net/e1000: fix Rx error counter for bad length
[dpdk.git] / drivers / net / e1000 / igb_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <stdarg.h>
10
11 #include <rte_string_fns.h>
12 #include <rte_common.h>
13 #include <rte_interrupts.h>
14 #include <rte_byteorder.h>
15 #include <rte_log.h>
16 #include <rte_debug.h>
17 #include <rte_pci.h>
18 #include <rte_bus_pci.h>
19 #include <rte_ether.h>
20 #include <ethdev_driver.h>
21 #include <ethdev_pci.h>
22 #include <rte_memory.h>
23 #include <rte_eal.h>
24 #include <rte_malloc.h>
25 #include <rte_dev.h>
26
27 #include "e1000_logs.h"
28 #include "base/e1000_api.h"
29 #include "e1000_ethdev.h"
30 #include "igb_regs.h"
31
32 /*
33  * Default values for port configuration
34  */
35 #define IGB_DEFAULT_RX_FREE_THRESH  32
36
37 #define IGB_DEFAULT_RX_PTHRESH      ((hw->mac.type == e1000_i354) ? 12 : 8)
38 #define IGB_DEFAULT_RX_HTHRESH      8
39 #define IGB_DEFAULT_RX_WTHRESH      ((hw->mac.type == e1000_82576) ? 1 : 4)
40
41 #define IGB_DEFAULT_TX_PTHRESH      ((hw->mac.type == e1000_i354) ? 20 : 8)
42 #define IGB_DEFAULT_TX_HTHRESH      1
43 #define IGB_DEFAULT_TX_WTHRESH      ((hw->mac.type == e1000_82576) ? 1 : 16)
44
45 /* Bit shift and mask */
46 #define IGB_4_BIT_WIDTH  (CHAR_BIT / 2)
47 #define IGB_4_BIT_MASK   RTE_LEN2MASK(IGB_4_BIT_WIDTH, uint8_t)
48 #define IGB_8_BIT_WIDTH  CHAR_BIT
49 #define IGB_8_BIT_MASK   UINT8_MAX
50
51 /* Additional timesync values. */
52 #define E1000_CYCLECOUNTER_MASK      0xffffffffffffffffULL
53 #define E1000_ETQF_FILTER_1588       3
54 #define IGB_82576_TSYNC_SHIFT        16
55 #define E1000_INCPERIOD_82576        (1 << E1000_TIMINCA_16NS_SHIFT)
56 #define E1000_INCVALUE_82576         (16 << IGB_82576_TSYNC_SHIFT)
57 #define E1000_TSAUXC_DISABLE_SYSTIME 0x80000000
58
59 #define E1000_VTIVAR_MISC                0x01740
60 #define E1000_VTIVAR_MISC_MASK           0xFF
61 #define E1000_VTIVAR_VALID               0x80
62 #define E1000_VTIVAR_MISC_MAILBOX        0
63 #define E1000_VTIVAR_MISC_INTR_MASK      0x3
64
65 /* External VLAN Enable bit mask */
66 #define E1000_CTRL_EXT_EXT_VLAN      (1 << 26)
67
68 /* External VLAN Ether Type bit mask and shift */
69 #define E1000_VET_VET_EXT            0xFFFF0000
70 #define E1000_VET_VET_EXT_SHIFT      16
71
72 /* MSI-X other interrupt vector */
73 #define IGB_MSIX_OTHER_INTR_VEC      0
74
75 static int  eth_igb_configure(struct rte_eth_dev *dev);
76 static int  eth_igb_start(struct rte_eth_dev *dev);
77 static int  eth_igb_stop(struct rte_eth_dev *dev);
78 static int  eth_igb_dev_set_link_up(struct rte_eth_dev *dev);
79 static int  eth_igb_dev_set_link_down(struct rte_eth_dev *dev);
80 static int eth_igb_close(struct rte_eth_dev *dev);
81 static int eth_igb_reset(struct rte_eth_dev *dev);
82 static int  eth_igb_promiscuous_enable(struct rte_eth_dev *dev);
83 static int  eth_igb_promiscuous_disable(struct rte_eth_dev *dev);
84 static int  eth_igb_allmulticast_enable(struct rte_eth_dev *dev);
85 static int  eth_igb_allmulticast_disable(struct rte_eth_dev *dev);
86 static int  eth_igb_link_update(struct rte_eth_dev *dev,
87                                 int wait_to_complete);
88 static int eth_igb_stats_get(struct rte_eth_dev *dev,
89                                 struct rte_eth_stats *rte_stats);
90 static int eth_igb_xstats_get(struct rte_eth_dev *dev,
91                               struct rte_eth_xstat *xstats, unsigned n);
92 static int eth_igb_xstats_get_by_id(struct rte_eth_dev *dev,
93                 const uint64_t *ids,
94                 uint64_t *values, unsigned int n);
95 static int eth_igb_xstats_get_names(struct rte_eth_dev *dev,
96                                     struct rte_eth_xstat_name *xstats_names,
97                                     unsigned int size);
98 static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev,
99                 struct rte_eth_xstat_name *xstats_names, const uint64_t *ids,
100                 unsigned int limit);
101 static int eth_igb_stats_reset(struct rte_eth_dev *dev);
102 static int eth_igb_xstats_reset(struct rte_eth_dev *dev);
103 static int eth_igb_fw_version_get(struct rte_eth_dev *dev,
104                                    char *fw_version, size_t fw_size);
105 static int eth_igb_infos_get(struct rte_eth_dev *dev,
106                               struct rte_eth_dev_info *dev_info);
107 static const uint32_t *eth_igb_supported_ptypes_get(struct rte_eth_dev *dev);
108 static int eth_igbvf_infos_get(struct rte_eth_dev *dev,
109                                 struct rte_eth_dev_info *dev_info);
110 static int  eth_igb_flow_ctrl_get(struct rte_eth_dev *dev,
111                                 struct rte_eth_fc_conf *fc_conf);
112 static int  eth_igb_flow_ctrl_set(struct rte_eth_dev *dev,
113                                 struct rte_eth_fc_conf *fc_conf);
114 static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on);
115 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev);
116 static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev);
117 static int eth_igb_interrupt_action(struct rte_eth_dev *dev,
118                                     struct rte_intr_handle *handle);
119 static void eth_igb_interrupt_handler(void *param);
120 static int  igb_hardware_init(struct e1000_hw *hw);
121 static void igb_hw_control_acquire(struct e1000_hw *hw);
122 static void igb_hw_control_release(struct e1000_hw *hw);
123 static void igb_init_manageability(struct e1000_hw *hw);
124 static void igb_release_manageability(struct e1000_hw *hw);
125
126 static int  eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
127
128 static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev,
129                 uint16_t vlan_id, int on);
130 static int eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
131                                  enum rte_vlan_type vlan_type,
132                                  uint16_t tpid_id);
133 static int eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask);
134
135 static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev);
136 static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev);
137 static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev);
138 static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev);
139 static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev);
140 static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev);
141
142 static int eth_igb_led_on(struct rte_eth_dev *dev);
143 static int eth_igb_led_off(struct rte_eth_dev *dev);
144
145 static void igb_intr_disable(struct rte_eth_dev *dev);
146 static int  igb_get_rx_buffer_size(struct e1000_hw *hw);
147 static int eth_igb_rar_set(struct rte_eth_dev *dev,
148                            struct rte_ether_addr *mac_addr,
149                            uint32_t index, uint32_t pool);
150 static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index);
151 static int eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
152                 struct rte_ether_addr *addr);
153
154 static void igbvf_intr_disable(struct e1000_hw *hw);
155 static int igbvf_dev_configure(struct rte_eth_dev *dev);
156 static int igbvf_dev_start(struct rte_eth_dev *dev);
157 static int igbvf_dev_stop(struct rte_eth_dev *dev);
158 static int igbvf_dev_close(struct rte_eth_dev *dev);
159 static int igbvf_promiscuous_enable(struct rte_eth_dev *dev);
160 static int igbvf_promiscuous_disable(struct rte_eth_dev *dev);
161 static int igbvf_allmulticast_enable(struct rte_eth_dev *dev);
162 static int igbvf_allmulticast_disable(struct rte_eth_dev *dev);
163 static int eth_igbvf_link_update(struct e1000_hw *hw);
164 static int eth_igbvf_stats_get(struct rte_eth_dev *dev,
165                                 struct rte_eth_stats *rte_stats);
166 static int eth_igbvf_xstats_get(struct rte_eth_dev *dev,
167                                 struct rte_eth_xstat *xstats, unsigned n);
168 static int eth_igbvf_xstats_get_names(struct rte_eth_dev *dev,
169                                       struct rte_eth_xstat_name *xstats_names,
170                                       unsigned limit);
171 static int eth_igbvf_stats_reset(struct rte_eth_dev *dev);
172 static int igbvf_vlan_filter_set(struct rte_eth_dev *dev,
173                 uint16_t vlan_id, int on);
174 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on);
175 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on);
176 static int igbvf_default_mac_addr_set(struct rte_eth_dev *dev,
177                 struct rte_ether_addr *addr);
178 static int igbvf_get_reg_length(struct rte_eth_dev *dev);
179 static int igbvf_get_regs(struct rte_eth_dev *dev,
180                 struct rte_dev_reg_info *regs);
181
182 static int eth_igb_rss_reta_update(struct rte_eth_dev *dev,
183                                    struct rte_eth_rss_reta_entry64 *reta_conf,
184                                    uint16_t reta_size);
185 static int eth_igb_rss_reta_query(struct rte_eth_dev *dev,
186                                   struct rte_eth_rss_reta_entry64 *reta_conf,
187                                   uint16_t reta_size);
188
189 static int igb_add_2tuple_filter(struct rte_eth_dev *dev,
190                         struct rte_eth_ntuple_filter *ntuple_filter);
191 static int igb_remove_2tuple_filter(struct rte_eth_dev *dev,
192                         struct rte_eth_ntuple_filter *ntuple_filter);
193 static int igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
194                         struct rte_eth_ntuple_filter *ntuple_filter);
195 static int igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
196                         struct rte_eth_ntuple_filter *ntuple_filter);
197 static int eth_igb_flow_ops_get(struct rte_eth_dev *dev,
198                                 const struct rte_flow_ops **ops);
199 static int eth_igb_get_reg_length(struct rte_eth_dev *dev);
200 static int eth_igb_get_regs(struct rte_eth_dev *dev,
201                 struct rte_dev_reg_info *regs);
202 static int eth_igb_get_eeprom_length(struct rte_eth_dev *dev);
203 static int eth_igb_get_eeprom(struct rte_eth_dev *dev,
204                 struct rte_dev_eeprom_info *eeprom);
205 static int eth_igb_set_eeprom(struct rte_eth_dev *dev,
206                 struct rte_dev_eeprom_info *eeprom);
207 static int eth_igb_get_module_info(struct rte_eth_dev *dev,
208                                    struct rte_eth_dev_module_info *modinfo);
209 static int eth_igb_get_module_eeprom(struct rte_eth_dev *dev,
210                                      struct rte_dev_eeprom_info *info);
211 static int eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
212                                     struct rte_ether_addr *mc_addr_set,
213                                     uint32_t nb_mc_addr);
214 static int igb_timesync_enable(struct rte_eth_dev *dev);
215 static int igb_timesync_disable(struct rte_eth_dev *dev);
216 static int igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
217                                           struct timespec *timestamp,
218                                           uint32_t flags);
219 static int igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
220                                           struct timespec *timestamp);
221 static int igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta);
222 static int igb_timesync_read_time(struct rte_eth_dev *dev,
223                                   struct timespec *timestamp);
224 static int igb_timesync_write_time(struct rte_eth_dev *dev,
225                                    const struct timespec *timestamp);
226 static int eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev,
227                                         uint16_t queue_id);
228 static int eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev,
229                                          uint16_t queue_id);
230 static void eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
231                                        uint8_t queue, uint8_t msix_vector);
232 static void eth_igb_write_ivar(struct e1000_hw *hw, uint8_t msix_vector,
233                                uint8_t index, uint8_t offset);
234 static void eth_igb_configure_msix_intr(struct rte_eth_dev *dev);
235 static void eth_igbvf_interrupt_handler(void *param);
236 static void igbvf_mbx_process(struct rte_eth_dev *dev);
237 static int igb_filter_restore(struct rte_eth_dev *dev);
238
239 /*
240  * Define VF Stats MACRO for Non "cleared on read" register
241  */
242 #define UPDATE_VF_STAT(reg, last, cur)            \
243 {                                                 \
244         u32 latest = E1000_READ_REG(hw, reg);     \
245         cur += (latest - last) & UINT_MAX;        \
246         last = latest;                            \
247 }
248
249 #define IGB_FC_PAUSE_TIME 0x0680
250 #define IGB_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
251 #define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
252
253 #define IGBVF_PMD_NAME "rte_igbvf_pmd"     /* PMD name */
254
255 static enum e1000_fc_mode igb_fc_setting = e1000_fc_full;
256
257 /*
258  * The set of PCI devices this driver supports
259  */
260 static const struct rte_pci_id pci_id_igb_map[] = {
261         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576) },
262         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_FIBER) },
263         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES) },
264         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER) },
265         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER_ET2) },
266         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS) },
267         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS_SERDES) },
268         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES_QUAD) },
269
270         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_COPPER) },
271         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_FIBER_SERDES) },
272         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575GB_QUAD_COPPER) },
273
274         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER) },
275         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_FIBER) },
276         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SERDES) },
277         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SGMII) },
278         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER_DUAL) },
279         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_QUAD_FIBER) },
280
281         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_COPPER) },
282         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_FIBER) },
283         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SERDES) },
284         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SGMII) },
285         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_DA4) },
286         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER) },
287         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_OEM1) },
288         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_IT) },
289         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_FIBER) },
290         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES) },
291         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SGMII) },
292         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_FLASHLESS) },
293         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES_FLASHLESS) },
294         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I211_COPPER) },
295         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
296         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_SGMII) },
297         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
298         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SGMII) },
299         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SERDES) },
300         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_BACKPLANE) },
301         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SFP) },
302         { .vendor_id = 0, /* sentinel */ },
303 };
304
305 /*
306  * The set of PCI devices this driver supports (for 82576&I350 VF)
307  */
308 static const struct rte_pci_id pci_id_igbvf_map[] = {
309         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF) },
310         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF_HV) },
311         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF) },
312         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF_HV) },
313         { .vendor_id = 0, /* sentinel */ },
314 };
315
316 static const struct rte_eth_desc_lim rx_desc_lim = {
317         .nb_max = E1000_MAX_RING_DESC,
318         .nb_min = E1000_MIN_RING_DESC,
319         .nb_align = IGB_RXD_ALIGN,
320 };
321
322 static const struct rte_eth_desc_lim tx_desc_lim = {
323         .nb_max = E1000_MAX_RING_DESC,
324         .nb_min = E1000_MIN_RING_DESC,
325         .nb_align = IGB_RXD_ALIGN,
326         .nb_seg_max = IGB_TX_MAX_SEG,
327         .nb_mtu_seg_max = IGB_TX_MAX_MTU_SEG,
328 };
329
330 static const struct eth_dev_ops eth_igb_ops = {
331         .dev_configure        = eth_igb_configure,
332         .dev_start            = eth_igb_start,
333         .dev_stop             = eth_igb_stop,
334         .dev_set_link_up      = eth_igb_dev_set_link_up,
335         .dev_set_link_down    = eth_igb_dev_set_link_down,
336         .dev_close            = eth_igb_close,
337         .dev_reset            = eth_igb_reset,
338         .promiscuous_enable   = eth_igb_promiscuous_enable,
339         .promiscuous_disable  = eth_igb_promiscuous_disable,
340         .allmulticast_enable  = eth_igb_allmulticast_enable,
341         .allmulticast_disable = eth_igb_allmulticast_disable,
342         .link_update          = eth_igb_link_update,
343         .stats_get            = eth_igb_stats_get,
344         .xstats_get           = eth_igb_xstats_get,
345         .xstats_get_by_id     = eth_igb_xstats_get_by_id,
346         .xstats_get_names_by_id = eth_igb_xstats_get_names_by_id,
347         .xstats_get_names     = eth_igb_xstats_get_names,
348         .stats_reset          = eth_igb_stats_reset,
349         .xstats_reset         = eth_igb_xstats_reset,
350         .fw_version_get       = eth_igb_fw_version_get,
351         .dev_infos_get        = eth_igb_infos_get,
352         .dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
353         .mtu_set              = eth_igb_mtu_set,
354         .vlan_filter_set      = eth_igb_vlan_filter_set,
355         .vlan_tpid_set        = eth_igb_vlan_tpid_set,
356         .vlan_offload_set     = eth_igb_vlan_offload_set,
357         .rx_queue_setup       = eth_igb_rx_queue_setup,
358         .rx_queue_intr_enable = eth_igb_rx_queue_intr_enable,
359         .rx_queue_intr_disable = eth_igb_rx_queue_intr_disable,
360         .rx_queue_release     = eth_igb_rx_queue_release,
361         .tx_queue_setup       = eth_igb_tx_queue_setup,
362         .tx_queue_release     = eth_igb_tx_queue_release,
363         .tx_done_cleanup      = eth_igb_tx_done_cleanup,
364         .dev_led_on           = eth_igb_led_on,
365         .dev_led_off          = eth_igb_led_off,
366         .flow_ctrl_get        = eth_igb_flow_ctrl_get,
367         .flow_ctrl_set        = eth_igb_flow_ctrl_set,
368         .mac_addr_add         = eth_igb_rar_set,
369         .mac_addr_remove      = eth_igb_rar_clear,
370         .mac_addr_set         = eth_igb_default_mac_addr_set,
371         .reta_update          = eth_igb_rss_reta_update,
372         .reta_query           = eth_igb_rss_reta_query,
373         .rss_hash_update      = eth_igb_rss_hash_update,
374         .rss_hash_conf_get    = eth_igb_rss_hash_conf_get,
375         .flow_ops_get         = eth_igb_flow_ops_get,
376         .set_mc_addr_list     = eth_igb_set_mc_addr_list,
377         .rxq_info_get         = igb_rxq_info_get,
378         .txq_info_get         = igb_txq_info_get,
379         .timesync_enable      = igb_timesync_enable,
380         .timesync_disable     = igb_timesync_disable,
381         .timesync_read_rx_timestamp = igb_timesync_read_rx_timestamp,
382         .timesync_read_tx_timestamp = igb_timesync_read_tx_timestamp,
383         .get_reg              = eth_igb_get_regs,
384         .get_eeprom_length    = eth_igb_get_eeprom_length,
385         .get_eeprom           = eth_igb_get_eeprom,
386         .set_eeprom           = eth_igb_set_eeprom,
387         .get_module_info      = eth_igb_get_module_info,
388         .get_module_eeprom    = eth_igb_get_module_eeprom,
389         .timesync_adjust_time = igb_timesync_adjust_time,
390         .timesync_read_time   = igb_timesync_read_time,
391         .timesync_write_time  = igb_timesync_write_time,
392 };
393
394 /*
395  * dev_ops for virtual function, bare necessities for basic vf
396  * operation have been implemented
397  */
398 static const struct eth_dev_ops igbvf_eth_dev_ops = {
399         .dev_configure        = igbvf_dev_configure,
400         .dev_start            = igbvf_dev_start,
401         .dev_stop             = igbvf_dev_stop,
402         .dev_close            = igbvf_dev_close,
403         .promiscuous_enable   = igbvf_promiscuous_enable,
404         .promiscuous_disable  = igbvf_promiscuous_disable,
405         .allmulticast_enable  = igbvf_allmulticast_enable,
406         .allmulticast_disable = igbvf_allmulticast_disable,
407         .link_update          = eth_igb_link_update,
408         .stats_get            = eth_igbvf_stats_get,
409         .xstats_get           = eth_igbvf_xstats_get,
410         .xstats_get_names     = eth_igbvf_xstats_get_names,
411         .stats_reset          = eth_igbvf_stats_reset,
412         .xstats_reset         = eth_igbvf_stats_reset,
413         .vlan_filter_set      = igbvf_vlan_filter_set,
414         .dev_infos_get        = eth_igbvf_infos_get,
415         .dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
416         .rx_queue_setup       = eth_igb_rx_queue_setup,
417         .rx_queue_release     = eth_igb_rx_queue_release,
418         .tx_queue_setup       = eth_igb_tx_queue_setup,
419         .tx_queue_release     = eth_igb_tx_queue_release,
420         .tx_done_cleanup      = eth_igb_tx_done_cleanup,
421         .set_mc_addr_list     = eth_igb_set_mc_addr_list,
422         .rxq_info_get         = igb_rxq_info_get,
423         .txq_info_get         = igb_txq_info_get,
424         .mac_addr_set         = igbvf_default_mac_addr_set,
425         .get_reg              = igbvf_get_regs,
426 };
427
428 /* store statistics names and its offset in stats structure */
429 struct rte_igb_xstats_name_off {
430         char name[RTE_ETH_XSTATS_NAME_SIZE];
431         unsigned offset;
432 };
433
434 static const struct rte_igb_xstats_name_off rte_igb_stats_strings[] = {
435         {"rx_crc_errors", offsetof(struct e1000_hw_stats, crcerrs)},
436         {"rx_align_errors", offsetof(struct e1000_hw_stats, algnerrc)},
437         {"rx_symbol_errors", offsetof(struct e1000_hw_stats, symerrs)},
438         {"rx_missed_packets", offsetof(struct e1000_hw_stats, mpc)},
439         {"tx_single_collision_packets", offsetof(struct e1000_hw_stats, scc)},
440         {"tx_multiple_collision_packets", offsetof(struct e1000_hw_stats, mcc)},
441         {"tx_excessive_collision_packets", offsetof(struct e1000_hw_stats,
442                 ecol)},
443         {"tx_late_collisions", offsetof(struct e1000_hw_stats, latecol)},
444         {"tx_total_collisions", offsetof(struct e1000_hw_stats, colc)},
445         {"tx_deferred_packets", offsetof(struct e1000_hw_stats, dc)},
446         {"tx_no_carrier_sense_packets", offsetof(struct e1000_hw_stats, tncrs)},
447         {"rx_carrier_ext_errors", offsetof(struct e1000_hw_stats, cexterr)},
448         {"rx_length_errors", offsetof(struct e1000_hw_stats, rlec)},
449         {"rx_xon_packets", offsetof(struct e1000_hw_stats, xonrxc)},
450         {"tx_xon_packets", offsetof(struct e1000_hw_stats, xontxc)},
451         {"rx_xoff_packets", offsetof(struct e1000_hw_stats, xoffrxc)},
452         {"tx_xoff_packets", offsetof(struct e1000_hw_stats, xofftxc)},
453         {"rx_flow_control_unsupported_packets", offsetof(struct e1000_hw_stats,
454                 fcruc)},
455         {"rx_size_64_packets", offsetof(struct e1000_hw_stats, prc64)},
456         {"rx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, prc127)},
457         {"rx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, prc255)},
458         {"rx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, prc511)},
459         {"rx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
460                 prc1023)},
461         {"rx_size_1024_to_max_packets", offsetof(struct e1000_hw_stats,
462                 prc1522)},
463         {"rx_broadcast_packets", offsetof(struct e1000_hw_stats, bprc)},
464         {"rx_multicast_packets", offsetof(struct e1000_hw_stats, mprc)},
465         {"rx_undersize_errors", offsetof(struct e1000_hw_stats, ruc)},
466         {"rx_fragment_errors", offsetof(struct e1000_hw_stats, rfc)},
467         {"rx_oversize_errors", offsetof(struct e1000_hw_stats, roc)},
468         {"rx_jabber_errors", offsetof(struct e1000_hw_stats, rjc)},
469         {"rx_management_packets", offsetof(struct e1000_hw_stats, mgprc)},
470         {"rx_management_dropped", offsetof(struct e1000_hw_stats, mgpdc)},
471         {"tx_management_packets", offsetof(struct e1000_hw_stats, mgptc)},
472         {"rx_total_packets", offsetof(struct e1000_hw_stats, tpr)},
473         {"tx_total_packets", offsetof(struct e1000_hw_stats, tpt)},
474         {"rx_total_bytes", offsetof(struct e1000_hw_stats, tor)},
475         {"tx_total_bytes", offsetof(struct e1000_hw_stats, tot)},
476         {"tx_size_64_packets", offsetof(struct e1000_hw_stats, ptc64)},
477         {"tx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, ptc127)},
478         {"tx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, ptc255)},
479         {"tx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, ptc511)},
480         {"tx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
481                 ptc1023)},
482         {"tx_size_1023_to_max_packets", offsetof(struct e1000_hw_stats,
483                 ptc1522)},
484         {"tx_multicast_packets", offsetof(struct e1000_hw_stats, mptc)},
485         {"tx_broadcast_packets", offsetof(struct e1000_hw_stats, bptc)},
486         {"tx_tso_packets", offsetof(struct e1000_hw_stats, tsctc)},
487         {"tx_tso_errors", offsetof(struct e1000_hw_stats, tsctfc)},
488         {"rx_sent_to_host_packets", offsetof(struct e1000_hw_stats, rpthc)},
489         {"tx_sent_by_host_packets", offsetof(struct e1000_hw_stats, hgptc)},
490         {"rx_code_violation_packets", offsetof(struct e1000_hw_stats, scvpc)},
491
492         {"interrupt_assert_count", offsetof(struct e1000_hw_stats, iac)},
493 };
494
495 #define IGB_NB_XSTATS (sizeof(rte_igb_stats_strings) / \
496                 sizeof(rte_igb_stats_strings[0]))
497
498 static const struct rte_igb_xstats_name_off rte_igbvf_stats_strings[] = {
499         {"rx_multicast_packets", offsetof(struct e1000_vf_stats, mprc)},
500         {"rx_good_loopback_packets", offsetof(struct e1000_vf_stats, gprlbc)},
501         {"tx_good_loopback_packets", offsetof(struct e1000_vf_stats, gptlbc)},
502         {"rx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gorlbc)},
503         {"tx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gotlbc)},
504 };
505
506 #define IGBVF_NB_XSTATS (sizeof(rte_igbvf_stats_strings) / \
507                 sizeof(rte_igbvf_stats_strings[0]))
508
509
510 static inline void
511 igb_intr_enable(struct rte_eth_dev *dev)
512 {
513         struct e1000_interrupt *intr =
514                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
515         struct e1000_hw *hw =
516                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
517         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
518         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
519
520         if (rte_intr_allow_others(intr_handle) &&
521                 dev->data->dev_conf.intr_conf.lsc != 0) {
522                 E1000_WRITE_REG(hw, E1000_EIMS, 1 << IGB_MSIX_OTHER_INTR_VEC);
523         }
524
525         E1000_WRITE_REG(hw, E1000_IMS, intr->mask);
526         E1000_WRITE_FLUSH(hw);
527 }
528
529 static void
530 igb_intr_disable(struct rte_eth_dev *dev)
531 {
532         struct e1000_hw *hw =
533                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
534         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
535         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
536
537         if (rte_intr_allow_others(intr_handle) &&
538                 dev->data->dev_conf.intr_conf.lsc != 0) {
539                 E1000_WRITE_REG(hw, E1000_EIMC, 1 << IGB_MSIX_OTHER_INTR_VEC);
540         }
541
542         E1000_WRITE_REG(hw, E1000_IMC, ~0);
543         E1000_WRITE_FLUSH(hw);
544 }
545
546 static inline void
547 igbvf_intr_enable(struct rte_eth_dev *dev)
548 {
549         struct e1000_hw *hw =
550                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
551
552         /* only for mailbox */
553         E1000_WRITE_REG(hw, E1000_EIAM, 1 << E1000_VTIVAR_MISC_MAILBOX);
554         E1000_WRITE_REG(hw, E1000_EIAC, 1 << E1000_VTIVAR_MISC_MAILBOX);
555         E1000_WRITE_REG(hw, E1000_EIMS, 1 << E1000_VTIVAR_MISC_MAILBOX);
556         E1000_WRITE_FLUSH(hw);
557 }
558
559 /* only for mailbox now. If RX/TX needed, should extend this function.  */
560 static void
561 igbvf_set_ivar_map(struct e1000_hw *hw, uint8_t msix_vector)
562 {
563         uint32_t tmp = 0;
564
565         /* mailbox */
566         tmp |= (msix_vector & E1000_VTIVAR_MISC_INTR_MASK);
567         tmp |= E1000_VTIVAR_VALID;
568         E1000_WRITE_REG(hw, E1000_VTIVAR_MISC, tmp);
569 }
570
571 static void
572 eth_igbvf_configure_msix_intr(struct rte_eth_dev *dev)
573 {
574         struct e1000_hw *hw =
575                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
576
577         /* Configure VF other cause ivar */
578         igbvf_set_ivar_map(hw, E1000_VTIVAR_MISC_MAILBOX);
579 }
580
581 static inline int32_t
582 igb_pf_reset_hw(struct e1000_hw *hw)
583 {
584         uint32_t ctrl_ext;
585         int32_t status;
586
587         status = e1000_reset_hw(hw);
588
589         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
590         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
591         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
592         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
593         E1000_WRITE_FLUSH(hw);
594
595         return status;
596 }
597
598 static void
599 igb_identify_hardware(struct rte_eth_dev *dev, struct rte_pci_device *pci_dev)
600 {
601         struct e1000_hw *hw =
602                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
603
604
605         hw->vendor_id = pci_dev->id.vendor_id;
606         hw->device_id = pci_dev->id.device_id;
607         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
608         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
609
610         e1000_set_mac_type(hw);
611
612         /* need to check if it is a vf device below */
613 }
614
615 static int
616 igb_reset_swfw_lock(struct e1000_hw *hw)
617 {
618         int ret_val;
619
620         /*
621          * Do mac ops initialization manually here, since we will need
622          * some function pointers set by this call.
623          */
624         ret_val = e1000_init_mac_params(hw);
625         if (ret_val)
626                 return ret_val;
627
628         /*
629          * SMBI lock should not fail in this early stage. If this is the case,
630          * it is due to an improper exit of the application.
631          * So force the release of the faulty lock.
632          */
633         if (e1000_get_hw_semaphore_generic(hw) < 0) {
634                 PMD_DRV_LOG(DEBUG, "SMBI lock released");
635         }
636         e1000_put_hw_semaphore_generic(hw);
637
638         if (hw->mac.ops.acquire_swfw_sync != NULL) {
639                 uint16_t mask;
640
641                 /*
642                  * Phy lock should not fail in this early stage. If this is the case,
643                  * it is due to an improper exit of the application.
644                  * So force the release of the faulty lock.
645                  */
646                 mask = E1000_SWFW_PHY0_SM << hw->bus.func;
647                 if (hw->bus.func > E1000_FUNC_1)
648                         mask <<= 2;
649                 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
650                         PMD_DRV_LOG(DEBUG, "SWFW phy%d lock released",
651                                     hw->bus.func);
652                 }
653                 hw->mac.ops.release_swfw_sync(hw, mask);
654
655                 /*
656                  * This one is more tricky since it is common to all ports; but
657                  * swfw_sync retries last long enough (1s) to be almost sure that if
658                  * lock can not be taken it is due to an improper lock of the
659                  * semaphore.
660                  */
661                 mask = E1000_SWFW_EEP_SM;
662                 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
663                         PMD_DRV_LOG(DEBUG, "SWFW common locks released");
664                 }
665                 hw->mac.ops.release_swfw_sync(hw, mask);
666         }
667
668         return E1000_SUCCESS;
669 }
670
671 /* Remove all ntuple filters of the device */
672 static int igb_ntuple_filter_uninit(struct rte_eth_dev *eth_dev)
673 {
674         struct e1000_filter_info *filter_info =
675                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
676         struct e1000_5tuple_filter *p_5tuple;
677         struct e1000_2tuple_filter *p_2tuple;
678
679         while ((p_5tuple = TAILQ_FIRST(&filter_info->fivetuple_list))) {
680                 TAILQ_REMOVE(&filter_info->fivetuple_list,
681                         p_5tuple, entries);
682                         rte_free(p_5tuple);
683         }
684         filter_info->fivetuple_mask = 0;
685         while ((p_2tuple = TAILQ_FIRST(&filter_info->twotuple_list))) {
686                 TAILQ_REMOVE(&filter_info->twotuple_list,
687                         p_2tuple, entries);
688                         rte_free(p_2tuple);
689         }
690         filter_info->twotuple_mask = 0;
691
692         return 0;
693 }
694
695 /* Remove all flex filters of the device */
696 static int igb_flex_filter_uninit(struct rte_eth_dev *eth_dev)
697 {
698         struct e1000_filter_info *filter_info =
699                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
700         struct e1000_flex_filter *p_flex;
701
702         while ((p_flex = TAILQ_FIRST(&filter_info->flex_list))) {
703                 TAILQ_REMOVE(&filter_info->flex_list, p_flex, entries);
704                 rte_free(p_flex);
705         }
706         filter_info->flex_mask = 0;
707
708         return 0;
709 }
710
711 static int
712 eth_igb_dev_init(struct rte_eth_dev *eth_dev)
713 {
714         int error = 0;
715         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
716         struct e1000_hw *hw =
717                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
718         struct e1000_vfta * shadow_vfta =
719                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
720         struct e1000_filter_info *filter_info =
721                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
722         struct e1000_adapter *adapter =
723                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
724
725         uint32_t ctrl_ext;
726
727         eth_dev->dev_ops = &eth_igb_ops;
728         eth_dev->rx_queue_count = eth_igb_rx_queue_count;
729         eth_dev->rx_descriptor_done   = eth_igb_rx_descriptor_done;
730         eth_dev->rx_descriptor_status = eth_igb_rx_descriptor_status;
731         eth_dev->tx_descriptor_status = eth_igb_tx_descriptor_status;
732         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
733         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
734         eth_dev->tx_pkt_prepare = &eth_igb_prep_pkts;
735
736         /* for secondary processes, we don't initialise any further as primary
737          * has already done this work. Only check we don't need a different
738          * RX function */
739         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
740                 if (eth_dev->data->scattered_rx)
741                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
742                 return 0;
743         }
744
745         rte_eth_copy_pci_info(eth_dev, pci_dev);
746         eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
747
748         hw->hw_addr= (void *)pci_dev->mem_resource[0].addr;
749
750         igb_identify_hardware(eth_dev, pci_dev);
751         if (e1000_setup_init_funcs(hw, FALSE) != E1000_SUCCESS) {
752                 error = -EIO;
753                 goto err_late;
754         }
755
756         e1000_get_bus_info(hw);
757
758         /* Reset any pending lock */
759         if (igb_reset_swfw_lock(hw) != E1000_SUCCESS) {
760                 error = -EIO;
761                 goto err_late;
762         }
763
764         /* Finish initialization */
765         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) {
766                 error = -EIO;
767                 goto err_late;
768         }
769
770         hw->mac.autoneg = 1;
771         hw->phy.autoneg_wait_to_complete = 0;
772         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
773
774         /* Copper options */
775         if (hw->phy.media_type == e1000_media_type_copper) {
776                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
777                 hw->phy.disable_polarity_correction = 0;
778                 hw->phy.ms_type = e1000_ms_hw_default;
779         }
780
781         /*
782          * Start from a known state, this is important in reading the nvm
783          * and mac from that.
784          */
785         igb_pf_reset_hw(hw);
786
787         /* Make sure we have a good EEPROM before we read from it */
788         if (e1000_validate_nvm_checksum(hw) < 0) {
789                 /*
790                  * Some PCI-E parts fail the first check due to
791                  * the link being in sleep state, call it again,
792                  * if it fails a second time its a real issue.
793                  */
794                 if (e1000_validate_nvm_checksum(hw) < 0) {
795                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
796                         error = -EIO;
797                         goto err_late;
798                 }
799         }
800
801         /* Read the permanent MAC address out of the EEPROM */
802         if (e1000_read_mac_addr(hw) != 0) {
803                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
804                 error = -EIO;
805                 goto err_late;
806         }
807
808         /* Allocate memory for storing MAC addresses */
809         eth_dev->data->mac_addrs = rte_zmalloc("e1000",
810                 RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0);
811         if (eth_dev->data->mac_addrs == NULL) {
812                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
813                                                 "store MAC addresses",
814                                 RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count);
815                 error = -ENOMEM;
816                 goto err_late;
817         }
818
819         /* Copy the permanent MAC address */
820         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
821                         &eth_dev->data->mac_addrs[0]);
822
823         /* initialize the vfta */
824         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
825
826         /* Now initialize the hardware */
827         if (igb_hardware_init(hw) != 0) {
828                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
829                 rte_free(eth_dev->data->mac_addrs);
830                 eth_dev->data->mac_addrs = NULL;
831                 error = -ENODEV;
832                 goto err_late;
833         }
834         hw->mac.get_link_status = 1;
835         adapter->stopped = 0;
836
837         /* Indicate SOL/IDER usage */
838         if (e1000_check_reset_block(hw) < 0) {
839                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to"
840                                         "SOL/IDER session");
841         }
842
843         /* initialize PF if max_vfs not zero */
844         igb_pf_host_init(eth_dev);
845
846         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
847         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
848         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
849         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
850         E1000_WRITE_FLUSH(hw);
851
852         PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
853                      eth_dev->data->port_id, pci_dev->id.vendor_id,
854                      pci_dev->id.device_id);
855
856         rte_intr_callback_register(&pci_dev->intr_handle,
857                                    eth_igb_interrupt_handler,
858                                    (void *)eth_dev);
859
860         /* enable uio/vfio intr/eventfd mapping */
861         rte_intr_enable(&pci_dev->intr_handle);
862
863         /* enable support intr */
864         igb_intr_enable(eth_dev);
865
866         eth_igb_dev_set_link_down(eth_dev);
867
868         /* initialize filter info */
869         memset(filter_info, 0,
870                sizeof(struct e1000_filter_info));
871
872         TAILQ_INIT(&filter_info->flex_list);
873         TAILQ_INIT(&filter_info->twotuple_list);
874         TAILQ_INIT(&filter_info->fivetuple_list);
875
876         TAILQ_INIT(&igb_filter_ntuple_list);
877         TAILQ_INIT(&igb_filter_ethertype_list);
878         TAILQ_INIT(&igb_filter_syn_list);
879         TAILQ_INIT(&igb_filter_flex_list);
880         TAILQ_INIT(&igb_filter_rss_list);
881         TAILQ_INIT(&igb_flow_list);
882
883         return 0;
884
885 err_late:
886         igb_hw_control_release(hw);
887
888         return error;
889 }
890
891 static int
892 eth_igb_dev_uninit(struct rte_eth_dev *eth_dev)
893 {
894         PMD_INIT_FUNC_TRACE();
895
896         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
897                 return 0;
898
899         eth_igb_close(eth_dev);
900
901         return 0;
902 }
903
904 /*
905  * Virtual Function device init
906  */
907 static int
908 eth_igbvf_dev_init(struct rte_eth_dev *eth_dev)
909 {
910         struct rte_pci_device *pci_dev;
911         struct rte_intr_handle *intr_handle;
912         struct e1000_adapter *adapter =
913                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
914         struct e1000_hw *hw =
915                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
916         int diag;
917         struct rte_ether_addr *perm_addr =
918                 (struct rte_ether_addr *)hw->mac.perm_addr;
919
920         PMD_INIT_FUNC_TRACE();
921
922         eth_dev->dev_ops = &igbvf_eth_dev_ops;
923         eth_dev->rx_descriptor_done   = eth_igb_rx_descriptor_done;
924         eth_dev->rx_descriptor_status = eth_igb_rx_descriptor_status;
925         eth_dev->tx_descriptor_status = eth_igb_tx_descriptor_status;
926         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
927         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
928         eth_dev->tx_pkt_prepare = &eth_igb_prep_pkts;
929
930         /* for secondary processes, we don't initialise any further as primary
931          * has already done this work. Only check we don't need a different
932          * RX function */
933         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
934                 if (eth_dev->data->scattered_rx)
935                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
936                 return 0;
937         }
938
939         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
940         rte_eth_copy_pci_info(eth_dev, pci_dev);
941         eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
942
943         hw->device_id = pci_dev->id.device_id;
944         hw->vendor_id = pci_dev->id.vendor_id;
945         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
946         adapter->stopped = 0;
947
948         /* Initialize the shared code (base driver) */
949         diag = e1000_setup_init_funcs(hw, TRUE);
950         if (diag != 0) {
951                 PMD_INIT_LOG(ERR, "Shared code init failed for igbvf: %d",
952                         diag);
953                 return -EIO;
954         }
955
956         /* init_mailbox_params */
957         hw->mbx.ops.init_params(hw);
958
959         /* Disable the interrupts for VF */
960         igbvf_intr_disable(hw);
961
962         diag = hw->mac.ops.reset_hw(hw);
963
964         /* Allocate memory for storing MAC addresses */
965         eth_dev->data->mac_addrs = rte_zmalloc("igbvf", RTE_ETHER_ADDR_LEN *
966                 hw->mac.rar_entry_count, 0);
967         if (eth_dev->data->mac_addrs == NULL) {
968                 PMD_INIT_LOG(ERR,
969                         "Failed to allocate %d bytes needed to store MAC "
970                         "addresses",
971                         RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count);
972                 return -ENOMEM;
973         }
974
975         /* Generate a random MAC address, if none was assigned by PF. */
976         if (rte_is_zero_ether_addr(perm_addr)) {
977                 rte_eth_random_addr(perm_addr->addr_bytes);
978                 PMD_INIT_LOG(INFO, "\tVF MAC address not assigned by Host PF");
979                 PMD_INIT_LOG(INFO, "\tAssign randomly generated MAC address "
980                              "%02x:%02x:%02x:%02x:%02x:%02x",
981                              perm_addr->addr_bytes[0],
982                              perm_addr->addr_bytes[1],
983                              perm_addr->addr_bytes[2],
984                              perm_addr->addr_bytes[3],
985                              perm_addr->addr_bytes[4],
986                              perm_addr->addr_bytes[5]);
987         }
988
989         diag = e1000_rar_set(hw, perm_addr->addr_bytes, 0);
990         if (diag) {
991                 rte_free(eth_dev->data->mac_addrs);
992                 eth_dev->data->mac_addrs = NULL;
993                 return diag;
994         }
995         /* Copy the permanent MAC address */
996         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.perm_addr,
997                         &eth_dev->data->mac_addrs[0]);
998
999         PMD_INIT_LOG(DEBUG, "port %d vendorID=0x%x deviceID=0x%x "
1000                      "mac.type=%s",
1001                      eth_dev->data->port_id, pci_dev->id.vendor_id,
1002                      pci_dev->id.device_id, "igb_mac_82576_vf");
1003
1004         intr_handle = &pci_dev->intr_handle;
1005         rte_intr_callback_register(intr_handle,
1006                                    eth_igbvf_interrupt_handler, eth_dev);
1007
1008         return 0;
1009 }
1010
1011 static int
1012 eth_igbvf_dev_uninit(struct rte_eth_dev *eth_dev)
1013 {
1014         PMD_INIT_FUNC_TRACE();
1015
1016         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1017                 return 0;
1018
1019         igbvf_dev_close(eth_dev);
1020
1021         return 0;
1022 }
1023
1024 static int eth_igb_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1025         struct rte_pci_device *pci_dev)
1026 {
1027         return rte_eth_dev_pci_generic_probe(pci_dev,
1028                 sizeof(struct e1000_adapter), eth_igb_dev_init);
1029 }
1030
1031 static int eth_igb_pci_remove(struct rte_pci_device *pci_dev)
1032 {
1033         return rte_eth_dev_pci_generic_remove(pci_dev, eth_igb_dev_uninit);
1034 }
1035
1036 static struct rte_pci_driver rte_igb_pmd = {
1037         .id_table = pci_id_igb_map,
1038         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
1039         .probe = eth_igb_pci_probe,
1040         .remove = eth_igb_pci_remove,
1041 };
1042
1043
1044 static int eth_igbvf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1045         struct rte_pci_device *pci_dev)
1046 {
1047         return rte_eth_dev_pci_generic_probe(pci_dev,
1048                 sizeof(struct e1000_adapter), eth_igbvf_dev_init);
1049 }
1050
1051 static int eth_igbvf_pci_remove(struct rte_pci_device *pci_dev)
1052 {
1053         return rte_eth_dev_pci_generic_remove(pci_dev, eth_igbvf_dev_uninit);
1054 }
1055
1056 /*
1057  * virtual function driver struct
1058  */
1059 static struct rte_pci_driver rte_igbvf_pmd = {
1060         .id_table = pci_id_igbvf_map,
1061         .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
1062         .probe = eth_igbvf_pci_probe,
1063         .remove = eth_igbvf_pci_remove,
1064 };
1065
1066 static void
1067 igb_vmdq_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1068 {
1069         struct e1000_hw *hw =
1070                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1071         /* RCTL: enable VLAN filter since VMDq always use VLAN filter */
1072         uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
1073         rctl |= E1000_RCTL_VFE;
1074         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1075 }
1076
1077 static int
1078 igb_check_mq_mode(struct rte_eth_dev *dev)
1079 {
1080         enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
1081         enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
1082         uint16_t nb_rx_q = dev->data->nb_rx_queues;
1083         uint16_t nb_tx_q = dev->data->nb_tx_queues;
1084
1085         if ((rx_mq_mode & ETH_MQ_RX_DCB_FLAG) ||
1086             tx_mq_mode == ETH_MQ_TX_DCB ||
1087             tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
1088                 PMD_INIT_LOG(ERR, "DCB mode is not supported.");
1089                 return -EINVAL;
1090         }
1091         if (RTE_ETH_DEV_SRIOV(dev).active != 0) {
1092                 /* Check multi-queue mode.
1093                  * To no break software we accept ETH_MQ_RX_NONE as this might
1094                  * be used to turn off VLAN filter.
1095                  */
1096
1097                 if (rx_mq_mode == ETH_MQ_RX_NONE ||
1098                     rx_mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
1099                         dev->data->dev_conf.rxmode.mq_mode = ETH_MQ_RX_VMDQ_ONLY;
1100                         RTE_ETH_DEV_SRIOV(dev).nb_q_per_pool = 1;
1101                 } else {
1102                         /* Only support one queue on VFs.
1103                          * RSS together with SRIOV is not supported.
1104                          */
1105                         PMD_INIT_LOG(ERR, "SRIOV is active,"
1106                                         " wrong mq_mode rx %d.",
1107                                         rx_mq_mode);
1108                         return -EINVAL;
1109                 }
1110                 /* TX mode is not used here, so mode might be ignored.*/
1111                 if (tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
1112                         /* SRIOV only works in VMDq enable mode */
1113                         PMD_INIT_LOG(WARNING, "SRIOV is active,"
1114                                         " TX mode %d is not supported. "
1115                                         " Driver will behave as %d mode.",
1116                                         tx_mq_mode, ETH_MQ_TX_VMDQ_ONLY);
1117                 }
1118
1119                 /* check valid queue number */
1120                 if ((nb_rx_q > 1) || (nb_tx_q > 1)) {
1121                         PMD_INIT_LOG(ERR, "SRIOV is active,"
1122                                         " only support one queue on VFs.");
1123                         return -EINVAL;
1124                 }
1125         } else {
1126                 /* To no break software that set invalid mode, only display
1127                  * warning if invalid mode is used.
1128                  */
1129                 if (rx_mq_mode != ETH_MQ_RX_NONE &&
1130                     rx_mq_mode != ETH_MQ_RX_VMDQ_ONLY &&
1131                     rx_mq_mode != ETH_MQ_RX_RSS) {
1132                         /* RSS together with VMDq not supported*/
1133                         PMD_INIT_LOG(ERR, "RX mode %d is not supported.",
1134                                      rx_mq_mode);
1135                         return -EINVAL;
1136                 }
1137
1138                 if (tx_mq_mode != ETH_MQ_TX_NONE &&
1139                     tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
1140                         PMD_INIT_LOG(WARNING, "TX mode %d is not supported."
1141                                         " Due to txmode is meaningless in this"
1142                                         " driver, just ignore.",
1143                                         tx_mq_mode);
1144                 }
1145         }
1146         return 0;
1147 }
1148
1149 static int
1150 eth_igb_configure(struct rte_eth_dev *dev)
1151 {
1152         struct e1000_interrupt *intr =
1153                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1154         int ret;
1155
1156         PMD_INIT_FUNC_TRACE();
1157
1158         if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
1159                 dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
1160
1161         /* multipe queue mode checking */
1162         ret  = igb_check_mq_mode(dev);
1163         if (ret != 0) {
1164                 PMD_DRV_LOG(ERR, "igb_check_mq_mode fails with %d.",
1165                             ret);
1166                 return ret;
1167         }
1168
1169         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1170         PMD_INIT_FUNC_TRACE();
1171
1172         return 0;
1173 }
1174
1175 static void
1176 eth_igb_rxtx_control(struct rte_eth_dev *dev,
1177                      bool enable)
1178 {
1179         struct e1000_hw *hw =
1180                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1181         uint32_t tctl, rctl;
1182
1183         tctl = E1000_READ_REG(hw, E1000_TCTL);
1184         rctl = E1000_READ_REG(hw, E1000_RCTL);
1185
1186         if (enable) {
1187                 /* enable Tx/Rx */
1188                 tctl |= E1000_TCTL_EN;
1189                 rctl |= E1000_RCTL_EN;
1190         } else {
1191                 /* disable Tx/Rx */
1192                 tctl &= ~E1000_TCTL_EN;
1193                 rctl &= ~E1000_RCTL_EN;
1194         }
1195         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1196         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1197         E1000_WRITE_FLUSH(hw);
1198 }
1199
1200 static int
1201 eth_igb_start(struct rte_eth_dev *dev)
1202 {
1203         struct e1000_hw *hw =
1204                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1205         struct e1000_adapter *adapter =
1206                 E1000_DEV_PRIVATE(dev->data->dev_private);
1207         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1208         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1209         int ret, mask;
1210         uint32_t intr_vector = 0;
1211         uint32_t ctrl_ext;
1212         uint32_t *speeds;
1213         int num_speeds;
1214         bool autoneg;
1215
1216         PMD_INIT_FUNC_TRACE();
1217
1218         /* disable uio/vfio intr/eventfd mapping */
1219         rte_intr_disable(intr_handle);
1220
1221         /* Power up the phy. Needed to make the link go Up */
1222         eth_igb_dev_set_link_up(dev);
1223
1224         /*
1225          * Packet Buffer Allocation (PBA)
1226          * Writing PBA sets the receive portion of the buffer
1227          * the remainder is used for the transmit buffer.
1228          */
1229         if (hw->mac.type == e1000_82575) {
1230                 uint32_t pba;
1231
1232                 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1233                 E1000_WRITE_REG(hw, E1000_PBA, pba);
1234         }
1235
1236         /* Put the address into the Receive Address Array */
1237         e1000_rar_set(hw, hw->mac.addr, 0);
1238
1239         /* Initialize the hardware */
1240         if (igb_hardware_init(hw)) {
1241                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
1242                 return -EIO;
1243         }
1244         adapter->stopped = 0;
1245
1246         E1000_WRITE_REG(hw, E1000_VET,
1247                         RTE_ETHER_TYPE_VLAN << 16 | RTE_ETHER_TYPE_VLAN);
1248
1249         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1250         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
1251         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
1252         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1253         E1000_WRITE_FLUSH(hw);
1254
1255         /* configure PF module if SRIOV enabled */
1256         igb_pf_host_configure(dev);
1257
1258         /* check and configure queue intr-vector mapping */
1259         if ((rte_intr_cap_multiple(intr_handle) ||
1260              !RTE_ETH_DEV_SRIOV(dev).active) &&
1261             dev->data->dev_conf.intr_conf.rxq != 0) {
1262                 intr_vector = dev->data->nb_rx_queues;
1263                 if (rte_intr_efd_enable(intr_handle, intr_vector))
1264                         return -1;
1265         }
1266
1267         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
1268                 intr_handle->intr_vec =
1269                         rte_zmalloc("intr_vec",
1270                                     dev->data->nb_rx_queues * sizeof(int), 0);
1271                 if (intr_handle->intr_vec == NULL) {
1272                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
1273                                      " intr_vec", dev->data->nb_rx_queues);
1274                         return -ENOMEM;
1275                 }
1276         }
1277
1278         /* confiugre msix for rx interrupt */
1279         eth_igb_configure_msix_intr(dev);
1280
1281         /* Configure for OS presence */
1282         igb_init_manageability(hw);
1283
1284         eth_igb_tx_init(dev);
1285
1286         /* This can fail when allocating mbufs for descriptor rings */
1287         ret = eth_igb_rx_init(dev);
1288         if (ret) {
1289                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
1290                 igb_dev_clear_queues(dev);
1291                 return ret;
1292         }
1293
1294         e1000_clear_hw_cntrs_base_generic(hw);
1295
1296         /*
1297          * VLAN Offload Settings
1298          */
1299         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
1300                         ETH_VLAN_EXTEND_MASK;
1301         ret = eth_igb_vlan_offload_set(dev, mask);
1302         if (ret) {
1303                 PMD_INIT_LOG(ERR, "Unable to set vlan offload");
1304                 igb_dev_clear_queues(dev);
1305                 return ret;
1306         }
1307
1308         if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
1309                 /* Enable VLAN filter since VMDq always use VLAN filter */
1310                 igb_vmdq_vlan_hw_filter_enable(dev);
1311         }
1312
1313         if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) ||
1314                 (hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i210) ||
1315                 (hw->mac.type == e1000_i211)) {
1316                 /* Configure EITR with the maximum possible value (0xFFFF) */
1317                 E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF);
1318         }
1319
1320         /* Setup link speed and duplex */
1321         speeds = &dev->data->dev_conf.link_speeds;
1322         if (*speeds == ETH_LINK_SPEED_AUTONEG) {
1323                 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
1324                 hw->mac.autoneg = 1;
1325         } else {
1326                 num_speeds = 0;
1327                 autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
1328
1329                 /* Reset */
1330                 hw->phy.autoneg_advertised = 0;
1331
1332                 if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1333                                 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1334                                 ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
1335                         num_speeds = -1;
1336                         goto error_invalid_config;
1337                 }
1338                 if (*speeds & ETH_LINK_SPEED_10M_HD) {
1339                         hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
1340                         num_speeds++;
1341                 }
1342                 if (*speeds & ETH_LINK_SPEED_10M) {
1343                         hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
1344                         num_speeds++;
1345                 }
1346                 if (*speeds & ETH_LINK_SPEED_100M_HD) {
1347                         hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
1348                         num_speeds++;
1349                 }
1350                 if (*speeds & ETH_LINK_SPEED_100M) {
1351                         hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
1352                         num_speeds++;
1353                 }
1354                 if (*speeds & ETH_LINK_SPEED_1G) {
1355                         hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
1356                         num_speeds++;
1357                 }
1358                 if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
1359                         goto error_invalid_config;
1360
1361                 /* Set/reset the mac.autoneg based on the link speed,
1362                  * fixed or not
1363                  */
1364                 if (!autoneg) {
1365                         hw->mac.autoneg = 0;
1366                         hw->mac.forced_speed_duplex =
1367                                         hw->phy.autoneg_advertised;
1368                 } else {
1369                         hw->mac.autoneg = 1;
1370                 }
1371         }
1372
1373         e1000_setup_link(hw);
1374
1375         if (rte_intr_allow_others(intr_handle)) {
1376                 /* check if lsc interrupt is enabled */
1377                 if (dev->data->dev_conf.intr_conf.lsc != 0)
1378                         eth_igb_lsc_interrupt_setup(dev, TRUE);
1379                 else
1380                         eth_igb_lsc_interrupt_setup(dev, FALSE);
1381         } else {
1382                 rte_intr_callback_unregister(intr_handle,
1383                                              eth_igb_interrupt_handler,
1384                                              (void *)dev);
1385                 if (dev->data->dev_conf.intr_conf.lsc != 0)
1386                         PMD_INIT_LOG(INFO, "lsc won't enable because of"
1387                                      " no intr multiplex");
1388         }
1389
1390         /* check if rxq interrupt is enabled */
1391         if (dev->data->dev_conf.intr_conf.rxq != 0 &&
1392             rte_intr_dp_is_en(intr_handle))
1393                 eth_igb_rxq_interrupt_setup(dev);
1394
1395         /* enable uio/vfio intr/eventfd mapping */
1396         rte_intr_enable(intr_handle);
1397
1398         /* resume enabled intr since hw reset */
1399         igb_intr_enable(dev);
1400
1401         /* restore all types filter */
1402         igb_filter_restore(dev);
1403
1404         eth_igb_rxtx_control(dev, true);
1405         eth_igb_link_update(dev, 0);
1406
1407         PMD_INIT_LOG(DEBUG, "<<");
1408
1409         return 0;
1410
1411 error_invalid_config:
1412         PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
1413                      dev->data->dev_conf.link_speeds, dev->data->port_id);
1414         igb_dev_clear_queues(dev);
1415         return -EINVAL;
1416 }
1417
1418 /*********************************************************************
1419  *
1420  *  This routine disables all traffic on the adapter by issuing a
1421  *  global reset on the MAC.
1422  *
1423  **********************************************************************/
1424 static int
1425 eth_igb_stop(struct rte_eth_dev *dev)
1426 {
1427         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1428         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1429         struct rte_eth_link link;
1430         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1431         struct e1000_adapter *adapter =
1432                 E1000_DEV_PRIVATE(dev->data->dev_private);
1433
1434         if (adapter->stopped)
1435                 return 0;
1436
1437         eth_igb_rxtx_control(dev, false);
1438
1439         igb_intr_disable(dev);
1440
1441         /* disable intr eventfd mapping */
1442         rte_intr_disable(intr_handle);
1443
1444         igb_pf_reset_hw(hw);
1445         E1000_WRITE_REG(hw, E1000_WUC, 0);
1446
1447         /* Set bit for Go Link disconnect if PHY reset is not blocked */
1448         if (hw->mac.type >= e1000_82580 &&
1449             (e1000_check_reset_block(hw) != E1000_BLK_PHY_RESET)) {
1450                 uint32_t phpm_reg;
1451
1452                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1453                 phpm_reg |= E1000_82580_PM_GO_LINKD;
1454                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1455         }
1456
1457         /* Power down the phy. Needed to make the link go Down */
1458         eth_igb_dev_set_link_down(dev);
1459
1460         igb_dev_clear_queues(dev);
1461
1462         /* clear the recorded link status */
1463         memset(&link, 0, sizeof(link));
1464         rte_eth_linkstatus_set(dev, &link);
1465
1466         if (!rte_intr_allow_others(intr_handle))
1467                 /* resume to the default handler */
1468                 rte_intr_callback_register(intr_handle,
1469                                            eth_igb_interrupt_handler,
1470                                            (void *)dev);
1471
1472         /* Clean datapath event and queue/vec mapping */
1473         rte_intr_efd_disable(intr_handle);
1474         if (intr_handle->intr_vec != NULL) {
1475                 rte_free(intr_handle->intr_vec);
1476                 intr_handle->intr_vec = NULL;
1477         }
1478
1479         adapter->stopped = true;
1480         dev->data->dev_started = 0;
1481
1482         return 0;
1483 }
1484
1485 static int
1486 eth_igb_dev_set_link_up(struct rte_eth_dev *dev)
1487 {
1488         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1489
1490         if (hw->phy.media_type == e1000_media_type_copper)
1491                 e1000_power_up_phy(hw);
1492         else
1493                 e1000_power_up_fiber_serdes_link(hw);
1494
1495         return 0;
1496 }
1497
1498 static int
1499 eth_igb_dev_set_link_down(struct rte_eth_dev *dev)
1500 {
1501         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1502
1503         if (hw->phy.media_type == e1000_media_type_copper)
1504                 e1000_power_down_phy(hw);
1505         else
1506                 e1000_shutdown_fiber_serdes_link(hw);
1507
1508         return 0;
1509 }
1510
1511 static int
1512 eth_igb_close(struct rte_eth_dev *dev)
1513 {
1514         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1515         struct rte_eth_link link;
1516         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1517         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1518         struct e1000_filter_info *filter_info =
1519                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
1520         int ret;
1521
1522         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1523                 return 0;
1524
1525         ret = eth_igb_stop(dev);
1526
1527         e1000_phy_hw_reset(hw);
1528         igb_release_manageability(hw);
1529         igb_hw_control_release(hw);
1530
1531         /* Clear bit for Go Link disconnect if PHY reset is not blocked */
1532         if (hw->mac.type >= e1000_82580 &&
1533             (e1000_check_reset_block(hw) != E1000_BLK_PHY_RESET)) {
1534                 uint32_t phpm_reg;
1535
1536                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1537                 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1538                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1539         }
1540
1541         igb_dev_free_queues(dev);
1542
1543         if (intr_handle->intr_vec) {
1544                 rte_free(intr_handle->intr_vec);
1545                 intr_handle->intr_vec = NULL;
1546         }
1547
1548         memset(&link, 0, sizeof(link));
1549         rte_eth_linkstatus_set(dev, &link);
1550
1551         /* Reset any pending lock */
1552         igb_reset_swfw_lock(hw);
1553
1554         /* uninitialize PF if max_vfs not zero */
1555         igb_pf_host_uninit(dev);
1556
1557         rte_intr_callback_unregister(intr_handle,
1558                                      eth_igb_interrupt_handler, dev);
1559
1560         /* clear the SYN filter info */
1561         filter_info->syn_info = 0;
1562
1563         /* clear the ethertype filters info */
1564         filter_info->ethertype_mask = 0;
1565         memset(filter_info->ethertype_filters, 0,
1566                 E1000_MAX_ETQF_FILTERS * sizeof(struct igb_ethertype_filter));
1567
1568         /* clear the rss filter info */
1569         memset(&filter_info->rss_info, 0,
1570                 sizeof(struct igb_rte_flow_rss_conf));
1571
1572         /* remove all ntuple filters of the device */
1573         igb_ntuple_filter_uninit(dev);
1574
1575         /* remove all flex filters of the device */
1576         igb_flex_filter_uninit(dev);
1577
1578         /* clear all the filters list */
1579         igb_filterlist_flush(dev);
1580
1581         return ret;
1582 }
1583
1584 /*
1585  * Reset PF device.
1586  */
1587 static int
1588 eth_igb_reset(struct rte_eth_dev *dev)
1589 {
1590         int ret;
1591
1592         /* When a DPDK PMD PF begin to reset PF port, it should notify all
1593          * its VF to make them align with it. The detailed notification
1594          * mechanism is PMD specific and is currently not implemented.
1595          * To avoid unexpected behavior in VF, currently reset of PF with
1596          * SR-IOV activation is not supported. It might be supported later.
1597          */
1598         if (dev->data->sriov.active)
1599                 return -ENOTSUP;
1600
1601         ret = eth_igb_dev_uninit(dev);
1602         if (ret)
1603                 return ret;
1604
1605         ret = eth_igb_dev_init(dev);
1606
1607         return ret;
1608 }
1609
1610
1611 static int
1612 igb_get_rx_buffer_size(struct e1000_hw *hw)
1613 {
1614         uint32_t rx_buf_size;
1615         if (hw->mac.type == e1000_82576) {
1616                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10;
1617         } else if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i350) {
1618                 /* PBS needs to be translated according to a lookup table */
1619                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf);
1620                 rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size);
1621                 rx_buf_size = (rx_buf_size << 10);
1622         } else if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
1623                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0x3f) << 10;
1624         } else {
1625                 rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10;
1626         }
1627
1628         return rx_buf_size;
1629 }
1630
1631 /*********************************************************************
1632  *
1633  *  Initialize the hardware
1634  *
1635  **********************************************************************/
1636 static int
1637 igb_hardware_init(struct e1000_hw *hw)
1638 {
1639         uint32_t rx_buf_size;
1640         int diag;
1641
1642         /* Let the firmware know the OS is in control */
1643         igb_hw_control_acquire(hw);
1644
1645         /*
1646          * These parameters control the automatic generation (Tx) and
1647          * response (Rx) to Ethernet PAUSE frames.
1648          * - High water mark should allow for at least two standard size (1518)
1649          *   frames to be received after sending an XOFF.
1650          * - Low water mark works best when it is very near the high water mark.
1651          *   This allows the receiver to restart by sending XON when it has
1652          *   drained a bit. Here we use an arbitrary value of 1500 which will
1653          *   restart after one full frame is pulled from the buffer. There
1654          *   could be several smaller frames in the buffer and if so they will
1655          *   not trigger the XON until their total number reduces the buffer
1656          *   by 1500.
1657          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1658          */
1659         rx_buf_size = igb_get_rx_buffer_size(hw);
1660
1661         hw->fc.high_water = rx_buf_size - (RTE_ETHER_MAX_LEN * 2);
1662         hw->fc.low_water = hw->fc.high_water - 1500;
1663         hw->fc.pause_time = IGB_FC_PAUSE_TIME;
1664         hw->fc.send_xon = 1;
1665
1666         /* Set Flow control, use the tunable location if sane */
1667         if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4))
1668                 hw->fc.requested_mode = igb_fc_setting;
1669         else
1670                 hw->fc.requested_mode = e1000_fc_none;
1671
1672         /* Issue a global reset */
1673         igb_pf_reset_hw(hw);
1674         E1000_WRITE_REG(hw, E1000_WUC, 0);
1675
1676         diag = e1000_init_hw(hw);
1677         if (diag < 0)
1678                 return diag;
1679
1680         E1000_WRITE_REG(hw, E1000_VET,
1681                         RTE_ETHER_TYPE_VLAN << 16 | RTE_ETHER_TYPE_VLAN);
1682         e1000_get_phy_info(hw);
1683         e1000_check_for_link(hw);
1684
1685         return 0;
1686 }
1687
1688 /* This function is based on igb_update_stats_counters() in igb/if_igb.c */
1689 static void
1690 igb_read_stats_registers(struct e1000_hw *hw, struct e1000_hw_stats *stats)
1691 {
1692         int pause_frames;
1693
1694         uint64_t old_gprc  = stats->gprc;
1695         uint64_t old_gptc  = stats->gptc;
1696         uint64_t old_tpr   = stats->tpr;
1697         uint64_t old_tpt   = stats->tpt;
1698         uint64_t old_rpthc = stats->rpthc;
1699         uint64_t old_hgptc = stats->hgptc;
1700
1701         if(hw->phy.media_type == e1000_media_type_copper ||
1702             (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1703                 stats->symerrs +=
1704                     E1000_READ_REG(hw,E1000_SYMERRS);
1705                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
1706         }
1707
1708         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
1709         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
1710         stats->scc += E1000_READ_REG(hw, E1000_SCC);
1711         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
1712
1713         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
1714         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
1715         stats->colc += E1000_READ_REG(hw, E1000_COLC);
1716         stats->dc += E1000_READ_REG(hw, E1000_DC);
1717         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
1718         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
1719         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
1720         /*
1721         ** For watchdog management we need to know if we have been
1722         ** paused during the last interval, so capture that here.
1723         */
1724         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
1725         stats->xoffrxc += pause_frames;
1726         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
1727         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
1728         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
1729         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
1730         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
1731         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
1732         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
1733         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
1734         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
1735         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
1736         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
1737         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
1738
1739         /* For the 64-bit byte counters the low dword must be read first. */
1740         /* Both registers clear on the read of the high dword */
1741
1742         /* Workaround CRC bytes included in size, take away 4 bytes/packet */
1743         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
1744         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
1745         stats->gorc -= (stats->gprc - old_gprc) * RTE_ETHER_CRC_LEN;
1746         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
1747         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
1748         stats->gotc -= (stats->gptc - old_gptc) * RTE_ETHER_CRC_LEN;
1749
1750         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
1751         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
1752         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
1753         stats->roc += E1000_READ_REG(hw, E1000_ROC);
1754         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
1755
1756         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
1757         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
1758
1759         stats->tor += E1000_READ_REG(hw, E1000_TORL);
1760         stats->tor += ((uint64_t)E1000_READ_REG(hw, E1000_TORH) << 32);
1761         stats->tor -= (stats->tpr - old_tpr) * RTE_ETHER_CRC_LEN;
1762         stats->tot += E1000_READ_REG(hw, E1000_TOTL);
1763         stats->tot += ((uint64_t)E1000_READ_REG(hw, E1000_TOTH) << 32);
1764         stats->tot -= (stats->tpt - old_tpt) * RTE_ETHER_CRC_LEN;
1765
1766         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
1767         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
1768         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
1769         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
1770         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
1771         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
1772         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
1773         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
1774
1775         /* Interrupt Counts */
1776
1777         stats->iac += E1000_READ_REG(hw, E1000_IAC);
1778         stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
1779         stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
1780         stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
1781         stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
1782         stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
1783         stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
1784         stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
1785         stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
1786
1787         /* Host to Card Statistics */
1788
1789         stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
1790         stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
1791         stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
1792         stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
1793         stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
1794         stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
1795         stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
1796         stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL);
1797         stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32);
1798         stats->hgorc -= (stats->rpthc - old_rpthc) * RTE_ETHER_CRC_LEN;
1799         stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL);
1800         stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32);
1801         stats->hgotc -= (stats->hgptc - old_hgptc) * RTE_ETHER_CRC_LEN;
1802         stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
1803         stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
1804         stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
1805
1806         stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
1807         stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
1808         stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
1809         stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
1810         stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
1811         stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
1812 }
1813
1814 static int
1815 eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
1816 {
1817         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1818         struct e1000_hw_stats *stats =
1819                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1820
1821         igb_read_stats_registers(hw, stats);
1822
1823         if (rte_stats == NULL)
1824                 return -EINVAL;
1825
1826         /* Rx Errors */
1827         rte_stats->imissed = stats->mpc;
1828         rte_stats->ierrors = stats->crcerrs + stats->rlec +
1829                              stats->rxerrc + stats->algnerrc + stats->cexterr;
1830
1831         /* Tx Errors */
1832         rte_stats->oerrors = stats->ecol + stats->latecol;
1833
1834         rte_stats->ipackets = stats->gprc;
1835         rte_stats->opackets = stats->gptc;
1836         rte_stats->ibytes   = stats->gorc;
1837         rte_stats->obytes   = stats->gotc;
1838         return 0;
1839 }
1840
1841 static int
1842 eth_igb_stats_reset(struct rte_eth_dev *dev)
1843 {
1844         struct e1000_hw_stats *hw_stats =
1845                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1846
1847         /* HW registers are cleared on read */
1848         eth_igb_stats_get(dev, NULL);
1849
1850         /* Reset software totals */
1851         memset(hw_stats, 0, sizeof(*hw_stats));
1852
1853         return 0;
1854 }
1855
1856 static int
1857 eth_igb_xstats_reset(struct rte_eth_dev *dev)
1858 {
1859         struct e1000_hw_stats *stats =
1860                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1861
1862         /* HW registers are cleared on read */
1863         eth_igb_xstats_get(dev, NULL, IGB_NB_XSTATS);
1864
1865         /* Reset software totals */
1866         memset(stats, 0, sizeof(*stats));
1867
1868         return 0;
1869 }
1870
1871 static int eth_igb_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
1872         struct rte_eth_xstat_name *xstats_names,
1873         __rte_unused unsigned int size)
1874 {
1875         unsigned i;
1876
1877         if (xstats_names == NULL)
1878                 return IGB_NB_XSTATS;
1879
1880         /* Note: limit checked in rte_eth_xstats_names() */
1881
1882         for (i = 0; i < IGB_NB_XSTATS; i++) {
1883                 strlcpy(xstats_names[i].name, rte_igb_stats_strings[i].name,
1884                         sizeof(xstats_names[i].name));
1885         }
1886
1887         return IGB_NB_XSTATS;
1888 }
1889
1890 static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev,
1891                 struct rte_eth_xstat_name *xstats_names, const uint64_t *ids,
1892                 unsigned int limit)
1893 {
1894         unsigned int i;
1895
1896         if (!ids) {
1897                 if (xstats_names == NULL)
1898                         return IGB_NB_XSTATS;
1899
1900                 for (i = 0; i < IGB_NB_XSTATS; i++)
1901                         strlcpy(xstats_names[i].name,
1902                                 rte_igb_stats_strings[i].name,
1903                                 sizeof(xstats_names[i].name));
1904
1905                 return IGB_NB_XSTATS;
1906
1907         } else {
1908                 struct rte_eth_xstat_name xstats_names_copy[IGB_NB_XSTATS];
1909
1910                 eth_igb_xstats_get_names_by_id(dev, xstats_names_copy, NULL,
1911                                 IGB_NB_XSTATS);
1912
1913                 for (i = 0; i < limit; i++) {
1914                         if (ids[i] >= IGB_NB_XSTATS) {
1915                                 PMD_INIT_LOG(ERR, "id value isn't valid");
1916                                 return -1;
1917                         }
1918                         strcpy(xstats_names[i].name,
1919                                         xstats_names_copy[ids[i]].name);
1920                 }
1921                 return limit;
1922         }
1923 }
1924
1925 static int
1926 eth_igb_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
1927                    unsigned n)
1928 {
1929         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1930         struct e1000_hw_stats *hw_stats =
1931                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1932         unsigned i;
1933
1934         if (n < IGB_NB_XSTATS)
1935                 return IGB_NB_XSTATS;
1936
1937         igb_read_stats_registers(hw, hw_stats);
1938
1939         /* If this is a reset xstats is NULL, and we have cleared the
1940          * registers by reading them.
1941          */
1942         if (!xstats)
1943                 return 0;
1944
1945         /* Extended stats */
1946         for (i = 0; i < IGB_NB_XSTATS; i++) {
1947                 xstats[i].id = i;
1948                 xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
1949                         rte_igb_stats_strings[i].offset);
1950         }
1951
1952         return IGB_NB_XSTATS;
1953 }
1954
1955 static int
1956 eth_igb_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
1957                 uint64_t *values, unsigned int n)
1958 {
1959         unsigned int i;
1960
1961         if (!ids) {
1962                 struct e1000_hw *hw =
1963                         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1964                 struct e1000_hw_stats *hw_stats =
1965                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1966
1967                 if (n < IGB_NB_XSTATS)
1968                         return IGB_NB_XSTATS;
1969
1970                 igb_read_stats_registers(hw, hw_stats);
1971
1972                 /* If this is a reset xstats is NULL, and we have cleared the
1973                  * registers by reading them.
1974                  */
1975                 if (!values)
1976                         return 0;
1977
1978                 /* Extended stats */
1979                 for (i = 0; i < IGB_NB_XSTATS; i++)
1980                         values[i] = *(uint64_t *)(((char *)hw_stats) +
1981                                         rte_igb_stats_strings[i].offset);
1982
1983                 return IGB_NB_XSTATS;
1984
1985         } else {
1986                 uint64_t values_copy[IGB_NB_XSTATS];
1987
1988                 eth_igb_xstats_get_by_id(dev, NULL, values_copy,
1989                                 IGB_NB_XSTATS);
1990
1991                 for (i = 0; i < n; i++) {
1992                         if (ids[i] >= IGB_NB_XSTATS) {
1993                                 PMD_INIT_LOG(ERR, "id value isn't valid");
1994                                 return -1;
1995                         }
1996                         values[i] = values_copy[ids[i]];
1997                 }
1998                 return n;
1999         }
2000 }
2001
2002 static void
2003 igbvf_read_stats_registers(struct e1000_hw *hw, struct e1000_vf_stats *hw_stats)
2004 {
2005         /* Good Rx packets, include VF loopback */
2006         UPDATE_VF_STAT(E1000_VFGPRC,
2007             hw_stats->last_gprc, hw_stats->gprc);
2008
2009         /* Good Rx octets, include VF loopback */
2010         UPDATE_VF_STAT(E1000_VFGORC,
2011             hw_stats->last_gorc, hw_stats->gorc);
2012
2013         /* Good Tx packets, include VF loopback */
2014         UPDATE_VF_STAT(E1000_VFGPTC,
2015             hw_stats->last_gptc, hw_stats->gptc);
2016
2017         /* Good Tx octets, include VF loopback */
2018         UPDATE_VF_STAT(E1000_VFGOTC,
2019             hw_stats->last_gotc, hw_stats->gotc);
2020
2021         /* Rx Multicst packets */
2022         UPDATE_VF_STAT(E1000_VFMPRC,
2023             hw_stats->last_mprc, hw_stats->mprc);
2024
2025         /* Good Rx loopback packets */
2026         UPDATE_VF_STAT(E1000_VFGPRLBC,
2027             hw_stats->last_gprlbc, hw_stats->gprlbc);
2028
2029         /* Good Rx loopback octets */
2030         UPDATE_VF_STAT(E1000_VFGORLBC,
2031             hw_stats->last_gorlbc, hw_stats->gorlbc);
2032
2033         /* Good Tx loopback packets */
2034         UPDATE_VF_STAT(E1000_VFGPTLBC,
2035             hw_stats->last_gptlbc, hw_stats->gptlbc);
2036
2037         /* Good Tx loopback octets */
2038         UPDATE_VF_STAT(E1000_VFGOTLBC,
2039             hw_stats->last_gotlbc, hw_stats->gotlbc);
2040 }
2041
2042 static int eth_igbvf_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
2043                                      struct rte_eth_xstat_name *xstats_names,
2044                                      __rte_unused unsigned limit)
2045 {
2046         unsigned i;
2047
2048         if (xstats_names != NULL)
2049                 for (i = 0; i < IGBVF_NB_XSTATS; i++) {
2050                         strlcpy(xstats_names[i].name,
2051                                 rte_igbvf_stats_strings[i].name,
2052                                 sizeof(xstats_names[i].name));
2053                 }
2054         return IGBVF_NB_XSTATS;
2055 }
2056
2057 static int
2058 eth_igbvf_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
2059                      unsigned n)
2060 {
2061         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2062         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
2063                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2064         unsigned i;
2065
2066         if (n < IGBVF_NB_XSTATS)
2067                 return IGBVF_NB_XSTATS;
2068
2069         igbvf_read_stats_registers(hw, hw_stats);
2070
2071         if (!xstats)
2072                 return 0;
2073
2074         for (i = 0; i < IGBVF_NB_XSTATS; i++) {
2075                 xstats[i].id = i;
2076                 xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
2077                         rte_igbvf_stats_strings[i].offset);
2078         }
2079
2080         return IGBVF_NB_XSTATS;
2081 }
2082
2083 static int
2084 eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
2085 {
2086         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2087         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
2088                           E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2089
2090         igbvf_read_stats_registers(hw, hw_stats);
2091
2092         if (rte_stats == NULL)
2093                 return -EINVAL;
2094
2095         rte_stats->ipackets = hw_stats->gprc;
2096         rte_stats->ibytes = hw_stats->gorc;
2097         rte_stats->opackets = hw_stats->gptc;
2098         rte_stats->obytes = hw_stats->gotc;
2099         return 0;
2100 }
2101
2102 static int
2103 eth_igbvf_stats_reset(struct rte_eth_dev *dev)
2104 {
2105         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
2106                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2107
2108         /* Sync HW register to the last stats */
2109         eth_igbvf_stats_get(dev, NULL);
2110
2111         /* reset HW current stats*/
2112         memset(&hw_stats->gprc, 0, sizeof(*hw_stats) -
2113                offsetof(struct e1000_vf_stats, gprc));
2114
2115         return 0;
2116 }
2117
2118 static int
2119 eth_igb_fw_version_get(struct rte_eth_dev *dev, char *fw_version,
2120                        size_t fw_size)
2121 {
2122         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2123         struct e1000_fw_version fw;
2124         int ret;
2125
2126         e1000_get_fw_version(hw, &fw);
2127
2128         switch (hw->mac.type) {
2129         case e1000_i210:
2130         case e1000_i211:
2131                 if (!(e1000_get_flash_presence_i210(hw))) {
2132                         ret = snprintf(fw_version, fw_size,
2133                                  "%2d.%2d-%d",
2134                                  fw.invm_major, fw.invm_minor,
2135                                  fw.invm_img_type);
2136                         break;
2137                 }
2138                 /* fall through */
2139         default:
2140                 /* if option rom is valid, display its version too */
2141                 if (fw.or_valid) {
2142                         ret = snprintf(fw_version, fw_size,
2143                                  "%d.%d, 0x%08x, %d.%d.%d",
2144                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2145                                  fw.or_major, fw.or_build, fw.or_patch);
2146                 /* no option rom */
2147                 } else {
2148                         if (fw.etrack_id != 0X0000) {
2149                                 ret = snprintf(fw_version, fw_size,
2150                                          "%d.%d, 0x%08x",
2151                                          fw.eep_major, fw.eep_minor,
2152                                          fw.etrack_id);
2153                         } else {
2154                                 ret = snprintf(fw_version, fw_size,
2155                                          "%d.%d.%d",
2156                                          fw.eep_major, fw.eep_minor,
2157                                          fw.eep_build);
2158                         }
2159                 }
2160                 break;
2161         }
2162
2163         ret += 1; /* add the size of '\0' */
2164         if (fw_size < (u32)ret)
2165                 return ret;
2166         else
2167                 return 0;
2168 }
2169
2170 static int
2171 eth_igb_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
2172 {
2173         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2174
2175         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
2176         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
2177         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
2178         dev_info->rx_queue_offload_capa = igb_get_rx_queue_offloads_capa(dev);
2179         dev_info->rx_offload_capa = igb_get_rx_port_offloads_capa(dev) |
2180                                     dev_info->rx_queue_offload_capa;
2181         dev_info->tx_queue_offload_capa = igb_get_tx_queue_offloads_capa(dev);
2182         dev_info->tx_offload_capa = igb_get_tx_port_offloads_capa(dev) |
2183                                     dev_info->tx_queue_offload_capa;
2184
2185         switch (hw->mac.type) {
2186         case e1000_82575:
2187                 dev_info->max_rx_queues = 4;
2188                 dev_info->max_tx_queues = 4;
2189                 dev_info->max_vmdq_pools = 0;
2190                 break;
2191
2192         case e1000_82576:
2193                 dev_info->max_rx_queues = 16;
2194                 dev_info->max_tx_queues = 16;
2195                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2196                 dev_info->vmdq_queue_num = 16;
2197                 break;
2198
2199         case e1000_82580:
2200                 dev_info->max_rx_queues = 8;
2201                 dev_info->max_tx_queues = 8;
2202                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2203                 dev_info->vmdq_queue_num = 8;
2204                 break;
2205
2206         case e1000_i350:
2207                 dev_info->max_rx_queues = 8;
2208                 dev_info->max_tx_queues = 8;
2209                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2210                 dev_info->vmdq_queue_num = 8;
2211                 break;
2212
2213         case e1000_i354:
2214                 dev_info->max_rx_queues = 8;
2215                 dev_info->max_tx_queues = 8;
2216                 break;
2217
2218         case e1000_i210:
2219                 dev_info->max_rx_queues = 4;
2220                 dev_info->max_tx_queues = 4;
2221                 dev_info->max_vmdq_pools = 0;
2222                 break;
2223
2224         case e1000_i211:
2225                 dev_info->max_rx_queues = 2;
2226                 dev_info->max_tx_queues = 2;
2227                 dev_info->max_vmdq_pools = 0;
2228                 break;
2229
2230         default:
2231                 /* Should not happen */
2232                 return -EINVAL;
2233         }
2234         dev_info->hash_key_size = IGB_HKEY_MAX_INDEX * sizeof(uint32_t);
2235         dev_info->reta_size = ETH_RSS_RETA_SIZE_128;
2236         dev_info->flow_type_rss_offloads = IGB_RSS_OFFLOAD_ALL;
2237
2238         dev_info->default_rxconf = (struct rte_eth_rxconf) {
2239                 .rx_thresh = {
2240                         .pthresh = IGB_DEFAULT_RX_PTHRESH,
2241                         .hthresh = IGB_DEFAULT_RX_HTHRESH,
2242                         .wthresh = IGB_DEFAULT_RX_WTHRESH,
2243                 },
2244                 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
2245                 .rx_drop_en = 0,
2246                 .offloads = 0,
2247         };
2248
2249         dev_info->default_txconf = (struct rte_eth_txconf) {
2250                 .tx_thresh = {
2251                         .pthresh = IGB_DEFAULT_TX_PTHRESH,
2252                         .hthresh = IGB_DEFAULT_TX_HTHRESH,
2253                         .wthresh = IGB_DEFAULT_TX_WTHRESH,
2254                 },
2255                 .offloads = 0,
2256         };
2257
2258         dev_info->rx_desc_lim = rx_desc_lim;
2259         dev_info->tx_desc_lim = tx_desc_lim;
2260
2261         dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
2262                         ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
2263                         ETH_LINK_SPEED_1G;
2264
2265         dev_info->max_mtu = dev_info->max_rx_pktlen - E1000_ETH_OVERHEAD;
2266         dev_info->min_mtu = RTE_ETHER_MIN_MTU;
2267
2268         return 0;
2269 }
2270
2271 static const uint32_t *
2272 eth_igb_supported_ptypes_get(struct rte_eth_dev *dev)
2273 {
2274         static const uint32_t ptypes[] = {
2275                 /* refers to igb_rxd_pkt_info_to_pkt_type() */
2276                 RTE_PTYPE_L2_ETHER,
2277                 RTE_PTYPE_L3_IPV4,
2278                 RTE_PTYPE_L3_IPV4_EXT,
2279                 RTE_PTYPE_L3_IPV6,
2280                 RTE_PTYPE_L3_IPV6_EXT,
2281                 RTE_PTYPE_L4_TCP,
2282                 RTE_PTYPE_L4_UDP,
2283                 RTE_PTYPE_L4_SCTP,
2284                 RTE_PTYPE_TUNNEL_IP,
2285                 RTE_PTYPE_INNER_L3_IPV6,
2286                 RTE_PTYPE_INNER_L3_IPV6_EXT,
2287                 RTE_PTYPE_INNER_L4_TCP,
2288                 RTE_PTYPE_INNER_L4_UDP,
2289                 RTE_PTYPE_UNKNOWN
2290         };
2291
2292         if (dev->rx_pkt_burst == eth_igb_recv_pkts ||
2293             dev->rx_pkt_burst == eth_igb_recv_scattered_pkts)
2294                 return ptypes;
2295         return NULL;
2296 }
2297
2298 static int
2299 eth_igbvf_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
2300 {
2301         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2302
2303         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
2304         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
2305         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
2306         dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
2307                                 DEV_TX_OFFLOAD_IPV4_CKSUM  |
2308                                 DEV_TX_OFFLOAD_UDP_CKSUM   |
2309                                 DEV_TX_OFFLOAD_TCP_CKSUM   |
2310                                 DEV_TX_OFFLOAD_SCTP_CKSUM  |
2311                                 DEV_TX_OFFLOAD_TCP_TSO;
2312         switch (hw->mac.type) {
2313         case e1000_vfadapt:
2314                 dev_info->max_rx_queues = 2;
2315                 dev_info->max_tx_queues = 2;
2316                 break;
2317         case e1000_vfadapt_i350:
2318                 dev_info->max_rx_queues = 1;
2319                 dev_info->max_tx_queues = 1;
2320                 break;
2321         default:
2322                 /* Should not happen */
2323                 return -EINVAL;
2324         }
2325
2326         dev_info->rx_queue_offload_capa = igb_get_rx_queue_offloads_capa(dev);
2327         dev_info->rx_offload_capa = igb_get_rx_port_offloads_capa(dev) |
2328                                     dev_info->rx_queue_offload_capa;
2329         dev_info->tx_queue_offload_capa = igb_get_tx_queue_offloads_capa(dev);
2330         dev_info->tx_offload_capa = igb_get_tx_port_offloads_capa(dev) |
2331                                     dev_info->tx_queue_offload_capa;
2332
2333         dev_info->default_rxconf = (struct rte_eth_rxconf) {
2334                 .rx_thresh = {
2335                         .pthresh = IGB_DEFAULT_RX_PTHRESH,
2336                         .hthresh = IGB_DEFAULT_RX_HTHRESH,
2337                         .wthresh = IGB_DEFAULT_RX_WTHRESH,
2338                 },
2339                 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
2340                 .rx_drop_en = 0,
2341                 .offloads = 0,
2342         };
2343
2344         dev_info->default_txconf = (struct rte_eth_txconf) {
2345                 .tx_thresh = {
2346                         .pthresh = IGB_DEFAULT_TX_PTHRESH,
2347                         .hthresh = IGB_DEFAULT_TX_HTHRESH,
2348                         .wthresh = IGB_DEFAULT_TX_WTHRESH,
2349                 },
2350                 .offloads = 0,
2351         };
2352
2353         dev_info->rx_desc_lim = rx_desc_lim;
2354         dev_info->tx_desc_lim = tx_desc_lim;
2355
2356         return 0;
2357 }
2358
2359 /* return 0 means link status changed, -1 means not changed */
2360 static int
2361 eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete)
2362 {
2363         struct e1000_hw *hw =
2364                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2365         struct rte_eth_link link;
2366         int link_check, count;
2367
2368         link_check = 0;
2369         hw->mac.get_link_status = 1;
2370
2371         /* possible wait-to-complete in up to 9 seconds */
2372         for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
2373                 /* Read the real link status */
2374                 switch (hw->phy.media_type) {
2375                 case e1000_media_type_copper:
2376                         /* Do the work to read phy */
2377                         e1000_check_for_link(hw);
2378                         link_check = !hw->mac.get_link_status;
2379                         break;
2380
2381                 case e1000_media_type_fiber:
2382                         e1000_check_for_link(hw);
2383                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
2384                                       E1000_STATUS_LU);
2385                         break;
2386
2387                 case e1000_media_type_internal_serdes:
2388                         e1000_check_for_link(hw);
2389                         link_check = hw->mac.serdes_has_link;
2390                         break;
2391
2392                 /* VF device is type_unknown */
2393                 case e1000_media_type_unknown:
2394                         eth_igbvf_link_update(hw);
2395                         link_check = !hw->mac.get_link_status;
2396                         break;
2397
2398                 default:
2399                         break;
2400                 }
2401                 if (link_check || wait_to_complete == 0)
2402                         break;
2403                 rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL);
2404         }
2405         memset(&link, 0, sizeof(link));
2406
2407         /* Now we check if a transition has happened */
2408         if (link_check) {
2409                 uint16_t duplex, speed;
2410                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
2411                 link.link_duplex = (duplex == FULL_DUPLEX) ?
2412                                 ETH_LINK_FULL_DUPLEX :
2413                                 ETH_LINK_HALF_DUPLEX;
2414                 link.link_speed = speed;
2415                 link.link_status = ETH_LINK_UP;
2416                 link.link_autoneg = !(dev->data->dev_conf.link_speeds &
2417                                 ETH_LINK_SPEED_FIXED);
2418         } else if (!link_check) {
2419                 link.link_speed = 0;
2420                 link.link_duplex = ETH_LINK_HALF_DUPLEX;
2421                 link.link_status = ETH_LINK_DOWN;
2422                 link.link_autoneg = ETH_LINK_FIXED;
2423         }
2424
2425         return rte_eth_linkstatus_set(dev, &link);
2426 }
2427
2428 /*
2429  * igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit.
2430  * For ASF and Pass Through versions of f/w this means
2431  * that the driver is loaded.
2432  */
2433 static void
2434 igb_hw_control_acquire(struct e1000_hw *hw)
2435 {
2436         uint32_t ctrl_ext;
2437
2438         /* Let firmware know the driver has taken over */
2439         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2440         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2441 }
2442
2443 /*
2444  * igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit.
2445  * For ASF and Pass Through versions of f/w this means that the
2446  * driver is no longer loaded.
2447  */
2448 static void
2449 igb_hw_control_release(struct e1000_hw *hw)
2450 {
2451         uint32_t ctrl_ext;
2452
2453         /* Let firmware taken over control of h/w */
2454         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2455         E1000_WRITE_REG(hw, E1000_CTRL_EXT,
2456                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2457 }
2458
2459 /*
2460  * Bit of a misnomer, what this really means is
2461  * to enable OS management of the system... aka
2462  * to disable special hardware management features.
2463  */
2464 static void
2465 igb_init_manageability(struct e1000_hw *hw)
2466 {
2467         if (e1000_enable_mng_pass_thru(hw)) {
2468                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
2469                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
2470
2471                 /* disable hardware interception of ARP */
2472                 manc &= ~(E1000_MANC_ARP_EN);
2473
2474                 /* enable receiving management packets to the host */
2475                 manc |= E1000_MANC_EN_MNG2HOST;
2476                 manc2h |= 1 << 5;  /* Mng Port 623 */
2477                 manc2h |= 1 << 6;  /* Mng Port 664 */
2478                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
2479                 E1000_WRITE_REG(hw, E1000_MANC, manc);
2480         }
2481 }
2482
2483 static void
2484 igb_release_manageability(struct e1000_hw *hw)
2485 {
2486         if (e1000_enable_mng_pass_thru(hw)) {
2487                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
2488
2489                 manc |= E1000_MANC_ARP_EN;
2490                 manc &= ~E1000_MANC_EN_MNG2HOST;
2491
2492                 E1000_WRITE_REG(hw, E1000_MANC, manc);
2493         }
2494 }
2495
2496 static int
2497 eth_igb_promiscuous_enable(struct rte_eth_dev *dev)
2498 {
2499         struct e1000_hw *hw =
2500                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2501         uint32_t rctl;
2502
2503         rctl = E1000_READ_REG(hw, E1000_RCTL);
2504         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2505         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2506
2507         return 0;
2508 }
2509
2510 static int
2511 eth_igb_promiscuous_disable(struct rte_eth_dev *dev)
2512 {
2513         struct e1000_hw *hw =
2514                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2515         uint32_t rctl;
2516
2517         rctl = E1000_READ_REG(hw, E1000_RCTL);
2518         rctl &= (~E1000_RCTL_UPE);
2519         if (dev->data->all_multicast == 1)
2520                 rctl |= E1000_RCTL_MPE;
2521         else
2522                 rctl &= (~E1000_RCTL_MPE);
2523         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2524
2525         return 0;
2526 }
2527
2528 static int
2529 eth_igb_allmulticast_enable(struct rte_eth_dev *dev)
2530 {
2531         struct e1000_hw *hw =
2532                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2533         uint32_t rctl;
2534
2535         rctl = E1000_READ_REG(hw, E1000_RCTL);
2536         rctl |= E1000_RCTL_MPE;
2537         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2538
2539         return 0;
2540 }
2541
2542 static int
2543 eth_igb_allmulticast_disable(struct rte_eth_dev *dev)
2544 {
2545         struct e1000_hw *hw =
2546                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2547         uint32_t rctl;
2548
2549         if (dev->data->promiscuous == 1)
2550                 return 0; /* must remain in all_multicast mode */
2551         rctl = E1000_READ_REG(hw, E1000_RCTL);
2552         rctl &= (~E1000_RCTL_MPE);
2553         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2554
2555         return 0;
2556 }
2557
2558 static int
2559 eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
2560 {
2561         struct e1000_hw *hw =
2562                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2563         struct e1000_vfta * shadow_vfta =
2564                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2565         uint32_t vfta;
2566         uint32_t vid_idx;
2567         uint32_t vid_bit;
2568
2569         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
2570                               E1000_VFTA_ENTRY_MASK);
2571         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
2572         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
2573         if (on)
2574                 vfta |= vid_bit;
2575         else
2576                 vfta &= ~vid_bit;
2577         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
2578
2579         /* update local VFTA copy */
2580         shadow_vfta->vfta[vid_idx] = vfta;
2581
2582         return 0;
2583 }
2584
2585 static int
2586 eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
2587                       enum rte_vlan_type vlan_type,
2588                       uint16_t tpid)
2589 {
2590         struct e1000_hw *hw =
2591                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2592         uint32_t reg, qinq;
2593
2594         qinq = E1000_READ_REG(hw, E1000_CTRL_EXT);
2595         qinq &= E1000_CTRL_EXT_EXT_VLAN;
2596
2597         /* only outer TPID of double VLAN can be configured*/
2598         if (qinq && vlan_type == ETH_VLAN_TYPE_OUTER) {
2599                 reg = E1000_READ_REG(hw, E1000_VET);
2600                 reg = (reg & (~E1000_VET_VET_EXT)) |
2601                         ((uint32_t)tpid << E1000_VET_VET_EXT_SHIFT);
2602                 E1000_WRITE_REG(hw, E1000_VET, reg);
2603
2604                 return 0;
2605         }
2606
2607         /* all other TPID values are read-only*/
2608         PMD_DRV_LOG(ERR, "Not supported");
2609
2610         return -ENOTSUP;
2611 }
2612
2613 static void
2614 igb_vlan_hw_filter_disable(struct rte_eth_dev *dev)
2615 {
2616         struct e1000_hw *hw =
2617                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2618         uint32_t reg;
2619
2620         /* Filter Table Disable */
2621         reg = E1000_READ_REG(hw, E1000_RCTL);
2622         reg &= ~E1000_RCTL_CFIEN;
2623         reg &= ~E1000_RCTL_VFE;
2624         E1000_WRITE_REG(hw, E1000_RCTL, reg);
2625 }
2626
2627 static void
2628 igb_vlan_hw_filter_enable(struct rte_eth_dev *dev)
2629 {
2630         struct e1000_hw *hw =
2631                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2632         struct e1000_vfta * shadow_vfta =
2633                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2634         uint32_t reg;
2635         int i;
2636
2637         /* Filter Table Enable, CFI not used for packet acceptance */
2638         reg = E1000_READ_REG(hw, E1000_RCTL);
2639         reg &= ~E1000_RCTL_CFIEN;
2640         reg |= E1000_RCTL_VFE;
2641         E1000_WRITE_REG(hw, E1000_RCTL, reg);
2642
2643         /* restore VFTA table */
2644         for (i = 0; i < IGB_VFTA_SIZE; i++)
2645                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
2646 }
2647
2648 static void
2649 igb_vlan_hw_strip_disable(struct rte_eth_dev *dev)
2650 {
2651         struct e1000_hw *hw =
2652                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2653         uint32_t reg;
2654
2655         /* VLAN Mode Disable */
2656         reg = E1000_READ_REG(hw, E1000_CTRL);
2657         reg &= ~E1000_CTRL_VME;
2658         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2659 }
2660
2661 static void
2662 igb_vlan_hw_strip_enable(struct rte_eth_dev *dev)
2663 {
2664         struct e1000_hw *hw =
2665                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2666         uint32_t reg;
2667
2668         /* VLAN Mode Enable */
2669         reg = E1000_READ_REG(hw, E1000_CTRL);
2670         reg |= E1000_CTRL_VME;
2671         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2672 }
2673
2674 static void
2675 igb_vlan_hw_extend_disable(struct rte_eth_dev *dev)
2676 {
2677         struct e1000_hw *hw =
2678                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2679         uint32_t reg;
2680
2681         /* CTRL_EXT: Extended VLAN */
2682         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2683         reg &= ~E1000_CTRL_EXT_EXTEND_VLAN;
2684         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2685
2686         /* Update maximum packet length */
2687         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
2688                 E1000_WRITE_REG(hw, E1000_RLPML,
2689                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2690                                                 VLAN_TAG_SIZE);
2691 }
2692
2693 static void
2694 igb_vlan_hw_extend_enable(struct rte_eth_dev *dev)
2695 {
2696         struct e1000_hw *hw =
2697                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2698         uint32_t reg;
2699
2700         /* CTRL_EXT: Extended VLAN */
2701         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2702         reg |= E1000_CTRL_EXT_EXTEND_VLAN;
2703         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2704
2705         /* Update maximum packet length */
2706         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
2707                 E1000_WRITE_REG(hw, E1000_RLPML,
2708                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2709                                                 2 * VLAN_TAG_SIZE);
2710 }
2711
2712 static int
2713 eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask)
2714 {
2715         struct rte_eth_rxmode *rxmode;
2716
2717         rxmode = &dev->data->dev_conf.rxmode;
2718         if(mask & ETH_VLAN_STRIP_MASK){
2719                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
2720                         igb_vlan_hw_strip_enable(dev);
2721                 else
2722                         igb_vlan_hw_strip_disable(dev);
2723         }
2724
2725         if(mask & ETH_VLAN_FILTER_MASK){
2726                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
2727                         igb_vlan_hw_filter_enable(dev);
2728                 else
2729                         igb_vlan_hw_filter_disable(dev);
2730         }
2731
2732         if(mask & ETH_VLAN_EXTEND_MASK){
2733                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
2734                         igb_vlan_hw_extend_enable(dev);
2735                 else
2736                         igb_vlan_hw_extend_disable(dev);
2737         }
2738
2739         return 0;
2740 }
2741
2742
2743 /**
2744  * It enables the interrupt mask and then enable the interrupt.
2745  *
2746  * @param dev
2747  *  Pointer to struct rte_eth_dev.
2748  * @param on
2749  *  Enable or Disable
2750  *
2751  * @return
2752  *  - On success, zero.
2753  *  - On failure, a negative value.
2754  */
2755 static int
2756 eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on)
2757 {
2758         struct e1000_interrupt *intr =
2759                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2760
2761         if (on)
2762                 intr->mask |= E1000_ICR_LSC;
2763         else
2764                 intr->mask &= ~E1000_ICR_LSC;
2765
2766         return 0;
2767 }
2768
2769 /* It clears the interrupt causes and enables the interrupt.
2770  * It will be called once only during nic initialized.
2771  *
2772  * @param dev
2773  *  Pointer to struct rte_eth_dev.
2774  *
2775  * @return
2776  *  - On success, zero.
2777  *  - On failure, a negative value.
2778  */
2779 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev)
2780 {
2781         uint32_t mask, regval;
2782         int ret;
2783         struct e1000_hw *hw =
2784                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2785         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2786         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2787         int misc_shift = rte_intr_allow_others(intr_handle) ? 1 : 0;
2788         struct rte_eth_dev_info dev_info;
2789
2790         memset(&dev_info, 0, sizeof(dev_info));
2791         ret = eth_igb_infos_get(dev, &dev_info);
2792         if (ret != 0)
2793                 return ret;
2794
2795         mask = (0xFFFFFFFF >> (32 - dev_info.max_rx_queues)) << misc_shift;
2796         regval = E1000_READ_REG(hw, E1000_EIMS);
2797         E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
2798
2799         return 0;
2800 }
2801
2802 /*
2803  * It reads ICR and gets interrupt causes, check it and set a bit flag
2804  * to update link status.
2805  *
2806  * @param dev
2807  *  Pointer to struct rte_eth_dev.
2808  *
2809  * @return
2810  *  - On success, zero.
2811  *  - On failure, a negative value.
2812  */
2813 static int
2814 eth_igb_interrupt_get_status(struct rte_eth_dev *dev)
2815 {
2816         uint32_t icr;
2817         struct e1000_hw *hw =
2818                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2819         struct e1000_interrupt *intr =
2820                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2821
2822         igb_intr_disable(dev);
2823
2824         /* read-on-clear nic registers here */
2825         icr = E1000_READ_REG(hw, E1000_ICR);
2826
2827         intr->flags = 0;
2828         if (icr & E1000_ICR_LSC) {
2829                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
2830         }
2831
2832         if (icr & E1000_ICR_VMMB)
2833                 intr->flags |= E1000_FLAG_MAILBOX;
2834
2835         return 0;
2836 }
2837
2838 /*
2839  * It executes link_update after knowing an interrupt is prsent.
2840  *
2841  * @param dev
2842  *  Pointer to struct rte_eth_dev.
2843  *
2844  * @return
2845  *  - On success, zero.
2846  *  - On failure, a negative value.
2847  */
2848 static int
2849 eth_igb_interrupt_action(struct rte_eth_dev *dev,
2850                          struct rte_intr_handle *intr_handle)
2851 {
2852         struct e1000_hw *hw =
2853                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2854         struct e1000_interrupt *intr =
2855                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2856         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2857         struct rte_eth_link link;
2858         int ret;
2859
2860         if (intr->flags & E1000_FLAG_MAILBOX) {
2861                 igb_pf_mbx_process(dev);
2862                 intr->flags &= ~E1000_FLAG_MAILBOX;
2863         }
2864
2865         igb_intr_enable(dev);
2866         rte_intr_ack(intr_handle);
2867
2868         if (intr->flags & E1000_FLAG_NEED_LINK_UPDATE) {
2869                 intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
2870
2871                 /* set get_link_status to check register later */
2872                 hw->mac.get_link_status = 1;
2873                 ret = eth_igb_link_update(dev, 0);
2874
2875                 /* check if link has changed */
2876                 if (ret < 0)
2877                         return 0;
2878
2879                 rte_eth_linkstatus_get(dev, &link);
2880                 if (link.link_status) {
2881                         PMD_INIT_LOG(INFO,
2882                                      " Port %d: Link Up - speed %u Mbps - %s",
2883                                      dev->data->port_id,
2884                                      (unsigned)link.link_speed,
2885                                      link.link_duplex == ETH_LINK_FULL_DUPLEX ?
2886                                      "full-duplex" : "half-duplex");
2887                 } else {
2888                         PMD_INIT_LOG(INFO, " Port %d: Link Down",
2889                                      dev->data->port_id);
2890                 }
2891
2892                 PMD_INIT_LOG(DEBUG, "PCI Address: " PCI_PRI_FMT,
2893                              pci_dev->addr.domain,
2894                              pci_dev->addr.bus,
2895                              pci_dev->addr.devid,
2896                              pci_dev->addr.function);
2897                 rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
2898         }
2899
2900         return 0;
2901 }
2902
2903 /**
2904  * Interrupt handler which shall be registered at first.
2905  *
2906  * @param handle
2907  *  Pointer to interrupt handle.
2908  * @param param
2909  *  The address of parameter (struct rte_eth_dev *) regsitered before.
2910  *
2911  * @return
2912  *  void
2913  */
2914 static void
2915 eth_igb_interrupt_handler(void *param)
2916 {
2917         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2918
2919         eth_igb_interrupt_get_status(dev);
2920         eth_igb_interrupt_action(dev, dev->intr_handle);
2921 }
2922
2923 static int
2924 eth_igbvf_interrupt_get_status(struct rte_eth_dev *dev)
2925 {
2926         uint32_t eicr;
2927         struct e1000_hw *hw =
2928                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2929         struct e1000_interrupt *intr =
2930                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2931
2932         igbvf_intr_disable(hw);
2933
2934         /* read-on-clear nic registers here */
2935         eicr = E1000_READ_REG(hw, E1000_EICR);
2936         intr->flags = 0;
2937
2938         if (eicr == E1000_VTIVAR_MISC_MAILBOX)
2939                 intr->flags |= E1000_FLAG_MAILBOX;
2940
2941         return 0;
2942 }
2943
2944 void igbvf_mbx_process(struct rte_eth_dev *dev)
2945 {
2946         struct e1000_hw *hw =
2947                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2948         struct e1000_mbx_info *mbx = &hw->mbx;
2949         u32 in_msg = 0;
2950
2951         /* peek the message first */
2952         in_msg = E1000_READ_REG(hw, E1000_VMBMEM(0));
2953
2954         /* PF reset VF event */
2955         if (in_msg == E1000_PF_CONTROL_MSG) {
2956                 /* dummy mbx read to ack pf */
2957                 if (mbx->ops.read(hw, &in_msg, 1, 0))
2958                         return;
2959                 rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
2960                                              NULL);
2961         }
2962 }
2963
2964 static int
2965 eth_igbvf_interrupt_action(struct rte_eth_dev *dev, struct rte_intr_handle *intr_handle)
2966 {
2967         struct e1000_interrupt *intr =
2968                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2969
2970         if (intr->flags & E1000_FLAG_MAILBOX) {
2971                 igbvf_mbx_process(dev);
2972                 intr->flags &= ~E1000_FLAG_MAILBOX;
2973         }
2974
2975         igbvf_intr_enable(dev);
2976         rte_intr_ack(intr_handle);
2977
2978         return 0;
2979 }
2980
2981 static void
2982 eth_igbvf_interrupt_handler(void *param)
2983 {
2984         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2985
2986         eth_igbvf_interrupt_get_status(dev);
2987         eth_igbvf_interrupt_action(dev, dev->intr_handle);
2988 }
2989
2990 static int
2991 eth_igb_led_on(struct rte_eth_dev *dev)
2992 {
2993         struct e1000_hw *hw;
2994
2995         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2996         return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
2997 }
2998
2999 static int
3000 eth_igb_led_off(struct rte_eth_dev *dev)
3001 {
3002         struct e1000_hw *hw;
3003
3004         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3005         return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
3006 }
3007
3008 static int
3009 eth_igb_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
3010 {
3011         struct e1000_hw *hw;
3012         uint32_t ctrl;
3013         int tx_pause;
3014         int rx_pause;
3015
3016         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3017         fc_conf->pause_time = hw->fc.pause_time;
3018         fc_conf->high_water = hw->fc.high_water;
3019         fc_conf->low_water = hw->fc.low_water;
3020         fc_conf->send_xon = hw->fc.send_xon;
3021         fc_conf->autoneg = hw->mac.autoneg;
3022
3023         /*
3024          * Return rx_pause and tx_pause status according to actual setting of
3025          * the TFCE and RFCE bits in the CTRL register.
3026          */
3027         ctrl = E1000_READ_REG(hw, E1000_CTRL);
3028         if (ctrl & E1000_CTRL_TFCE)
3029                 tx_pause = 1;
3030         else
3031                 tx_pause = 0;
3032
3033         if (ctrl & E1000_CTRL_RFCE)
3034                 rx_pause = 1;
3035         else
3036                 rx_pause = 0;
3037
3038         if (rx_pause && tx_pause)
3039                 fc_conf->mode = RTE_FC_FULL;
3040         else if (rx_pause)
3041                 fc_conf->mode = RTE_FC_RX_PAUSE;
3042         else if (tx_pause)
3043                 fc_conf->mode = RTE_FC_TX_PAUSE;
3044         else
3045                 fc_conf->mode = RTE_FC_NONE;
3046
3047         return 0;
3048 }
3049
3050 static int
3051 eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
3052 {
3053         struct e1000_hw *hw;
3054         int err;
3055         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
3056                 e1000_fc_none,
3057                 e1000_fc_rx_pause,
3058                 e1000_fc_tx_pause,
3059                 e1000_fc_full
3060         };
3061         uint32_t rx_buf_size;
3062         uint32_t max_high_water;
3063         uint32_t rctl;
3064         uint32_t ctrl;
3065
3066         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3067         if (fc_conf->autoneg != hw->mac.autoneg)
3068                 return -ENOTSUP;
3069         rx_buf_size = igb_get_rx_buffer_size(hw);
3070         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
3071
3072         /* At least reserve one Ethernet frame for watermark */
3073         max_high_water = rx_buf_size - RTE_ETHER_MAX_LEN;
3074         if ((fc_conf->high_water > max_high_water) ||
3075             (fc_conf->high_water < fc_conf->low_water)) {
3076                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
3077                 PMD_INIT_LOG(ERR, "high water must <=  0x%x", max_high_water);
3078                 return -EINVAL;
3079         }
3080
3081         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
3082         hw->fc.pause_time     = fc_conf->pause_time;
3083         hw->fc.high_water     = fc_conf->high_water;
3084         hw->fc.low_water      = fc_conf->low_water;
3085         hw->fc.send_xon       = fc_conf->send_xon;
3086
3087         err = e1000_setup_link_generic(hw);
3088         if (err == E1000_SUCCESS) {
3089
3090                 /* check if we want to forward MAC frames - driver doesn't have native
3091                  * capability to do that, so we'll write the registers ourselves */
3092
3093                 rctl = E1000_READ_REG(hw, E1000_RCTL);
3094
3095                 /* set or clear MFLCN.PMCF bit depending on configuration */
3096                 if (fc_conf->mac_ctrl_frame_fwd != 0)
3097                         rctl |= E1000_RCTL_PMCF;
3098                 else
3099                         rctl &= ~E1000_RCTL_PMCF;
3100
3101                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3102
3103                 /*
3104                  * check if we want to change flow control mode - driver doesn't have native
3105                  * capability to do that, so we'll write the registers ourselves
3106                  */
3107                 ctrl = E1000_READ_REG(hw, E1000_CTRL);
3108
3109                 /*
3110                  * set or clear E1000_CTRL_RFCE and E1000_CTRL_TFCE bits depending
3111                  * on configuration
3112                  */
3113                 switch (fc_conf->mode) {
3114                 case RTE_FC_NONE:
3115                         ctrl &= ~E1000_CTRL_RFCE & ~E1000_CTRL_TFCE;
3116                         break;
3117                 case RTE_FC_RX_PAUSE:
3118                         ctrl |= E1000_CTRL_RFCE;
3119                         ctrl &= ~E1000_CTRL_TFCE;
3120                         break;
3121                 case RTE_FC_TX_PAUSE:
3122                         ctrl |= E1000_CTRL_TFCE;
3123                         ctrl &= ~E1000_CTRL_RFCE;
3124                         break;
3125                 case RTE_FC_FULL:
3126                         ctrl |= E1000_CTRL_RFCE | E1000_CTRL_TFCE;
3127                         break;
3128                 default:
3129                         PMD_INIT_LOG(ERR, "invalid flow control mode");
3130                         return -EINVAL;
3131                 }
3132
3133                 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
3134
3135                 E1000_WRITE_FLUSH(hw);
3136
3137                 return 0;
3138         }
3139
3140         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
3141         return -EIO;
3142 }
3143
3144 #define E1000_RAH_POOLSEL_SHIFT      (18)
3145 static int
3146 eth_igb_rar_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
3147                 uint32_t index, uint32_t pool)
3148 {
3149         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3150         uint32_t rah;
3151
3152         e1000_rar_set(hw, mac_addr->addr_bytes, index);
3153         rah = E1000_READ_REG(hw, E1000_RAH(index));
3154         rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + pool));
3155         E1000_WRITE_REG(hw, E1000_RAH(index), rah);
3156         return 0;
3157 }
3158
3159 static void
3160 eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index)
3161 {
3162         uint8_t addr[RTE_ETHER_ADDR_LEN];
3163         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3164
3165         memset(addr, 0, sizeof(addr));
3166
3167         e1000_rar_set(hw, addr, index);
3168 }
3169
3170 static int
3171 eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
3172                                 struct rte_ether_addr *addr)
3173 {
3174         eth_igb_rar_clear(dev, 0);
3175         eth_igb_rar_set(dev, (void *)addr, 0, 0);
3176
3177         return 0;
3178 }
3179 /*
3180  * Virtual Function operations
3181  */
3182 static void
3183 igbvf_intr_disable(struct e1000_hw *hw)
3184 {
3185         PMD_INIT_FUNC_TRACE();
3186
3187         /* Clear interrupt mask to stop from interrupts being generated */
3188         E1000_WRITE_REG(hw, E1000_EIMC, 0xFFFF);
3189
3190         E1000_WRITE_FLUSH(hw);
3191 }
3192
3193 static void
3194 igbvf_stop_adapter(struct rte_eth_dev *dev)
3195 {
3196         u32 reg_val;
3197         u16 i;
3198         struct rte_eth_dev_info dev_info;
3199         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3200         int ret;
3201
3202         memset(&dev_info, 0, sizeof(dev_info));
3203         ret = eth_igbvf_infos_get(dev, &dev_info);
3204         if (ret != 0)
3205                 return;
3206
3207         /* Clear interrupt mask to stop from interrupts being generated */
3208         igbvf_intr_disable(hw);
3209
3210         /* Clear any pending interrupts, flush previous writes */
3211         E1000_READ_REG(hw, E1000_EICR);
3212
3213         /* Disable the transmit unit.  Each queue must be disabled. */
3214         for (i = 0; i < dev_info.max_tx_queues; i++)
3215                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), E1000_TXDCTL_SWFLSH);
3216
3217         /* Disable the receive unit by stopping each queue */
3218         for (i = 0; i < dev_info.max_rx_queues; i++) {
3219                 reg_val = E1000_READ_REG(hw, E1000_RXDCTL(i));
3220                 reg_val &= ~E1000_RXDCTL_QUEUE_ENABLE;
3221                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), reg_val);
3222                 while (E1000_READ_REG(hw, E1000_RXDCTL(i)) & E1000_RXDCTL_QUEUE_ENABLE)
3223                         ;
3224         }
3225
3226         /* flush all queues disables */
3227         E1000_WRITE_FLUSH(hw);
3228         msec_delay(2);
3229 }
3230
3231 static int eth_igbvf_link_update(struct e1000_hw *hw)
3232 {
3233         struct e1000_mbx_info *mbx = &hw->mbx;
3234         struct e1000_mac_info *mac = &hw->mac;
3235         int ret_val = E1000_SUCCESS;
3236
3237         PMD_INIT_LOG(DEBUG, "e1000_check_for_link_vf");
3238
3239         /*
3240          * We only want to run this if there has been a rst asserted.
3241          * in this case that could mean a link change, device reset,
3242          * or a virtual function reset
3243          */
3244
3245         /* If we were hit with a reset or timeout drop the link */
3246         if (!e1000_check_for_rst(hw, 0) || !mbx->timeout)
3247                 mac->get_link_status = TRUE;
3248
3249         if (!mac->get_link_status)
3250                 goto out;
3251
3252         /* if link status is down no point in checking to see if pf is up */
3253         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
3254                 goto out;
3255
3256         /* if we passed all the tests above then the link is up and we no
3257          * longer need to check for link */
3258         mac->get_link_status = FALSE;
3259
3260 out:
3261         return ret_val;
3262 }
3263
3264
3265 static int
3266 igbvf_dev_configure(struct rte_eth_dev *dev)
3267 {
3268         struct rte_eth_conf* conf = &dev->data->dev_conf;
3269
3270         PMD_INIT_LOG(DEBUG, "Configured Virtual Function port id: %d",
3271                      dev->data->port_id);
3272
3273         if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
3274                 dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
3275
3276         /*
3277          * VF has no ability to enable/disable HW CRC
3278          * Keep the persistent behavior the same as Host PF
3279          */
3280 #ifndef RTE_LIBRTE_E1000_PF_DISABLE_STRIP_CRC
3281         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC) {
3282                 PMD_INIT_LOG(NOTICE, "VF can't disable HW CRC Strip");
3283                 conf->rxmode.offloads &= ~DEV_RX_OFFLOAD_KEEP_CRC;
3284         }
3285 #else
3286         if (!(conf->rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)) {
3287                 PMD_INIT_LOG(NOTICE, "VF can't enable HW CRC Strip");
3288                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_KEEP_CRC;
3289         }
3290 #endif
3291
3292         return 0;
3293 }
3294
3295 static int
3296 igbvf_dev_start(struct rte_eth_dev *dev)
3297 {
3298         struct e1000_hw *hw =
3299                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3300         struct e1000_adapter *adapter =
3301                 E1000_DEV_PRIVATE(dev->data->dev_private);
3302         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3303         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3304         int ret;
3305         uint32_t intr_vector = 0;
3306
3307         PMD_INIT_FUNC_TRACE();
3308
3309         hw->mac.ops.reset_hw(hw);
3310         adapter->stopped = 0;
3311
3312         /* Set all vfta */
3313         igbvf_set_vfta_all(dev,1);
3314
3315         eth_igbvf_tx_init(dev);
3316
3317         /* This can fail when allocating mbufs for descriptor rings */
3318         ret = eth_igbvf_rx_init(dev);
3319         if (ret) {
3320                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
3321                 igb_dev_clear_queues(dev);
3322                 return ret;
3323         }
3324
3325         /* check and configure queue intr-vector mapping */
3326         if (rte_intr_cap_multiple(intr_handle) &&
3327             dev->data->dev_conf.intr_conf.rxq) {
3328                 intr_vector = dev->data->nb_rx_queues;
3329                 ret = rte_intr_efd_enable(intr_handle, intr_vector);
3330                 if (ret)
3331                         return ret;
3332         }
3333
3334         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
3335                 intr_handle->intr_vec =
3336                         rte_zmalloc("intr_vec",
3337                                     dev->data->nb_rx_queues * sizeof(int), 0);
3338                 if (!intr_handle->intr_vec) {
3339                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
3340                                      " intr_vec", dev->data->nb_rx_queues);
3341                         return -ENOMEM;
3342                 }
3343         }
3344
3345         eth_igbvf_configure_msix_intr(dev);
3346
3347         /* enable uio/vfio intr/eventfd mapping */
3348         rte_intr_enable(intr_handle);
3349
3350         /* resume enabled intr since hw reset */
3351         igbvf_intr_enable(dev);
3352
3353         return 0;
3354 }
3355
3356 static int
3357 igbvf_dev_stop(struct rte_eth_dev *dev)
3358 {
3359         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3360         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3361         struct e1000_adapter *adapter =
3362                 E1000_DEV_PRIVATE(dev->data->dev_private);
3363
3364         if (adapter->stopped)
3365                 return 0;
3366
3367         PMD_INIT_FUNC_TRACE();
3368
3369         igbvf_stop_adapter(dev);
3370
3371         /*
3372           * Clear what we set, but we still keep shadow_vfta to
3373           * restore after device starts
3374           */
3375         igbvf_set_vfta_all(dev,0);
3376
3377         igb_dev_clear_queues(dev);
3378
3379         /* disable intr eventfd mapping */
3380         rte_intr_disable(intr_handle);
3381
3382         /* Clean datapath event and queue/vec mapping */
3383         rte_intr_efd_disable(intr_handle);
3384         if (intr_handle->intr_vec) {
3385                 rte_free(intr_handle->intr_vec);
3386                 intr_handle->intr_vec = NULL;
3387         }
3388
3389         adapter->stopped = true;
3390         dev->data->dev_started = 0;
3391
3392         return 0;
3393 }
3394
3395 static int
3396 igbvf_dev_close(struct rte_eth_dev *dev)
3397 {
3398         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3399         struct rte_ether_addr addr;
3400         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3401         int ret;
3402
3403         PMD_INIT_FUNC_TRACE();
3404
3405         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3406                 return 0;
3407
3408         e1000_reset_hw(hw);
3409
3410         ret = igbvf_dev_stop(dev);
3411         if (ret != 0)
3412                 return ret;
3413
3414         igb_dev_free_queues(dev);
3415
3416         /**
3417          * reprogram the RAR with a zero mac address,
3418          * to ensure that the VF traffic goes to the PF
3419          * after stop, close and detach of the VF.
3420          **/
3421
3422         memset(&addr, 0, sizeof(addr));
3423         igbvf_default_mac_addr_set(dev, &addr);
3424
3425         rte_intr_callback_unregister(&pci_dev->intr_handle,
3426                                      eth_igbvf_interrupt_handler,
3427                                      (void *)dev);
3428
3429         return 0;
3430 }
3431
3432 static int
3433 igbvf_promiscuous_enable(struct rte_eth_dev *dev)
3434 {
3435         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3436
3437         /* Set both unicast and multicast promisc */
3438         e1000_promisc_set_vf(hw, e1000_promisc_enabled);
3439
3440         return 0;
3441 }
3442
3443 static int
3444 igbvf_promiscuous_disable(struct rte_eth_dev *dev)
3445 {
3446         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3447
3448         /* If in allmulticast mode leave multicast promisc */
3449         if (dev->data->all_multicast == 1)
3450                 e1000_promisc_set_vf(hw, e1000_promisc_multicast);
3451         else
3452                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
3453
3454         return 0;
3455 }
3456
3457 static int
3458 igbvf_allmulticast_enable(struct rte_eth_dev *dev)
3459 {
3460         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3461
3462         /* In promiscuous mode multicast promisc already set */
3463         if (dev->data->promiscuous == 0)
3464                 e1000_promisc_set_vf(hw, e1000_promisc_multicast);
3465
3466         return 0;
3467 }
3468
3469 static int
3470 igbvf_allmulticast_disable(struct rte_eth_dev *dev)
3471 {
3472         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3473
3474         /* In promiscuous mode leave multicast promisc enabled */
3475         if (dev->data->promiscuous == 0)
3476                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
3477
3478         return 0;
3479 }
3480
3481 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on)
3482 {
3483         struct e1000_mbx_info *mbx = &hw->mbx;
3484         uint32_t msgbuf[2];
3485         s32 err;
3486
3487         /* After set vlan, vlan strip will also be enabled in igb driver*/
3488         msgbuf[0] = E1000_VF_SET_VLAN;
3489         msgbuf[1] = vid;
3490         /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
3491         if (on)
3492                 msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
3493
3494         err = mbx->ops.write_posted(hw, msgbuf, 2, 0);
3495         if (err)
3496                 goto mbx_err;
3497
3498         err = mbx->ops.read_posted(hw, msgbuf, 2, 0);
3499         if (err)
3500                 goto mbx_err;
3501
3502         msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
3503         if (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK))
3504                 err = -EINVAL;
3505
3506 mbx_err:
3507         return err;
3508 }
3509
3510 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on)
3511 {
3512         struct e1000_hw *hw =
3513                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3514         struct e1000_vfta * shadow_vfta =
3515                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
3516         int i = 0, j = 0, vfta = 0, mask = 1;
3517
3518         for (i = 0; i < IGB_VFTA_SIZE; i++){
3519                 vfta = shadow_vfta->vfta[i];
3520                 if(vfta){
3521                         mask = 1;
3522                         for (j = 0; j < 32; j++){
3523                                 if(vfta & mask)
3524                                         igbvf_set_vfta(hw,
3525                                                 (uint16_t)((i<<5)+j), on);
3526                                 mask<<=1;
3527                         }
3528                 }
3529         }
3530
3531 }
3532
3533 static int
3534 igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
3535 {
3536         struct e1000_hw *hw =
3537                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3538         struct e1000_vfta * shadow_vfta =
3539                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
3540         uint32_t vid_idx = 0;
3541         uint32_t vid_bit = 0;
3542         int ret = 0;
3543
3544         PMD_INIT_FUNC_TRACE();
3545
3546         /*vind is not used in VF driver, set to 0, check ixgbe_set_vfta_vf*/
3547         ret = igbvf_set_vfta(hw, vlan_id, !!on);
3548         if(ret){
3549                 PMD_INIT_LOG(ERR, "Unable to set VF vlan");
3550                 return ret;
3551         }
3552         vid_idx = (uint32_t) ((vlan_id >> 5) & 0x7F);
3553         vid_bit = (uint32_t) (1 << (vlan_id & 0x1F));
3554
3555         /*Save what we set and retore it after device reset*/
3556         if (on)
3557                 shadow_vfta->vfta[vid_idx] |= vid_bit;
3558         else
3559                 shadow_vfta->vfta[vid_idx] &= ~vid_bit;
3560
3561         return 0;
3562 }
3563
3564 static int
3565 igbvf_default_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *addr)
3566 {
3567         struct e1000_hw *hw =
3568                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3569
3570         /* index is not used by rar_set() */
3571         hw->mac.ops.rar_set(hw, (void *)addr, 0);
3572         return 0;
3573 }
3574
3575
3576 static int
3577 eth_igb_rss_reta_update(struct rte_eth_dev *dev,
3578                         struct rte_eth_rss_reta_entry64 *reta_conf,
3579                         uint16_t reta_size)
3580 {
3581         uint8_t i, j, mask;
3582         uint32_t reta, r;
3583         uint16_t idx, shift;
3584         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3585
3586         if (reta_size != ETH_RSS_RETA_SIZE_128) {
3587                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
3588                         "(%d) doesn't match the number hardware can supported "
3589                         "(%d)", reta_size, ETH_RSS_RETA_SIZE_128);
3590                 return -EINVAL;
3591         }
3592
3593         for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
3594                 idx = i / RTE_RETA_GROUP_SIZE;
3595                 shift = i % RTE_RETA_GROUP_SIZE;
3596                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
3597                                                 IGB_4_BIT_MASK);
3598                 if (!mask)
3599                         continue;
3600                 if (mask == IGB_4_BIT_MASK)
3601                         r = 0;
3602                 else
3603                         r = E1000_READ_REG(hw, E1000_RETA(i >> 2));
3604                 for (j = 0, reta = 0; j < IGB_4_BIT_WIDTH; j++) {
3605                         if (mask & (0x1 << j))
3606                                 reta |= reta_conf[idx].reta[shift + j] <<
3607                                                         (CHAR_BIT * j);
3608                         else
3609                                 reta |= r & (IGB_8_BIT_MASK << (CHAR_BIT * j));
3610                 }
3611                 E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
3612         }
3613
3614         return 0;
3615 }
3616
3617 static int
3618 eth_igb_rss_reta_query(struct rte_eth_dev *dev,
3619                        struct rte_eth_rss_reta_entry64 *reta_conf,
3620                        uint16_t reta_size)
3621 {
3622         uint8_t i, j, mask;
3623         uint32_t reta;
3624         uint16_t idx, shift;
3625         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3626
3627         if (reta_size != ETH_RSS_RETA_SIZE_128) {
3628                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
3629                         "(%d) doesn't match the number hardware can supported "
3630                         "(%d)", reta_size, ETH_RSS_RETA_SIZE_128);
3631                 return -EINVAL;
3632         }
3633
3634         for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
3635                 idx = i / RTE_RETA_GROUP_SIZE;
3636                 shift = i % RTE_RETA_GROUP_SIZE;
3637                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
3638                                                 IGB_4_BIT_MASK);
3639                 if (!mask)
3640                         continue;
3641                 reta = E1000_READ_REG(hw, E1000_RETA(i >> 2));
3642                 for (j = 0; j < IGB_4_BIT_WIDTH; j++) {
3643                         if (mask & (0x1 << j))
3644                                 reta_conf[idx].reta[shift + j] =
3645                                         ((reta >> (CHAR_BIT * j)) &
3646                                                 IGB_8_BIT_MASK);
3647                 }
3648         }
3649
3650         return 0;
3651 }
3652
3653 int
3654 eth_igb_syn_filter_set(struct rte_eth_dev *dev,
3655                         struct rte_eth_syn_filter *filter,
3656                         bool add)
3657 {
3658         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3659         struct e1000_filter_info *filter_info =
3660                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3661         uint32_t synqf, rfctl;
3662
3663         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
3664                 return -EINVAL;
3665
3666         synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
3667
3668         if (add) {
3669                 if (synqf & E1000_SYN_FILTER_ENABLE)
3670                         return -EINVAL;
3671
3672                 synqf = (uint32_t)(((filter->queue << E1000_SYN_FILTER_QUEUE_SHIFT) &
3673                         E1000_SYN_FILTER_QUEUE) | E1000_SYN_FILTER_ENABLE);
3674
3675                 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3676                 if (filter->hig_pri)
3677                         rfctl |= E1000_RFCTL_SYNQFP;
3678                 else
3679                         rfctl &= ~E1000_RFCTL_SYNQFP;
3680
3681                 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3682         } else {
3683                 if (!(synqf & E1000_SYN_FILTER_ENABLE))
3684                         return -ENOENT;
3685                 synqf = 0;
3686         }
3687
3688         filter_info->syn_info = synqf;
3689         E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
3690         E1000_WRITE_FLUSH(hw);
3691         return 0;
3692 }
3693
3694 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_2tuple_filter_info*/
3695 static inline int
3696 ntuple_filter_to_2tuple(struct rte_eth_ntuple_filter *filter,
3697                         struct e1000_2tuple_filter_info *filter_info)
3698 {
3699         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
3700                 return -EINVAL;
3701         if (filter->priority > E1000_2TUPLE_MAX_PRI)
3702                 return -EINVAL;  /* filter index is out of range. */
3703         if (filter->tcp_flags > RTE_NTUPLE_TCP_FLAGS_MASK)
3704                 return -EINVAL;  /* flags is invalid. */
3705
3706         switch (filter->dst_port_mask) {
3707         case UINT16_MAX:
3708                 filter_info->dst_port_mask = 0;
3709                 filter_info->dst_port = filter->dst_port;
3710                 break;
3711         case 0:
3712                 filter_info->dst_port_mask = 1;
3713                 break;
3714         default:
3715                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
3716                 return -EINVAL;
3717         }
3718
3719         switch (filter->proto_mask) {
3720         case UINT8_MAX:
3721                 filter_info->proto_mask = 0;
3722                 filter_info->proto = filter->proto;
3723                 break;
3724         case 0:
3725                 filter_info->proto_mask = 1;
3726                 break;
3727         default:
3728                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
3729                 return -EINVAL;
3730         }
3731
3732         filter_info->priority = (uint8_t)filter->priority;
3733         if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
3734                 filter_info->tcp_flags = filter->tcp_flags;
3735         else
3736                 filter_info->tcp_flags = 0;
3737
3738         return 0;
3739 }
3740
3741 static inline struct e1000_2tuple_filter *
3742 igb_2tuple_filter_lookup(struct e1000_2tuple_filter_list *filter_list,
3743                         struct e1000_2tuple_filter_info *key)
3744 {
3745         struct e1000_2tuple_filter *it;
3746
3747         TAILQ_FOREACH(it, filter_list, entries) {
3748                 if (memcmp(key, &it->filter_info,
3749                         sizeof(struct e1000_2tuple_filter_info)) == 0) {
3750                         return it;
3751                 }
3752         }
3753         return NULL;
3754 }
3755
3756 /* inject a igb 2tuple filter to HW */
3757 static inline void
3758 igb_inject_2uple_filter(struct rte_eth_dev *dev,
3759                            struct e1000_2tuple_filter *filter)
3760 {
3761         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3762         uint32_t ttqf = E1000_TTQF_DISABLE_MASK;
3763         uint32_t imir, imir_ext = E1000_IMIREXT_SIZE_BP;
3764         int i;
3765
3766         i = filter->index;
3767         imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
3768         if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
3769                 imir |= E1000_IMIR_PORT_BP;
3770         else
3771                 imir &= ~E1000_IMIR_PORT_BP;
3772
3773         imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
3774
3775         ttqf |= E1000_TTQF_QUEUE_ENABLE;
3776         ttqf |= (uint32_t)(filter->queue << E1000_TTQF_QUEUE_SHIFT);
3777         ttqf |= (uint32_t)(filter->filter_info.proto &
3778                                                 E1000_TTQF_PROTOCOL_MASK);
3779         if (filter->filter_info.proto_mask == 0)
3780                 ttqf &= ~E1000_TTQF_MASK_ENABLE;
3781
3782         /* tcp flags bits setting. */
3783         if (filter->filter_info.tcp_flags & RTE_NTUPLE_TCP_FLAGS_MASK) {
3784                 if (filter->filter_info.tcp_flags & RTE_TCP_URG_FLAG)
3785                         imir_ext |= E1000_IMIREXT_CTRL_URG;
3786                 if (filter->filter_info.tcp_flags & RTE_TCP_ACK_FLAG)
3787                         imir_ext |= E1000_IMIREXT_CTRL_ACK;
3788                 if (filter->filter_info.tcp_flags & RTE_TCP_PSH_FLAG)
3789                         imir_ext |= E1000_IMIREXT_CTRL_PSH;
3790                 if (filter->filter_info.tcp_flags & RTE_TCP_RST_FLAG)
3791                         imir_ext |= E1000_IMIREXT_CTRL_RST;
3792                 if (filter->filter_info.tcp_flags & RTE_TCP_SYN_FLAG)
3793                         imir_ext |= E1000_IMIREXT_CTRL_SYN;
3794                 if (filter->filter_info.tcp_flags & RTE_TCP_FIN_FLAG)
3795                         imir_ext |= E1000_IMIREXT_CTRL_FIN;
3796         } else {
3797                 imir_ext |= E1000_IMIREXT_CTRL_BP;
3798         }
3799         E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
3800         E1000_WRITE_REG(hw, E1000_TTQF(i), ttqf);
3801         E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
3802 }
3803
3804 /*
3805  * igb_add_2tuple_filter - add a 2tuple filter
3806  *
3807  * @param
3808  * dev: Pointer to struct rte_eth_dev.
3809  * ntuple_filter: ponter to the filter that will be added.
3810  *
3811  * @return
3812  *    - On success, zero.
3813  *    - On failure, a negative value.
3814  */
3815 static int
3816 igb_add_2tuple_filter(struct rte_eth_dev *dev,
3817                         struct rte_eth_ntuple_filter *ntuple_filter)
3818 {
3819         struct e1000_filter_info *filter_info =
3820                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3821         struct e1000_2tuple_filter *filter;
3822         int i, ret;
3823
3824         filter = rte_zmalloc("e1000_2tuple_filter",
3825                         sizeof(struct e1000_2tuple_filter), 0);
3826         if (filter == NULL)
3827                 return -ENOMEM;
3828
3829         ret = ntuple_filter_to_2tuple(ntuple_filter,
3830                                       &filter->filter_info);
3831         if (ret < 0) {
3832                 rte_free(filter);
3833                 return ret;
3834         }
3835         if (igb_2tuple_filter_lookup(&filter_info->twotuple_list,
3836                                          &filter->filter_info) != NULL) {
3837                 PMD_DRV_LOG(ERR, "filter exists.");
3838                 rte_free(filter);
3839                 return -EEXIST;
3840         }
3841         filter->queue = ntuple_filter->queue;
3842
3843         /*
3844          * look for an unused 2tuple filter index,
3845          * and insert the filter to list.
3846          */
3847         for (i = 0; i < E1000_MAX_TTQF_FILTERS; i++) {
3848                 if (!(filter_info->twotuple_mask & (1 << i))) {
3849                         filter_info->twotuple_mask |= 1 << i;
3850                         filter->index = i;
3851                         TAILQ_INSERT_TAIL(&filter_info->twotuple_list,
3852                                           filter,
3853                                           entries);
3854                         break;
3855                 }
3856         }
3857         if (i >= E1000_MAX_TTQF_FILTERS) {
3858                 PMD_DRV_LOG(ERR, "2tuple filters are full.");
3859                 rte_free(filter);
3860                 return -ENOSYS;
3861         }
3862
3863         igb_inject_2uple_filter(dev, filter);
3864         return 0;
3865 }
3866
3867 int
3868 igb_delete_2tuple_filter(struct rte_eth_dev *dev,
3869                         struct e1000_2tuple_filter *filter)
3870 {
3871         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3872         struct e1000_filter_info *filter_info =
3873                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3874
3875         filter_info->twotuple_mask &= ~(1 << filter->index);
3876         TAILQ_REMOVE(&filter_info->twotuple_list, filter, entries);
3877         rte_free(filter);
3878
3879         E1000_WRITE_REG(hw, E1000_TTQF(filter->index), E1000_TTQF_DISABLE_MASK);
3880         E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
3881         E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
3882         return 0;
3883 }
3884
3885 /*
3886  * igb_remove_2tuple_filter - remove a 2tuple filter
3887  *
3888  * @param
3889  * dev: Pointer to struct rte_eth_dev.
3890  * ntuple_filter: ponter to the filter that will be removed.
3891  *
3892  * @return
3893  *    - On success, zero.
3894  *    - On failure, a negative value.
3895  */
3896 static int
3897 igb_remove_2tuple_filter(struct rte_eth_dev *dev,
3898                         struct rte_eth_ntuple_filter *ntuple_filter)
3899 {
3900         struct e1000_filter_info *filter_info =
3901                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3902         struct e1000_2tuple_filter_info filter_2tuple;
3903         struct e1000_2tuple_filter *filter;
3904         int ret;
3905
3906         memset(&filter_2tuple, 0, sizeof(struct e1000_2tuple_filter_info));
3907         ret = ntuple_filter_to_2tuple(ntuple_filter,
3908                                       &filter_2tuple);
3909         if (ret < 0)
3910                 return ret;
3911
3912         filter = igb_2tuple_filter_lookup(&filter_info->twotuple_list,
3913                                          &filter_2tuple);
3914         if (filter == NULL) {
3915                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
3916                 return -ENOENT;
3917         }
3918
3919         igb_delete_2tuple_filter(dev, filter);
3920
3921         return 0;
3922 }
3923
3924 /* inject a igb flex filter to HW */
3925 static inline void
3926 igb_inject_flex_filter(struct rte_eth_dev *dev,
3927                            struct e1000_flex_filter *filter)
3928 {
3929         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3930         uint32_t wufc, queueing;
3931         uint32_t reg_off;
3932         uint8_t i, j = 0;
3933
3934         wufc = E1000_READ_REG(hw, E1000_WUFC);
3935         if (filter->index < E1000_MAX_FHFT)
3936                 reg_off = E1000_FHFT(filter->index);
3937         else
3938                 reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT);
3939
3940         E1000_WRITE_REG(hw, E1000_WUFC, wufc | E1000_WUFC_FLEX_HQ |
3941                         (E1000_WUFC_FLX0 << filter->index));
3942         queueing = filter->filter_info.len |
3943                 (filter->queue << E1000_FHFT_QUEUEING_QUEUE_SHIFT) |
3944                 (filter->filter_info.priority <<
3945                         E1000_FHFT_QUEUEING_PRIO_SHIFT);
3946         E1000_WRITE_REG(hw, reg_off + E1000_FHFT_QUEUEING_OFFSET,
3947                         queueing);
3948
3949         for (i = 0; i < E1000_FLEX_FILTERS_MASK_SIZE; i++) {
3950                 E1000_WRITE_REG(hw, reg_off,
3951                                 filter->filter_info.dwords[j]);
3952                 reg_off += sizeof(uint32_t);
3953                 E1000_WRITE_REG(hw, reg_off,
3954                                 filter->filter_info.dwords[++j]);
3955                 reg_off += sizeof(uint32_t);
3956                 E1000_WRITE_REG(hw, reg_off,
3957                         (uint32_t)filter->filter_info.mask[i]);
3958                 reg_off += sizeof(uint32_t) * 2;
3959                 ++j;
3960         }
3961 }
3962
3963 static inline struct e1000_flex_filter *
3964 eth_igb_flex_filter_lookup(struct e1000_flex_filter_list *filter_list,
3965                         struct e1000_flex_filter_info *key)
3966 {
3967         struct e1000_flex_filter *it;
3968
3969         TAILQ_FOREACH(it, filter_list, entries) {
3970                 if (memcmp(key, &it->filter_info,
3971                         sizeof(struct e1000_flex_filter_info)) == 0)
3972                         return it;
3973         }
3974
3975         return NULL;
3976 }
3977
3978 /* remove a flex byte filter
3979  * @param
3980  * dev: Pointer to struct rte_eth_dev.
3981  * filter: the pointer of the filter will be removed.
3982  */
3983 void
3984 igb_remove_flex_filter(struct rte_eth_dev *dev,
3985                         struct e1000_flex_filter *filter)
3986 {
3987         struct e1000_filter_info *filter_info =
3988                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3989         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3990         uint32_t wufc, i;
3991         uint32_t reg_off;
3992
3993         wufc = E1000_READ_REG(hw, E1000_WUFC);
3994         if (filter->index < E1000_MAX_FHFT)
3995                 reg_off = E1000_FHFT(filter->index);
3996         else
3997                 reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT);
3998
3999         for (i = 0; i < E1000_FHFT_SIZE_IN_DWD; i++)
4000                 E1000_WRITE_REG(hw, reg_off + i * sizeof(uint32_t), 0);
4001
4002         E1000_WRITE_REG(hw, E1000_WUFC, wufc &
4003                 (~(E1000_WUFC_FLX0 << filter->index)));
4004
4005         filter_info->flex_mask &= ~(1 << filter->index);
4006         TAILQ_REMOVE(&filter_info->flex_list, filter, entries);
4007         rte_free(filter);
4008 }
4009
4010 int
4011 eth_igb_add_del_flex_filter(struct rte_eth_dev *dev,
4012                         struct igb_flex_filter *filter,
4013                         bool add)
4014 {
4015         struct e1000_filter_info *filter_info =
4016                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4017         struct e1000_flex_filter *flex_filter, *it;
4018         uint32_t mask;
4019         uint8_t shift, i;
4020
4021         flex_filter = rte_zmalloc("e1000_flex_filter",
4022                         sizeof(struct e1000_flex_filter), 0);
4023         if (flex_filter == NULL)
4024                 return -ENOMEM;
4025
4026         flex_filter->filter_info.len = filter->len;
4027         flex_filter->filter_info.priority = filter->priority;
4028         memcpy(flex_filter->filter_info.dwords, filter->bytes, filter->len);
4029         for (i = 0; i < RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT; i++) {
4030                 mask = 0;
4031                 /* reverse bits in flex filter's mask*/
4032                 for (shift = 0; shift < CHAR_BIT; shift++) {
4033                         if (filter->mask[i] & (0x01 << shift))
4034                                 mask |= (0x80 >> shift);
4035                 }
4036                 flex_filter->filter_info.mask[i] = mask;
4037         }
4038
4039         it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
4040                                 &flex_filter->filter_info);
4041         if (it == NULL && !add) {
4042                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4043                 rte_free(flex_filter);
4044                 return -ENOENT;
4045         }
4046         if (it != NULL && add) {
4047                 PMD_DRV_LOG(ERR, "filter exists.");
4048                 rte_free(flex_filter);
4049                 return -EEXIST;
4050         }
4051
4052         if (add) {
4053                 flex_filter->queue = filter->queue;
4054                 /*
4055                  * look for an unused flex filter index
4056                  * and insert the filter into the list.
4057                  */
4058                 for (i = 0; i < E1000_MAX_FLEX_FILTERS; i++) {
4059                         if (!(filter_info->flex_mask & (1 << i))) {
4060                                 filter_info->flex_mask |= 1 << i;
4061                                 flex_filter->index = i;
4062                                 TAILQ_INSERT_TAIL(&filter_info->flex_list,
4063                                         flex_filter,
4064                                         entries);
4065                                 break;
4066                         }
4067                 }
4068                 if (i >= E1000_MAX_FLEX_FILTERS) {
4069                         PMD_DRV_LOG(ERR, "flex filters are full.");
4070                         rte_free(flex_filter);
4071                         return -ENOSYS;
4072                 }
4073
4074                 igb_inject_flex_filter(dev, flex_filter);
4075
4076         } else {
4077                 igb_remove_flex_filter(dev, it);
4078                 rte_free(flex_filter);
4079         }
4080
4081         return 0;
4082 }
4083
4084 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_5tuple_filter_info*/
4085 static inline int
4086 ntuple_filter_to_5tuple_82576(struct rte_eth_ntuple_filter *filter,
4087                         struct e1000_5tuple_filter_info *filter_info)
4088 {
4089         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM_82576)
4090                 return -EINVAL;
4091         if (filter->priority > E1000_2TUPLE_MAX_PRI)
4092                 return -EINVAL;  /* filter index is out of range. */
4093         if (filter->tcp_flags > RTE_NTUPLE_TCP_FLAGS_MASK)
4094                 return -EINVAL;  /* flags is invalid. */
4095
4096         switch (filter->dst_ip_mask) {
4097         case UINT32_MAX:
4098                 filter_info->dst_ip_mask = 0;
4099                 filter_info->dst_ip = filter->dst_ip;
4100                 break;
4101         case 0:
4102                 filter_info->dst_ip_mask = 1;
4103                 break;
4104         default:
4105                 PMD_DRV_LOG(ERR, "invalid dst_ip mask.");
4106                 return -EINVAL;
4107         }
4108
4109         switch (filter->src_ip_mask) {
4110         case UINT32_MAX:
4111                 filter_info->src_ip_mask = 0;
4112                 filter_info->src_ip = filter->src_ip;
4113                 break;
4114         case 0:
4115                 filter_info->src_ip_mask = 1;
4116                 break;
4117         default:
4118                 PMD_DRV_LOG(ERR, "invalid src_ip mask.");
4119                 return -EINVAL;
4120         }
4121
4122         switch (filter->dst_port_mask) {
4123         case UINT16_MAX:
4124                 filter_info->dst_port_mask = 0;
4125                 filter_info->dst_port = filter->dst_port;
4126                 break;
4127         case 0:
4128                 filter_info->dst_port_mask = 1;
4129                 break;
4130         default:
4131                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
4132                 return -EINVAL;
4133         }
4134
4135         switch (filter->src_port_mask) {
4136         case UINT16_MAX:
4137                 filter_info->src_port_mask = 0;
4138                 filter_info->src_port = filter->src_port;
4139                 break;
4140         case 0:
4141                 filter_info->src_port_mask = 1;
4142                 break;
4143         default:
4144                 PMD_DRV_LOG(ERR, "invalid src_port mask.");
4145                 return -EINVAL;
4146         }
4147
4148         switch (filter->proto_mask) {
4149         case UINT8_MAX:
4150                 filter_info->proto_mask = 0;
4151                 filter_info->proto = filter->proto;
4152                 break;
4153         case 0:
4154                 filter_info->proto_mask = 1;
4155                 break;
4156         default:
4157                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
4158                 return -EINVAL;
4159         }
4160
4161         filter_info->priority = (uint8_t)filter->priority;
4162         if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
4163                 filter_info->tcp_flags = filter->tcp_flags;
4164         else
4165                 filter_info->tcp_flags = 0;
4166
4167         return 0;
4168 }
4169
4170 static inline struct e1000_5tuple_filter *
4171 igb_5tuple_filter_lookup_82576(struct e1000_5tuple_filter_list *filter_list,
4172                         struct e1000_5tuple_filter_info *key)
4173 {
4174         struct e1000_5tuple_filter *it;
4175
4176         TAILQ_FOREACH(it, filter_list, entries) {
4177                 if (memcmp(key, &it->filter_info,
4178                         sizeof(struct e1000_5tuple_filter_info)) == 0) {
4179                         return it;
4180                 }
4181         }
4182         return NULL;
4183 }
4184
4185 /* inject a igb 5-tuple filter to HW */
4186 static inline void
4187 igb_inject_5tuple_filter_82576(struct rte_eth_dev *dev,
4188                            struct e1000_5tuple_filter *filter)
4189 {
4190         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4191         uint32_t ftqf = E1000_FTQF_VF_BP | E1000_FTQF_MASK;
4192         uint32_t spqf, imir, imir_ext = E1000_IMIREXT_SIZE_BP;
4193         uint8_t i;
4194
4195         i = filter->index;
4196         ftqf |= filter->filter_info.proto & E1000_FTQF_PROTOCOL_MASK;
4197         if (filter->filter_info.src_ip_mask == 0) /* 0b means compare. */
4198                 ftqf &= ~E1000_FTQF_MASK_SOURCE_ADDR_BP;
4199         if (filter->filter_info.dst_ip_mask == 0)
4200                 ftqf &= ~E1000_FTQF_MASK_DEST_ADDR_BP;
4201         if (filter->filter_info.src_port_mask == 0)
4202                 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
4203         if (filter->filter_info.proto_mask == 0)
4204                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP;
4205         ftqf |= (filter->queue << E1000_FTQF_QUEUE_SHIFT) &
4206                 E1000_FTQF_QUEUE_MASK;
4207         ftqf |= E1000_FTQF_QUEUE_ENABLE;
4208         E1000_WRITE_REG(hw, E1000_FTQF(i), ftqf);
4209         E1000_WRITE_REG(hw, E1000_DAQF(i), filter->filter_info.dst_ip);
4210         E1000_WRITE_REG(hw, E1000_SAQF(i), filter->filter_info.src_ip);
4211
4212         spqf = filter->filter_info.src_port & E1000_SPQF_SRCPORT;
4213         E1000_WRITE_REG(hw, E1000_SPQF(i), spqf);
4214
4215         imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
4216         if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
4217                 imir |= E1000_IMIR_PORT_BP;
4218         else
4219                 imir &= ~E1000_IMIR_PORT_BP;
4220         imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
4221
4222         /* tcp flags bits setting. */
4223         if (filter->filter_info.tcp_flags & RTE_NTUPLE_TCP_FLAGS_MASK) {
4224                 if (filter->filter_info.tcp_flags & RTE_TCP_URG_FLAG)
4225                         imir_ext |= E1000_IMIREXT_CTRL_URG;
4226                 if (filter->filter_info.tcp_flags & RTE_TCP_ACK_FLAG)
4227                         imir_ext |= E1000_IMIREXT_CTRL_ACK;
4228                 if (filter->filter_info.tcp_flags & RTE_TCP_PSH_FLAG)
4229                         imir_ext |= E1000_IMIREXT_CTRL_PSH;
4230                 if (filter->filter_info.tcp_flags & RTE_TCP_RST_FLAG)
4231                         imir_ext |= E1000_IMIREXT_CTRL_RST;
4232                 if (filter->filter_info.tcp_flags & RTE_TCP_SYN_FLAG)
4233                         imir_ext |= E1000_IMIREXT_CTRL_SYN;
4234                 if (filter->filter_info.tcp_flags & RTE_TCP_FIN_FLAG)
4235                         imir_ext |= E1000_IMIREXT_CTRL_FIN;
4236         } else {
4237                 imir_ext |= E1000_IMIREXT_CTRL_BP;
4238         }
4239         E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
4240         E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
4241 }
4242
4243 /*
4244  * igb_add_5tuple_filter_82576 - add a 5tuple filter
4245  *
4246  * @param
4247  * dev: Pointer to struct rte_eth_dev.
4248  * ntuple_filter: ponter to the filter that will be added.
4249  *
4250  * @return
4251  *    - On success, zero.
4252  *    - On failure, a negative value.
4253  */
4254 static int
4255 igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
4256                         struct rte_eth_ntuple_filter *ntuple_filter)
4257 {
4258         struct e1000_filter_info *filter_info =
4259                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4260         struct e1000_5tuple_filter *filter;
4261         uint8_t i;
4262         int ret;
4263
4264         filter = rte_zmalloc("e1000_5tuple_filter",
4265                         sizeof(struct e1000_5tuple_filter), 0);
4266         if (filter == NULL)
4267                 return -ENOMEM;
4268
4269         ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4270                                             &filter->filter_info);
4271         if (ret < 0) {
4272                 rte_free(filter);
4273                 return ret;
4274         }
4275
4276         if (igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
4277                                          &filter->filter_info) != NULL) {
4278                 PMD_DRV_LOG(ERR, "filter exists.");
4279                 rte_free(filter);
4280                 return -EEXIST;
4281         }
4282         filter->queue = ntuple_filter->queue;
4283
4284         /*
4285          * look for an unused 5tuple filter index,
4286          * and insert the filter to list.
4287          */
4288         for (i = 0; i < E1000_MAX_FTQF_FILTERS; i++) {
4289                 if (!(filter_info->fivetuple_mask & (1 << i))) {
4290                         filter_info->fivetuple_mask |= 1 << i;
4291                         filter->index = i;
4292                         TAILQ_INSERT_TAIL(&filter_info->fivetuple_list,
4293                                           filter,
4294                                           entries);
4295                         break;
4296                 }
4297         }
4298         if (i >= E1000_MAX_FTQF_FILTERS) {
4299                 PMD_DRV_LOG(ERR, "5tuple filters are full.");
4300                 rte_free(filter);
4301                 return -ENOSYS;
4302         }
4303
4304         igb_inject_5tuple_filter_82576(dev, filter);
4305         return 0;
4306 }
4307
4308 int
4309 igb_delete_5tuple_filter_82576(struct rte_eth_dev *dev,
4310                                 struct e1000_5tuple_filter *filter)
4311 {
4312         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4313         struct e1000_filter_info *filter_info =
4314                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4315
4316         filter_info->fivetuple_mask &= ~(1 << filter->index);
4317         TAILQ_REMOVE(&filter_info->fivetuple_list, filter, entries);
4318         rte_free(filter);
4319
4320         E1000_WRITE_REG(hw, E1000_FTQF(filter->index),
4321                         E1000_FTQF_VF_BP | E1000_FTQF_MASK);
4322         E1000_WRITE_REG(hw, E1000_DAQF(filter->index), 0);
4323         E1000_WRITE_REG(hw, E1000_SAQF(filter->index), 0);
4324         E1000_WRITE_REG(hw, E1000_SPQF(filter->index), 0);
4325         E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
4326         E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
4327         return 0;
4328 }
4329
4330 /*
4331  * igb_remove_5tuple_filter_82576 - remove a 5tuple filter
4332  *
4333  * @param
4334  * dev: Pointer to struct rte_eth_dev.
4335  * ntuple_filter: ponter to the filter that will be removed.
4336  *
4337  * @return
4338  *    - On success, zero.
4339  *    - On failure, a negative value.
4340  */
4341 static int
4342 igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
4343                                 struct rte_eth_ntuple_filter *ntuple_filter)
4344 {
4345         struct e1000_filter_info *filter_info =
4346                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4347         struct e1000_5tuple_filter_info filter_5tuple;
4348         struct e1000_5tuple_filter *filter;
4349         int ret;
4350
4351         memset(&filter_5tuple, 0, sizeof(struct e1000_5tuple_filter_info));
4352         ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4353                                             &filter_5tuple);
4354         if (ret < 0)
4355                 return ret;
4356
4357         filter = igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
4358                                          &filter_5tuple);
4359         if (filter == NULL) {
4360                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4361                 return -ENOENT;
4362         }
4363
4364         igb_delete_5tuple_filter_82576(dev, filter);
4365
4366         return 0;
4367 }
4368
4369 static int
4370 eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
4371 {
4372         uint32_t rctl;
4373         struct e1000_hw *hw;
4374         struct rte_eth_dev_info dev_info;
4375         uint32_t frame_size = mtu + E1000_ETH_OVERHEAD;
4376         int ret;
4377
4378         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4379
4380 #ifdef RTE_LIBRTE_82571_SUPPORT
4381         /* XXX: not bigger than max_rx_pktlen */
4382         if (hw->mac.type == e1000_82571)
4383                 return -ENOTSUP;
4384 #endif
4385         ret = eth_igb_infos_get(dev, &dev_info);
4386         if (ret != 0)
4387                 return ret;
4388
4389         /* check that mtu is within the allowed range */
4390         if (mtu < RTE_ETHER_MIN_MTU ||
4391                         frame_size > dev_info.max_rx_pktlen)
4392                 return -EINVAL;
4393
4394         /*
4395          * If device is started, refuse mtu that requires the support of
4396          * scattered packets when this feature has not been enabled before.
4397          */
4398         if (dev->data->dev_started && !dev->data->scattered_rx &&
4399             frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM) {
4400                 PMD_INIT_LOG(ERR, "Stop port first.");
4401                 return -EINVAL;
4402         }
4403
4404         rctl = E1000_READ_REG(hw, E1000_RCTL);
4405
4406         /* switch to jumbo mode if needed */
4407         if (frame_size > E1000_ETH_MAX_LEN) {
4408                 dev->data->dev_conf.rxmode.offloads |=
4409                         DEV_RX_OFFLOAD_JUMBO_FRAME;
4410                 rctl |= E1000_RCTL_LPE;
4411         } else {
4412                 dev->data->dev_conf.rxmode.offloads &=
4413                         ~DEV_RX_OFFLOAD_JUMBO_FRAME;
4414                 rctl &= ~E1000_RCTL_LPE;
4415         }
4416         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
4417
4418         /* update max frame size */
4419         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
4420
4421         E1000_WRITE_REG(hw, E1000_RLPML,
4422                         dev->data->dev_conf.rxmode.max_rx_pkt_len);
4423
4424         return 0;
4425 }
4426
4427 /*
4428  * igb_add_del_ntuple_filter - add or delete a ntuple filter
4429  *
4430  * @param
4431  * dev: Pointer to struct rte_eth_dev.
4432  * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
4433  * add: if true, add filter, if false, remove filter
4434  *
4435  * @return
4436  *    - On success, zero.
4437  *    - On failure, a negative value.
4438  */
4439 int
4440 igb_add_del_ntuple_filter(struct rte_eth_dev *dev,
4441                         struct rte_eth_ntuple_filter *ntuple_filter,
4442                         bool add)
4443 {
4444         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4445         int ret;
4446
4447         switch (ntuple_filter->flags) {
4448         case RTE_5TUPLE_FLAGS:
4449         case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4450                 if (hw->mac.type != e1000_82576)
4451                         return -ENOTSUP;
4452                 if (add)
4453                         ret = igb_add_5tuple_filter_82576(dev,
4454                                                           ntuple_filter);
4455                 else
4456                         ret = igb_remove_5tuple_filter_82576(dev,
4457                                                              ntuple_filter);
4458                 break;
4459         case RTE_2TUPLE_FLAGS:
4460         case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4461                 if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350 &&
4462                         hw->mac.type != e1000_i210 &&
4463                         hw->mac.type != e1000_i211)
4464                         return -ENOTSUP;
4465                 if (add)
4466                         ret = igb_add_2tuple_filter(dev, ntuple_filter);
4467                 else
4468                         ret = igb_remove_2tuple_filter(dev, ntuple_filter);
4469                 break;
4470         default:
4471                 ret = -EINVAL;
4472                 break;
4473         }
4474
4475         return ret;
4476 }
4477
4478 static inline int
4479 igb_ethertype_filter_lookup(struct e1000_filter_info *filter_info,
4480                         uint16_t ethertype)
4481 {
4482         int i;
4483
4484         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
4485                 if (filter_info->ethertype_filters[i].ethertype == ethertype &&
4486                     (filter_info->ethertype_mask & (1 << i)))
4487                         return i;
4488         }
4489         return -1;
4490 }
4491
4492 static inline int
4493 igb_ethertype_filter_insert(struct e1000_filter_info *filter_info,
4494                         uint16_t ethertype, uint32_t etqf)
4495 {
4496         int i;
4497
4498         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
4499                 if (!(filter_info->ethertype_mask & (1 << i))) {
4500                         filter_info->ethertype_mask |= 1 << i;
4501                         filter_info->ethertype_filters[i].ethertype = ethertype;
4502                         filter_info->ethertype_filters[i].etqf = etqf;
4503                         return i;
4504                 }
4505         }
4506         return -1;
4507 }
4508
4509 int
4510 igb_ethertype_filter_remove(struct e1000_filter_info *filter_info,
4511                         uint8_t idx)
4512 {
4513         if (idx >= E1000_MAX_ETQF_FILTERS)
4514                 return -1;
4515         filter_info->ethertype_mask &= ~(1 << idx);
4516         filter_info->ethertype_filters[idx].ethertype = 0;
4517         filter_info->ethertype_filters[idx].etqf = 0;
4518         return idx;
4519 }
4520
4521
4522 int
4523 igb_add_del_ethertype_filter(struct rte_eth_dev *dev,
4524                         struct rte_eth_ethertype_filter *filter,
4525                         bool add)
4526 {
4527         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4528         struct e1000_filter_info *filter_info =
4529                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4530         uint32_t etqf = 0;
4531         int ret;
4532
4533         if (filter->ether_type == RTE_ETHER_TYPE_IPV4 ||
4534                 filter->ether_type == RTE_ETHER_TYPE_IPV6) {
4535                 PMD_DRV_LOG(ERR, "unsupported ether_type(0x%04x) in"
4536                         " ethertype filter.", filter->ether_type);
4537                 return -EINVAL;
4538         }
4539
4540         if (filter->flags & RTE_ETHTYPE_FLAGS_MAC) {
4541                 PMD_DRV_LOG(ERR, "mac compare is unsupported.");
4542                 return -EINVAL;
4543         }
4544         if (filter->flags & RTE_ETHTYPE_FLAGS_DROP) {
4545                 PMD_DRV_LOG(ERR, "drop option is unsupported.");
4546                 return -EINVAL;
4547         }
4548
4549         ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
4550         if (ret >= 0 && add) {
4551                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter exists.",
4552                             filter->ether_type);
4553                 return -EEXIST;
4554         }
4555         if (ret < 0 && !add) {
4556                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
4557                             filter->ether_type);
4558                 return -ENOENT;
4559         }
4560
4561         if (add) {
4562                 etqf |= E1000_ETQF_FILTER_ENABLE | E1000_ETQF_QUEUE_ENABLE;
4563                 etqf |= (uint32_t)(filter->ether_type & E1000_ETQF_ETHERTYPE);
4564                 etqf |= filter->queue << E1000_ETQF_QUEUE_SHIFT;
4565                 ret = igb_ethertype_filter_insert(filter_info,
4566                                 filter->ether_type, etqf);
4567                 if (ret < 0) {
4568                         PMD_DRV_LOG(ERR, "ethertype filters are full.");
4569                         return -ENOSYS;
4570                 }
4571         } else {
4572                 ret = igb_ethertype_filter_remove(filter_info, (uint8_t)ret);
4573                 if (ret < 0)
4574                         return -ENOSYS;
4575         }
4576         E1000_WRITE_REG(hw, E1000_ETQF(ret), etqf);
4577         E1000_WRITE_FLUSH(hw);
4578
4579         return 0;
4580 }
4581
4582 static int
4583 eth_igb_flow_ops_get(struct rte_eth_dev *dev __rte_unused,
4584                      const struct rte_flow_ops **ops)
4585 {
4586         *ops = &igb_flow_ops;
4587         return 0;
4588 }
4589
4590 static int
4591 eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
4592                          struct rte_ether_addr *mc_addr_set,
4593                          uint32_t nb_mc_addr)
4594 {
4595         struct e1000_hw *hw;
4596
4597         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4598         e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
4599         return 0;
4600 }
4601
4602 static uint64_t
4603 igb_read_systime_cyclecounter(struct rte_eth_dev *dev)
4604 {
4605         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4606         uint64_t systime_cycles;
4607
4608         switch (hw->mac.type) {
4609         case e1000_i210:
4610         case e1000_i211:
4611                 /*
4612                  * Need to read System Time Residue Register to be able
4613                  * to read the other two registers.
4614                  */
4615                 E1000_READ_REG(hw, E1000_SYSTIMR);
4616                 /* SYSTIMEL stores ns and SYSTIMEH stores seconds. */
4617                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4618                 systime_cycles += (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
4619                                 * NSEC_PER_SEC;
4620                 break;
4621         case e1000_82580:
4622         case e1000_i350:
4623         case e1000_i354:
4624                 /*
4625                  * Need to read System Time Residue Register to be able
4626                  * to read the other two registers.
4627                  */
4628                 E1000_READ_REG(hw, E1000_SYSTIMR);
4629                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4630                 /* Only the 8 LSB are valid. */
4631                 systime_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_SYSTIMH)
4632                                 & 0xff) << 32;
4633                 break;
4634         default:
4635                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4636                 systime_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
4637                                 << 32;
4638                 break;
4639         }
4640
4641         return systime_cycles;
4642 }
4643
4644 static uint64_t
4645 igb_read_rx_tstamp_cyclecounter(struct rte_eth_dev *dev)
4646 {
4647         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4648         uint64_t rx_tstamp_cycles;
4649
4650         switch (hw->mac.type) {
4651         case e1000_i210:
4652         case e1000_i211:
4653                 /* RXSTMPL stores ns and RXSTMPH stores seconds. */
4654                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4655                 rx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
4656                                 * NSEC_PER_SEC;
4657                 break;
4658         case e1000_82580:
4659         case e1000_i350:
4660         case e1000_i354:
4661                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4662                 /* Only the 8 LSB are valid. */
4663                 rx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_RXSTMPH)
4664                                 & 0xff) << 32;
4665                 break;
4666         default:
4667                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4668                 rx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
4669                                 << 32;
4670                 break;
4671         }
4672
4673         return rx_tstamp_cycles;
4674 }
4675
4676 static uint64_t
4677 igb_read_tx_tstamp_cyclecounter(struct rte_eth_dev *dev)
4678 {
4679         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4680         uint64_t tx_tstamp_cycles;
4681
4682         switch (hw->mac.type) {
4683         case e1000_i210:
4684         case e1000_i211:
4685                 /* RXSTMPL stores ns and RXSTMPH stores seconds. */
4686                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
4687                 tx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
4688                                 * NSEC_PER_SEC;
4689                 break;
4690         case e1000_82580:
4691         case e1000_i350:
4692         case e1000_i354:
4693                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
4694                 /* Only the 8 LSB are valid. */
4695                 tx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_TXSTMPH)
4696                                 & 0xff) << 32;
4697                 break;
4698         default:
4699                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
4700                 tx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
4701                                 << 32;
4702                 break;
4703         }
4704
4705         return tx_tstamp_cycles;
4706 }
4707
4708 static void
4709 igb_start_timecounters(struct rte_eth_dev *dev)
4710 {
4711         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4712         struct e1000_adapter *adapter = dev->data->dev_private;
4713         uint32_t incval = 1;
4714         uint32_t shift = 0;
4715         uint64_t mask = E1000_CYCLECOUNTER_MASK;
4716
4717         switch (hw->mac.type) {
4718         case e1000_82580:
4719         case e1000_i350:
4720         case e1000_i354:
4721                 /* 32 LSB bits + 8 MSB bits = 40 bits */
4722                 mask = (1ULL << 40) - 1;
4723                 /* fall-through */
4724         case e1000_i210:
4725         case e1000_i211:
4726                 /*
4727                  * Start incrementing the register
4728                  * used to timestamp PTP packets.
4729                  */
4730                 E1000_WRITE_REG(hw, E1000_TIMINCA, incval);
4731                 break;
4732         case e1000_82576:
4733                 incval = E1000_INCVALUE_82576;
4734                 shift = IGB_82576_TSYNC_SHIFT;
4735                 E1000_WRITE_REG(hw, E1000_TIMINCA,
4736                                 E1000_INCPERIOD_82576 | incval);
4737                 break;
4738         default:
4739                 /* Not supported */
4740                 return;
4741         }
4742
4743         memset(&adapter->systime_tc, 0, sizeof(struct rte_timecounter));
4744         memset(&adapter->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
4745         memset(&adapter->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
4746
4747         adapter->systime_tc.cc_mask = mask;
4748         adapter->systime_tc.cc_shift = shift;
4749         adapter->systime_tc.nsec_mask = (1ULL << shift) - 1;
4750
4751         adapter->rx_tstamp_tc.cc_mask = mask;
4752         adapter->rx_tstamp_tc.cc_shift = shift;
4753         adapter->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
4754
4755         adapter->tx_tstamp_tc.cc_mask = mask;
4756         adapter->tx_tstamp_tc.cc_shift = shift;
4757         adapter->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
4758 }
4759
4760 static int
4761 igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
4762 {
4763         struct e1000_adapter *adapter = dev->data->dev_private;
4764
4765         adapter->systime_tc.nsec += delta;
4766         adapter->rx_tstamp_tc.nsec += delta;
4767         adapter->tx_tstamp_tc.nsec += delta;
4768
4769         return 0;
4770 }
4771
4772 static int
4773 igb_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
4774 {
4775         uint64_t ns;
4776         struct e1000_adapter *adapter = dev->data->dev_private;
4777
4778         ns = rte_timespec_to_ns(ts);
4779
4780         /* Set the timecounters to a new value. */
4781         adapter->systime_tc.nsec = ns;
4782         adapter->rx_tstamp_tc.nsec = ns;
4783         adapter->tx_tstamp_tc.nsec = ns;
4784
4785         return 0;
4786 }
4787
4788 static int
4789 igb_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
4790 {
4791         uint64_t ns, systime_cycles;
4792         struct e1000_adapter *adapter = dev->data->dev_private;
4793
4794         systime_cycles = igb_read_systime_cyclecounter(dev);
4795         ns = rte_timecounter_update(&adapter->systime_tc, systime_cycles);
4796         *ts = rte_ns_to_timespec(ns);
4797
4798         return 0;
4799 }
4800
4801 static int
4802 igb_timesync_enable(struct rte_eth_dev *dev)
4803 {
4804         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4805         uint32_t tsync_ctl;
4806         uint32_t tsauxc;
4807
4808         /* Stop the timesync system time. */
4809         E1000_WRITE_REG(hw, E1000_TIMINCA, 0x0);
4810         /* Reset the timesync system time value. */
4811         switch (hw->mac.type) {
4812         case e1000_82580:
4813         case e1000_i350:
4814         case e1000_i354:
4815         case e1000_i210:
4816         case e1000_i211:
4817                 E1000_WRITE_REG(hw, E1000_SYSTIMR, 0x0);
4818                 /* fall-through */
4819         case e1000_82576:
4820                 E1000_WRITE_REG(hw, E1000_SYSTIML, 0x0);
4821                 E1000_WRITE_REG(hw, E1000_SYSTIMH, 0x0);
4822                 break;
4823         default:
4824                 /* Not supported. */
4825                 return -ENOTSUP;
4826         }
4827
4828         /* Enable system time for it isn't on by default. */
4829         tsauxc = E1000_READ_REG(hw, E1000_TSAUXC);
4830         tsauxc &= ~E1000_TSAUXC_DISABLE_SYSTIME;
4831         E1000_WRITE_REG(hw, E1000_TSAUXC, tsauxc);
4832
4833         igb_start_timecounters(dev);
4834
4835         /* Enable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
4836         E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588),
4837                         (RTE_ETHER_TYPE_1588 |
4838                          E1000_ETQF_FILTER_ENABLE |
4839                          E1000_ETQF_1588));
4840
4841         /* Enable timestamping of received PTP packets. */
4842         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
4843         tsync_ctl |= E1000_TSYNCRXCTL_ENABLED;
4844         E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
4845
4846         /* Enable Timestamping of transmitted PTP packets. */
4847         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
4848         tsync_ctl |= E1000_TSYNCTXCTL_ENABLED;
4849         E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
4850
4851         return 0;
4852 }
4853
4854 static int
4855 igb_timesync_disable(struct rte_eth_dev *dev)
4856 {
4857         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4858         uint32_t tsync_ctl;
4859
4860         /* Disable timestamping of transmitted PTP packets. */
4861         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
4862         tsync_ctl &= ~E1000_TSYNCTXCTL_ENABLED;
4863         E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
4864
4865         /* Disable timestamping of received PTP packets. */
4866         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
4867         tsync_ctl &= ~E1000_TSYNCRXCTL_ENABLED;
4868         E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
4869
4870         /* Disable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
4871         E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588), 0);
4872
4873         /* Stop incrementating the System Time registers. */
4874         E1000_WRITE_REG(hw, E1000_TIMINCA, 0);
4875
4876         return 0;
4877 }
4878
4879 static int
4880 igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
4881                                struct timespec *timestamp,
4882                                uint32_t flags __rte_unused)
4883 {
4884         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4885         struct e1000_adapter *adapter = dev->data->dev_private;
4886         uint32_t tsync_rxctl;
4887         uint64_t rx_tstamp_cycles;
4888         uint64_t ns;
4889
4890         tsync_rxctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
4891         if ((tsync_rxctl & E1000_TSYNCRXCTL_VALID) == 0)
4892                 return -EINVAL;
4893
4894         rx_tstamp_cycles = igb_read_rx_tstamp_cyclecounter(dev);
4895         ns = rte_timecounter_update(&adapter->rx_tstamp_tc, rx_tstamp_cycles);
4896         *timestamp = rte_ns_to_timespec(ns);
4897
4898         return  0;
4899 }
4900
4901 static int
4902 igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
4903                                struct timespec *timestamp)
4904 {
4905         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4906         struct e1000_adapter *adapter = dev->data->dev_private;
4907         uint32_t tsync_txctl;
4908         uint64_t tx_tstamp_cycles;
4909         uint64_t ns;
4910
4911         tsync_txctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
4912         if ((tsync_txctl & E1000_TSYNCTXCTL_VALID) == 0)
4913                 return -EINVAL;
4914
4915         tx_tstamp_cycles = igb_read_tx_tstamp_cyclecounter(dev);
4916         ns = rte_timecounter_update(&adapter->tx_tstamp_tc, tx_tstamp_cycles);
4917         *timestamp = rte_ns_to_timespec(ns);
4918
4919         return  0;
4920 }
4921
4922 static int
4923 eth_igb_get_reg_length(struct rte_eth_dev *dev __rte_unused)
4924 {
4925         int count = 0;
4926         int g_ind = 0;
4927         const struct reg_info *reg_group;
4928
4929         while ((reg_group = igb_regs[g_ind++]))
4930                 count += igb_reg_group_count(reg_group);
4931
4932         return count;
4933 }
4934
4935 static int
4936 igbvf_get_reg_length(struct rte_eth_dev *dev __rte_unused)
4937 {
4938         int count = 0;
4939         int g_ind = 0;
4940         const struct reg_info *reg_group;
4941
4942         while ((reg_group = igbvf_regs[g_ind++]))
4943                 count += igb_reg_group_count(reg_group);
4944
4945         return count;
4946 }
4947
4948 static int
4949 eth_igb_get_regs(struct rte_eth_dev *dev,
4950         struct rte_dev_reg_info *regs)
4951 {
4952         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4953         uint32_t *data = regs->data;
4954         int g_ind = 0;
4955         int count = 0;
4956         const struct reg_info *reg_group;
4957
4958         if (data == NULL) {
4959                 regs->length = eth_igb_get_reg_length(dev);
4960                 regs->width = sizeof(uint32_t);
4961                 return 0;
4962         }
4963
4964         /* Support only full register dump */
4965         if ((regs->length == 0) ||
4966             (regs->length == (uint32_t)eth_igb_get_reg_length(dev))) {
4967                 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
4968                         hw->device_id;
4969                 while ((reg_group = igb_regs[g_ind++]))
4970                         count += igb_read_regs_group(dev, &data[count],
4971                                                         reg_group);
4972                 return 0;
4973         }
4974
4975         return -ENOTSUP;
4976 }
4977
4978 static int
4979 igbvf_get_regs(struct rte_eth_dev *dev,
4980         struct rte_dev_reg_info *regs)
4981 {
4982         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4983         uint32_t *data = regs->data;
4984         int g_ind = 0;
4985         int count = 0;
4986         const struct reg_info *reg_group;
4987
4988         if (data == NULL) {
4989                 regs->length = igbvf_get_reg_length(dev);
4990                 regs->width = sizeof(uint32_t);
4991                 return 0;
4992         }
4993
4994         /* Support only full register dump */
4995         if ((regs->length == 0) ||
4996             (regs->length == (uint32_t)igbvf_get_reg_length(dev))) {
4997                 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
4998                         hw->device_id;
4999                 while ((reg_group = igbvf_regs[g_ind++]))
5000                         count += igb_read_regs_group(dev, &data[count],
5001                                                         reg_group);
5002                 return 0;
5003         }
5004
5005         return -ENOTSUP;
5006 }
5007
5008 static int
5009 eth_igb_get_eeprom_length(struct rte_eth_dev *dev)
5010 {
5011         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5012
5013         /* Return unit is byte count */
5014         return hw->nvm.word_size * 2;
5015 }
5016
5017 static int
5018 eth_igb_get_eeprom(struct rte_eth_dev *dev,
5019         struct rte_dev_eeprom_info *in_eeprom)
5020 {
5021         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5022         struct e1000_nvm_info *nvm = &hw->nvm;
5023         uint16_t *data = in_eeprom->data;
5024         int first, length;
5025
5026         first = in_eeprom->offset >> 1;
5027         length = in_eeprom->length >> 1;
5028         if ((first >= hw->nvm.word_size) ||
5029             ((first + length) >= hw->nvm.word_size))
5030                 return -EINVAL;
5031
5032         in_eeprom->magic = hw->vendor_id |
5033                 ((uint32_t)hw->device_id << 16);
5034
5035         if ((nvm->ops.read) == NULL)
5036                 return -ENOTSUP;
5037
5038         return nvm->ops.read(hw, first, length, data);
5039 }
5040
5041 static int
5042 eth_igb_set_eeprom(struct rte_eth_dev *dev,
5043         struct rte_dev_eeprom_info *in_eeprom)
5044 {
5045         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5046         struct e1000_nvm_info *nvm = &hw->nvm;
5047         uint16_t *data = in_eeprom->data;
5048         int first, length;
5049
5050         first = in_eeprom->offset >> 1;
5051         length = in_eeprom->length >> 1;
5052         if ((first >= hw->nvm.word_size) ||
5053             ((first + length) >= hw->nvm.word_size))
5054                 return -EINVAL;
5055
5056         in_eeprom->magic = (uint32_t)hw->vendor_id |
5057                 ((uint32_t)hw->device_id << 16);
5058
5059         if ((nvm->ops.write) == NULL)
5060                 return -ENOTSUP;
5061         return nvm->ops.write(hw,  first, length, data);
5062 }
5063
5064 static int
5065 eth_igb_get_module_info(struct rte_eth_dev *dev,
5066                         struct rte_eth_dev_module_info *modinfo)
5067 {
5068         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5069
5070         uint32_t status = 0;
5071         uint16_t sff8472_rev, addr_mode;
5072         bool page_swap = false;
5073
5074         if (hw->phy.media_type == e1000_media_type_copper ||
5075             hw->phy.media_type == e1000_media_type_unknown)
5076                 return -EOPNOTSUPP;
5077
5078         /* Check whether we support SFF-8472 or not */
5079         status = e1000_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
5080         if (status)
5081                 return -EIO;
5082
5083         /* addressing mode is not supported */
5084         status = e1000_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
5085         if (status)
5086                 return -EIO;
5087
5088         /* addressing mode is not supported */
5089         if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
5090                 PMD_DRV_LOG(ERR,
5091                             "Address change required to access page 0xA2, "
5092                             "but not supported. Please report the module "
5093                             "type to the driver maintainers.\n");
5094                 page_swap = true;
5095         }
5096
5097         if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
5098                 /* We have an SFP, but it does not support SFF-8472 */
5099                 modinfo->type = RTE_ETH_MODULE_SFF_8079;
5100                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8079_LEN;
5101         } else {
5102                 /* We have an SFP which supports a revision of SFF-8472 */
5103                 modinfo->type = RTE_ETH_MODULE_SFF_8472;
5104                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
5105         }
5106
5107         return 0;
5108 }
5109
5110 static int
5111 eth_igb_get_module_eeprom(struct rte_eth_dev *dev,
5112                           struct rte_dev_eeprom_info *info)
5113 {
5114         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5115
5116         uint32_t status = 0;
5117         uint16_t dataword[RTE_ETH_MODULE_SFF_8472_LEN / 2 + 1];
5118         u16 first_word, last_word;
5119         int i = 0;
5120
5121         if (info->length == 0)
5122                 return -EINVAL;
5123
5124         first_word = info->offset >> 1;
5125         last_word = (info->offset + info->length - 1) >> 1;
5126
5127         /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
5128         for (i = 0; i < last_word - first_word + 1; i++) {
5129                 status = e1000_read_phy_reg_i2c(hw, (first_word + i) * 2,
5130                                                 &dataword[i]);
5131                 if (status) {
5132                         /* Error occurred while reading module */
5133                         return -EIO;
5134                 }
5135
5136                 dataword[i] = rte_be_to_cpu_16(dataword[i]);
5137         }
5138
5139         memcpy(info->data, (u8 *)dataword + (info->offset & 1), info->length);
5140
5141         return 0;
5142 }
5143
5144 static int
5145 eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
5146 {
5147         struct e1000_hw *hw =
5148                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5149         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5150         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5151         uint32_t vec = E1000_MISC_VEC_ID;
5152
5153         if (rte_intr_allow_others(intr_handle))
5154                 vec = E1000_RX_VEC_START;
5155
5156         uint32_t mask = 1 << (queue_id + vec);
5157
5158         E1000_WRITE_REG(hw, E1000_EIMC, mask);
5159         E1000_WRITE_FLUSH(hw);
5160
5161         return 0;
5162 }
5163
5164 static int
5165 eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
5166 {
5167         struct e1000_hw *hw =
5168                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5169         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5170         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5171         uint32_t vec = E1000_MISC_VEC_ID;
5172
5173         if (rte_intr_allow_others(intr_handle))
5174                 vec = E1000_RX_VEC_START;
5175
5176         uint32_t mask = 1 << (queue_id + vec);
5177         uint32_t regval;
5178
5179         regval = E1000_READ_REG(hw, E1000_EIMS);
5180         E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
5181         E1000_WRITE_FLUSH(hw);
5182
5183         rte_intr_ack(intr_handle);
5184
5185         return 0;
5186 }
5187
5188 static void
5189 eth_igb_write_ivar(struct e1000_hw *hw, uint8_t  msix_vector,
5190                    uint8_t index, uint8_t offset)
5191 {
5192         uint32_t val = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
5193
5194         /* clear bits */
5195         val &= ~((uint32_t)0xFF << offset);
5196
5197         /* write vector and valid bit */
5198         val |= (msix_vector | E1000_IVAR_VALID) << offset;
5199
5200         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, val);
5201 }
5202
5203 static void
5204 eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
5205                            uint8_t queue, uint8_t msix_vector)
5206 {
5207         uint32_t tmp = 0;
5208
5209         if (hw->mac.type == e1000_82575) {
5210                 if (direction == 0)
5211                         tmp = E1000_EICR_RX_QUEUE0 << queue;
5212                 else if (direction == 1)
5213                         tmp = E1000_EICR_TX_QUEUE0 << queue;
5214                 E1000_WRITE_REG(hw, E1000_MSIXBM(msix_vector), tmp);
5215         } else if (hw->mac.type == e1000_82576) {
5216                 if ((direction == 0) || (direction == 1))
5217                         eth_igb_write_ivar(hw, msix_vector, queue & 0x7,
5218                                            ((queue & 0x8) << 1) +
5219                                            8 * direction);
5220         } else if ((hw->mac.type == e1000_82580) ||
5221                         (hw->mac.type == e1000_i350) ||
5222                         (hw->mac.type == e1000_i354) ||
5223                         (hw->mac.type == e1000_i210) ||
5224                         (hw->mac.type == e1000_i211)) {
5225                 if ((direction == 0) || (direction == 1))
5226                         eth_igb_write_ivar(hw, msix_vector,
5227                                            queue >> 1,
5228                                            ((queue & 0x1) << 4) +
5229                                            8 * direction);
5230         }
5231 }
5232
5233 /* Sets up the hardware to generate MSI-X interrupts properly
5234  * @hw
5235  *  board private structure
5236  */
5237 static void
5238 eth_igb_configure_msix_intr(struct rte_eth_dev *dev)
5239 {
5240         int queue_id;
5241         uint32_t tmpval, regval, intr_mask;
5242         struct e1000_hw *hw =
5243                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5244         uint32_t vec = E1000_MISC_VEC_ID;
5245         uint32_t base = E1000_MISC_VEC_ID;
5246         uint32_t misc_shift = 0;
5247         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5248         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5249
5250         /* won't configure msix register if no mapping is done
5251          * between intr vector and event fd
5252          */
5253         if (!rte_intr_dp_is_en(intr_handle))
5254                 return;
5255
5256         if (rte_intr_allow_others(intr_handle)) {
5257                 vec = base = E1000_RX_VEC_START;
5258                 misc_shift = 1;
5259         }
5260
5261         /* set interrupt vector for other causes */
5262         if (hw->mac.type == e1000_82575) {
5263                 tmpval = E1000_READ_REG(hw, E1000_CTRL_EXT);
5264                 /* enable MSI-X PBA support */
5265                 tmpval |= E1000_CTRL_EXT_PBA_CLR;
5266
5267                 /* Auto-Mask interrupts upon ICR read */
5268                 tmpval |= E1000_CTRL_EXT_EIAME;
5269                 tmpval |= E1000_CTRL_EXT_IRCA;
5270
5271                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmpval);
5272
5273                 /* enable msix_other interrupt */
5274                 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), 0, E1000_EIMS_OTHER);
5275                 regval = E1000_READ_REG(hw, E1000_EIAC);
5276                 E1000_WRITE_REG(hw, E1000_EIAC, regval | E1000_EIMS_OTHER);
5277                 regval = E1000_READ_REG(hw, E1000_EIAM);
5278                 E1000_WRITE_REG(hw, E1000_EIMS, regval | E1000_EIMS_OTHER);
5279         } else if ((hw->mac.type == e1000_82576) ||
5280                         (hw->mac.type == e1000_82580) ||
5281                         (hw->mac.type == e1000_i350) ||
5282                         (hw->mac.type == e1000_i354) ||
5283                         (hw->mac.type == e1000_i210) ||
5284                         (hw->mac.type == e1000_i211)) {
5285                 /* turn on MSI-X capability first */
5286                 E1000_WRITE_REG(hw, E1000_GPIE, E1000_GPIE_MSIX_MODE |
5287                                         E1000_GPIE_PBA | E1000_GPIE_EIAME |
5288                                         E1000_GPIE_NSICR);
5289                 intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
5290                         misc_shift;
5291
5292                 if (dev->data->dev_conf.intr_conf.lsc != 0)
5293                         intr_mask |= (1 << IGB_MSIX_OTHER_INTR_VEC);
5294
5295                 regval = E1000_READ_REG(hw, E1000_EIAC);
5296                 E1000_WRITE_REG(hw, E1000_EIAC, regval | intr_mask);
5297
5298                 /* enable msix_other interrupt */
5299                 regval = E1000_READ_REG(hw, E1000_EIMS);
5300                 E1000_WRITE_REG(hw, E1000_EIMS, regval | intr_mask);
5301                 tmpval = (IGB_MSIX_OTHER_INTR_VEC | E1000_IVAR_VALID) << 8;
5302                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, tmpval);
5303         }
5304
5305         /* use EIAM to auto-mask when MSI-X interrupt
5306          * is asserted, this saves a register write for every interrupt
5307          */
5308         intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
5309                 misc_shift;
5310
5311         if (dev->data->dev_conf.intr_conf.lsc != 0)
5312                 intr_mask |= (1 << IGB_MSIX_OTHER_INTR_VEC);
5313
5314         regval = E1000_READ_REG(hw, E1000_EIAM);
5315         E1000_WRITE_REG(hw, E1000_EIAM, regval | intr_mask);
5316
5317         for (queue_id = 0; queue_id < dev->data->nb_rx_queues; queue_id++) {
5318                 eth_igb_assign_msix_vector(hw, 0, queue_id, vec);
5319                 intr_handle->intr_vec[queue_id] = vec;
5320                 if (vec < base + intr_handle->nb_efd - 1)
5321                         vec++;
5322         }
5323
5324         E1000_WRITE_FLUSH(hw);
5325 }
5326
5327 /* restore n-tuple filter */
5328 static inline void
5329 igb_ntuple_filter_restore(struct rte_eth_dev *dev)
5330 {
5331         struct e1000_filter_info *filter_info =
5332                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5333         struct e1000_5tuple_filter *p_5tuple;
5334         struct e1000_2tuple_filter *p_2tuple;
5335
5336         TAILQ_FOREACH(p_5tuple, &filter_info->fivetuple_list, entries) {
5337                 igb_inject_5tuple_filter_82576(dev, p_5tuple);
5338         }
5339
5340         TAILQ_FOREACH(p_2tuple, &filter_info->twotuple_list, entries) {
5341                 igb_inject_2uple_filter(dev, p_2tuple);
5342         }
5343 }
5344
5345 /* restore SYN filter */
5346 static inline void
5347 igb_syn_filter_restore(struct rte_eth_dev *dev)
5348 {
5349         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5350         struct e1000_filter_info *filter_info =
5351                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5352         uint32_t synqf;
5353
5354         synqf = filter_info->syn_info;
5355
5356         if (synqf & E1000_SYN_FILTER_ENABLE) {
5357                 E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
5358                 E1000_WRITE_FLUSH(hw);
5359         }
5360 }
5361
5362 /* restore ethernet type filter */
5363 static inline void
5364 igb_ethertype_filter_restore(struct rte_eth_dev *dev)
5365 {
5366         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5367         struct e1000_filter_info *filter_info =
5368                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5369         int i;
5370
5371         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
5372                 if (filter_info->ethertype_mask & (1 << i)) {
5373                         E1000_WRITE_REG(hw, E1000_ETQF(i),
5374                                 filter_info->ethertype_filters[i].etqf);
5375                         E1000_WRITE_FLUSH(hw);
5376                 }
5377         }
5378 }
5379
5380 /* restore flex byte filter */
5381 static inline void
5382 igb_flex_filter_restore(struct rte_eth_dev *dev)
5383 {
5384         struct e1000_filter_info *filter_info =
5385                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5386         struct e1000_flex_filter *flex_filter;
5387
5388         TAILQ_FOREACH(flex_filter, &filter_info->flex_list, entries) {
5389                 igb_inject_flex_filter(dev, flex_filter);
5390         }
5391 }
5392
5393 /* restore rss filter */
5394 static inline void
5395 igb_rss_filter_restore(struct rte_eth_dev *dev)
5396 {
5397         struct e1000_filter_info *filter_info =
5398                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5399
5400         if (filter_info->rss_info.conf.queue_num)
5401                 igb_config_rss_filter(dev, &filter_info->rss_info, TRUE);
5402 }
5403
5404 /* restore all types filter */
5405 static int
5406 igb_filter_restore(struct rte_eth_dev *dev)
5407 {
5408         igb_ntuple_filter_restore(dev);
5409         igb_ethertype_filter_restore(dev);
5410         igb_syn_filter_restore(dev);
5411         igb_flex_filter_restore(dev);
5412         igb_rss_filter_restore(dev);
5413
5414         return 0;
5415 }
5416
5417 RTE_PMD_REGISTER_PCI(net_e1000_igb, rte_igb_pmd);
5418 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb, pci_id_igb_map);
5419 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb, "* igb_uio | uio_pci_generic | vfio-pci");
5420 RTE_PMD_REGISTER_PCI(net_e1000_igb_vf, rte_igbvf_pmd);
5421 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb_vf, pci_id_igbvf_map);
5422 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb_vf, "* igb_uio | vfio-pci");