net/igb: fix LSC interrupt when using MSI-X
[dpdk.git] / drivers / net / e1000 / igb_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <stdarg.h>
10
11 #include <rte_common.h>
12 #include <rte_interrupts.h>
13 #include <rte_byteorder.h>
14 #include <rte_log.h>
15 #include <rte_debug.h>
16 #include <rte_pci.h>
17 #include <rte_bus_pci.h>
18 #include <rte_ether.h>
19 #include <rte_ethdev_driver.h>
20 #include <rte_ethdev_pci.h>
21 #include <rte_memory.h>
22 #include <rte_eal.h>
23 #include <rte_malloc.h>
24 #include <rte_dev.h>
25
26 #include "e1000_logs.h"
27 #include "base/e1000_api.h"
28 #include "e1000_ethdev.h"
29 #include "igb_regs.h"
30
31 /*
32  * Default values for port configuration
33  */
34 #define IGB_DEFAULT_RX_FREE_THRESH  32
35
36 #define IGB_DEFAULT_RX_PTHRESH      ((hw->mac.type == e1000_i354) ? 12 : 8)
37 #define IGB_DEFAULT_RX_HTHRESH      8
38 #define IGB_DEFAULT_RX_WTHRESH      ((hw->mac.type == e1000_82576) ? 1 : 4)
39
40 #define IGB_DEFAULT_TX_PTHRESH      ((hw->mac.type == e1000_i354) ? 20 : 8)
41 #define IGB_DEFAULT_TX_HTHRESH      1
42 #define IGB_DEFAULT_TX_WTHRESH      ((hw->mac.type == e1000_82576) ? 1 : 16)
43
44 /* Bit shift and mask */
45 #define IGB_4_BIT_WIDTH  (CHAR_BIT / 2)
46 #define IGB_4_BIT_MASK   RTE_LEN2MASK(IGB_4_BIT_WIDTH, uint8_t)
47 #define IGB_8_BIT_WIDTH  CHAR_BIT
48 #define IGB_8_BIT_MASK   UINT8_MAX
49
50 /* Additional timesync values. */
51 #define E1000_CYCLECOUNTER_MASK      0xffffffffffffffffULL
52 #define E1000_ETQF_FILTER_1588       3
53 #define IGB_82576_TSYNC_SHIFT        16
54 #define E1000_INCPERIOD_82576        (1 << E1000_TIMINCA_16NS_SHIFT)
55 #define E1000_INCVALUE_82576         (16 << IGB_82576_TSYNC_SHIFT)
56 #define E1000_TSAUXC_DISABLE_SYSTIME 0x80000000
57
58 #define E1000_VTIVAR_MISC                0x01740
59 #define E1000_VTIVAR_MISC_MASK           0xFF
60 #define E1000_VTIVAR_VALID               0x80
61 #define E1000_VTIVAR_MISC_MAILBOX        0
62 #define E1000_VTIVAR_MISC_INTR_MASK      0x3
63
64 /* External VLAN Enable bit mask */
65 #define E1000_CTRL_EXT_EXT_VLAN      (1 << 26)
66
67 /* External VLAN Ether Type bit mask and shift */
68 #define E1000_VET_VET_EXT            0xFFFF0000
69 #define E1000_VET_VET_EXT_SHIFT      16
70
71 /* MSI-X other interrupt vector */
72 #define IGB_MSIX_OTHER_INTR_VEC      0
73
74 static int  eth_igb_configure(struct rte_eth_dev *dev);
75 static int  eth_igb_start(struct rte_eth_dev *dev);
76 static void eth_igb_stop(struct rte_eth_dev *dev);
77 static int  eth_igb_dev_set_link_up(struct rte_eth_dev *dev);
78 static int  eth_igb_dev_set_link_down(struct rte_eth_dev *dev);
79 static void eth_igb_close(struct rte_eth_dev *dev);
80 static int eth_igb_reset(struct rte_eth_dev *dev);
81 static void eth_igb_promiscuous_enable(struct rte_eth_dev *dev);
82 static void eth_igb_promiscuous_disable(struct rte_eth_dev *dev);
83 static void eth_igb_allmulticast_enable(struct rte_eth_dev *dev);
84 static void eth_igb_allmulticast_disable(struct rte_eth_dev *dev);
85 static int  eth_igb_link_update(struct rte_eth_dev *dev,
86                                 int wait_to_complete);
87 static int eth_igb_stats_get(struct rte_eth_dev *dev,
88                                 struct rte_eth_stats *rte_stats);
89 static int eth_igb_xstats_get(struct rte_eth_dev *dev,
90                               struct rte_eth_xstat *xstats, unsigned n);
91 static int eth_igb_xstats_get_by_id(struct rte_eth_dev *dev,
92                 const uint64_t *ids,
93                 uint64_t *values, unsigned int n);
94 static int eth_igb_xstats_get_names(struct rte_eth_dev *dev,
95                                     struct rte_eth_xstat_name *xstats_names,
96                                     unsigned int size);
97 static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev,
98                 struct rte_eth_xstat_name *xstats_names, const uint64_t *ids,
99                 unsigned int limit);
100 static void eth_igb_stats_reset(struct rte_eth_dev *dev);
101 static void eth_igb_xstats_reset(struct rte_eth_dev *dev);
102 static int eth_igb_fw_version_get(struct rte_eth_dev *dev,
103                                    char *fw_version, size_t fw_size);
104 static void eth_igb_infos_get(struct rte_eth_dev *dev,
105                               struct rte_eth_dev_info *dev_info);
106 static const uint32_t *eth_igb_supported_ptypes_get(struct rte_eth_dev *dev);
107 static void eth_igbvf_infos_get(struct rte_eth_dev *dev,
108                                 struct rte_eth_dev_info *dev_info);
109 static int  eth_igb_flow_ctrl_get(struct rte_eth_dev *dev,
110                                 struct rte_eth_fc_conf *fc_conf);
111 static int  eth_igb_flow_ctrl_set(struct rte_eth_dev *dev,
112                                 struct rte_eth_fc_conf *fc_conf);
113 static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on);
114 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev);
115 static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev);
116 static int eth_igb_interrupt_action(struct rte_eth_dev *dev,
117                                     struct rte_intr_handle *handle);
118 static void eth_igb_interrupt_handler(void *param);
119 static int  igb_hardware_init(struct e1000_hw *hw);
120 static void igb_hw_control_acquire(struct e1000_hw *hw);
121 static void igb_hw_control_release(struct e1000_hw *hw);
122 static void igb_init_manageability(struct e1000_hw *hw);
123 static void igb_release_manageability(struct e1000_hw *hw);
124
125 static int  eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
126
127 static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev,
128                 uint16_t vlan_id, int on);
129 static int eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
130                                  enum rte_vlan_type vlan_type,
131                                  uint16_t tpid_id);
132 static int eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask);
133
134 static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev);
135 static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev);
136 static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev);
137 static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev);
138 static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev);
139 static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev);
140
141 static int eth_igb_led_on(struct rte_eth_dev *dev);
142 static int eth_igb_led_off(struct rte_eth_dev *dev);
143
144 static void igb_intr_disable(struct rte_eth_dev *dev);
145 static int  igb_get_rx_buffer_size(struct e1000_hw *hw);
146 static int eth_igb_rar_set(struct rte_eth_dev *dev,
147                            struct ether_addr *mac_addr,
148                            uint32_t index, uint32_t pool);
149 static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index);
150 static int eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
151                 struct ether_addr *addr);
152
153 static void igbvf_intr_disable(struct e1000_hw *hw);
154 static int igbvf_dev_configure(struct rte_eth_dev *dev);
155 static int igbvf_dev_start(struct rte_eth_dev *dev);
156 static void igbvf_dev_stop(struct rte_eth_dev *dev);
157 static void igbvf_dev_close(struct rte_eth_dev *dev);
158 static void igbvf_promiscuous_enable(struct rte_eth_dev *dev);
159 static void igbvf_promiscuous_disable(struct rte_eth_dev *dev);
160 static void igbvf_allmulticast_enable(struct rte_eth_dev *dev);
161 static void igbvf_allmulticast_disable(struct rte_eth_dev *dev);
162 static int eth_igbvf_link_update(struct e1000_hw *hw);
163 static int eth_igbvf_stats_get(struct rte_eth_dev *dev,
164                                 struct rte_eth_stats *rte_stats);
165 static int eth_igbvf_xstats_get(struct rte_eth_dev *dev,
166                                 struct rte_eth_xstat *xstats, unsigned n);
167 static int eth_igbvf_xstats_get_names(struct rte_eth_dev *dev,
168                                       struct rte_eth_xstat_name *xstats_names,
169                                       unsigned limit);
170 static void eth_igbvf_stats_reset(struct rte_eth_dev *dev);
171 static int igbvf_vlan_filter_set(struct rte_eth_dev *dev,
172                 uint16_t vlan_id, int on);
173 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on);
174 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on);
175 static int igbvf_default_mac_addr_set(struct rte_eth_dev *dev,
176                 struct ether_addr *addr);
177 static int igbvf_get_reg_length(struct rte_eth_dev *dev);
178 static int igbvf_get_regs(struct rte_eth_dev *dev,
179                 struct rte_dev_reg_info *regs);
180
181 static int eth_igb_rss_reta_update(struct rte_eth_dev *dev,
182                                    struct rte_eth_rss_reta_entry64 *reta_conf,
183                                    uint16_t reta_size);
184 static int eth_igb_rss_reta_query(struct rte_eth_dev *dev,
185                                   struct rte_eth_rss_reta_entry64 *reta_conf,
186                                   uint16_t reta_size);
187
188 static int eth_igb_syn_filter_get(struct rte_eth_dev *dev,
189                         struct rte_eth_syn_filter *filter);
190 static int eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
191                         enum rte_filter_op filter_op,
192                         void *arg);
193 static int igb_add_2tuple_filter(struct rte_eth_dev *dev,
194                         struct rte_eth_ntuple_filter *ntuple_filter);
195 static int igb_remove_2tuple_filter(struct rte_eth_dev *dev,
196                         struct rte_eth_ntuple_filter *ntuple_filter);
197 static int eth_igb_get_flex_filter(struct rte_eth_dev *dev,
198                         struct rte_eth_flex_filter *filter);
199 static int eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
200                         enum rte_filter_op filter_op,
201                         void *arg);
202 static int igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
203                         struct rte_eth_ntuple_filter *ntuple_filter);
204 static int igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
205                         struct rte_eth_ntuple_filter *ntuple_filter);
206 static int igb_get_ntuple_filter(struct rte_eth_dev *dev,
207                         struct rte_eth_ntuple_filter *filter);
208 static int igb_ntuple_filter_handle(struct rte_eth_dev *dev,
209                                 enum rte_filter_op filter_op,
210                                 void *arg);
211 static int igb_ethertype_filter_handle(struct rte_eth_dev *dev,
212                                 enum rte_filter_op filter_op,
213                                 void *arg);
214 static int igb_get_ethertype_filter(struct rte_eth_dev *dev,
215                         struct rte_eth_ethertype_filter *filter);
216 static int eth_igb_filter_ctrl(struct rte_eth_dev *dev,
217                      enum rte_filter_type filter_type,
218                      enum rte_filter_op filter_op,
219                      void *arg);
220 static int eth_igb_get_reg_length(struct rte_eth_dev *dev);
221 static int eth_igb_get_regs(struct rte_eth_dev *dev,
222                 struct rte_dev_reg_info *regs);
223 static int eth_igb_get_eeprom_length(struct rte_eth_dev *dev);
224 static int eth_igb_get_eeprom(struct rte_eth_dev *dev,
225                 struct rte_dev_eeprom_info *eeprom);
226 static int eth_igb_set_eeprom(struct rte_eth_dev *dev,
227                 struct rte_dev_eeprom_info *eeprom);
228 static int eth_igb_get_module_info(struct rte_eth_dev *dev,
229                                    struct rte_eth_dev_module_info *modinfo);
230 static int eth_igb_get_module_eeprom(struct rte_eth_dev *dev,
231                                      struct rte_dev_eeprom_info *info);
232 static int eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
233                                     struct ether_addr *mc_addr_set,
234                                     uint32_t nb_mc_addr);
235 static int igb_timesync_enable(struct rte_eth_dev *dev);
236 static int igb_timesync_disable(struct rte_eth_dev *dev);
237 static int igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
238                                           struct timespec *timestamp,
239                                           uint32_t flags);
240 static int igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
241                                           struct timespec *timestamp);
242 static int igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta);
243 static int igb_timesync_read_time(struct rte_eth_dev *dev,
244                                   struct timespec *timestamp);
245 static int igb_timesync_write_time(struct rte_eth_dev *dev,
246                                    const struct timespec *timestamp);
247 static int eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev,
248                                         uint16_t queue_id);
249 static int eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev,
250                                          uint16_t queue_id);
251 static void eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
252                                        uint8_t queue, uint8_t msix_vector);
253 static void eth_igb_write_ivar(struct e1000_hw *hw, uint8_t msix_vector,
254                                uint8_t index, uint8_t offset);
255 static void eth_igb_configure_msix_intr(struct rte_eth_dev *dev);
256 static void eth_igbvf_interrupt_handler(void *param);
257 static void igbvf_mbx_process(struct rte_eth_dev *dev);
258 static int igb_filter_restore(struct rte_eth_dev *dev);
259
260 /*
261  * Define VF Stats MACRO for Non "cleared on read" register
262  */
263 #define UPDATE_VF_STAT(reg, last, cur)            \
264 {                                                 \
265         u32 latest = E1000_READ_REG(hw, reg);     \
266         cur += (latest - last) & UINT_MAX;        \
267         last = latest;                            \
268 }
269
270 #define IGB_FC_PAUSE_TIME 0x0680
271 #define IGB_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
272 #define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
273
274 #define IGBVF_PMD_NAME "rte_igbvf_pmd"     /* PMD name */
275
276 static enum e1000_fc_mode igb_fc_setting = e1000_fc_full;
277
278 /*
279  * The set of PCI devices this driver supports
280  */
281 static const struct rte_pci_id pci_id_igb_map[] = {
282         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576) },
283         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_FIBER) },
284         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES) },
285         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER) },
286         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER_ET2) },
287         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS) },
288         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS_SERDES) },
289         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES_QUAD) },
290
291         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_COPPER) },
292         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_FIBER_SERDES) },
293         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575GB_QUAD_COPPER) },
294
295         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER) },
296         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_FIBER) },
297         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SERDES) },
298         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SGMII) },
299         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER_DUAL) },
300         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_QUAD_FIBER) },
301
302         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_COPPER) },
303         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_FIBER) },
304         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SERDES) },
305         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SGMII) },
306         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_DA4) },
307         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER) },
308         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_OEM1) },
309         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_IT) },
310         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_FIBER) },
311         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES) },
312         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SGMII) },
313         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_FLASHLESS) },
314         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES_FLASHLESS) },
315         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I211_COPPER) },
316         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
317         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_SGMII) },
318         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
319         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SGMII) },
320         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SERDES) },
321         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_BACKPLANE) },
322         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SFP) },
323         { .vendor_id = 0, /* sentinel */ },
324 };
325
326 /*
327  * The set of PCI devices this driver supports (for 82576&I350 VF)
328  */
329 static const struct rte_pci_id pci_id_igbvf_map[] = {
330         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF) },
331         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF_HV) },
332         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF) },
333         { RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF_HV) },
334         { .vendor_id = 0, /* sentinel */ },
335 };
336
337 static const struct rte_eth_desc_lim rx_desc_lim = {
338         .nb_max = E1000_MAX_RING_DESC,
339         .nb_min = E1000_MIN_RING_DESC,
340         .nb_align = IGB_RXD_ALIGN,
341 };
342
343 static const struct rte_eth_desc_lim tx_desc_lim = {
344         .nb_max = E1000_MAX_RING_DESC,
345         .nb_min = E1000_MIN_RING_DESC,
346         .nb_align = IGB_RXD_ALIGN,
347         .nb_seg_max = IGB_TX_MAX_SEG,
348         .nb_mtu_seg_max = IGB_TX_MAX_MTU_SEG,
349 };
350
351 static const struct eth_dev_ops eth_igb_ops = {
352         .dev_configure        = eth_igb_configure,
353         .dev_start            = eth_igb_start,
354         .dev_stop             = eth_igb_stop,
355         .dev_set_link_up      = eth_igb_dev_set_link_up,
356         .dev_set_link_down    = eth_igb_dev_set_link_down,
357         .dev_close            = eth_igb_close,
358         .dev_reset            = eth_igb_reset,
359         .promiscuous_enable   = eth_igb_promiscuous_enable,
360         .promiscuous_disable  = eth_igb_promiscuous_disable,
361         .allmulticast_enable  = eth_igb_allmulticast_enable,
362         .allmulticast_disable = eth_igb_allmulticast_disable,
363         .link_update          = eth_igb_link_update,
364         .stats_get            = eth_igb_stats_get,
365         .xstats_get           = eth_igb_xstats_get,
366         .xstats_get_by_id     = eth_igb_xstats_get_by_id,
367         .xstats_get_names_by_id = eth_igb_xstats_get_names_by_id,
368         .xstats_get_names     = eth_igb_xstats_get_names,
369         .stats_reset          = eth_igb_stats_reset,
370         .xstats_reset         = eth_igb_xstats_reset,
371         .fw_version_get       = eth_igb_fw_version_get,
372         .dev_infos_get        = eth_igb_infos_get,
373         .dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
374         .mtu_set              = eth_igb_mtu_set,
375         .vlan_filter_set      = eth_igb_vlan_filter_set,
376         .vlan_tpid_set        = eth_igb_vlan_tpid_set,
377         .vlan_offload_set     = eth_igb_vlan_offload_set,
378         .rx_queue_setup       = eth_igb_rx_queue_setup,
379         .rx_queue_intr_enable = eth_igb_rx_queue_intr_enable,
380         .rx_queue_intr_disable = eth_igb_rx_queue_intr_disable,
381         .rx_queue_release     = eth_igb_rx_queue_release,
382         .rx_queue_count       = eth_igb_rx_queue_count,
383         .rx_descriptor_done   = eth_igb_rx_descriptor_done,
384         .rx_descriptor_status = eth_igb_rx_descriptor_status,
385         .tx_descriptor_status = eth_igb_tx_descriptor_status,
386         .tx_queue_setup       = eth_igb_tx_queue_setup,
387         .tx_queue_release     = eth_igb_tx_queue_release,
388         .tx_done_cleanup      = eth_igb_tx_done_cleanup,
389         .dev_led_on           = eth_igb_led_on,
390         .dev_led_off          = eth_igb_led_off,
391         .flow_ctrl_get        = eth_igb_flow_ctrl_get,
392         .flow_ctrl_set        = eth_igb_flow_ctrl_set,
393         .mac_addr_add         = eth_igb_rar_set,
394         .mac_addr_remove      = eth_igb_rar_clear,
395         .mac_addr_set         = eth_igb_default_mac_addr_set,
396         .reta_update          = eth_igb_rss_reta_update,
397         .reta_query           = eth_igb_rss_reta_query,
398         .rss_hash_update      = eth_igb_rss_hash_update,
399         .rss_hash_conf_get    = eth_igb_rss_hash_conf_get,
400         .filter_ctrl          = eth_igb_filter_ctrl,
401         .set_mc_addr_list     = eth_igb_set_mc_addr_list,
402         .rxq_info_get         = igb_rxq_info_get,
403         .txq_info_get         = igb_txq_info_get,
404         .timesync_enable      = igb_timesync_enable,
405         .timesync_disable     = igb_timesync_disable,
406         .timesync_read_rx_timestamp = igb_timesync_read_rx_timestamp,
407         .timesync_read_tx_timestamp = igb_timesync_read_tx_timestamp,
408         .get_reg              = eth_igb_get_regs,
409         .get_eeprom_length    = eth_igb_get_eeprom_length,
410         .get_eeprom           = eth_igb_get_eeprom,
411         .set_eeprom           = eth_igb_set_eeprom,
412         .get_module_info      = eth_igb_get_module_info,
413         .get_module_eeprom    = eth_igb_get_module_eeprom,
414         .timesync_adjust_time = igb_timesync_adjust_time,
415         .timesync_read_time   = igb_timesync_read_time,
416         .timesync_write_time  = igb_timesync_write_time,
417 };
418
419 /*
420  * dev_ops for virtual function, bare necessities for basic vf
421  * operation have been implemented
422  */
423 static const struct eth_dev_ops igbvf_eth_dev_ops = {
424         .dev_configure        = igbvf_dev_configure,
425         .dev_start            = igbvf_dev_start,
426         .dev_stop             = igbvf_dev_stop,
427         .dev_close            = igbvf_dev_close,
428         .promiscuous_enable   = igbvf_promiscuous_enable,
429         .promiscuous_disable  = igbvf_promiscuous_disable,
430         .allmulticast_enable  = igbvf_allmulticast_enable,
431         .allmulticast_disable = igbvf_allmulticast_disable,
432         .link_update          = eth_igb_link_update,
433         .stats_get            = eth_igbvf_stats_get,
434         .xstats_get           = eth_igbvf_xstats_get,
435         .xstats_get_names     = eth_igbvf_xstats_get_names,
436         .stats_reset          = eth_igbvf_stats_reset,
437         .xstats_reset         = eth_igbvf_stats_reset,
438         .vlan_filter_set      = igbvf_vlan_filter_set,
439         .dev_infos_get        = eth_igbvf_infos_get,
440         .dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
441         .rx_queue_setup       = eth_igb_rx_queue_setup,
442         .rx_queue_release     = eth_igb_rx_queue_release,
443         .rx_descriptor_done   = eth_igb_rx_descriptor_done,
444         .rx_descriptor_status = eth_igb_rx_descriptor_status,
445         .tx_descriptor_status = eth_igb_tx_descriptor_status,
446         .tx_queue_setup       = eth_igb_tx_queue_setup,
447         .tx_queue_release     = eth_igb_tx_queue_release,
448         .set_mc_addr_list     = eth_igb_set_mc_addr_list,
449         .rxq_info_get         = igb_rxq_info_get,
450         .txq_info_get         = igb_txq_info_get,
451         .mac_addr_set         = igbvf_default_mac_addr_set,
452         .get_reg              = igbvf_get_regs,
453 };
454
455 /* store statistics names and its offset in stats structure */
456 struct rte_igb_xstats_name_off {
457         char name[RTE_ETH_XSTATS_NAME_SIZE];
458         unsigned offset;
459 };
460
461 static const struct rte_igb_xstats_name_off rte_igb_stats_strings[] = {
462         {"rx_crc_errors", offsetof(struct e1000_hw_stats, crcerrs)},
463         {"rx_align_errors", offsetof(struct e1000_hw_stats, algnerrc)},
464         {"rx_symbol_errors", offsetof(struct e1000_hw_stats, symerrs)},
465         {"rx_missed_packets", offsetof(struct e1000_hw_stats, mpc)},
466         {"tx_single_collision_packets", offsetof(struct e1000_hw_stats, scc)},
467         {"tx_multiple_collision_packets", offsetof(struct e1000_hw_stats, mcc)},
468         {"tx_excessive_collision_packets", offsetof(struct e1000_hw_stats,
469                 ecol)},
470         {"tx_late_collisions", offsetof(struct e1000_hw_stats, latecol)},
471         {"tx_total_collisions", offsetof(struct e1000_hw_stats, colc)},
472         {"tx_deferred_packets", offsetof(struct e1000_hw_stats, dc)},
473         {"tx_no_carrier_sense_packets", offsetof(struct e1000_hw_stats, tncrs)},
474         {"rx_carrier_ext_errors", offsetof(struct e1000_hw_stats, cexterr)},
475         {"rx_length_errors", offsetof(struct e1000_hw_stats, rlec)},
476         {"rx_xon_packets", offsetof(struct e1000_hw_stats, xonrxc)},
477         {"tx_xon_packets", offsetof(struct e1000_hw_stats, xontxc)},
478         {"rx_xoff_packets", offsetof(struct e1000_hw_stats, xoffrxc)},
479         {"tx_xoff_packets", offsetof(struct e1000_hw_stats, xofftxc)},
480         {"rx_flow_control_unsupported_packets", offsetof(struct e1000_hw_stats,
481                 fcruc)},
482         {"rx_size_64_packets", offsetof(struct e1000_hw_stats, prc64)},
483         {"rx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, prc127)},
484         {"rx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, prc255)},
485         {"rx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, prc511)},
486         {"rx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
487                 prc1023)},
488         {"rx_size_1024_to_max_packets", offsetof(struct e1000_hw_stats,
489                 prc1522)},
490         {"rx_broadcast_packets", offsetof(struct e1000_hw_stats, bprc)},
491         {"rx_multicast_packets", offsetof(struct e1000_hw_stats, mprc)},
492         {"rx_undersize_errors", offsetof(struct e1000_hw_stats, ruc)},
493         {"rx_fragment_errors", offsetof(struct e1000_hw_stats, rfc)},
494         {"rx_oversize_errors", offsetof(struct e1000_hw_stats, roc)},
495         {"rx_jabber_errors", offsetof(struct e1000_hw_stats, rjc)},
496         {"rx_management_packets", offsetof(struct e1000_hw_stats, mgprc)},
497         {"rx_management_dropped", offsetof(struct e1000_hw_stats, mgpdc)},
498         {"tx_management_packets", offsetof(struct e1000_hw_stats, mgptc)},
499         {"rx_total_packets", offsetof(struct e1000_hw_stats, tpr)},
500         {"tx_total_packets", offsetof(struct e1000_hw_stats, tpt)},
501         {"rx_total_bytes", offsetof(struct e1000_hw_stats, tor)},
502         {"tx_total_bytes", offsetof(struct e1000_hw_stats, tot)},
503         {"tx_size_64_packets", offsetof(struct e1000_hw_stats, ptc64)},
504         {"tx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, ptc127)},
505         {"tx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, ptc255)},
506         {"tx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, ptc511)},
507         {"tx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
508                 ptc1023)},
509         {"tx_size_1023_to_max_packets", offsetof(struct e1000_hw_stats,
510                 ptc1522)},
511         {"tx_multicast_packets", offsetof(struct e1000_hw_stats, mptc)},
512         {"tx_broadcast_packets", offsetof(struct e1000_hw_stats, bptc)},
513         {"tx_tso_packets", offsetof(struct e1000_hw_stats, tsctc)},
514         {"tx_tso_errors", offsetof(struct e1000_hw_stats, tsctfc)},
515         {"rx_sent_to_host_packets", offsetof(struct e1000_hw_stats, rpthc)},
516         {"tx_sent_by_host_packets", offsetof(struct e1000_hw_stats, hgptc)},
517         {"rx_code_violation_packets", offsetof(struct e1000_hw_stats, scvpc)},
518
519         {"interrupt_assert_count", offsetof(struct e1000_hw_stats, iac)},
520 };
521
522 #define IGB_NB_XSTATS (sizeof(rte_igb_stats_strings) / \
523                 sizeof(rte_igb_stats_strings[0]))
524
525 static const struct rte_igb_xstats_name_off rte_igbvf_stats_strings[] = {
526         {"rx_multicast_packets", offsetof(struct e1000_vf_stats, mprc)},
527         {"rx_good_loopback_packets", offsetof(struct e1000_vf_stats, gprlbc)},
528         {"tx_good_loopback_packets", offsetof(struct e1000_vf_stats, gptlbc)},
529         {"rx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gorlbc)},
530         {"tx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gotlbc)},
531 };
532
533 #define IGBVF_NB_XSTATS (sizeof(rte_igbvf_stats_strings) / \
534                 sizeof(rte_igbvf_stats_strings[0]))
535
536
537 static inline void
538 igb_intr_enable(struct rte_eth_dev *dev)
539 {
540         struct e1000_interrupt *intr =
541                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
542         struct e1000_hw *hw =
543                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
544         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
545         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
546
547         if (rte_intr_allow_others(intr_handle) &&
548                 dev->data->dev_conf.intr_conf.lsc != 0) {
549                 E1000_WRITE_REG(hw, E1000_EIMS, 1 << IGB_MSIX_OTHER_INTR_VEC);
550         }
551
552         E1000_WRITE_REG(hw, E1000_IMS, intr->mask);
553         E1000_WRITE_FLUSH(hw);
554 }
555
556 static void
557 igb_intr_disable(struct rte_eth_dev *dev)
558 {
559         struct e1000_hw *hw =
560                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
561         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
562         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
563
564         if (rte_intr_allow_others(intr_handle) &&
565                 dev->data->dev_conf.intr_conf.lsc != 0) {
566                 E1000_WRITE_REG(hw, E1000_EIMC, 1 << IGB_MSIX_OTHER_INTR_VEC);
567         }
568
569         E1000_WRITE_REG(hw, E1000_IMC, ~0);
570         E1000_WRITE_FLUSH(hw);
571 }
572
573 static inline void
574 igbvf_intr_enable(struct rte_eth_dev *dev)
575 {
576         struct e1000_hw *hw =
577                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
578
579         /* only for mailbox */
580         E1000_WRITE_REG(hw, E1000_EIAM, 1 << E1000_VTIVAR_MISC_MAILBOX);
581         E1000_WRITE_REG(hw, E1000_EIAC, 1 << E1000_VTIVAR_MISC_MAILBOX);
582         E1000_WRITE_REG(hw, E1000_EIMS, 1 << E1000_VTIVAR_MISC_MAILBOX);
583         E1000_WRITE_FLUSH(hw);
584 }
585
586 /* only for mailbox now. If RX/TX needed, should extend this function.  */
587 static void
588 igbvf_set_ivar_map(struct e1000_hw *hw, uint8_t msix_vector)
589 {
590         uint32_t tmp = 0;
591
592         /* mailbox */
593         tmp |= (msix_vector & E1000_VTIVAR_MISC_INTR_MASK);
594         tmp |= E1000_VTIVAR_VALID;
595         E1000_WRITE_REG(hw, E1000_VTIVAR_MISC, tmp);
596 }
597
598 static void
599 eth_igbvf_configure_msix_intr(struct rte_eth_dev *dev)
600 {
601         struct e1000_hw *hw =
602                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
603
604         /* Configure VF other cause ivar */
605         igbvf_set_ivar_map(hw, E1000_VTIVAR_MISC_MAILBOX);
606 }
607
608 static inline int32_t
609 igb_pf_reset_hw(struct e1000_hw *hw)
610 {
611         uint32_t ctrl_ext;
612         int32_t status;
613
614         status = e1000_reset_hw(hw);
615
616         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
617         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
618         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
619         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
620         E1000_WRITE_FLUSH(hw);
621
622         return status;
623 }
624
625 static void
626 igb_identify_hardware(struct rte_eth_dev *dev, struct rte_pci_device *pci_dev)
627 {
628         struct e1000_hw *hw =
629                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
630
631
632         hw->vendor_id = pci_dev->id.vendor_id;
633         hw->device_id = pci_dev->id.device_id;
634         hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
635         hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
636
637         e1000_set_mac_type(hw);
638
639         /* need to check if it is a vf device below */
640 }
641
642 static int
643 igb_reset_swfw_lock(struct e1000_hw *hw)
644 {
645         int ret_val;
646
647         /*
648          * Do mac ops initialization manually here, since we will need
649          * some function pointers set by this call.
650          */
651         ret_val = e1000_init_mac_params(hw);
652         if (ret_val)
653                 return ret_val;
654
655         /*
656          * SMBI lock should not fail in this early stage. If this is the case,
657          * it is due to an improper exit of the application.
658          * So force the release of the faulty lock.
659          */
660         if (e1000_get_hw_semaphore_generic(hw) < 0) {
661                 PMD_DRV_LOG(DEBUG, "SMBI lock released");
662         }
663         e1000_put_hw_semaphore_generic(hw);
664
665         if (hw->mac.ops.acquire_swfw_sync != NULL) {
666                 uint16_t mask;
667
668                 /*
669                  * Phy lock should not fail in this early stage. If this is the case,
670                  * it is due to an improper exit of the application.
671                  * So force the release of the faulty lock.
672                  */
673                 mask = E1000_SWFW_PHY0_SM << hw->bus.func;
674                 if (hw->bus.func > E1000_FUNC_1)
675                         mask <<= 2;
676                 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
677                         PMD_DRV_LOG(DEBUG, "SWFW phy%d lock released",
678                                     hw->bus.func);
679                 }
680                 hw->mac.ops.release_swfw_sync(hw, mask);
681
682                 /*
683                  * This one is more tricky since it is common to all ports; but
684                  * swfw_sync retries last long enough (1s) to be almost sure that if
685                  * lock can not be taken it is due to an improper lock of the
686                  * semaphore.
687                  */
688                 mask = E1000_SWFW_EEP_SM;
689                 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
690                         PMD_DRV_LOG(DEBUG, "SWFW common locks released");
691                 }
692                 hw->mac.ops.release_swfw_sync(hw, mask);
693         }
694
695         return E1000_SUCCESS;
696 }
697
698 /* Remove all ntuple filters of the device */
699 static int igb_ntuple_filter_uninit(struct rte_eth_dev *eth_dev)
700 {
701         struct e1000_filter_info *filter_info =
702                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
703         struct e1000_5tuple_filter *p_5tuple;
704         struct e1000_2tuple_filter *p_2tuple;
705
706         while ((p_5tuple = TAILQ_FIRST(&filter_info->fivetuple_list))) {
707                 TAILQ_REMOVE(&filter_info->fivetuple_list,
708                         p_5tuple, entries);
709                         rte_free(p_5tuple);
710         }
711         filter_info->fivetuple_mask = 0;
712         while ((p_2tuple = TAILQ_FIRST(&filter_info->twotuple_list))) {
713                 TAILQ_REMOVE(&filter_info->twotuple_list,
714                         p_2tuple, entries);
715                         rte_free(p_2tuple);
716         }
717         filter_info->twotuple_mask = 0;
718
719         return 0;
720 }
721
722 /* Remove all flex filters of the device */
723 static int igb_flex_filter_uninit(struct rte_eth_dev *eth_dev)
724 {
725         struct e1000_filter_info *filter_info =
726                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
727         struct e1000_flex_filter *p_flex;
728
729         while ((p_flex = TAILQ_FIRST(&filter_info->flex_list))) {
730                 TAILQ_REMOVE(&filter_info->flex_list, p_flex, entries);
731                 rte_free(p_flex);
732         }
733         filter_info->flex_mask = 0;
734
735         return 0;
736 }
737
738 static int
739 eth_igb_dev_init(struct rte_eth_dev *eth_dev)
740 {
741         int error = 0;
742         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
743         struct e1000_hw *hw =
744                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
745         struct e1000_vfta * shadow_vfta =
746                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
747         struct e1000_filter_info *filter_info =
748                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
749         struct e1000_adapter *adapter =
750                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
751
752         uint32_t ctrl_ext;
753
754         eth_dev->dev_ops = &eth_igb_ops;
755         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
756         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
757         eth_dev->tx_pkt_prepare = &eth_igb_prep_pkts;
758
759         /* for secondary processes, we don't initialise any further as primary
760          * has already done this work. Only check we don't need a different
761          * RX function */
762         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
763                 if (eth_dev->data->scattered_rx)
764                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
765                 return 0;
766         }
767
768         rte_eth_copy_pci_info(eth_dev, pci_dev);
769
770         hw->hw_addr= (void *)pci_dev->mem_resource[0].addr;
771
772         igb_identify_hardware(eth_dev, pci_dev);
773         if (e1000_setup_init_funcs(hw, FALSE) != E1000_SUCCESS) {
774                 error = -EIO;
775                 goto err_late;
776         }
777
778         e1000_get_bus_info(hw);
779
780         /* Reset any pending lock */
781         if (igb_reset_swfw_lock(hw) != E1000_SUCCESS) {
782                 error = -EIO;
783                 goto err_late;
784         }
785
786         /* Finish initialization */
787         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) {
788                 error = -EIO;
789                 goto err_late;
790         }
791
792         hw->mac.autoneg = 1;
793         hw->phy.autoneg_wait_to_complete = 0;
794         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
795
796         /* Copper options */
797         if (hw->phy.media_type == e1000_media_type_copper) {
798                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
799                 hw->phy.disable_polarity_correction = 0;
800                 hw->phy.ms_type = e1000_ms_hw_default;
801         }
802
803         /*
804          * Start from a known state, this is important in reading the nvm
805          * and mac from that.
806          */
807         igb_pf_reset_hw(hw);
808
809         /* Make sure we have a good EEPROM before we read from it */
810         if (e1000_validate_nvm_checksum(hw) < 0) {
811                 /*
812                  * Some PCI-E parts fail the first check due to
813                  * the link being in sleep state, call it again,
814                  * if it fails a second time its a real issue.
815                  */
816                 if (e1000_validate_nvm_checksum(hw) < 0) {
817                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
818                         error = -EIO;
819                         goto err_late;
820                 }
821         }
822
823         /* Read the permanent MAC address out of the EEPROM */
824         if (e1000_read_mac_addr(hw) != 0) {
825                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
826                 error = -EIO;
827                 goto err_late;
828         }
829
830         /* Allocate memory for storing MAC addresses */
831         eth_dev->data->mac_addrs = rte_zmalloc("e1000",
832                 ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0);
833         if (eth_dev->data->mac_addrs == NULL) {
834                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
835                                                 "store MAC addresses",
836                                 ETHER_ADDR_LEN * hw->mac.rar_entry_count);
837                 error = -ENOMEM;
838                 goto err_late;
839         }
840
841         /* Copy the permanent MAC address */
842         ether_addr_copy((struct ether_addr *)hw->mac.addr, &eth_dev->data->mac_addrs[0]);
843
844         /* initialize the vfta */
845         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
846
847         /* Now initialize the hardware */
848         if (igb_hardware_init(hw) != 0) {
849                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
850                 rte_free(eth_dev->data->mac_addrs);
851                 eth_dev->data->mac_addrs = NULL;
852                 error = -ENODEV;
853                 goto err_late;
854         }
855         hw->mac.get_link_status = 1;
856         adapter->stopped = 0;
857
858         /* Indicate SOL/IDER usage */
859         if (e1000_check_reset_block(hw) < 0) {
860                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to"
861                                         "SOL/IDER session");
862         }
863
864         /* initialize PF if max_vfs not zero */
865         igb_pf_host_init(eth_dev);
866
867         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
868         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
869         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
870         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
871         E1000_WRITE_FLUSH(hw);
872
873         PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
874                      eth_dev->data->port_id, pci_dev->id.vendor_id,
875                      pci_dev->id.device_id);
876
877         rte_intr_callback_register(&pci_dev->intr_handle,
878                                    eth_igb_interrupt_handler,
879                                    (void *)eth_dev);
880
881         /* enable uio/vfio intr/eventfd mapping */
882         rte_intr_enable(&pci_dev->intr_handle);
883
884         /* enable support intr */
885         igb_intr_enable(eth_dev);
886
887         /* initialize filter info */
888         memset(filter_info, 0,
889                sizeof(struct e1000_filter_info));
890
891         TAILQ_INIT(&filter_info->flex_list);
892         TAILQ_INIT(&filter_info->twotuple_list);
893         TAILQ_INIT(&filter_info->fivetuple_list);
894
895         TAILQ_INIT(&igb_filter_ntuple_list);
896         TAILQ_INIT(&igb_filter_ethertype_list);
897         TAILQ_INIT(&igb_filter_syn_list);
898         TAILQ_INIT(&igb_filter_flex_list);
899         TAILQ_INIT(&igb_filter_rss_list);
900         TAILQ_INIT(&igb_flow_list);
901
902         return 0;
903
904 err_late:
905         igb_hw_control_release(hw);
906
907         return error;
908 }
909
910 static int
911 eth_igb_dev_uninit(struct rte_eth_dev *eth_dev)
912 {
913         struct rte_pci_device *pci_dev;
914         struct rte_intr_handle *intr_handle;
915         struct e1000_hw *hw;
916         struct e1000_adapter *adapter =
917                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
918         struct e1000_filter_info *filter_info =
919                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
920
921         PMD_INIT_FUNC_TRACE();
922
923         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
924                 return -EPERM;
925
926         hw = E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
927         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
928         intr_handle = &pci_dev->intr_handle;
929
930         if (adapter->stopped == 0)
931                 eth_igb_close(eth_dev);
932
933         eth_dev->dev_ops = NULL;
934         eth_dev->rx_pkt_burst = NULL;
935         eth_dev->tx_pkt_burst = NULL;
936
937         /* Reset any pending lock */
938         igb_reset_swfw_lock(hw);
939
940         /* uninitialize PF if max_vfs not zero */
941         igb_pf_host_uninit(eth_dev);
942
943         /* disable uio intr before callback unregister */
944         rte_intr_disable(intr_handle);
945         rte_intr_callback_unregister(intr_handle,
946                                      eth_igb_interrupt_handler, eth_dev);
947
948         /* clear the SYN filter info */
949         filter_info->syn_info = 0;
950
951         /* clear the ethertype filters info */
952         filter_info->ethertype_mask = 0;
953         memset(filter_info->ethertype_filters, 0,
954                 E1000_MAX_ETQF_FILTERS * sizeof(struct igb_ethertype_filter));
955
956         /* clear the rss filter info */
957         memset(&filter_info->rss_info, 0,
958                 sizeof(struct igb_rte_flow_rss_conf));
959
960         /* remove all ntuple filters of the device */
961         igb_ntuple_filter_uninit(eth_dev);
962
963         /* remove all flex filters of the device */
964         igb_flex_filter_uninit(eth_dev);
965
966         /* clear all the filters list */
967         igb_filterlist_flush(eth_dev);
968
969         return 0;
970 }
971
972 /*
973  * Virtual Function device init
974  */
975 static int
976 eth_igbvf_dev_init(struct rte_eth_dev *eth_dev)
977 {
978         struct rte_pci_device *pci_dev;
979         struct rte_intr_handle *intr_handle;
980         struct e1000_adapter *adapter =
981                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
982         struct e1000_hw *hw =
983                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
984         int diag;
985         struct ether_addr *perm_addr = (struct ether_addr *)hw->mac.perm_addr;
986
987         PMD_INIT_FUNC_TRACE();
988
989         eth_dev->dev_ops = &igbvf_eth_dev_ops;
990         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
991         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
992         eth_dev->tx_pkt_prepare = &eth_igb_prep_pkts;
993
994         /* for secondary processes, we don't initialise any further as primary
995          * has already done this work. Only check we don't need a different
996          * RX function */
997         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
998                 if (eth_dev->data->scattered_rx)
999                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
1000                 return 0;
1001         }
1002
1003         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1004         rte_eth_copy_pci_info(eth_dev, pci_dev);
1005
1006         hw->device_id = pci_dev->id.device_id;
1007         hw->vendor_id = pci_dev->id.vendor_id;
1008         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
1009         adapter->stopped = 0;
1010
1011         /* Initialize the shared code (base driver) */
1012         diag = e1000_setup_init_funcs(hw, TRUE);
1013         if (diag != 0) {
1014                 PMD_INIT_LOG(ERR, "Shared code init failed for igbvf: %d",
1015                         diag);
1016                 return -EIO;
1017         }
1018
1019         /* init_mailbox_params */
1020         hw->mbx.ops.init_params(hw);
1021
1022         /* Disable the interrupts for VF */
1023         igbvf_intr_disable(hw);
1024
1025         diag = hw->mac.ops.reset_hw(hw);
1026
1027         /* Allocate memory for storing MAC addresses */
1028         eth_dev->data->mac_addrs = rte_zmalloc("igbvf", ETHER_ADDR_LEN *
1029                 hw->mac.rar_entry_count, 0);
1030         if (eth_dev->data->mac_addrs == NULL) {
1031                 PMD_INIT_LOG(ERR,
1032                         "Failed to allocate %d bytes needed to store MAC "
1033                         "addresses",
1034                         ETHER_ADDR_LEN * hw->mac.rar_entry_count);
1035                 return -ENOMEM;
1036         }
1037
1038         /* Generate a random MAC address, if none was assigned by PF. */
1039         if (is_zero_ether_addr(perm_addr)) {
1040                 eth_random_addr(perm_addr->addr_bytes);
1041                 PMD_INIT_LOG(INFO, "\tVF MAC address not assigned by Host PF");
1042                 PMD_INIT_LOG(INFO, "\tAssign randomly generated MAC address "
1043                              "%02x:%02x:%02x:%02x:%02x:%02x",
1044                              perm_addr->addr_bytes[0],
1045                              perm_addr->addr_bytes[1],
1046                              perm_addr->addr_bytes[2],
1047                              perm_addr->addr_bytes[3],
1048                              perm_addr->addr_bytes[4],
1049                              perm_addr->addr_bytes[5]);
1050         }
1051
1052         diag = e1000_rar_set(hw, perm_addr->addr_bytes, 0);
1053         if (diag) {
1054                 rte_free(eth_dev->data->mac_addrs);
1055                 eth_dev->data->mac_addrs = NULL;
1056                 return diag;
1057         }
1058         /* Copy the permanent MAC address */
1059         ether_addr_copy((struct ether_addr *) hw->mac.perm_addr,
1060                         &eth_dev->data->mac_addrs[0]);
1061
1062         PMD_INIT_LOG(DEBUG, "port %d vendorID=0x%x deviceID=0x%x "
1063                      "mac.type=%s",
1064                      eth_dev->data->port_id, pci_dev->id.vendor_id,
1065                      pci_dev->id.device_id, "igb_mac_82576_vf");
1066
1067         intr_handle = &pci_dev->intr_handle;
1068         rte_intr_callback_register(intr_handle,
1069                                    eth_igbvf_interrupt_handler, eth_dev);
1070
1071         return 0;
1072 }
1073
1074 static int
1075 eth_igbvf_dev_uninit(struct rte_eth_dev *eth_dev)
1076 {
1077         struct e1000_adapter *adapter =
1078                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
1079         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1080
1081         PMD_INIT_FUNC_TRACE();
1082
1083         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1084                 return -EPERM;
1085
1086         if (adapter->stopped == 0)
1087                 igbvf_dev_close(eth_dev);
1088
1089         eth_dev->dev_ops = NULL;
1090         eth_dev->rx_pkt_burst = NULL;
1091         eth_dev->tx_pkt_burst = NULL;
1092
1093         /* disable uio intr before callback unregister */
1094         rte_intr_disable(&pci_dev->intr_handle);
1095         rte_intr_callback_unregister(&pci_dev->intr_handle,
1096                                      eth_igbvf_interrupt_handler,
1097                                      (void *)eth_dev);
1098
1099         return 0;
1100 }
1101
1102 static int eth_igb_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1103         struct rte_pci_device *pci_dev)
1104 {
1105         return rte_eth_dev_pci_generic_probe(pci_dev,
1106                 sizeof(struct e1000_adapter), eth_igb_dev_init);
1107 }
1108
1109 static int eth_igb_pci_remove(struct rte_pci_device *pci_dev)
1110 {
1111         return rte_eth_dev_pci_generic_remove(pci_dev, eth_igb_dev_uninit);
1112 }
1113
1114 static struct rte_pci_driver rte_igb_pmd = {
1115         .id_table = pci_id_igb_map,
1116         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
1117                      RTE_PCI_DRV_IOVA_AS_VA,
1118         .probe = eth_igb_pci_probe,
1119         .remove = eth_igb_pci_remove,
1120 };
1121
1122
1123 static int eth_igbvf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1124         struct rte_pci_device *pci_dev)
1125 {
1126         return rte_eth_dev_pci_generic_probe(pci_dev,
1127                 sizeof(struct e1000_adapter), eth_igbvf_dev_init);
1128 }
1129
1130 static int eth_igbvf_pci_remove(struct rte_pci_device *pci_dev)
1131 {
1132         return rte_eth_dev_pci_generic_remove(pci_dev, eth_igbvf_dev_uninit);
1133 }
1134
1135 /*
1136  * virtual function driver struct
1137  */
1138 static struct rte_pci_driver rte_igbvf_pmd = {
1139         .id_table = pci_id_igbvf_map,
1140         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_IOVA_AS_VA,
1141         .probe = eth_igbvf_pci_probe,
1142         .remove = eth_igbvf_pci_remove,
1143 };
1144
1145 static void
1146 igb_vmdq_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1147 {
1148         struct e1000_hw *hw =
1149                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1150         /* RCTL: enable VLAN filter since VMDq always use VLAN filter */
1151         uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
1152         rctl |= E1000_RCTL_VFE;
1153         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1154 }
1155
1156 static int
1157 igb_check_mq_mode(struct rte_eth_dev *dev)
1158 {
1159         enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
1160         enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
1161         uint16_t nb_rx_q = dev->data->nb_rx_queues;
1162         uint16_t nb_tx_q = dev->data->nb_tx_queues;
1163
1164         if ((rx_mq_mode & ETH_MQ_RX_DCB_FLAG) ||
1165             tx_mq_mode == ETH_MQ_TX_DCB ||
1166             tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
1167                 PMD_INIT_LOG(ERR, "DCB mode is not supported.");
1168                 return -EINVAL;
1169         }
1170         if (RTE_ETH_DEV_SRIOV(dev).active != 0) {
1171                 /* Check multi-queue mode.
1172                  * To no break software we accept ETH_MQ_RX_NONE as this might
1173                  * be used to turn off VLAN filter.
1174                  */
1175
1176                 if (rx_mq_mode == ETH_MQ_RX_NONE ||
1177                     rx_mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
1178                         dev->data->dev_conf.rxmode.mq_mode = ETH_MQ_RX_VMDQ_ONLY;
1179                         RTE_ETH_DEV_SRIOV(dev).nb_q_per_pool = 1;
1180                 } else {
1181                         /* Only support one queue on VFs.
1182                          * RSS together with SRIOV is not supported.
1183                          */
1184                         PMD_INIT_LOG(ERR, "SRIOV is active,"
1185                                         " wrong mq_mode rx %d.",
1186                                         rx_mq_mode);
1187                         return -EINVAL;
1188                 }
1189                 /* TX mode is not used here, so mode might be ignored.*/
1190                 if (tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
1191                         /* SRIOV only works in VMDq enable mode */
1192                         PMD_INIT_LOG(WARNING, "SRIOV is active,"
1193                                         " TX mode %d is not supported. "
1194                                         " Driver will behave as %d mode.",
1195                                         tx_mq_mode, ETH_MQ_TX_VMDQ_ONLY);
1196                 }
1197
1198                 /* check valid queue number */
1199                 if ((nb_rx_q > 1) || (nb_tx_q > 1)) {
1200                         PMD_INIT_LOG(ERR, "SRIOV is active,"
1201                                         " only support one queue on VFs.");
1202                         return -EINVAL;
1203                 }
1204         } else {
1205                 /* To no break software that set invalid mode, only display
1206                  * warning if invalid mode is used.
1207                  */
1208                 if (rx_mq_mode != ETH_MQ_RX_NONE &&
1209                     rx_mq_mode != ETH_MQ_RX_VMDQ_ONLY &&
1210                     rx_mq_mode != ETH_MQ_RX_RSS) {
1211                         /* RSS together with VMDq not supported*/
1212                         PMD_INIT_LOG(ERR, "RX mode %d is not supported.",
1213                                      rx_mq_mode);
1214                         return -EINVAL;
1215                 }
1216
1217                 if (tx_mq_mode != ETH_MQ_TX_NONE &&
1218                     tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
1219                         PMD_INIT_LOG(WARNING, "TX mode %d is not supported."
1220                                         " Due to txmode is meaningless in this"
1221                                         " driver, just ignore.",
1222                                         tx_mq_mode);
1223                 }
1224         }
1225         return 0;
1226 }
1227
1228 static int
1229 eth_igb_configure(struct rte_eth_dev *dev)
1230 {
1231         struct e1000_interrupt *intr =
1232                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1233         int ret;
1234
1235         PMD_INIT_FUNC_TRACE();
1236
1237         /* multipe queue mode checking */
1238         ret  = igb_check_mq_mode(dev);
1239         if (ret != 0) {
1240                 PMD_DRV_LOG(ERR, "igb_check_mq_mode fails with %d.",
1241                             ret);
1242                 return ret;
1243         }
1244
1245         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1246         PMD_INIT_FUNC_TRACE();
1247
1248         return 0;
1249 }
1250
1251 static void
1252 eth_igb_rxtx_control(struct rte_eth_dev *dev,
1253                      bool enable)
1254 {
1255         struct e1000_hw *hw =
1256                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1257         uint32_t tctl, rctl;
1258
1259         tctl = E1000_READ_REG(hw, E1000_TCTL);
1260         rctl = E1000_READ_REG(hw, E1000_RCTL);
1261
1262         if (enable) {
1263                 /* enable Tx/Rx */
1264                 tctl |= E1000_TCTL_EN;
1265                 rctl |= E1000_RCTL_EN;
1266         } else {
1267                 /* disable Tx/Rx */
1268                 tctl &= ~E1000_TCTL_EN;
1269                 rctl &= ~E1000_RCTL_EN;
1270         }
1271         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1272         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1273         E1000_WRITE_FLUSH(hw);
1274 }
1275
1276 static int
1277 eth_igb_start(struct rte_eth_dev *dev)
1278 {
1279         struct e1000_hw *hw =
1280                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1281         struct e1000_adapter *adapter =
1282                 E1000_DEV_PRIVATE(dev->data->dev_private);
1283         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1284         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1285         int ret, mask;
1286         uint32_t intr_vector = 0;
1287         uint32_t ctrl_ext;
1288         uint32_t *speeds;
1289         int num_speeds;
1290         bool autoneg;
1291
1292         PMD_INIT_FUNC_TRACE();
1293
1294         /* disable uio/vfio intr/eventfd mapping */
1295         rte_intr_disable(intr_handle);
1296
1297         /* Power up the phy. Needed to make the link go Up */
1298         eth_igb_dev_set_link_up(dev);
1299
1300         /*
1301          * Packet Buffer Allocation (PBA)
1302          * Writing PBA sets the receive portion of the buffer
1303          * the remainder is used for the transmit buffer.
1304          */
1305         if (hw->mac.type == e1000_82575) {
1306                 uint32_t pba;
1307
1308                 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1309                 E1000_WRITE_REG(hw, E1000_PBA, pba);
1310         }
1311
1312         /* Put the address into the Receive Address Array */
1313         e1000_rar_set(hw, hw->mac.addr, 0);
1314
1315         /* Initialize the hardware */
1316         if (igb_hardware_init(hw)) {
1317                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
1318                 return -EIO;
1319         }
1320         adapter->stopped = 0;
1321
1322         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN);
1323
1324         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1325         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
1326         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
1327         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1328         E1000_WRITE_FLUSH(hw);
1329
1330         /* configure PF module if SRIOV enabled */
1331         igb_pf_host_configure(dev);
1332
1333         /* check and configure queue intr-vector mapping */
1334         if ((rte_intr_cap_multiple(intr_handle) ||
1335              !RTE_ETH_DEV_SRIOV(dev).active) &&
1336             dev->data->dev_conf.intr_conf.rxq != 0) {
1337                 intr_vector = dev->data->nb_rx_queues;
1338                 if (rte_intr_efd_enable(intr_handle, intr_vector))
1339                         return -1;
1340         }
1341
1342         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
1343                 intr_handle->intr_vec =
1344                         rte_zmalloc("intr_vec",
1345                                     dev->data->nb_rx_queues * sizeof(int), 0);
1346                 if (intr_handle->intr_vec == NULL) {
1347                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
1348                                      " intr_vec", dev->data->nb_rx_queues);
1349                         return -ENOMEM;
1350                 }
1351         }
1352
1353         /* confiugre msix for rx interrupt */
1354         eth_igb_configure_msix_intr(dev);
1355
1356         /* Configure for OS presence */
1357         igb_init_manageability(hw);
1358
1359         eth_igb_tx_init(dev);
1360
1361         /* This can fail when allocating mbufs for descriptor rings */
1362         ret = eth_igb_rx_init(dev);
1363         if (ret) {
1364                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
1365                 igb_dev_clear_queues(dev);
1366                 return ret;
1367         }
1368
1369         e1000_clear_hw_cntrs_base_generic(hw);
1370
1371         /*
1372          * VLAN Offload Settings
1373          */
1374         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
1375                         ETH_VLAN_EXTEND_MASK;
1376         ret = eth_igb_vlan_offload_set(dev, mask);
1377         if (ret) {
1378                 PMD_INIT_LOG(ERR, "Unable to set vlan offload");
1379                 igb_dev_clear_queues(dev);
1380                 return ret;
1381         }
1382
1383         if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
1384                 /* Enable VLAN filter since VMDq always use VLAN filter */
1385                 igb_vmdq_vlan_hw_filter_enable(dev);
1386         }
1387
1388         if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) ||
1389                 (hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i210) ||
1390                 (hw->mac.type == e1000_i211)) {
1391                 /* Configure EITR with the maximum possible value (0xFFFF) */
1392                 E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF);
1393         }
1394
1395         /* Setup link speed and duplex */
1396         speeds = &dev->data->dev_conf.link_speeds;
1397         if (*speeds == ETH_LINK_SPEED_AUTONEG) {
1398                 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
1399                 hw->mac.autoneg = 1;
1400         } else {
1401                 num_speeds = 0;
1402                 autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
1403
1404                 /* Reset */
1405                 hw->phy.autoneg_advertised = 0;
1406
1407                 if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1408                                 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1409                                 ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
1410                         num_speeds = -1;
1411                         goto error_invalid_config;
1412                 }
1413                 if (*speeds & ETH_LINK_SPEED_10M_HD) {
1414                         hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
1415                         num_speeds++;
1416                 }
1417                 if (*speeds & ETH_LINK_SPEED_10M) {
1418                         hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
1419                         num_speeds++;
1420                 }
1421                 if (*speeds & ETH_LINK_SPEED_100M_HD) {
1422                         hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
1423                         num_speeds++;
1424                 }
1425                 if (*speeds & ETH_LINK_SPEED_100M) {
1426                         hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
1427                         num_speeds++;
1428                 }
1429                 if (*speeds & ETH_LINK_SPEED_1G) {
1430                         hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
1431                         num_speeds++;
1432                 }
1433                 if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
1434                         goto error_invalid_config;
1435
1436                 /* Set/reset the mac.autoneg based on the link speed,
1437                  * fixed or not
1438                  */
1439                 if (!autoneg) {
1440                         hw->mac.autoneg = 0;
1441                         hw->mac.forced_speed_duplex =
1442                                         hw->phy.autoneg_advertised;
1443                 } else {
1444                         hw->mac.autoneg = 1;
1445                 }
1446         }
1447
1448         e1000_setup_link(hw);
1449
1450         if (rte_intr_allow_others(intr_handle)) {
1451                 /* check if lsc interrupt is enabled */
1452                 if (dev->data->dev_conf.intr_conf.lsc != 0)
1453                         eth_igb_lsc_interrupt_setup(dev, TRUE);
1454                 else
1455                         eth_igb_lsc_interrupt_setup(dev, FALSE);
1456         } else {
1457                 rte_intr_callback_unregister(intr_handle,
1458                                              eth_igb_interrupt_handler,
1459                                              (void *)dev);
1460                 if (dev->data->dev_conf.intr_conf.lsc != 0)
1461                         PMD_INIT_LOG(INFO, "lsc won't enable because of"
1462                                      " no intr multiplex");
1463         }
1464
1465         /* check if rxq interrupt is enabled */
1466         if (dev->data->dev_conf.intr_conf.rxq != 0 &&
1467             rte_intr_dp_is_en(intr_handle))
1468                 eth_igb_rxq_interrupt_setup(dev);
1469
1470         /* enable uio/vfio intr/eventfd mapping */
1471         rte_intr_enable(intr_handle);
1472
1473         /* resume enabled intr since hw reset */
1474         igb_intr_enable(dev);
1475
1476         /* restore all types filter */
1477         igb_filter_restore(dev);
1478
1479         eth_igb_rxtx_control(dev, true);
1480         eth_igb_link_update(dev, 0);
1481
1482         PMD_INIT_LOG(DEBUG, "<<");
1483
1484         return 0;
1485
1486 error_invalid_config:
1487         PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
1488                      dev->data->dev_conf.link_speeds, dev->data->port_id);
1489         igb_dev_clear_queues(dev);
1490         return -EINVAL;
1491 }
1492
1493 /*********************************************************************
1494  *
1495  *  This routine disables all traffic on the adapter by issuing a
1496  *  global reset on the MAC.
1497  *
1498  **********************************************************************/
1499 static void
1500 eth_igb_stop(struct rte_eth_dev *dev)
1501 {
1502         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1503         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1504         struct rte_eth_link link;
1505         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1506
1507         eth_igb_rxtx_control(dev, false);
1508
1509         igb_intr_disable(dev);
1510
1511         /* disable intr eventfd mapping */
1512         rte_intr_disable(intr_handle);
1513
1514         igb_pf_reset_hw(hw);
1515         E1000_WRITE_REG(hw, E1000_WUC, 0);
1516
1517         /* Set bit for Go Link disconnect */
1518         if (hw->mac.type >= e1000_82580) {
1519                 uint32_t phpm_reg;
1520
1521                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1522                 phpm_reg |= E1000_82580_PM_GO_LINKD;
1523                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1524         }
1525
1526         /* Power down the phy. Needed to make the link go Down */
1527         eth_igb_dev_set_link_down(dev);
1528
1529         igb_dev_clear_queues(dev);
1530
1531         /* clear the recorded link status */
1532         memset(&link, 0, sizeof(link));
1533         rte_eth_linkstatus_set(dev, &link);
1534
1535         if (!rte_intr_allow_others(intr_handle))
1536                 /* resume to the default handler */
1537                 rte_intr_callback_register(intr_handle,
1538                                            eth_igb_interrupt_handler,
1539                                            (void *)dev);
1540
1541         /* Clean datapath event and queue/vec mapping */
1542         rte_intr_efd_disable(intr_handle);
1543         if (intr_handle->intr_vec != NULL) {
1544                 rte_free(intr_handle->intr_vec);
1545                 intr_handle->intr_vec = NULL;
1546         }
1547 }
1548
1549 static int
1550 eth_igb_dev_set_link_up(struct rte_eth_dev *dev)
1551 {
1552         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1553
1554         if (hw->phy.media_type == e1000_media_type_copper)
1555                 e1000_power_up_phy(hw);
1556         else
1557                 e1000_power_up_fiber_serdes_link(hw);
1558
1559         return 0;
1560 }
1561
1562 static int
1563 eth_igb_dev_set_link_down(struct rte_eth_dev *dev)
1564 {
1565         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1566
1567         if (hw->phy.media_type == e1000_media_type_copper)
1568                 e1000_power_down_phy(hw);
1569         else
1570                 e1000_shutdown_fiber_serdes_link(hw);
1571
1572         return 0;
1573 }
1574
1575 static void
1576 eth_igb_close(struct rte_eth_dev *dev)
1577 {
1578         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1579         struct e1000_adapter *adapter =
1580                 E1000_DEV_PRIVATE(dev->data->dev_private);
1581         struct rte_eth_link link;
1582         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1583         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1584
1585         eth_igb_stop(dev);
1586         adapter->stopped = 1;
1587
1588         e1000_phy_hw_reset(hw);
1589         igb_release_manageability(hw);
1590         igb_hw_control_release(hw);
1591
1592         /* Clear bit for Go Link disconnect */
1593         if (hw->mac.type >= e1000_82580) {
1594                 uint32_t phpm_reg;
1595
1596                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1597                 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1598                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1599         }
1600
1601         igb_dev_free_queues(dev);
1602
1603         if (intr_handle->intr_vec) {
1604                 rte_free(intr_handle->intr_vec);
1605                 intr_handle->intr_vec = NULL;
1606         }
1607
1608         memset(&link, 0, sizeof(link));
1609         rte_eth_linkstatus_set(dev, &link);
1610 }
1611
1612 /*
1613  * Reset PF device.
1614  */
1615 static int
1616 eth_igb_reset(struct rte_eth_dev *dev)
1617 {
1618         int ret;
1619
1620         /* When a DPDK PMD PF begin to reset PF port, it should notify all
1621          * its VF to make them align with it. The detailed notification
1622          * mechanism is PMD specific and is currently not implemented.
1623          * To avoid unexpected behavior in VF, currently reset of PF with
1624          * SR-IOV activation is not supported. It might be supported later.
1625          */
1626         if (dev->data->sriov.active)
1627                 return -ENOTSUP;
1628
1629         ret = eth_igb_dev_uninit(dev);
1630         if (ret)
1631                 return ret;
1632
1633         ret = eth_igb_dev_init(dev);
1634
1635         return ret;
1636 }
1637
1638
1639 static int
1640 igb_get_rx_buffer_size(struct e1000_hw *hw)
1641 {
1642         uint32_t rx_buf_size;
1643         if (hw->mac.type == e1000_82576) {
1644                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10;
1645         } else if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i350) {
1646                 /* PBS needs to be translated according to a lookup table */
1647                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf);
1648                 rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size);
1649                 rx_buf_size = (rx_buf_size << 10);
1650         } else if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
1651                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0x3f) << 10;
1652         } else {
1653                 rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10;
1654         }
1655
1656         return rx_buf_size;
1657 }
1658
1659 /*********************************************************************
1660  *
1661  *  Initialize the hardware
1662  *
1663  **********************************************************************/
1664 static int
1665 igb_hardware_init(struct e1000_hw *hw)
1666 {
1667         uint32_t rx_buf_size;
1668         int diag;
1669
1670         /* Let the firmware know the OS is in control */
1671         igb_hw_control_acquire(hw);
1672
1673         /*
1674          * These parameters control the automatic generation (Tx) and
1675          * response (Rx) to Ethernet PAUSE frames.
1676          * - High water mark should allow for at least two standard size (1518)
1677          *   frames to be received after sending an XOFF.
1678          * - Low water mark works best when it is very near the high water mark.
1679          *   This allows the receiver to restart by sending XON when it has
1680          *   drained a bit. Here we use an arbitrary value of 1500 which will
1681          *   restart after one full frame is pulled from the buffer. There
1682          *   could be several smaller frames in the buffer and if so they will
1683          *   not trigger the XON until their total number reduces the buffer
1684          *   by 1500.
1685          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1686          */
1687         rx_buf_size = igb_get_rx_buffer_size(hw);
1688
1689         hw->fc.high_water = rx_buf_size - (ETHER_MAX_LEN * 2);
1690         hw->fc.low_water = hw->fc.high_water - 1500;
1691         hw->fc.pause_time = IGB_FC_PAUSE_TIME;
1692         hw->fc.send_xon = 1;
1693
1694         /* Set Flow control, use the tunable location if sane */
1695         if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4))
1696                 hw->fc.requested_mode = igb_fc_setting;
1697         else
1698                 hw->fc.requested_mode = e1000_fc_none;
1699
1700         /* Issue a global reset */
1701         igb_pf_reset_hw(hw);
1702         E1000_WRITE_REG(hw, E1000_WUC, 0);
1703
1704         diag = e1000_init_hw(hw);
1705         if (diag < 0)
1706                 return diag;
1707
1708         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN);
1709         e1000_get_phy_info(hw);
1710         e1000_check_for_link(hw);
1711
1712         return 0;
1713 }
1714
1715 /* This function is based on igb_update_stats_counters() in igb/if_igb.c */
1716 static void
1717 igb_read_stats_registers(struct e1000_hw *hw, struct e1000_hw_stats *stats)
1718 {
1719         int pause_frames;
1720
1721         uint64_t old_gprc  = stats->gprc;
1722         uint64_t old_gptc  = stats->gptc;
1723         uint64_t old_tpr   = stats->tpr;
1724         uint64_t old_tpt   = stats->tpt;
1725         uint64_t old_rpthc = stats->rpthc;
1726         uint64_t old_hgptc = stats->hgptc;
1727
1728         if(hw->phy.media_type == e1000_media_type_copper ||
1729             (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1730                 stats->symerrs +=
1731                     E1000_READ_REG(hw,E1000_SYMERRS);
1732                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
1733         }
1734
1735         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
1736         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
1737         stats->scc += E1000_READ_REG(hw, E1000_SCC);
1738         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
1739
1740         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
1741         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
1742         stats->colc += E1000_READ_REG(hw, E1000_COLC);
1743         stats->dc += E1000_READ_REG(hw, E1000_DC);
1744         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
1745         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
1746         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
1747         /*
1748         ** For watchdog management we need to know if we have been
1749         ** paused during the last interval, so capture that here.
1750         */
1751         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
1752         stats->xoffrxc += pause_frames;
1753         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
1754         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
1755         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
1756         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
1757         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
1758         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
1759         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
1760         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
1761         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
1762         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
1763         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
1764         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
1765
1766         /* For the 64-bit byte counters the low dword must be read first. */
1767         /* Both registers clear on the read of the high dword */
1768
1769         /* Workaround CRC bytes included in size, take away 4 bytes/packet */
1770         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
1771         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
1772         stats->gorc -= (stats->gprc - old_gprc) * ETHER_CRC_LEN;
1773         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
1774         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
1775         stats->gotc -= (stats->gptc - old_gptc) * ETHER_CRC_LEN;
1776
1777         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
1778         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
1779         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
1780         stats->roc += E1000_READ_REG(hw, E1000_ROC);
1781         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
1782
1783         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
1784         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
1785
1786         stats->tor += E1000_READ_REG(hw, E1000_TORL);
1787         stats->tor += ((uint64_t)E1000_READ_REG(hw, E1000_TORH) << 32);
1788         stats->tor -= (stats->tpr - old_tpr) * ETHER_CRC_LEN;
1789         stats->tot += E1000_READ_REG(hw, E1000_TOTL);
1790         stats->tot += ((uint64_t)E1000_READ_REG(hw, E1000_TOTH) << 32);
1791         stats->tot -= (stats->tpt - old_tpt) * ETHER_CRC_LEN;
1792
1793         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
1794         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
1795         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
1796         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
1797         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
1798         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
1799         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
1800         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
1801
1802         /* Interrupt Counts */
1803
1804         stats->iac += E1000_READ_REG(hw, E1000_IAC);
1805         stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
1806         stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
1807         stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
1808         stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
1809         stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
1810         stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
1811         stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
1812         stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
1813
1814         /* Host to Card Statistics */
1815
1816         stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
1817         stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
1818         stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
1819         stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
1820         stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
1821         stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
1822         stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
1823         stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL);
1824         stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32);
1825         stats->hgorc -= (stats->rpthc - old_rpthc) * ETHER_CRC_LEN;
1826         stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL);
1827         stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32);
1828         stats->hgotc -= (stats->hgptc - old_hgptc) * ETHER_CRC_LEN;
1829         stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
1830         stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
1831         stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
1832
1833         stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
1834         stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
1835         stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
1836         stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
1837         stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
1838         stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
1839 }
1840
1841 static int
1842 eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
1843 {
1844         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1845         struct e1000_hw_stats *stats =
1846                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1847
1848         igb_read_stats_registers(hw, stats);
1849
1850         if (rte_stats == NULL)
1851                 return -EINVAL;
1852
1853         /* Rx Errors */
1854         rte_stats->imissed = stats->mpc;
1855         rte_stats->ierrors = stats->crcerrs +
1856                              stats->rlec + stats->ruc + stats->roc +
1857                              stats->rxerrc + stats->algnerrc + stats->cexterr;
1858
1859         /* Tx Errors */
1860         rte_stats->oerrors = stats->ecol + stats->latecol;
1861
1862         rte_stats->ipackets = stats->gprc;
1863         rte_stats->opackets = stats->gptc;
1864         rte_stats->ibytes   = stats->gorc;
1865         rte_stats->obytes   = stats->gotc;
1866         return 0;
1867 }
1868
1869 static void
1870 eth_igb_stats_reset(struct rte_eth_dev *dev)
1871 {
1872         struct e1000_hw_stats *hw_stats =
1873                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1874
1875         /* HW registers are cleared on read */
1876         eth_igb_stats_get(dev, NULL);
1877
1878         /* Reset software totals */
1879         memset(hw_stats, 0, sizeof(*hw_stats));
1880 }
1881
1882 static void
1883 eth_igb_xstats_reset(struct rte_eth_dev *dev)
1884 {
1885         struct e1000_hw_stats *stats =
1886                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1887
1888         /* HW registers are cleared on read */
1889         eth_igb_xstats_get(dev, NULL, IGB_NB_XSTATS);
1890
1891         /* Reset software totals */
1892         memset(stats, 0, sizeof(*stats));
1893 }
1894
1895 static int eth_igb_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
1896         struct rte_eth_xstat_name *xstats_names,
1897         __rte_unused unsigned int size)
1898 {
1899         unsigned i;
1900
1901         if (xstats_names == NULL)
1902                 return IGB_NB_XSTATS;
1903
1904         /* Note: limit checked in rte_eth_xstats_names() */
1905
1906         for (i = 0; i < IGB_NB_XSTATS; i++) {
1907                 snprintf(xstats_names[i].name, sizeof(xstats_names[i].name),
1908                          "%s", rte_igb_stats_strings[i].name);
1909         }
1910
1911         return IGB_NB_XSTATS;
1912 }
1913
1914 static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev,
1915                 struct rte_eth_xstat_name *xstats_names, const uint64_t *ids,
1916                 unsigned int limit)
1917 {
1918         unsigned int i;
1919
1920         if (!ids) {
1921                 if (xstats_names == NULL)
1922                         return IGB_NB_XSTATS;
1923
1924                 for (i = 0; i < IGB_NB_XSTATS; i++)
1925                         snprintf(xstats_names[i].name,
1926                                         sizeof(xstats_names[i].name),
1927                                         "%s", rte_igb_stats_strings[i].name);
1928
1929                 return IGB_NB_XSTATS;
1930
1931         } else {
1932                 struct rte_eth_xstat_name xstats_names_copy[IGB_NB_XSTATS];
1933
1934                 eth_igb_xstats_get_names_by_id(dev, xstats_names_copy, NULL,
1935                                 IGB_NB_XSTATS);
1936
1937                 for (i = 0; i < limit; i++) {
1938                         if (ids[i] >= IGB_NB_XSTATS) {
1939                                 PMD_INIT_LOG(ERR, "id value isn't valid");
1940                                 return -1;
1941                         }
1942                         strcpy(xstats_names[i].name,
1943                                         xstats_names_copy[ids[i]].name);
1944                 }
1945                 return limit;
1946         }
1947 }
1948
1949 static int
1950 eth_igb_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
1951                    unsigned n)
1952 {
1953         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1954         struct e1000_hw_stats *hw_stats =
1955                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1956         unsigned i;
1957
1958         if (n < IGB_NB_XSTATS)
1959                 return IGB_NB_XSTATS;
1960
1961         igb_read_stats_registers(hw, hw_stats);
1962
1963         /* If this is a reset xstats is NULL, and we have cleared the
1964          * registers by reading them.
1965          */
1966         if (!xstats)
1967                 return 0;
1968
1969         /* Extended stats */
1970         for (i = 0; i < IGB_NB_XSTATS; i++) {
1971                 xstats[i].id = i;
1972                 xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
1973                         rte_igb_stats_strings[i].offset);
1974         }
1975
1976         return IGB_NB_XSTATS;
1977 }
1978
1979 static int
1980 eth_igb_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
1981                 uint64_t *values, unsigned int n)
1982 {
1983         unsigned int i;
1984
1985         if (!ids) {
1986                 struct e1000_hw *hw =
1987                         E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1988                 struct e1000_hw_stats *hw_stats =
1989                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1990
1991                 if (n < IGB_NB_XSTATS)
1992                         return IGB_NB_XSTATS;
1993
1994                 igb_read_stats_registers(hw, hw_stats);
1995
1996                 /* If this is a reset xstats is NULL, and we have cleared the
1997                  * registers by reading them.
1998                  */
1999                 if (!values)
2000                         return 0;
2001
2002                 /* Extended stats */
2003                 for (i = 0; i < IGB_NB_XSTATS; i++)
2004                         values[i] = *(uint64_t *)(((char *)hw_stats) +
2005                                         rte_igb_stats_strings[i].offset);
2006
2007                 return IGB_NB_XSTATS;
2008
2009         } else {
2010                 uint64_t values_copy[IGB_NB_XSTATS];
2011
2012                 eth_igb_xstats_get_by_id(dev, NULL, values_copy,
2013                                 IGB_NB_XSTATS);
2014
2015                 for (i = 0; i < n; i++) {
2016                         if (ids[i] >= IGB_NB_XSTATS) {
2017                                 PMD_INIT_LOG(ERR, "id value isn't valid");
2018                                 return -1;
2019                         }
2020                         values[i] = values_copy[ids[i]];
2021                 }
2022                 return n;
2023         }
2024 }
2025
2026 static void
2027 igbvf_read_stats_registers(struct e1000_hw *hw, struct e1000_vf_stats *hw_stats)
2028 {
2029         /* Good Rx packets, include VF loopback */
2030         UPDATE_VF_STAT(E1000_VFGPRC,
2031             hw_stats->last_gprc, hw_stats->gprc);
2032
2033         /* Good Rx octets, include VF loopback */
2034         UPDATE_VF_STAT(E1000_VFGORC,
2035             hw_stats->last_gorc, hw_stats->gorc);
2036
2037         /* Good Tx packets, include VF loopback */
2038         UPDATE_VF_STAT(E1000_VFGPTC,
2039             hw_stats->last_gptc, hw_stats->gptc);
2040
2041         /* Good Tx octets, include VF loopback */
2042         UPDATE_VF_STAT(E1000_VFGOTC,
2043             hw_stats->last_gotc, hw_stats->gotc);
2044
2045         /* Rx Multicst packets */
2046         UPDATE_VF_STAT(E1000_VFMPRC,
2047             hw_stats->last_mprc, hw_stats->mprc);
2048
2049         /* Good Rx loopback packets */
2050         UPDATE_VF_STAT(E1000_VFGPRLBC,
2051             hw_stats->last_gprlbc, hw_stats->gprlbc);
2052
2053         /* Good Rx loopback octets */
2054         UPDATE_VF_STAT(E1000_VFGORLBC,
2055             hw_stats->last_gorlbc, hw_stats->gorlbc);
2056
2057         /* Good Tx loopback packets */
2058         UPDATE_VF_STAT(E1000_VFGPTLBC,
2059             hw_stats->last_gptlbc, hw_stats->gptlbc);
2060
2061         /* Good Tx loopback octets */
2062         UPDATE_VF_STAT(E1000_VFGOTLBC,
2063             hw_stats->last_gotlbc, hw_stats->gotlbc);
2064 }
2065
2066 static int eth_igbvf_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
2067                                      struct rte_eth_xstat_name *xstats_names,
2068                                      __rte_unused unsigned limit)
2069 {
2070         unsigned i;
2071
2072         if (xstats_names != NULL)
2073                 for (i = 0; i < IGBVF_NB_XSTATS; i++) {
2074                         snprintf(xstats_names[i].name,
2075                                 sizeof(xstats_names[i].name), "%s",
2076                                 rte_igbvf_stats_strings[i].name);
2077                 }
2078         return IGBVF_NB_XSTATS;
2079 }
2080
2081 static int
2082 eth_igbvf_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
2083                      unsigned n)
2084 {
2085         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2086         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
2087                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2088         unsigned i;
2089
2090         if (n < IGBVF_NB_XSTATS)
2091                 return IGBVF_NB_XSTATS;
2092
2093         igbvf_read_stats_registers(hw, hw_stats);
2094
2095         if (!xstats)
2096                 return 0;
2097
2098         for (i = 0; i < IGBVF_NB_XSTATS; i++) {
2099                 xstats[i].id = i;
2100                 xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
2101                         rte_igbvf_stats_strings[i].offset);
2102         }
2103
2104         return IGBVF_NB_XSTATS;
2105 }
2106
2107 static int
2108 eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
2109 {
2110         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2111         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
2112                           E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2113
2114         igbvf_read_stats_registers(hw, hw_stats);
2115
2116         if (rte_stats == NULL)
2117                 return -EINVAL;
2118
2119         rte_stats->ipackets = hw_stats->gprc;
2120         rte_stats->ibytes = hw_stats->gorc;
2121         rte_stats->opackets = hw_stats->gptc;
2122         rte_stats->obytes = hw_stats->gotc;
2123         return 0;
2124 }
2125
2126 static void
2127 eth_igbvf_stats_reset(struct rte_eth_dev *dev)
2128 {
2129         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
2130                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2131
2132         /* Sync HW register to the last stats */
2133         eth_igbvf_stats_get(dev, NULL);
2134
2135         /* reset HW current stats*/
2136         memset(&hw_stats->gprc, 0, sizeof(*hw_stats) -
2137                offsetof(struct e1000_vf_stats, gprc));
2138 }
2139
2140 static int
2141 eth_igb_fw_version_get(struct rte_eth_dev *dev, char *fw_version,
2142                        size_t fw_size)
2143 {
2144         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2145         struct e1000_fw_version fw;
2146         int ret;
2147
2148         e1000_get_fw_version(hw, &fw);
2149
2150         switch (hw->mac.type) {
2151         case e1000_i210:
2152         case e1000_i211:
2153                 if (!(e1000_get_flash_presence_i210(hw))) {
2154                         ret = snprintf(fw_version, fw_size,
2155                                  "%2d.%2d-%d",
2156                                  fw.invm_major, fw.invm_minor,
2157                                  fw.invm_img_type);
2158                         break;
2159                 }
2160                 /* fall through */
2161         default:
2162                 /* if option rom is valid, display its version too */
2163                 if (fw.or_valid) {
2164                         ret = snprintf(fw_version, fw_size,
2165                                  "%d.%d, 0x%08x, %d.%d.%d",
2166                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2167                                  fw.or_major, fw.or_build, fw.or_patch);
2168                 /* no option rom */
2169                 } else {
2170                         if (fw.etrack_id != 0X0000) {
2171                                 ret = snprintf(fw_version, fw_size,
2172                                          "%d.%d, 0x%08x",
2173                                          fw.eep_major, fw.eep_minor,
2174                                          fw.etrack_id);
2175                         } else {
2176                                 ret = snprintf(fw_version, fw_size,
2177                                          "%d.%d.%d",
2178                                          fw.eep_major, fw.eep_minor,
2179                                          fw.eep_build);
2180                         }
2181                 }
2182                 break;
2183         }
2184
2185         ret += 1; /* add the size of '\0' */
2186         if (fw_size < (u32)ret)
2187                 return ret;
2188         else
2189                 return 0;
2190 }
2191
2192 static void
2193 eth_igb_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
2194 {
2195         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2196
2197         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
2198         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
2199         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
2200         dev_info->rx_queue_offload_capa = igb_get_rx_queue_offloads_capa(dev);
2201         dev_info->rx_offload_capa = igb_get_rx_port_offloads_capa(dev) |
2202                                     dev_info->rx_queue_offload_capa;
2203         dev_info->tx_queue_offload_capa = igb_get_tx_queue_offloads_capa(dev);
2204         dev_info->tx_offload_capa = igb_get_tx_port_offloads_capa(dev) |
2205                                     dev_info->tx_queue_offload_capa;
2206
2207         switch (hw->mac.type) {
2208         case e1000_82575:
2209                 dev_info->max_rx_queues = 4;
2210                 dev_info->max_tx_queues = 4;
2211                 dev_info->max_vmdq_pools = 0;
2212                 break;
2213
2214         case e1000_82576:
2215                 dev_info->max_rx_queues = 16;
2216                 dev_info->max_tx_queues = 16;
2217                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2218                 dev_info->vmdq_queue_num = 16;
2219                 break;
2220
2221         case e1000_82580:
2222                 dev_info->max_rx_queues = 8;
2223                 dev_info->max_tx_queues = 8;
2224                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2225                 dev_info->vmdq_queue_num = 8;
2226                 break;
2227
2228         case e1000_i350:
2229                 dev_info->max_rx_queues = 8;
2230                 dev_info->max_tx_queues = 8;
2231                 dev_info->max_vmdq_pools = ETH_8_POOLS;
2232                 dev_info->vmdq_queue_num = 8;
2233                 break;
2234
2235         case e1000_i354:
2236                 dev_info->max_rx_queues = 8;
2237                 dev_info->max_tx_queues = 8;
2238                 break;
2239
2240         case e1000_i210:
2241                 dev_info->max_rx_queues = 4;
2242                 dev_info->max_tx_queues = 4;
2243                 dev_info->max_vmdq_pools = 0;
2244                 break;
2245
2246         case e1000_i211:
2247                 dev_info->max_rx_queues = 2;
2248                 dev_info->max_tx_queues = 2;
2249                 dev_info->max_vmdq_pools = 0;
2250                 break;
2251
2252         default:
2253                 /* Should not happen */
2254                 break;
2255         }
2256         dev_info->hash_key_size = IGB_HKEY_MAX_INDEX * sizeof(uint32_t);
2257         dev_info->reta_size = ETH_RSS_RETA_SIZE_128;
2258         dev_info->flow_type_rss_offloads = IGB_RSS_OFFLOAD_ALL;
2259
2260         dev_info->default_rxconf = (struct rte_eth_rxconf) {
2261                 .rx_thresh = {
2262                         .pthresh = IGB_DEFAULT_RX_PTHRESH,
2263                         .hthresh = IGB_DEFAULT_RX_HTHRESH,
2264                         .wthresh = IGB_DEFAULT_RX_WTHRESH,
2265                 },
2266                 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
2267                 .rx_drop_en = 0,
2268                 .offloads = 0,
2269         };
2270
2271         dev_info->default_txconf = (struct rte_eth_txconf) {
2272                 .tx_thresh = {
2273                         .pthresh = IGB_DEFAULT_TX_PTHRESH,
2274                         .hthresh = IGB_DEFAULT_TX_HTHRESH,
2275                         .wthresh = IGB_DEFAULT_TX_WTHRESH,
2276                 },
2277                 .offloads = 0,
2278         };
2279
2280         dev_info->rx_desc_lim = rx_desc_lim;
2281         dev_info->tx_desc_lim = tx_desc_lim;
2282
2283         dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
2284                         ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
2285                         ETH_LINK_SPEED_1G;
2286 }
2287
2288 static const uint32_t *
2289 eth_igb_supported_ptypes_get(struct rte_eth_dev *dev)
2290 {
2291         static const uint32_t ptypes[] = {
2292                 /* refers to igb_rxd_pkt_info_to_pkt_type() */
2293                 RTE_PTYPE_L2_ETHER,
2294                 RTE_PTYPE_L3_IPV4,
2295                 RTE_PTYPE_L3_IPV4_EXT,
2296                 RTE_PTYPE_L3_IPV6,
2297                 RTE_PTYPE_L3_IPV6_EXT,
2298                 RTE_PTYPE_L4_TCP,
2299                 RTE_PTYPE_L4_UDP,
2300                 RTE_PTYPE_L4_SCTP,
2301                 RTE_PTYPE_TUNNEL_IP,
2302                 RTE_PTYPE_INNER_L3_IPV6,
2303                 RTE_PTYPE_INNER_L3_IPV6_EXT,
2304                 RTE_PTYPE_INNER_L4_TCP,
2305                 RTE_PTYPE_INNER_L4_UDP,
2306                 RTE_PTYPE_UNKNOWN
2307         };
2308
2309         if (dev->rx_pkt_burst == eth_igb_recv_pkts ||
2310             dev->rx_pkt_burst == eth_igb_recv_scattered_pkts)
2311                 return ptypes;
2312         return NULL;
2313 }
2314
2315 static void
2316 eth_igbvf_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
2317 {
2318         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2319
2320         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
2321         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
2322         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
2323         dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
2324                                 DEV_TX_OFFLOAD_IPV4_CKSUM  |
2325                                 DEV_TX_OFFLOAD_UDP_CKSUM   |
2326                                 DEV_TX_OFFLOAD_TCP_CKSUM   |
2327                                 DEV_TX_OFFLOAD_SCTP_CKSUM  |
2328                                 DEV_TX_OFFLOAD_TCP_TSO;
2329         switch (hw->mac.type) {
2330         case e1000_vfadapt:
2331                 dev_info->max_rx_queues = 2;
2332                 dev_info->max_tx_queues = 2;
2333                 break;
2334         case e1000_vfadapt_i350:
2335                 dev_info->max_rx_queues = 1;
2336                 dev_info->max_tx_queues = 1;
2337                 break;
2338         default:
2339                 /* Should not happen */
2340                 break;
2341         }
2342
2343         dev_info->rx_queue_offload_capa = igb_get_rx_queue_offloads_capa(dev);
2344         dev_info->rx_offload_capa = igb_get_rx_port_offloads_capa(dev) |
2345                                     dev_info->rx_queue_offload_capa;
2346         dev_info->tx_queue_offload_capa = igb_get_tx_queue_offloads_capa(dev);
2347         dev_info->tx_offload_capa = igb_get_tx_port_offloads_capa(dev) |
2348                                     dev_info->tx_queue_offload_capa;
2349
2350         dev_info->default_rxconf = (struct rte_eth_rxconf) {
2351                 .rx_thresh = {
2352                         .pthresh = IGB_DEFAULT_RX_PTHRESH,
2353                         .hthresh = IGB_DEFAULT_RX_HTHRESH,
2354                         .wthresh = IGB_DEFAULT_RX_WTHRESH,
2355                 },
2356                 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
2357                 .rx_drop_en = 0,
2358                 .offloads = 0,
2359         };
2360
2361         dev_info->default_txconf = (struct rte_eth_txconf) {
2362                 .tx_thresh = {
2363                         .pthresh = IGB_DEFAULT_TX_PTHRESH,
2364                         .hthresh = IGB_DEFAULT_TX_HTHRESH,
2365                         .wthresh = IGB_DEFAULT_TX_WTHRESH,
2366                 },
2367                 .offloads = 0,
2368         };
2369
2370         dev_info->rx_desc_lim = rx_desc_lim;
2371         dev_info->tx_desc_lim = tx_desc_lim;
2372 }
2373
2374 /* return 0 means link status changed, -1 means not changed */
2375 static int
2376 eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete)
2377 {
2378         struct e1000_hw *hw =
2379                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2380         struct rte_eth_link link;
2381         int link_check, count;
2382
2383         link_check = 0;
2384         hw->mac.get_link_status = 1;
2385
2386         /* possible wait-to-complete in up to 9 seconds */
2387         for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
2388                 /* Read the real link status */
2389                 switch (hw->phy.media_type) {
2390                 case e1000_media_type_copper:
2391                         /* Do the work to read phy */
2392                         e1000_check_for_link(hw);
2393                         link_check = !hw->mac.get_link_status;
2394                         break;
2395
2396                 case e1000_media_type_fiber:
2397                         e1000_check_for_link(hw);
2398                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
2399                                       E1000_STATUS_LU);
2400                         break;
2401
2402                 case e1000_media_type_internal_serdes:
2403                         e1000_check_for_link(hw);
2404                         link_check = hw->mac.serdes_has_link;
2405                         break;
2406
2407                 /* VF device is type_unknown */
2408                 case e1000_media_type_unknown:
2409                         eth_igbvf_link_update(hw);
2410                         link_check = !hw->mac.get_link_status;
2411                         break;
2412
2413                 default:
2414                         break;
2415                 }
2416                 if (link_check || wait_to_complete == 0)
2417                         break;
2418                 rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL);
2419         }
2420         memset(&link, 0, sizeof(link));
2421
2422         /* Now we check if a transition has happened */
2423         if (link_check) {
2424                 uint16_t duplex, speed;
2425                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
2426                 link.link_duplex = (duplex == FULL_DUPLEX) ?
2427                                 ETH_LINK_FULL_DUPLEX :
2428                                 ETH_LINK_HALF_DUPLEX;
2429                 link.link_speed = speed;
2430                 link.link_status = ETH_LINK_UP;
2431                 link.link_autoneg = !(dev->data->dev_conf.link_speeds &
2432                                 ETH_LINK_SPEED_FIXED);
2433         } else if (!link_check) {
2434                 link.link_speed = 0;
2435                 link.link_duplex = ETH_LINK_HALF_DUPLEX;
2436                 link.link_status = ETH_LINK_DOWN;
2437                 link.link_autoneg = ETH_LINK_FIXED;
2438         }
2439
2440         return rte_eth_linkstatus_set(dev, &link);
2441 }
2442
2443 /*
2444  * igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit.
2445  * For ASF and Pass Through versions of f/w this means
2446  * that the driver is loaded.
2447  */
2448 static void
2449 igb_hw_control_acquire(struct e1000_hw *hw)
2450 {
2451         uint32_t ctrl_ext;
2452
2453         /* Let firmware know the driver has taken over */
2454         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2455         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2456 }
2457
2458 /*
2459  * igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit.
2460  * For ASF and Pass Through versions of f/w this means that the
2461  * driver is no longer loaded.
2462  */
2463 static void
2464 igb_hw_control_release(struct e1000_hw *hw)
2465 {
2466         uint32_t ctrl_ext;
2467
2468         /* Let firmware taken over control of h/w */
2469         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2470         E1000_WRITE_REG(hw, E1000_CTRL_EXT,
2471                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2472 }
2473
2474 /*
2475  * Bit of a misnomer, what this really means is
2476  * to enable OS management of the system... aka
2477  * to disable special hardware management features.
2478  */
2479 static void
2480 igb_init_manageability(struct e1000_hw *hw)
2481 {
2482         if (e1000_enable_mng_pass_thru(hw)) {
2483                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
2484                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
2485
2486                 /* disable hardware interception of ARP */
2487                 manc &= ~(E1000_MANC_ARP_EN);
2488
2489                 /* enable receiving management packets to the host */
2490                 manc |= E1000_MANC_EN_MNG2HOST;
2491                 manc2h |= 1 << 5;  /* Mng Port 623 */
2492                 manc2h |= 1 << 6;  /* Mng Port 664 */
2493                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
2494                 E1000_WRITE_REG(hw, E1000_MANC, manc);
2495         }
2496 }
2497
2498 static void
2499 igb_release_manageability(struct e1000_hw *hw)
2500 {
2501         if (e1000_enable_mng_pass_thru(hw)) {
2502                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
2503
2504                 manc |= E1000_MANC_ARP_EN;
2505                 manc &= ~E1000_MANC_EN_MNG2HOST;
2506
2507                 E1000_WRITE_REG(hw, E1000_MANC, manc);
2508         }
2509 }
2510
2511 static void
2512 eth_igb_promiscuous_enable(struct rte_eth_dev *dev)
2513 {
2514         struct e1000_hw *hw =
2515                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2516         uint32_t rctl;
2517
2518         rctl = E1000_READ_REG(hw, E1000_RCTL);
2519         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2520         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2521 }
2522
2523 static void
2524 eth_igb_promiscuous_disable(struct rte_eth_dev *dev)
2525 {
2526         struct e1000_hw *hw =
2527                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2528         uint32_t rctl;
2529
2530         rctl = E1000_READ_REG(hw, E1000_RCTL);
2531         rctl &= (~E1000_RCTL_UPE);
2532         if (dev->data->all_multicast == 1)
2533                 rctl |= E1000_RCTL_MPE;
2534         else
2535                 rctl &= (~E1000_RCTL_MPE);
2536         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2537 }
2538
2539 static void
2540 eth_igb_allmulticast_enable(struct rte_eth_dev *dev)
2541 {
2542         struct e1000_hw *hw =
2543                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2544         uint32_t rctl;
2545
2546         rctl = E1000_READ_REG(hw, E1000_RCTL);
2547         rctl |= E1000_RCTL_MPE;
2548         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2549 }
2550
2551 static void
2552 eth_igb_allmulticast_disable(struct rte_eth_dev *dev)
2553 {
2554         struct e1000_hw *hw =
2555                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2556         uint32_t rctl;
2557
2558         if (dev->data->promiscuous == 1)
2559                 return; /* must remain in all_multicast mode */
2560         rctl = E1000_READ_REG(hw, E1000_RCTL);
2561         rctl &= (~E1000_RCTL_MPE);
2562         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2563 }
2564
2565 static int
2566 eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
2567 {
2568         struct e1000_hw *hw =
2569                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2570         struct e1000_vfta * shadow_vfta =
2571                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2572         uint32_t vfta;
2573         uint32_t vid_idx;
2574         uint32_t vid_bit;
2575
2576         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
2577                               E1000_VFTA_ENTRY_MASK);
2578         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
2579         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
2580         if (on)
2581                 vfta |= vid_bit;
2582         else
2583                 vfta &= ~vid_bit;
2584         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
2585
2586         /* update local VFTA copy */
2587         shadow_vfta->vfta[vid_idx] = vfta;
2588
2589         return 0;
2590 }
2591
2592 static int
2593 eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
2594                       enum rte_vlan_type vlan_type,
2595                       uint16_t tpid)
2596 {
2597         struct e1000_hw *hw =
2598                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2599         uint32_t reg, qinq;
2600
2601         qinq = E1000_READ_REG(hw, E1000_CTRL_EXT);
2602         qinq &= E1000_CTRL_EXT_EXT_VLAN;
2603
2604         /* only outer TPID of double VLAN can be configured*/
2605         if (qinq && vlan_type == ETH_VLAN_TYPE_OUTER) {
2606                 reg = E1000_READ_REG(hw, E1000_VET);
2607                 reg = (reg & (~E1000_VET_VET_EXT)) |
2608                         ((uint32_t)tpid << E1000_VET_VET_EXT_SHIFT);
2609                 E1000_WRITE_REG(hw, E1000_VET, reg);
2610
2611                 return 0;
2612         }
2613
2614         /* all other TPID values are read-only*/
2615         PMD_DRV_LOG(ERR, "Not supported");
2616
2617         return -ENOTSUP;
2618 }
2619
2620 static void
2621 igb_vlan_hw_filter_disable(struct rte_eth_dev *dev)
2622 {
2623         struct e1000_hw *hw =
2624                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2625         uint32_t reg;
2626
2627         /* Filter Table Disable */
2628         reg = E1000_READ_REG(hw, E1000_RCTL);
2629         reg &= ~E1000_RCTL_CFIEN;
2630         reg &= ~E1000_RCTL_VFE;
2631         E1000_WRITE_REG(hw, E1000_RCTL, reg);
2632 }
2633
2634 static void
2635 igb_vlan_hw_filter_enable(struct rte_eth_dev *dev)
2636 {
2637         struct e1000_hw *hw =
2638                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2639         struct e1000_vfta * shadow_vfta =
2640                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2641         uint32_t reg;
2642         int i;
2643
2644         /* Filter Table Enable, CFI not used for packet acceptance */
2645         reg = E1000_READ_REG(hw, E1000_RCTL);
2646         reg &= ~E1000_RCTL_CFIEN;
2647         reg |= E1000_RCTL_VFE;
2648         E1000_WRITE_REG(hw, E1000_RCTL, reg);
2649
2650         /* restore VFTA table */
2651         for (i = 0; i < IGB_VFTA_SIZE; i++)
2652                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
2653 }
2654
2655 static void
2656 igb_vlan_hw_strip_disable(struct rte_eth_dev *dev)
2657 {
2658         struct e1000_hw *hw =
2659                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2660         uint32_t reg;
2661
2662         /* VLAN Mode Disable */
2663         reg = E1000_READ_REG(hw, E1000_CTRL);
2664         reg &= ~E1000_CTRL_VME;
2665         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2666 }
2667
2668 static void
2669 igb_vlan_hw_strip_enable(struct rte_eth_dev *dev)
2670 {
2671         struct e1000_hw *hw =
2672                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2673         uint32_t reg;
2674
2675         /* VLAN Mode Enable */
2676         reg = E1000_READ_REG(hw, E1000_CTRL);
2677         reg |= E1000_CTRL_VME;
2678         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2679 }
2680
2681 static void
2682 igb_vlan_hw_extend_disable(struct rte_eth_dev *dev)
2683 {
2684         struct e1000_hw *hw =
2685                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2686         uint32_t reg;
2687
2688         /* CTRL_EXT: Extended VLAN */
2689         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2690         reg &= ~E1000_CTRL_EXT_EXTEND_VLAN;
2691         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2692
2693         /* Update maximum packet length */
2694         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
2695                 E1000_WRITE_REG(hw, E1000_RLPML,
2696                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2697                                                 VLAN_TAG_SIZE);
2698 }
2699
2700 static void
2701 igb_vlan_hw_extend_enable(struct rte_eth_dev *dev)
2702 {
2703         struct e1000_hw *hw =
2704                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2705         uint32_t reg;
2706
2707         /* CTRL_EXT: Extended VLAN */
2708         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2709         reg |= E1000_CTRL_EXT_EXTEND_VLAN;
2710         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2711
2712         /* Update maximum packet length */
2713         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
2714                 E1000_WRITE_REG(hw, E1000_RLPML,
2715                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2716                                                 2 * VLAN_TAG_SIZE);
2717 }
2718
2719 static int
2720 eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask)
2721 {
2722         struct rte_eth_rxmode *rxmode;
2723
2724         rxmode = &dev->data->dev_conf.rxmode;
2725         if(mask & ETH_VLAN_STRIP_MASK){
2726                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
2727                         igb_vlan_hw_strip_enable(dev);
2728                 else
2729                         igb_vlan_hw_strip_disable(dev);
2730         }
2731
2732         if(mask & ETH_VLAN_FILTER_MASK){
2733                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
2734                         igb_vlan_hw_filter_enable(dev);
2735                 else
2736                         igb_vlan_hw_filter_disable(dev);
2737         }
2738
2739         if(mask & ETH_VLAN_EXTEND_MASK){
2740                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
2741                         igb_vlan_hw_extend_enable(dev);
2742                 else
2743                         igb_vlan_hw_extend_disable(dev);
2744         }
2745
2746         return 0;
2747 }
2748
2749
2750 /**
2751  * It enables the interrupt mask and then enable the interrupt.
2752  *
2753  * @param dev
2754  *  Pointer to struct rte_eth_dev.
2755  * @param on
2756  *  Enable or Disable
2757  *
2758  * @return
2759  *  - On success, zero.
2760  *  - On failure, a negative value.
2761  */
2762 static int
2763 eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on)
2764 {
2765         struct e1000_interrupt *intr =
2766                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2767
2768         if (on)
2769                 intr->mask |= E1000_ICR_LSC;
2770         else
2771                 intr->mask &= ~E1000_ICR_LSC;
2772
2773         return 0;
2774 }
2775
2776 /* It clears the interrupt causes and enables the interrupt.
2777  * It will be called once only during nic initialized.
2778  *
2779  * @param dev
2780  *  Pointer to struct rte_eth_dev.
2781  *
2782  * @return
2783  *  - On success, zero.
2784  *  - On failure, a negative value.
2785  */
2786 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev)
2787 {
2788         uint32_t mask, regval;
2789         struct e1000_hw *hw =
2790                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2791         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2792         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2793         int misc_shift = rte_intr_allow_others(intr_handle) ? 1 : 0;
2794         struct rte_eth_dev_info dev_info;
2795
2796         memset(&dev_info, 0, sizeof(dev_info));
2797         eth_igb_infos_get(dev, &dev_info);
2798
2799         mask = (0xFFFFFFFF >> (32 - dev_info.max_rx_queues)) << misc_shift;
2800         regval = E1000_READ_REG(hw, E1000_EIMS);
2801         E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
2802
2803         return 0;
2804 }
2805
2806 /*
2807  * It reads ICR and gets interrupt causes, check it and set a bit flag
2808  * to update link status.
2809  *
2810  * @param dev
2811  *  Pointer to struct rte_eth_dev.
2812  *
2813  * @return
2814  *  - On success, zero.
2815  *  - On failure, a negative value.
2816  */
2817 static int
2818 eth_igb_interrupt_get_status(struct rte_eth_dev *dev)
2819 {
2820         uint32_t icr;
2821         struct e1000_hw *hw =
2822                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2823         struct e1000_interrupt *intr =
2824                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2825
2826         igb_intr_disable(dev);
2827
2828         /* read-on-clear nic registers here */
2829         icr = E1000_READ_REG(hw, E1000_ICR);
2830
2831         intr->flags = 0;
2832         if (icr & E1000_ICR_LSC) {
2833                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
2834         }
2835
2836         if (icr & E1000_ICR_VMMB)
2837                 intr->flags |= E1000_FLAG_MAILBOX;
2838
2839         return 0;
2840 }
2841
2842 /*
2843  * It executes link_update after knowing an interrupt is prsent.
2844  *
2845  * @param dev
2846  *  Pointer to struct rte_eth_dev.
2847  *
2848  * @return
2849  *  - On success, zero.
2850  *  - On failure, a negative value.
2851  */
2852 static int
2853 eth_igb_interrupt_action(struct rte_eth_dev *dev,
2854                          struct rte_intr_handle *intr_handle)
2855 {
2856         struct e1000_hw *hw =
2857                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2858         struct e1000_interrupt *intr =
2859                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2860         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2861         struct rte_eth_link link;
2862         int ret;
2863
2864         if (intr->flags & E1000_FLAG_MAILBOX) {
2865                 igb_pf_mbx_process(dev);
2866                 intr->flags &= ~E1000_FLAG_MAILBOX;
2867         }
2868
2869         igb_intr_enable(dev);
2870         rte_intr_enable(intr_handle);
2871
2872         if (intr->flags & E1000_FLAG_NEED_LINK_UPDATE) {
2873                 intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
2874
2875                 /* set get_link_status to check register later */
2876                 hw->mac.get_link_status = 1;
2877                 ret = eth_igb_link_update(dev, 0);
2878
2879                 /* check if link has changed */
2880                 if (ret < 0)
2881                         return 0;
2882
2883                 rte_eth_linkstatus_get(dev, &link);
2884                 if (link.link_status) {
2885                         PMD_INIT_LOG(INFO,
2886                                      " Port %d: Link Up - speed %u Mbps - %s",
2887                                      dev->data->port_id,
2888                                      (unsigned)link.link_speed,
2889                                      link.link_duplex == ETH_LINK_FULL_DUPLEX ?
2890                                      "full-duplex" : "half-duplex");
2891                 } else {
2892                         PMD_INIT_LOG(INFO, " Port %d: Link Down",
2893                                      dev->data->port_id);
2894                 }
2895
2896                 PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
2897                              pci_dev->addr.domain,
2898                              pci_dev->addr.bus,
2899                              pci_dev->addr.devid,
2900                              pci_dev->addr.function);
2901                 _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC,
2902                                               NULL);
2903         }
2904
2905         return 0;
2906 }
2907
2908 /**
2909  * Interrupt handler which shall be registered at first.
2910  *
2911  * @param handle
2912  *  Pointer to interrupt handle.
2913  * @param param
2914  *  The address of parameter (struct rte_eth_dev *) regsitered before.
2915  *
2916  * @return
2917  *  void
2918  */
2919 static void
2920 eth_igb_interrupt_handler(void *param)
2921 {
2922         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2923
2924         eth_igb_interrupt_get_status(dev);
2925         eth_igb_interrupt_action(dev, dev->intr_handle);
2926 }
2927
2928 static int
2929 eth_igbvf_interrupt_get_status(struct rte_eth_dev *dev)
2930 {
2931         uint32_t eicr;
2932         struct e1000_hw *hw =
2933                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2934         struct e1000_interrupt *intr =
2935                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2936
2937         igbvf_intr_disable(hw);
2938
2939         /* read-on-clear nic registers here */
2940         eicr = E1000_READ_REG(hw, E1000_EICR);
2941         intr->flags = 0;
2942
2943         if (eicr == E1000_VTIVAR_MISC_MAILBOX)
2944                 intr->flags |= E1000_FLAG_MAILBOX;
2945
2946         return 0;
2947 }
2948
2949 void igbvf_mbx_process(struct rte_eth_dev *dev)
2950 {
2951         struct e1000_hw *hw =
2952                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2953         struct e1000_mbx_info *mbx = &hw->mbx;
2954         u32 in_msg = 0;
2955
2956         /* peek the message first */
2957         in_msg = E1000_READ_REG(hw, E1000_VMBMEM(0));
2958
2959         /* PF reset VF event */
2960         if (in_msg == E1000_PF_CONTROL_MSG) {
2961                 /* dummy mbx read to ack pf */
2962                 if (mbx->ops.read(hw, &in_msg, 1, 0))
2963                         return;
2964                 _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
2965                                               NULL);
2966         }
2967 }
2968
2969 static int
2970 eth_igbvf_interrupt_action(struct rte_eth_dev *dev, struct rte_intr_handle *intr_handle)
2971 {
2972         struct e1000_interrupt *intr =
2973                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2974
2975         if (intr->flags & E1000_FLAG_MAILBOX) {
2976                 igbvf_mbx_process(dev);
2977                 intr->flags &= ~E1000_FLAG_MAILBOX;
2978         }
2979
2980         igbvf_intr_enable(dev);
2981         rte_intr_enable(intr_handle);
2982
2983         return 0;
2984 }
2985
2986 static void
2987 eth_igbvf_interrupt_handler(void *param)
2988 {
2989         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2990
2991         eth_igbvf_interrupt_get_status(dev);
2992         eth_igbvf_interrupt_action(dev, dev->intr_handle);
2993 }
2994
2995 static int
2996 eth_igb_led_on(struct rte_eth_dev *dev)
2997 {
2998         struct e1000_hw *hw;
2999
3000         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3001         return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
3002 }
3003
3004 static int
3005 eth_igb_led_off(struct rte_eth_dev *dev)
3006 {
3007         struct e1000_hw *hw;
3008
3009         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3010         return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
3011 }
3012
3013 static int
3014 eth_igb_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
3015 {
3016         struct e1000_hw *hw;
3017         uint32_t ctrl;
3018         int tx_pause;
3019         int rx_pause;
3020
3021         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3022         fc_conf->pause_time = hw->fc.pause_time;
3023         fc_conf->high_water = hw->fc.high_water;
3024         fc_conf->low_water = hw->fc.low_water;
3025         fc_conf->send_xon = hw->fc.send_xon;
3026         fc_conf->autoneg = hw->mac.autoneg;
3027
3028         /*
3029          * Return rx_pause and tx_pause status according to actual setting of
3030          * the TFCE and RFCE bits in the CTRL register.
3031          */
3032         ctrl = E1000_READ_REG(hw, E1000_CTRL);
3033         if (ctrl & E1000_CTRL_TFCE)
3034                 tx_pause = 1;
3035         else
3036                 tx_pause = 0;
3037
3038         if (ctrl & E1000_CTRL_RFCE)
3039                 rx_pause = 1;
3040         else
3041                 rx_pause = 0;
3042
3043         if (rx_pause && tx_pause)
3044                 fc_conf->mode = RTE_FC_FULL;
3045         else if (rx_pause)
3046                 fc_conf->mode = RTE_FC_RX_PAUSE;
3047         else if (tx_pause)
3048                 fc_conf->mode = RTE_FC_TX_PAUSE;
3049         else
3050                 fc_conf->mode = RTE_FC_NONE;
3051
3052         return 0;
3053 }
3054
3055 static int
3056 eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
3057 {
3058         struct e1000_hw *hw;
3059         int err;
3060         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
3061                 e1000_fc_none,
3062                 e1000_fc_rx_pause,
3063                 e1000_fc_tx_pause,
3064                 e1000_fc_full
3065         };
3066         uint32_t rx_buf_size;
3067         uint32_t max_high_water;
3068         uint32_t rctl;
3069
3070         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3071         if (fc_conf->autoneg != hw->mac.autoneg)
3072                 return -ENOTSUP;
3073         rx_buf_size = igb_get_rx_buffer_size(hw);
3074         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
3075
3076         /* At least reserve one Ethernet frame for watermark */
3077         max_high_water = rx_buf_size - ETHER_MAX_LEN;
3078         if ((fc_conf->high_water > max_high_water) ||
3079             (fc_conf->high_water < fc_conf->low_water)) {
3080                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
3081                 PMD_INIT_LOG(ERR, "high water must <=  0x%x", max_high_water);
3082                 return -EINVAL;
3083         }
3084
3085         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
3086         hw->fc.pause_time     = fc_conf->pause_time;
3087         hw->fc.high_water     = fc_conf->high_water;
3088         hw->fc.low_water      = fc_conf->low_water;
3089         hw->fc.send_xon       = fc_conf->send_xon;
3090
3091         err = e1000_setup_link_generic(hw);
3092         if (err == E1000_SUCCESS) {
3093
3094                 /* check if we want to forward MAC frames - driver doesn't have native
3095                  * capability to do that, so we'll write the registers ourselves */
3096
3097                 rctl = E1000_READ_REG(hw, E1000_RCTL);
3098
3099                 /* set or clear MFLCN.PMCF bit depending on configuration */
3100                 if (fc_conf->mac_ctrl_frame_fwd != 0)
3101                         rctl |= E1000_RCTL_PMCF;
3102                 else
3103                         rctl &= ~E1000_RCTL_PMCF;
3104
3105                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3106                 E1000_WRITE_FLUSH(hw);
3107
3108                 return 0;
3109         }
3110
3111         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
3112         return -EIO;
3113 }
3114
3115 #define E1000_RAH_POOLSEL_SHIFT      (18)
3116 static int
3117 eth_igb_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
3118                 uint32_t index, uint32_t pool)
3119 {
3120         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3121         uint32_t rah;
3122
3123         e1000_rar_set(hw, mac_addr->addr_bytes, index);
3124         rah = E1000_READ_REG(hw, E1000_RAH(index));
3125         rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + pool));
3126         E1000_WRITE_REG(hw, E1000_RAH(index), rah);
3127         return 0;
3128 }
3129
3130 static void
3131 eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index)
3132 {
3133         uint8_t addr[ETHER_ADDR_LEN];
3134         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3135
3136         memset(addr, 0, sizeof(addr));
3137
3138         e1000_rar_set(hw, addr, index);
3139 }
3140
3141 static int
3142 eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
3143                                 struct ether_addr *addr)
3144 {
3145         eth_igb_rar_clear(dev, 0);
3146         eth_igb_rar_set(dev, (void *)addr, 0, 0);
3147
3148         return 0;
3149 }
3150 /*
3151  * Virtual Function operations
3152  */
3153 static void
3154 igbvf_intr_disable(struct e1000_hw *hw)
3155 {
3156         PMD_INIT_FUNC_TRACE();
3157
3158         /* Clear interrupt mask to stop from interrupts being generated */
3159         E1000_WRITE_REG(hw, E1000_EIMC, 0xFFFF);
3160
3161         E1000_WRITE_FLUSH(hw);
3162 }
3163
3164 static void
3165 igbvf_stop_adapter(struct rte_eth_dev *dev)
3166 {
3167         u32 reg_val;
3168         u16 i;
3169         struct rte_eth_dev_info dev_info;
3170         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3171
3172         memset(&dev_info, 0, sizeof(dev_info));
3173         eth_igbvf_infos_get(dev, &dev_info);
3174
3175         /* Clear interrupt mask to stop from interrupts being generated */
3176         igbvf_intr_disable(hw);
3177
3178         /* Clear any pending interrupts, flush previous writes */
3179         E1000_READ_REG(hw, E1000_EICR);
3180
3181         /* Disable the transmit unit.  Each queue must be disabled. */
3182         for (i = 0; i < dev_info.max_tx_queues; i++)
3183                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), E1000_TXDCTL_SWFLSH);
3184
3185         /* Disable the receive unit by stopping each queue */
3186         for (i = 0; i < dev_info.max_rx_queues; i++) {
3187                 reg_val = E1000_READ_REG(hw, E1000_RXDCTL(i));
3188                 reg_val &= ~E1000_RXDCTL_QUEUE_ENABLE;
3189                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), reg_val);
3190                 while (E1000_READ_REG(hw, E1000_RXDCTL(i)) & E1000_RXDCTL_QUEUE_ENABLE)
3191                         ;
3192         }
3193
3194         /* flush all queues disables */
3195         E1000_WRITE_FLUSH(hw);
3196         msec_delay(2);
3197 }
3198
3199 static int eth_igbvf_link_update(struct e1000_hw *hw)
3200 {
3201         struct e1000_mbx_info *mbx = &hw->mbx;
3202         struct e1000_mac_info *mac = &hw->mac;
3203         int ret_val = E1000_SUCCESS;
3204
3205         PMD_INIT_LOG(DEBUG, "e1000_check_for_link_vf");
3206
3207         /*
3208          * We only want to run this if there has been a rst asserted.
3209          * in this case that could mean a link change, device reset,
3210          * or a virtual function reset
3211          */
3212
3213         /* If we were hit with a reset or timeout drop the link */
3214         if (!e1000_check_for_rst(hw, 0) || !mbx->timeout)
3215                 mac->get_link_status = TRUE;
3216
3217         if (!mac->get_link_status)
3218                 goto out;
3219
3220         /* if link status is down no point in checking to see if pf is up */
3221         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
3222                 goto out;
3223
3224         /* if we passed all the tests above then the link is up and we no
3225          * longer need to check for link */
3226         mac->get_link_status = FALSE;
3227
3228 out:
3229         return ret_val;
3230 }
3231
3232
3233 static int
3234 igbvf_dev_configure(struct rte_eth_dev *dev)
3235 {
3236         struct rte_eth_conf* conf = &dev->data->dev_conf;
3237
3238         PMD_INIT_LOG(DEBUG, "Configured Virtual Function port id: %d",
3239                      dev->data->port_id);
3240
3241         /*
3242          * VF has no ability to enable/disable HW CRC
3243          * Keep the persistent behavior the same as Host PF
3244          */
3245 #ifndef RTE_LIBRTE_E1000_PF_DISABLE_STRIP_CRC
3246         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC) {
3247                 PMD_INIT_LOG(NOTICE, "VF can't disable HW CRC Strip");
3248                 conf->rxmode.offloads &= ~DEV_RX_OFFLOAD_KEEP_CRC;
3249         }
3250 #else
3251         if (!(conf->rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)) {
3252                 PMD_INIT_LOG(NOTICE, "VF can't enable HW CRC Strip");
3253                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_KEEP_CRC;
3254         }
3255 #endif
3256
3257         return 0;
3258 }
3259
3260 static int
3261 igbvf_dev_start(struct rte_eth_dev *dev)
3262 {
3263         struct e1000_hw *hw =
3264                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3265         struct e1000_adapter *adapter =
3266                 E1000_DEV_PRIVATE(dev->data->dev_private);
3267         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3268         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3269         int ret;
3270         uint32_t intr_vector = 0;
3271
3272         PMD_INIT_FUNC_TRACE();
3273
3274         hw->mac.ops.reset_hw(hw);
3275         adapter->stopped = 0;
3276
3277         /* Set all vfta */
3278         igbvf_set_vfta_all(dev,1);
3279
3280         eth_igbvf_tx_init(dev);
3281
3282         /* This can fail when allocating mbufs for descriptor rings */
3283         ret = eth_igbvf_rx_init(dev);
3284         if (ret) {
3285                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
3286                 igb_dev_clear_queues(dev);
3287                 return ret;
3288         }
3289
3290         /* check and configure queue intr-vector mapping */
3291         if (rte_intr_cap_multiple(intr_handle) &&
3292             dev->data->dev_conf.intr_conf.rxq) {
3293                 intr_vector = dev->data->nb_rx_queues;
3294                 ret = rte_intr_efd_enable(intr_handle, intr_vector);
3295                 if (ret)
3296                         return ret;
3297         }
3298
3299         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
3300                 intr_handle->intr_vec =
3301                         rte_zmalloc("intr_vec",
3302                                     dev->data->nb_rx_queues * sizeof(int), 0);
3303                 if (!intr_handle->intr_vec) {
3304                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
3305                                      " intr_vec", dev->data->nb_rx_queues);
3306                         return -ENOMEM;
3307                 }
3308         }
3309
3310         eth_igbvf_configure_msix_intr(dev);
3311
3312         /* enable uio/vfio intr/eventfd mapping */
3313         rte_intr_enable(intr_handle);
3314
3315         /* resume enabled intr since hw reset */
3316         igbvf_intr_enable(dev);
3317
3318         return 0;
3319 }
3320
3321 static void
3322 igbvf_dev_stop(struct rte_eth_dev *dev)
3323 {
3324         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3325         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3326
3327         PMD_INIT_FUNC_TRACE();
3328
3329         igbvf_stop_adapter(dev);
3330
3331         /*
3332           * Clear what we set, but we still keep shadow_vfta to
3333           * restore after device starts
3334           */
3335         igbvf_set_vfta_all(dev,0);
3336
3337         igb_dev_clear_queues(dev);
3338
3339         /* disable intr eventfd mapping */
3340         rte_intr_disable(intr_handle);
3341
3342         /* Clean datapath event and queue/vec mapping */
3343         rte_intr_efd_disable(intr_handle);
3344         if (intr_handle->intr_vec) {
3345                 rte_free(intr_handle->intr_vec);
3346                 intr_handle->intr_vec = NULL;
3347         }
3348 }
3349
3350 static void
3351 igbvf_dev_close(struct rte_eth_dev *dev)
3352 {
3353         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3354         struct e1000_adapter *adapter =
3355                 E1000_DEV_PRIVATE(dev->data->dev_private);
3356         struct ether_addr addr;
3357
3358         PMD_INIT_FUNC_TRACE();
3359
3360         e1000_reset_hw(hw);
3361
3362         igbvf_dev_stop(dev);
3363         adapter->stopped = 1;
3364         igb_dev_free_queues(dev);
3365
3366         /**
3367          * reprogram the RAR with a zero mac address,
3368          * to ensure that the VF traffic goes to the PF
3369          * after stop, close and detach of the VF.
3370          **/
3371
3372         memset(&addr, 0, sizeof(addr));
3373         igbvf_default_mac_addr_set(dev, &addr);
3374 }
3375
3376 static void
3377 igbvf_promiscuous_enable(struct rte_eth_dev *dev)
3378 {
3379         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3380
3381         /* Set both unicast and multicast promisc */
3382         e1000_promisc_set_vf(hw, e1000_promisc_enabled);
3383 }
3384
3385 static void
3386 igbvf_promiscuous_disable(struct rte_eth_dev *dev)
3387 {
3388         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3389
3390         /* If in allmulticast mode leave multicast promisc */
3391         if (dev->data->all_multicast == 1)
3392                 e1000_promisc_set_vf(hw, e1000_promisc_multicast);
3393         else
3394                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
3395 }
3396
3397 static void
3398 igbvf_allmulticast_enable(struct rte_eth_dev *dev)
3399 {
3400         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3401
3402         /* In promiscuous mode multicast promisc already set */
3403         if (dev->data->promiscuous == 0)
3404                 e1000_promisc_set_vf(hw, e1000_promisc_multicast);
3405 }
3406
3407 static void
3408 igbvf_allmulticast_disable(struct rte_eth_dev *dev)
3409 {
3410         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3411
3412         /* In promiscuous mode leave multicast promisc enabled */
3413         if (dev->data->promiscuous == 0)
3414                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
3415 }
3416
3417 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on)
3418 {
3419         struct e1000_mbx_info *mbx = &hw->mbx;
3420         uint32_t msgbuf[2];
3421         s32 err;
3422
3423         /* After set vlan, vlan strip will also be enabled in igb driver*/
3424         msgbuf[0] = E1000_VF_SET_VLAN;
3425         msgbuf[1] = vid;
3426         /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
3427         if (on)
3428                 msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
3429
3430         err = mbx->ops.write_posted(hw, msgbuf, 2, 0);
3431         if (err)
3432                 goto mbx_err;
3433
3434         err = mbx->ops.read_posted(hw, msgbuf, 2, 0);
3435         if (err)
3436                 goto mbx_err;
3437
3438         msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
3439         if (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK))
3440                 err = -EINVAL;
3441
3442 mbx_err:
3443         return err;
3444 }
3445
3446 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on)
3447 {
3448         struct e1000_hw *hw =
3449                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3450         struct e1000_vfta * shadow_vfta =
3451                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
3452         int i = 0, j = 0, vfta = 0, mask = 1;
3453
3454         for (i = 0; i < IGB_VFTA_SIZE; i++){
3455                 vfta = shadow_vfta->vfta[i];
3456                 if(vfta){
3457                         mask = 1;
3458                         for (j = 0; j < 32; j++){
3459                                 if(vfta & mask)
3460                                         igbvf_set_vfta(hw,
3461                                                 (uint16_t)((i<<5)+j), on);
3462                                 mask<<=1;
3463                         }
3464                 }
3465         }
3466
3467 }
3468
3469 static int
3470 igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
3471 {
3472         struct e1000_hw *hw =
3473                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3474         struct e1000_vfta * shadow_vfta =
3475                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
3476         uint32_t vid_idx = 0;
3477         uint32_t vid_bit = 0;
3478         int ret = 0;
3479
3480         PMD_INIT_FUNC_TRACE();
3481
3482         /*vind is not used in VF driver, set to 0, check ixgbe_set_vfta_vf*/
3483         ret = igbvf_set_vfta(hw, vlan_id, !!on);
3484         if(ret){
3485                 PMD_INIT_LOG(ERR, "Unable to set VF vlan");
3486                 return ret;
3487         }
3488         vid_idx = (uint32_t) ((vlan_id >> 5) & 0x7F);
3489         vid_bit = (uint32_t) (1 << (vlan_id & 0x1F));
3490
3491         /*Save what we set and retore it after device reset*/
3492         if (on)
3493                 shadow_vfta->vfta[vid_idx] |= vid_bit;
3494         else
3495                 shadow_vfta->vfta[vid_idx] &= ~vid_bit;
3496
3497         return 0;
3498 }
3499
3500 static int
3501 igbvf_default_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *addr)
3502 {
3503         struct e1000_hw *hw =
3504                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3505
3506         /* index is not used by rar_set() */
3507         hw->mac.ops.rar_set(hw, (void *)addr, 0);
3508         return 0;
3509 }
3510
3511
3512 static int
3513 eth_igb_rss_reta_update(struct rte_eth_dev *dev,
3514                         struct rte_eth_rss_reta_entry64 *reta_conf,
3515                         uint16_t reta_size)
3516 {
3517         uint8_t i, j, mask;
3518         uint32_t reta, r;
3519         uint16_t idx, shift;
3520         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3521
3522         if (reta_size != ETH_RSS_RETA_SIZE_128) {
3523                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
3524                         "(%d) doesn't match the number hardware can supported "
3525                         "(%d)", reta_size, ETH_RSS_RETA_SIZE_128);
3526                 return -EINVAL;
3527         }
3528
3529         for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
3530                 idx = i / RTE_RETA_GROUP_SIZE;
3531                 shift = i % RTE_RETA_GROUP_SIZE;
3532                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
3533                                                 IGB_4_BIT_MASK);
3534                 if (!mask)
3535                         continue;
3536                 if (mask == IGB_4_BIT_MASK)
3537                         r = 0;
3538                 else
3539                         r = E1000_READ_REG(hw, E1000_RETA(i >> 2));
3540                 for (j = 0, reta = 0; j < IGB_4_BIT_WIDTH; j++) {
3541                         if (mask & (0x1 << j))
3542                                 reta |= reta_conf[idx].reta[shift + j] <<
3543                                                         (CHAR_BIT * j);
3544                         else
3545                                 reta |= r & (IGB_8_BIT_MASK << (CHAR_BIT * j));
3546                 }
3547                 E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
3548         }
3549
3550         return 0;
3551 }
3552
3553 static int
3554 eth_igb_rss_reta_query(struct rte_eth_dev *dev,
3555                        struct rte_eth_rss_reta_entry64 *reta_conf,
3556                        uint16_t reta_size)
3557 {
3558         uint8_t i, j, mask;
3559         uint32_t reta;
3560         uint16_t idx, shift;
3561         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3562
3563         if (reta_size != ETH_RSS_RETA_SIZE_128) {
3564                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
3565                         "(%d) doesn't match the number hardware can supported "
3566                         "(%d)", reta_size, ETH_RSS_RETA_SIZE_128);
3567                 return -EINVAL;
3568         }
3569
3570         for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
3571                 idx = i / RTE_RETA_GROUP_SIZE;
3572                 shift = i % RTE_RETA_GROUP_SIZE;
3573                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
3574                                                 IGB_4_BIT_MASK);
3575                 if (!mask)
3576                         continue;
3577                 reta = E1000_READ_REG(hw, E1000_RETA(i >> 2));
3578                 for (j = 0; j < IGB_4_BIT_WIDTH; j++) {
3579                         if (mask & (0x1 << j))
3580                                 reta_conf[idx].reta[shift + j] =
3581                                         ((reta >> (CHAR_BIT * j)) &
3582                                                 IGB_8_BIT_MASK);
3583                 }
3584         }
3585
3586         return 0;
3587 }
3588
3589 int
3590 eth_igb_syn_filter_set(struct rte_eth_dev *dev,
3591                         struct rte_eth_syn_filter *filter,
3592                         bool add)
3593 {
3594         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3595         struct e1000_filter_info *filter_info =
3596                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3597         uint32_t synqf, rfctl;
3598
3599         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
3600                 return -EINVAL;
3601
3602         synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
3603
3604         if (add) {
3605                 if (synqf & E1000_SYN_FILTER_ENABLE)
3606                         return -EINVAL;
3607
3608                 synqf = (uint32_t)(((filter->queue << E1000_SYN_FILTER_QUEUE_SHIFT) &
3609                         E1000_SYN_FILTER_QUEUE) | E1000_SYN_FILTER_ENABLE);
3610
3611                 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3612                 if (filter->hig_pri)
3613                         rfctl |= E1000_RFCTL_SYNQFP;
3614                 else
3615                         rfctl &= ~E1000_RFCTL_SYNQFP;
3616
3617                 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3618         } else {
3619                 if (!(synqf & E1000_SYN_FILTER_ENABLE))
3620                         return -ENOENT;
3621                 synqf = 0;
3622         }
3623
3624         filter_info->syn_info = synqf;
3625         E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
3626         E1000_WRITE_FLUSH(hw);
3627         return 0;
3628 }
3629
3630 static int
3631 eth_igb_syn_filter_get(struct rte_eth_dev *dev,
3632                         struct rte_eth_syn_filter *filter)
3633 {
3634         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3635         uint32_t synqf, rfctl;
3636
3637         synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
3638         if (synqf & E1000_SYN_FILTER_ENABLE) {
3639                 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3640                 filter->hig_pri = (rfctl & E1000_RFCTL_SYNQFP) ? 1 : 0;
3641                 filter->queue = (uint8_t)((synqf & E1000_SYN_FILTER_QUEUE) >>
3642                                 E1000_SYN_FILTER_QUEUE_SHIFT);
3643                 return 0;
3644         }
3645
3646         return -ENOENT;
3647 }
3648
3649 static int
3650 eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
3651                         enum rte_filter_op filter_op,
3652                         void *arg)
3653 {
3654         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3655         int ret;
3656
3657         MAC_TYPE_FILTER_SUP(hw->mac.type);
3658
3659         if (filter_op == RTE_ETH_FILTER_NOP)
3660                 return 0;
3661
3662         if (arg == NULL) {
3663                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
3664                             filter_op);
3665                 return -EINVAL;
3666         }
3667
3668         switch (filter_op) {
3669         case RTE_ETH_FILTER_ADD:
3670                 ret = eth_igb_syn_filter_set(dev,
3671                                 (struct rte_eth_syn_filter *)arg,
3672                                 TRUE);
3673                 break;
3674         case RTE_ETH_FILTER_DELETE:
3675                 ret = eth_igb_syn_filter_set(dev,
3676                                 (struct rte_eth_syn_filter *)arg,
3677                                 FALSE);
3678                 break;
3679         case RTE_ETH_FILTER_GET:
3680                 ret = eth_igb_syn_filter_get(dev,
3681                                 (struct rte_eth_syn_filter *)arg);
3682                 break;
3683         default:
3684                 PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op);
3685                 ret = -EINVAL;
3686                 break;
3687         }
3688
3689         return ret;
3690 }
3691
3692 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_2tuple_filter_info*/
3693 static inline int
3694 ntuple_filter_to_2tuple(struct rte_eth_ntuple_filter *filter,
3695                         struct e1000_2tuple_filter_info *filter_info)
3696 {
3697         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
3698                 return -EINVAL;
3699         if (filter->priority > E1000_2TUPLE_MAX_PRI)
3700                 return -EINVAL;  /* filter index is out of range. */
3701         if (filter->tcp_flags > TCP_FLAG_ALL)
3702                 return -EINVAL;  /* flags is invalid. */
3703
3704         switch (filter->dst_port_mask) {
3705         case UINT16_MAX:
3706                 filter_info->dst_port_mask = 0;
3707                 filter_info->dst_port = filter->dst_port;
3708                 break;
3709         case 0:
3710                 filter_info->dst_port_mask = 1;
3711                 break;
3712         default:
3713                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
3714                 return -EINVAL;
3715         }
3716
3717         switch (filter->proto_mask) {
3718         case UINT8_MAX:
3719                 filter_info->proto_mask = 0;
3720                 filter_info->proto = filter->proto;
3721                 break;
3722         case 0:
3723                 filter_info->proto_mask = 1;
3724                 break;
3725         default:
3726                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
3727                 return -EINVAL;
3728         }
3729
3730         filter_info->priority = (uint8_t)filter->priority;
3731         if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
3732                 filter_info->tcp_flags = filter->tcp_flags;
3733         else
3734                 filter_info->tcp_flags = 0;
3735
3736         return 0;
3737 }
3738
3739 static inline struct e1000_2tuple_filter *
3740 igb_2tuple_filter_lookup(struct e1000_2tuple_filter_list *filter_list,
3741                         struct e1000_2tuple_filter_info *key)
3742 {
3743         struct e1000_2tuple_filter *it;
3744
3745         TAILQ_FOREACH(it, filter_list, entries) {
3746                 if (memcmp(key, &it->filter_info,
3747                         sizeof(struct e1000_2tuple_filter_info)) == 0) {
3748                         return it;
3749                 }
3750         }
3751         return NULL;
3752 }
3753
3754 /* inject a igb 2tuple filter to HW */
3755 static inline void
3756 igb_inject_2uple_filter(struct rte_eth_dev *dev,
3757                            struct e1000_2tuple_filter *filter)
3758 {
3759         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3760         uint32_t ttqf = E1000_TTQF_DISABLE_MASK;
3761         uint32_t imir, imir_ext = E1000_IMIREXT_SIZE_BP;
3762         int i;
3763
3764         i = filter->index;
3765         imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
3766         if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
3767                 imir |= E1000_IMIR_PORT_BP;
3768         else
3769                 imir &= ~E1000_IMIR_PORT_BP;
3770
3771         imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
3772
3773         ttqf |= E1000_TTQF_QUEUE_ENABLE;
3774         ttqf |= (uint32_t)(filter->queue << E1000_TTQF_QUEUE_SHIFT);
3775         ttqf |= (uint32_t)(filter->filter_info.proto &
3776                                                 E1000_TTQF_PROTOCOL_MASK);
3777         if (filter->filter_info.proto_mask == 0)
3778                 ttqf &= ~E1000_TTQF_MASK_ENABLE;
3779
3780         /* tcp flags bits setting. */
3781         if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) {
3782                 if (filter->filter_info.tcp_flags & TCP_URG_FLAG)
3783                         imir_ext |= E1000_IMIREXT_CTRL_URG;
3784                 if (filter->filter_info.tcp_flags & TCP_ACK_FLAG)
3785                         imir_ext |= E1000_IMIREXT_CTRL_ACK;
3786                 if (filter->filter_info.tcp_flags & TCP_PSH_FLAG)
3787                         imir_ext |= E1000_IMIREXT_CTRL_PSH;
3788                 if (filter->filter_info.tcp_flags & TCP_RST_FLAG)
3789                         imir_ext |= E1000_IMIREXT_CTRL_RST;
3790                 if (filter->filter_info.tcp_flags & TCP_SYN_FLAG)
3791                         imir_ext |= E1000_IMIREXT_CTRL_SYN;
3792                 if (filter->filter_info.tcp_flags & TCP_FIN_FLAG)
3793                         imir_ext |= E1000_IMIREXT_CTRL_FIN;
3794         } else {
3795                 imir_ext |= E1000_IMIREXT_CTRL_BP;
3796         }
3797         E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
3798         E1000_WRITE_REG(hw, E1000_TTQF(i), ttqf);
3799         E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
3800 }
3801
3802 /*
3803  * igb_add_2tuple_filter - add a 2tuple filter
3804  *
3805  * @param
3806  * dev: Pointer to struct rte_eth_dev.
3807  * ntuple_filter: ponter to the filter that will be added.
3808  *
3809  * @return
3810  *    - On success, zero.
3811  *    - On failure, a negative value.
3812  */
3813 static int
3814 igb_add_2tuple_filter(struct rte_eth_dev *dev,
3815                         struct rte_eth_ntuple_filter *ntuple_filter)
3816 {
3817         struct e1000_filter_info *filter_info =
3818                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3819         struct e1000_2tuple_filter *filter;
3820         int i, ret;
3821
3822         filter = rte_zmalloc("e1000_2tuple_filter",
3823                         sizeof(struct e1000_2tuple_filter), 0);
3824         if (filter == NULL)
3825                 return -ENOMEM;
3826
3827         ret = ntuple_filter_to_2tuple(ntuple_filter,
3828                                       &filter->filter_info);
3829         if (ret < 0) {
3830                 rte_free(filter);
3831                 return ret;
3832         }
3833         if (igb_2tuple_filter_lookup(&filter_info->twotuple_list,
3834                                          &filter->filter_info) != NULL) {
3835                 PMD_DRV_LOG(ERR, "filter exists.");
3836                 rte_free(filter);
3837                 return -EEXIST;
3838         }
3839         filter->queue = ntuple_filter->queue;
3840
3841         /*
3842          * look for an unused 2tuple filter index,
3843          * and insert the filter to list.
3844          */
3845         for (i = 0; i < E1000_MAX_TTQF_FILTERS; i++) {
3846                 if (!(filter_info->twotuple_mask & (1 << i))) {
3847                         filter_info->twotuple_mask |= 1 << i;
3848                         filter->index = i;
3849                         TAILQ_INSERT_TAIL(&filter_info->twotuple_list,
3850                                           filter,
3851                                           entries);
3852                         break;
3853                 }
3854         }
3855         if (i >= E1000_MAX_TTQF_FILTERS) {
3856                 PMD_DRV_LOG(ERR, "2tuple filters are full.");
3857                 rte_free(filter);
3858                 return -ENOSYS;
3859         }
3860
3861         igb_inject_2uple_filter(dev, filter);
3862         return 0;
3863 }
3864
3865 int
3866 igb_delete_2tuple_filter(struct rte_eth_dev *dev,
3867                         struct e1000_2tuple_filter *filter)
3868 {
3869         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3870         struct e1000_filter_info *filter_info =
3871                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3872
3873         filter_info->twotuple_mask &= ~(1 << filter->index);
3874         TAILQ_REMOVE(&filter_info->twotuple_list, filter, entries);
3875         rte_free(filter);
3876
3877         E1000_WRITE_REG(hw, E1000_TTQF(filter->index), E1000_TTQF_DISABLE_MASK);
3878         E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
3879         E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
3880         return 0;
3881 }
3882
3883 /*
3884  * igb_remove_2tuple_filter - remove a 2tuple filter
3885  *
3886  * @param
3887  * dev: Pointer to struct rte_eth_dev.
3888  * ntuple_filter: ponter to the filter that will be removed.
3889  *
3890  * @return
3891  *    - On success, zero.
3892  *    - On failure, a negative value.
3893  */
3894 static int
3895 igb_remove_2tuple_filter(struct rte_eth_dev *dev,
3896                         struct rte_eth_ntuple_filter *ntuple_filter)
3897 {
3898         struct e1000_filter_info *filter_info =
3899                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3900         struct e1000_2tuple_filter_info filter_2tuple;
3901         struct e1000_2tuple_filter *filter;
3902         int ret;
3903
3904         memset(&filter_2tuple, 0, sizeof(struct e1000_2tuple_filter_info));
3905         ret = ntuple_filter_to_2tuple(ntuple_filter,
3906                                       &filter_2tuple);
3907         if (ret < 0)
3908                 return ret;
3909
3910         filter = igb_2tuple_filter_lookup(&filter_info->twotuple_list,
3911                                          &filter_2tuple);
3912         if (filter == NULL) {
3913                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
3914                 return -ENOENT;
3915         }
3916
3917         igb_delete_2tuple_filter(dev, filter);
3918
3919         return 0;
3920 }
3921
3922 /* inject a igb flex filter to HW */
3923 static inline void
3924 igb_inject_flex_filter(struct rte_eth_dev *dev,
3925                            struct e1000_flex_filter *filter)
3926 {
3927         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3928         uint32_t wufc, queueing;
3929         uint32_t reg_off;
3930         uint8_t i, j = 0;
3931
3932         wufc = E1000_READ_REG(hw, E1000_WUFC);
3933         if (filter->index < E1000_MAX_FHFT)
3934                 reg_off = E1000_FHFT(filter->index);
3935         else
3936                 reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT);
3937
3938         E1000_WRITE_REG(hw, E1000_WUFC, wufc | E1000_WUFC_FLEX_HQ |
3939                         (E1000_WUFC_FLX0 << filter->index));
3940         queueing = filter->filter_info.len |
3941                 (filter->queue << E1000_FHFT_QUEUEING_QUEUE_SHIFT) |
3942                 (filter->filter_info.priority <<
3943                         E1000_FHFT_QUEUEING_PRIO_SHIFT);
3944         E1000_WRITE_REG(hw, reg_off + E1000_FHFT_QUEUEING_OFFSET,
3945                         queueing);
3946
3947         for (i = 0; i < E1000_FLEX_FILTERS_MASK_SIZE; i++) {
3948                 E1000_WRITE_REG(hw, reg_off,
3949                                 filter->filter_info.dwords[j]);
3950                 reg_off += sizeof(uint32_t);
3951                 E1000_WRITE_REG(hw, reg_off,
3952                                 filter->filter_info.dwords[++j]);
3953                 reg_off += sizeof(uint32_t);
3954                 E1000_WRITE_REG(hw, reg_off,
3955                         (uint32_t)filter->filter_info.mask[i]);
3956                 reg_off += sizeof(uint32_t) * 2;
3957                 ++j;
3958         }
3959 }
3960
3961 static inline struct e1000_flex_filter *
3962 eth_igb_flex_filter_lookup(struct e1000_flex_filter_list *filter_list,
3963                         struct e1000_flex_filter_info *key)
3964 {
3965         struct e1000_flex_filter *it;
3966
3967         TAILQ_FOREACH(it, filter_list, entries) {
3968                 if (memcmp(key, &it->filter_info,
3969                         sizeof(struct e1000_flex_filter_info)) == 0)
3970                         return it;
3971         }
3972
3973         return NULL;
3974 }
3975
3976 /* remove a flex byte filter
3977  * @param
3978  * dev: Pointer to struct rte_eth_dev.
3979  * filter: the pointer of the filter will be removed.
3980  */
3981 void
3982 igb_remove_flex_filter(struct rte_eth_dev *dev,
3983                         struct e1000_flex_filter *filter)
3984 {
3985         struct e1000_filter_info *filter_info =
3986                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3987         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3988         uint32_t wufc, i;
3989         uint32_t reg_off;
3990
3991         wufc = E1000_READ_REG(hw, E1000_WUFC);
3992         if (filter->index < E1000_MAX_FHFT)
3993                 reg_off = E1000_FHFT(filter->index);
3994         else
3995                 reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT);
3996
3997         for (i = 0; i < E1000_FHFT_SIZE_IN_DWD; i++)
3998                 E1000_WRITE_REG(hw, reg_off + i * sizeof(uint32_t), 0);
3999
4000         E1000_WRITE_REG(hw, E1000_WUFC, wufc &
4001                 (~(E1000_WUFC_FLX0 << filter->index)));
4002
4003         filter_info->flex_mask &= ~(1 << filter->index);
4004         TAILQ_REMOVE(&filter_info->flex_list, filter, entries);
4005         rte_free(filter);
4006 }
4007
4008 int
4009 eth_igb_add_del_flex_filter(struct rte_eth_dev *dev,
4010                         struct rte_eth_flex_filter *filter,
4011                         bool add)
4012 {
4013         struct e1000_filter_info *filter_info =
4014                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4015         struct e1000_flex_filter *flex_filter, *it;
4016         uint32_t mask;
4017         uint8_t shift, i;
4018
4019         flex_filter = rte_zmalloc("e1000_flex_filter",
4020                         sizeof(struct e1000_flex_filter), 0);
4021         if (flex_filter == NULL)
4022                 return -ENOMEM;
4023
4024         flex_filter->filter_info.len = filter->len;
4025         flex_filter->filter_info.priority = filter->priority;
4026         memcpy(flex_filter->filter_info.dwords, filter->bytes, filter->len);
4027         for (i = 0; i < RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT; i++) {
4028                 mask = 0;
4029                 /* reverse bits in flex filter's mask*/
4030                 for (shift = 0; shift < CHAR_BIT; shift++) {
4031                         if (filter->mask[i] & (0x01 << shift))
4032                                 mask |= (0x80 >> shift);
4033                 }
4034                 flex_filter->filter_info.mask[i] = mask;
4035         }
4036
4037         it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
4038                                 &flex_filter->filter_info);
4039         if (it == NULL && !add) {
4040                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4041                 rte_free(flex_filter);
4042                 return -ENOENT;
4043         }
4044         if (it != NULL && add) {
4045                 PMD_DRV_LOG(ERR, "filter exists.");
4046                 rte_free(flex_filter);
4047                 return -EEXIST;
4048         }
4049
4050         if (add) {
4051                 flex_filter->queue = filter->queue;
4052                 /*
4053                  * look for an unused flex filter index
4054                  * and insert the filter into the list.
4055                  */
4056                 for (i = 0; i < E1000_MAX_FLEX_FILTERS; i++) {
4057                         if (!(filter_info->flex_mask & (1 << i))) {
4058                                 filter_info->flex_mask |= 1 << i;
4059                                 flex_filter->index = i;
4060                                 TAILQ_INSERT_TAIL(&filter_info->flex_list,
4061                                         flex_filter,
4062                                         entries);
4063                                 break;
4064                         }
4065                 }
4066                 if (i >= E1000_MAX_FLEX_FILTERS) {
4067                         PMD_DRV_LOG(ERR, "flex filters are full.");
4068                         rte_free(flex_filter);
4069                         return -ENOSYS;
4070                 }
4071
4072                 igb_inject_flex_filter(dev, flex_filter);
4073
4074         } else {
4075                 igb_remove_flex_filter(dev, it);
4076                 rte_free(flex_filter);
4077         }
4078
4079         return 0;
4080 }
4081
4082 static int
4083 eth_igb_get_flex_filter(struct rte_eth_dev *dev,
4084                         struct rte_eth_flex_filter *filter)
4085 {
4086         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4087         struct e1000_filter_info *filter_info =
4088                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4089         struct e1000_flex_filter flex_filter, *it;
4090         uint32_t wufc, queueing, wufc_en = 0;
4091
4092         memset(&flex_filter, 0, sizeof(struct e1000_flex_filter));
4093         flex_filter.filter_info.len = filter->len;
4094         flex_filter.filter_info.priority = filter->priority;
4095         memcpy(flex_filter.filter_info.dwords, filter->bytes, filter->len);
4096         memcpy(flex_filter.filter_info.mask, filter->mask,
4097                         RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT);
4098
4099         it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
4100                                 &flex_filter.filter_info);
4101         if (it == NULL) {
4102                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4103                 return -ENOENT;
4104         }
4105
4106         wufc = E1000_READ_REG(hw, E1000_WUFC);
4107         wufc_en = E1000_WUFC_FLEX_HQ | (E1000_WUFC_FLX0 << it->index);
4108
4109         if ((wufc & wufc_en) == wufc_en) {
4110                 uint32_t reg_off = 0;
4111                 if (it->index < E1000_MAX_FHFT)
4112                         reg_off = E1000_FHFT(it->index);
4113                 else
4114                         reg_off = E1000_FHFT_EXT(it->index - E1000_MAX_FHFT);
4115
4116                 queueing = E1000_READ_REG(hw,
4117                                 reg_off + E1000_FHFT_QUEUEING_OFFSET);
4118                 filter->len = queueing & E1000_FHFT_QUEUEING_LEN;
4119                 filter->priority = (queueing & E1000_FHFT_QUEUEING_PRIO) >>
4120                         E1000_FHFT_QUEUEING_PRIO_SHIFT;
4121                 filter->queue = (queueing & E1000_FHFT_QUEUEING_QUEUE) >>
4122                         E1000_FHFT_QUEUEING_QUEUE_SHIFT;
4123                 return 0;
4124         }
4125         return -ENOENT;
4126 }
4127
4128 static int
4129 eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
4130                         enum rte_filter_op filter_op,
4131                         void *arg)
4132 {
4133         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4134         struct rte_eth_flex_filter *filter;
4135         int ret = 0;
4136
4137         MAC_TYPE_FILTER_SUP_EXT(hw->mac.type);
4138
4139         if (filter_op == RTE_ETH_FILTER_NOP)
4140                 return ret;
4141
4142         if (arg == NULL) {
4143                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
4144                             filter_op);
4145                 return -EINVAL;
4146         }
4147
4148         filter = (struct rte_eth_flex_filter *)arg;
4149         if (filter->len == 0 || filter->len > E1000_MAX_FLEX_FILTER_LEN
4150             || filter->len % sizeof(uint64_t) != 0) {
4151                 PMD_DRV_LOG(ERR, "filter's length is out of range");
4152                 return -EINVAL;
4153         }
4154         if (filter->priority > E1000_MAX_FLEX_FILTER_PRI) {
4155                 PMD_DRV_LOG(ERR, "filter's priority is out of range");
4156                 return -EINVAL;
4157         }
4158
4159         switch (filter_op) {
4160         case RTE_ETH_FILTER_ADD:
4161                 ret = eth_igb_add_del_flex_filter(dev, filter, TRUE);
4162                 break;
4163         case RTE_ETH_FILTER_DELETE:
4164                 ret = eth_igb_add_del_flex_filter(dev, filter, FALSE);
4165                 break;
4166         case RTE_ETH_FILTER_GET:
4167                 ret = eth_igb_get_flex_filter(dev, filter);
4168                 break;
4169         default:
4170                 PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op);
4171                 ret = -EINVAL;
4172                 break;
4173         }
4174
4175         return ret;
4176 }
4177
4178 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_5tuple_filter_info*/
4179 static inline int
4180 ntuple_filter_to_5tuple_82576(struct rte_eth_ntuple_filter *filter,
4181                         struct e1000_5tuple_filter_info *filter_info)
4182 {
4183         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM_82576)
4184                 return -EINVAL;
4185         if (filter->priority > E1000_2TUPLE_MAX_PRI)
4186                 return -EINVAL;  /* filter index is out of range. */
4187         if (filter->tcp_flags > TCP_FLAG_ALL)
4188                 return -EINVAL;  /* flags is invalid. */
4189
4190         switch (filter->dst_ip_mask) {
4191         case UINT32_MAX:
4192                 filter_info->dst_ip_mask = 0;
4193                 filter_info->dst_ip = filter->dst_ip;
4194                 break;
4195         case 0:
4196                 filter_info->dst_ip_mask = 1;
4197                 break;
4198         default:
4199                 PMD_DRV_LOG(ERR, "invalid dst_ip mask.");
4200                 return -EINVAL;
4201         }
4202
4203         switch (filter->src_ip_mask) {
4204         case UINT32_MAX:
4205                 filter_info->src_ip_mask = 0;
4206                 filter_info->src_ip = filter->src_ip;
4207                 break;
4208         case 0:
4209                 filter_info->src_ip_mask = 1;
4210                 break;
4211         default:
4212                 PMD_DRV_LOG(ERR, "invalid src_ip mask.");
4213                 return -EINVAL;
4214         }
4215
4216         switch (filter->dst_port_mask) {
4217         case UINT16_MAX:
4218                 filter_info->dst_port_mask = 0;
4219                 filter_info->dst_port = filter->dst_port;
4220                 break;
4221         case 0:
4222                 filter_info->dst_port_mask = 1;
4223                 break;
4224         default:
4225                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
4226                 return -EINVAL;
4227         }
4228
4229         switch (filter->src_port_mask) {
4230         case UINT16_MAX:
4231                 filter_info->src_port_mask = 0;
4232                 filter_info->src_port = filter->src_port;
4233                 break;
4234         case 0:
4235                 filter_info->src_port_mask = 1;
4236                 break;
4237         default:
4238                 PMD_DRV_LOG(ERR, "invalid src_port mask.");
4239                 return -EINVAL;
4240         }
4241
4242         switch (filter->proto_mask) {
4243         case UINT8_MAX:
4244                 filter_info->proto_mask = 0;
4245                 filter_info->proto = filter->proto;
4246                 break;
4247         case 0:
4248                 filter_info->proto_mask = 1;
4249                 break;
4250         default:
4251                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
4252                 return -EINVAL;
4253         }
4254
4255         filter_info->priority = (uint8_t)filter->priority;
4256         if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
4257                 filter_info->tcp_flags = filter->tcp_flags;
4258         else
4259                 filter_info->tcp_flags = 0;
4260
4261         return 0;
4262 }
4263
4264 static inline struct e1000_5tuple_filter *
4265 igb_5tuple_filter_lookup_82576(struct e1000_5tuple_filter_list *filter_list,
4266                         struct e1000_5tuple_filter_info *key)
4267 {
4268         struct e1000_5tuple_filter *it;
4269
4270         TAILQ_FOREACH(it, filter_list, entries) {
4271                 if (memcmp(key, &it->filter_info,
4272                         sizeof(struct e1000_5tuple_filter_info)) == 0) {
4273                         return it;
4274                 }
4275         }
4276         return NULL;
4277 }
4278
4279 /* inject a igb 5-tuple filter to HW */
4280 static inline void
4281 igb_inject_5tuple_filter_82576(struct rte_eth_dev *dev,
4282                            struct e1000_5tuple_filter *filter)
4283 {
4284         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4285         uint32_t ftqf = E1000_FTQF_VF_BP | E1000_FTQF_MASK;
4286         uint32_t spqf, imir, imir_ext = E1000_IMIREXT_SIZE_BP;
4287         uint8_t i;
4288
4289         i = filter->index;
4290         ftqf |= filter->filter_info.proto & E1000_FTQF_PROTOCOL_MASK;
4291         if (filter->filter_info.src_ip_mask == 0) /* 0b means compare. */
4292                 ftqf &= ~E1000_FTQF_MASK_SOURCE_ADDR_BP;
4293         if (filter->filter_info.dst_ip_mask == 0)
4294                 ftqf &= ~E1000_FTQF_MASK_DEST_ADDR_BP;
4295         if (filter->filter_info.src_port_mask == 0)
4296                 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
4297         if (filter->filter_info.proto_mask == 0)
4298                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP;
4299         ftqf |= (filter->queue << E1000_FTQF_QUEUE_SHIFT) &
4300                 E1000_FTQF_QUEUE_MASK;
4301         ftqf |= E1000_FTQF_QUEUE_ENABLE;
4302         E1000_WRITE_REG(hw, E1000_FTQF(i), ftqf);
4303         E1000_WRITE_REG(hw, E1000_DAQF(i), filter->filter_info.dst_ip);
4304         E1000_WRITE_REG(hw, E1000_SAQF(i), filter->filter_info.src_ip);
4305
4306         spqf = filter->filter_info.src_port & E1000_SPQF_SRCPORT;
4307         E1000_WRITE_REG(hw, E1000_SPQF(i), spqf);
4308
4309         imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
4310         if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
4311                 imir |= E1000_IMIR_PORT_BP;
4312         else
4313                 imir &= ~E1000_IMIR_PORT_BP;
4314         imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
4315
4316         /* tcp flags bits setting. */
4317         if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) {
4318                 if (filter->filter_info.tcp_flags & TCP_URG_FLAG)
4319                         imir_ext |= E1000_IMIREXT_CTRL_URG;
4320                 if (filter->filter_info.tcp_flags & TCP_ACK_FLAG)
4321                         imir_ext |= E1000_IMIREXT_CTRL_ACK;
4322                 if (filter->filter_info.tcp_flags & TCP_PSH_FLAG)
4323                         imir_ext |= E1000_IMIREXT_CTRL_PSH;
4324                 if (filter->filter_info.tcp_flags & TCP_RST_FLAG)
4325                         imir_ext |= E1000_IMIREXT_CTRL_RST;
4326                 if (filter->filter_info.tcp_flags & TCP_SYN_FLAG)
4327                         imir_ext |= E1000_IMIREXT_CTRL_SYN;
4328                 if (filter->filter_info.tcp_flags & TCP_FIN_FLAG)
4329                         imir_ext |= E1000_IMIREXT_CTRL_FIN;
4330         } else {
4331                 imir_ext |= E1000_IMIREXT_CTRL_BP;
4332         }
4333         E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
4334         E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
4335 }
4336
4337 /*
4338  * igb_add_5tuple_filter_82576 - add a 5tuple filter
4339  *
4340  * @param
4341  * dev: Pointer to struct rte_eth_dev.
4342  * ntuple_filter: ponter to the filter that will be added.
4343  *
4344  * @return
4345  *    - On success, zero.
4346  *    - On failure, a negative value.
4347  */
4348 static int
4349 igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
4350                         struct rte_eth_ntuple_filter *ntuple_filter)
4351 {
4352         struct e1000_filter_info *filter_info =
4353                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4354         struct e1000_5tuple_filter *filter;
4355         uint8_t i;
4356         int ret;
4357
4358         filter = rte_zmalloc("e1000_5tuple_filter",
4359                         sizeof(struct e1000_5tuple_filter), 0);
4360         if (filter == NULL)
4361                 return -ENOMEM;
4362
4363         ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4364                                             &filter->filter_info);
4365         if (ret < 0) {
4366                 rte_free(filter);
4367                 return ret;
4368         }
4369
4370         if (igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
4371                                          &filter->filter_info) != NULL) {
4372                 PMD_DRV_LOG(ERR, "filter exists.");
4373                 rte_free(filter);
4374                 return -EEXIST;
4375         }
4376         filter->queue = ntuple_filter->queue;
4377
4378         /*
4379          * look for an unused 5tuple filter index,
4380          * and insert the filter to list.
4381          */
4382         for (i = 0; i < E1000_MAX_FTQF_FILTERS; i++) {
4383                 if (!(filter_info->fivetuple_mask & (1 << i))) {
4384                         filter_info->fivetuple_mask |= 1 << i;
4385                         filter->index = i;
4386                         TAILQ_INSERT_TAIL(&filter_info->fivetuple_list,
4387                                           filter,
4388                                           entries);
4389                         break;
4390                 }
4391         }
4392         if (i >= E1000_MAX_FTQF_FILTERS) {
4393                 PMD_DRV_LOG(ERR, "5tuple filters are full.");
4394                 rte_free(filter);
4395                 return -ENOSYS;
4396         }
4397
4398         igb_inject_5tuple_filter_82576(dev, filter);
4399         return 0;
4400 }
4401
4402 int
4403 igb_delete_5tuple_filter_82576(struct rte_eth_dev *dev,
4404                                 struct e1000_5tuple_filter *filter)
4405 {
4406         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4407         struct e1000_filter_info *filter_info =
4408                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4409
4410         filter_info->fivetuple_mask &= ~(1 << filter->index);
4411         TAILQ_REMOVE(&filter_info->fivetuple_list, filter, entries);
4412         rte_free(filter);
4413
4414         E1000_WRITE_REG(hw, E1000_FTQF(filter->index),
4415                         E1000_FTQF_VF_BP | E1000_FTQF_MASK);
4416         E1000_WRITE_REG(hw, E1000_DAQF(filter->index), 0);
4417         E1000_WRITE_REG(hw, E1000_SAQF(filter->index), 0);
4418         E1000_WRITE_REG(hw, E1000_SPQF(filter->index), 0);
4419         E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
4420         E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
4421         return 0;
4422 }
4423
4424 /*
4425  * igb_remove_5tuple_filter_82576 - remove a 5tuple filter
4426  *
4427  * @param
4428  * dev: Pointer to struct rte_eth_dev.
4429  * ntuple_filter: ponter to the filter that will be removed.
4430  *
4431  * @return
4432  *    - On success, zero.
4433  *    - On failure, a negative value.
4434  */
4435 static int
4436 igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
4437                                 struct rte_eth_ntuple_filter *ntuple_filter)
4438 {
4439         struct e1000_filter_info *filter_info =
4440                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4441         struct e1000_5tuple_filter_info filter_5tuple;
4442         struct e1000_5tuple_filter *filter;
4443         int ret;
4444
4445         memset(&filter_5tuple, 0, sizeof(struct e1000_5tuple_filter_info));
4446         ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4447                                             &filter_5tuple);
4448         if (ret < 0)
4449                 return ret;
4450
4451         filter = igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
4452                                          &filter_5tuple);
4453         if (filter == NULL) {
4454                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
4455                 return -ENOENT;
4456         }
4457
4458         igb_delete_5tuple_filter_82576(dev, filter);
4459
4460         return 0;
4461 }
4462
4463 static int
4464 eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
4465 {
4466         uint32_t rctl;
4467         struct e1000_hw *hw;
4468         struct rte_eth_dev_info dev_info;
4469         uint32_t frame_size = mtu + (ETHER_HDR_LEN + ETHER_CRC_LEN +
4470                                      VLAN_TAG_SIZE);
4471
4472         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4473
4474 #ifdef RTE_LIBRTE_82571_SUPPORT
4475         /* XXX: not bigger than max_rx_pktlen */
4476         if (hw->mac.type == e1000_82571)
4477                 return -ENOTSUP;
4478 #endif
4479         eth_igb_infos_get(dev, &dev_info);
4480
4481         /* check that mtu is within the allowed range */
4482         if ((mtu < ETHER_MIN_MTU) ||
4483             (frame_size > dev_info.max_rx_pktlen))
4484                 return -EINVAL;
4485
4486         /* refuse mtu that requires the support of scattered packets when this
4487          * feature has not been enabled before. */
4488         if (!dev->data->scattered_rx &&
4489             frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
4490                 return -EINVAL;
4491
4492         rctl = E1000_READ_REG(hw, E1000_RCTL);
4493
4494         /* switch to jumbo mode if needed */
4495         if (frame_size > ETHER_MAX_LEN) {
4496                 dev->data->dev_conf.rxmode.offloads |=
4497                         DEV_RX_OFFLOAD_JUMBO_FRAME;
4498                 rctl |= E1000_RCTL_LPE;
4499         } else {
4500                 dev->data->dev_conf.rxmode.offloads &=
4501                         ~DEV_RX_OFFLOAD_JUMBO_FRAME;
4502                 rctl &= ~E1000_RCTL_LPE;
4503         }
4504         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
4505
4506         /* update max frame size */
4507         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
4508
4509         E1000_WRITE_REG(hw, E1000_RLPML,
4510                         dev->data->dev_conf.rxmode.max_rx_pkt_len);
4511
4512         return 0;
4513 }
4514
4515 /*
4516  * igb_add_del_ntuple_filter - add or delete a ntuple filter
4517  *
4518  * @param
4519  * dev: Pointer to struct rte_eth_dev.
4520  * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
4521  * add: if true, add filter, if false, remove filter
4522  *
4523  * @return
4524  *    - On success, zero.
4525  *    - On failure, a negative value.
4526  */
4527 int
4528 igb_add_del_ntuple_filter(struct rte_eth_dev *dev,
4529                         struct rte_eth_ntuple_filter *ntuple_filter,
4530                         bool add)
4531 {
4532         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4533         int ret;
4534
4535         switch (ntuple_filter->flags) {
4536         case RTE_5TUPLE_FLAGS:
4537         case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4538                 if (hw->mac.type != e1000_82576)
4539                         return -ENOTSUP;
4540                 if (add)
4541                         ret = igb_add_5tuple_filter_82576(dev,
4542                                                           ntuple_filter);
4543                 else
4544                         ret = igb_remove_5tuple_filter_82576(dev,
4545                                                              ntuple_filter);
4546                 break;
4547         case RTE_2TUPLE_FLAGS:
4548         case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4549                 if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350 &&
4550                         hw->mac.type != e1000_i210 &&
4551                         hw->mac.type != e1000_i211)
4552                         return -ENOTSUP;
4553                 if (add)
4554                         ret = igb_add_2tuple_filter(dev, ntuple_filter);
4555                 else
4556                         ret = igb_remove_2tuple_filter(dev, ntuple_filter);
4557                 break;
4558         default:
4559                 ret = -EINVAL;
4560                 break;
4561         }
4562
4563         return ret;
4564 }
4565
4566 /*
4567  * igb_get_ntuple_filter - get a ntuple filter
4568  *
4569  * @param
4570  * dev: Pointer to struct rte_eth_dev.
4571  * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
4572  *
4573  * @return
4574  *    - On success, zero.
4575  *    - On failure, a negative value.
4576  */
4577 static int
4578 igb_get_ntuple_filter(struct rte_eth_dev *dev,
4579                         struct rte_eth_ntuple_filter *ntuple_filter)
4580 {
4581         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4582         struct e1000_filter_info *filter_info =
4583                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4584         struct e1000_5tuple_filter_info filter_5tuple;
4585         struct e1000_2tuple_filter_info filter_2tuple;
4586         struct e1000_5tuple_filter *p_5tuple_filter;
4587         struct e1000_2tuple_filter *p_2tuple_filter;
4588         int ret;
4589
4590         switch (ntuple_filter->flags) {
4591         case RTE_5TUPLE_FLAGS:
4592         case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4593                 if (hw->mac.type != e1000_82576)
4594                         return -ENOTSUP;
4595                 memset(&filter_5tuple,
4596                         0,
4597                         sizeof(struct e1000_5tuple_filter_info));
4598                 ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4599                                                     &filter_5tuple);
4600                 if (ret < 0)
4601                         return ret;
4602                 p_5tuple_filter = igb_5tuple_filter_lookup_82576(
4603                                         &filter_info->fivetuple_list,
4604                                         &filter_5tuple);
4605                 if (p_5tuple_filter == NULL) {
4606                         PMD_DRV_LOG(ERR, "filter doesn't exist.");
4607                         return -ENOENT;
4608                 }
4609                 ntuple_filter->queue = p_5tuple_filter->queue;
4610                 break;
4611         case RTE_2TUPLE_FLAGS:
4612         case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4613                 if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350)
4614                         return -ENOTSUP;
4615                 memset(&filter_2tuple,
4616                         0,
4617                         sizeof(struct e1000_2tuple_filter_info));
4618                 ret = ntuple_filter_to_2tuple(ntuple_filter, &filter_2tuple);
4619                 if (ret < 0)
4620                         return ret;
4621                 p_2tuple_filter = igb_2tuple_filter_lookup(
4622                                         &filter_info->twotuple_list,
4623                                         &filter_2tuple);
4624                 if (p_2tuple_filter == NULL) {
4625                         PMD_DRV_LOG(ERR, "filter doesn't exist.");
4626                         return -ENOENT;
4627                 }
4628                 ntuple_filter->queue = p_2tuple_filter->queue;
4629                 break;
4630         default:
4631                 ret = -EINVAL;
4632                 break;
4633         }
4634
4635         return 0;
4636 }
4637
4638 /*
4639  * igb_ntuple_filter_handle - Handle operations for ntuple filter.
4640  * @dev: pointer to rte_eth_dev structure
4641  * @filter_op:operation will be taken.
4642  * @arg: a pointer to specific structure corresponding to the filter_op
4643  */
4644 static int
4645 igb_ntuple_filter_handle(struct rte_eth_dev *dev,
4646                                 enum rte_filter_op filter_op,
4647                                 void *arg)
4648 {
4649         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4650         int ret;
4651
4652         MAC_TYPE_FILTER_SUP(hw->mac.type);
4653
4654         if (filter_op == RTE_ETH_FILTER_NOP)
4655                 return 0;
4656
4657         if (arg == NULL) {
4658                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
4659                             filter_op);
4660                 return -EINVAL;
4661         }
4662
4663         switch (filter_op) {
4664         case RTE_ETH_FILTER_ADD:
4665                 ret = igb_add_del_ntuple_filter(dev,
4666                         (struct rte_eth_ntuple_filter *)arg,
4667                         TRUE);
4668                 break;
4669         case RTE_ETH_FILTER_DELETE:
4670                 ret = igb_add_del_ntuple_filter(dev,
4671                         (struct rte_eth_ntuple_filter *)arg,
4672                         FALSE);
4673                 break;
4674         case RTE_ETH_FILTER_GET:
4675                 ret = igb_get_ntuple_filter(dev,
4676                         (struct rte_eth_ntuple_filter *)arg);
4677                 break;
4678         default:
4679                 PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
4680                 ret = -EINVAL;
4681                 break;
4682         }
4683         return ret;
4684 }
4685
4686 static inline int
4687 igb_ethertype_filter_lookup(struct e1000_filter_info *filter_info,
4688                         uint16_t ethertype)
4689 {
4690         int i;
4691
4692         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
4693                 if (filter_info->ethertype_filters[i].ethertype == ethertype &&
4694                     (filter_info->ethertype_mask & (1 << i)))
4695                         return i;
4696         }
4697         return -1;
4698 }
4699
4700 static inline int
4701 igb_ethertype_filter_insert(struct e1000_filter_info *filter_info,
4702                         uint16_t ethertype, uint32_t etqf)
4703 {
4704         int i;
4705
4706         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
4707                 if (!(filter_info->ethertype_mask & (1 << i))) {
4708                         filter_info->ethertype_mask |= 1 << i;
4709                         filter_info->ethertype_filters[i].ethertype = ethertype;
4710                         filter_info->ethertype_filters[i].etqf = etqf;
4711                         return i;
4712                 }
4713         }
4714         return -1;
4715 }
4716
4717 int
4718 igb_ethertype_filter_remove(struct e1000_filter_info *filter_info,
4719                         uint8_t idx)
4720 {
4721         if (idx >= E1000_MAX_ETQF_FILTERS)
4722                 return -1;
4723         filter_info->ethertype_mask &= ~(1 << idx);
4724         filter_info->ethertype_filters[idx].ethertype = 0;
4725         filter_info->ethertype_filters[idx].etqf = 0;
4726         return idx;
4727 }
4728
4729
4730 int
4731 igb_add_del_ethertype_filter(struct rte_eth_dev *dev,
4732                         struct rte_eth_ethertype_filter *filter,
4733                         bool add)
4734 {
4735         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4736         struct e1000_filter_info *filter_info =
4737                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4738         uint32_t etqf = 0;
4739         int ret;
4740
4741         if (filter->ether_type == ETHER_TYPE_IPv4 ||
4742                 filter->ether_type == ETHER_TYPE_IPv6) {
4743                 PMD_DRV_LOG(ERR, "unsupported ether_type(0x%04x) in"
4744                         " ethertype filter.", filter->ether_type);
4745                 return -EINVAL;
4746         }
4747
4748         if (filter->flags & RTE_ETHTYPE_FLAGS_MAC) {
4749                 PMD_DRV_LOG(ERR, "mac compare is unsupported.");
4750                 return -EINVAL;
4751         }
4752         if (filter->flags & RTE_ETHTYPE_FLAGS_DROP) {
4753                 PMD_DRV_LOG(ERR, "drop option is unsupported.");
4754                 return -EINVAL;
4755         }
4756
4757         ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
4758         if (ret >= 0 && add) {
4759                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter exists.",
4760                             filter->ether_type);
4761                 return -EEXIST;
4762         }
4763         if (ret < 0 && !add) {
4764                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
4765                             filter->ether_type);
4766                 return -ENOENT;
4767         }
4768
4769         if (add) {
4770                 etqf |= E1000_ETQF_FILTER_ENABLE | E1000_ETQF_QUEUE_ENABLE;
4771                 etqf |= (uint32_t)(filter->ether_type & E1000_ETQF_ETHERTYPE);
4772                 etqf |= filter->queue << E1000_ETQF_QUEUE_SHIFT;
4773                 ret = igb_ethertype_filter_insert(filter_info,
4774                                 filter->ether_type, etqf);
4775                 if (ret < 0) {
4776                         PMD_DRV_LOG(ERR, "ethertype filters are full.");
4777                         return -ENOSYS;
4778                 }
4779         } else {
4780                 ret = igb_ethertype_filter_remove(filter_info, (uint8_t)ret);
4781                 if (ret < 0)
4782                         return -ENOSYS;
4783         }
4784         E1000_WRITE_REG(hw, E1000_ETQF(ret), etqf);
4785         E1000_WRITE_FLUSH(hw);
4786
4787         return 0;
4788 }
4789
4790 static int
4791 igb_get_ethertype_filter(struct rte_eth_dev *dev,
4792                         struct rte_eth_ethertype_filter *filter)
4793 {
4794         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4795         struct e1000_filter_info *filter_info =
4796                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4797         uint32_t etqf;
4798         int ret;
4799
4800         ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
4801         if (ret < 0) {
4802                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
4803                             filter->ether_type);
4804                 return -ENOENT;
4805         }
4806
4807         etqf = E1000_READ_REG(hw, E1000_ETQF(ret));
4808         if (etqf & E1000_ETQF_FILTER_ENABLE) {
4809                 filter->ether_type = etqf & E1000_ETQF_ETHERTYPE;
4810                 filter->flags = 0;
4811                 filter->queue = (etqf & E1000_ETQF_QUEUE) >>
4812                                 E1000_ETQF_QUEUE_SHIFT;
4813                 return 0;
4814         }
4815
4816         return -ENOENT;
4817 }
4818
4819 /*
4820  * igb_ethertype_filter_handle - Handle operations for ethertype filter.
4821  * @dev: pointer to rte_eth_dev structure
4822  * @filter_op:operation will be taken.
4823  * @arg: a pointer to specific structure corresponding to the filter_op
4824  */
4825 static int
4826 igb_ethertype_filter_handle(struct rte_eth_dev *dev,
4827                                 enum rte_filter_op filter_op,
4828                                 void *arg)
4829 {
4830         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4831         int ret;
4832
4833         MAC_TYPE_FILTER_SUP(hw->mac.type);
4834
4835         if (filter_op == RTE_ETH_FILTER_NOP)
4836                 return 0;
4837
4838         if (arg == NULL) {
4839                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
4840                             filter_op);
4841                 return -EINVAL;
4842         }
4843
4844         switch (filter_op) {
4845         case RTE_ETH_FILTER_ADD:
4846                 ret = igb_add_del_ethertype_filter(dev,
4847                         (struct rte_eth_ethertype_filter *)arg,
4848                         TRUE);
4849                 break;
4850         case RTE_ETH_FILTER_DELETE:
4851                 ret = igb_add_del_ethertype_filter(dev,
4852                         (struct rte_eth_ethertype_filter *)arg,
4853                         FALSE);
4854                 break;
4855         case RTE_ETH_FILTER_GET:
4856                 ret = igb_get_ethertype_filter(dev,
4857                         (struct rte_eth_ethertype_filter *)arg);
4858                 break;
4859         default:
4860                 PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
4861                 ret = -EINVAL;
4862                 break;
4863         }
4864         return ret;
4865 }
4866
4867 static int
4868 eth_igb_filter_ctrl(struct rte_eth_dev *dev,
4869                      enum rte_filter_type filter_type,
4870                      enum rte_filter_op filter_op,
4871                      void *arg)
4872 {
4873         int ret = 0;
4874
4875         switch (filter_type) {
4876         case RTE_ETH_FILTER_NTUPLE:
4877                 ret = igb_ntuple_filter_handle(dev, filter_op, arg);
4878                 break;
4879         case RTE_ETH_FILTER_ETHERTYPE:
4880                 ret = igb_ethertype_filter_handle(dev, filter_op, arg);
4881                 break;
4882         case RTE_ETH_FILTER_SYN:
4883                 ret = eth_igb_syn_filter_handle(dev, filter_op, arg);
4884                 break;
4885         case RTE_ETH_FILTER_FLEXIBLE:
4886                 ret = eth_igb_flex_filter_handle(dev, filter_op, arg);
4887                 break;
4888         case RTE_ETH_FILTER_GENERIC:
4889                 if (filter_op != RTE_ETH_FILTER_GET)
4890                         return -EINVAL;
4891                 *(const void **)arg = &igb_flow_ops;
4892                 break;
4893         default:
4894                 PMD_DRV_LOG(WARNING, "Filter type (%d) not supported",
4895                                                         filter_type);
4896                 break;
4897         }
4898
4899         return ret;
4900 }
4901
4902 static int
4903 eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
4904                          struct ether_addr *mc_addr_set,
4905                          uint32_t nb_mc_addr)
4906 {
4907         struct e1000_hw *hw;
4908
4909         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4910         e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
4911         return 0;
4912 }
4913
4914 static uint64_t
4915 igb_read_systime_cyclecounter(struct rte_eth_dev *dev)
4916 {
4917         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4918         uint64_t systime_cycles;
4919
4920         switch (hw->mac.type) {
4921         case e1000_i210:
4922         case e1000_i211:
4923                 /*
4924                  * Need to read System Time Residue Register to be able
4925                  * to read the other two registers.
4926                  */
4927                 E1000_READ_REG(hw, E1000_SYSTIMR);
4928                 /* SYSTIMEL stores ns and SYSTIMEH stores seconds. */
4929                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4930                 systime_cycles += (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
4931                                 * NSEC_PER_SEC;
4932                 break;
4933         case e1000_82580:
4934         case e1000_i350:
4935         case e1000_i354:
4936                 /*
4937                  * Need to read System Time Residue Register to be able
4938                  * to read the other two registers.
4939                  */
4940                 E1000_READ_REG(hw, E1000_SYSTIMR);
4941                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4942                 /* Only the 8 LSB are valid. */
4943                 systime_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_SYSTIMH)
4944                                 & 0xff) << 32;
4945                 break;
4946         default:
4947                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4948                 systime_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
4949                                 << 32;
4950                 break;
4951         }
4952
4953         return systime_cycles;
4954 }
4955
4956 static uint64_t
4957 igb_read_rx_tstamp_cyclecounter(struct rte_eth_dev *dev)
4958 {
4959         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4960         uint64_t rx_tstamp_cycles;
4961
4962         switch (hw->mac.type) {
4963         case e1000_i210:
4964         case e1000_i211:
4965                 /* RXSTMPL stores ns and RXSTMPH stores seconds. */
4966                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4967                 rx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
4968                                 * NSEC_PER_SEC;
4969                 break;
4970         case e1000_82580:
4971         case e1000_i350:
4972         case e1000_i354:
4973                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4974                 /* Only the 8 LSB are valid. */
4975                 rx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_RXSTMPH)
4976                                 & 0xff) << 32;
4977                 break;
4978         default:
4979                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4980                 rx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
4981                                 << 32;
4982                 break;
4983         }
4984
4985         return rx_tstamp_cycles;
4986 }
4987
4988 static uint64_t
4989 igb_read_tx_tstamp_cyclecounter(struct rte_eth_dev *dev)
4990 {
4991         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4992         uint64_t tx_tstamp_cycles;
4993
4994         switch (hw->mac.type) {
4995         case e1000_i210:
4996         case e1000_i211:
4997                 /* RXSTMPL stores ns and RXSTMPH stores seconds. */
4998                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
4999                 tx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
5000                                 * NSEC_PER_SEC;
5001                 break;
5002         case e1000_82580:
5003         case e1000_i350:
5004         case e1000_i354:
5005                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
5006                 /* Only the 8 LSB are valid. */
5007                 tx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_TXSTMPH)
5008                                 & 0xff) << 32;
5009                 break;
5010         default:
5011                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
5012                 tx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
5013                                 << 32;
5014                 break;
5015         }
5016
5017         return tx_tstamp_cycles;
5018 }
5019
5020 static void
5021 igb_start_timecounters(struct rte_eth_dev *dev)
5022 {
5023         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5024         struct e1000_adapter *adapter =
5025                 (struct e1000_adapter *)dev->data->dev_private;
5026         uint32_t incval = 1;
5027         uint32_t shift = 0;
5028         uint64_t mask = E1000_CYCLECOUNTER_MASK;
5029
5030         switch (hw->mac.type) {
5031         case e1000_82580:
5032         case e1000_i350:
5033         case e1000_i354:
5034                 /* 32 LSB bits + 8 MSB bits = 40 bits */
5035                 mask = (1ULL << 40) - 1;
5036                 /* fall-through */
5037         case e1000_i210:
5038         case e1000_i211:
5039                 /*
5040                  * Start incrementing the register
5041                  * used to timestamp PTP packets.
5042                  */
5043                 E1000_WRITE_REG(hw, E1000_TIMINCA, incval);
5044                 break;
5045         case e1000_82576:
5046                 incval = E1000_INCVALUE_82576;
5047                 shift = IGB_82576_TSYNC_SHIFT;
5048                 E1000_WRITE_REG(hw, E1000_TIMINCA,
5049                                 E1000_INCPERIOD_82576 | incval);
5050                 break;
5051         default:
5052                 /* Not supported */
5053                 return;
5054         }
5055
5056         memset(&adapter->systime_tc, 0, sizeof(struct rte_timecounter));
5057         memset(&adapter->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
5058         memset(&adapter->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
5059
5060         adapter->systime_tc.cc_mask = mask;
5061         adapter->systime_tc.cc_shift = shift;
5062         adapter->systime_tc.nsec_mask = (1ULL << shift) - 1;
5063
5064         adapter->rx_tstamp_tc.cc_mask = mask;
5065         adapter->rx_tstamp_tc.cc_shift = shift;
5066         adapter->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
5067
5068         adapter->tx_tstamp_tc.cc_mask = mask;
5069         adapter->tx_tstamp_tc.cc_shift = shift;
5070         adapter->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
5071 }
5072
5073 static int
5074 igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
5075 {
5076         struct e1000_adapter *adapter =
5077                         (struct e1000_adapter *)dev->data->dev_private;
5078
5079         adapter->systime_tc.nsec += delta;
5080         adapter->rx_tstamp_tc.nsec += delta;
5081         adapter->tx_tstamp_tc.nsec += delta;
5082
5083         return 0;
5084 }
5085
5086 static int
5087 igb_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
5088 {
5089         uint64_t ns;
5090         struct e1000_adapter *adapter =
5091                         (struct e1000_adapter *)dev->data->dev_private;
5092
5093         ns = rte_timespec_to_ns(ts);
5094
5095         /* Set the timecounters to a new value. */
5096         adapter->systime_tc.nsec = ns;
5097         adapter->rx_tstamp_tc.nsec = ns;
5098         adapter->tx_tstamp_tc.nsec = ns;
5099
5100         return 0;
5101 }
5102
5103 static int
5104 igb_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
5105 {
5106         uint64_t ns, systime_cycles;
5107         struct e1000_adapter *adapter =
5108                         (struct e1000_adapter *)dev->data->dev_private;
5109
5110         systime_cycles = igb_read_systime_cyclecounter(dev);
5111         ns = rte_timecounter_update(&adapter->systime_tc, systime_cycles);
5112         *ts = rte_ns_to_timespec(ns);
5113
5114         return 0;
5115 }
5116
5117 static int
5118 igb_timesync_enable(struct rte_eth_dev *dev)
5119 {
5120         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5121         uint32_t tsync_ctl;
5122         uint32_t tsauxc;
5123
5124         /* Stop the timesync system time. */
5125         E1000_WRITE_REG(hw, E1000_TIMINCA, 0x0);
5126         /* Reset the timesync system time value. */
5127         switch (hw->mac.type) {
5128         case e1000_82580:
5129         case e1000_i350:
5130         case e1000_i354:
5131         case e1000_i210:
5132         case e1000_i211:
5133                 E1000_WRITE_REG(hw, E1000_SYSTIMR, 0x0);
5134                 /* fall-through */
5135         case e1000_82576:
5136                 E1000_WRITE_REG(hw, E1000_SYSTIML, 0x0);
5137                 E1000_WRITE_REG(hw, E1000_SYSTIMH, 0x0);
5138                 break;
5139         default:
5140                 /* Not supported. */
5141                 return -ENOTSUP;
5142         }
5143
5144         /* Enable system time for it isn't on by default. */
5145         tsauxc = E1000_READ_REG(hw, E1000_TSAUXC);
5146         tsauxc &= ~E1000_TSAUXC_DISABLE_SYSTIME;
5147         E1000_WRITE_REG(hw, E1000_TSAUXC, tsauxc);
5148
5149         igb_start_timecounters(dev);
5150
5151         /* Enable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
5152         E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588),
5153                         (ETHER_TYPE_1588 |
5154                          E1000_ETQF_FILTER_ENABLE |
5155                          E1000_ETQF_1588));
5156
5157         /* Enable timestamping of received PTP packets. */
5158         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
5159         tsync_ctl |= E1000_TSYNCRXCTL_ENABLED;
5160         E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
5161
5162         /* Enable Timestamping of transmitted PTP packets. */
5163         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
5164         tsync_ctl |= E1000_TSYNCTXCTL_ENABLED;
5165         E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
5166
5167         return 0;
5168 }
5169
5170 static int
5171 igb_timesync_disable(struct rte_eth_dev *dev)
5172 {
5173         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5174         uint32_t tsync_ctl;
5175
5176         /* Disable timestamping of transmitted PTP packets. */
5177         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
5178         tsync_ctl &= ~E1000_TSYNCTXCTL_ENABLED;
5179         E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
5180
5181         /* Disable timestamping of received PTP packets. */
5182         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
5183         tsync_ctl &= ~E1000_TSYNCRXCTL_ENABLED;
5184         E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
5185
5186         /* Disable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
5187         E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588), 0);
5188
5189         /* Stop incrementating the System Time registers. */
5190         E1000_WRITE_REG(hw, E1000_TIMINCA, 0);
5191
5192         return 0;
5193 }
5194
5195 static int
5196 igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
5197                                struct timespec *timestamp,
5198                                uint32_t flags __rte_unused)
5199 {
5200         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5201         struct e1000_adapter *adapter =
5202                         (struct e1000_adapter *)dev->data->dev_private;
5203         uint32_t tsync_rxctl;
5204         uint64_t rx_tstamp_cycles;
5205         uint64_t ns;
5206
5207         tsync_rxctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
5208         if ((tsync_rxctl & E1000_TSYNCRXCTL_VALID) == 0)
5209                 return -EINVAL;
5210
5211         rx_tstamp_cycles = igb_read_rx_tstamp_cyclecounter(dev);
5212         ns = rte_timecounter_update(&adapter->rx_tstamp_tc, rx_tstamp_cycles);
5213         *timestamp = rte_ns_to_timespec(ns);
5214
5215         return  0;
5216 }
5217
5218 static int
5219 igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
5220                                struct timespec *timestamp)
5221 {
5222         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5223         struct e1000_adapter *adapter =
5224                         (struct e1000_adapter *)dev->data->dev_private;
5225         uint32_t tsync_txctl;
5226         uint64_t tx_tstamp_cycles;
5227         uint64_t ns;
5228
5229         tsync_txctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
5230         if ((tsync_txctl & E1000_TSYNCTXCTL_VALID) == 0)
5231                 return -EINVAL;
5232
5233         tx_tstamp_cycles = igb_read_tx_tstamp_cyclecounter(dev);
5234         ns = rte_timecounter_update(&adapter->tx_tstamp_tc, tx_tstamp_cycles);
5235         *timestamp = rte_ns_to_timespec(ns);
5236
5237         return  0;
5238 }
5239
5240 static int
5241 eth_igb_get_reg_length(struct rte_eth_dev *dev __rte_unused)
5242 {
5243         int count = 0;
5244         int g_ind = 0;
5245         const struct reg_info *reg_group;
5246
5247         while ((reg_group = igb_regs[g_ind++]))
5248                 count += igb_reg_group_count(reg_group);
5249
5250         return count;
5251 }
5252
5253 static int
5254 igbvf_get_reg_length(struct rte_eth_dev *dev __rte_unused)
5255 {
5256         int count = 0;
5257         int g_ind = 0;
5258         const struct reg_info *reg_group;
5259
5260         while ((reg_group = igbvf_regs[g_ind++]))
5261                 count += igb_reg_group_count(reg_group);
5262
5263         return count;
5264 }
5265
5266 static int
5267 eth_igb_get_regs(struct rte_eth_dev *dev,
5268         struct rte_dev_reg_info *regs)
5269 {
5270         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5271         uint32_t *data = regs->data;
5272         int g_ind = 0;
5273         int count = 0;
5274         const struct reg_info *reg_group;
5275
5276         if (data == NULL) {
5277                 regs->length = eth_igb_get_reg_length(dev);
5278                 regs->width = sizeof(uint32_t);
5279                 return 0;
5280         }
5281
5282         /* Support only full register dump */
5283         if ((regs->length == 0) ||
5284             (regs->length == (uint32_t)eth_igb_get_reg_length(dev))) {
5285                 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
5286                         hw->device_id;
5287                 while ((reg_group = igb_regs[g_ind++]))
5288                         count += igb_read_regs_group(dev, &data[count],
5289                                                         reg_group);
5290                 return 0;
5291         }
5292
5293         return -ENOTSUP;
5294 }
5295
5296 static int
5297 igbvf_get_regs(struct rte_eth_dev *dev,
5298         struct rte_dev_reg_info *regs)
5299 {
5300         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5301         uint32_t *data = regs->data;
5302         int g_ind = 0;
5303         int count = 0;
5304         const struct reg_info *reg_group;
5305
5306         if (data == NULL) {
5307                 regs->length = igbvf_get_reg_length(dev);
5308                 regs->width = sizeof(uint32_t);
5309                 return 0;
5310         }
5311
5312         /* Support only full register dump */
5313         if ((regs->length == 0) ||
5314             (regs->length == (uint32_t)igbvf_get_reg_length(dev))) {
5315                 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
5316                         hw->device_id;
5317                 while ((reg_group = igbvf_regs[g_ind++]))
5318                         count += igb_read_regs_group(dev, &data[count],
5319                                                         reg_group);
5320                 return 0;
5321         }
5322
5323         return -ENOTSUP;
5324 }
5325
5326 static int
5327 eth_igb_get_eeprom_length(struct rte_eth_dev *dev)
5328 {
5329         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5330
5331         /* Return unit is byte count */
5332         return hw->nvm.word_size * 2;
5333 }
5334
5335 static int
5336 eth_igb_get_eeprom(struct rte_eth_dev *dev,
5337         struct rte_dev_eeprom_info *in_eeprom)
5338 {
5339         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5340         struct e1000_nvm_info *nvm = &hw->nvm;
5341         uint16_t *data = in_eeprom->data;
5342         int first, length;
5343
5344         first = in_eeprom->offset >> 1;
5345         length = in_eeprom->length >> 1;
5346         if ((first >= hw->nvm.word_size) ||
5347             ((first + length) >= hw->nvm.word_size))
5348                 return -EINVAL;
5349
5350         in_eeprom->magic = hw->vendor_id |
5351                 ((uint32_t)hw->device_id << 16);
5352
5353         if ((nvm->ops.read) == NULL)
5354                 return -ENOTSUP;
5355
5356         return nvm->ops.read(hw, first, length, data);
5357 }
5358
5359 static int
5360 eth_igb_set_eeprom(struct rte_eth_dev *dev,
5361         struct rte_dev_eeprom_info *in_eeprom)
5362 {
5363         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5364         struct e1000_nvm_info *nvm = &hw->nvm;
5365         uint16_t *data = in_eeprom->data;
5366         int first, length;
5367
5368         first = in_eeprom->offset >> 1;
5369         length = in_eeprom->length >> 1;
5370         if ((first >= hw->nvm.word_size) ||
5371             ((first + length) >= hw->nvm.word_size))
5372                 return -EINVAL;
5373
5374         in_eeprom->magic = (uint32_t)hw->vendor_id |
5375                 ((uint32_t)hw->device_id << 16);
5376
5377         if ((nvm->ops.write) == NULL)
5378                 return -ENOTSUP;
5379         return nvm->ops.write(hw,  first, length, data);
5380 }
5381
5382 static int
5383 eth_igb_get_module_info(struct rte_eth_dev *dev,
5384                         struct rte_eth_dev_module_info *modinfo)
5385 {
5386         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5387
5388         uint32_t status = 0;
5389         uint16_t sff8472_rev, addr_mode;
5390         bool page_swap = false;
5391
5392         if (hw->phy.media_type == e1000_media_type_copper ||
5393             hw->phy.media_type == e1000_media_type_unknown)
5394                 return -EOPNOTSUPP;
5395
5396         /* Check whether we support SFF-8472 or not */
5397         status = e1000_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
5398         if (status)
5399                 return -EIO;
5400
5401         /* addressing mode is not supported */
5402         status = e1000_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
5403         if (status)
5404                 return -EIO;
5405
5406         /* addressing mode is not supported */
5407         if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
5408                 PMD_DRV_LOG(ERR,
5409                             "Address change required to access page 0xA2, "
5410                             "but not supported. Please report the module "
5411                             "type to the driver maintainers.\n");
5412                 page_swap = true;
5413         }
5414
5415         if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
5416                 /* We have an SFP, but it does not support SFF-8472 */
5417                 modinfo->type = RTE_ETH_MODULE_SFF_8079;
5418                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8079_LEN;
5419         } else {
5420                 /* We have an SFP which supports a revision of SFF-8472 */
5421                 modinfo->type = RTE_ETH_MODULE_SFF_8472;
5422                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
5423         }
5424
5425         return 0;
5426 }
5427
5428 static int
5429 eth_igb_get_module_eeprom(struct rte_eth_dev *dev,
5430                           struct rte_dev_eeprom_info *info)
5431 {
5432         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5433
5434         uint32_t status = 0;
5435         uint16_t dataword[RTE_ETH_MODULE_SFF_8472_LEN / 2 + 1];
5436         u16 first_word, last_word;
5437         int i = 0;
5438
5439         if (info->length == 0)
5440                 return -EINVAL;
5441
5442         first_word = info->offset >> 1;
5443         last_word = (info->offset + info->length - 1) >> 1;
5444
5445         /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
5446         for (i = 0; i < last_word - first_word + 1; i++) {
5447                 status = e1000_read_phy_reg_i2c(hw, (first_word + i) * 2,
5448                                                 &dataword[i]);
5449                 if (status) {
5450                         /* Error occurred while reading module */
5451                         return -EIO;
5452                 }
5453
5454                 dataword[i] = rte_be_to_cpu_16(dataword[i]);
5455         }
5456
5457         memcpy(info->data, (u8 *)dataword + (info->offset & 1), info->length);
5458
5459         return 0;
5460 }
5461
5462 static int
5463 eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
5464 {
5465         struct e1000_hw *hw =
5466                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5467         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5468         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5469         uint32_t vec = E1000_MISC_VEC_ID;
5470
5471         if (rte_intr_allow_others(intr_handle))
5472                 vec = E1000_RX_VEC_START;
5473
5474         uint32_t mask = 1 << (queue_id + vec);
5475
5476         E1000_WRITE_REG(hw, E1000_EIMC, mask);
5477         E1000_WRITE_FLUSH(hw);
5478
5479         return 0;
5480 }
5481
5482 static int
5483 eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
5484 {
5485         struct e1000_hw *hw =
5486                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5487         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5488         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5489         uint32_t vec = E1000_MISC_VEC_ID;
5490
5491         if (rte_intr_allow_others(intr_handle))
5492                 vec = E1000_RX_VEC_START;
5493
5494         uint32_t mask = 1 << (queue_id + vec);
5495         uint32_t regval;
5496
5497         regval = E1000_READ_REG(hw, E1000_EIMS);
5498         E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
5499         E1000_WRITE_FLUSH(hw);
5500
5501         rte_intr_enable(intr_handle);
5502
5503         return 0;
5504 }
5505
5506 static void
5507 eth_igb_write_ivar(struct e1000_hw *hw, uint8_t  msix_vector,
5508                    uint8_t index, uint8_t offset)
5509 {
5510         uint32_t val = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
5511
5512         /* clear bits */
5513         val &= ~((uint32_t)0xFF << offset);
5514
5515         /* write vector and valid bit */
5516         val |= (msix_vector | E1000_IVAR_VALID) << offset;
5517
5518         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, val);
5519 }
5520
5521 static void
5522 eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
5523                            uint8_t queue, uint8_t msix_vector)
5524 {
5525         uint32_t tmp = 0;
5526
5527         if (hw->mac.type == e1000_82575) {
5528                 if (direction == 0)
5529                         tmp = E1000_EICR_RX_QUEUE0 << queue;
5530                 else if (direction == 1)
5531                         tmp = E1000_EICR_TX_QUEUE0 << queue;
5532                 E1000_WRITE_REG(hw, E1000_MSIXBM(msix_vector), tmp);
5533         } else if (hw->mac.type == e1000_82576) {
5534                 if ((direction == 0) || (direction == 1))
5535                         eth_igb_write_ivar(hw, msix_vector, queue & 0x7,
5536                                            ((queue & 0x8) << 1) +
5537                                            8 * direction);
5538         } else if ((hw->mac.type == e1000_82580) ||
5539                         (hw->mac.type == e1000_i350) ||
5540                         (hw->mac.type == e1000_i354) ||
5541                         (hw->mac.type == e1000_i210) ||
5542                         (hw->mac.type == e1000_i211)) {
5543                 if ((direction == 0) || (direction == 1))
5544                         eth_igb_write_ivar(hw, msix_vector,
5545                                            queue >> 1,
5546                                            ((queue & 0x1) << 4) +
5547                                            8 * direction);
5548         }
5549 }
5550
5551 /* Sets up the hardware to generate MSI-X interrupts properly
5552  * @hw
5553  *  board private structure
5554  */
5555 static void
5556 eth_igb_configure_msix_intr(struct rte_eth_dev *dev)
5557 {
5558         int queue_id;
5559         uint32_t tmpval, regval, intr_mask;
5560         struct e1000_hw *hw =
5561                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5562         uint32_t vec = E1000_MISC_VEC_ID;
5563         uint32_t base = E1000_MISC_VEC_ID;
5564         uint32_t misc_shift = 0;
5565         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5566         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5567
5568         /* won't configure msix register if no mapping is done
5569          * between intr vector and event fd
5570          */
5571         if (!rte_intr_dp_is_en(intr_handle))
5572                 return;
5573
5574         if (rte_intr_allow_others(intr_handle)) {
5575                 vec = base = E1000_RX_VEC_START;
5576                 misc_shift = 1;
5577         }
5578
5579         /* set interrupt vector for other causes */
5580         if (hw->mac.type == e1000_82575) {
5581                 tmpval = E1000_READ_REG(hw, E1000_CTRL_EXT);
5582                 /* enable MSI-X PBA support */
5583                 tmpval |= E1000_CTRL_EXT_PBA_CLR;
5584
5585                 /* Auto-Mask interrupts upon ICR read */
5586                 tmpval |= E1000_CTRL_EXT_EIAME;
5587                 tmpval |= E1000_CTRL_EXT_IRCA;
5588
5589                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmpval);
5590
5591                 /* enable msix_other interrupt */
5592                 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), 0, E1000_EIMS_OTHER);
5593                 regval = E1000_READ_REG(hw, E1000_EIAC);
5594                 E1000_WRITE_REG(hw, E1000_EIAC, regval | E1000_EIMS_OTHER);
5595                 regval = E1000_READ_REG(hw, E1000_EIAM);
5596                 E1000_WRITE_REG(hw, E1000_EIMS, regval | E1000_EIMS_OTHER);
5597         } else if ((hw->mac.type == e1000_82576) ||
5598                         (hw->mac.type == e1000_82580) ||
5599                         (hw->mac.type == e1000_i350) ||
5600                         (hw->mac.type == e1000_i354) ||
5601                         (hw->mac.type == e1000_i210) ||
5602                         (hw->mac.type == e1000_i211)) {
5603                 /* turn on MSI-X capability first */
5604                 E1000_WRITE_REG(hw, E1000_GPIE, E1000_GPIE_MSIX_MODE |
5605                                         E1000_GPIE_PBA | E1000_GPIE_EIAME |
5606                                         E1000_GPIE_NSICR);
5607                 intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
5608                         misc_shift;
5609
5610                 if (dev->data->dev_conf.intr_conf.lsc != 0)
5611                         intr_mask |= (1 << IGB_MSIX_OTHER_INTR_VEC);
5612
5613                 regval = E1000_READ_REG(hw, E1000_EIAC);
5614                 E1000_WRITE_REG(hw, E1000_EIAC, regval | intr_mask);
5615
5616                 /* enable msix_other interrupt */
5617                 regval = E1000_READ_REG(hw, E1000_EIMS);
5618                 E1000_WRITE_REG(hw, E1000_EIMS, regval | intr_mask);
5619                 tmpval = (IGB_MSIX_OTHER_INTR_VEC | E1000_IVAR_VALID) << 8;
5620                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, tmpval);
5621         }
5622
5623         /* use EIAM to auto-mask when MSI-X interrupt
5624          * is asserted, this saves a register write for every interrupt
5625          */
5626         intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
5627                 misc_shift;
5628
5629         if (dev->data->dev_conf.intr_conf.lsc != 0)
5630                 intr_mask |= (1 << IGB_MSIX_OTHER_INTR_VEC);
5631
5632         regval = E1000_READ_REG(hw, E1000_EIAM);
5633         E1000_WRITE_REG(hw, E1000_EIAM, regval | intr_mask);
5634
5635         for (queue_id = 0; queue_id < dev->data->nb_rx_queues; queue_id++) {
5636                 eth_igb_assign_msix_vector(hw, 0, queue_id, vec);
5637                 intr_handle->intr_vec[queue_id] = vec;
5638                 if (vec < base + intr_handle->nb_efd - 1)
5639                         vec++;
5640         }
5641
5642         E1000_WRITE_FLUSH(hw);
5643 }
5644
5645 /* restore n-tuple filter */
5646 static inline void
5647 igb_ntuple_filter_restore(struct rte_eth_dev *dev)
5648 {
5649         struct e1000_filter_info *filter_info =
5650                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5651         struct e1000_5tuple_filter *p_5tuple;
5652         struct e1000_2tuple_filter *p_2tuple;
5653
5654         TAILQ_FOREACH(p_5tuple, &filter_info->fivetuple_list, entries) {
5655                 igb_inject_5tuple_filter_82576(dev, p_5tuple);
5656         }
5657
5658         TAILQ_FOREACH(p_2tuple, &filter_info->twotuple_list, entries) {
5659                 igb_inject_2uple_filter(dev, p_2tuple);
5660         }
5661 }
5662
5663 /* restore SYN filter */
5664 static inline void
5665 igb_syn_filter_restore(struct rte_eth_dev *dev)
5666 {
5667         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5668         struct e1000_filter_info *filter_info =
5669                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5670         uint32_t synqf;
5671
5672         synqf = filter_info->syn_info;
5673
5674         if (synqf & E1000_SYN_FILTER_ENABLE) {
5675                 E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
5676                 E1000_WRITE_FLUSH(hw);
5677         }
5678 }
5679
5680 /* restore ethernet type filter */
5681 static inline void
5682 igb_ethertype_filter_restore(struct rte_eth_dev *dev)
5683 {
5684         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5685         struct e1000_filter_info *filter_info =
5686                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5687         int i;
5688
5689         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
5690                 if (filter_info->ethertype_mask & (1 << i)) {
5691                         E1000_WRITE_REG(hw, E1000_ETQF(i),
5692                                 filter_info->ethertype_filters[i].etqf);
5693                         E1000_WRITE_FLUSH(hw);
5694                 }
5695         }
5696 }
5697
5698 /* restore flex byte filter */
5699 static inline void
5700 igb_flex_filter_restore(struct rte_eth_dev *dev)
5701 {
5702         struct e1000_filter_info *filter_info =
5703                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5704         struct e1000_flex_filter *flex_filter;
5705
5706         TAILQ_FOREACH(flex_filter, &filter_info->flex_list, entries) {
5707                 igb_inject_flex_filter(dev, flex_filter);
5708         }
5709 }
5710
5711 /* restore rss filter */
5712 static inline void
5713 igb_rss_filter_restore(struct rte_eth_dev *dev)
5714 {
5715         struct e1000_filter_info *filter_info =
5716                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5717
5718         if (filter_info->rss_info.conf.queue_num)
5719                 igb_config_rss_filter(dev, &filter_info->rss_info, TRUE);
5720 }
5721
5722 /* restore all types filter */
5723 static int
5724 igb_filter_restore(struct rte_eth_dev *dev)
5725 {
5726         igb_ntuple_filter_restore(dev);
5727         igb_ethertype_filter_restore(dev);
5728         igb_syn_filter_restore(dev);
5729         igb_flex_filter_restore(dev);
5730         igb_rss_filter_restore(dev);
5731
5732         return 0;
5733 }
5734
5735 RTE_PMD_REGISTER_PCI(net_e1000_igb, rte_igb_pmd);
5736 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb, pci_id_igb_map);
5737 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb, "* igb_uio | uio_pci_generic | vfio-pci");
5738 RTE_PMD_REGISTER_PCI(net_e1000_igb_vf, rte_igbvf_pmd);
5739 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb_vf, pci_id_igbvf_map);
5740 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb_vf, "* igb_uio | vfio-pci");
5741
5742 /* see e1000_logs.c */
5743 RTE_INIT(e1000_init_log)
5744 {
5745         e1000_igb_init_log();
5746 }