2518
2519 static void
2520 eth_igb_promiscuous_enable(struct rte_eth_dev *dev)
2521 {
2522         struct e1000_hw *hw =
2523                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2524         uint32_t rctl;
2525
2526         rctl = E1000_READ_REG(hw, E1000_RCTL);
2527         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2528         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2529 }
2530
2531 static void
2532 eth_igb_promiscuous_disable(struct rte_eth_dev *dev)
2533 {
2534         struct e1000_hw *hw =
2535                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2536         uint32_t rctl;
2537
2538         rctl = E1000_READ_REG(hw, E1000_RCTL);
2539         rctl &= (~E1000_RCTL_UPE);
2540         if (dev->data->all_multicast == 1)
2541                 rctl |= E1000_RCTL_MPE;
2542         else
2543                 rctl &= (~E1000_RCTL_MPE);
2544         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2545 }
2546
2547 static void
2548 eth_igb_allmulticast_enable(struct rte_eth_dev *dev)
2549 {
2550         struct e1000_hw *hw =
2551                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2552         uint32_t rctl;
2553
2554         rctl = E1000_READ_REG(hw, E1000_RCTL);
2555         rctl |= E1000_RCTL_MPE;
2556         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2557 }
2558
2559 static void
2560 eth_igb_allmulticast_disable(struct rte_eth_dev *dev)
2561 {
2562         struct e1000_hw *hw =
2563                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2564         uint32_t rctl;
2565
2566         if (dev->data->promiscuous == 1)
2567                 return; /* must remain in all_multicast mode */
2568         rctl = E1000_READ_REG(hw, E1000_RCTL);
2569         rctl &= (~E1000_RCTL_MPE);
2570         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2571 }
2572
2573 static int
2574 eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
2575 {
2576         struct e1000_hw *hw =
2577                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2578         struct e1000_vfta * shadow_vfta =
2579                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2580         uint32_t vfta;
2581         uint32_t vid_idx;
2582         uint32_t vid_bit;
2583
2584         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
2585                               E1000_VFTA_ENTRY_MASK);
2586         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
2587         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
2588         if (on)
2589                 vfta |= vid_bit;
2590         else
2591                 vfta &= ~vid_bit;
2592         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
2593
2594         /* update local VFTA copy */
2595         shadow_vfta->vfta[vid_idx] = vfta;
2596
2597         return 0;
2598 }
2599
2600 static int
2601 eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
2602                       enum rte_vlan_type vlan_type,
2603                       uint16_t tpid)
2604 {
2605         struct e1000_hw *hw =
2606                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2607         uint32_t reg, qinq;
2608
2609         qinq = E1000_READ_REG(hw, E1000_CTRL_EXT);
2610         qinq &= E1000_CTRL_EXT_EXT_VLAN;
2611
2612         /* only outer TPID of double VLAN can be configured*/
2613         if (qinq && vlan_type == ETH_VLAN_TYPE_OUTER) {
2614                 reg = E1000_READ_REG(hw, E1000_VET);
2615                 reg = (reg & (~E1000_VET_VET_EXT)) |
2616                         ((uint32_t)tpid << E1000_VET_VET_EXT_SHIFT);
2617                 E1000_WRITE_REG(hw, E1000_VET, reg);
2618
2619                 return 0;
2620         }
2621
2622         /* all other TPID values are read-only*/
2623         PMD_DRV_LOG(ERR, "Not supported");
2624
2625         return -ENOTSUP;
2626 }
2627
2628 static void
2629 igb_vlan_hw_filter_disable(struct rte_eth_dev *dev)
2630 {
2631         struct e1000_hw *hw =
2632                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2633         uint32_t reg;
2634
2635         /* Filter Table Disable */
2636         reg = E1000_READ_REG(hw, E1000_RCTL);
2637         reg &= ~E1000_RCTL_CFIEN;
2638         reg &= ~E1000_RCTL_VFE;
2639         E1000_WRITE_REG(hw, E1000_RCTL, reg);
2640 }
2641
2642 static void
2643 igb_vlan_hw_filter_enable(struct rte_eth_dev *dev)
2644 {
2645         struct e1000_hw *hw =
2646                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2647         struct e1000_vfta * shadow_vfta =
2648                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2649         uint32_t reg;
2650         int i;
2651
2652         /* Filter Table Enable, CFI not used for packet acceptance */
2653         reg = E1000_READ_REG(hw, E1000_RCTL);
2654         reg &= ~E1000_RCTL_CFIEN;
2655         reg |= E1000_RCTL_VFE;
2656         E1000_WRITE_REG(hw, E1000_RCTL, reg);
2657
2658         /* restore VFTA table */
2659         for (i = 0; i < IGB_VFTA_SIZE; i++)
2660                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
2661 }
2662
2663 static void
2664 igb_vlan_hw_strip_disable(struct rte_eth_dev *dev)
2665 {
2666         struct e1000_hw *hw =
2667                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2668         uint32_t reg;
2669
2670         /* VLAN Mode Disable */
2671         reg = E1000_READ_REG(hw, E1000_CTRL);
2672         reg &= ~E1000_CTRL_VME;
2673         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2674 }
2675
2676 static void
2677 igb_vlan_hw_strip_enable(struct rte_eth_dev *dev)
2678 {
2679         struct e1000_hw *hw =
2680                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2681         uint32_t reg;
2682
2683         /* VLAN Mode Enable */
2684         reg = E1000_READ_REG(hw, E1000_CTRL);
2685         reg |= E1000_CTRL_VME;
2686         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2687 }
2688
2689 static void
2690 igb_vlan_hw_extend_disable(struct rte_eth_dev *dev)
2691 {
2692         struct e1000_hw *hw =
2693                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2694         uint32_t reg;
2695
2696         /* CTRL_EXT: Extended VLAN */
2697         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2698         reg &= ~E1000_CTRL_EXT_EXTEND_VLAN;
2699         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2700
2701         /* Update maximum packet length */
2702         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
2703                 E1000_WRITE_REG(hw, E1000_RLPML,
2704                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2705                                                 VLAN_TAG_SIZE);
2706 }
2707
2708 static void
2709 igb_vlan_hw_extend_enable(struct rte_eth_dev *dev)
2710 {
2711         struct e1000_hw *hw =
2712                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2713         uint32_t reg;
2714
2715         /* CTRL_EXT: Extended VLAN */
2716         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2717         reg |= E1000_CTRL_EXT_EXTEND_VLAN;
2718         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2719
2720         /* Update maximum packet length */
2721         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
2722                 E1000_WRITE_REG(hw, E1000_RLPML,
2723                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2724                                                 2 * VLAN_TAG_SIZE);
2725 }
2726
2727 static int
2728 eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask)
2729 {
2730         struct rte_eth_rxmode *rxmode;
2731
2732         rxmode = &dev->data->dev_conf.rxmode;
2733         if(mask & ETH_VLAN_STRIP_MASK){
2734                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
2735                         igb_vlan_hw_strip_enable(dev);
2736                 else
2737                         igb_vlan_hw_strip_disable(dev);
2738         }
2739
2740         if(mask & ETH_VLAN_FILTER_MASK){
2741                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
2742                         igb_vlan_hw_filter_enable(dev);
2743                 else
2744                         igb_vlan_hw_filter_disable(dev);
2745         }
2746
2747         if(mask & ETH_VLAN_EXTEND_MASK){
2748                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
2749                         igb_vlan_hw_extend_enable(dev);
2750                 else
2751                         igb_vlan_hw_extend_disable(dev);
2752         }
2753
2754         return 0;
2755 }
2756
2757
2758 /**
2759  * It enables the interrupt mask and then enable the interrupt.
2760  *
2761  * @param dev
2762  *  Pointer to struct rte_eth_dev.
2763  * @param on
2764  *  Enable or Disable
2765  *
2766  * @return
2767  *  - On success, zero.
2768  *  - On failure, a negative value.
2769  */
2770 static int
2771 eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on)
2772 {
2773         struct e1000_interrupt *intr =
2774                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2775
2776         if (on)
2777                 intr->mask |= E1000_ICR_LSC;
2778         else
2779                 intr->mask &= ~E1000_ICR_LSC;
2780
2781         return 0;
2782 }
2783
2784 /* It clears the interrupt causes and enables the interrupt.
2785  * It will be called once only during nic initialized.
2786  *
2787  * @param dev
2788  *  Pointer to struct rte_eth_dev.
2789  *
2790  * @return
2791  *  - On success, zero.
2792  *  - On failure, a negative value.
2793  */
2794 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev)
2795 {
2796         uint32_t mask, regval;
2797         struct e1000_hw *hw =
2798                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2799         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2800         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2801         int misc_shift = rte_intr_allow_others(intr_handle) ? 1 : 0;
2802         struct rte_eth_dev_info dev_info;
2803
2804         memset(&dev_info, 0, sizeof(dev_info));
2805         eth_igb_infos_get(dev, &dev_info);
2806
2807         mask = (0xFFFFFFFF >> (32 - dev_info.max_rx_queues)) << misc_shift;
2808         regval = E1000_READ_REG(hw, E1000_EIMS);
2809         E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
2810
2811         return 0;
2812 }
2813
2814 /*
2815  * It reads ICR and gets interrupt causes, check it and set a bit flag
2816  * to update link status.
2817  *
2818  * @param dev
2819  *  Pointer to struct rte_eth_dev.
2820  *
2821  * @return
2822  *  - On success, zero.
2823  *  - On failure, a negative value.
2824  */
2825 static int
2826 eth_igb_interrupt_get_status(struct rte_eth_dev *dev)
2827 {
2828         uint32_t icr;
2829         struct e1000_hw *hw =
2830                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2831         struct e1000_interrupt *intr =
2832                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2833
2834         igb_intr_disable(dev);
2835
2836         /* read-on-clear nic registers here */
2837         icr = E1000_READ_REG(hw, E1000_ICR);
2838
2839         intr->flags = 0;
2840         if (icr & E1000_ICR_LSC) {
2841                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
2842         }
2843
2844         if (icr & E1000_ICR_VMMB)
2845                 intr->flags |= E1000_FLAG_MAILBOX;
2846
2847         return 0;
2848 }
2849
2850 /*
2851  * It executes link_update after knowing an interrupt is prsent.
2852  *
2853  * @param dev
2854  *  Pointer to struct rte_eth_dev.
2855  *
2856  * @return
2857  *  - On success, zero.
2858  *  - On failure, a negative value.
2859  */
2860 static int
2861 eth_igb_interrupt_action(struct rte_eth_dev *dev,
2862                          struct rte_intr_handle *intr_handle)
2863 {
2864         struct e1000_hw *hw =
2865                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2866         struct e1000_interrupt *intr =
2867                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2868         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2869         struct rte_eth_link link;
2870         int ret;
2871
2872         if (intr->flags & E1000_FLAG_MAILBOX) {
2873                 igb_pf_mbx_process(dev);
2874                 intr->flags &= ~E1000_FLAG_MAILBOX;
2875         }
2876
2877         igb_intr_enable(dev);
2878         rte_intr_ack(intr_handle);
2879
2880         if (intr->flags & E1000_FLAG_NEED_LINK_UPDATE) {
2881                 intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
2882
2883                 /* set get_link_status to check register later */
2884                 hw->mac.get_link_status = 1;
2885                 ret = eth_igb_link_update(dev, 0);
2886
2887                 /* check if link has changed */
2888                 if (ret < 0)
2889                         return 0;
2890
2891                 rte_eth_linkstatus_get(dev, &link);
2892                 if (link.link_status) {
2893                         PMD_INIT_LOG(INFO,
2894                                      " Port %d: Link Up - speed %u Mbps - %s",
2895                                      dev->data->port_id,
2896                                      (unsigned)link.link_speed,
2897                                      link.link_duplex == ETH_LINK_FULL_DUPLEX ?
2898                                      "full-duplex" : "half-duplex");
2899                 } else {
2900                         PMD_INIT_LOG(INFO, " Port %d: Link Down",
2901                                      dev->data->port_id);
2902                 }
2903
2904                 PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
2905                              pci_dev->addr.domain,
2906                              pci_dev->addr.bus,
2907                              pci_dev->addr.devid,
2908                              pci_dev->addr.function);
2909                 _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC,
2910                                               NULL);
2911         }
2912
2913         return 0;
2914 }
2915
2916 /**
2917  * Interrupt handler which shall be registered at first.
2918  *
2919  * @param handle
2920  *  Pointer to interrupt handle.
2921  * @param param
2922  *  The address of parameter (struct rte_eth_dev *) regsitered before.
2923  *
2924  * @return
2925  *  void
2926  */
2927 static void
2928 eth_igb_interrupt_handler(void *param)
2929 {
2930         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2931
2932         eth_igb_interrupt_get_status(dev);
2933         eth_igb_interrupt_action(dev, dev->intr_handle);
2934 }
2935
2936 static int
2937 eth_igbvf_interrupt_get_status(struct rte_eth_dev *dev)
2938 {
2939         uint32_t eicr;
2940         struct e1000_hw *hw =
2941                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2942         struct e1000_interrupt *intr =
2943                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2944
2945         igbvf_intr_disable(hw);
2946
2947         /* read-on-clear nic registers here */
2948         eicr = E1000_READ_REG(hw, E1000_EICR);
2949         intr->flags = 0;
2950
2951         if (eicr == E1000_VTIVAR_MISC_MAILBOX)
2952                 intr->flags |= E1000_FLAG_MAILBOX;
2953
2954         return 0;
2955 }
2956
2957 void igbvf_mbx_process(struct rte_eth_dev *dev)
2958 {
2959         struct e1000_hw *hw =
2960                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2961         struct e1000_mbx_info *mbx = &hw->mbx;
2962         u32 in_msg = 0;
2963
2964         /* peek the message first */
2965         in_msg = E1000_READ_REG(hw, E1000_VMBMEM(0));
2966
2967         /* PF reset VF event */
2968         if (in_msg == E1000_PF_CONTROL_MSG) {
2969                 /* dummy mbx read to ack pf */
2970                 if (mbx->ops.read(hw, &in_msg, 1, 0))
2971                         return;
2972                 _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
2973                                               NULL);
2974         }
2975 }
2976
2977 static int
2978 eth_igbvf_interrupt_action(struct rte_eth_dev *dev, struct rte_intr_handle *intr_handle)
2979 {
2980         struct e1000_interrupt *intr =
2981                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2982
2983         if (intr->flags & E1000_FLAG_MAILBOX) {
2984                 igbvf_mbx_process(dev);
2985                 intr->flags &= ~E1000_FLAG_MAILBOX;
2986         }
2987
2988         igbvf_intr_enable(dev);
2989         rte_intr_ack(intr_handle);
2990
2991         return 0;
2992 }
2993
2994 static void
2995 eth_igbvf_interrupt_handler(void *param)
2996 {
2997         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2998
2999         eth_igbvf_interrupt_get_status(dev);
3000         eth_igbvf_interrupt_action(dev, dev->intr_handle);
3001 }
3002
3003 static int
3004 eth_igb_led_on(struct rte_eth_dev *dev)
3005 {
3006         struct e1000_hw *hw;
3007
3008         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3009         return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
3010 }
3011
3012 static int
3013 eth_igb_led_off(struct rte_eth_dev *dev)
3014 {
3015         struct e1000_hw *hw;
3016
3017         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3018         return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
3019 }
3020
3021 static int
3022 eth_igb_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
3023 {
3024         struct e1000_hw *hw;
3025         uint32_t ctrl;
3026         int tx_pause;
3027         int rx_pause;
3028
3029         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3030         fc_conf->pause_time = hw->fc.pause_time;
3031         fc_conf->high_water = hw->fc.high_water;
3032         fc_conf->low_water = hw->fc.low_water;
3033         fc_conf->send_xon = hw->fc.send_xon;
3034         fc_conf->autoneg = hw->mac.autoneg;
3035
3036         /*
3037          * Return rx_pause and tx_pause status according to actual setting of
3038          * the TFCE and RFCE bits in the CTRL register.
3039          */
3040         ctrl = E1000_READ_REG(hw, E1000_CTRL);
3041         if (ctrl & E1000_CTRL_TFCE)
3042                 tx_pause = 1;
3043         else
3044                 tx_pause = 0;
3045
3046         if (ctrl & E1000_CTRL_RFCE)
3047                 rx_pause = 1;
3048         else
3049                 rx_pause = 0;
3050
3051         if (rx_pause && tx_pause)
3052                 fc_conf->mode = RTE_FC_FULL;
3053         else if (rx_pause)
3054                 fc_conf->mode = RTE_FC_RX_PAUSE;
3055         else if (tx_pause)
3056                 fc_conf->mode = RTE_FC_TX_PAUSE;
3057         else
3058                 fc_conf->mode = RTE_FC_NONE;
3059
3060         return 0;
3061 }
3062
3063 static int
3064 eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
3065 {
3066         struct e1000_hw *hw;
3067         int err;
3068         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
3069                 e1000_fc_none,
3070                 e1000_fc_rx_pause,
3071                 e1000_fc_tx_pause,
3072                 e1000_fc_full
3073         };
3074         uint32_t rx_buf_size;
3075         uint32_t max_high_water;
3076         uint32_t rctl;
3077
3078         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3079         if (fc_conf->autoneg != hw->mac.autoneg)
3080                 return -ENOTSUP;
3081         rx_buf_size = igb_get_rx_buffer_size(hw);
3082         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
3083
3084         /* At least reserve one Ethernet frame for watermark */
3085         max_high_water = rx_buf_size - RTE_ETHER_MAX_LEN;
3086         if ((fc_conf->high_water > max_high_water) ||
3087             (fc_conf->high_water < fc_conf->low_water)) {
3088                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
3089                 PMD_INIT_LOG(ERR, "high water must <=  0x%x", max_high_water);
3090                 return -EINVAL;
3091         }
3092
3093         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
3094         hw->fc.pause_time     = fc_conf->pause_time;
3095         hw->fc.high_water     = fc_conf->high_water;
3096         hw->fc.low_water      = fc_conf->low_water;
3097         hw->fc.send_xon       = fc_conf->send_xon;
3098
3099         err = e1000_setup_link_generic(hw);
3100         if (err == E1000_SUCCESS) {
3101
3102                 /* check if we want to forward MAC frames - driver doesn't have native
3103                  * capability to do that, so we'll write the registers ourselves */
3104
3105                 rctl = E1000_READ_REG(hw, E1000_RCTL);
3106
3107                 /* set or clear MFLCN.PMCF bit depending on configuration */
3108                 if (fc_conf->mac_ctrl_frame_fwd != 0)
3109                         rctl |= E1000_RCTL_PMCF;
3110                 else
3111                         rctl &= ~E1000_RCTL_PMCF;
3112
3113                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3114                 E1000_WRITE_FLUSH(hw);
3115
3116                 return 0;
3117         }
3118
3119         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
3120         return -EIO;
3121 }
3122
3123 #define E1000_RAH_POOLSEL_SHIFT      (18)
3124 static int
3125 eth_igb_rar_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
3126                 uint32_t index, uint32_t pool)
3127 {
3128         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3129         uint32_t rah;
3130
3131         e1000_rar_set(hw, mac_addr->addr_bytes, index);
3132         rah = E1000_READ_REG(hw, E1000_RAH(index));
3133         rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + pool));
3134         E1000_WRITE_REG(hw, E1000_RAH(index), rah);
3135         return 0;
3136 }
3137
3138 static void
3139 eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index)
3140 {
3141         uint8_t addr[RTE_ETHER_ADDR_LEN];
3142         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3143
3144         memset(addr, 0, sizeof(addr));
3145
3146         e1000_rar_set(hw, addr, index);
3147 }
3148
3149 static int
3150 eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
3151                                 struct rte_ether_addr *addr)
3152 {
3153         eth_igb_rar_clear(dev, 0);
3154         eth_igb_rar_set(dev, (void *)addr, 0, 0);
3155
3156         return 0;
3157 }
3158 /*
3159  * Virtual Function operations
3160  */
3161 static void
3162 igbvf_intr_disable(struct e1000_hw *hw)
3163 {
3164         PMD_INIT_FUNC_TRACE();
3165
3166         /* Clear interrupt mask to stop from interrupts being generated */
3167         E1000_WRITE_REG(hw, E1000_EIMC, 0xFFFF);
3168
3169         E1000_WRITE_FLUSH(hw);
3170 }
3171
3172 static void
3173 igbvf_stop_adapter(struct rte_eth_dev *dev)
3174 {
3175         u32 reg_val;
3176         u16 i;
3177         struct rte_eth_dev_info dev_info;
3178         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3179
3180         memset(&dev_info, 0, sizeof(dev_info));
3181         eth_igbvf_infos_get(dev, &dev_info);
3182
3183         /* Clear interrupt mask to stop from interrupts being generated */
3184         igbvf_intr_disable(hw);
3185
3186         /* Clear any pending interrupts, flush previous writes */
3187         E1000_READ_REG(hw, E1000_EICR);
3188
3189         /* Disable the transmit unit.  Each queue must be disabled. */
3190         for (i = 0; i < dev_info.max_tx_queues; i++)
3191                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), E1000_TXDCTL_SWFLSH);
3192
3193         /* Disable the receive unit by stopping each queue */
3194         for (i = 0; i < dev_info.max_rx_queues; i++) {
3195                 reg_val = E1000_READ_REG(hw, E1000_RXDCTL(i));
3196                 reg_val &= ~E1000_RXDCTL_QUEUE_ENABLE;
3197                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), reg_val);
3198                 while (E1000_READ_REG(hw, E1000_RXDCTL(i)) & E1000_RXDCTL_QUEUE_ENABLE)
3199                         ;
3200         }
3201
3202         /* flush all queues disables */
3203         E1000_WRITE_FLUSH(hw);
3204         msec_delay(2);
3205 }
3206
3207 static int eth_igbvf_link_update(struct e1000_hw *hw)
3208 {
3209         struct e1000_mbx_info *mbx = &hw->mbx;
3210         struct e1000_mac_info *mac = &hw->mac;
3211         int ret_val = E1000_SUCCESS;
3212
3213         PMD_INIT_LOG(DEBUG, "e1000_check_for_link_vf");
3214
3215         /*
3216          * We only want to run this if there has been a rst asserted.
3217          * in this case that could mean a link change, device reset,
3218          * or a virtual function reset
3219          */
3220
3221         /* If we were hit with a reset or timeout drop the link */
3222         if (!e1000_check_for_rst(hw, 0) || !mbx->timeout)
3223                 mac->get_link_status = TRUE;
3224
3225         if (!mac->get_link_status)
3226                 goto out;
3227
3228         /* if link status is down no point in checking to see if pf is up */
3229         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
3230                 goto out;
3231
3232         /* if we passed all the tests above then the link is up and we no
3233          * longer need to check for link */
3234         mac->get_link_status = FALSE;
3235
3236 out:
3237         return ret_val;
3238 }
3239
3240
3241 static int
3242 igbvf_dev_configure(struct rte_eth_dev *dev)
3243 {
3244         struct rte_eth_conf* conf = &dev->data->dev_conf;
3245
3246         PMD_INIT_LOG(DEBUG, "Configured Virtual Function port id: %d",
3247                      dev->data->port_id);
3248
3249         /*
3250          * VF has no ability to enable/disable HW CRC
3251          * Keep the persistent behavior the same as Host PF
3252          */
3253 #ifndef RTE_LIBRTE_E1000_PF_DISABLE_STRIP_CRC
3254         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC) {
3255                 PMD_INIT_LOG(NOTICE, "VF can't disable HW CRC Strip");
3256                 conf->rxmode.offloads &= ~DEV_RX_OFFLOAD_KEEP_CRC;
3257         }
3258 #else
3259         if (!(conf->rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)) {
3260                 PMD_INIT_LOG(NOTICE, "VF can't enable HW CRC Strip");
3261                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_KEEP_CRC;
3262         }
3263 #endif
3264
3265         return 0;
3266 }
3267
3268 static int
3269 igbvf_dev_start(struct rte_eth_dev *dev)
3270 {
3271         struct e1000_hw *hw =
3272                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3273         struct e1000_adapter *adapter =
3274                 E1000_DEV_PRIVATE(dev->data->dev_private);
3275         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3276         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3277         int ret;
3278         uint32_t intr_vector = 0;
3279
3280         PMD_INIT_FUNC_TRACE();
3281
3282         hw->mac.ops.reset_hw(hw);
3283         adapter->stopped = 0;
3284
3285         /* Set all vfta */
3286         igbvf_set_vfta_all(dev,1);
3287
3288         eth_igbvf_tx_init(dev);
3289
3290         /* This can fail when allocating mbufs for descriptor rings */
3291         ret = eth_igbvf_rx_init(dev);
3292         if (ret) {
3293                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
3294                 igb_dev_clear_queues(dev);
3295                 return ret;
3296         }
3297
3298         /* check and configure queue intr-vector mapping */
3299         if (rte_intr_cap_multiple(intr_handle) &&
3300             dev->data->dev_conf.intr_conf.rxq) {
3301                 intr_vector = dev->data->nb_rx_queues;
3302                 ret = rte_intr_efd_enable(intr_handle, intr_vector);
3303                 if (ret)
3304                         return ret;
3305         }
3306
3307         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
3308                 intr_handle->intr_vec =
3309                         rte_zmalloc("intr_vec",
3310                                     dev->data->nb_rx_queues * sizeof(int), 0);
3311                 if (!intr_handle->intr_vec) {
3312                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
3313                                      " intr_vec", dev->data->nb_rx_queues);
3314                         return -ENOMEM;
3315                 }
3316         }
3317
3318         eth_igbvf_configure_msix_intr(dev);
3319
3320         /* enable uio/vfio intr/eventfd mapping */
3321         rte_intr_enable(intr_handle);
3322
3323         /* resume enabled intr since hw reset */
3324         igbvf_intr_enable(dev);
3325
3326         return 0;
3327 }
3328
3329 static void
3330 igbvf_dev_stop(struct rte_eth_dev *dev)
3331 {
3332         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3333         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3334
3335         PMD_INIT_FUNC_TRACE();
3336
3337         igbvf_stop_adapter(dev);
3338
3339         /*
3340           * Clear what we set, but we still keep shadow_vfta to
3341           * restore after device starts
3342           */
3343         igbvf_set_vfta_all(dev,0);
3344
3345         igb_dev_clear_queues(dev);
3346
3347         /* disable intr eventfd mapping */
3348         rte_intr_disable(intr_handle);
3349
3350         /* Clean datapath event and queue/vec mapping */
3351         rte_intr_efd_disable(intr_handle);
3352         if (intr_handle->intr_vec) {
3353                 rte_free(intr_handle->intr_vec);
3354                 intr_handle->intr_vec = NULL;
3355         }
3356 }
3357
3358 static void
3359 igbvf_dev_close(struct rte_eth_dev *dev)
3360 {
3361         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3362         struct e1000_adapter *adapter =
3363                 E1000_DEV_PRIVATE(dev->data->dev_private);
3364         struct rte_ether_addr addr;
3365
3366         PMD_INIT_FUNC_TRACE();
3367
3368         e1000_reset_hw(hw);
3369
3370         igbvf_dev_stop(dev);
3371         adapter->stopped = 1;
3372         igb_dev_free_queues(dev);
3373
3374         /**
3375          * reprogram the RAR with a zero mac address,
3376          * to ensure that the VF traffic goes to the PF
3377          * after stop, close and detach of the VF.
3378          **/
3379
3380         memset(&addr, 0, sizeof(addr));
3381         igbvf_default_mac_addr_set(dev, &addr);
3382 }
3383
3384 static void
3385 igbvf_promiscuous_enable(struct rte_eth_dev *dev)
3386 {
3387         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3388
3389         /* Set both unicast and multicast promisc */
3390         e1000_promisc_set_vf(hw, e1000_promisc_enabled);
3391 }
3392
3393 static void
3394 igbvf_promiscuous_disable(struct rte_eth_dev *dev)
3395 {
3396         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3397
3398         /* If in allmulticast mode leave multicast promisc */
3399         if (dev->data->all_multicast == 1)
3400                 e1000_promisc_set_vf(hw, e1000_promisc_multicast);
3401         else
3402                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
3403 }
3404
3405 static void
3406 igbvf_allmulticast_enable(struct rte_eth_dev *dev)
3407 {
3408         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3409
3410         /* In promiscuous mode multicast promisc already set */
3411         if (dev->data->promiscuous == 0)
3412                 e1000_promisc_set_vf(hw, e1000_promisc_multicast);
3413 }
3414
3415 static void
3416 igbvf_allmulticast_disable(struct rte_eth_dev *dev)
3417 {
3418         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3419
3420         /* In promiscuous mode leave multicast promisc enabled */
3421         if (dev->data->promiscuous == 0)
3422                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
3423 }
3424
3425 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on)
3426 {
3427         struct e1000_mbx_info *mbx = &hw->mbx;
3428         uint32_t msgbuf[2];
3429         s32 err;
3430
3431         /* After set vlan, vlan strip will also be enabled in igb driver*/
3432         msgbuf[0] = E1000_VF_SET_VLAN;
3433         msgbuf[1] = vid;
3434         /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
3435         if (on)
3436                 msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
3437
3438         err = mbx->ops.write_posted(hw, msgbuf, 2, 0);
3439         if (err)
3440                 goto mbx_err;
3441
3442         err = mbx->ops.read_posted(hw, msgbuf, 2, 0);
3443         if (err)
3444                 goto mbx_err;
3445
3446         msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
3447         if (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK))
3448                 err = -EINVAL;
3449
3450 mbx_err:
3451         return err;
3452 }
3453
3454 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on)
3455 {
3456         struct e1000_hw *hw =
3457                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3458         struct e1000_vfta * shadow_vfta =
3459                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
3460         int i = 0, j = 0, vfta = 0, mask = 1;
3461
3462         for (i = 0; i < IGB_VFTA_SIZE; i++){
3463                 vfta = shadow_vfta->vfta[i];
3464                 if(vfta){
3465                         mask = 1;
3466                         for (j = 0; j < 32; j++){
3467                                 if(vfta & mask)
3468                                         igbvf_set_vfta(hw,
3469                                                 (uint16_t)((i<<5)+j), on);
3470                                 mask<<=1;
3471                         }
3472                 }
3473         }
3474
3475 }
3476
3477 static int
3478 igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
3479 {
3480         struct e1000_hw *hw =
3481                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3482         struct e1000_vfta * shadow_vfta =
3483                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
3484         uint32_t vid_idx = 0;
3485         uint32_t vid_bit = 0;
3486         int ret = 0;
3487
3488         PMD_INIT_FUNC_TRACE();
3489
3490         /*vind is not used in VF driver, set to 0, check ixgbe_set_vfta_vf*/
3491         ret = igbvf_set_vfta(hw, vlan_id, !!on);
3492         if(ret){
3493                 PMD_INIT_LOG(ERR, "Unable to set VF vlan");
3494                 return ret;
3495         }
3496         vid_idx = (uint32_t) ((vlan_id >> 5) & 0x7F);
3497         vid_bit = (uint32_t) (1 << (vlan_id & 0x1F));
3498
3499         /*Save what we set and retore it after device reset*/
3500         if (on)
3501                 shadow_vfta->vfta[vid_idx] |= vid_bit;
3502         else
3503                 shadow_vfta->vfta[vid_idx] &= ~vid_bit;
3504
3505         return 0;
3506 }
3507
3508 static int
3509 igbvf_default_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *addr)
3510 {
3511         struct e1000_hw *hw =
3512                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3513
3514         /* index is not used by rar_set() */
3515         hw->mac.ops.rar_set(hw, (void *)addr, 0);
3516         return 0;
3517 }
3518
3519
3520 static int
3521 eth_igb_rss_reta_update(struct rte_eth_dev *dev,
3522                         struct rte_eth_rss_reta_entry64 *reta_conf,
3523                         uint16_t reta_size)
3524 {
3525         uint8_t i, j, mask;
3526         uint32_t reta, r;
3527         uint16_t idx, shift;
3528         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3529
3530         if (reta_size != ETH_RSS_RETA_SIZE_128) {
3531                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
3532                         "(%d) doesn't match the number hardware can supported "
3533                         "(%d)", reta_size, ETH_RSS_RETA_SIZE_128);
3534                 return -EINVAL;
3535         }
3536
3537         for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
3538                 idx = i / RTE_RETA_GROUP_SIZE;
3539                 shift = i % RTE_RETA_GROUP_SIZE;
3540                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
3541                                                 IGB_4_BIT_MASK);
3542                 if (!mask)
3543                         continue;
3544                 if (mask == IGB_4_BIT_MASK)
3545                         r = 0;
3546                 else
3547                         r = E1000_READ_REG(hw, E1000_RETA(i >> 2));
3548                 for (j = 0, reta = 0; j < IGB_4_BIT_WIDTH; j++) {
3549                         if (mask & (0x1 << j))
3550                                 reta |= reta_conf[idx].reta[shift + j] <<
3551                                                         (CHAR_BIT * j);
3552                         else
3553                                 reta |= r & (IGB_8_BIT_MASK << (CHAR_BIT * j));
3554                 }
3555                 E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
3556         }
3557
3558         return 0;
3559 }
3560
3561 static int
3562 eth_igb_rss_reta_query(struct rte_eth_dev *dev,
3563                        struct rte_eth_rss_reta_entry64 *reta_conf,
3564                        uint16_t reta_size)
3565 {
3566         uint8_t i, j, mask;
3567         uint32_t reta;
3568         uint16_t idx, shift;
3569         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3570
3571         if (reta_size != ETH_RSS_RETA_SIZE_128) {
3572                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
3573                         "(%d) doesn't match the number hardware can supported "
3574                         "(%d)", reta_size, ETH_RSS_RETA_SIZE_128);
3575                 return -EINVAL;
3576         }
3577
3578         for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
3579                 idx = i / RTE_RETA_GROUP_SIZE;
3580                 shift = i % RTE_RETA_GROUP_SIZE;
3581                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
3582                                                 IGB_4_BIT_MASK);
3583                 if (!mask)
3584                         continue;
3585                 reta = E1000_READ_REG(hw, E1000_RETA(i >> 2));
3586                 for (j = 0; j < IGB_4_BIT_WIDTH; j++) {
3587                         if (mask & (0x1 << j))
3588                                 reta_conf[idx].reta[shift + j] =
3589                                         ((reta >> (CHAR_BIT * j)) &
3590                                                 IGB_8_BIT_MASK);
3591                 }
3592         }
3593
3594         return 0;
3595 }
3596
3597 int
3598 eth_igb_syn_filter_set(struct rte_eth_dev *dev,
3599                         struct rte_eth_syn_filter *filter,
3600                         bool add)
3601 {
3602         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3603         struct e1000_filter_info *filter_info =
3604                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3605         uint32_t synqf, rfctl;
3606
3607         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
3608                 return -EINVAL;
3609
3610         synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
3611
3612         if (add) {
3613                 if (synqf & E1000_SYN_FILTER_ENABLE)
3614                         return -EINVAL;
3615
3616                 synqf = (uint32_t)(((filter->queue << E1000_SYN_FILTER_QUEUE_SHIFT) &
3617                         E1000_SYN_FILTER_QUEUE) | E1000_SYN_FILTER_ENABLE);
3618
3619                 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3620                 if (filter->hig_pri)
3621                         rfctl |= E1000_RFCTL_SYNQFP;
3622                 else
3623                         rfctl &= ~E1000_RFCTL_SYNQFP;
3624
3625                 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3626         } else {
3627                 if (!(synqf & E1000_SYN_FILTER_ENABLE))
3628                         return -ENOENT;
3629                 synqf = 0;
3630         }
3631
3632         filter_info->syn_info = synqf;
3633         E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
3634         E1000_WRITE_FLUSH(hw);
3635         return 0;
3636 }
3637
3638 static int
3639 eth_igb_syn_filter_get(struct rte_eth_dev *dev,
3640                         struct rte_eth_syn_filter *filter)
3641 {
3642         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3643         uint32_t synqf, rfctl;
3644
3645         synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
3646         if (synqf & E1000_SYN_FILTER_ENABLE) {
3647                 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3648                 filter->hig_pri = (rfctl & E1000_RFCTL_SYNQFP) ? 1 : 0;
3649                 filter->queue = (uint8_t)((synqf & E1000_SYN_FILTER_QUEUE) >>
3650                                 E1000_SYN_FILTER_QUEUE_SHIFT);
3651                 return 0;
3652         }
3653
3654         return -ENOENT;
3655 }
3656
3657 static int
3658 eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
3659                         enum rte_filter_op filter_op,
3660                         void *arg)
3661 {
3662         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3663         int ret;
3664
3665         MAC_TYPE_FILTER_SUP(hw->mac.type);
3666
3667         if (filter_op == RTE_ETH_FILTER_NOP)
3668                 return 0;
3669
3670         if (arg == NULL) {
3671                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
3672                             filter_op);
3673                 return -EINVAL;
3674         }
3675
3676         switch (filter_op) {
3677         case RTE_ETH_FILTER_ADD:
3678                 ret = eth_igb_syn_filter_set(dev,
3679                                 (struct rte_eth_syn_filter *)arg,
3680                                 TRUE);
3681                 break;
3682         case RTE_ETH_FILTER_DELETE:
3683                 ret = eth_igb_syn_filter_set(dev,
3684                                 (struct rte_eth_syn_filter *)arg,
3685                                 FALSE);
3686                 break;
3687         case RTE_ETH_FILTER_GET:
3688                 ret = eth_igb_syn_filter_get(dev,
3689                                 (struct rte_eth_syn_filter *)arg);
3690                 break;
3691         default:
3692                 PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op);
3693                 ret = -EINVAL;
3694                 break;
3695         }
3696
3697         return ret;
3698 }
3699
3700 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_2tuple_filter_info*/
3701 static inline int
3702 ntuple_filter_to_2tuple(struct rte_eth_ntuple_filter *filter,
3703                         struct e1000_2tuple_filter_info *filter_info)
3704 {
3705         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
3706                 return -EINVAL;
3707         if (filter->priority > E1000_2TUPLE_MAX_PRI)
3708                 return -EINVAL;  /* filter index is out of range. */
3709         if (filter->tcp_flags > RTE_NTUPLE_TCP_FLAGS_MASK)
3710                 return -EINVAL;  /* flags is invalid. */
3711
3712         switch (filter->dst_port_mask) {
3713         case UINT16_MAX:
3714                 filter_info->dst_port_mask = 0;
3715                 filter_info->dst_port = filter->dst_port;
3716                 break;
3717         case 0:
3718                 filter_info->dst_port_mask = 1;
3719                 break;
3720         default:
3721                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
3722                 return -EINVAL;
3723         }
3724
3725         switch (filter->proto_mask) {
3726         case UINT8_MAX:
3727                 filter_info->proto_mask = 0;
3728                 filter_info->proto = filter->proto;
3729                 break;
3730         case 0:
3731                 filter_info->proto_mask = 1;
3732                 break;
3733         default:
3734                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
3735                 return -EINVAL;
3736         }
3737
3738         filter_info->priority = (uint8_t)filter->priority;
3739         if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
3740                 filter_info->tcp_flags = filter->tcp_flags;
3741         else
3742                 filter_info->tcp_flags = 0;
3743
3744         return 0;
3745 }
3746
3747 static inline struct e1000_2tuple_filter *
3748 igb_2tuple_filter_lookup(struct e1000_2tuple_filter_list *filter_list,
3749                         struct e1000_2tuple_filter_info *key)
3750 {
3751         struct e1000_2tuple_filter *it;
3752
3753         TAILQ_FOREACH(it, filter_list, entries) {
3754                 if (memcmp(key, &it->filter_info,
3755                         sizeof(struct e1000_2tuple_filter_info)) == 0) {
3756                         return it;
3757                 }
3758         }
3759         return NULL;
3760 }
3761
3762 /* inject a igb 2tuple filter to HW */
3763 static inline void
3764 igb_inject_2uple_filter(struct rte_eth_dev *dev,
3765                            struct e1000_2tuple_filter *filter)
3766 {
3767         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3768         uint32_t ttqf = E1000_TTQF_DISABLE_MASK;
3769         uint32_t imir, imir_ext = E1000_IMIREXT_SIZE_BP;
3770         int i;
3771
3772         i = filter->index;
3773         imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
3774         if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
3775                 imir |= E1000_IMIR_PORT_BP;
3776         else
3777                 imir &= ~E1000_IMIR_PORT_BP;
3778
3779         imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
3780
3781         ttqf |= E1000_TTQF_QUEUE_ENABLE;
3782         ttqf |= (uint32_t)(filter->queue << E1000_TTQF_QUEUE_SHIFT);
3783         ttqf |= (uint32_t)(filter->filter_info.proto &
3784                                                 E1000_TTQF_PROTOCOL_MASK);
3785         if (filter->filter_info.proto_mask == 0)
3786                 ttqf &= ~E1000_TTQF_MASK_ENABLE;
3787
3788         /* tcp flags bits setting. */
3789         if (filter->filter_info.tcp_flags & RTE_NTUPLE_TCP_FLAGS_MASK) {
3790                 if (filter->filter_info.tcp_flags & RTE_TCP_URG_FLAG)
3791                         imir_ext |= E1000_IMIREXT_CTRL_URG;
3792                 if (filter->filter_info.tcp_flags & RTE_TCP_ACK_FLAG)
3793                         imir_ext |= E1000_IMIREXT_CTRL_ACK;
3794                 if (filter->filter_info.tcp_flags & RTE_TCP_PSH_FLAG)
3795                         imir_ext |= E1000_IMIREXT_CTRL_PSH;
3796                 if (filter->filter_info.tcp_flags & RTE_TCP_RST_FLAG)
3797                         imir_ext |= E1000_IMIREXT_CTRL_RST;
3798                 if (filter->filter_info.tcp_flags & RTE_TCP_SYN_FLAG)
3799                         imir_ext |= E1000_IMIREXT_CTRL_SYN;
3800                 if (filter->filter_info.tcp_flags & RTE_TCP_FIN_FLAG)
3801                         imir_ext |= E1000_IMIREXT_CTRL_FIN;
3802         } else {
3803                 imir_ext |= E1000_IMIREXT_CTRL_BP;
3804         }
3805         E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
3806         E1000_WRITE_REG(hw, E1000_TTQF(i), ttqf);
3807         E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
3808 }
3809
3810 /*
3811  * igb_add_2tuple_filter - add a 2tuple filter
3812  *
3813  * @param
3814  * dev: Pointer to struct rte_eth_dev.
3815  * ntuple_filter: ponter to the filter that will be added.
3816  *
3817  * @return
3818  *    - On success, zero.
3819  *    - On failure, a negative value.
3820  */
3821 static int
3822 igb_add_2tuple_filter(struct rte_eth_dev *dev,
3823                         struct rte_eth_ntuple_filter *ntuple_filter)
3824 {
3825         struct e1000_filter_info *filter_info =
3826                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3827         struct e1000_2tuple_filter *filter;
3828         int i, ret;
3829
3830         filter = rte_zmalloc("e1000_2tuple_filter",
3831                         sizeof(struct e1000_2tuple_filter), 0);
3832         if (filter == NULL)
3833                 return -ENOMEM;
3834
3835         ret = ntuple_filter_to_2tuple(ntuple_filter,
3836                                       &filter->filter_info);
3837         if (ret < 0) {
3838                 rte_free(filter);
3839                 return ret;
3840         }
3841         if (igb_2tuple_filter_lookup(&filter_info->twotuple_list,
3842                                          &filter->filter_info) != NULL) {
3843                 PMD_DRV_LOG(ERR, "filter exists.");
3844                 rte_free(filter);
3845                 return -EEXIST;
3846         }
3847         filter->queue = ntuple_filter->queue;
3848
3849         /*
3850          * look for an unused 2tuple filter index,
3851          * and insert the filter to list.
3852          */
3853         for (i = 0; i < E1000_MAX_TTQF_FILTERS; i++) {
3854                 if (!(filter_info->twotuple_mask & (1 << i))) {
3855                         filter_info->twotuple_mask |= 1 << i;
3856                         filter->index = i;
3857                         TAILQ_INSERT_TAIL(&filter_info->twotuple_list,
3858                                           filter,
3859                                           entries);
3860                         break;
3861                 }
3862         }
3863         if (i >= E1000_MAX_TTQF_FILTERS) {
3864                 PMD_DRV_LOG(ERR, "2tuple filters are full.");
3865                 rte_free(filter);
3866                 return -ENOSYS;
3867         }
3868
3869         igb_inject_2uple_filter(dev, filter);
3870         return 0;
3871 }
3872
3873 int
3874 igb_delete_2tuple_filter(struct rte_eth_dev *dev,
3875                         struct e1000_2tuple_filter *filter)
3876 {
3877         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3878         struct e1000_filter_info *filter_info =
3879                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3880
3881         filter_info->twotuple_mask &= ~(1 << filter->index);
3882         TAILQ_REMOVE(&filter_info->twotuple_list, filter, entries);
3883         rte_free(filter);
3884
3885         E1000_WRITE_REG(hw, E1000_TTQF(filter->index), E1000_TTQF_DISABLE_MASK);
3886         E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
3887         E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
3888         return 0;
3889 }
3890
3891 /*
3892  * igb_remove_2tuple_filter - remove a 2tuple filter
3893  *
3894  * @param
3895  * dev: Pointer to struct rte_eth_dev.
3896  * ntuple_filter: ponter to the filter that will be removed.
3897  *
3898  * @return
3899  *    - On success, zero.
3900  *    - On failure, a negative value.
3901  */
3902 static int
3903 igb_remove_2tuple_filter(struct rte_eth_dev *dev,
3904                         struct rte_eth_ntuple_filter *ntuple_filter)
3905 {
3906         struct e1000_filter_info *filter_info =
3907                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3908         struct e1000_2tuple_filter_info filter_2tuple;
3909         struct e1000_2tuple_filter *filter;
3910         int ret;
3911
3912         memset(&filter_2tuple, 0, sizeof(struct e1000_2tuple_filter_info));
3913         ret = ntuple_filter_to_2tuple(ntuple_filter,
3914                                       &filter_2tuple);
3915         if (ret < 0)
3916                 return ret;
3917
3918         filter = igb_2tuple_filter_lookup(&filter_info->twotuple_list,
3919                                          &filter_2tuple);
3920         if (filter == NULL) {
3921                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
3922                 return -ENOENT;
3923         }
3924
3925         igb_delete_2tuple_filter(dev, filter);
3926
3927         return 0;
3928 }
3929
3930 /* inject a igb flex filter to HW */
3931 static inline void
3932 igb_inject_flex_filter(struct rte_eth_dev *dev,
3933                            struct e1000_flex_filter *filter)
3934 {
3935         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3936         uint32_t wufc, queueing;
3937         uint32_t reg_off;
3938         uint8_t i, j = 0;
3939
3940         wufc = E1000_READ_REG(hw, E1000_WUFC);
3941         if (filter->index < E1000_MAX_FHFT)
3942                 reg_off = E1000_FHFT(filter->index);
3943         else
3944                 reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT);
3945
3946         E1000_WRITE_REG(hw, E1000_WUFC, wufc | E1000_WUFC_FLEX_HQ |
3947                         (E1000_WUFC_FLX0 << filter->index));
3948         queueing = filter->filter_info.len |
3949                 (filter->queue << E1000_FHFT_QUEUEING_QUEUE_SHIFT) |
3950                 (filter->filter_info.priority <<
3951                         E1000_FHFT_QUEUEING_PRIO_SHIFT);
3952         E1000_WRITE_REG(hw, reg_off + E1000_FHFT_QUEUEING_OFFSET,
3953                         queueing);
3954
3955         for (i = 0; i < E1000_FLEX_FILTERS_MASK_SIZE; i++) {
3956                 E1000_WRITE_REG(hw, reg_off,
3957                                 filter->filter_info.dwords[j]);
3958                 reg_off += sizeof(uint32_t);
3959                 E1000_WRITE_REG(hw, reg_off,
3960                                 filter->filter_info.dwords[++j]);
3961                 reg_off += sizeof(uint32_t);
3962                 E1000_WRITE_REG(hw, reg_off,
3963                         (uint32_t)filter->filter_info.mask[i]);
3964                 reg_off += sizeof(uint32_t) * 2;
3965                 ++j;
3966         }
3967 }
3968
3969 static inline struct e1000_flex_filter *
3970 eth_igb_flex_filter_lookup(struct e1000_flex_filter_list *filter_list,
3971                         struct e1000_flex_filter_info *key)
3972 {
3973         struct e1000_flex_filter *it;
3974
3975         TAILQ_FOREACH(it, filter_list, entries) {
3976                 if (memcmp(key, &it->filter_info,
3977                         sizeof(struct e1000_flex_filter_info)) == 0)
3978                         return it;
3979         }
3980
3981         return NULL;
3982 }
3983
3984 /* remove a flex byte filter
3985  * @param
3986  * dev: Pointer to struct rte_eth_dev.
3987  * filter: the pointer of the filter will be removed.
3988  */
3989 void
3990 igb_remove_flex_filter(struct rte_eth_dev *dev,
3991                         struct e1000_flex_filter *filter)
3992 {
3993         struct e1000_filter_info *filter_info =
3994                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3995         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3996         uint32_t wufc, i;
3997         uint32_t reg_off;
3998
3999         wufc = E1000_READ_REG(hw, E1000_WUFC);
4000         if (filter->index < E1000_MAX_FHFT)
4001                 reg_off = E1000_FHFT(filter->index);
4002         else
4003                 reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT);
4004
4005         for (i = 0; i < E1000_FHFT_SIZE_IN_DWD; i++)
4006                 E1000_WRITE_REG(hw, reg_off + i * sizeof(uint32_t), 0);
4007
4008         E1000_WRITE_REG(hw, E1000_WUFC, wufc &
4009                 (~(E1000_WUFC_FLX0 << filter->index)));
4010
4011         filter_info->flex_mask &= ~(1 << filter->index);
4012         TAILQ_REMOVE(&filter_info->flex_list, filter, entries);
4013         rte_free(filter);
4014 }
4015
4016 int
4017 eth_igb_add_del_flex_filter(struct rte_eth_dev *dev,
4018                         struct rte_eth_flex_filter *filter,
4019                         bool add)
4020 {
4021         struct e1000_filter_info *filter_info =
4022                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4023         struct e1000_flex_filter *flex_filter, *it;
4024         uint32_t mask;
4025         uint8_t shift, i;
4026
4027         flex_filter = rte_zmalloc("e1000_flex_filter",
4028                         sizeof(struct e1000_flex_filter), 0);
4029         if (flex_filter == NULL)
4030                 return -ENOMEM;
4031
4032         flex_filter->filter_info.len = filter->len;
4033         flex_filter->filter_info.priority = filter->priority;
4034         memcpy(flex_filter->filter_info.dwords, filter->bytes, filter->len);
4035         for (i = 0; i < RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT; i++) {
4036                 mask = 0;
4037                 /* reverse bits in flex filter's mask*/
4038                 for (shift = 0; shift < CHAR_BIT; shift++) {
4039                         if (filter->mask[i] & (0x01 << shift))
4040                                 mask |= (0x80 >> shift);
4041                 }
4042                 flex_filter->filter_info.mask[i] = mask;
4043         }
4044
4045         it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
4046                                 &flex_filter->filter_info);
4047         if (it == NULL && !add) {
4048                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4049                 rte_free(flex_filter);
4050                 return -ENOENT;
4051         }
4052         if (it != NULL && add) {
4053                 PMD_DRV_LOG(ERR, "filter exists.");
4054                 rte_free(flex_filter);
4055                 return -EEXIST;
4056         }
4057
4058         if (add) {
4059                 flex_filter->queue = filter->queue;
4060                 /*
4061                  * look for an unused flex filter index
4062                  * and insert the filter into the list.
4063                  */
4064                 for (i = 0; i < E1000_MAX_FLEX_FILTERS; i++) {
4065                         if (!(filter_info->flex_mask & (1 << i))) {
4066                                 filter_info->flex_mask |= 1 << i;
4067                                 flex_filter->index = i;
4068                                 TAILQ_INSERT_TAIL(&filter_info->flex_list,
4069                                         flex_filter,
4070                                         entries);
4071                                 break;
4072                         }
4073                 }
4074                 if (i >= E1000_MAX_FLEX_FILTERS) {
4075                         PMD_DRV_LOG(ERR, "flex filters are full.");
4076                         rte_free(flex_filter);
4077                         return -ENOSYS;
4078                 }
4079
4080                 igb_inject_flex_filter(dev, flex_filter);
4081
4082         } else {
4083                 igb_remove_flex_filter(dev, it);
4084                 rte_free(flex_filter);
4085         }
4086
4087         return 0;
4088 }
4089
4090 static int
4091 eth_igb_get_flex_filter(struct rte_eth_dev *dev,
4092                         struct rte_eth_flex_filter *filter)
4093 {
4094         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4095         struct e1000_filter_info *filter_info =
4096                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4097         struct e1000_flex_filter flex_filter, *it;
4098         uint32_t wufc, queueing, wufc_en = 0;
4099
4100         memset(&flex_filter, 0, sizeof(struct e1000_flex_filter));
4101         flex_filter.filter_info.len = filter->len;
4102         flex_filter.filter_info.priority = filter->priority;
4103         memcpy(flex_filter.filter_info.dwords, filter->bytes, filter->len);
4104         memcpy(flex_filter.filter_info.mask, filter->mask,
4105                         RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT);
4106
4107         it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
4108                                 &flex_filter.filter_info);
4109         if (it == NULL) {
4110                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4111                 return -ENOENT;
4112         }
4113
4114         wufc = E1000_READ_REG(hw, E1000_WUFC);
4115         wufc_en = E1000_WUFC_FLEX_HQ | (E1000_WUFC_FLX0 << it->index);
4116
4117         if ((wufc & wufc_en) == wufc_en) {
4118                 uint32_t reg_off = 0;
4119                 if (it->index < E1000_MAX_FHFT)
4120                         reg_off = E1000_FHFT(it->index);
4121                 else
4122                         reg_off = E1000_FHFT_EXT(it->index - E1000_MAX_FHFT);
4123
4124                 queueing = E1000_READ_REG(hw,
4125                                 reg_off + E1000_FHFT_QUEUEING_OFFSET);
4126                 filter->len = queueing & E1000_FHFT_QUEUEING_LEN;
4127                 filter->priority = (queueing & E1000_FHFT_QUEUEING_PRIO) >>
4128                         E1000_FHFT_QUEUEING_PRIO_SHIFT;
4129                 filter->queue = (queueing & E1000_FHFT_QUEUEING_QUEUE) >>
4130                         E1000_FHFT_QUEUEING_QUEUE_SHIFT;
4131                 return 0;
4132         }
4133         return -ENOENT;
4134 }
4135
4136 static int
4137 eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
4138                         enum rte_filter_op filter_op,
4139                         void *arg)
4140 {
4141         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4142         struct rte_eth_flex_filter *filter;
4143         int ret = 0;
4144
4145         MAC_TYPE_FILTER_SUP_EXT(hw->mac.type);
4146
4147         if (filter_op == RTE_ETH_FILTER_NOP)
4148                 return ret;
4149
4150         if (arg == NULL) {
4151                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
4152                             filter_op);
4153                 return -EINVAL;
4154         }
4155
4156         filter = (struct rte_eth_flex_filter *)arg;
4157         if (filter->len == 0 || filter->len > E1000_MAX_FLEX_FILTER_LEN
4158             || filter->len % sizeof(uint64_t) != 0) {
4159                 PMD_DRV_LOG(ERR, "filter's length is out of range");
4160                 return -EINVAL;
4161         }
4162         if (filter->priority > E1000_MAX_FLEX_FILTER_PRI) {
4163                 PMD_DRV_LOG(ERR, "filter's priority is out of range");
4164                 return -EINVAL;
4165         }
4166
4167         switch (filter_op) {
4168         case RTE_ETH_FILTER_ADD:
4169                 ret = eth_igb_add_del_flex_filter(dev, filter, TRUE);
4170                 break;
4171         case RTE_ETH_FILTER_DELETE:
4172                 ret = eth_igb_add_del_flex_filter(dev, filter, FALSE);
4173                 break;
4174         case RTE_ETH_FILTER_GET:
4175                 ret = eth_igb_get_flex_filter(dev, filter);
4176                 break;
4177         default:
4178                 PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op);
4179                 ret = -EINVAL;
4180                 break;
4181         }
4182
4183         return ret;
4184 }
4185
4186 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_5tuple_filter_info*/
4187 static inline int
4188 ntuple_filter_to_5tuple_82576(struct rte_eth_ntuple_filter *filter,
4189                         struct e1000_5tuple_filter_info *filter_info)
4190 {
4191         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM_82576)
4192                 return -EINVAL;
4193         if (filter->priority > E1000_2TUPLE_MAX_PRI)
4194                 return -EINVAL;  /* filter index is out of range. */
4195         if (filter->tcp_flags > RTE_NTUPLE_TCP_FLAGS_MASK)
4196                 return -EINVAL;  /* flags is invalid. */
4197
4198         switch (filter->dst_ip_mask) {
4199         case UINT32_MAX:
4200                 filter_info->dst_ip_mask = 0;
4201                 filter_info->dst_ip = filter->dst_ip;
4202                 break;
4203         case 0:
4204                 filter_info->dst_ip_mask = 1;
4205                 break;
4206         default:
4207                 PMD_DRV_LOG(ERR, "invalid dst_ip mask.");
4208                 return -EINVAL;
4209         }
4210
4211         switch (filter->src_ip_mask) {
4212         case UINT32_MAX:
4213                 filter_info->src_ip_mask = 0;
4214                 filter_info->src_ip = filter->src_ip;
4215                 break;
4216         case 0:
4217                 filter_info->src_ip_mask = 1;
4218                 break;
4219         default:
4220                 PMD_DRV_LOG(ERR, "invalid src_ip mask.");
4221                 return -EINVAL;
4222         }
4223
4224         switch (filter->dst_port_mask) {
4225         case UINT16_MAX:
4226                 filter_info->dst_port_mask = 0;
4227                 filter_info->dst_port = filter->dst_port;
4228                 break;
4229         case 0:
4230                 filter_info->dst_port_mask = 1;
4231                 break;
4232         default:
4233                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
4234                 return -EINVAL;
4235         }
4236
4237         switch (filter->src_port_mask) {
4238         case UINT16_MAX:
4239                 filter_info->src_port_mask = 0;
4240                 filter_info->src_port = filter->src_port;
4241                 break;
4242         case 0:
4243                 filter_info->src_port_mask = 1;
4244                 break;
4245         default:
4246                 PMD_DRV_LOG(ERR, "invalid src_port mask.");
4247                 return -EINVAL;
4248         }
4249
4250         switch (filter->proto_mask) {
4251         case UINT8_MAX:
4252                 filter_info->proto_mask = 0;
4253                 filter_info->proto = filter->proto;
4254                 break;
4255         case 0:
4256                 filter_info->proto_mask = 1;
4257                 break;
4258         default:
4259                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
4260                 return -EINVAL;
4261         }
4262
4263         filter_info->priority = (uint8_t)filter->priority;
4264         if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
4265                 filter_info->tcp_flags = filter->tcp_flags;
4266         else
4267                 filter_info->tcp_flags = 0;
4268
4269         return 0;
4270 }
4271
4272 static inline struct e1000_5tuple_filter *
4273 igb_5tuple_filter_lookup_82576(struct e1000_5tuple_filter_list *filter_list,
4274                         struct e1000_5tuple_filter_info *key)
4275 {
4276         struct e1000_5tuple_filter *it;
4277
4278         TAILQ_FOREACH(it, filter_list, entries) {
4279                 if (memcmp(key, &it->filter_info,
4280                         sizeof(struct e1000_5tuple_filter_info)) == 0) {
4281                         return it;
4282                 }
4283         }
4284         return NULL;
4285 }
4286
4287 /* inject a igb 5-tuple filter to HW */
4288 static inline void
4289 igb_inject_5tuple_filter_82576(struct rte_eth_dev *dev,
4290                            struct e1000_5tuple_filter *filter)
4291 {
4292         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4293         uint32_t ftqf = E1000_FTQF_VF_BP | E1000_FTQF_MASK;
4294         uint32_t spqf, imir, imir_ext = E1000_IMIREXT_SIZE_BP;
4295         uint8_t i;
4296
4297         i = filter->index;
4298         ftqf |= filter->filter_info.proto & E1000_FTQF_PROTOCOL_MASK;
4299         if (filter->filter_info.src_ip_mask == 0) /* 0b means compare. */
4300                 ftqf &= ~E1000_FTQF_MASK_SOURCE_ADDR_BP;
4301         if (filter->filter_info.dst_ip_mask == 0)
4302                 ftqf &= ~E1000_FTQF_MASK_DEST_ADDR_BP;
4303         if (filter->filter_info.src_port_mask == 0)
4304                 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
4305         if (filter->filter_info.proto_mask == 0)
4306                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP;
4307         ftqf |= (filter->queue << E1000_FTQF_QUEUE_SHIFT) &
4308                 E1000_FTQF_QUEUE_MASK;
4309         ftqf |= E1000_FTQF_QUEUE_ENABLE;
4310         E1000_WRITE_REG(hw, E1000_FTQF(i), ftqf);
4311         E1000_WRITE_REG(hw, E1000_DAQF(i), filter->filter_info.dst_ip);
4312         E1000_WRITE_REG(hw, E1000_SAQF(i), filter->filter_info.src_ip);
4313
4314         spqf = filter->filter_info.src_port & E1000_SPQF_SRCPORT;
4315         E1000_WRITE_REG(hw, E1000_SPQF(i), spqf);
4316
4317         imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
4318         if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
4319                 imir |= E1000_IMIR_PORT_BP;
4320         else
4321                 imir &= ~E1000_IMIR_PORT_BP;
4322         imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
4323
4324         /* tcp flags bits setting. */
4325         if (filter->filter_info.tcp_flags & RTE_NTUPLE_TCP_FLAGS_MASK) {
4326                 if (filter->filter_info.tcp_flags & RTE_TCP_URG_FLAG)
4327                         imir_ext |= E1000_IMIREXT_CTRL_URG;
4328                 if (filter->filter_info.tcp_flags & RTE_TCP_ACK_FLAG)
4329                         imir_ext |= E1000_IMIREXT_CTRL_ACK;
4330                 if (filter->filter_info.tcp_flags & RTE_TCP_PSH_FLAG)
4331                         imir_ext |= E1000_IMIREXT_CTRL_PSH;
4332                 if (filter->filter_info.tcp_flags & RTE_TCP_RST_FLAG)
4333                         imir_ext |= E1000_IMIREXT_CTRL_RST;
4334                 if (filter->filter_info.tcp_flags & RTE_TCP_SYN_FLAG)
4335                         imir_ext |= E1000_IMIREXT_CTRL_SYN;
4336                 if (filter->filter_info.tcp_flags & RTE_TCP_FIN_FLAG)
4337                         imir_ext |= E1000_IMIREXT_CTRL_FIN;
4338         } else {
4339                 imir_ext |= E1000_IMIREXT_CTRL_BP;
4340         }
4341         E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
4342         E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
4343 }
4344
4345 /*
4346  * igb_add_5tuple_filter_82576 - add a 5tuple filter
4347  *
4348  * @param
4349  * dev: Pointer to struct rte_eth_dev.
4350  * ntuple_filter: ponter to the filter that will be added.
4351  *
4352  * @return
4353  *    - On success, zero.
4354  *    - On failure, a negative value.
4355  */
4356 static int
4357 igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
4358                         struct rte_eth_ntuple_filter *ntuple_filter)
4359 {
4360         struct e1000_filter_info *filter_info =
4361                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4362         struct e1000_5tuple_filter *filter;
4363         uint8_t i;
4364         int ret;
4365
4366         filter = rte_zmalloc("e1000_5tuple_filter",
4367                         sizeof(struct e1000_5tuple_filter), 0);
4368         if (filter == NULL)
4369                 return -ENOMEM;
4370
4371         ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4372                                             &filter->filter_info);
4373         if (ret < 0) {
4374                 rte_free(filter);
4375                 return ret;
4376         }
4377
4378         if (igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
4379                                          &filter->filter_info) != NULL) {
4380                 PMD_DRV_LOG(ERR, "filter exists.");
4381                 rte_free(filter);
4382                 return -EEXIST;
4383         }
4384         filter->queue = ntuple_filter->queue;
4385
4386         /*
4387          * look for an unused 5tuple filter index,
4388          * and insert the filter to list.
4389          */
4390         for (i = 0; i < E1000_MAX_FTQF_FILTERS; i++) {
4391                 if (!(filter_info->fivetuple_mask & (1 << i))) {
4392                         filter_info->fivetuple_mask |= 1 << i;
4393                         filter->index = i;
4394                         TAILQ_INSERT_TAIL(&filter_info->fivetuple_list,
4395                                           filter,
4396                                           entries);
4397                         break;
4398                 }
4399         }
4400         if (i >= E1000_MAX_FTQF_FILTERS) {
4401                 PMD_DRV_LOG(ERR, "5tuple filters are full.");
4402                 rte_free(filter);
4403                 return -ENOSYS;
4404         }
4405
4406         igb_inject_5tuple_filter_82576(dev, filter);
4407         return 0;
4408 }
4409
4410 int
4411 igb_delete_5tuple_filter_82576(struct rte_eth_dev *dev,
4412                                 struct e1000_5tuple_filter *filter)
4413 {
4414         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4415         struct e1000_filter_info *filter_info =
4416                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4417
4418         filter_info->fivetuple_mask &= ~(1 << filter->index);
4419         TAILQ_REMOVE(&filter_info->fivetuple_list, filter, entries);
4420         rte_free(filter);
4421
4422         E1000_WRITE_REG(hw, E1000_FTQF(filter->index),
4423                         E1000_FTQF_VF_BP | E1000_FTQF_MASK);
4424         E1000_WRITE_REG(hw, E1000_DAQF(filter->index), 0);
4425         E1000_WRITE_REG(hw, E1000_SAQF(filter->index), 0);
4426         E1000_WRITE_REG(hw, E1000_SPQF(filter->index), 0);
4427         E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
4428         E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
4429         return 0;
4430 }
4431
4432 /*
4433  * igb_remove_5tuple_filter_82576 - remove a 5tuple filter
4434  *
4435  * @param
4436  * dev: Pointer to struct rte_eth_dev.
4437  * ntuple_filter: ponter to the filter that will be removed.
4438  *
4439  * @return
4440  *    - On success, zero.
4441  *    - On failure, a negative value.
4442  */
4443 static int
4444 igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
4445                                 struct rte_eth_ntuple_filter *ntuple_filter)
4446 {
4447         struct e1000_filter_info *filter_info =
4448                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4449         struct e1000_5tuple_filter_info filter_5tuple;
4450         struct e1000_5tuple_filter *filter;
4451         int ret;
4452
4453         memset(&filter_5tuple, 0, sizeof(struct e1000_5tuple_filter_info));
4454         ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4455                                             &filter_5tuple);
4456         if (ret < 0)
4457                 return ret;
4458
4459         filter = igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
4460                                          &filter_5tuple);
4461         if (filter == NULL) {
4462                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4463                 return -ENOENT;
4464         }
4465
4466         igb_delete_5tuple_filter_82576(dev, filter);
4467
4468         return 0;
4469 }
4470
4471 static int
4472 eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
4473 {
4474         uint32_t rctl;
4475         struct e1000_hw *hw;
4476         struct rte_eth_dev_info dev_info;
4477         uint32_t frame_size = mtu + E1000_ETH_OVERHEAD;
4478
4479         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4480
4481 #ifdef RTE_LIBRTE_82571_SUPPORT
4482         /* XXX: not bigger than max_rx_pktlen */
4483         if (hw->mac.type == e1000_82571)
4484                 return -ENOTSUP;
4485 #endif
4486         eth_igb_infos_get(dev, &dev_info);
4487
4488         /* check that mtu is within the allowed range */
4489         if (mtu < RTE_ETHER_MIN_MTU ||
4490                         frame_size > dev_info.max_rx_pktlen)
4491                 return -EINVAL;
4492
4493         /* refuse mtu that requires the support of scattered packets when this
4494          * feature has not been enabled before. */
4495         if (!dev->data->scattered_rx &&
4496             frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
4497                 return -EINVAL;
4498
4499         rctl = E1000_READ_REG(hw, E1000_RCTL);
4500
4501         /* switch to jumbo mode if needed */
4502         if (frame_size > RTE_ETHER_MAX_LEN) {
4503                 dev->data->dev_conf.rxmode.offloads |=
4504                         DEV_RX_OFFLOAD_JUMBO_FRAME;
4505                 rctl |= E1000_RCTL_LPE;
4506         } else {
4507                 dev->data->dev_conf.rxmode.offloads &=
4508                         ~DEV_RX_OFFLOAD_JUMBO_FRAME;
4509                 rctl &= ~E1000_RCTL_LPE;
4510         }
4511         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
4512
4513         /* update max frame size */
4514         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
4515
4516         E1000_WRITE_REG(hw, E1000_RLPML,
4517                         dev->data->dev_conf.rxmode.max_rx_pkt_len);
4518
4519         return 0;
4520 }
4521
4522 /*
4523  * igb_add_del_ntuple_filter - add or delete a ntuple filter
4524  *
4525  * @param
4526  * dev: Pointer to struct rte_eth_dev.
4527  * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
4528  * add: if true, add filter, if false, remove filter
4529  *
4530  * @return
4531  *    - On success, zero.
4532  *    - On failure, a negative value.
4533  */
4534 int
4535 igb_add_del_ntuple_filter(struct rte_eth_dev *dev,
4536                         struct rte_eth_ntuple_filter *ntuple_filter,
4537                         bool add)
4538 {
4539         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4540         int ret;
4541
4542         switch (ntuple_filter->flags) {
4543         case RTE_5TUPLE_FLAGS:
4544         case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4545                 if (hw->mac.type != e1000_82576)
4546                         return -ENOTSUP;
4547                 if (add)
4548                         ret = igb_add_5tuple_filter_82576(dev,
4549                                                           ntuple_filter);
4550                 else
4551                         ret = igb_remove_5tuple_filter_82576(dev,
4552                                                              ntuple_filter);
4553                 break;
4554         case RTE_2TUPLE_FLAGS:
4555         case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4556                 if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350 &&
4557                         hw->mac.type != e1000_i210 &&
4558                         hw->mac.type != e1000_i211)
4559                         return -ENOTSUP;
4560                 if (add)
4561                         ret = igb_add_2tuple_filter(dev, ntuple_filter);
4562                 else
4563                         ret = igb_remove_2tuple_filter(dev, ntuple_filter);
4564                 break;
4565         default:
4566                 ret = -EINVAL;
4567                 break;
4568         }
4569
4570         return ret;
4571 }
4572
4573 /*
4574  * igb_get_ntuple_filter - get a ntuple filter
4575  *
4576  * @param
4577  * dev: Pointer to struct rte_eth_dev.
4578  * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
4579  *
4580  * @return
4581  *    - On success, zero.
4582  *    - On failure, a negative value.
4583  */
4584 static int
4585 igb_get_ntuple_filter(struct rte_eth_dev *dev,
4586                         struct rte_eth_ntuple_filter *ntuple_filter)
4587 {
4588         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4589         struct e1000_filter_info *filter_info =
4590                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4591         struct e1000_5tuple_filter_info filter_5tuple;
4592         struct e1000_2tuple_filter_info filter_2tuple;
4593         struct e1000_5tuple_filter *p_5tuple_filter;
4594         struct e1000_2tuple_filter *p_2tuple_filter;
4595         int ret;
4596
4597         switch (ntuple_filter->flags) {
4598         case RTE_5TUPLE_FLAGS:
4599         case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4600                 if (hw->mac.type != e1000_82576)
4601                         return -ENOTSUP;
4602                 memset(&filter_5tuple,
4603                         0,
4604                         sizeof(struct e1000_5tuple_filter_info));
4605                 ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4606                                                     &filter_5tuple);
4607                 if (ret < 0)
4608                         return ret;
4609                 p_5tuple_filter = igb_5tuple_filter_lookup_82576(
4610                                         &filter_info->fivetuple_list,
4611                                         &filter_5tuple);
4612                 if (p_5tuple_filter == NULL) {
4613                         PMD_DRV_LOG(ERR, "filter doesn't exist.");
4614                         return -ENOENT;
4615                 }
4616                 ntuple_filter->queue = p_5tuple_filter->queue;
4617                 break;
4618         case RTE_2TUPLE_FLAGS:
4619         case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4620                 if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350)
4621                         return -ENOTSUP;
4622                 memset(&filter_2tuple,
4623                         0,
4624                         sizeof(struct e1000_2tuple_filter_info));
4625                 ret = ntuple_filter_to_2tuple(ntuple_filter, &filter_2tuple);
4626                 if (ret < 0)
4627                         return ret;
4628                 p_2tuple_filter = igb_2tuple_filter_lookup(
4629                                         &filter_info->twotuple_list,
4630                                         &filter_2tuple);
4631                 if (p_2tuple_filter == NULL) {
4632                         PMD_DRV_LOG(ERR, "filter doesn't exist.");
4633                         return -ENOENT;
4634                 }
4635                 ntuple_filter->queue = p_2tuple_filter->queue;
4636                 break;
4637         default:
4638                 ret = -EINVAL;
4639                 break;
4640         }
4641
4642         return 0;
4643 }
4644
4645 /*
4646  * igb_ntuple_filter_handle - Handle operations for ntuple filter.
4647  * @dev: pointer to rte_eth_dev structure
4648  * @filter_op:operation will be taken.
4649  * @arg: a pointer to specific structure corresponding to the filter_op
4650  */
4651 static int
4652 igb_ntuple_filter_handle(struct rte_eth_dev *dev,
4653                                 enum rte_filter_op filter_op,
4654                                 void *arg)
4655 {
4656         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4657         int ret;
4658
4659         MAC_TYPE_FILTER_SUP(hw->mac.type);
4660
4661         if (filter_op == RTE_ETH_FILTER_NOP)
4662                 return 0;
4663
4664         if (arg == NULL) {
4665                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
4666                             filter_op);
4667                 return -EINVAL;
4668         }
4669
4670         switch (filter_op) {
4671         case RTE_ETH_FILTER_ADD:
4672                 ret = igb_add_del_ntuple_filter(dev,
4673                         (struct rte_eth_ntuple_filter *)arg,
4674                         TRUE);
4675                 break;
4676         case RTE_ETH_FILTER_DELETE:
4677                 ret = igb_add_del_ntuple_filter(dev,
4678                         (struct rte_eth_ntuple_filter *)arg,
4679                         FALSE);
4680                 break;
4681         case RTE_ETH_FILTER_GET:
4682                 ret = igb_get_ntuple_filter(dev,
4683                         (struct rte_eth_ntuple_filter *)arg);
4684                 break;
4685         default:
4686                 PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
4687                 ret = -EINVAL;
4688                 break;
4689         }
4690         return ret;
4691 }
4692
4693 static inline int
4694 igb_ethertype_filter_lookup(struct e1000_filter_info *filter_info,
4695                         uint16_t ethertype)
4696 {
4697         int i;
4698
4699         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
4700                 if (filter_info->ethertype_filters[i].ethertype == ethertype &&
4701                     (filter_info->ethertype_mask & (1 << i)))
4702                         return i;
4703         }
4704         return -1;
4705 }
4706
4707 static inline int
4708 igb_ethertype_filter_insert(struct e1000_filter_info *filter_info,
4709                         uint16_t ethertype, uint32_t etqf)
4710 {
4711         int i;
4712
4713         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
4714                 if (!(filter_info->ethertype_mask & (1 << i))) {
4715                         filter_info->ethertype_mask |= 1 << i;
4716                         filter_info->ethertype_filters[i].ethertype = ethertype;
4717                         filter_info->ethertype_filters[i].etqf = etqf;
4718                         return i;
4719                 }
4720         }
4721         return -1;
4722 }
4723
4724 int
4725 igb_ethertype_filter_remove(struct e1000_filter_info *filter_info,
4726                         uint8_t idx)
4727 {
4728         if (idx >= E1000_MAX_ETQF_FILTERS)
4729                 return -1;
4730         filter_info->ethertype_mask &= ~(1 << idx);
4731         filter_info->ethertype_filters[idx].ethertype = 0;
4732         filter_info->ethertype_filters[idx].etqf = 0;
4733         return idx;
4734 }
4735
4736
4737 int
4738 igb_add_del_ethertype_filter(struct rte_eth_dev *dev,
4739                         struct rte_eth_ethertype_filter *filter,
4740                         bool add)
4741 {
4742         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4743         struct e1000_filter_info *filter_info =
4744                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4745         uint32_t etqf = 0;
4746         int ret;
4747
4748         if (filter->ether_type == RTE_ETHER_TYPE_IPV4 ||
4749                 filter->ether_type == RTE_ETHER_TYPE_IPV6) {
4750                 PMD_DRV_LOG(ERR, "unsupported ether_type(0x%04x) in"
4751                         " ethertype filter.", filter->ether_type);
4752                 return -EINVAL;
4753         }
4754
4755         if (filter->flags & RTE_ETHTYPE_FLAGS_MAC) {
4756                 PMD_DRV_LOG(ERR, "mac compare is unsupported.");
4757                 return -EINVAL;
4758         }
4759         if (filter->flags & RTE_ETHTYPE_FLAGS_DROP) {
4760                 PMD_DRV_LOG(ERR, "drop option is unsupported.");
4761                 return -EINVAL;
4762         }
4763
4764         ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
4765         if (ret >= 0 && add) {
4766                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter exists.",
4767                             filter->ether_type);
4768                 return -EEXIST;
4769         }
4770         if (ret < 0 && !add) {
4771                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
4772                             filter->ether_type);
4773                 return -ENOENT;
4774         }
4775
4776         if (add) {
4777                 etqf |= E1000_ETQF_FILTER_ENABLE | E1000_ETQF_QUEUE_ENABLE;
4778                 etqf |= (uint32_t)(filter->ether_type & E1000_ETQF_ETHERTYPE);
4779                 etqf |= filter->queue << E1000_ETQF_QUEUE_SHIFT;
4780                 ret = igb_ethertype_filter_insert(filter_info,
4781                                 filter->ether_type, etqf);
4782                 if (ret < 0) {
4783                         PMD_DRV_LOG(ERR, "ethertype filters are full.");
4784                         return -ENOSYS;
4785                 }
4786         } else {
4787                 ret = igb_ethertype_filter_remove(filter_info, (uint8_t)ret);
4788                 if (ret < 0)
4789                         return -ENOSYS;
4790         }
4791         E1000_WRITE_REG(hw, E1000_ETQF(ret), etqf);
4792         E1000_WRITE_FLUSH(hw);
4793
4794         return 0;
4795 }
4796
4797 static int
4798 igb_get_ethertype_filter(struct rte_eth_dev *dev,
4799                         struct rte_eth_ethertype_filter *filter)
4800 {
4801         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4802         struct e1000_filter_info *filter_info =
4803                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4804         uint32_t etqf;
4805         int ret;
4806
4807         ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
4808         if (ret < 0) {
4809                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
4810                             filter->ether_type);
4811                 return -ENOENT;
4812         }
4813
4814         etqf = E1000_READ_REG(hw, E1000_ETQF(ret));
4815         if (etqf & E1000_ETQF_FILTER_ENABLE) {
4816                 filter->ether_type = etqf & E1000_ETQF_ETHERTYPE;
4817                 filter->flags = 0;
4818                 filter->queue = (etqf & E1000_ETQF_QUEUE) >>
4819                                 E1000_ETQF_QUEUE_SHIFT;
4820                 return 0;
4821         }
4822
4823         return -ENOENT;
4824 }
4825
4826 /*
4827  * igb_ethertype_filter_handle - Handle operations for ethertype filter.
4828  * @dev: pointer to rte_eth_dev structure
4829  * @filter_op:operation will be taken.
4830  * @arg: a pointer to specific structure corresponding to the filter_op
4831  */
4832 static int
4833 igb_ethertype_filter_handle(struct rte_eth_dev *dev,
4834                                 enum rte_filter_op filter_op,
4835                                 void *arg)
4836 {
4837         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4838         int ret;
4839
4840         MAC_TYPE_FILTER_SUP(hw->mac.type);
4841
4842         if (filter_op == RTE_ETH_FILTER_NOP)
4843                 return 0;
4844
4845         if (arg == NULL) {
4846                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
4847                             filter_op);
4848                 return -EINVAL;
4849         }
4850
4851         switch (filter_op) {
4852         case RTE_ETH_FILTER_ADD:
4853                 ret = igb_add_del_ethertype_filter(dev,
4854                         (struct rte_eth_ethertype_filter *)arg,
4855                         TRUE);
4856                 break;
4857         case RTE_ETH_FILTER_DELETE:
4858                 ret = igb_add_del_ethertype_filter(dev,
4859                         (struct rte_eth_ethertype_filter *)arg,
4860                         FALSE);
4861                 break;
4862         case RTE_ETH_FILTER_GET:
4863                 ret = igb_get_ethertype_filter(dev,
4864                         (struct rte_eth_ethertype_filter *)arg);
4865                 break;
4866         default:
4867                 PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
4868                 ret = -EINVAL;
4869                 break;
4870         }
4871         return ret;
4872 }
4873
4874 static int
4875 eth_igb_filter_ctrl(struct rte_eth_dev *dev,
4876                      enum rte_filter_type filter_type,
4877                      enum rte_filter_op filter_op,
4878                      void *arg)
4879 {
4880         int ret = 0;
4881
4882         switch (filter_type) {
4883         case RTE_ETH_FILTER_NTUPLE:
4884                 ret = igb_ntuple_filter_handle(dev, filter_op, arg);
4885                 break;
4886         case RTE_ETH_FILTER_ETHERTYPE:
4887                 ret = igb_ethertype_filter_handle(dev, filter_op, arg);
4888                 break;
4889         case RTE_ETH_FILTER_SYN:
4890                 ret = eth_igb_syn_filter_handle(dev, filter_op, arg);
4891                 break;
4892         case RTE_ETH_FILTER_FLEXIBLE:
4893                 ret = eth_igb_flex_filter_handle(dev, filter_op, arg);
4894                 break;
4895         case RTE_ETH_FILTER_GENERIC:
4896                 if (filter_op != RTE_ETH_FILTER_GET)
4897                         return -EINVAL;
4898                 *(const void **)arg = &igb_flow_ops;
4899                 break;
4900         default:
4901                 PMD_DRV_LOG(WARNING, "Filter type (%d) not supported",
4902                                                         filter_type);
4903                 break;
4904         }
4905
4906         return ret;
4907 }
4908
4909 static int
4910 eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
4911                          struct rte_ether_addr *mc_addr_set,
4912                          uint32_t nb_mc_addr)
4913 {
4914         struct e1000_hw *hw;
4915
4916         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4917         e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
4918         return 0;
4919 }
4920
4921 static uint64_t
4922 igb_read_systime_cyclecounter(struct rte_eth_dev *dev)
4923 {
4924         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4925         uint64_t systime_cycles;
4926
4927         switch (hw->mac.type) {
4928         case e1000_i210:
4929         case e1000_i211:
4930                 /*
4931                  * Need to read System Time Residue Register to be able
4932                  * to read the other two registers.
4933                  */
4934                 E1000_READ_REG(hw, E1000_SYSTIMR);
4935                 /* SYSTIMEL stores ns and SYSTIMEH stores seconds. */
4936                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4937                 systime_cycles += (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
4938                                 * NSEC_PER_SEC;
4939                 break;
4940         case e1000_82580:
4941         case e1000_i350:
4942         case e1000_i354:
4943                 /*
4944                  * Need to read System Time Residue Register to be able
4945                  * to read the other two registers.
4946                  */
4947                 E1000_READ_REG(hw, E1000_SYSTIMR);
4948                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4949                 /* Only the 8 LSB are valid. */
4950                 systime_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_SYSTIMH)
4951                                 & 0xff) << 32;
4952                 break;
4953         default:
4954                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4955                 systime_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
4956                                 << 32;
4957                 break;
4958         }
4959
4960         return systime_cycles;
4961 }
4962
4963 static uint64_t
4964 igb_read_rx_tstamp_cyclecounter(struct rte_eth_dev *dev)
4965 {
4966         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4967         uint64_t rx_tstamp_cycles;
4968
4969         switch (hw->mac.type) {
4970         case e1000_i210:
4971         case e1000_i211:
4972                 /* RXSTMPL stores ns and RXSTMPH stores seconds. */
4973                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4974                 rx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
4975                                 * NSEC_PER_SEC;
4976                 break;
4977         case e1000_82580:
4978         case e1000_i350:
4979         case e1000_i354:
4980                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4981                 /* Only the 8 LSB are valid. */
4982                 rx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_RXSTMPH)
4983                                 & 0xff) << 32;
4984                 break;
4985         default:
4986                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4987                 rx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
4988                                 << 32;
4989                 break;
4990         }
4991
4992         return rx_tstamp_cycles;
4993 }
4994
4995 static uint64_t
4996 igb_read_tx_tstamp_cyclecounter(struct rte_eth_dev *dev)
4997 {
4998         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4999         uint64_t tx_tstamp_cycles;
5000
5001         switch (hw->mac.type) {
5002         case e1000_i210:
5003         case e1000_i211:
5004                 /* RXSTMPL stores ns and RXSTMPH stores seconds. */
5005                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
5006                 tx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
5007                                 * NSEC_PER_SEC;
5008                 break;
5009         case e1000_82580:
5010         case e1000_i350:
5011         case e1000_i354:
5012                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
5013                 /* Only the 8 LSB are valid. */
5014                 tx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_TXSTMPH)
5015                                 & 0xff) << 32;
5016                 break;
5017         default:
5018                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
5019                 tx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
5020                                 << 32;
5021                 break;
5022         }
5023
5024         return tx_tstamp_cycles;
5025 }
5026
5027 static void
5028 igb_start_timecounters(struct rte_eth_dev *dev)
5029 {
5030         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5031         struct e1000_adapter *adapter = dev->data->dev_private;
5032         uint32_t incval = 1;
5033         uint32_t shift = 0;
5034         uint64_t mask = E1000_CYCLECOUNTER_MASK;
5035
5036         switch (hw->mac.type) {
5037         case e1000_82580:
5038         case e1000_i350:
5039         case e1000_i354:
5040                 /* 32 LSB bits + 8 MSB bits = 40 bits */
5041                 mask = (1ULL << 40) - 1;
5042                 /* fall-through */
5043         case e1000_i210:
5044         case e1000_i211:
5045                 /*
5046                  * Start incrementing the register
5047                  * used to timestamp PTP packets.
5048                  */
5049                 E1000_WRITE_REG(hw, E1000_TIMINCA, incval);
5050                 break;
5051         case e1000_82576:
5052                 incval = E1000_INCVALUE_82576;
5053                 shift = IGB_82576_TSYNC_SHIFT;
5054                 E1000_WRITE_REG(hw, E1000_TIMINCA,
5055                                 E1000_INCPERIOD_82576 | incval);
5056                 break;
5057         default:
5058                 /* Not supported */
5059                 return;
5060         }
5061
5062         memset(&adapter->systime_tc, 0, sizeof(struct rte_timecounter));
5063         memset(&adapter->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
5064         memset(&adapter->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
5065
5066         adapter->systime_tc.cc_mask = mask;
5067         adapter->systime_tc.cc_shift = shift;
5068         adapter->systime_tc.nsec_mask = (1ULL << shift) - 1;
5069
5070         adapter->rx_tstamp_tc.cc_mask = mask;
5071         adapter->rx_tstamp_tc.cc_shift = shift;
5072         adapter->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
5073
5074         adapter->tx_tstamp_tc.cc_mask = mask;
5075         adapter->tx_tstamp_tc.cc_shift = shift;
5076         adapter->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
5077 }
5078
5079 static int
5080 igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
5081 {
5082         struct e1000_adapter *adapter = dev->data->dev_private;
5083
5084         adapter->systime_tc.nsec += delta;
5085         adapter->rx_tstamp_tc.nsec += delta;
5086         adapter->tx_tstamp_tc.nsec += delta;
5087
5088         return 0;
5089 }
5090
5091 static int
5092 igb_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
5093 {
5094         uint64_t ns;
5095         struct e1000_adapter *adapter = dev->data->dev_private;
5096
5097         ns = rte_timespec_to_ns(ts);
5098
5099         /* Set the timecounters to a new value. */
5100         adapter->systime_tc.nsec = ns;
5101         adapter->rx_tstamp_tc.nsec = ns;
5102         adapter->tx_tstamp_tc.nsec = ns;
5103
5104         return 0;
5105 }
5106
5107 static int
5108 igb_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
5109 {
5110         uint64_t ns, systime_cycles;
5111         struct e1000_adapter *adapter = dev->data->dev_private;
5112
5113         systime_cycles = igb_read_systime_cyclecounter(dev);
5114         ns = rte_timecounter_update(&adapter->systime_tc, systime_cycles);
5115         *ts = rte_ns_to_timespec(ns);
5116
5117         return 0;
5118 }
5119
5120 static int
5121 igb_timesync_enable(struct rte_eth_dev *dev)
5122 {
5123         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5124         uint32_t tsync_ctl;
5125         uint32_t tsauxc;
5126
5127         /* Stop the timesync system time. */
5128         E1000_WRITE_REG(hw, E1000_TIMINCA, 0x0);
5129         /* Reset the timesync system time value. */
5130         switch (hw->mac.type) {
5131         case e1000_82580:
5132         case e1000_i350:
5133         case e1000_i354:
5134         case e1000_i210:
5135         case e1000_i211:
5136                 E1000_WRITE_REG(hw, E1000_SYSTIMR, 0x0);
5137                 /* fall-through */
5138         case e1000_82576:
5139                 E1000_WRITE_REG(hw, E1000_SYSTIML, 0x0);
5140                 E1000_WRITE_REG(hw, E1000_SYSTIMH, 0x0);
5141                 break;
5142         default:
5143                 /* Not supported. */
5144                 return -ENOTSUP;
5145         }
5146
5147         /* Enable system time for it isn't on by default. */
5148         tsauxc = E1000_READ_REG(hw, E1000_TSAUXC);
5149         tsauxc &= ~E1000_TSAUXC_DISABLE_SYSTIME;
5150         E1000_WRITE_REG(hw, E1000_TSAUXC, tsauxc);
5151
5152         igb_start_timecounters(dev);
5153
5154         /* Enable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
5155         E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588),
5156                         (RTE_ETHER_TYPE_1588 |
5157                          E1000_ETQF_FILTER_ENABLE |
5158                          E1000_ETQF_1588));
5159
5160         /* Enable timestamping of received PTP packets. */
5161         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
5162         tsync_ctl |= E1000_TSYNCRXCTL_ENABLED;
5163         E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
5164
5165         /* Enable Timestamping of transmitted PTP packets. */
5166         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
5167         tsync_ctl |= E1000_TSYNCTXCTL_ENABLED;
5168         E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
5169
5170         return 0;
5171 }
5172
5173 static int
5174 igb_timesync_disable(struct rte_eth_dev *dev)
5175 {
5176         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5177         uint32_t tsync_ctl;
5178
5179         /* Disable timestamping of transmitted PTP packets. */
5180         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
5181         tsync_ctl &= ~E1000_TSYNCTXCTL_ENABLED;
5182         E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
5183
5184         /* Disable timestamping of received PTP packets. */
5185         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
5186         tsync_ctl &= ~E1000_TSYNCRXCTL_ENABLED;
5187         E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
5188
5189         /* Disable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
5190         E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588), 0);
5191
5192         /* Stop incrementating the System Time registers. */
5193         E1000_WRITE_REG(hw, E1000_TIMINCA, 0);
5194
5195         return 0;
5196 }
5197
5198 static int
5199 igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
5200                                struct timespec *timestamp,
5201                                uint32_t flags __rte_unused)
5202 {
5203         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5204         struct e1000_adapter *adapter = dev->data->dev_private;
5205         uint32_t tsync_rxctl;
5206         uint64_t rx_tstamp_cycles;
5207         uint64_t ns;
5208
5209         tsync_rxctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
5210         if ((tsync_rxctl & E1000_TSYNCRXCTL_VALID) == 0)
5211                 return -EINVAL;
5212
5213         rx_tstamp_cycles = igb_read_rx_tstamp_cyclecounter(dev);
5214         ns = rte_timecounter_update(&adapter->rx_tstamp_tc, rx_tstamp_cycles);
5215         *timestamp = rte_ns_to_timespec(ns);
5216
5217         return  0;
5218 }
5219
5220 static int
5221 igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
5222                                struct timespec *timestamp)
5223 {
5224         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5225         struct e1000_adapter *adapter = dev->data->dev_private;
5226         uint32_t tsync_txctl;
5227         uint64_t tx_tstamp_cycles;
5228         uint64_t ns;
5229
5230         tsync_txctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
5231         if ((tsync_txctl & E1000_TSYNCTXCTL_VALID) == 0)
5232                 return -EINVAL;
5233
5234         tx_tstamp_cycles = igb_read_tx_tstamp_cyclecounter(dev);
5235         ns = rte_timecounter_update(&adapter->tx_tstamp_tc, tx_tstamp_cycles);
5236         *timestamp = rte_ns_to_timespec(ns);
5237
5238         return  0;
5239 }
5240
5241 static int
5242 eth_igb_get_reg_length(struct rte_eth_dev *dev __rte_unused)
5243 {
5244         int count = 0;
5245         int g_ind = 0;
5246         const struct reg_info *reg_group;
5247
5248         while ((reg_group = igb_regs[g_ind++]))
5249                 count += igb_reg_group_count(reg_group);
5250
5251         return count;
5252 }
5253
5254 static int
5255 igbvf_get_reg_length(struct rte_eth_dev *dev __rte_unused)
5256 {
5257         int count = 0;
5258         int g_ind = 0;
5259         const struct reg_info *reg_group;
5260
5261         while ((reg_group = igbvf_regs[g_ind++]))
5262                 count += igb_reg_group_count(reg_group);
5263
5264         return count;
5265 }
5266
5267 static int
5268 eth_igb_get_regs(struct rte_eth_dev *dev,
5269         struct rte_dev_reg_info *regs)
5270 {
5271         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5272         uint32_t *data = regs->data;
5273         int g_ind = 0;
5274         int count = 0;
5275         const struct reg_info *reg_group;
5276
5277         if (data == NULL) {
5278                 regs->length = eth_igb_get_reg_length(dev);
5279                 regs->width = sizeof(uint32_t);
5280                 return 0;
5281         }
5282
5283         /* Support only full register dump */
5284         if ((regs->length == 0) ||
5285             (regs->length == (uint32_t)eth_igb_get_reg_length(dev))) {
5286                 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
5287                         hw->device_id;
5288                 while ((reg_group = igb_regs[g_ind++]))
5289                         count += igb_read_regs_group(dev, &data[count],
5290                                                         reg_group);
5291                 return 0;
5292         }
5293
5294         return -ENOTSUP;
5295 }
5296
5297 static int
5298 igbvf_get_regs(struct rte_eth_dev *dev,
5299         struct rte_dev_reg_info *regs)
5300 {
5301         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5302         uint32_t *data = regs->data;
5303         int g_ind = 0;
5304         int count = 0;
5305         const struct reg_info *reg_group;
5306
5307         if (data == NULL) {
5308                 regs->length = igbvf_get_reg_length(dev);
5309                 regs->width = sizeof(uint32_t);
5310                 return 0;
5311         }
5312
5313         /* Support only full register dump */
5314         if ((regs->length == 0) ||
5315             (regs->length == (uint32_t)igbvf_get_reg_length(dev))) {
5316                 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
5317                         hw->device_id;
5318                 while ((reg_group = igbvf_regs[g_ind++]))
5319                         count += igb_read_regs_group(dev, &data[count],
5320                                                         reg_group);
5321                 return 0;
5322         }
5323
5324         return -ENOTSUP;
5325 }
5326
5327 static int
5328 eth_igb_get_eeprom_length(struct rte_eth_dev *dev)
5329 {
5330         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5331
5332         /* Return unit is byte count */
5333         return hw->nvm.word_size * 2;
5334 }
5335
5336 static int
5337 eth_igb_get_eeprom(struct rte_eth_dev *dev,
5338         struct rte_dev_eeprom_info *in_eeprom)
5339 {
5340         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5341         struct e1000_nvm_info *nvm = &hw->nvm;
5342         uint16_t *data = in_eeprom->data;
5343         int first, length;
5344
5345         first = in_eeprom->offset >> 1;
5346         length = in_eeprom->length >> 1;
5347         if ((first >= hw->nvm.word_size) ||
5348             ((first + length) >= hw->nvm.word_size))
5349                 return -EINVAL;
5350
5351         in_eeprom->magic = hw->vendor_id |
5352                 ((uint32_t)hw->device_id << 16);
5353
5354         if ((nvm->ops.read) == NULL)
5355                 return -ENOTSUP;
5356
5357         return nvm->ops.read(hw, first, length, data);
5358 }
5359
5360 static int
5361 eth_igb_set_eeprom(struct rte_eth_dev *dev,
5362         struct rte_dev_eeprom_info *in_eeprom)
5363 {
5364         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5365         struct e1000_nvm_info *nvm = &hw->nvm;
5366         uint16_t *data = in_eeprom->data;
5367         int first, length;
5368
5369         first = in_eeprom->offset >> 1;
5370         length = in_eeprom->length >> 1;
5371         if ((first >= hw->nvm.word_size) ||
5372             ((first + length) >= hw->nvm.word_size))
5373                 return -EINVAL;
5374
5375         in_eeprom->magic = (uint32_t)hw->vendor_id |
5376                 ((uint32_t)hw->device_id << 16);
5377
5378         if ((nvm->ops.write) == NULL)
5379                 return -ENOTSUP;
5380         return nvm->ops.write(hw,  first, length, data);
5381 }
5382
5383 static int
5384 eth_igb_get_module_info(struct rte_eth_dev *dev,
5385                         struct rte_eth_dev_module_info *modinfo)
5386 {
5387         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5388
5389         uint32_t status = 0;
5390         uint16_t sff8472_rev, addr_mode;
5391         bool page_swap = false;
5392
5393         if (hw->phy.media_type == e1000_media_type_copper ||
5394             hw->phy.media_type == e1000_media_type_unknown)
5395                 return -EOPNOTSUPP;
5396
5397         /* Check whether we support SFF-8472 or not */
5398         status = e1000_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
5399         if (status)
5400                 return -EIO;
5401
5402         /* addressing mode is not supported */
5403         status = e1000_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
5404         if (status)
5405                 return -EIO;
5406
5407         /* addressing mode is not supported */
5408         if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
5409                 PMD_DRV_LOG(ERR,
5410                             "Address change required to access page 0xA2, "
5411                             "but not supported. Please report the module "
5412                             "type to the driver maintainers.\n");
5413                 page_swap = true;
5414         }
5415
5416         if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
5417                 /* We have an SFP, but it does not support SFF-8472 */
5418                 modinfo->type = RTE_ETH_MODULE_SFF_8079;
5419                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8079_LEN;
5420         } else {
5421                 /* We have an SFP which supports a revision of SFF-8472 */
5422                 modinfo->type = RTE_ETH_MODULE_SFF_8472;
5423                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
5424         }
5425
5426         return 0;
5427 }
5428
5429 static int
5430 eth_igb_get_module_eeprom(struct rte_eth_dev *dev,
5431                           struct rte_dev_eeprom_info *info)
5432 {
5433         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5434
5435         uint32_t status = 0;
5436         uint16_t dataword[RTE_ETH_MODULE_SFF_8472_LEN / 2 + 1];
5437         u16 first_word, last_word;
5438         int i = 0;
5439
5440         if (info->length == 0)
5441                 return -EINVAL;
5442
5443         first_word = info->offset >> 1;
5444         last_word = (info->offset + info->length - 1) >> 1;
5445
5446         /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
5447         for (i = 0; i < last_word - first_word + 1; i++) {
5448                 status = e1000_read_phy_reg_i2c(hw, (first_word + i) * 2,
5449                                                 &dataword[i]);
5450                 if (status) {
5451                         /* Error occurred while reading module */
5452                         return -EIO;
5453                 }
5454
5455                 dataword[i] = rte_be_to_cpu_16(dataword[i]);
5456         }
5457
5458         memcpy(info->data, (u8 *)dataword + (info->offset & 1), info->length);
5459
5460         return 0;
5461 }
5462
5463 static int
5464 eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
5465 {
5466         struct e1000_hw *hw =
5467                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5468         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5469         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5470         uint32_t vec = E1000_MISC_VEC_ID;
5471
5472         if (rte_intr_allow_others(intr_handle))
5473                 vec = E1000_RX_VEC_START;
5474
5475         uint32_t mask = 1 << (queue_id + vec);
5476
5477         E1000_WRITE_REG(hw, E1000_EIMC, mask);
5478         E1000_WRITE_FLUSH(hw);
5479
5480         return 0;
5481 }
5482
5483 static int
5484 eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
5485 {
5486         struct e1000_hw *hw =
5487                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5488         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5489         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5490         uint32_t vec = E1000_MISC_VEC_ID;
5491
5492         if (rte_intr_allow_others(intr_handle))
5493                 vec = E1000_RX_VEC_START;
5494
5495         uint32_t mask = 1 << (queue_id + vec);
5496         uint32_t regval;
5497
5498         regval = E1000_READ_REG(hw, E1000_EIMS);
5499         E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
5500         E1000_WRITE_FLUSH(hw);
5501
5502         rte_intr_ack(intr_handle);
5503
5504         return 0;
5505 }
5506
5507 static void
5508 eth_igb_write_ivar(struct e1000_hw *hw, uint8_t  msix_vector,
5509                    uint8_t index, uint8_t offset)
5510 {
5511         uint32_t val = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
5512
5513         /* clear bits */
5514         val &= ~((uint32_t)0xFF << offset);
5515
5516         /* write vector and valid bit */
5517         val |= (msix_vector | E1000_IVAR_VALID) << offset;
5518
5519         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, val);
5520 }
5521
5522 static void
5523 eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
5524                            uint8_t queue, uint8_t msix_vector)
5525 {
5526         uint32_t tmp = 0;
5527
5528         if (hw->mac.type == e1000_82575) {
5529                 if (direction == 0)
5530                         tmp = E1000_EICR_RX_QUEUE0 << queue;
5531                 else if (direction == 1)
5532                         tmp = E1000_EICR_TX_QUEUE0 << queue;
5533                 E1000_WRITE_REG(hw, E1000_MSIXBM(msix_vector), tmp);
5534         } else if (hw->mac.type == e1000_82576) {
5535                 if ((direction == 0) || (direction == 1))
5536                         eth_igb_write_ivar(hw, msix_vector, queue & 0x7,
5537                                            ((queue & 0x8) << 1) +
5538                                            8 * direction);
5539         } else if ((hw->mac.type == e1000_82580) ||
5540                         (hw->mac.type == e1000_i350) ||
5541                         (hw->mac.type == e1000_i354) ||
5542                         (hw->mac.type == e1000_i210) ||
5543                         (hw->mac.type == e1000_i211)) {
5544                 if ((direction == 0) || (direction == 1))
5545                         eth_igb_write_ivar(hw, msix_vector,
5546                                            queue >> 1,
5547                                            ((queue & 0x1) << 4) +
5548                                            8 * direction);
5549         }
5550 }
5551
5552 /* Sets up the hardware to generate MSI-X interrupts properly
5553  * @hw
5554  *  board private structure
5555  */
5556 static void
5557 eth_igb_configure_msix_intr(struct rte_eth_dev *dev)
5558 {
5559         int queue_id;
5560         uint32_t tmpval, regval, intr_mask;
5561         struct e1000_hw *hw =
5562                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5563         uint32_t vec = E1000_MISC_VEC_ID;
5564         uint32_t base = E1000_MISC_VEC_ID;
5565         uint32_t misc_shift = 0;
5566         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5567         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5568
5569         /* won't configure msix register if no mapping is done
5570          * between intr vector and event fd
5571          */
5572         if (!rte_intr_dp_is_en(intr_handle))
5573                 return;
5574
5575         if (rte_intr_allow_others(intr_handle)) {
5576                 vec = base = E1000_RX_VEC_START;
5577                 misc_shift = 1;
5578         }
5579
5580         /* set interrupt vector for other causes */
5581         if (hw->mac.type == e1000_82575) {
5582                 tmpval = E1000_READ_REG(hw, E1000_CTRL_EXT);
5583                 /* enable MSI-X PBA support */
5584                 tmpval |= E1000_CTRL_EXT_PBA_CLR;
5585
5586                 /* Auto-Mask interrupts upon ICR read */
5587                 tmpval |= E1000_CTRL_EXT_EIAME;
5588                 tmpval |= E1000_CTRL_EXT_IRCA;
5589
5590                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmpval);
5591
5592                 /* enable msix_other interrupt */
5593                 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), 0, E1000_EIMS_OTHER);
5594                 regval = E1000_READ_REG(hw, E1000_EIAC);
5595                 E1000_WRITE_REG(hw, E1000_EIAC, regval | E1000_EIMS_OTHER);
5596                 regval = E1000_READ_REG(hw, E1000_EIAM);
5597                 E1000_WRITE_REG(hw, E1000_EIMS, regval | E1000_EIMS_OTHER);
5598         } else if ((hw->mac.type == e1000_82576) ||
5599                         (hw->mac.type == e1000_82580) ||
5600                         (hw->mac.type == e1000_i350) ||
5601                         (hw->mac.type == e1000_i354) ||
5602                         (hw->mac.type == e1000_i210) ||
5603                         (hw->mac.type == e1000_i211)) {
5604                 /* turn on MSI-X capability first */
5605                 E1000_WRITE_REG(hw, E1000_GPIE, E1000_GPIE_MSIX_MODE |
5606                                         E1000_GPIE_PBA | E1000_GPIE_EIAME |
5607                                         E1000_GPIE_NSICR);
5608                 intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
5609                         misc_shift;
5610
5611                 if (dev->data->dev_conf.intr_conf.lsc != 0)
5612                         intr_mask |= (1 << IGB_MSIX_OTHER_INTR_VEC);
5613
5614                 regval = E1000_READ_REG(hw, E1000_EIAC);
5615                 E1000_WRITE_REG(hw, E1000_EIAC, regval | intr_mask);
5616
5617                 /* enable msix_other interrupt */
5618                 regval = E1000_READ_REG(hw, E1000_EIMS);
5619                 E1000_WRITE_REG(hw, E1000_EIMS, regval | intr_mask);
5620                 tmpval = (IGB_MSIX_OTHER_INTR_VEC | E1000_IVAR_VALID) << 8;
5621                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, tmpval);
5622         }
5623
5624         /* use EIAM to auto-mask when MSI-X interrupt
5625          * is asserted, this saves a register write for every interrupt
5626          */
5627         intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
5628                 misc_shift;
5629
5630         if (dev->data->dev_conf.intr_conf.lsc != 0)
5631                 intr_mask |= (1 << IGB_MSIX_OTHER_INTR_VEC);
5632
5633         regval = E1000_READ_REG(hw, E1000_EIAM);
5634         E1000_WRITE_REG(hw, E1000_EIAM, regval | intr_mask);
5635
5636         for (queue_id = 0; queue_id < dev->data->nb_rx_queues; queue_id++) {
5637                 eth_igb_assign_msix_vector(hw, 0, queue_id, vec);
5638                 intr_handle->intr_vec[queue_id] = vec;
5639                 if (vec < base + intr_handle->nb_efd - 1)
5640                         vec++;
5641         }
5642
5643         E1000_WRITE_FLUSH(hw);
5644 }
5645
5646 /* restore n-tuple filter */
5647 static inline void
5648 igb_ntuple_filter_restore(struct rte_eth_dev *dev)
5649 {
5650         struct e1000_filter_info *filter_info =
5651                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5652         struct e1000_5tuple_filter *p_5tuple;
5653         struct e1000_2tuple_filter *p_2tuple;
5654
5655         TAILQ_FOREACH(p_5tuple, &filter_info->fivetuple_list, entries) {
5656                 igb_inject_5tuple_filter_82576(dev, p_5tuple);
5657         }
5658
5659         TAILQ_FOREACH(p_2tuple, &filter_info->twotuple_list, entries) {
5660                 igb_inject_2uple_filter(dev, p_2tuple);
5661         }
5662 }
5663
5664 /* restore SYN filter */
5665 static inline void
5666 igb_syn_filter_restore(struct rte_eth_dev *dev)
5667 {
5668         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5669         struct e1000_filter_info *filter_info =
5670                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5671         uint32_t synqf;
5672
5673         synqf = filter_info->syn_info;
5674
5675         if (synqf & E1000_SYN_FILTER_ENABLE) {
5676                 E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
5677                 E1000_WRITE_FLUSH(hw);
5678         }
5679 }
5680
5681 /* restore ethernet type filter */
5682 static inline void
5683 igb_ethertype_filter_restore(struct rte_eth_dev *dev)
5684 {
5685         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5686         struct e1000_filter_info *filter_info =
5687                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5688         int i;
5689
5690         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
5691                 if (filter_info->ethertype_mask & (1 << i)) {
5692                         E1000_WRITE_REG(hw, E1000_ETQF(i),
5693                                 filter_info->ethertype_filters[i].etqf);
5694                         E1000_WRITE_FLUSH(hw);
5695                 }
5696         }
5697 }
5698
5699 /* restore flex byte filter */
5700 static inline void
5701 igb_flex_filter_restore(struct rte_eth_dev *dev)
5702 {
5703         struct e1000_filter_info *filter_info =
5704                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5705         struct e1000_flex_filter *flex_filter;
5706
5707         TAILQ_FOREACH(flex_filter, &filter_info->flex_list, entries) {
5708                 igb_inject_flex_filter(dev, flex_filter);
5709         }
5710 }
5711
5712 /* restore rss filter */
5713 static inline void
5714 igb_rss_filter_restore(struct rte_eth_dev *dev)
5715 {
5716         struct e1000_filter_info *filter_info =
5717                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5718
5719         if (filter_info->rss_info.conf.queue_num)
5720                 igb_config_rss_filter(dev, &filter_info->rss_info, TRUE);
5721 }
5722
5723 /* restore all types filter */
5724 static int
5725 igb_filter_restore(struct rte_eth_dev *dev)
5726 {
5727         igb_ntuple_filter_restore(dev);
5728         igb_ethertype_filter_restore(dev);
5729         igb_syn_filter_restore(dev);
5730         igb_flex_filter_restore(dev);
5731         igb_rss_filter_restore(dev);
5732
5733         return 0;
5734 }
5735
5736 RTE_PMD_REGISTER_PCI(net_e1000_igb, rte_igb_pmd);
5737 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb, pci_id_igb_map);
5738 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb, "* igb_uio | uio_pci_generic | vfio-pci");
5739 RTE_PMD_REGISTER_PCI(net_e1000_igb_vf, rte_igbvf_pmd);
5740 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb_vf, pci_id_igbvf_map);
5741 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb_vf, "* igb_uio | vfio-pci");
5742
5743 /* see e1000_logs.c */
5744 RTE_INIT(e1000_init_log)
5745 {
5746         e1000_igb_init_log();
5747 }