ethdev: remove deprecated statistics
[dpdk.git] / drivers / net / e1000 / igb_ethdev.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2010-2016 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <sys/queue.h>
35 #include <stdio.h>
36 #include <errno.h>
37 #include <stdint.h>
38 #include <stdarg.h>
39
40 #include <rte_common.h>
41 #include <rte_interrupts.h>
42 #include <rte_byteorder.h>
43 #include <rte_log.h>
44 #include <rte_debug.h>
45 #include <rte_pci.h>
46 #include <rte_ether.h>
47 #include <rte_ethdev.h>
48 #include <rte_memory.h>
49 #include <rte_memzone.h>
50 #include <rte_eal.h>
51 #include <rte_atomic.h>
52 #include <rte_malloc.h>
53 #include <rte_dev.h>
54
55 #include "e1000_logs.h"
56 #include "base/e1000_api.h"
57 #include "e1000_ethdev.h"
58 #include "igb_regs.h"
59
60 /*
61  * Default values for port configuration
62  */
63 #define IGB_DEFAULT_RX_FREE_THRESH  32
64
65 #define IGB_DEFAULT_RX_PTHRESH      ((hw->mac.type == e1000_i354) ? 12 : 8)
66 #define IGB_DEFAULT_RX_HTHRESH      8
67 #define IGB_DEFAULT_RX_WTHRESH      ((hw->mac.type == e1000_82576) ? 1 : 4)
68
69 #define IGB_DEFAULT_TX_PTHRESH      ((hw->mac.type == e1000_i354) ? 20 : 8)
70 #define IGB_DEFAULT_TX_HTHRESH      1
71 #define IGB_DEFAULT_TX_WTHRESH      ((hw->mac.type == e1000_82576) ? 1 : 16)
72
73 #define IGB_HKEY_MAX_INDEX 10
74
75 /* Bit shift and mask */
76 #define IGB_4_BIT_WIDTH  (CHAR_BIT / 2)
77 #define IGB_4_BIT_MASK   RTE_LEN2MASK(IGB_4_BIT_WIDTH, uint8_t)
78 #define IGB_8_BIT_WIDTH  CHAR_BIT
79 #define IGB_8_BIT_MASK   UINT8_MAX
80
81 /* Additional timesync values. */
82 #define E1000_CYCLECOUNTER_MASK      0xffffffffffffffffULL
83 #define E1000_ETQF_FILTER_1588       3
84 #define IGB_82576_TSYNC_SHIFT        16
85 #define E1000_INCPERIOD_82576        (1 << E1000_TIMINCA_16NS_SHIFT)
86 #define E1000_INCVALUE_82576         (16 << IGB_82576_TSYNC_SHIFT)
87 #define E1000_TSAUXC_DISABLE_SYSTIME 0x80000000
88
89 static int  eth_igb_configure(struct rte_eth_dev *dev);
90 static int  eth_igb_start(struct rte_eth_dev *dev);
91 static void eth_igb_stop(struct rte_eth_dev *dev);
92 static void eth_igb_close(struct rte_eth_dev *dev);
93 static void eth_igb_promiscuous_enable(struct rte_eth_dev *dev);
94 static void eth_igb_promiscuous_disable(struct rte_eth_dev *dev);
95 static void eth_igb_allmulticast_enable(struct rte_eth_dev *dev);
96 static void eth_igb_allmulticast_disable(struct rte_eth_dev *dev);
97 static int  eth_igb_link_update(struct rte_eth_dev *dev,
98                                 int wait_to_complete);
99 static void eth_igb_stats_get(struct rte_eth_dev *dev,
100                                 struct rte_eth_stats *rte_stats);
101 static int eth_igb_xstats_get(struct rte_eth_dev *dev,
102                               struct rte_eth_xstats *xstats, unsigned n);
103 static void eth_igb_stats_reset(struct rte_eth_dev *dev);
104 static void eth_igb_xstats_reset(struct rte_eth_dev *dev);
105 static void eth_igb_infos_get(struct rte_eth_dev *dev,
106                               struct rte_eth_dev_info *dev_info);
107 static const uint32_t *eth_igb_supported_ptypes_get(struct rte_eth_dev *dev);
108 static void eth_igbvf_infos_get(struct rte_eth_dev *dev,
109                                 struct rte_eth_dev_info *dev_info);
110 static int  eth_igb_flow_ctrl_get(struct rte_eth_dev *dev,
111                                 struct rte_eth_fc_conf *fc_conf);
112 static int  eth_igb_flow_ctrl_set(struct rte_eth_dev *dev,
113                                 struct rte_eth_fc_conf *fc_conf);
114 static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev);
115 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev);
116 static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev);
117 static int eth_igb_interrupt_action(struct rte_eth_dev *dev);
118 static void eth_igb_interrupt_handler(struct rte_intr_handle *handle,
119                                                         void *param);
120 static int  igb_hardware_init(struct e1000_hw *hw);
121 static void igb_hw_control_acquire(struct e1000_hw *hw);
122 static void igb_hw_control_release(struct e1000_hw *hw);
123 static void igb_init_manageability(struct e1000_hw *hw);
124 static void igb_release_manageability(struct e1000_hw *hw);
125
126 static int  eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
127
128 static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev,
129                 uint16_t vlan_id, int on);
130 static int eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
131                                  enum rte_vlan_type vlan_type,
132                                  uint16_t tpid_id);
133 static void eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask);
134
135 static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev);
136 static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev);
137 static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev);
138 static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev);
139 static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev);
140 static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev);
141
142 static int eth_igb_led_on(struct rte_eth_dev *dev);
143 static int eth_igb_led_off(struct rte_eth_dev *dev);
144
145 static void igb_intr_disable(struct e1000_hw *hw);
146 static int  igb_get_rx_buffer_size(struct e1000_hw *hw);
147 static void eth_igb_rar_set(struct rte_eth_dev *dev,
148                 struct ether_addr *mac_addr,
149                 uint32_t index, uint32_t pool);
150 static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index);
151 static void eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
152                 struct ether_addr *addr);
153
154 static void igbvf_intr_disable(struct e1000_hw *hw);
155 static int igbvf_dev_configure(struct rte_eth_dev *dev);
156 static int igbvf_dev_start(struct rte_eth_dev *dev);
157 static void igbvf_dev_stop(struct rte_eth_dev *dev);
158 static void igbvf_dev_close(struct rte_eth_dev *dev);
159 static void igbvf_promiscuous_enable(struct rte_eth_dev *dev);
160 static void igbvf_promiscuous_disable(struct rte_eth_dev *dev);
161 static void igbvf_allmulticast_enable(struct rte_eth_dev *dev);
162 static void igbvf_allmulticast_disable(struct rte_eth_dev *dev);
163 static int eth_igbvf_link_update(struct e1000_hw *hw);
164 static void eth_igbvf_stats_get(struct rte_eth_dev *dev,
165                                 struct rte_eth_stats *rte_stats);
166 static int eth_igbvf_xstats_get(struct rte_eth_dev *dev,
167                                 struct rte_eth_xstats *xstats, unsigned n);
168 static void eth_igbvf_stats_reset(struct rte_eth_dev *dev);
169 static int igbvf_vlan_filter_set(struct rte_eth_dev *dev,
170                 uint16_t vlan_id, int on);
171 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on);
172 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on);
173 static void igbvf_default_mac_addr_set(struct rte_eth_dev *dev,
174                 struct ether_addr *addr);
175 static int igbvf_get_reg_length(struct rte_eth_dev *dev);
176 static int igbvf_get_regs(struct rte_eth_dev *dev,
177                 struct rte_dev_reg_info *regs);
178
179 static int eth_igb_rss_reta_update(struct rte_eth_dev *dev,
180                                    struct rte_eth_rss_reta_entry64 *reta_conf,
181                                    uint16_t reta_size);
182 static int eth_igb_rss_reta_query(struct rte_eth_dev *dev,
183                                   struct rte_eth_rss_reta_entry64 *reta_conf,
184                                   uint16_t reta_size);
185
186 static int eth_igb_syn_filter_set(struct rte_eth_dev *dev,
187                         struct rte_eth_syn_filter *filter,
188                         bool add);
189 static int eth_igb_syn_filter_get(struct rte_eth_dev *dev,
190                         struct rte_eth_syn_filter *filter);
191 static int eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
192                         enum rte_filter_op filter_op,
193                         void *arg);
194 static int igb_add_2tuple_filter(struct rte_eth_dev *dev,
195                         struct rte_eth_ntuple_filter *ntuple_filter);
196 static int igb_remove_2tuple_filter(struct rte_eth_dev *dev,
197                         struct rte_eth_ntuple_filter *ntuple_filter);
198 static int eth_igb_add_del_flex_filter(struct rte_eth_dev *dev,
199                         struct rte_eth_flex_filter *filter,
200                         bool add);
201 static int eth_igb_get_flex_filter(struct rte_eth_dev *dev,
202                         struct rte_eth_flex_filter *filter);
203 static int eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
204                         enum rte_filter_op filter_op,
205                         void *arg);
206 static int igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
207                         struct rte_eth_ntuple_filter *ntuple_filter);
208 static int igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
209                         struct rte_eth_ntuple_filter *ntuple_filter);
210 static int igb_add_del_ntuple_filter(struct rte_eth_dev *dev,
211                         struct rte_eth_ntuple_filter *filter,
212                         bool add);
213 static int igb_get_ntuple_filter(struct rte_eth_dev *dev,
214                         struct rte_eth_ntuple_filter *filter);
215 static int igb_ntuple_filter_handle(struct rte_eth_dev *dev,
216                                 enum rte_filter_op filter_op,
217                                 void *arg);
218 static int igb_add_del_ethertype_filter(struct rte_eth_dev *dev,
219                         struct rte_eth_ethertype_filter *filter,
220                         bool add);
221 static int igb_ethertype_filter_handle(struct rte_eth_dev *dev,
222                                 enum rte_filter_op filter_op,
223                                 void *arg);
224 static int igb_get_ethertype_filter(struct rte_eth_dev *dev,
225                         struct rte_eth_ethertype_filter *filter);
226 static int eth_igb_filter_ctrl(struct rte_eth_dev *dev,
227                      enum rte_filter_type filter_type,
228                      enum rte_filter_op filter_op,
229                      void *arg);
230 static int eth_igb_get_reg_length(struct rte_eth_dev *dev);
231 static int eth_igb_get_regs(struct rte_eth_dev *dev,
232                 struct rte_dev_reg_info *regs);
233 static int eth_igb_get_eeprom_length(struct rte_eth_dev *dev);
234 static int eth_igb_get_eeprom(struct rte_eth_dev *dev,
235                 struct rte_dev_eeprom_info *eeprom);
236 static int eth_igb_set_eeprom(struct rte_eth_dev *dev,
237                 struct rte_dev_eeprom_info *eeprom);
238 static int eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
239                                     struct ether_addr *mc_addr_set,
240                                     uint32_t nb_mc_addr);
241 static int igb_timesync_enable(struct rte_eth_dev *dev);
242 static int igb_timesync_disable(struct rte_eth_dev *dev);
243 static int igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
244                                           struct timespec *timestamp,
245                                           uint32_t flags);
246 static int igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
247                                           struct timespec *timestamp);
248 static int igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta);
249 static int igb_timesync_read_time(struct rte_eth_dev *dev,
250                                   struct timespec *timestamp);
251 static int igb_timesync_write_time(struct rte_eth_dev *dev,
252                                    const struct timespec *timestamp);
253 static int eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev,
254                                         uint16_t queue_id);
255 static int eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev,
256                                          uint16_t queue_id);
257 static void eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
258                                        uint8_t queue, uint8_t msix_vector);
259 static void eth_igb_write_ivar(struct e1000_hw *hw, uint8_t msix_vector,
260                                uint8_t index, uint8_t offset);
261 static void eth_igb_configure_msix_intr(struct rte_eth_dev *dev);
262
263 /*
264  * Define VF Stats MACRO for Non "cleared on read" register
265  */
266 #define UPDATE_VF_STAT(reg, last, cur)            \
267 {                                                 \
268         u32 latest = E1000_READ_REG(hw, reg);     \
269         cur += (latest - last) & UINT_MAX;        \
270         last = latest;                            \
271 }
272
273 #define IGB_FC_PAUSE_TIME 0x0680
274 #define IGB_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
275 #define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
276
277 #define IGBVF_PMD_NAME "rte_igbvf_pmd"     /* PMD name */
278
279 static enum e1000_fc_mode igb_fc_setting = e1000_fc_full;
280
281 /*
282  * The set of PCI devices this driver supports
283  */
284 static const struct rte_pci_id pci_id_igb_map[] = {
285
286 #define RTE_PCI_DEV_ID_DECL_IGB(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
287 #include "rte_pci_dev_ids.h"
288
289 {0},
290 };
291
292 /*
293  * The set of PCI devices this driver supports (for 82576&I350 VF)
294  */
295 static const struct rte_pci_id pci_id_igbvf_map[] = {
296
297 #define RTE_PCI_DEV_ID_DECL_IGBVF(vend, dev) {RTE_PCI_DEVICE(vend, dev)},
298 #include "rte_pci_dev_ids.h"
299
300 {0},
301 };
302
303 static const struct rte_eth_desc_lim rx_desc_lim = {
304         .nb_max = E1000_MAX_RING_DESC,
305         .nb_min = E1000_MIN_RING_DESC,
306         .nb_align = IGB_RXD_ALIGN,
307 };
308
309 static const struct rte_eth_desc_lim tx_desc_lim = {
310         .nb_max = E1000_MAX_RING_DESC,
311         .nb_min = E1000_MIN_RING_DESC,
312         .nb_align = IGB_RXD_ALIGN,
313 };
314
315 static const struct eth_dev_ops eth_igb_ops = {
316         .dev_configure        = eth_igb_configure,
317         .dev_start            = eth_igb_start,
318         .dev_stop             = eth_igb_stop,
319         .dev_close            = eth_igb_close,
320         .promiscuous_enable   = eth_igb_promiscuous_enable,
321         .promiscuous_disable  = eth_igb_promiscuous_disable,
322         .allmulticast_enable  = eth_igb_allmulticast_enable,
323         .allmulticast_disable = eth_igb_allmulticast_disable,
324         .link_update          = eth_igb_link_update,
325         .stats_get            = eth_igb_stats_get,
326         .xstats_get           = eth_igb_xstats_get,
327         .stats_reset          = eth_igb_stats_reset,
328         .xstats_reset         = eth_igb_xstats_reset,
329         .dev_infos_get        = eth_igb_infos_get,
330         .dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
331         .mtu_set              = eth_igb_mtu_set,
332         .vlan_filter_set      = eth_igb_vlan_filter_set,
333         .vlan_tpid_set        = eth_igb_vlan_tpid_set,
334         .vlan_offload_set     = eth_igb_vlan_offload_set,
335         .rx_queue_setup       = eth_igb_rx_queue_setup,
336         .rx_queue_intr_enable = eth_igb_rx_queue_intr_enable,
337         .rx_queue_intr_disable = eth_igb_rx_queue_intr_disable,
338         .rx_queue_release     = eth_igb_rx_queue_release,
339         .rx_queue_count       = eth_igb_rx_queue_count,
340         .rx_descriptor_done   = eth_igb_rx_descriptor_done,
341         .tx_queue_setup       = eth_igb_tx_queue_setup,
342         .tx_queue_release     = eth_igb_tx_queue_release,
343         .dev_led_on           = eth_igb_led_on,
344         .dev_led_off          = eth_igb_led_off,
345         .flow_ctrl_get        = eth_igb_flow_ctrl_get,
346         .flow_ctrl_set        = eth_igb_flow_ctrl_set,
347         .mac_addr_add         = eth_igb_rar_set,
348         .mac_addr_remove      = eth_igb_rar_clear,
349         .mac_addr_set         = eth_igb_default_mac_addr_set,
350         .reta_update          = eth_igb_rss_reta_update,
351         .reta_query           = eth_igb_rss_reta_query,
352         .rss_hash_update      = eth_igb_rss_hash_update,
353         .rss_hash_conf_get    = eth_igb_rss_hash_conf_get,
354         .filter_ctrl          = eth_igb_filter_ctrl,
355         .set_mc_addr_list     = eth_igb_set_mc_addr_list,
356         .rxq_info_get         = igb_rxq_info_get,
357         .txq_info_get         = igb_txq_info_get,
358         .timesync_enable      = igb_timesync_enable,
359         .timesync_disable     = igb_timesync_disable,
360         .timesync_read_rx_timestamp = igb_timesync_read_rx_timestamp,
361         .timesync_read_tx_timestamp = igb_timesync_read_tx_timestamp,
362         .get_reg_length       = eth_igb_get_reg_length,
363         .get_reg              = eth_igb_get_regs,
364         .get_eeprom_length    = eth_igb_get_eeprom_length,
365         .get_eeprom           = eth_igb_get_eeprom,
366         .set_eeprom           = eth_igb_set_eeprom,
367         .timesync_adjust_time = igb_timesync_adjust_time,
368         .timesync_read_time   = igb_timesync_read_time,
369         .timesync_write_time  = igb_timesync_write_time,
370 };
371
372 /*
373  * dev_ops for virtual function, bare necessities for basic vf
374  * operation have been implemented
375  */
376 static const struct eth_dev_ops igbvf_eth_dev_ops = {
377         .dev_configure        = igbvf_dev_configure,
378         .dev_start            = igbvf_dev_start,
379         .dev_stop             = igbvf_dev_stop,
380         .dev_close            = igbvf_dev_close,
381         .promiscuous_enable   = igbvf_promiscuous_enable,
382         .promiscuous_disable  = igbvf_promiscuous_disable,
383         .allmulticast_enable  = igbvf_allmulticast_enable,
384         .allmulticast_disable = igbvf_allmulticast_disable,
385         .link_update          = eth_igb_link_update,
386         .stats_get            = eth_igbvf_stats_get,
387         .xstats_get           = eth_igbvf_xstats_get,
388         .stats_reset          = eth_igbvf_stats_reset,
389         .xstats_reset         = eth_igbvf_stats_reset,
390         .vlan_filter_set      = igbvf_vlan_filter_set,
391         .dev_infos_get        = eth_igbvf_infos_get,
392         .dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
393         .rx_queue_setup       = eth_igb_rx_queue_setup,
394         .rx_queue_release     = eth_igb_rx_queue_release,
395         .tx_queue_setup       = eth_igb_tx_queue_setup,
396         .tx_queue_release     = eth_igb_tx_queue_release,
397         .set_mc_addr_list     = eth_igb_set_mc_addr_list,
398         .rxq_info_get         = igb_rxq_info_get,
399         .txq_info_get         = igb_txq_info_get,
400         .mac_addr_set         = igbvf_default_mac_addr_set,
401         .get_reg_length       = igbvf_get_reg_length,
402         .get_reg              = igbvf_get_regs,
403 };
404
405 /* store statistics names and its offset in stats structure */
406 struct rte_igb_xstats_name_off {
407         char name[RTE_ETH_XSTATS_NAME_SIZE];
408         unsigned offset;
409 };
410
411 static const struct rte_igb_xstats_name_off rte_igb_stats_strings[] = {
412         {"rx_crc_errors", offsetof(struct e1000_hw_stats, crcerrs)},
413         {"rx_align_errors", offsetof(struct e1000_hw_stats, algnerrc)},
414         {"rx_symbol_errors", offsetof(struct e1000_hw_stats, symerrs)},
415         {"rx_missed_packets", offsetof(struct e1000_hw_stats, mpc)},
416         {"tx_single_collision_packets", offsetof(struct e1000_hw_stats, scc)},
417         {"tx_multiple_collision_packets", offsetof(struct e1000_hw_stats, mcc)},
418         {"tx_excessive_collision_packets", offsetof(struct e1000_hw_stats,
419                 ecol)},
420         {"tx_late_collisions", offsetof(struct e1000_hw_stats, latecol)},
421         {"tx_total_collisions", offsetof(struct e1000_hw_stats, colc)},
422         {"tx_deferred_packets", offsetof(struct e1000_hw_stats, dc)},
423         {"tx_no_carrier_sense_packets", offsetof(struct e1000_hw_stats, tncrs)},
424         {"rx_carrier_ext_errors", offsetof(struct e1000_hw_stats, cexterr)},
425         {"rx_length_errors", offsetof(struct e1000_hw_stats, rlec)},
426         {"rx_xon_packets", offsetof(struct e1000_hw_stats, xonrxc)},
427         {"tx_xon_packets", offsetof(struct e1000_hw_stats, xontxc)},
428         {"rx_xoff_packets", offsetof(struct e1000_hw_stats, xoffrxc)},
429         {"tx_xoff_packets", offsetof(struct e1000_hw_stats, xofftxc)},
430         {"rx_flow_control_unsupported_packets", offsetof(struct e1000_hw_stats,
431                 fcruc)},
432         {"rx_size_64_packets", offsetof(struct e1000_hw_stats, prc64)},
433         {"rx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, prc127)},
434         {"rx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, prc255)},
435         {"rx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, prc511)},
436         {"rx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
437                 prc1023)},
438         {"rx_size_1024_to_max_packets", offsetof(struct e1000_hw_stats,
439                 prc1522)},
440         {"rx_broadcast_packets", offsetof(struct e1000_hw_stats, bprc)},
441         {"rx_multicast_packets", offsetof(struct e1000_hw_stats, mprc)},
442         {"rx_undersize_errors", offsetof(struct e1000_hw_stats, ruc)},
443         {"rx_fragment_errors", offsetof(struct e1000_hw_stats, rfc)},
444         {"rx_oversize_errors", offsetof(struct e1000_hw_stats, roc)},
445         {"rx_jabber_errors", offsetof(struct e1000_hw_stats, rjc)},
446         {"rx_management_packets", offsetof(struct e1000_hw_stats, mgprc)},
447         {"rx_management_dropped", offsetof(struct e1000_hw_stats, mgpdc)},
448         {"tx_management_packets", offsetof(struct e1000_hw_stats, mgptc)},
449         {"rx_total_packets", offsetof(struct e1000_hw_stats, tpr)},
450         {"tx_total_packets", offsetof(struct e1000_hw_stats, tpt)},
451         {"rx_total_bytes", offsetof(struct e1000_hw_stats, tor)},
452         {"tx_total_bytes", offsetof(struct e1000_hw_stats, tot)},
453         {"tx_size_64_packets", offsetof(struct e1000_hw_stats, ptc64)},
454         {"tx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, ptc127)},
455         {"tx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, ptc255)},
456         {"tx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, ptc511)},
457         {"tx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
458                 ptc1023)},
459         {"tx_size_1023_to_max_packets", offsetof(struct e1000_hw_stats,
460                 ptc1522)},
461         {"tx_multicast_packets", offsetof(struct e1000_hw_stats, mptc)},
462         {"tx_broadcast_packets", offsetof(struct e1000_hw_stats, bptc)},
463         {"tx_tso_packets", offsetof(struct e1000_hw_stats, tsctc)},
464         {"tx_tso_errors", offsetof(struct e1000_hw_stats, tsctfc)},
465         {"rx_sent_to_host_packets", offsetof(struct e1000_hw_stats, rpthc)},
466         {"tx_sent_by_host_packets", offsetof(struct e1000_hw_stats, hgptc)},
467         {"rx_code_violation_packets", offsetof(struct e1000_hw_stats, scvpc)},
468
469         {"interrupt_assert_count", offsetof(struct e1000_hw_stats, iac)},
470 };
471
472 #define IGB_NB_XSTATS (sizeof(rte_igb_stats_strings) / \
473                 sizeof(rte_igb_stats_strings[0]))
474
475 static const struct rte_igb_xstats_name_off rte_igbvf_stats_strings[] = {
476         {"rx_multicast_packets", offsetof(struct e1000_vf_stats, mprc)},
477         {"rx_good_loopback_packets", offsetof(struct e1000_vf_stats, gprlbc)},
478         {"tx_good_loopback_packets", offsetof(struct e1000_vf_stats, gptlbc)},
479         {"rx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gorlbc)},
480         {"tx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gotlbc)},
481 };
482
483 #define IGBVF_NB_XSTATS (sizeof(rte_igbvf_stats_strings) / \
484                 sizeof(rte_igbvf_stats_strings[0]))
485
486 /**
487  * Atomically reads the link status information from global
488  * structure rte_eth_dev.
489  *
490  * @param dev
491  *   - Pointer to the structure rte_eth_dev to read from.
492  *   - Pointer to the buffer to be saved with the link status.
493  *
494  * @return
495  *   - On success, zero.
496  *   - On failure, negative value.
497  */
498 static inline int
499 rte_igb_dev_atomic_read_link_status(struct rte_eth_dev *dev,
500                                 struct rte_eth_link *link)
501 {
502         struct rte_eth_link *dst = link;
503         struct rte_eth_link *src = &(dev->data->dev_link);
504
505         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
506                                         *(uint64_t *)src) == 0)
507                 return -1;
508
509         return 0;
510 }
511
512 /**
513  * Atomically writes the link status information into global
514  * structure rte_eth_dev.
515  *
516  * @param dev
517  *   - Pointer to the structure rte_eth_dev to read from.
518  *   - Pointer to the buffer to be saved with the link status.
519  *
520  * @return
521  *   - On success, zero.
522  *   - On failure, negative value.
523  */
524 static inline int
525 rte_igb_dev_atomic_write_link_status(struct rte_eth_dev *dev,
526                                 struct rte_eth_link *link)
527 {
528         struct rte_eth_link *dst = &(dev->data->dev_link);
529         struct rte_eth_link *src = link;
530
531         if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
532                                         *(uint64_t *)src) == 0)
533                 return -1;
534
535         return 0;
536 }
537
538 static inline void
539 igb_intr_enable(struct rte_eth_dev *dev)
540 {
541         struct e1000_interrupt *intr =
542                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
543         struct e1000_hw *hw =
544                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
545
546         E1000_WRITE_REG(hw, E1000_IMS, intr->mask);
547         E1000_WRITE_FLUSH(hw);
548 }
549
550 static void
551 igb_intr_disable(struct e1000_hw *hw)
552 {
553         E1000_WRITE_REG(hw, E1000_IMC, ~0);
554         E1000_WRITE_FLUSH(hw);
555 }
556
557 static inline int32_t
558 igb_pf_reset_hw(struct e1000_hw *hw)
559 {
560         uint32_t ctrl_ext;
561         int32_t status;
562
563         status = e1000_reset_hw(hw);
564
565         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
566         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
567         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
568         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
569         E1000_WRITE_FLUSH(hw);
570
571         return status;
572 }
573
574 static void
575 igb_identify_hardware(struct rte_eth_dev *dev)
576 {
577         struct e1000_hw *hw =
578                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
579
580         hw->vendor_id = dev->pci_dev->id.vendor_id;
581         hw->device_id = dev->pci_dev->id.device_id;
582         hw->subsystem_vendor_id = dev->pci_dev->id.subsystem_vendor_id;
583         hw->subsystem_device_id = dev->pci_dev->id.subsystem_device_id;
584
585         e1000_set_mac_type(hw);
586
587         /* need to check if it is a vf device below */
588 }
589
590 static int
591 igb_reset_swfw_lock(struct e1000_hw *hw)
592 {
593         int ret_val;
594
595         /*
596          * Do mac ops initialization manually here, since we will need
597          * some function pointers set by this call.
598          */
599         ret_val = e1000_init_mac_params(hw);
600         if (ret_val)
601                 return ret_val;
602
603         /*
604          * SMBI lock should not fail in this early stage. If this is the case,
605          * it is due to an improper exit of the application.
606          * So force the release of the faulty lock.
607          */
608         if (e1000_get_hw_semaphore_generic(hw) < 0) {
609                 PMD_DRV_LOG(DEBUG, "SMBI lock released");
610         }
611         e1000_put_hw_semaphore_generic(hw);
612
613         if (hw->mac.ops.acquire_swfw_sync != NULL) {
614                 uint16_t mask;
615
616                 /*
617                  * Phy lock should not fail in this early stage. If this is the case,
618                  * it is due to an improper exit of the application.
619                  * So force the release of the faulty lock.
620                  */
621                 mask = E1000_SWFW_PHY0_SM << hw->bus.func;
622                 if (hw->bus.func > E1000_FUNC_1)
623                         mask <<= 2;
624                 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
625                         PMD_DRV_LOG(DEBUG, "SWFW phy%d lock released",
626                                     hw->bus.func);
627                 }
628                 hw->mac.ops.release_swfw_sync(hw, mask);
629
630                 /*
631                  * This one is more tricky since it is common to all ports; but
632                  * swfw_sync retries last long enough (1s) to be almost sure that if
633                  * lock can not be taken it is due to an improper lock of the
634                  * semaphore.
635                  */
636                 mask = E1000_SWFW_EEP_SM;
637                 if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
638                         PMD_DRV_LOG(DEBUG, "SWFW common locks released");
639                 }
640                 hw->mac.ops.release_swfw_sync(hw, mask);
641         }
642
643         return E1000_SUCCESS;
644 }
645
646 static int
647 eth_igb_dev_init(struct rte_eth_dev *eth_dev)
648 {
649         int error = 0;
650         struct rte_pci_device *pci_dev;
651         struct e1000_hw *hw =
652                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
653         struct e1000_vfta * shadow_vfta =
654                 E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
655         struct e1000_filter_info *filter_info =
656                 E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
657         struct e1000_adapter *adapter =
658                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
659
660         uint32_t ctrl_ext;
661
662         pci_dev = eth_dev->pci_dev;
663
664         eth_dev->dev_ops = &eth_igb_ops;
665         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
666         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
667
668         /* for secondary processes, we don't initialise any further as primary
669          * has already done this work. Only check we don't need a different
670          * RX function */
671         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
672                 if (eth_dev->data->scattered_rx)
673                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
674                 return 0;
675         }
676
677         rte_eth_copy_pci_info(eth_dev, pci_dev);
678
679         hw->hw_addr= (void *)pci_dev->mem_resource[0].addr;
680
681         igb_identify_hardware(eth_dev);
682         if (e1000_setup_init_funcs(hw, FALSE) != E1000_SUCCESS) {
683                 error = -EIO;
684                 goto err_late;
685         }
686
687         e1000_get_bus_info(hw);
688
689         /* Reset any pending lock */
690         if (igb_reset_swfw_lock(hw) != E1000_SUCCESS) {
691                 error = -EIO;
692                 goto err_late;
693         }
694
695         /* Finish initialization */
696         if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) {
697                 error = -EIO;
698                 goto err_late;
699         }
700
701         hw->mac.autoneg = 1;
702         hw->phy.autoneg_wait_to_complete = 0;
703         hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
704
705         /* Copper options */
706         if (hw->phy.media_type == e1000_media_type_copper) {
707                 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
708                 hw->phy.disable_polarity_correction = 0;
709                 hw->phy.ms_type = e1000_ms_hw_default;
710         }
711
712         /*
713          * Start from a known state, this is important in reading the nvm
714          * and mac from that.
715          */
716         igb_pf_reset_hw(hw);
717
718         /* Make sure we have a good EEPROM before we read from it */
719         if (e1000_validate_nvm_checksum(hw) < 0) {
720                 /*
721                  * Some PCI-E parts fail the first check due to
722                  * the link being in sleep state, call it again,
723                  * if it fails a second time its a real issue.
724                  */
725                 if (e1000_validate_nvm_checksum(hw) < 0) {
726                         PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
727                         error = -EIO;
728                         goto err_late;
729                 }
730         }
731
732         /* Read the permanent MAC address out of the EEPROM */
733         if (e1000_read_mac_addr(hw) != 0) {
734                 PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
735                 error = -EIO;
736                 goto err_late;
737         }
738
739         /* Allocate memory for storing MAC addresses */
740         eth_dev->data->mac_addrs = rte_zmalloc("e1000",
741                 ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0);
742         if (eth_dev->data->mac_addrs == NULL) {
743                 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
744                                                 "store MAC addresses",
745                                 ETHER_ADDR_LEN * hw->mac.rar_entry_count);
746                 error = -ENOMEM;
747                 goto err_late;
748         }
749
750         /* Copy the permanent MAC address */
751         ether_addr_copy((struct ether_addr *)hw->mac.addr, &eth_dev->data->mac_addrs[0]);
752
753         /* initialize the vfta */
754         memset(shadow_vfta, 0, sizeof(*shadow_vfta));
755
756         /* Now initialize the hardware */
757         if (igb_hardware_init(hw) != 0) {
758                 PMD_INIT_LOG(ERR, "Hardware initialization failed");
759                 rte_free(eth_dev->data->mac_addrs);
760                 eth_dev->data->mac_addrs = NULL;
761                 error = -ENODEV;
762                 goto err_late;
763         }
764         hw->mac.get_link_status = 1;
765         adapter->stopped = 0;
766
767         /* Indicate SOL/IDER usage */
768         if (e1000_check_reset_block(hw) < 0) {
769                 PMD_INIT_LOG(ERR, "PHY reset is blocked due to"
770                                         "SOL/IDER session");
771         }
772
773         /* initialize PF if max_vfs not zero */
774         igb_pf_host_init(eth_dev);
775
776         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
777         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
778         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
779         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
780         E1000_WRITE_FLUSH(hw);
781
782         PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
783                      eth_dev->data->port_id, pci_dev->id.vendor_id,
784                      pci_dev->id.device_id);
785
786         rte_intr_callback_register(&pci_dev->intr_handle,
787                                    eth_igb_interrupt_handler,
788                                    (void *)eth_dev);
789
790         /* enable uio/vfio intr/eventfd mapping */
791         rte_intr_enable(&pci_dev->intr_handle);
792
793         /* enable support intr */
794         igb_intr_enable(eth_dev);
795
796         TAILQ_INIT(&filter_info->flex_list);
797         filter_info->flex_mask = 0;
798         TAILQ_INIT(&filter_info->twotuple_list);
799         filter_info->twotuple_mask = 0;
800         TAILQ_INIT(&filter_info->fivetuple_list);
801         filter_info->fivetuple_mask = 0;
802
803         return 0;
804
805 err_late:
806         igb_hw_control_release(hw);
807
808         return error;
809 }
810
811 static int
812 eth_igb_dev_uninit(struct rte_eth_dev *eth_dev)
813 {
814         struct rte_pci_device *pci_dev;
815         struct e1000_hw *hw;
816         struct e1000_adapter *adapter =
817                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
818
819         PMD_INIT_FUNC_TRACE();
820
821         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
822                 return -EPERM;
823
824         hw = E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
825         pci_dev = eth_dev->pci_dev;
826
827         if (adapter->stopped == 0)
828                 eth_igb_close(eth_dev);
829
830         eth_dev->dev_ops = NULL;
831         eth_dev->rx_pkt_burst = NULL;
832         eth_dev->tx_pkt_burst = NULL;
833
834         /* Reset any pending lock */
835         igb_reset_swfw_lock(hw);
836
837         rte_free(eth_dev->data->mac_addrs);
838         eth_dev->data->mac_addrs = NULL;
839
840         /* uninitialize PF if max_vfs not zero */
841         igb_pf_host_uninit(eth_dev);
842
843         /* disable uio intr before callback unregister */
844         rte_intr_disable(&(pci_dev->intr_handle));
845         rte_intr_callback_unregister(&(pci_dev->intr_handle),
846                 eth_igb_interrupt_handler, (void *)eth_dev);
847
848         return 0;
849 }
850
851 /*
852  * Virtual Function device init
853  */
854 static int
855 eth_igbvf_dev_init(struct rte_eth_dev *eth_dev)
856 {
857         struct rte_pci_device *pci_dev;
858         struct e1000_adapter *adapter =
859                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
860         struct e1000_hw *hw =
861                 E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
862         int diag;
863         struct ether_addr *perm_addr = (struct ether_addr *)hw->mac.perm_addr;
864
865         PMD_INIT_FUNC_TRACE();
866
867         eth_dev->dev_ops = &igbvf_eth_dev_ops;
868         eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
869         eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
870
871         /* for secondary processes, we don't initialise any further as primary
872          * has already done this work. Only check we don't need a different
873          * RX function */
874         if (rte_eal_process_type() != RTE_PROC_PRIMARY){
875                 if (eth_dev->data->scattered_rx)
876                         eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
877                 return 0;
878         }
879
880         pci_dev = eth_dev->pci_dev;
881
882         rte_eth_copy_pci_info(eth_dev, pci_dev);
883
884         hw->device_id = pci_dev->id.device_id;
885         hw->vendor_id = pci_dev->id.vendor_id;
886         hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
887         adapter->stopped = 0;
888
889         /* Initialize the shared code (base driver) */
890         diag = e1000_setup_init_funcs(hw, TRUE);
891         if (diag != 0) {
892                 PMD_INIT_LOG(ERR, "Shared code init failed for igbvf: %d",
893                         diag);
894                 return -EIO;
895         }
896
897         /* init_mailbox_params */
898         hw->mbx.ops.init_params(hw);
899
900         /* Disable the interrupts for VF */
901         igbvf_intr_disable(hw);
902
903         diag = hw->mac.ops.reset_hw(hw);
904
905         /* Allocate memory for storing MAC addresses */
906         eth_dev->data->mac_addrs = rte_zmalloc("igbvf", ETHER_ADDR_LEN *
907                 hw->mac.rar_entry_count, 0);
908         if (eth_dev->data->mac_addrs == NULL) {
909                 PMD_INIT_LOG(ERR,
910                         "Failed to allocate %d bytes needed to store MAC "
911                         "addresses",
912                         ETHER_ADDR_LEN * hw->mac.rar_entry_count);
913                 return -ENOMEM;
914         }
915
916         /* Generate a random MAC address, if none was assigned by PF. */
917         if (is_zero_ether_addr(perm_addr)) {
918                 eth_random_addr(perm_addr->addr_bytes);
919                 diag = e1000_rar_set(hw, perm_addr->addr_bytes, 0);
920                 if (diag) {
921                         rte_free(eth_dev->data->mac_addrs);
922                         eth_dev->data->mac_addrs = NULL;
923                         return diag;
924                 }
925                 PMD_INIT_LOG(INFO, "\tVF MAC address not assigned by Host PF");
926                 PMD_INIT_LOG(INFO, "\tAssign randomly generated MAC address "
927                              "%02x:%02x:%02x:%02x:%02x:%02x",
928                              perm_addr->addr_bytes[0],
929                              perm_addr->addr_bytes[1],
930                              perm_addr->addr_bytes[2],
931                              perm_addr->addr_bytes[3],
932                              perm_addr->addr_bytes[4],
933                              perm_addr->addr_bytes[5]);
934         }
935
936         /* Copy the permanent MAC address */
937         ether_addr_copy((struct ether_addr *) hw->mac.perm_addr,
938                         &eth_dev->data->mac_addrs[0]);
939
940         PMD_INIT_LOG(DEBUG, "port %d vendorID=0x%x deviceID=0x%x "
941                      "mac.type=%s",
942                      eth_dev->data->port_id, pci_dev->id.vendor_id,
943                      pci_dev->id.device_id, "igb_mac_82576_vf");
944
945         return 0;
946 }
947
948 static int
949 eth_igbvf_dev_uninit(struct rte_eth_dev *eth_dev)
950 {
951         struct e1000_adapter *adapter =
952                 E1000_DEV_PRIVATE(eth_dev->data->dev_private);
953
954         PMD_INIT_FUNC_TRACE();
955
956         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
957                 return -EPERM;
958
959         if (adapter->stopped == 0)
960                 igbvf_dev_close(eth_dev);
961
962         eth_dev->dev_ops = NULL;
963         eth_dev->rx_pkt_burst = NULL;
964         eth_dev->tx_pkt_burst = NULL;
965
966         rte_free(eth_dev->data->mac_addrs);
967         eth_dev->data->mac_addrs = NULL;
968
969         return 0;
970 }
971
972 static struct eth_driver rte_igb_pmd = {
973         .pci_drv = {
974                 .name = "rte_igb_pmd",
975                 .id_table = pci_id_igb_map,
976                 .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
977                         RTE_PCI_DRV_DETACHABLE,
978         },
979         .eth_dev_init = eth_igb_dev_init,
980         .eth_dev_uninit = eth_igb_dev_uninit,
981         .dev_private_size = sizeof(struct e1000_adapter),
982 };
983
984 /*
985  * virtual function driver struct
986  */
987 static struct eth_driver rte_igbvf_pmd = {
988         .pci_drv = {
989                 .name = "rte_igbvf_pmd",
990                 .id_table = pci_id_igbvf_map,
991                 .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_DETACHABLE,
992         },
993         .eth_dev_init = eth_igbvf_dev_init,
994         .eth_dev_uninit = eth_igbvf_dev_uninit,
995         .dev_private_size = sizeof(struct e1000_adapter),
996 };
997
998 static int
999 rte_igb_pmd_init(const char *name __rte_unused, const char *params __rte_unused)
1000 {
1001         rte_eth_driver_register(&rte_igb_pmd);
1002         return 0;
1003 }
1004
1005 static void
1006 igb_vmdq_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1007 {
1008         struct e1000_hw *hw =
1009                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1010         /* RCTL: enable VLAN filter since VMDq always use VLAN filter */
1011         uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
1012         rctl |= E1000_RCTL_VFE;
1013         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1014 }
1015
1016 /*
1017  * VF Driver initialization routine.
1018  * Invoked one at EAL init time.
1019  * Register itself as the [Virtual Poll Mode] Driver of PCI IGB devices.
1020  */
1021 static int
1022 rte_igbvf_pmd_init(const char *name __rte_unused, const char *params __rte_unused)
1023 {
1024         PMD_INIT_FUNC_TRACE();
1025
1026         rte_eth_driver_register(&rte_igbvf_pmd);
1027         return 0;
1028 }
1029
1030 static int
1031 igb_check_mq_mode(struct rte_eth_dev *dev)
1032 {
1033         enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
1034         enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
1035         uint16_t nb_rx_q = dev->data->nb_rx_queues;
1036         uint16_t nb_tx_q = dev->data->nb_rx_queues;
1037
1038         if ((rx_mq_mode & ETH_MQ_RX_DCB_FLAG) ||
1039             tx_mq_mode == ETH_MQ_TX_DCB ||
1040             tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
1041                 PMD_INIT_LOG(ERR, "DCB mode is not supported.");
1042                 return -EINVAL;
1043         }
1044         if (RTE_ETH_DEV_SRIOV(dev).active != 0) {
1045                 /* Check multi-queue mode.
1046                  * To no break software we accept ETH_MQ_RX_NONE as this might
1047                  * be used to turn off VLAN filter.
1048                  */
1049
1050                 if (rx_mq_mode == ETH_MQ_RX_NONE ||
1051                     rx_mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
1052                         dev->data->dev_conf.rxmode.mq_mode = ETH_MQ_RX_VMDQ_ONLY;
1053                         RTE_ETH_DEV_SRIOV(dev).nb_q_per_pool = 1;
1054                 } else {
1055                         /* Only support one queue on VFs.
1056                          * RSS together with SRIOV is not supported.
1057                          */
1058                         PMD_INIT_LOG(ERR, "SRIOV is active,"
1059                                         " wrong mq_mode rx %d.",
1060                                         rx_mq_mode);
1061                         return -EINVAL;
1062                 }
1063                 /* TX mode is not used here, so mode might be ignored.*/
1064                 if (tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
1065                         /* SRIOV only works in VMDq enable mode */
1066                         PMD_INIT_LOG(WARNING, "SRIOV is active,"
1067                                         " TX mode %d is not supported. "
1068                                         " Driver will behave as %d mode.",
1069                                         tx_mq_mode, ETH_MQ_TX_VMDQ_ONLY);
1070                 }
1071
1072                 /* check valid queue number */
1073                 if ((nb_rx_q > 1) || (nb_tx_q > 1)) {
1074                         PMD_INIT_LOG(ERR, "SRIOV is active,"
1075                                         " only support one queue on VFs.");
1076                         return -EINVAL;
1077                 }
1078         } else {
1079                 /* To no break software that set invalid mode, only display
1080                  * warning if invalid mode is used.
1081                  */
1082                 if (rx_mq_mode != ETH_MQ_RX_NONE &&
1083                     rx_mq_mode != ETH_MQ_RX_VMDQ_ONLY &&
1084                     rx_mq_mode != ETH_MQ_RX_RSS) {
1085                         /* RSS together with VMDq not supported*/
1086                         PMD_INIT_LOG(ERR, "RX mode %d is not supported.",
1087                                      rx_mq_mode);
1088                         return -EINVAL;
1089                 }
1090
1091                 if (tx_mq_mode != ETH_MQ_TX_NONE &&
1092                     tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
1093                         PMD_INIT_LOG(WARNING, "TX mode %d is not supported."
1094                                         " Due to txmode is meaningless in this"
1095                                         " driver, just ignore.",
1096                                         tx_mq_mode);
1097                 }
1098         }
1099         return 0;
1100 }
1101
1102 static int
1103 eth_igb_configure(struct rte_eth_dev *dev)
1104 {
1105         struct e1000_interrupt *intr =
1106                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1107         int ret;
1108
1109         PMD_INIT_FUNC_TRACE();
1110
1111         /* multipe queue mode checking */
1112         ret  = igb_check_mq_mode(dev);
1113         if (ret != 0) {
1114                 PMD_DRV_LOG(ERR, "igb_check_mq_mode fails with %d.",
1115                             ret);
1116                 return ret;
1117         }
1118
1119         intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1120         PMD_INIT_FUNC_TRACE();
1121
1122         return 0;
1123 }
1124
1125 static int
1126 eth_igb_start(struct rte_eth_dev *dev)
1127 {
1128         struct e1000_hw *hw =
1129                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1130         struct e1000_adapter *adapter =
1131                 E1000_DEV_PRIVATE(dev->data->dev_private);
1132         struct rte_intr_handle *intr_handle = &dev->pci_dev->intr_handle;
1133         int ret, mask;
1134         uint32_t intr_vector = 0;
1135         uint32_t ctrl_ext;
1136         uint32_t *speeds;
1137         int num_speeds;
1138         bool autoneg;
1139
1140         PMD_INIT_FUNC_TRACE();
1141
1142         /* disable uio/vfio intr/eventfd mapping */
1143         rte_intr_disable(intr_handle);
1144
1145         /* Power up the phy. Needed to make the link go Up */
1146         e1000_power_up_phy(hw);
1147
1148         /*
1149          * Packet Buffer Allocation (PBA)
1150          * Writing PBA sets the receive portion of the buffer
1151          * the remainder is used for the transmit buffer.
1152          */
1153         if (hw->mac.type == e1000_82575) {
1154                 uint32_t pba;
1155
1156                 pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1157                 E1000_WRITE_REG(hw, E1000_PBA, pba);
1158         }
1159
1160         /* Put the address into the Receive Address Array */
1161         e1000_rar_set(hw, hw->mac.addr, 0);
1162
1163         /* Initialize the hardware */
1164         if (igb_hardware_init(hw)) {
1165                 PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
1166                 return -EIO;
1167         }
1168         adapter->stopped = 0;
1169
1170         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN);
1171
1172         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1173         /* Set PF Reset Done bit so PF/VF Mail Ops can work */
1174         ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
1175         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1176         E1000_WRITE_FLUSH(hw);
1177
1178         /* configure PF module if SRIOV enabled */
1179         igb_pf_host_configure(dev);
1180
1181         /* check and configure queue intr-vector mapping */
1182         if ((rte_intr_cap_multiple(intr_handle) ||
1183              !RTE_ETH_DEV_SRIOV(dev).active) &&
1184             dev->data->dev_conf.intr_conf.rxq != 0) {
1185                 intr_vector = dev->data->nb_rx_queues;
1186                 if (rte_intr_efd_enable(intr_handle, intr_vector))
1187                         return -1;
1188         }
1189
1190         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
1191                 intr_handle->intr_vec =
1192                         rte_zmalloc("intr_vec",
1193                                     dev->data->nb_rx_queues * sizeof(int), 0);
1194                 if (intr_handle->intr_vec == NULL) {
1195                         PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
1196                                      " intr_vec\n", dev->data->nb_rx_queues);
1197                         return -ENOMEM;
1198                 }
1199         }
1200
1201         /* confiugre msix for rx interrupt */
1202         eth_igb_configure_msix_intr(dev);
1203
1204         /* Configure for OS presence */
1205         igb_init_manageability(hw);
1206
1207         eth_igb_tx_init(dev);
1208
1209         /* This can fail when allocating mbufs for descriptor rings */
1210         ret = eth_igb_rx_init(dev);
1211         if (ret) {
1212                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
1213                 igb_dev_clear_queues(dev);
1214                 return ret;
1215         }
1216
1217         e1000_clear_hw_cntrs_base_generic(hw);
1218
1219         /*
1220          * VLAN Offload Settings
1221          */
1222         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
1223                         ETH_VLAN_EXTEND_MASK;
1224         eth_igb_vlan_offload_set(dev, mask);
1225
1226         if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
1227                 /* Enable VLAN filter since VMDq always use VLAN filter */
1228                 igb_vmdq_vlan_hw_filter_enable(dev);
1229         }
1230
1231         if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) ||
1232                 (hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i210) ||
1233                 (hw->mac.type == e1000_i211)) {
1234                 /* Configure EITR with the maximum possible value (0xFFFF) */
1235                 E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF);
1236         }
1237
1238         /* Setup link speed and duplex */
1239         speeds = &dev->data->dev_conf.link_speeds;
1240         if (*speeds == ETH_LINK_SPEED_AUTONEG) {
1241                 hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
1242         } else {
1243                 num_speeds = 0;
1244                 autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
1245
1246                 /* Reset */
1247                 hw->phy.autoneg_advertised = 0;
1248
1249                 if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1250                                 ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1251                                 ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
1252                         num_speeds = -1;
1253                         goto error_invalid_config;
1254                 }
1255                 if (*speeds & ETH_LINK_SPEED_10M_HD) {
1256                         hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
1257                         num_speeds++;
1258                 }
1259                 if (*speeds & ETH_LINK_SPEED_10M) {
1260                         hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
1261                         num_speeds++;
1262                 }
1263                 if (*speeds & ETH_LINK_SPEED_100M_HD) {
1264                         hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
1265                         num_speeds++;
1266                 }
1267                 if (*speeds & ETH_LINK_SPEED_100M) {
1268                         hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
1269                         num_speeds++;
1270                 }
1271                 if (*speeds & ETH_LINK_SPEED_1G) {
1272                         hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
1273                         num_speeds++;
1274                 }
1275                 if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
1276                         goto error_invalid_config;
1277         }
1278
1279         e1000_setup_link(hw);
1280
1281         if (rte_intr_allow_others(intr_handle)) {
1282                 /* check if lsc interrupt is enabled */
1283                 if (dev->data->dev_conf.intr_conf.lsc != 0)
1284                         eth_igb_lsc_interrupt_setup(dev);
1285         } else {
1286                 rte_intr_callback_unregister(intr_handle,
1287                                              eth_igb_interrupt_handler,
1288                                              (void *)dev);
1289                 if (dev->data->dev_conf.intr_conf.lsc != 0)
1290                         PMD_INIT_LOG(INFO, "lsc won't enable because of"
1291                                      " no intr multiplex\n");
1292         }
1293
1294         /* check if rxq interrupt is enabled */
1295         if (dev->data->dev_conf.intr_conf.rxq != 0 &&
1296             rte_intr_dp_is_en(intr_handle))
1297                 eth_igb_rxq_interrupt_setup(dev);
1298
1299         /* enable uio/vfio intr/eventfd mapping */
1300         rte_intr_enable(intr_handle);
1301
1302         /* resume enabled intr since hw reset */
1303         igb_intr_enable(dev);
1304
1305         PMD_INIT_LOG(DEBUG, "<<");
1306
1307         return 0;
1308
1309 error_invalid_config:
1310         PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
1311                      dev->data->dev_conf.link_speeds, dev->data->port_id);
1312         igb_dev_clear_queues(dev);
1313         return -EINVAL;
1314 }
1315
1316 /*********************************************************************
1317  *
1318  *  This routine disables all traffic on the adapter by issuing a
1319  *  global reset on the MAC.
1320  *
1321  **********************************************************************/
1322 static void
1323 eth_igb_stop(struct rte_eth_dev *dev)
1324 {
1325         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1326         struct e1000_filter_info *filter_info =
1327                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
1328         struct rte_eth_link link;
1329         struct e1000_flex_filter *p_flex;
1330         struct e1000_5tuple_filter *p_5tuple, *p_5tuple_next;
1331         struct e1000_2tuple_filter *p_2tuple, *p_2tuple_next;
1332         struct rte_intr_handle *intr_handle = &dev->pci_dev->intr_handle;
1333
1334         igb_intr_disable(hw);
1335
1336         /* disable intr eventfd mapping */
1337         rte_intr_disable(intr_handle);
1338
1339         igb_pf_reset_hw(hw);
1340         E1000_WRITE_REG(hw, E1000_WUC, 0);
1341
1342         /* Set bit for Go Link disconnect */
1343         if (hw->mac.type >= e1000_82580) {
1344                 uint32_t phpm_reg;
1345
1346                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1347                 phpm_reg |= E1000_82580_PM_GO_LINKD;
1348                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1349         }
1350
1351         /* Power down the phy. Needed to make the link go Down */
1352         if (hw->phy.media_type == e1000_media_type_copper)
1353                 e1000_power_down_phy(hw);
1354         else
1355                 e1000_shutdown_fiber_serdes_link(hw);
1356
1357         igb_dev_clear_queues(dev);
1358
1359         /* clear the recorded link status */
1360         memset(&link, 0, sizeof(link));
1361         rte_igb_dev_atomic_write_link_status(dev, &link);
1362
1363         /* Remove all flex filters of the device */
1364         while ((p_flex = TAILQ_FIRST(&filter_info->flex_list))) {
1365                 TAILQ_REMOVE(&filter_info->flex_list, p_flex, entries);
1366                 rte_free(p_flex);
1367         }
1368         filter_info->flex_mask = 0;
1369
1370         /* Remove all ntuple filters of the device */
1371         for (p_5tuple = TAILQ_FIRST(&filter_info->fivetuple_list);
1372              p_5tuple != NULL; p_5tuple = p_5tuple_next) {
1373                 p_5tuple_next = TAILQ_NEXT(p_5tuple, entries);
1374                 TAILQ_REMOVE(&filter_info->fivetuple_list,
1375                              p_5tuple, entries);
1376                 rte_free(p_5tuple);
1377         }
1378         filter_info->fivetuple_mask = 0;
1379         for (p_2tuple = TAILQ_FIRST(&filter_info->twotuple_list);
1380              p_2tuple != NULL; p_2tuple = p_2tuple_next) {
1381                 p_2tuple_next = TAILQ_NEXT(p_2tuple, entries);
1382                 TAILQ_REMOVE(&filter_info->twotuple_list,
1383                              p_2tuple, entries);
1384                 rte_free(p_2tuple);
1385         }
1386         filter_info->twotuple_mask = 0;
1387
1388         if (!rte_intr_allow_others(intr_handle))
1389                 /* resume to the default handler */
1390                 rte_intr_callback_register(intr_handle,
1391                                            eth_igb_interrupt_handler,
1392                                            (void *)dev);
1393
1394         /* Clean datapath event and queue/vec mapping */
1395         rte_intr_efd_disable(intr_handle);
1396         if (intr_handle->intr_vec != NULL) {
1397                 rte_free(intr_handle->intr_vec);
1398                 intr_handle->intr_vec = NULL;
1399         }
1400 }
1401
1402 static void
1403 eth_igb_close(struct rte_eth_dev *dev)
1404 {
1405         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1406         struct e1000_adapter *adapter =
1407                 E1000_DEV_PRIVATE(dev->data->dev_private);
1408         struct rte_eth_link link;
1409         struct rte_pci_device *pci_dev;
1410
1411         eth_igb_stop(dev);
1412         adapter->stopped = 1;
1413
1414         e1000_phy_hw_reset(hw);
1415         igb_release_manageability(hw);
1416         igb_hw_control_release(hw);
1417
1418         /* Clear bit for Go Link disconnect */
1419         if (hw->mac.type >= e1000_82580) {
1420                 uint32_t phpm_reg;
1421
1422                 phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1423                 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1424                 E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1425         }
1426
1427         igb_dev_free_queues(dev);
1428
1429         pci_dev = dev->pci_dev;
1430         if (pci_dev->intr_handle.intr_vec) {
1431                 rte_free(pci_dev->intr_handle.intr_vec);
1432                 pci_dev->intr_handle.intr_vec = NULL;
1433         }
1434
1435         memset(&link, 0, sizeof(link));
1436         rte_igb_dev_atomic_write_link_status(dev, &link);
1437 }
1438
1439 static int
1440 igb_get_rx_buffer_size(struct e1000_hw *hw)
1441 {
1442         uint32_t rx_buf_size;
1443         if (hw->mac.type == e1000_82576) {
1444                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10;
1445         } else if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i350) {
1446                 /* PBS needs to be translated according to a lookup table */
1447                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf);
1448                 rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size);
1449                 rx_buf_size = (rx_buf_size << 10);
1450         } else if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
1451                 rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0x3f) << 10;
1452         } else {
1453                 rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10;
1454         }
1455
1456         return rx_buf_size;
1457 }
1458
1459 /*********************************************************************
1460  *
1461  *  Initialize the hardware
1462  *
1463  **********************************************************************/
1464 static int
1465 igb_hardware_init(struct e1000_hw *hw)
1466 {
1467         uint32_t rx_buf_size;
1468         int diag;
1469
1470         /* Let the firmware know the OS is in control */
1471         igb_hw_control_acquire(hw);
1472
1473         /*
1474          * These parameters control the automatic generation (Tx) and
1475          * response (Rx) to Ethernet PAUSE frames.
1476          * - High water mark should allow for at least two standard size (1518)
1477          *   frames to be received after sending an XOFF.
1478          * - Low water mark works best when it is very near the high water mark.
1479          *   This allows the receiver to restart by sending XON when it has
1480          *   drained a bit. Here we use an arbitrary value of 1500 which will
1481          *   restart after one full frame is pulled from the buffer. There
1482          *   could be several smaller frames in the buffer and if so they will
1483          *   not trigger the XON until their total number reduces the buffer
1484          *   by 1500.
1485          * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1486          */
1487         rx_buf_size = igb_get_rx_buffer_size(hw);
1488
1489         hw->fc.high_water = rx_buf_size - (ETHER_MAX_LEN * 2);
1490         hw->fc.low_water = hw->fc.high_water - 1500;
1491         hw->fc.pause_time = IGB_FC_PAUSE_TIME;
1492         hw->fc.send_xon = 1;
1493
1494         /* Set Flow control, use the tunable location if sane */
1495         if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4))
1496                 hw->fc.requested_mode = igb_fc_setting;
1497         else
1498                 hw->fc.requested_mode = e1000_fc_none;
1499
1500         /* Issue a global reset */
1501         igb_pf_reset_hw(hw);
1502         E1000_WRITE_REG(hw, E1000_WUC, 0);
1503
1504         diag = e1000_init_hw(hw);
1505         if (diag < 0)
1506                 return diag;
1507
1508         E1000_WRITE_REG(hw, E1000_VET, ETHER_TYPE_VLAN << 16 | ETHER_TYPE_VLAN);
1509         e1000_get_phy_info(hw);
1510         e1000_check_for_link(hw);
1511
1512         return 0;
1513 }
1514
1515 /* This function is based on igb_update_stats_counters() in igb/if_igb.c */
1516 static void
1517 igb_read_stats_registers(struct e1000_hw *hw, struct e1000_hw_stats *stats)
1518 {
1519         int pause_frames;
1520
1521         uint64_t old_gprc  = stats->gprc;
1522         uint64_t old_gptc  = stats->gptc;
1523         uint64_t old_tpr   = stats->tpr;
1524         uint64_t old_tpt   = stats->tpt;
1525         uint64_t old_rpthc = stats->rpthc;
1526         uint64_t old_hgptc = stats->hgptc;
1527
1528         if(hw->phy.media_type == e1000_media_type_copper ||
1529             (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1530                 stats->symerrs +=
1531                     E1000_READ_REG(hw,E1000_SYMERRS);
1532                 stats->sec += E1000_READ_REG(hw, E1000_SEC);
1533         }
1534
1535         stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
1536         stats->mpc += E1000_READ_REG(hw, E1000_MPC);
1537         stats->scc += E1000_READ_REG(hw, E1000_SCC);
1538         stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
1539
1540         stats->mcc += E1000_READ_REG(hw, E1000_MCC);
1541         stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
1542         stats->colc += E1000_READ_REG(hw, E1000_COLC);
1543         stats->dc += E1000_READ_REG(hw, E1000_DC);
1544         stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
1545         stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
1546         stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
1547         /*
1548         ** For watchdog management we need to know if we have been
1549         ** paused during the last interval, so capture that here.
1550         */
1551         pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
1552         stats->xoffrxc += pause_frames;
1553         stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
1554         stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
1555         stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
1556         stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
1557         stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
1558         stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
1559         stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
1560         stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
1561         stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
1562         stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
1563         stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
1564         stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
1565
1566         /* For the 64-bit byte counters the low dword must be read first. */
1567         /* Both registers clear on the read of the high dword */
1568
1569         /* Workaround CRC bytes included in size, take away 4 bytes/packet */
1570         stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
1571         stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
1572         stats->gorc -= (stats->gprc - old_gprc) * ETHER_CRC_LEN;
1573         stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
1574         stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
1575         stats->gotc -= (stats->gptc - old_gptc) * ETHER_CRC_LEN;
1576
1577         stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
1578         stats->ruc += E1000_READ_REG(hw, E1000_RUC);
1579         stats->rfc += E1000_READ_REG(hw, E1000_RFC);
1580         stats->roc += E1000_READ_REG(hw, E1000_ROC);
1581         stats->rjc += E1000_READ_REG(hw, E1000_RJC);
1582
1583         stats->tpr += E1000_READ_REG(hw, E1000_TPR);
1584         stats->tpt += E1000_READ_REG(hw, E1000_TPT);
1585
1586         stats->tor += E1000_READ_REG(hw, E1000_TORL);
1587         stats->tor += ((uint64_t)E1000_READ_REG(hw, E1000_TORH) << 32);
1588         stats->tor -= (stats->tpr - old_tpr) * ETHER_CRC_LEN;
1589         stats->tot += E1000_READ_REG(hw, E1000_TOTL);
1590         stats->tot += ((uint64_t)E1000_READ_REG(hw, E1000_TOTH) << 32);
1591         stats->tot -= (stats->tpt - old_tpt) * ETHER_CRC_LEN;
1592
1593         stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
1594         stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
1595         stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
1596         stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
1597         stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
1598         stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
1599         stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
1600         stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
1601
1602         /* Interrupt Counts */
1603
1604         stats->iac += E1000_READ_REG(hw, E1000_IAC);
1605         stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
1606         stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
1607         stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
1608         stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
1609         stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
1610         stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
1611         stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
1612         stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
1613
1614         /* Host to Card Statistics */
1615
1616         stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
1617         stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
1618         stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
1619         stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
1620         stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
1621         stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
1622         stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
1623         stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL);
1624         stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32);
1625         stats->hgorc -= (stats->rpthc - old_rpthc) * ETHER_CRC_LEN;
1626         stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL);
1627         stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32);
1628         stats->hgotc -= (stats->hgptc - old_hgptc) * ETHER_CRC_LEN;
1629         stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
1630         stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
1631         stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
1632
1633         stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
1634         stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
1635         stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
1636         stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
1637         stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
1638         stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
1639 }
1640
1641 static void
1642 eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
1643 {
1644         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1645         struct e1000_hw_stats *stats =
1646                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1647
1648         igb_read_stats_registers(hw, stats);
1649
1650         if (rte_stats == NULL)
1651                 return;
1652
1653         /* Rx Errors */
1654         rte_stats->imissed = stats->mpc;
1655         rte_stats->ierrors = stats->crcerrs +
1656                              stats->rlec + stats->ruc + stats->roc +
1657                              stats->rxerrc + stats->algnerrc + stats->cexterr;
1658
1659         /* Tx Errors */
1660         rte_stats->oerrors = stats->ecol + stats->latecol;
1661
1662         rte_stats->ipackets = stats->gprc;
1663         rte_stats->opackets = stats->gptc;
1664         rte_stats->ibytes   = stats->gorc;
1665         rte_stats->obytes   = stats->gotc;
1666 }
1667
1668 static void
1669 eth_igb_stats_reset(struct rte_eth_dev *dev)
1670 {
1671         struct e1000_hw_stats *hw_stats =
1672                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1673
1674         /* HW registers are cleared on read */
1675         eth_igb_stats_get(dev, NULL);
1676
1677         /* Reset software totals */
1678         memset(hw_stats, 0, sizeof(*hw_stats));
1679 }
1680
1681 static void
1682 eth_igb_xstats_reset(struct rte_eth_dev *dev)
1683 {
1684         struct e1000_hw_stats *stats =
1685                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1686
1687         /* HW registers are cleared on read */
1688         eth_igb_xstats_get(dev, NULL, IGB_NB_XSTATS);
1689
1690         /* Reset software totals */
1691         memset(stats, 0, sizeof(*stats));
1692 }
1693
1694 static int
1695 eth_igb_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstats *xstats,
1696                    unsigned n)
1697 {
1698         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1699         struct e1000_hw_stats *hw_stats =
1700                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1701         unsigned i;
1702
1703         if (n < IGB_NB_XSTATS)
1704                 return IGB_NB_XSTATS;
1705
1706         igb_read_stats_registers(hw, hw_stats);
1707
1708         /* If this is a reset xstats is NULL, and we have cleared the
1709          * registers by reading them.
1710          */
1711         if (!xstats)
1712                 return 0;
1713
1714         /* Extended stats */
1715         for (i = 0; i < IGB_NB_XSTATS; i++) {
1716                 snprintf(xstats[i].name, sizeof(xstats[i].name),
1717                          "%s", rte_igb_stats_strings[i].name);
1718                 xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
1719                         rte_igb_stats_strings[i].offset);
1720         }
1721
1722         return IGB_NB_XSTATS;
1723 }
1724
1725 static void
1726 igbvf_read_stats_registers(struct e1000_hw *hw, struct e1000_vf_stats *hw_stats)
1727 {
1728         /* Good Rx packets, include VF loopback */
1729         UPDATE_VF_STAT(E1000_VFGPRC,
1730             hw_stats->last_gprc, hw_stats->gprc);
1731
1732         /* Good Rx octets, include VF loopback */
1733         UPDATE_VF_STAT(E1000_VFGORC,
1734             hw_stats->last_gorc, hw_stats->gorc);
1735
1736         /* Good Tx packets, include VF loopback */
1737         UPDATE_VF_STAT(E1000_VFGPTC,
1738             hw_stats->last_gptc, hw_stats->gptc);
1739
1740         /* Good Tx octets, include VF loopback */
1741         UPDATE_VF_STAT(E1000_VFGOTC,
1742             hw_stats->last_gotc, hw_stats->gotc);
1743
1744         /* Rx Multicst packets */
1745         UPDATE_VF_STAT(E1000_VFMPRC,
1746             hw_stats->last_mprc, hw_stats->mprc);
1747
1748         /* Good Rx loopback packets */
1749         UPDATE_VF_STAT(E1000_VFGPRLBC,
1750             hw_stats->last_gprlbc, hw_stats->gprlbc);
1751
1752         /* Good Rx loopback octets */
1753         UPDATE_VF_STAT(E1000_VFGORLBC,
1754             hw_stats->last_gorlbc, hw_stats->gorlbc);
1755
1756         /* Good Tx loopback packets */
1757         UPDATE_VF_STAT(E1000_VFGPTLBC,
1758             hw_stats->last_gptlbc, hw_stats->gptlbc);
1759
1760         /* Good Tx loopback octets */
1761         UPDATE_VF_STAT(E1000_VFGOTLBC,
1762             hw_stats->last_gotlbc, hw_stats->gotlbc);
1763 }
1764
1765 static int
1766 eth_igbvf_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstats *xstats,
1767                      unsigned n)
1768 {
1769         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1770         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
1771                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1772         unsigned i;
1773
1774         if (n < IGBVF_NB_XSTATS)
1775                 return IGBVF_NB_XSTATS;
1776
1777         igbvf_read_stats_registers(hw, hw_stats);
1778
1779         if (!xstats)
1780                 return 0;
1781
1782         for (i = 0; i < IGBVF_NB_XSTATS; i++) {
1783                 snprintf(xstats[i].name, sizeof(xstats[i].name), "%s",
1784                          rte_igbvf_stats_strings[i].name);
1785                 xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
1786                         rte_igbvf_stats_strings[i].offset);
1787         }
1788
1789         return IGBVF_NB_XSTATS;
1790 }
1791
1792 static void
1793 eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
1794 {
1795         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1796         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
1797                           E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1798
1799         igbvf_read_stats_registers(hw, hw_stats);
1800
1801         if (rte_stats == NULL)
1802                 return;
1803
1804         rte_stats->ipackets = hw_stats->gprc;
1805         rte_stats->ibytes = hw_stats->gorc;
1806         rte_stats->opackets = hw_stats->gptc;
1807         rte_stats->obytes = hw_stats->gotc;
1808 }
1809
1810 static void
1811 eth_igbvf_stats_reset(struct rte_eth_dev *dev)
1812 {
1813         struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
1814                         E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1815
1816         /* Sync HW register to the last stats */
1817         eth_igbvf_stats_get(dev, NULL);
1818
1819         /* reset HW current stats*/
1820         memset(&hw_stats->gprc, 0, sizeof(*hw_stats) -
1821                offsetof(struct e1000_vf_stats, gprc));
1822 }
1823
1824 static void
1825 eth_igb_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
1826 {
1827         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1828
1829         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
1830         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
1831         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
1832         dev_info->rx_offload_capa =
1833                 DEV_RX_OFFLOAD_VLAN_STRIP |
1834                 DEV_RX_OFFLOAD_IPV4_CKSUM |
1835                 DEV_RX_OFFLOAD_UDP_CKSUM  |
1836                 DEV_RX_OFFLOAD_TCP_CKSUM;
1837         dev_info->tx_offload_capa =
1838                 DEV_TX_OFFLOAD_VLAN_INSERT |
1839                 DEV_TX_OFFLOAD_IPV4_CKSUM  |
1840                 DEV_TX_OFFLOAD_UDP_CKSUM   |
1841                 DEV_TX_OFFLOAD_TCP_CKSUM   |
1842                 DEV_TX_OFFLOAD_SCTP_CKSUM  |
1843                 DEV_TX_OFFLOAD_TCP_TSO;
1844
1845         switch (hw->mac.type) {
1846         case e1000_82575:
1847                 dev_info->max_rx_queues = 4;
1848                 dev_info->max_tx_queues = 4;
1849                 dev_info->max_vmdq_pools = 0;
1850                 break;
1851
1852         case e1000_82576:
1853                 dev_info->max_rx_queues = 16;
1854                 dev_info->max_tx_queues = 16;
1855                 dev_info->max_vmdq_pools = ETH_8_POOLS;
1856                 dev_info->vmdq_queue_num = 16;
1857                 break;
1858
1859         case e1000_82580:
1860                 dev_info->max_rx_queues = 8;
1861                 dev_info->max_tx_queues = 8;
1862                 dev_info->max_vmdq_pools = ETH_8_POOLS;
1863                 dev_info->vmdq_queue_num = 8;
1864                 break;
1865
1866         case e1000_i350:
1867                 dev_info->max_rx_queues = 8;
1868                 dev_info->max_tx_queues = 8;
1869                 dev_info->max_vmdq_pools = ETH_8_POOLS;
1870                 dev_info->vmdq_queue_num = 8;
1871                 break;
1872
1873         case e1000_i354:
1874                 dev_info->max_rx_queues = 8;
1875                 dev_info->max_tx_queues = 8;
1876                 break;
1877
1878         case e1000_i210:
1879                 dev_info->max_rx_queues = 4;
1880                 dev_info->max_tx_queues = 4;
1881                 dev_info->max_vmdq_pools = 0;
1882                 break;
1883
1884         case e1000_i211:
1885                 dev_info->max_rx_queues = 2;
1886                 dev_info->max_tx_queues = 2;
1887                 dev_info->max_vmdq_pools = 0;
1888                 break;
1889
1890         default:
1891                 /* Should not happen */
1892                 break;
1893         }
1894         dev_info->hash_key_size = IGB_HKEY_MAX_INDEX * sizeof(uint32_t);
1895         dev_info->reta_size = ETH_RSS_RETA_SIZE_128;
1896         dev_info->flow_type_rss_offloads = IGB_RSS_OFFLOAD_ALL;
1897
1898         dev_info->default_rxconf = (struct rte_eth_rxconf) {
1899                 .rx_thresh = {
1900                         .pthresh = IGB_DEFAULT_RX_PTHRESH,
1901                         .hthresh = IGB_DEFAULT_RX_HTHRESH,
1902                         .wthresh = IGB_DEFAULT_RX_WTHRESH,
1903                 },
1904                 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
1905                 .rx_drop_en = 0,
1906         };
1907
1908         dev_info->default_txconf = (struct rte_eth_txconf) {
1909                 .tx_thresh = {
1910                         .pthresh = IGB_DEFAULT_TX_PTHRESH,
1911                         .hthresh = IGB_DEFAULT_TX_HTHRESH,
1912                         .wthresh = IGB_DEFAULT_TX_WTHRESH,
1913                 },
1914                 .txq_flags = 0,
1915         };
1916
1917         dev_info->rx_desc_lim = rx_desc_lim;
1918         dev_info->tx_desc_lim = tx_desc_lim;
1919
1920         dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1921                         ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1922                         ETH_LINK_SPEED_1G;
1923 }
1924
1925 static const uint32_t *
1926 eth_igb_supported_ptypes_get(struct rte_eth_dev *dev)
1927 {
1928         static const uint32_t ptypes[] = {
1929                 /* refers to igb_rxd_pkt_info_to_pkt_type() */
1930                 RTE_PTYPE_L2_ETHER,
1931                 RTE_PTYPE_L3_IPV4,
1932                 RTE_PTYPE_L3_IPV4_EXT,
1933                 RTE_PTYPE_L3_IPV6,
1934                 RTE_PTYPE_L3_IPV6_EXT,
1935                 RTE_PTYPE_L4_TCP,
1936                 RTE_PTYPE_L4_UDP,
1937                 RTE_PTYPE_L4_SCTP,
1938                 RTE_PTYPE_TUNNEL_IP,
1939                 RTE_PTYPE_INNER_L3_IPV6,
1940                 RTE_PTYPE_INNER_L3_IPV6_EXT,
1941                 RTE_PTYPE_INNER_L4_TCP,
1942                 RTE_PTYPE_INNER_L4_UDP,
1943                 RTE_PTYPE_UNKNOWN
1944         };
1945
1946         if (dev->rx_pkt_burst == eth_igb_recv_pkts ||
1947             dev->rx_pkt_burst == eth_igb_recv_scattered_pkts)
1948                 return ptypes;
1949         return NULL;
1950 }
1951
1952 static void
1953 eth_igbvf_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
1954 {
1955         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1956
1957         dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
1958         dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
1959         dev_info->max_mac_addrs = hw->mac.rar_entry_count;
1960         dev_info->rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP |
1961                                 DEV_RX_OFFLOAD_IPV4_CKSUM |
1962                                 DEV_RX_OFFLOAD_UDP_CKSUM  |
1963                                 DEV_RX_OFFLOAD_TCP_CKSUM;
1964         dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
1965                                 DEV_TX_OFFLOAD_IPV4_CKSUM  |
1966                                 DEV_TX_OFFLOAD_UDP_CKSUM   |
1967                                 DEV_TX_OFFLOAD_TCP_CKSUM   |
1968                                 DEV_TX_OFFLOAD_SCTP_CKSUM  |
1969                                 DEV_TX_OFFLOAD_TCP_TSO;
1970         switch (hw->mac.type) {
1971         case e1000_vfadapt:
1972                 dev_info->max_rx_queues = 2;
1973                 dev_info->max_tx_queues = 2;
1974                 break;
1975         case e1000_vfadapt_i350:
1976                 dev_info->max_rx_queues = 1;
1977                 dev_info->max_tx_queues = 1;
1978                 break;
1979         default:
1980                 /* Should not happen */
1981                 break;
1982         }
1983
1984         dev_info->default_rxconf = (struct rte_eth_rxconf) {
1985                 .rx_thresh = {
1986                         .pthresh = IGB_DEFAULT_RX_PTHRESH,
1987                         .hthresh = IGB_DEFAULT_RX_HTHRESH,
1988                         .wthresh = IGB_DEFAULT_RX_WTHRESH,
1989                 },
1990                 .rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
1991                 .rx_drop_en = 0,
1992         };
1993
1994         dev_info->default_txconf = (struct rte_eth_txconf) {
1995                 .tx_thresh = {
1996                         .pthresh = IGB_DEFAULT_TX_PTHRESH,
1997                         .hthresh = IGB_DEFAULT_TX_HTHRESH,
1998                         .wthresh = IGB_DEFAULT_TX_WTHRESH,
1999                 },
2000                 .txq_flags = 0,
2001         };
2002
2003         dev_info->rx_desc_lim = rx_desc_lim;
2004         dev_info->tx_desc_lim = tx_desc_lim;
2005 }
2006
2007 /* return 0 means link status changed, -1 means not changed */
2008 static int
2009 eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete)
2010 {
2011         struct e1000_hw *hw =
2012                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2013         struct rte_eth_link link, old;
2014         int link_check, count;
2015
2016         link_check = 0;
2017         hw->mac.get_link_status = 1;
2018
2019         /* possible wait-to-complete in up to 9 seconds */
2020         for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
2021                 /* Read the real link status */
2022                 switch (hw->phy.media_type) {
2023                 case e1000_media_type_copper:
2024                         /* Do the work to read phy */
2025                         e1000_check_for_link(hw);
2026                         link_check = !hw->mac.get_link_status;
2027                         break;
2028
2029                 case e1000_media_type_fiber:
2030                         e1000_check_for_link(hw);
2031                         link_check = (E1000_READ_REG(hw, E1000_STATUS) &
2032                                       E1000_STATUS_LU);
2033                         break;
2034
2035                 case e1000_media_type_internal_serdes:
2036                         e1000_check_for_link(hw);
2037                         link_check = hw->mac.serdes_has_link;
2038                         break;
2039
2040                 /* VF device is type_unknown */
2041                 case e1000_media_type_unknown:
2042                         eth_igbvf_link_update(hw);
2043                         link_check = !hw->mac.get_link_status;
2044                         break;
2045
2046                 default:
2047                         break;
2048                 }
2049                 if (link_check || wait_to_complete == 0)
2050                         break;
2051                 rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL);
2052         }
2053         memset(&link, 0, sizeof(link));
2054         rte_igb_dev_atomic_read_link_status(dev, &link);
2055         old = link;
2056
2057         /* Now we check if a transition has happened */
2058         if (link_check) {
2059                 uint16_t duplex, speed;
2060                 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
2061                 link.link_duplex = (duplex == FULL_DUPLEX) ?
2062                                 ETH_LINK_FULL_DUPLEX :
2063                                 ETH_LINK_HALF_DUPLEX;
2064                 link.link_speed = speed;
2065                 link.link_status = ETH_LINK_UP;
2066                 link.link_autoneg = !(dev->data->dev_conf.link_speeds &
2067                                 ETH_LINK_SPEED_FIXED);
2068         } else if (!link_check) {
2069                 link.link_speed = 0;
2070                 link.link_duplex = ETH_LINK_HALF_DUPLEX;
2071                 link.link_status = ETH_LINK_DOWN;
2072                 link.link_autoneg = ETH_LINK_SPEED_FIXED;
2073         }
2074         rte_igb_dev_atomic_write_link_status(dev, &link);
2075
2076         /* not changed */
2077         if (old.link_status == link.link_status)
2078                 return -1;
2079
2080         /* changed */
2081         return 0;
2082 }
2083
2084 /*
2085  * igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit.
2086  * For ASF and Pass Through versions of f/w this means
2087  * that the driver is loaded.
2088  */
2089 static void
2090 igb_hw_control_acquire(struct e1000_hw *hw)
2091 {
2092         uint32_t ctrl_ext;
2093
2094         /* Let firmware know the driver has taken over */
2095         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2096         E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2097 }
2098
2099 /*
2100  * igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit.
2101  * For ASF and Pass Through versions of f/w this means that the
2102  * driver is no longer loaded.
2103  */
2104 static void
2105 igb_hw_control_release(struct e1000_hw *hw)
2106 {
2107         uint32_t ctrl_ext;
2108
2109         /* Let firmware taken over control of h/w */
2110         ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2111         E1000_WRITE_REG(hw, E1000_CTRL_EXT,
2112                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2113 }
2114
2115 /*
2116  * Bit of a misnomer, what this really means is
2117  * to enable OS management of the system... aka
2118  * to disable special hardware management features.
2119  */
2120 static void
2121 igb_init_manageability(struct e1000_hw *hw)
2122 {
2123         if (e1000_enable_mng_pass_thru(hw)) {
2124                 uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
2125                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
2126
2127                 /* disable hardware interception of ARP */
2128                 manc &= ~(E1000_MANC_ARP_EN);
2129
2130                 /* enable receiving management packets to the host */
2131                 manc |= E1000_MANC_EN_MNG2HOST;
2132                 manc2h |= 1 << 5;  /* Mng Port 623 */
2133                 manc2h |= 1 << 6;  /* Mng Port 664 */
2134                 E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
2135                 E1000_WRITE_REG(hw, E1000_MANC, manc);
2136         }
2137 }
2138
2139 static void
2140 igb_release_manageability(struct e1000_hw *hw)
2141 {
2142         if (e1000_enable_mng_pass_thru(hw)) {
2143                 uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
2144
2145                 manc |= E1000_MANC_ARP_EN;
2146                 manc &= ~E1000_MANC_EN_MNG2HOST;
2147
2148                 E1000_WRITE_REG(hw, E1000_MANC, manc);
2149         }
2150 }
2151
2152 static void
2153 eth_igb_promiscuous_enable(struct rte_eth_dev *dev)
2154 {
2155         struct e1000_hw *hw =
2156                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2157         uint32_t rctl;
2158
2159         rctl = E1000_READ_REG(hw, E1000_RCTL);
2160         rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2161         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2162 }
2163
2164 static void
2165 eth_igb_promiscuous_disable(struct rte_eth_dev *dev)
2166 {
2167         struct e1000_hw *hw =
2168                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2169         uint32_t rctl;
2170
2171         rctl = E1000_READ_REG(hw, E1000_RCTL);
2172         rctl &= (~E1000_RCTL_UPE);
2173         if (dev->data->all_multicast == 1)
2174                 rctl |= E1000_RCTL_MPE;
2175         else
2176                 rctl &= (~E1000_RCTL_MPE);
2177         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2178 }
2179
2180 static void
2181 eth_igb_allmulticast_enable(struct rte_eth_dev *dev)
2182 {
2183         struct e1000_hw *hw =
2184                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2185         uint32_t rctl;
2186
2187         rctl = E1000_READ_REG(hw, E1000_RCTL);
2188         rctl |= E1000_RCTL_MPE;
2189         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2190 }
2191
2192 static void
2193 eth_igb_allmulticast_disable(struct rte_eth_dev *dev)
2194 {
2195         struct e1000_hw *hw =
2196                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2197         uint32_t rctl;
2198
2199         if (dev->data->promiscuous == 1)
2200                 return; /* must remain in all_multicast mode */
2201         rctl = E1000_READ_REG(hw, E1000_RCTL);
2202         rctl &= (~E1000_RCTL_MPE);
2203         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2204 }
2205
2206 static int
2207 eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
2208 {
2209         struct e1000_hw *hw =
2210                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2211         struct e1000_vfta * shadow_vfta =
2212                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2213         uint32_t vfta;
2214         uint32_t vid_idx;
2215         uint32_t vid_bit;
2216
2217         vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
2218                               E1000_VFTA_ENTRY_MASK);
2219         vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
2220         vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
2221         if (on)
2222                 vfta |= vid_bit;
2223         else
2224                 vfta &= ~vid_bit;
2225         E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
2226
2227         /* update local VFTA copy */
2228         shadow_vfta->vfta[vid_idx] = vfta;
2229
2230         return 0;
2231 }
2232
2233 static int
2234 eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
2235                       enum rte_vlan_type vlan_type,
2236                       uint16_t tpid)
2237 {
2238         struct e1000_hw *hw =
2239                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2240         uint32_t reg = ETHER_TYPE_VLAN;
2241         int ret = 0;
2242
2243         switch (vlan_type) {
2244         case ETH_VLAN_TYPE_INNER:
2245                 reg |= (tpid << 16);
2246                 E1000_WRITE_REG(hw, E1000_VET, reg);
2247                 break;
2248         default:
2249                 ret = -EINVAL;
2250                 PMD_DRV_LOG(ERR, "Unsupported vlan type %d\n", vlan_type);
2251                 break;
2252         }
2253
2254         return ret;
2255 }
2256
2257 static void
2258 igb_vlan_hw_filter_disable(struct rte_eth_dev *dev)
2259 {
2260         struct e1000_hw *hw =
2261                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2262         uint32_t reg;
2263
2264         /* Filter Table Disable */
2265         reg = E1000_READ_REG(hw, E1000_RCTL);
2266         reg &= ~E1000_RCTL_CFIEN;
2267         reg &= ~E1000_RCTL_VFE;
2268         E1000_WRITE_REG(hw, E1000_RCTL, reg);
2269 }
2270
2271 static void
2272 igb_vlan_hw_filter_enable(struct rte_eth_dev *dev)
2273 {
2274         struct e1000_hw *hw =
2275                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2276         struct e1000_vfta * shadow_vfta =
2277                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2278         uint32_t reg;
2279         int i;
2280
2281         /* Filter Table Enable, CFI not used for packet acceptance */
2282         reg = E1000_READ_REG(hw, E1000_RCTL);
2283         reg &= ~E1000_RCTL_CFIEN;
2284         reg |= E1000_RCTL_VFE;
2285         E1000_WRITE_REG(hw, E1000_RCTL, reg);
2286
2287         /* restore VFTA table */
2288         for (i = 0; i < IGB_VFTA_SIZE; i++)
2289                 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
2290 }
2291
2292 static void
2293 igb_vlan_hw_strip_disable(struct rte_eth_dev *dev)
2294 {
2295         struct e1000_hw *hw =
2296                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2297         uint32_t reg;
2298
2299         /* VLAN Mode Disable */
2300         reg = E1000_READ_REG(hw, E1000_CTRL);
2301         reg &= ~E1000_CTRL_VME;
2302         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2303 }
2304
2305 static void
2306 igb_vlan_hw_strip_enable(struct rte_eth_dev *dev)
2307 {
2308         struct e1000_hw *hw =
2309                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2310         uint32_t reg;
2311
2312         /* VLAN Mode Enable */
2313         reg = E1000_READ_REG(hw, E1000_CTRL);
2314         reg |= E1000_CTRL_VME;
2315         E1000_WRITE_REG(hw, E1000_CTRL, reg);
2316 }
2317
2318 static void
2319 igb_vlan_hw_extend_disable(struct rte_eth_dev *dev)
2320 {
2321         struct e1000_hw *hw =
2322                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2323         uint32_t reg;
2324
2325         /* CTRL_EXT: Extended VLAN */
2326         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2327         reg &= ~E1000_CTRL_EXT_EXTEND_VLAN;
2328         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2329
2330         /* Update maximum packet length */
2331         if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
2332                 E1000_WRITE_REG(hw, E1000_RLPML,
2333                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2334                                                 VLAN_TAG_SIZE);
2335 }
2336
2337 static void
2338 igb_vlan_hw_extend_enable(struct rte_eth_dev *dev)
2339 {
2340         struct e1000_hw *hw =
2341                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2342         uint32_t reg;
2343
2344         /* CTRL_EXT: Extended VLAN */
2345         reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2346         reg |= E1000_CTRL_EXT_EXTEND_VLAN;
2347         E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2348
2349         /* Update maximum packet length */
2350         if (dev->data->dev_conf.rxmode.jumbo_frame == 1)
2351                 E1000_WRITE_REG(hw, E1000_RLPML,
2352                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2353                                                 2 * VLAN_TAG_SIZE);
2354 }
2355
2356 static void
2357 eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask)
2358 {
2359         if(mask & ETH_VLAN_STRIP_MASK){
2360                 if (dev->data->dev_conf.rxmode.hw_vlan_strip)
2361                         igb_vlan_hw_strip_enable(dev);
2362                 else
2363                         igb_vlan_hw_strip_disable(dev);
2364         }
2365
2366         if(mask & ETH_VLAN_FILTER_MASK){
2367                 if (dev->data->dev_conf.rxmode.hw_vlan_filter)
2368                         igb_vlan_hw_filter_enable(dev);
2369                 else
2370                         igb_vlan_hw_filter_disable(dev);
2371         }
2372
2373         if(mask & ETH_VLAN_EXTEND_MASK){
2374                 if (dev->data->dev_conf.rxmode.hw_vlan_extend)
2375                         igb_vlan_hw_extend_enable(dev);
2376                 else
2377                         igb_vlan_hw_extend_disable(dev);
2378         }
2379 }
2380
2381
2382 /**
2383  * It enables the interrupt mask and then enable the interrupt.
2384  *
2385  * @param dev
2386  *  Pointer to struct rte_eth_dev.
2387  *
2388  * @return
2389  *  - On success, zero.
2390  *  - On failure, a negative value.
2391  */
2392 static int
2393 eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev)
2394 {
2395         struct e1000_interrupt *intr =
2396                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2397
2398         intr->mask |= E1000_ICR_LSC;
2399
2400         return 0;
2401 }
2402
2403 /* It clears the interrupt causes and enables the interrupt.
2404  * It will be called once only during nic initialized.
2405  *
2406  * @param dev
2407  *  Pointer to struct rte_eth_dev.
2408  *
2409  * @return
2410  *  - On success, zero.
2411  *  - On failure, a negative value.
2412  */
2413 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev)
2414 {
2415         uint32_t mask, regval;
2416         struct e1000_hw *hw =
2417                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2418         struct rte_eth_dev_info dev_info;
2419
2420         memset(&dev_info, 0, sizeof(dev_info));
2421         eth_igb_infos_get(dev, &dev_info);
2422
2423         mask = 0xFFFFFFFF >> (32 - dev_info.max_rx_queues);
2424         regval = E1000_READ_REG(hw, E1000_EIMS);
2425         E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
2426
2427         return 0;
2428 }
2429
2430 /*
2431  * It reads ICR and gets interrupt causes, check it and set a bit flag
2432  * to update link status.
2433  *
2434  * @param dev
2435  *  Pointer to struct rte_eth_dev.
2436  *
2437  * @return
2438  *  - On success, zero.
2439  *  - On failure, a negative value.
2440  */
2441 static int
2442 eth_igb_interrupt_get_status(struct rte_eth_dev *dev)
2443 {
2444         uint32_t icr;
2445         struct e1000_hw *hw =
2446                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2447         struct e1000_interrupt *intr =
2448                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2449
2450         igb_intr_disable(hw);
2451
2452         /* read-on-clear nic registers here */
2453         icr = E1000_READ_REG(hw, E1000_ICR);
2454
2455         intr->flags = 0;
2456         if (icr & E1000_ICR_LSC) {
2457                 intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
2458         }
2459
2460         if (icr & E1000_ICR_VMMB)
2461                 intr->flags |= E1000_FLAG_MAILBOX;
2462
2463         return 0;
2464 }
2465
2466 /*
2467  * It executes link_update after knowing an interrupt is prsent.
2468  *
2469  * @param dev
2470  *  Pointer to struct rte_eth_dev.
2471  *
2472  * @return
2473  *  - On success, zero.
2474  *  - On failure, a negative value.
2475  */
2476 static int
2477 eth_igb_interrupt_action(struct rte_eth_dev *dev)
2478 {
2479         struct e1000_hw *hw =
2480                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2481         struct e1000_interrupt *intr =
2482                 E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2483         uint32_t tctl, rctl;
2484         struct rte_eth_link link;
2485         int ret;
2486
2487         if (intr->flags & E1000_FLAG_MAILBOX) {
2488                 igb_pf_mbx_process(dev);
2489                 intr->flags &= ~E1000_FLAG_MAILBOX;
2490         }
2491
2492         igb_intr_enable(dev);
2493         rte_intr_enable(&(dev->pci_dev->intr_handle));
2494
2495         if (intr->flags & E1000_FLAG_NEED_LINK_UPDATE) {
2496                 intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
2497
2498                 /* set get_link_status to check register later */
2499                 hw->mac.get_link_status = 1;
2500                 ret = eth_igb_link_update(dev, 0);
2501
2502                 /* check if link has changed */
2503                 if (ret < 0)
2504                         return 0;
2505
2506                 memset(&link, 0, sizeof(link));
2507                 rte_igb_dev_atomic_read_link_status(dev, &link);
2508                 if (link.link_status) {
2509                         PMD_INIT_LOG(INFO,
2510                                      " Port %d: Link Up - speed %u Mbps - %s",
2511                                      dev->data->port_id,
2512                                      (unsigned)link.link_speed,
2513                                      link.link_duplex == ETH_LINK_FULL_DUPLEX ?
2514                                      "full-duplex" : "half-duplex");
2515                 } else {
2516                         PMD_INIT_LOG(INFO, " Port %d: Link Down",
2517                                      dev->data->port_id);
2518                 }
2519
2520                 PMD_INIT_LOG(DEBUG, "PCI Address: %04d:%02d:%02d:%d",
2521                              dev->pci_dev->addr.domain,
2522                              dev->pci_dev->addr.bus,
2523                              dev->pci_dev->addr.devid,
2524                              dev->pci_dev->addr.function);
2525                 tctl = E1000_READ_REG(hw, E1000_TCTL);
2526                 rctl = E1000_READ_REG(hw, E1000_RCTL);
2527                 if (link.link_status) {
2528                         /* enable Tx/Rx */
2529                         tctl |= E1000_TCTL_EN;
2530                         rctl |= E1000_RCTL_EN;
2531                 } else {
2532                         /* disable Tx/Rx */
2533                         tctl &= ~E1000_TCTL_EN;
2534                         rctl &= ~E1000_RCTL_EN;
2535                 }
2536                 E1000_WRITE_REG(hw, E1000_TCTL, tctl);
2537                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2538                 E1000_WRITE_FLUSH(hw);
2539                 _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC);
2540         }
2541
2542         return 0;
2543 }
2544
2545 /**
2546  * Interrupt handler which shall be registered at first.
2547  *
2548  * @param handle
2549  *  Pointer to interrupt handle.
2550  * @param param
2551  *  The address of parameter (struct rte_eth_dev *) regsitered before.
2552  *
2553  * @return
2554  *  void
2555  */
2556 static void
2557 eth_igb_interrupt_handler(__rte_unused struct rte_intr_handle *handle,
2558                                                         void *param)
2559 {
2560         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2561
2562         eth_igb_interrupt_get_status(dev);
2563         eth_igb_interrupt_action(dev);
2564 }
2565
2566 static int
2567 eth_igb_led_on(struct rte_eth_dev *dev)
2568 {
2569         struct e1000_hw *hw;
2570
2571         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2572         return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
2573 }
2574
2575 static int
2576 eth_igb_led_off(struct rte_eth_dev *dev)
2577 {
2578         struct e1000_hw *hw;
2579
2580         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2581         return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
2582 }
2583
2584 static int
2585 eth_igb_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
2586 {
2587         struct e1000_hw *hw;
2588         uint32_t ctrl;
2589         int tx_pause;
2590         int rx_pause;
2591
2592         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2593         fc_conf->pause_time = hw->fc.pause_time;
2594         fc_conf->high_water = hw->fc.high_water;
2595         fc_conf->low_water = hw->fc.low_water;
2596         fc_conf->send_xon = hw->fc.send_xon;
2597         fc_conf->autoneg = hw->mac.autoneg;
2598
2599         /*
2600          * Return rx_pause and tx_pause status according to actual setting of
2601          * the TFCE and RFCE bits in the CTRL register.
2602          */
2603         ctrl = E1000_READ_REG(hw, E1000_CTRL);
2604         if (ctrl & E1000_CTRL_TFCE)
2605                 tx_pause = 1;
2606         else
2607                 tx_pause = 0;
2608
2609         if (ctrl & E1000_CTRL_RFCE)
2610                 rx_pause = 1;
2611         else
2612                 rx_pause = 0;
2613
2614         if (rx_pause && tx_pause)
2615                 fc_conf->mode = RTE_FC_FULL;
2616         else if (rx_pause)
2617                 fc_conf->mode = RTE_FC_RX_PAUSE;
2618         else if (tx_pause)
2619                 fc_conf->mode = RTE_FC_TX_PAUSE;
2620         else
2621                 fc_conf->mode = RTE_FC_NONE;
2622
2623         return 0;
2624 }
2625
2626 static int
2627 eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
2628 {
2629         struct e1000_hw *hw;
2630         int err;
2631         enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
2632                 e1000_fc_none,
2633                 e1000_fc_rx_pause,
2634                 e1000_fc_tx_pause,
2635                 e1000_fc_full
2636         };
2637         uint32_t rx_buf_size;
2638         uint32_t max_high_water;
2639         uint32_t rctl;
2640
2641         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2642         if (fc_conf->autoneg != hw->mac.autoneg)
2643                 return -ENOTSUP;
2644         rx_buf_size = igb_get_rx_buffer_size(hw);
2645         PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
2646
2647         /* At least reserve one Ethernet frame for watermark */
2648         max_high_water = rx_buf_size - ETHER_MAX_LEN;
2649         if ((fc_conf->high_water > max_high_water) ||
2650             (fc_conf->high_water < fc_conf->low_water)) {
2651                 PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
2652                 PMD_INIT_LOG(ERR, "high water must <=  0x%x", max_high_water);
2653                 return -EINVAL;
2654         }
2655
2656         hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
2657         hw->fc.pause_time     = fc_conf->pause_time;
2658         hw->fc.high_water     = fc_conf->high_water;
2659         hw->fc.low_water      = fc_conf->low_water;
2660         hw->fc.send_xon       = fc_conf->send_xon;
2661
2662         err = e1000_setup_link_generic(hw);
2663         if (err == E1000_SUCCESS) {
2664
2665                 /* check if we want to forward MAC frames - driver doesn't have native
2666                  * capability to do that, so we'll write the registers ourselves */
2667
2668                 rctl = E1000_READ_REG(hw, E1000_RCTL);
2669
2670                 /* set or clear MFLCN.PMCF bit depending on configuration */
2671                 if (fc_conf->mac_ctrl_frame_fwd != 0)
2672                         rctl |= E1000_RCTL_PMCF;
2673                 else
2674                         rctl &= ~E1000_RCTL_PMCF;
2675
2676                 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2677                 E1000_WRITE_FLUSH(hw);
2678
2679                 return 0;
2680         }
2681
2682         PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
2683         return -EIO;
2684 }
2685
2686 #define E1000_RAH_POOLSEL_SHIFT      (18)
2687 static void
2688 eth_igb_rar_set(struct rte_eth_dev *dev, struct ether_addr *mac_addr,
2689                 uint32_t index, __rte_unused uint32_t pool)
2690 {
2691         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2692         uint32_t rah;
2693
2694         e1000_rar_set(hw, mac_addr->addr_bytes, index);
2695         rah = E1000_READ_REG(hw, E1000_RAH(index));
2696         rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + pool));
2697         E1000_WRITE_REG(hw, E1000_RAH(index), rah);
2698 }
2699
2700 static void
2701 eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index)
2702 {
2703         uint8_t addr[ETHER_ADDR_LEN];
2704         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2705
2706         memset(addr, 0, sizeof(addr));
2707
2708         e1000_rar_set(hw, addr, index);
2709 }
2710
2711 static void
2712 eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
2713                                 struct ether_addr *addr)
2714 {
2715         eth_igb_rar_clear(dev, 0);
2716
2717         eth_igb_rar_set(dev, (void *)addr, 0, 0);
2718 }
2719 /*
2720  * Virtual Function operations
2721  */
2722 static void
2723 igbvf_intr_disable(struct e1000_hw *hw)
2724 {
2725         PMD_INIT_FUNC_TRACE();
2726
2727         /* Clear interrupt mask to stop from interrupts being generated */
2728         E1000_WRITE_REG(hw, E1000_EIMC, 0xFFFF);
2729
2730         E1000_WRITE_FLUSH(hw);
2731 }
2732
2733 static void
2734 igbvf_stop_adapter(struct rte_eth_dev *dev)
2735 {
2736         u32 reg_val;
2737         u16 i;
2738         struct rte_eth_dev_info dev_info;
2739         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2740
2741         memset(&dev_info, 0, sizeof(dev_info));
2742         eth_igbvf_infos_get(dev, &dev_info);
2743
2744         /* Clear interrupt mask to stop from interrupts being generated */
2745         igbvf_intr_disable(hw);
2746
2747         /* Clear any pending interrupts, flush previous writes */
2748         E1000_READ_REG(hw, E1000_EICR);
2749
2750         /* Disable the transmit unit.  Each queue must be disabled. */
2751         for (i = 0; i < dev_info.max_tx_queues; i++)
2752                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), E1000_TXDCTL_SWFLSH);
2753
2754         /* Disable the receive unit by stopping each queue */
2755         for (i = 0; i < dev_info.max_rx_queues; i++) {
2756                 reg_val = E1000_READ_REG(hw, E1000_RXDCTL(i));
2757                 reg_val &= ~E1000_RXDCTL_QUEUE_ENABLE;
2758                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), reg_val);
2759                 while (E1000_READ_REG(hw, E1000_RXDCTL(i)) & E1000_RXDCTL_QUEUE_ENABLE)
2760                         ;
2761         }
2762
2763         /* flush all queues disables */
2764         E1000_WRITE_FLUSH(hw);
2765         msec_delay(2);
2766 }
2767
2768 static int eth_igbvf_link_update(struct e1000_hw *hw)
2769 {
2770         struct e1000_mbx_info *mbx = &hw->mbx;
2771         struct e1000_mac_info *mac = &hw->mac;
2772         int ret_val = E1000_SUCCESS;
2773
2774         PMD_INIT_LOG(DEBUG, "e1000_check_for_link_vf");
2775
2776         /*
2777          * We only want to run this if there has been a rst asserted.
2778          * in this case that could mean a link change, device reset,
2779          * or a virtual function reset
2780          */
2781
2782         /* If we were hit with a reset or timeout drop the link */
2783         if (!e1000_check_for_rst(hw, 0) || !mbx->timeout)
2784                 mac->get_link_status = TRUE;
2785
2786         if (!mac->get_link_status)
2787                 goto out;
2788
2789         /* if link status is down no point in checking to see if pf is up */
2790         if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
2791                 goto out;
2792
2793         /* if we passed all the tests above then the link is up and we no
2794          * longer need to check for link */
2795         mac->get_link_status = FALSE;
2796
2797 out:
2798         return ret_val;
2799 }
2800
2801
2802 static int
2803 igbvf_dev_configure(struct rte_eth_dev *dev)
2804 {
2805         struct rte_eth_conf* conf = &dev->data->dev_conf;
2806
2807         PMD_INIT_LOG(DEBUG, "Configured Virtual Function port id: %d",
2808                      dev->data->port_id);
2809
2810         /*
2811          * VF has no ability to enable/disable HW CRC
2812          * Keep the persistent behavior the same as Host PF
2813          */
2814 #ifndef RTE_LIBRTE_E1000_PF_DISABLE_STRIP_CRC
2815         if (!conf->rxmode.hw_strip_crc) {
2816                 PMD_INIT_LOG(NOTICE, "VF can't disable HW CRC Strip");
2817                 conf->rxmode.hw_strip_crc = 1;
2818         }
2819 #else
2820         if (conf->rxmode.hw_strip_crc) {
2821                 PMD_INIT_LOG(NOTICE, "VF can't enable HW CRC Strip");
2822                 conf->rxmode.hw_strip_crc = 0;
2823         }
2824 #endif
2825
2826         return 0;
2827 }
2828
2829 static int
2830 igbvf_dev_start(struct rte_eth_dev *dev)
2831 {
2832         struct e1000_hw *hw =
2833                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2834         struct e1000_adapter *adapter =
2835                 E1000_DEV_PRIVATE(dev->data->dev_private);
2836         int ret;
2837
2838         PMD_INIT_FUNC_TRACE();
2839
2840         hw->mac.ops.reset_hw(hw);
2841         adapter->stopped = 0;
2842
2843         /* Set all vfta */
2844         igbvf_set_vfta_all(dev,1);
2845
2846         eth_igbvf_tx_init(dev);
2847
2848         /* This can fail when allocating mbufs for descriptor rings */
2849         ret = eth_igbvf_rx_init(dev);
2850         if (ret) {
2851                 PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
2852                 igb_dev_clear_queues(dev);
2853                 return ret;
2854         }
2855
2856         return 0;
2857 }
2858
2859 static void
2860 igbvf_dev_stop(struct rte_eth_dev *dev)
2861 {
2862         PMD_INIT_FUNC_TRACE();
2863
2864         igbvf_stop_adapter(dev);
2865
2866         /*
2867           * Clear what we set, but we still keep shadow_vfta to
2868           * restore after device starts
2869           */
2870         igbvf_set_vfta_all(dev,0);
2871
2872         igb_dev_clear_queues(dev);
2873 }
2874
2875 static void
2876 igbvf_dev_close(struct rte_eth_dev *dev)
2877 {
2878         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2879         struct e1000_adapter *adapter =
2880                 E1000_DEV_PRIVATE(dev->data->dev_private);
2881         struct ether_addr addr;
2882
2883         PMD_INIT_FUNC_TRACE();
2884
2885         e1000_reset_hw(hw);
2886
2887         igbvf_dev_stop(dev);
2888         adapter->stopped = 1;
2889         igb_dev_free_queues(dev);
2890
2891         /**
2892          * reprogram the RAR with a zero mac address,
2893          * to ensure that the VF traffic goes to the PF
2894          * after stop, close and detach of the VF.
2895          **/
2896
2897         memset(&addr, 0, sizeof(addr));
2898         igbvf_default_mac_addr_set(dev, &addr);
2899 }
2900
2901 static void
2902 igbvf_promiscuous_enable(struct rte_eth_dev *dev)
2903 {
2904         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2905
2906         /* Set both unicast and multicast promisc */
2907         e1000_promisc_set_vf(hw, e1000_promisc_enabled);
2908 }
2909
2910 static void
2911 igbvf_promiscuous_disable(struct rte_eth_dev *dev)
2912 {
2913         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2914
2915         /* If in allmulticast mode leave multicast promisc */
2916         if (dev->data->all_multicast == 1)
2917                 e1000_promisc_set_vf(hw, e1000_promisc_multicast);
2918         else
2919                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
2920 }
2921
2922 static void
2923 igbvf_allmulticast_enable(struct rte_eth_dev *dev)
2924 {
2925         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2926
2927         /* In promiscuous mode multicast promisc already set */
2928         if (dev->data->promiscuous == 0)
2929                 e1000_promisc_set_vf(hw, e1000_promisc_multicast);
2930 }
2931
2932 static void
2933 igbvf_allmulticast_disable(struct rte_eth_dev *dev)
2934 {
2935         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2936
2937         /* In promiscuous mode leave multicast promisc enabled */
2938         if (dev->data->promiscuous == 0)
2939                 e1000_promisc_set_vf(hw, e1000_promisc_disabled);
2940 }
2941
2942 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on)
2943 {
2944         struct e1000_mbx_info *mbx = &hw->mbx;
2945         uint32_t msgbuf[2];
2946         s32 err;
2947
2948         /* After set vlan, vlan strip will also be enabled in igb driver*/
2949         msgbuf[0] = E1000_VF_SET_VLAN;
2950         msgbuf[1] = vid;
2951         /* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
2952         if (on)
2953                 msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
2954
2955         err = mbx->ops.write_posted(hw, msgbuf, 2, 0);
2956         if (err)
2957                 goto mbx_err;
2958
2959         err = mbx->ops.read_posted(hw, msgbuf, 2, 0);
2960         if (err)
2961                 goto mbx_err;
2962
2963         msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
2964         if (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK))
2965                 err = -EINVAL;
2966
2967 mbx_err:
2968         return err;
2969 }
2970
2971 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on)
2972 {
2973         struct e1000_hw *hw =
2974                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2975         struct e1000_vfta * shadow_vfta =
2976                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2977         int i = 0, j = 0, vfta = 0, mask = 1;
2978
2979         for (i = 0; i < IGB_VFTA_SIZE; i++){
2980                 vfta = shadow_vfta->vfta[i];
2981                 if(vfta){
2982                         mask = 1;
2983                         for (j = 0; j < 32; j++){
2984                                 if(vfta & mask)
2985                                         igbvf_set_vfta(hw,
2986                                                 (uint16_t)((i<<5)+j), on);
2987                                 mask<<=1;
2988                         }
2989                 }
2990         }
2991
2992 }
2993
2994 static int
2995 igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
2996 {
2997         struct e1000_hw *hw =
2998                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2999         struct e1000_vfta * shadow_vfta =
3000                 E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
3001         uint32_t vid_idx = 0;
3002         uint32_t vid_bit = 0;
3003         int ret = 0;
3004
3005         PMD_INIT_FUNC_TRACE();
3006
3007         /*vind is not used in VF driver, set to 0, check ixgbe_set_vfta_vf*/
3008         ret = igbvf_set_vfta(hw, vlan_id, !!on);
3009         if(ret){
3010                 PMD_INIT_LOG(ERR, "Unable to set VF vlan");
3011                 return ret;
3012         }
3013         vid_idx = (uint32_t) ((vlan_id >> 5) & 0x7F);
3014         vid_bit = (uint32_t) (1 << (vlan_id & 0x1F));
3015
3016         /*Save what we set and retore it after device reset*/
3017         if (on)
3018                 shadow_vfta->vfta[vid_idx] |= vid_bit;
3019         else
3020                 shadow_vfta->vfta[vid_idx] &= ~vid_bit;
3021
3022         return 0;
3023 }
3024
3025 static void
3026 igbvf_default_mac_addr_set(struct rte_eth_dev *dev, struct ether_addr *addr)
3027 {
3028         struct e1000_hw *hw =
3029                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3030
3031         /* index is not used by rar_set() */
3032         hw->mac.ops.rar_set(hw, (void *)addr, 0);
3033 }
3034
3035
3036 static int
3037 eth_igb_rss_reta_update(struct rte_eth_dev *dev,
3038                         struct rte_eth_rss_reta_entry64 *reta_conf,
3039                         uint16_t reta_size)
3040 {
3041         uint8_t i, j, mask;
3042         uint32_t reta, r;
3043         uint16_t idx, shift;
3044         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3045
3046         if (reta_size != ETH_RSS_RETA_SIZE_128) {
3047                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
3048                         "(%d) doesn't match the number hardware can supported "
3049                         "(%d)\n", reta_size, ETH_RSS_RETA_SIZE_128);
3050                 return -EINVAL;
3051         }
3052
3053         for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
3054                 idx = i / RTE_RETA_GROUP_SIZE;
3055                 shift = i % RTE_RETA_GROUP_SIZE;
3056                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
3057                                                 IGB_4_BIT_MASK);
3058                 if (!mask)
3059                         continue;
3060                 if (mask == IGB_4_BIT_MASK)
3061                         r = 0;
3062                 else
3063                         r = E1000_READ_REG(hw, E1000_RETA(i >> 2));
3064                 for (j = 0, reta = 0; j < IGB_4_BIT_WIDTH; j++) {
3065                         if (mask & (0x1 << j))
3066                                 reta |= reta_conf[idx].reta[shift + j] <<
3067                                                         (CHAR_BIT * j);
3068                         else
3069                                 reta |= r & (IGB_8_BIT_MASK << (CHAR_BIT * j));
3070                 }
3071                 E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
3072         }
3073
3074         return 0;
3075 }
3076
3077 static int
3078 eth_igb_rss_reta_query(struct rte_eth_dev *dev,
3079                        struct rte_eth_rss_reta_entry64 *reta_conf,
3080                        uint16_t reta_size)
3081 {
3082         uint8_t i, j, mask;
3083         uint32_t reta;
3084         uint16_t idx, shift;
3085         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3086
3087         if (reta_size != ETH_RSS_RETA_SIZE_128) {
3088                 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
3089                         "(%d) doesn't match the number hardware can supported "
3090                         "(%d)\n", reta_size, ETH_RSS_RETA_SIZE_128);
3091                 return -EINVAL;
3092         }
3093
3094         for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
3095                 idx = i / RTE_RETA_GROUP_SIZE;
3096                 shift = i % RTE_RETA_GROUP_SIZE;
3097                 mask = (uint8_t)((reta_conf[idx].mask >> shift) &
3098                                                 IGB_4_BIT_MASK);
3099                 if (!mask)
3100                         continue;
3101                 reta = E1000_READ_REG(hw, E1000_RETA(i >> 2));
3102                 for (j = 0; j < IGB_4_BIT_WIDTH; j++) {
3103                         if (mask & (0x1 << j))
3104                                 reta_conf[idx].reta[shift + j] =
3105                                         ((reta >> (CHAR_BIT * j)) &
3106                                                 IGB_8_BIT_MASK);
3107                 }
3108         }
3109
3110         return 0;
3111 }
3112
3113 #define MAC_TYPE_FILTER_SUP(type)    do {\
3114         if ((type) != e1000_82580 && (type) != e1000_i350 &&\
3115                 (type) != e1000_82576)\
3116                 return -ENOTSUP;\
3117 } while (0)
3118
3119 static int
3120 eth_igb_syn_filter_set(struct rte_eth_dev *dev,
3121                         struct rte_eth_syn_filter *filter,
3122                         bool add)
3123 {
3124         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3125         uint32_t synqf, rfctl;
3126
3127         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
3128                 return -EINVAL;
3129
3130         synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
3131
3132         if (add) {
3133                 if (synqf & E1000_SYN_FILTER_ENABLE)
3134                         return -EINVAL;
3135
3136                 synqf = (uint32_t)(((filter->queue << E1000_SYN_FILTER_QUEUE_SHIFT) &
3137                         E1000_SYN_FILTER_QUEUE) | E1000_SYN_FILTER_ENABLE);
3138
3139                 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3140                 if (filter->hig_pri)
3141                         rfctl |= E1000_RFCTL_SYNQFP;
3142                 else
3143                         rfctl &= ~E1000_RFCTL_SYNQFP;
3144
3145                 E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3146         } else {
3147                 if (!(synqf & E1000_SYN_FILTER_ENABLE))
3148                         return -ENOENT;
3149                 synqf = 0;
3150         }
3151
3152         E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
3153         E1000_WRITE_FLUSH(hw);
3154         return 0;
3155 }
3156
3157 static int
3158 eth_igb_syn_filter_get(struct rte_eth_dev *dev,
3159                         struct rte_eth_syn_filter *filter)
3160 {
3161         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3162         uint32_t synqf, rfctl;
3163
3164         synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
3165         if (synqf & E1000_SYN_FILTER_ENABLE) {
3166                 rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3167                 filter->hig_pri = (rfctl & E1000_RFCTL_SYNQFP) ? 1 : 0;
3168                 filter->queue = (uint8_t)((synqf & E1000_SYN_FILTER_QUEUE) >>
3169                                 E1000_SYN_FILTER_QUEUE_SHIFT);
3170                 return 0;
3171         }
3172
3173         return -ENOENT;
3174 }
3175
3176 static int
3177 eth_igb_syn_filter_handle(struct rte_eth_dev *dev,
3178                         enum rte_filter_op filter_op,
3179                         void *arg)
3180 {
3181         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3182         int ret;
3183
3184         MAC_TYPE_FILTER_SUP(hw->mac.type);
3185
3186         if (filter_op == RTE_ETH_FILTER_NOP)
3187                 return 0;
3188
3189         if (arg == NULL) {
3190                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
3191                             filter_op);
3192                 return -EINVAL;
3193         }
3194
3195         switch (filter_op) {
3196         case RTE_ETH_FILTER_ADD:
3197                 ret = eth_igb_syn_filter_set(dev,
3198                                 (struct rte_eth_syn_filter *)arg,
3199                                 TRUE);
3200                 break;
3201         case RTE_ETH_FILTER_DELETE:
3202                 ret = eth_igb_syn_filter_set(dev,
3203                                 (struct rte_eth_syn_filter *)arg,
3204                                 FALSE);
3205                 break;
3206         case RTE_ETH_FILTER_GET:
3207                 ret = eth_igb_syn_filter_get(dev,
3208                                 (struct rte_eth_syn_filter *)arg);
3209                 break;
3210         default:
3211                 PMD_DRV_LOG(ERR, "unsupported operation %u\n", filter_op);
3212                 ret = -EINVAL;
3213                 break;
3214         }
3215
3216         return ret;
3217 }
3218
3219 #define MAC_TYPE_FILTER_SUP_EXT(type)    do {\
3220         if ((type) != e1000_82580 && (type) != e1000_i350)\
3221                 return -ENOSYS; \
3222 } while (0)
3223
3224 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_2tuple_filter_info*/
3225 static inline int
3226 ntuple_filter_to_2tuple(struct rte_eth_ntuple_filter *filter,
3227                         struct e1000_2tuple_filter_info *filter_info)
3228 {
3229         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
3230                 return -EINVAL;
3231         if (filter->priority > E1000_2TUPLE_MAX_PRI)
3232                 return -EINVAL;  /* filter index is out of range. */
3233         if (filter->tcp_flags > TCP_FLAG_ALL)
3234                 return -EINVAL;  /* flags is invalid. */
3235
3236         switch (filter->dst_port_mask) {
3237         case UINT16_MAX:
3238                 filter_info->dst_port_mask = 0;
3239                 filter_info->dst_port = filter->dst_port;
3240                 break;
3241         case 0:
3242                 filter_info->dst_port_mask = 1;
3243                 break;
3244         default:
3245                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
3246                 return -EINVAL;
3247         }
3248
3249         switch (filter->proto_mask) {
3250         case UINT8_MAX:
3251                 filter_info->proto_mask = 0;
3252                 filter_info->proto = filter->proto;
3253                 break;
3254         case 0:
3255                 filter_info->proto_mask = 1;
3256                 break;
3257         default:
3258                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
3259                 return -EINVAL;
3260         }
3261
3262         filter_info->priority = (uint8_t)filter->priority;
3263         if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
3264                 filter_info->tcp_flags = filter->tcp_flags;
3265         else
3266                 filter_info->tcp_flags = 0;
3267
3268         return 0;
3269 }
3270
3271 static inline struct e1000_2tuple_filter *
3272 igb_2tuple_filter_lookup(struct e1000_2tuple_filter_list *filter_list,
3273                         struct e1000_2tuple_filter_info *key)
3274 {
3275         struct e1000_2tuple_filter *it;
3276
3277         TAILQ_FOREACH(it, filter_list, entries) {
3278                 if (memcmp(key, &it->filter_info,
3279                         sizeof(struct e1000_2tuple_filter_info)) == 0) {
3280                         return it;
3281                 }
3282         }
3283         return NULL;
3284 }
3285
3286 /*
3287  * igb_add_2tuple_filter - add a 2tuple filter
3288  *
3289  * @param
3290  * dev: Pointer to struct rte_eth_dev.
3291  * ntuple_filter: ponter to the filter that will be added.
3292  *
3293  * @return
3294  *    - On success, zero.
3295  *    - On failure, a negative value.
3296  */
3297 static int
3298 igb_add_2tuple_filter(struct rte_eth_dev *dev,
3299                         struct rte_eth_ntuple_filter *ntuple_filter)
3300 {
3301         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3302         struct e1000_filter_info *filter_info =
3303                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3304         struct e1000_2tuple_filter *filter;
3305         uint32_t ttqf = E1000_TTQF_DISABLE_MASK;
3306         uint32_t imir, imir_ext = E1000_IMIREXT_SIZE_BP;
3307         int i, ret;
3308
3309         filter = rte_zmalloc("e1000_2tuple_filter",
3310                         sizeof(struct e1000_2tuple_filter), 0);
3311         if (filter == NULL)
3312                 return -ENOMEM;
3313
3314         ret = ntuple_filter_to_2tuple(ntuple_filter,
3315                                       &filter->filter_info);
3316         if (ret < 0) {
3317                 rte_free(filter);
3318                 return ret;
3319         }
3320         if (igb_2tuple_filter_lookup(&filter_info->twotuple_list,
3321                                          &filter->filter_info) != NULL) {
3322                 PMD_DRV_LOG(ERR, "filter exists.");
3323                 rte_free(filter);
3324                 return -EEXIST;
3325         }
3326         filter->queue = ntuple_filter->queue;
3327
3328         /*
3329          * look for an unused 2tuple filter index,
3330          * and insert the filter to list.
3331          */
3332         for (i = 0; i < E1000_MAX_TTQF_FILTERS; i++) {
3333                 if (!(filter_info->twotuple_mask & (1 << i))) {
3334                         filter_info->twotuple_mask |= 1 << i;
3335                         filter->index = i;
3336                         TAILQ_INSERT_TAIL(&filter_info->twotuple_list,
3337                                           filter,
3338                                           entries);
3339                         break;
3340                 }
3341         }
3342         if (i >= E1000_MAX_TTQF_FILTERS) {
3343                 PMD_DRV_LOG(ERR, "2tuple filters are full.");
3344                 rte_free(filter);
3345                 return -ENOSYS;
3346         }
3347
3348         imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
3349         if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
3350                 imir |= E1000_IMIR_PORT_BP;
3351         else
3352                 imir &= ~E1000_IMIR_PORT_BP;
3353
3354         imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
3355
3356         ttqf |= E1000_TTQF_QUEUE_ENABLE;
3357         ttqf |= (uint32_t)(filter->queue << E1000_TTQF_QUEUE_SHIFT);
3358         ttqf |= (uint32_t)(filter->filter_info.proto & E1000_TTQF_PROTOCOL_MASK);
3359         if (filter->filter_info.proto_mask == 0)
3360                 ttqf &= ~E1000_TTQF_MASK_ENABLE;
3361
3362         /* tcp flags bits setting. */
3363         if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) {
3364                 if (filter->filter_info.tcp_flags & TCP_URG_FLAG)
3365                         imir_ext |= E1000_IMIREXT_CTRL_URG;
3366                 if (filter->filter_info.tcp_flags & TCP_ACK_FLAG)
3367                         imir_ext |= E1000_IMIREXT_CTRL_ACK;
3368                 if (filter->filter_info.tcp_flags & TCP_PSH_FLAG)
3369                         imir_ext |= E1000_IMIREXT_CTRL_PSH;
3370                 if (filter->filter_info.tcp_flags & TCP_RST_FLAG)
3371                         imir_ext |= E1000_IMIREXT_CTRL_RST;
3372                 if (filter->filter_info.tcp_flags & TCP_SYN_FLAG)
3373                         imir_ext |= E1000_IMIREXT_CTRL_SYN;
3374                 if (filter->filter_info.tcp_flags & TCP_FIN_FLAG)
3375                         imir_ext |= E1000_IMIREXT_CTRL_FIN;
3376         } else
3377                 imir_ext |= E1000_IMIREXT_CTRL_BP;
3378         E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
3379         E1000_WRITE_REG(hw, E1000_TTQF(i), ttqf);
3380         E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
3381         return 0;
3382 }
3383
3384 /*
3385  * igb_remove_2tuple_filter - remove a 2tuple filter
3386  *
3387  * @param
3388  * dev: Pointer to struct rte_eth_dev.
3389  * ntuple_filter: ponter to the filter that will be removed.
3390  *
3391  * @return
3392  *    - On success, zero.
3393  *    - On failure, a negative value.
3394  */
3395 static int
3396 igb_remove_2tuple_filter(struct rte_eth_dev *dev,
3397                         struct rte_eth_ntuple_filter *ntuple_filter)
3398 {
3399         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3400         struct e1000_filter_info *filter_info =
3401                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3402         struct e1000_2tuple_filter_info filter_2tuple;
3403         struct e1000_2tuple_filter *filter;
3404         int ret;
3405
3406         memset(&filter_2tuple, 0, sizeof(struct e1000_2tuple_filter_info));
3407         ret = ntuple_filter_to_2tuple(ntuple_filter,
3408                                       &filter_2tuple);
3409         if (ret < 0)
3410                 return ret;
3411
3412         filter = igb_2tuple_filter_lookup(&filter_info->twotuple_list,
3413                                          &filter_2tuple);
3414         if (filter == NULL) {
3415                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
3416                 return -ENOENT;
3417         }
3418
3419         filter_info->twotuple_mask &= ~(1 << filter->index);
3420         TAILQ_REMOVE(&filter_info->twotuple_list, filter, entries);
3421         rte_free(filter);
3422
3423         E1000_WRITE_REG(hw, E1000_TTQF(filter->index), E1000_TTQF_DISABLE_MASK);
3424         E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
3425         E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
3426         return 0;
3427 }
3428
3429 static inline struct e1000_flex_filter *
3430 eth_igb_flex_filter_lookup(struct e1000_flex_filter_list *filter_list,
3431                         struct e1000_flex_filter_info *key)
3432 {
3433         struct e1000_flex_filter *it;
3434
3435         TAILQ_FOREACH(it, filter_list, entries) {
3436                 if (memcmp(key, &it->filter_info,
3437                         sizeof(struct e1000_flex_filter_info)) == 0)
3438                         return it;
3439         }
3440
3441         return NULL;
3442 }
3443
3444 static int
3445 eth_igb_add_del_flex_filter(struct rte_eth_dev *dev,
3446                         struct rte_eth_flex_filter *filter,
3447                         bool add)
3448 {
3449         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3450         struct e1000_filter_info *filter_info =
3451                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3452         struct e1000_flex_filter *flex_filter, *it;
3453         uint32_t wufc, queueing, mask;
3454         uint32_t reg_off;
3455         uint8_t shift, i, j = 0;
3456
3457         flex_filter = rte_zmalloc("e1000_flex_filter",
3458                         sizeof(struct e1000_flex_filter), 0);
3459         if (flex_filter == NULL)
3460                 return -ENOMEM;
3461
3462         flex_filter->filter_info.len = filter->len;
3463         flex_filter->filter_info.priority = filter->priority;
3464         memcpy(flex_filter->filter_info.dwords, filter->bytes, filter->len);
3465         for (i = 0; i < RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT; i++) {
3466                 mask = 0;
3467                 /* reverse bits in flex filter's mask*/
3468                 for (shift = 0; shift < CHAR_BIT; shift++) {
3469                         if (filter->mask[i] & (0x01 << shift))
3470                                 mask |= (0x80 >> shift);
3471                 }
3472                 flex_filter->filter_info.mask[i] = mask;
3473         }
3474
3475         wufc = E1000_READ_REG(hw, E1000_WUFC);
3476         if (flex_filter->index < E1000_MAX_FHFT)
3477                 reg_off = E1000_FHFT(flex_filter->index);
3478         else
3479                 reg_off = E1000_FHFT_EXT(flex_filter->index - E1000_MAX_FHFT);
3480
3481         if (add) {
3482                 if (eth_igb_flex_filter_lookup(&filter_info->flex_list,
3483                                 &flex_filter->filter_info) != NULL) {
3484                         PMD_DRV_LOG(ERR, "filter exists.");
3485                         rte_free(flex_filter);
3486                         return -EEXIST;
3487                 }
3488                 flex_filter->queue = filter->queue;
3489                 /*
3490                  * look for an unused flex filter index
3491                  * and insert the filter into the list.
3492                  */
3493                 for (i = 0; i < E1000_MAX_FLEX_FILTERS; i++) {
3494                         if (!(filter_info->flex_mask & (1 << i))) {
3495                                 filter_info->flex_mask |= 1 << i;
3496                                 flex_filter->index = i;
3497                                 TAILQ_INSERT_TAIL(&filter_info->flex_list,
3498                                         flex_filter,
3499                                         entries);
3500                                 break;
3501                         }
3502                 }
3503                 if (i >= E1000_MAX_FLEX_FILTERS) {
3504                         PMD_DRV_LOG(ERR, "flex filters are full.");
3505                         rte_free(flex_filter);
3506                         return -ENOSYS;
3507                 }
3508
3509                 E1000_WRITE_REG(hw, E1000_WUFC, wufc | E1000_WUFC_FLEX_HQ |
3510                                 (E1000_WUFC_FLX0 << flex_filter->index));
3511                 queueing = filter->len |
3512                         (filter->queue << E1000_FHFT_QUEUEING_QUEUE_SHIFT) |
3513                         (filter->priority << E1000_FHFT_QUEUEING_PRIO_SHIFT);
3514                 E1000_WRITE_REG(hw, reg_off + E1000_FHFT_QUEUEING_OFFSET,
3515                                 queueing);
3516                 for (i = 0; i < E1000_FLEX_FILTERS_MASK_SIZE; i++) {
3517                         E1000_WRITE_REG(hw, reg_off,
3518                                         flex_filter->filter_info.dwords[j]);
3519                         reg_off += sizeof(uint32_t);
3520                         E1000_WRITE_REG(hw, reg_off,
3521                                         flex_filter->filter_info.dwords[++j]);
3522                         reg_off += sizeof(uint32_t);
3523                         E1000_WRITE_REG(hw, reg_off,
3524                                 (uint32_t)flex_filter->filter_info.mask[i]);
3525                         reg_off += sizeof(uint32_t) * 2;
3526                         ++j;
3527                 }
3528         } else {
3529                 it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
3530                                 &flex_filter->filter_info);
3531                 if (it == NULL) {
3532                         PMD_DRV_LOG(ERR, "filter doesn't exist.");
3533                         rte_free(flex_filter);
3534                         return -ENOENT;
3535                 }
3536
3537                 for (i = 0; i < E1000_FHFT_SIZE_IN_DWD; i++)
3538                         E1000_WRITE_REG(hw, reg_off + i * sizeof(uint32_t), 0);
3539                 E1000_WRITE_REG(hw, E1000_WUFC, wufc &
3540                         (~(E1000_WUFC_FLX0 << it->index)));
3541
3542                 filter_info->flex_mask &= ~(1 << it->index);
3543                 TAILQ_REMOVE(&filter_info->flex_list, it, entries);
3544                 rte_free(it);
3545                 rte_free(flex_filter);
3546         }
3547
3548         return 0;
3549 }
3550
3551 static int
3552 eth_igb_get_flex_filter(struct rte_eth_dev *dev,
3553                         struct rte_eth_flex_filter *filter)
3554 {
3555         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3556         struct e1000_filter_info *filter_info =
3557                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3558         struct e1000_flex_filter flex_filter, *it;
3559         uint32_t wufc, queueing, wufc_en = 0;
3560
3561         memset(&flex_filter, 0, sizeof(struct e1000_flex_filter));
3562         flex_filter.filter_info.len = filter->len;
3563         flex_filter.filter_info.priority = filter->priority;
3564         memcpy(flex_filter.filter_info.dwords, filter->bytes, filter->len);
3565         memcpy(flex_filter.filter_info.mask, filter->mask,
3566                         RTE_ALIGN(filter->len, sizeof(char)) / sizeof(char));
3567
3568         it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
3569                                 &flex_filter.filter_info);
3570         if (it == NULL) {
3571                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
3572                 return -ENOENT;
3573         }
3574
3575         wufc = E1000_READ_REG(hw, E1000_WUFC);
3576         wufc_en = E1000_WUFC_FLEX_HQ | (E1000_WUFC_FLX0 << it->index);
3577
3578         if ((wufc & wufc_en) == wufc_en) {
3579                 uint32_t reg_off = 0;
3580                 if (it->index < E1000_MAX_FHFT)
3581                         reg_off = E1000_FHFT(it->index);
3582                 else
3583                         reg_off = E1000_FHFT_EXT(it->index - E1000_MAX_FHFT);
3584
3585                 queueing = E1000_READ_REG(hw,
3586                                 reg_off + E1000_FHFT_QUEUEING_OFFSET);
3587                 filter->len = queueing & E1000_FHFT_QUEUEING_LEN;
3588                 filter->priority = (queueing & E1000_FHFT_QUEUEING_PRIO) >>
3589                         E1000_FHFT_QUEUEING_PRIO_SHIFT;
3590                 filter->queue = (queueing & E1000_FHFT_QUEUEING_QUEUE) >>
3591                         E1000_FHFT_QUEUEING_QUEUE_SHIFT;
3592                 return 0;
3593         }
3594         return -ENOENT;
3595 }
3596
3597 static int
3598 eth_igb_flex_filter_handle(struct rte_eth_dev *dev,
3599                         enum rte_filter_op filter_op,
3600                         void *arg)
3601 {
3602         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3603         struct rte_eth_flex_filter *filter;
3604         int ret = 0;
3605
3606         MAC_TYPE_FILTER_SUP_EXT(hw->mac.type);
3607
3608         if (filter_op == RTE_ETH_FILTER_NOP)
3609                 return ret;
3610
3611         if (arg == NULL) {
3612                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u",
3613                             filter_op);
3614                 return -EINVAL;
3615         }
3616
3617         filter = (struct rte_eth_flex_filter *)arg;
3618         if (filter->len == 0 || filter->len > E1000_MAX_FLEX_FILTER_LEN
3619             || filter->len % sizeof(uint64_t) != 0) {
3620                 PMD_DRV_LOG(ERR, "filter's length is out of range");
3621                 return -EINVAL;
3622         }
3623         if (filter->priority > E1000_MAX_FLEX_FILTER_PRI) {
3624                 PMD_DRV_LOG(ERR, "filter's priority is out of range");
3625                 return -EINVAL;
3626         }
3627
3628         switch (filter_op) {
3629         case RTE_ETH_FILTER_ADD:
3630                 ret = eth_igb_add_del_flex_filter(dev, filter, TRUE);
3631                 break;
3632         case RTE_ETH_FILTER_DELETE:
3633                 ret = eth_igb_add_del_flex_filter(dev, filter, FALSE);
3634                 break;
3635         case RTE_ETH_FILTER_GET:
3636                 ret = eth_igb_get_flex_filter(dev, filter);
3637                 break;
3638         default:
3639                 PMD_DRV_LOG(ERR, "unsupported operation %u", filter_op);
3640                 ret = -EINVAL;
3641                 break;
3642         }
3643
3644         return ret;
3645 }
3646
3647 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_5tuple_filter_info*/
3648 static inline int
3649 ntuple_filter_to_5tuple_82576(struct rte_eth_ntuple_filter *filter,
3650                         struct e1000_5tuple_filter_info *filter_info)
3651 {
3652         if (filter->queue >= IGB_MAX_RX_QUEUE_NUM_82576)
3653                 return -EINVAL;
3654         if (filter->priority > E1000_2TUPLE_MAX_PRI)
3655                 return -EINVAL;  /* filter index is out of range. */
3656         if (filter->tcp_flags > TCP_FLAG_ALL)
3657                 return -EINVAL;  /* flags is invalid. */
3658
3659         switch (filter->dst_ip_mask) {
3660         case UINT32_MAX:
3661                 filter_info->dst_ip_mask = 0;
3662                 filter_info->dst_ip = filter->dst_ip;
3663                 break;
3664         case 0:
3665                 filter_info->dst_ip_mask = 1;
3666                 break;
3667         default:
3668                 PMD_DRV_LOG(ERR, "invalid dst_ip mask.");
3669                 return -EINVAL;
3670         }
3671
3672         switch (filter->src_ip_mask) {
3673         case UINT32_MAX:
3674                 filter_info->src_ip_mask = 0;
3675                 filter_info->src_ip = filter->src_ip;
3676                 break;
3677         case 0:
3678                 filter_info->src_ip_mask = 1;
3679                 break;
3680         default:
3681                 PMD_DRV_LOG(ERR, "invalid src_ip mask.");
3682                 return -EINVAL;
3683         }
3684
3685         switch (filter->dst_port_mask) {
3686         case UINT16_MAX:
3687                 filter_info->dst_port_mask = 0;
3688                 filter_info->dst_port = filter->dst_port;
3689                 break;
3690         case 0:
3691                 filter_info->dst_port_mask = 1;
3692                 break;
3693         default:
3694                 PMD_DRV_LOG(ERR, "invalid dst_port mask.");
3695                 return -EINVAL;
3696         }
3697
3698         switch (filter->src_port_mask) {
3699         case UINT16_MAX:
3700                 filter_info->src_port_mask = 0;
3701                 filter_info->src_port = filter->src_port;
3702                 break;
3703         case 0:
3704                 filter_info->src_port_mask = 1;
3705                 break;
3706         default:
3707                 PMD_DRV_LOG(ERR, "invalid src_port mask.");
3708                 return -EINVAL;
3709         }
3710
3711         switch (filter->proto_mask) {
3712         case UINT8_MAX:
3713                 filter_info->proto_mask = 0;
3714                 filter_info->proto = filter->proto;
3715                 break;
3716         case 0:
3717                 filter_info->proto_mask = 1;
3718                 break;
3719         default:
3720                 PMD_DRV_LOG(ERR, "invalid protocol mask.");
3721                 return -EINVAL;
3722         }
3723
3724         filter_info->priority = (uint8_t)filter->priority;
3725         if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
3726                 filter_info->tcp_flags = filter->tcp_flags;
3727         else
3728                 filter_info->tcp_flags = 0;
3729
3730         return 0;
3731 }
3732
3733 static inline struct e1000_5tuple_filter *
3734 igb_5tuple_filter_lookup_82576(struct e1000_5tuple_filter_list *filter_list,
3735                         struct e1000_5tuple_filter_info *key)
3736 {
3737         struct e1000_5tuple_filter *it;
3738
3739         TAILQ_FOREACH(it, filter_list, entries) {
3740                 if (memcmp(key, &it->filter_info,
3741                         sizeof(struct e1000_5tuple_filter_info)) == 0) {
3742                         return it;
3743                 }
3744         }
3745         return NULL;
3746 }
3747
3748 /*
3749  * igb_add_5tuple_filter_82576 - add a 5tuple filter
3750  *
3751  * @param
3752  * dev: Pointer to struct rte_eth_dev.
3753  * ntuple_filter: ponter to the filter that will be added.
3754  *
3755  * @return
3756  *    - On success, zero.
3757  *    - On failure, a negative value.
3758  */
3759 static int
3760 igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
3761                         struct rte_eth_ntuple_filter *ntuple_filter)
3762 {
3763         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3764         struct e1000_filter_info *filter_info =
3765                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3766         struct e1000_5tuple_filter *filter;
3767         uint32_t ftqf = E1000_FTQF_VF_BP | E1000_FTQF_MASK;
3768         uint32_t spqf, imir, imir_ext = E1000_IMIREXT_SIZE_BP;
3769         uint8_t i;
3770         int ret;
3771
3772         filter = rte_zmalloc("e1000_5tuple_filter",
3773                         sizeof(struct e1000_5tuple_filter), 0);
3774         if (filter == NULL)
3775                 return -ENOMEM;
3776
3777         ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
3778                                             &filter->filter_info);
3779         if (ret < 0) {
3780                 rte_free(filter);
3781                 return ret;
3782         }
3783
3784         if (igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
3785                                          &filter->filter_info) != NULL) {
3786                 PMD_DRV_LOG(ERR, "filter exists.");
3787                 rte_free(filter);
3788                 return -EEXIST;
3789         }
3790         filter->queue = ntuple_filter->queue;
3791
3792         /*
3793          * look for an unused 5tuple filter index,
3794          * and insert the filter to list.
3795          */
3796         for (i = 0; i < E1000_MAX_FTQF_FILTERS; i++) {
3797                 if (!(filter_info->fivetuple_mask & (1 << i))) {
3798                         filter_info->fivetuple_mask |= 1 << i;
3799                         filter->index = i;
3800                         TAILQ_INSERT_TAIL(&filter_info->fivetuple_list,
3801                                           filter,
3802                                           entries);
3803                         break;
3804                 }
3805         }
3806         if (i >= E1000_MAX_FTQF_FILTERS) {
3807                 PMD_DRV_LOG(ERR, "5tuple filters are full.");
3808                 rte_free(filter);
3809                 return -ENOSYS;
3810         }
3811
3812         ftqf |= filter->filter_info.proto & E1000_FTQF_PROTOCOL_MASK;
3813         if (filter->filter_info.src_ip_mask == 0) /* 0b means compare. */
3814                 ftqf &= ~E1000_FTQF_MASK_SOURCE_ADDR_BP;
3815         if (filter->filter_info.dst_ip_mask == 0)
3816                 ftqf &= ~E1000_FTQF_MASK_DEST_ADDR_BP;
3817         if (filter->filter_info.src_port_mask == 0)
3818                 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
3819         if (filter->filter_info.proto_mask == 0)
3820                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP;
3821         ftqf |= (filter->queue << E1000_FTQF_QUEUE_SHIFT) &
3822                 E1000_FTQF_QUEUE_MASK;
3823         ftqf |= E1000_FTQF_QUEUE_ENABLE;
3824         E1000_WRITE_REG(hw, E1000_FTQF(i), ftqf);
3825         E1000_WRITE_REG(hw, E1000_DAQF(i), filter->filter_info.dst_ip);
3826         E1000_WRITE_REG(hw, E1000_SAQF(i), filter->filter_info.src_ip);
3827
3828         spqf = filter->filter_info.src_port & E1000_SPQF_SRCPORT;
3829         E1000_WRITE_REG(hw, E1000_SPQF(i), spqf);
3830
3831         imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
3832         if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
3833                 imir |= E1000_IMIR_PORT_BP;
3834         else
3835                 imir &= ~E1000_IMIR_PORT_BP;
3836         imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
3837
3838         /* tcp flags bits setting. */
3839         if (filter->filter_info.tcp_flags & TCP_FLAG_ALL) {
3840                 if (filter->filter_info.tcp_flags & TCP_URG_FLAG)
3841                         imir_ext |= E1000_IMIREXT_CTRL_URG;
3842                 if (filter->filter_info.tcp_flags & TCP_ACK_FLAG)
3843                         imir_ext |= E1000_IMIREXT_CTRL_ACK;
3844                 if (filter->filter_info.tcp_flags & TCP_PSH_FLAG)
3845                         imir_ext |= E1000_IMIREXT_CTRL_PSH;
3846                 if (filter->filter_info.tcp_flags & TCP_RST_FLAG)
3847                         imir_ext |= E1000_IMIREXT_CTRL_RST;
3848                 if (filter->filter_info.tcp_flags & TCP_SYN_FLAG)
3849                         imir_ext |= E1000_IMIREXT_CTRL_SYN;
3850                 if (filter->filter_info.tcp_flags & TCP_FIN_FLAG)
3851                         imir_ext |= E1000_IMIREXT_CTRL_FIN;
3852         } else
3853                 imir_ext |= E1000_IMIREXT_CTRL_BP;
3854         E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
3855         E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
3856         return 0;
3857 }
3858
3859 /*
3860  * igb_remove_5tuple_filter_82576 - remove a 5tuple filter
3861  *
3862  * @param
3863  * dev: Pointer to struct rte_eth_dev.
3864  * ntuple_filter: ponter to the filter that will be removed.
3865  *
3866  * @return
3867  *    - On success, zero.
3868  *    - On failure, a negative value.
3869  */
3870 static int
3871 igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
3872                                 struct rte_eth_ntuple_filter *ntuple_filter)
3873 {
3874         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3875         struct e1000_filter_info *filter_info =
3876                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3877         struct e1000_5tuple_filter_info filter_5tuple;
3878         struct e1000_5tuple_filter *filter;
3879         int ret;
3880
3881         memset(&filter_5tuple, 0, sizeof(struct e1000_5tuple_filter_info));
3882         ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
3883                                             &filter_5tuple);
3884         if (ret < 0)
3885                 return ret;
3886
3887         filter = igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
3888                                          &filter_5tuple);
3889         if (filter == NULL) {
3890                 PMD_DRV_LOG(ERR, "filter doesn't exist.");
3891                 return -ENOENT;
3892         }
3893
3894         filter_info->fivetuple_mask &= ~(1 << filter->index);
3895         TAILQ_REMOVE(&filter_info->fivetuple_list, filter, entries);
3896         rte_free(filter);
3897
3898         E1000_WRITE_REG(hw, E1000_FTQF(filter->index),
3899                         E1000_FTQF_VF_BP | E1000_FTQF_MASK);
3900         E1000_WRITE_REG(hw, E1000_DAQF(filter->index), 0);
3901         E1000_WRITE_REG(hw, E1000_SAQF(filter->index), 0);
3902         E1000_WRITE_REG(hw, E1000_SPQF(filter->index), 0);
3903         E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
3904         E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
3905         return 0;
3906 }
3907
3908 static int
3909 eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
3910 {
3911         uint32_t rctl;
3912         struct e1000_hw *hw;
3913         struct rte_eth_dev_info dev_info;
3914         uint32_t frame_size = mtu + (ETHER_HDR_LEN + ETHER_CRC_LEN +
3915                                      VLAN_TAG_SIZE);
3916
3917         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3918
3919 #ifdef RTE_LIBRTE_82571_SUPPORT
3920         /* XXX: not bigger than max_rx_pktlen */
3921         if (hw->mac.type == e1000_82571)
3922                 return -ENOTSUP;
3923 #endif
3924         eth_igb_infos_get(dev, &dev_info);
3925
3926         /* check that mtu is within the allowed range */
3927         if ((mtu < ETHER_MIN_MTU) ||
3928             (frame_size > dev_info.max_rx_pktlen))
3929                 return -EINVAL;
3930
3931         /* refuse mtu that requires the support of scattered packets when this
3932          * feature has not been enabled before. */
3933         if (!dev->data->scattered_rx &&
3934             frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM)
3935                 return -EINVAL;
3936
3937         rctl = E1000_READ_REG(hw, E1000_RCTL);
3938
3939         /* switch to jumbo mode if needed */
3940         if (frame_size > ETHER_MAX_LEN) {
3941                 dev->data->dev_conf.rxmode.jumbo_frame = 1;
3942                 rctl |= E1000_RCTL_LPE;
3943         } else {
3944                 dev->data->dev_conf.rxmode.jumbo_frame = 0;
3945                 rctl &= ~E1000_RCTL_LPE;
3946         }
3947         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3948
3949         /* update max frame size */
3950         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
3951
3952         E1000_WRITE_REG(hw, E1000_RLPML,
3953                         dev->data->dev_conf.rxmode.max_rx_pkt_len);
3954
3955         return 0;
3956 }
3957
3958 /*
3959  * igb_add_del_ntuple_filter - add or delete a ntuple filter
3960  *
3961  * @param
3962  * dev: Pointer to struct rte_eth_dev.
3963  * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
3964  * add: if true, add filter, if false, remove filter
3965  *
3966  * @return
3967  *    - On success, zero.
3968  *    - On failure, a negative value.
3969  */
3970 static int
3971 igb_add_del_ntuple_filter(struct rte_eth_dev *dev,
3972                         struct rte_eth_ntuple_filter *ntuple_filter,
3973                         bool add)
3974 {
3975         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3976         int ret;
3977
3978         switch (ntuple_filter->flags) {
3979         case RTE_5TUPLE_FLAGS:
3980         case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
3981                 if (hw->mac.type != e1000_82576)
3982                         return -ENOTSUP;
3983                 if (add)
3984                         ret = igb_add_5tuple_filter_82576(dev,
3985                                                           ntuple_filter);
3986                 else
3987                         ret = igb_remove_5tuple_filter_82576(dev,
3988                                                              ntuple_filter);
3989                 break;
3990         case RTE_2TUPLE_FLAGS:
3991         case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
3992                 if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350)
3993                         return -ENOTSUP;
3994                 if (add)
3995                         ret = igb_add_2tuple_filter(dev, ntuple_filter);
3996                 else
3997                         ret = igb_remove_2tuple_filter(dev, ntuple_filter);
3998                 break;
3999         default:
4000                 ret = -EINVAL;
4001                 break;
4002         }
4003
4004         return ret;
4005 }
4006
4007 /*
4008  * igb_get_ntuple_filter - get a ntuple filter
4009  *
4010  * @param
4011  * dev: Pointer to struct rte_eth_dev.
4012  * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
4013  *
4014  * @return
4015  *    - On success, zero.
4016  *    - On failure, a negative value.
4017  */
4018 static int
4019 igb_get_ntuple_filter(struct rte_eth_dev *dev,
4020                         struct rte_eth_ntuple_filter *ntuple_filter)
4021 {
4022         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4023         struct e1000_filter_info *filter_info =
4024                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4025         struct e1000_5tuple_filter_info filter_5tuple;
4026         struct e1000_2tuple_filter_info filter_2tuple;
4027         struct e1000_5tuple_filter *p_5tuple_filter;
4028         struct e1000_2tuple_filter *p_2tuple_filter;
4029         int ret;
4030
4031         switch (ntuple_filter->flags) {
4032         case RTE_5TUPLE_FLAGS:
4033         case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4034                 if (hw->mac.type != e1000_82576)
4035                         return -ENOTSUP;
4036                 memset(&filter_5tuple,
4037                         0,
4038                         sizeof(struct e1000_5tuple_filter_info));
4039                 ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4040                                                     &filter_5tuple);
4041                 if (ret < 0)
4042                         return ret;
4043                 p_5tuple_filter = igb_5tuple_filter_lookup_82576(
4044                                         &filter_info->fivetuple_list,
4045                                         &filter_5tuple);
4046                 if (p_5tuple_filter == NULL) {
4047                         PMD_DRV_LOG(ERR, "filter doesn't exist.");
4048                         return -ENOENT;
4049                 }
4050                 ntuple_filter->queue = p_5tuple_filter->queue;
4051                 break;
4052         case RTE_2TUPLE_FLAGS:
4053         case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4054                 if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350)
4055                         return -ENOTSUP;
4056                 memset(&filter_2tuple,
4057                         0,
4058                         sizeof(struct e1000_2tuple_filter_info));
4059                 ret = ntuple_filter_to_2tuple(ntuple_filter, &filter_2tuple);
4060                 if (ret < 0)
4061                         return ret;
4062                 p_2tuple_filter = igb_2tuple_filter_lookup(
4063                                         &filter_info->twotuple_list,
4064                                         &filter_2tuple);
4065                 if (p_2tuple_filter == NULL) {
4066                         PMD_DRV_LOG(ERR, "filter doesn't exist.");
4067                         return -ENOENT;
4068                 }
4069                 ntuple_filter->queue = p_2tuple_filter->queue;
4070                 break;
4071         default:
4072                 ret = -EINVAL;
4073                 break;
4074         }
4075
4076         return 0;
4077 }
4078
4079 /*
4080  * igb_ntuple_filter_handle - Handle operations for ntuple filter.
4081  * @dev: pointer to rte_eth_dev structure
4082  * @filter_op:operation will be taken.
4083  * @arg: a pointer to specific structure corresponding to the filter_op
4084  */
4085 static int
4086 igb_ntuple_filter_handle(struct rte_eth_dev *dev,
4087                                 enum rte_filter_op filter_op,
4088                                 void *arg)
4089 {
4090         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4091         int ret;
4092
4093         MAC_TYPE_FILTER_SUP(hw->mac.type);
4094
4095         if (filter_op == RTE_ETH_FILTER_NOP)
4096                 return 0;
4097
4098         if (arg == NULL) {
4099                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
4100                             filter_op);
4101                 return -EINVAL;
4102         }
4103
4104         switch (filter_op) {
4105         case RTE_ETH_FILTER_ADD:
4106                 ret = igb_add_del_ntuple_filter(dev,
4107                         (struct rte_eth_ntuple_filter *)arg,
4108                         TRUE);
4109                 break;
4110         case RTE_ETH_FILTER_DELETE:
4111                 ret = igb_add_del_ntuple_filter(dev,
4112                         (struct rte_eth_ntuple_filter *)arg,
4113                         FALSE);
4114                 break;
4115         case RTE_ETH_FILTER_GET:
4116                 ret = igb_get_ntuple_filter(dev,
4117                         (struct rte_eth_ntuple_filter *)arg);
4118                 break;
4119         default:
4120                 PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
4121                 ret = -EINVAL;
4122                 break;
4123         }
4124         return ret;
4125 }
4126
4127 static inline int
4128 igb_ethertype_filter_lookup(struct e1000_filter_info *filter_info,
4129                         uint16_t ethertype)
4130 {
4131         int i;
4132
4133         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
4134                 if (filter_info->ethertype_filters[i] == ethertype &&
4135                     (filter_info->ethertype_mask & (1 << i)))
4136                         return i;
4137         }
4138         return -1;
4139 }
4140
4141 static inline int
4142 igb_ethertype_filter_insert(struct e1000_filter_info *filter_info,
4143                         uint16_t ethertype)
4144 {
4145         int i;
4146
4147         for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
4148                 if (!(filter_info->ethertype_mask & (1 << i))) {
4149                         filter_info->ethertype_mask |= 1 << i;
4150                         filter_info->ethertype_filters[i] = ethertype;
4151                         return i;
4152                 }
4153         }
4154         return -1;
4155 }
4156
4157 static inline int
4158 igb_ethertype_filter_remove(struct e1000_filter_info *filter_info,
4159                         uint8_t idx)
4160 {
4161         if (idx >= E1000_MAX_ETQF_FILTERS)
4162                 return -1;
4163         filter_info->ethertype_mask &= ~(1 << idx);
4164         filter_info->ethertype_filters[idx] = 0;
4165         return idx;
4166 }
4167
4168
4169 static int
4170 igb_add_del_ethertype_filter(struct rte_eth_dev *dev,
4171                         struct rte_eth_ethertype_filter *filter,
4172                         bool add)
4173 {
4174         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4175         struct e1000_filter_info *filter_info =
4176                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4177         uint32_t etqf = 0;
4178         int ret;
4179
4180         if (filter->ether_type == ETHER_TYPE_IPv4 ||
4181                 filter->ether_type == ETHER_TYPE_IPv6) {
4182                 PMD_DRV_LOG(ERR, "unsupported ether_type(0x%04x) in"
4183                         " ethertype filter.", filter->ether_type);
4184                 return -EINVAL;
4185         }
4186
4187         if (filter->flags & RTE_ETHTYPE_FLAGS_MAC) {
4188                 PMD_DRV_LOG(ERR, "mac compare is unsupported.");
4189                 return -EINVAL;
4190         }
4191         if (filter->flags & RTE_ETHTYPE_FLAGS_DROP) {
4192                 PMD_DRV_LOG(ERR, "drop option is unsupported.");
4193                 return -EINVAL;
4194         }
4195
4196         ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
4197         if (ret >= 0 && add) {
4198                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter exists.",
4199                             filter->ether_type);
4200                 return -EEXIST;
4201         }
4202         if (ret < 0 && !add) {
4203                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
4204                             filter->ether_type);
4205                 return -ENOENT;
4206         }
4207
4208         if (add) {
4209                 ret = igb_ethertype_filter_insert(filter_info,
4210                         filter->ether_type);
4211                 if (ret < 0) {
4212                         PMD_DRV_LOG(ERR, "ethertype filters are full.");
4213                         return -ENOSYS;
4214                 }
4215
4216                 etqf |= E1000_ETQF_FILTER_ENABLE | E1000_ETQF_QUEUE_ENABLE;
4217                 etqf |= (uint32_t)(filter->ether_type & E1000_ETQF_ETHERTYPE);
4218                 etqf |= filter->queue << E1000_ETQF_QUEUE_SHIFT;
4219         } else {
4220                 ret = igb_ethertype_filter_remove(filter_info, (uint8_t)ret);
4221                 if (ret < 0)
4222                         return -ENOSYS;
4223         }
4224         E1000_WRITE_REG(hw, E1000_ETQF(ret), etqf);
4225         E1000_WRITE_FLUSH(hw);
4226
4227         return 0;
4228 }
4229
4230 static int
4231 igb_get_ethertype_filter(struct rte_eth_dev *dev,
4232                         struct rte_eth_ethertype_filter *filter)
4233 {
4234         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4235         struct e1000_filter_info *filter_info =
4236                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4237         uint32_t etqf;
4238         int ret;
4239
4240         ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
4241         if (ret < 0) {
4242                 PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
4243                             filter->ether_type);
4244                 return -ENOENT;
4245         }
4246
4247         etqf = E1000_READ_REG(hw, E1000_ETQF(ret));
4248         if (etqf & E1000_ETQF_FILTER_ENABLE) {
4249                 filter->ether_type = etqf & E1000_ETQF_ETHERTYPE;
4250                 filter->flags = 0;
4251                 filter->queue = (etqf & E1000_ETQF_QUEUE) >>
4252                                 E1000_ETQF_QUEUE_SHIFT;
4253                 return 0;
4254         }
4255
4256         return -ENOENT;
4257 }
4258
4259 /*
4260  * igb_ethertype_filter_handle - Handle operations for ethertype filter.
4261  * @dev: pointer to rte_eth_dev structure
4262  * @filter_op:operation will be taken.
4263  * @arg: a pointer to specific structure corresponding to the filter_op
4264  */
4265 static int
4266 igb_ethertype_filter_handle(struct rte_eth_dev *dev,
4267                                 enum rte_filter_op filter_op,
4268                                 void *arg)
4269 {
4270         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4271         int ret;
4272
4273         MAC_TYPE_FILTER_SUP(hw->mac.type);
4274
4275         if (filter_op == RTE_ETH_FILTER_NOP)
4276                 return 0;
4277
4278         if (arg == NULL) {
4279                 PMD_DRV_LOG(ERR, "arg shouldn't be NULL for operation %u.",
4280                             filter_op);
4281                 return -EINVAL;
4282         }
4283
4284         switch (filter_op) {
4285         case RTE_ETH_FILTER_ADD:
4286                 ret = igb_add_del_ethertype_filter(dev,
4287                         (struct rte_eth_ethertype_filter *)arg,
4288                         TRUE);
4289                 break;
4290         case RTE_ETH_FILTER_DELETE:
4291                 ret = igb_add_del_ethertype_filter(dev,
4292                         (struct rte_eth_ethertype_filter *)arg,
4293                         FALSE);
4294                 break;
4295         case RTE_ETH_FILTER_GET:
4296                 ret = igb_get_ethertype_filter(dev,
4297                         (struct rte_eth_ethertype_filter *)arg);
4298                 break;
4299         default:
4300                 PMD_DRV_LOG(ERR, "unsupported operation %u.", filter_op);
4301                 ret = -EINVAL;
4302                 break;
4303         }
4304         return ret;
4305 }
4306
4307 static int
4308 eth_igb_filter_ctrl(struct rte_eth_dev *dev,
4309                      enum rte_filter_type filter_type,
4310                      enum rte_filter_op filter_op,
4311                      void *arg)
4312 {
4313         int ret = -EINVAL;
4314
4315         switch (filter_type) {
4316         case RTE_ETH_FILTER_NTUPLE:
4317                 ret = igb_ntuple_filter_handle(dev, filter_op, arg);
4318                 break;
4319         case RTE_ETH_FILTER_ETHERTYPE:
4320                 ret = igb_ethertype_filter_handle(dev, filter_op, arg);
4321                 break;
4322         case RTE_ETH_FILTER_SYN:
4323                 ret = eth_igb_syn_filter_handle(dev, filter_op, arg);
4324                 break;
4325         case RTE_ETH_FILTER_FLEXIBLE:
4326                 ret = eth_igb_flex_filter_handle(dev, filter_op, arg);
4327                 break;
4328         default:
4329                 PMD_DRV_LOG(WARNING, "Filter type (%d) not supported",
4330                                                         filter_type);
4331                 break;
4332         }
4333
4334         return ret;
4335 }
4336
4337 static int
4338 eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
4339                          struct ether_addr *mc_addr_set,
4340                          uint32_t nb_mc_addr)
4341 {
4342         struct e1000_hw *hw;
4343
4344         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4345         e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
4346         return 0;
4347 }
4348
4349 static uint64_t
4350 igb_read_systime_cyclecounter(struct rte_eth_dev *dev)
4351 {
4352         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4353         uint64_t systime_cycles;
4354
4355         switch (hw->mac.type) {
4356         case e1000_i210:
4357         case e1000_i211:
4358                 /*
4359                  * Need to read System Time Residue Register to be able
4360                  * to read the other two registers.
4361                  */
4362                 E1000_READ_REG(hw, E1000_SYSTIMR);
4363                 /* SYSTIMEL stores ns and SYSTIMEH stores seconds. */
4364                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4365                 systime_cycles += (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
4366                                 * NSEC_PER_SEC;
4367                 break;
4368         case e1000_82580:
4369         case e1000_i350:
4370         case e1000_i354:
4371                 /*
4372                  * Need to read System Time Residue Register to be able
4373                  * to read the other two registers.
4374                  */
4375                 E1000_READ_REG(hw, E1000_SYSTIMR);
4376                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4377                 /* Only the 8 LSB are valid. */
4378                 systime_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_SYSTIMH)
4379                                 & 0xff) << 32;
4380                 break;
4381         default:
4382                 systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4383                 systime_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
4384                                 << 32;
4385                 break;
4386         }
4387
4388         return systime_cycles;
4389 }
4390
4391 static uint64_t
4392 igb_read_rx_tstamp_cyclecounter(struct rte_eth_dev *dev)
4393 {
4394         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4395         uint64_t rx_tstamp_cycles;
4396
4397         switch (hw->mac.type) {
4398         case e1000_i210:
4399         case e1000_i211:
4400                 /* RXSTMPL stores ns and RXSTMPH stores seconds. */
4401                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4402                 rx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
4403                                 * NSEC_PER_SEC;
4404                 break;
4405         case e1000_82580:
4406         case e1000_i350:
4407         case e1000_i354:
4408                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4409                 /* Only the 8 LSB are valid. */
4410                 rx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_RXSTMPH)
4411                                 & 0xff) << 32;
4412                 break;
4413         default:
4414                 rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4415                 rx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
4416                                 << 32;
4417                 break;
4418         }
4419
4420         return rx_tstamp_cycles;
4421 }
4422
4423 static uint64_t
4424 igb_read_tx_tstamp_cyclecounter(struct rte_eth_dev *dev)
4425 {
4426         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4427         uint64_t tx_tstamp_cycles;
4428
4429         switch (hw->mac.type) {
4430         case e1000_i210:
4431         case e1000_i211:
4432                 /* RXSTMPL stores ns and RXSTMPH stores seconds. */
4433                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
4434                 tx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
4435                                 * NSEC_PER_SEC;
4436                 break;
4437         case e1000_82580:
4438         case e1000_i350:
4439         case e1000_i354:
4440                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
4441                 /* Only the 8 LSB are valid. */
4442                 tx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_TXSTMPH)
4443                                 & 0xff) << 32;
4444                 break;
4445         default:
4446                 tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
4447                 tx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
4448                                 << 32;
4449                 break;
4450         }
4451
4452         return tx_tstamp_cycles;
4453 }
4454
4455 static void
4456 igb_start_timecounters(struct rte_eth_dev *dev)
4457 {
4458         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4459         struct e1000_adapter *adapter =
4460                 (struct e1000_adapter *)dev->data->dev_private;
4461         uint32_t incval = 1;
4462         uint32_t shift = 0;
4463         uint64_t mask = E1000_CYCLECOUNTER_MASK;
4464
4465         switch (hw->mac.type) {
4466         case e1000_82580:
4467         case e1000_i350:
4468         case e1000_i354:
4469                 /* 32 LSB bits + 8 MSB bits = 40 bits */
4470                 mask = (1ULL << 40) - 1;
4471                 /* fall-through */
4472         case e1000_i210:
4473         case e1000_i211:
4474                 /*
4475                  * Start incrementing the register
4476                  * used to timestamp PTP packets.
4477                  */
4478                 E1000_WRITE_REG(hw, E1000_TIMINCA, incval);
4479                 break;
4480         case e1000_82576:
4481                 incval = E1000_INCVALUE_82576;
4482                 shift = IGB_82576_TSYNC_SHIFT;
4483                 E1000_WRITE_REG(hw, E1000_TIMINCA,
4484                                 E1000_INCPERIOD_82576 | incval);
4485                 break;
4486         default:
4487                 /* Not supported */
4488                 return;
4489         }
4490
4491         memset(&adapter->systime_tc, 0, sizeof(struct rte_timecounter));
4492         memset(&adapter->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
4493         memset(&adapter->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
4494
4495         adapter->systime_tc.cc_mask = mask;
4496         adapter->systime_tc.cc_shift = shift;
4497         adapter->systime_tc.nsec_mask = (1ULL << shift) - 1;
4498
4499         adapter->rx_tstamp_tc.cc_mask = mask;
4500         adapter->rx_tstamp_tc.cc_shift = shift;
4501         adapter->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
4502
4503         adapter->tx_tstamp_tc.cc_mask = mask;
4504         adapter->tx_tstamp_tc.cc_shift = shift;
4505         adapter->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
4506 }
4507
4508 static int
4509 igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
4510 {
4511         struct e1000_adapter *adapter =
4512                         (struct e1000_adapter *)dev->data->dev_private;
4513
4514         adapter->systime_tc.nsec += delta;
4515         adapter->rx_tstamp_tc.nsec += delta;
4516         adapter->tx_tstamp_tc.nsec += delta;
4517
4518         return 0;
4519 }
4520
4521 static int
4522 igb_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
4523 {
4524         uint64_t ns;
4525         struct e1000_adapter *adapter =
4526                         (struct e1000_adapter *)dev->data->dev_private;
4527
4528         ns = rte_timespec_to_ns(ts);
4529
4530         /* Set the timecounters to a new value. */
4531         adapter->systime_tc.nsec = ns;
4532         adapter->rx_tstamp_tc.nsec = ns;
4533         adapter->tx_tstamp_tc.nsec = ns;
4534
4535         return 0;
4536 }
4537
4538 static int
4539 igb_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
4540 {
4541         uint64_t ns, systime_cycles;
4542         struct e1000_adapter *adapter =
4543                         (struct e1000_adapter *)dev->data->dev_private;
4544
4545         systime_cycles = igb_read_systime_cyclecounter(dev);
4546         ns = rte_timecounter_update(&adapter->systime_tc, systime_cycles);
4547         *ts = rte_ns_to_timespec(ns);
4548
4549         return 0;
4550 }
4551
4552 static int
4553 igb_timesync_enable(struct rte_eth_dev *dev)
4554 {
4555         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4556         uint32_t tsync_ctl;
4557         uint32_t tsauxc;
4558
4559         /* Stop the timesync system time. */
4560         E1000_WRITE_REG(hw, E1000_TIMINCA, 0x0);
4561         /* Reset the timesync system time value. */
4562         switch (hw->mac.type) {
4563         case e1000_82580:
4564         case e1000_i350:
4565         case e1000_i354:
4566         case e1000_i210:
4567         case e1000_i211:
4568                 E1000_WRITE_REG(hw, E1000_SYSTIMR, 0x0);
4569                 /* fall-through */
4570         case e1000_82576:
4571                 E1000_WRITE_REG(hw, E1000_SYSTIML, 0x0);
4572                 E1000_WRITE_REG(hw, E1000_SYSTIMH, 0x0);
4573                 break;
4574         default:
4575                 /* Not supported. */
4576                 return -ENOTSUP;
4577         }
4578
4579         /* Enable system time for it isn't on by default. */
4580         tsauxc = E1000_READ_REG(hw, E1000_TSAUXC);
4581         tsauxc &= ~E1000_TSAUXC_DISABLE_SYSTIME;
4582         E1000_WRITE_REG(hw, E1000_TSAUXC, tsauxc);
4583
4584         igb_start_timecounters(dev);
4585
4586         /* Enable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
4587         E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588),
4588                         (ETHER_TYPE_1588 |
4589                          E1000_ETQF_FILTER_ENABLE |
4590                          E1000_ETQF_1588));
4591
4592         /* Enable timestamping of received PTP packets. */
4593         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
4594         tsync_ctl |= E1000_TSYNCRXCTL_ENABLED;
4595         E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
4596
4597         /* Enable Timestamping of transmitted PTP packets. */
4598         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
4599         tsync_ctl |= E1000_TSYNCTXCTL_ENABLED;
4600         E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
4601
4602         return 0;
4603 }
4604
4605 static int
4606 igb_timesync_disable(struct rte_eth_dev *dev)
4607 {
4608         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4609         uint32_t tsync_ctl;
4610
4611         /* Disable timestamping of transmitted PTP packets. */
4612         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
4613         tsync_ctl &= ~E1000_TSYNCTXCTL_ENABLED;
4614         E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
4615
4616         /* Disable timestamping of received PTP packets. */
4617         tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
4618         tsync_ctl &= ~E1000_TSYNCRXCTL_ENABLED;
4619         E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
4620
4621         /* Disable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
4622         E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588), 0);
4623
4624         /* Stop incrementating the System Time registers. */
4625         E1000_WRITE_REG(hw, E1000_TIMINCA, 0);
4626
4627         return 0;
4628 }
4629
4630 static int
4631 igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
4632                                struct timespec *timestamp,
4633                                uint32_t flags __rte_unused)
4634 {
4635         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4636         struct e1000_adapter *adapter =
4637                         (struct e1000_adapter *)dev->data->dev_private;
4638         uint32_t tsync_rxctl;
4639         uint64_t rx_tstamp_cycles;
4640         uint64_t ns;
4641
4642         tsync_rxctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
4643         if ((tsync_rxctl & E1000_TSYNCRXCTL_VALID) == 0)
4644                 return -EINVAL;
4645
4646         rx_tstamp_cycles = igb_read_rx_tstamp_cyclecounter(dev);
4647         ns = rte_timecounter_update(&adapter->rx_tstamp_tc, rx_tstamp_cycles);
4648         *timestamp = rte_ns_to_timespec(ns);
4649
4650         return  0;
4651 }
4652
4653 static int
4654 igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
4655                                struct timespec *timestamp)
4656 {
4657         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4658         struct e1000_adapter *adapter =
4659                         (struct e1000_adapter *)dev->data->dev_private;
4660         uint32_t tsync_txctl;
4661         uint64_t tx_tstamp_cycles;
4662         uint64_t ns;
4663
4664         tsync_txctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
4665         if ((tsync_txctl & E1000_TSYNCTXCTL_VALID) == 0)
4666                 return -EINVAL;
4667
4668         tx_tstamp_cycles = igb_read_tx_tstamp_cyclecounter(dev);
4669         ns = rte_timecounter_update(&adapter->tx_tstamp_tc, tx_tstamp_cycles);
4670         *timestamp = rte_ns_to_timespec(ns);
4671
4672         return  0;
4673 }
4674
4675 static int
4676 eth_igb_get_reg_length(struct rte_eth_dev *dev __rte_unused)
4677 {
4678         int count = 0;
4679         int g_ind = 0;
4680         const struct reg_info *reg_group;
4681
4682         while ((reg_group = igb_regs[g_ind++]))
4683                 count += igb_reg_group_count(reg_group);
4684
4685         return count;
4686 }
4687
4688 static int
4689 igbvf_get_reg_length(struct rte_eth_dev *dev __rte_unused)
4690 {
4691         int count = 0;
4692         int g_ind = 0;
4693         const struct reg_info *reg_group;
4694
4695         while ((reg_group = igbvf_regs[g_ind++]))
4696                 count += igb_reg_group_count(reg_group);
4697
4698         return count;
4699 }
4700
4701 static int
4702 eth_igb_get_regs(struct rte_eth_dev *dev,
4703         struct rte_dev_reg_info *regs)
4704 {
4705         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4706         uint32_t *data = regs->data;
4707         int g_ind = 0;
4708         int count = 0;
4709         const struct reg_info *reg_group;
4710
4711         /* Support only full register dump */
4712         if ((regs->length == 0) ||
4713             (regs->length == (uint32_t)eth_igb_get_reg_length(dev))) {
4714                 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
4715                         hw->device_id;
4716                 while ((reg_group = igb_regs[g_ind++]))
4717                         count += igb_read_regs_group(dev, &data[count],
4718                                                         reg_group);
4719                 return 0;
4720         }
4721
4722         return -ENOTSUP;
4723 }
4724
4725 static int
4726 igbvf_get_regs(struct rte_eth_dev *dev,
4727         struct rte_dev_reg_info *regs)
4728 {
4729         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4730         uint32_t *data = regs->data;
4731         int g_ind = 0;
4732         int count = 0;
4733         const struct reg_info *reg_group;
4734
4735         /* Support only full register dump */
4736         if ((regs->length == 0) ||
4737             (regs->length == (uint32_t)igbvf_get_reg_length(dev))) {
4738                 regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
4739                         hw->device_id;
4740                 while ((reg_group = igbvf_regs[g_ind++]))
4741                         count += igb_read_regs_group(dev, &data[count],
4742                                                         reg_group);
4743                 return 0;
4744         }
4745
4746         return -ENOTSUP;
4747 }
4748
4749 static int
4750 eth_igb_get_eeprom_length(struct rte_eth_dev *dev)
4751 {
4752         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4753
4754         /* Return unit is byte count */
4755         return hw->nvm.word_size * 2;
4756 }
4757
4758 static int
4759 eth_igb_get_eeprom(struct rte_eth_dev *dev,
4760         struct rte_dev_eeprom_info *in_eeprom)
4761 {
4762         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4763         struct e1000_nvm_info *nvm = &hw->nvm;
4764         uint16_t *data = in_eeprom->data;
4765         int first, length;
4766
4767         first = in_eeprom->offset >> 1;
4768         length = in_eeprom->length >> 1;
4769         if ((first >= hw->nvm.word_size) ||
4770             ((first + length) >= hw->nvm.word_size))
4771                 return -EINVAL;
4772
4773         in_eeprom->magic = hw->vendor_id |
4774                 ((uint32_t)hw->device_id << 16);
4775
4776         if ((nvm->ops.read) == NULL)
4777                 return -ENOTSUP;
4778
4779         return nvm->ops.read(hw, first, length, data);
4780 }
4781
4782 static int
4783 eth_igb_set_eeprom(struct rte_eth_dev *dev,
4784         struct rte_dev_eeprom_info *in_eeprom)
4785 {
4786         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4787         struct e1000_nvm_info *nvm = &hw->nvm;
4788         uint16_t *data = in_eeprom->data;
4789         int first, length;
4790
4791         first = in_eeprom->offset >> 1;
4792         length = in_eeprom->length >> 1;
4793         if ((first >= hw->nvm.word_size) ||
4794             ((first + length) >= hw->nvm.word_size))
4795                 return -EINVAL;
4796
4797         in_eeprom->magic = (uint32_t)hw->vendor_id |
4798                 ((uint32_t)hw->device_id << 16);
4799
4800         if ((nvm->ops.write) == NULL)
4801                 return -ENOTSUP;
4802         return nvm->ops.write(hw,  first, length, data);
4803 }
4804
4805 static struct rte_driver pmd_igb_drv = {
4806         .type = PMD_PDEV,
4807         .init = rte_igb_pmd_init,
4808 };
4809
4810 static struct rte_driver pmd_igbvf_drv = {
4811         .type = PMD_PDEV,
4812         .init = rte_igbvf_pmd_init,
4813 };
4814
4815 static int
4816 eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
4817 {
4818         struct e1000_hw *hw =
4819                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4820         uint32_t mask = 1 << queue_id;
4821
4822         E1000_WRITE_REG(hw, E1000_EIMC, mask);
4823         E1000_WRITE_FLUSH(hw);
4824
4825         return 0;
4826 }
4827
4828 static int
4829 eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
4830 {
4831         struct e1000_hw *hw =
4832                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4833         uint32_t mask = 1 << queue_id;
4834         uint32_t regval;
4835
4836         regval = E1000_READ_REG(hw, E1000_EIMS);
4837         E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
4838         E1000_WRITE_FLUSH(hw);
4839
4840         rte_intr_enable(&dev->pci_dev->intr_handle);
4841
4842         return 0;
4843 }
4844
4845 static void
4846 eth_igb_write_ivar(struct e1000_hw *hw, uint8_t  msix_vector,
4847                    uint8_t index, uint8_t offset)
4848 {
4849         uint32_t val = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
4850
4851         /* clear bits */
4852         val &= ~((uint32_t)0xFF << offset);
4853
4854         /* write vector and valid bit */
4855         val |= (msix_vector | E1000_IVAR_VALID) << offset;
4856
4857         E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, val);
4858 }
4859
4860 static void
4861 eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
4862                            uint8_t queue, uint8_t msix_vector)
4863 {
4864         uint32_t tmp = 0;
4865
4866         if (hw->mac.type == e1000_82575) {
4867                 if (direction == 0)
4868                         tmp = E1000_EICR_RX_QUEUE0 << queue;
4869                 else if (direction == 1)
4870                         tmp = E1000_EICR_TX_QUEUE0 << queue;
4871                 E1000_WRITE_REG(hw, E1000_MSIXBM(msix_vector), tmp);
4872         } else if (hw->mac.type == e1000_82576) {
4873                 if ((direction == 0) || (direction == 1))
4874                         eth_igb_write_ivar(hw, msix_vector, queue & 0x7,
4875                                            ((queue & 0x8) << 1) +
4876                                            8 * direction);
4877         } else if ((hw->mac.type == e1000_82580) ||
4878                         (hw->mac.type == e1000_i350) ||
4879                         (hw->mac.type == e1000_i354) ||
4880                         (hw->mac.type == e1000_i210) ||
4881                         (hw->mac.type == e1000_i211)) {
4882                 if ((direction == 0) || (direction == 1))
4883                         eth_igb_write_ivar(hw, msix_vector,
4884                                            queue >> 1,
4885                                            ((queue & 0x1) << 4) +
4886                                            8 * direction);
4887         }
4888 }
4889
4890 /* Sets up the hardware to generate MSI-X interrupts properly
4891  * @hw
4892  *  board private structure
4893  */
4894 static void
4895 eth_igb_configure_msix_intr(struct rte_eth_dev *dev)
4896 {
4897         int queue_id;
4898         uint32_t tmpval, regval, intr_mask;
4899         struct e1000_hw *hw =
4900                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4901         uint32_t vec = E1000_MISC_VEC_ID;
4902         uint32_t base = E1000_MISC_VEC_ID;
4903         uint32_t misc_shift = 0;
4904
4905         struct rte_intr_handle *intr_handle = &dev->pci_dev->intr_handle;
4906
4907         /* won't configure msix register if no mapping is done
4908          * between intr vector and event fd
4909          */
4910         if (!rte_intr_dp_is_en(intr_handle))
4911                 return;
4912
4913         if (rte_intr_allow_others(intr_handle)) {
4914                 vec = base = E1000_RX_VEC_START;
4915                 misc_shift = 1;
4916         }
4917
4918         /* set interrupt vector for other causes */
4919         if (hw->mac.type == e1000_82575) {
4920                 tmpval = E1000_READ_REG(hw, E1000_CTRL_EXT);
4921                 /* enable MSI-X PBA support */
4922                 tmpval |= E1000_CTRL_EXT_PBA_CLR;
4923
4924                 /* Auto-Mask interrupts upon ICR read */
4925                 tmpval |= E1000_CTRL_EXT_EIAME;
4926                 tmpval |= E1000_CTRL_EXT_IRCA;
4927
4928                 E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmpval);
4929
4930                 /* enable msix_other interrupt */
4931                 E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), 0, E1000_EIMS_OTHER);
4932                 regval = E1000_READ_REG(hw, E1000_EIAC);
4933                 E1000_WRITE_REG(hw, E1000_EIAC, regval | E1000_EIMS_OTHER);
4934                 regval = E1000_READ_REG(hw, E1000_EIAM);
4935                 E1000_WRITE_REG(hw, E1000_EIMS, regval | E1000_EIMS_OTHER);
4936         } else if ((hw->mac.type == e1000_82576) ||
4937                         (hw->mac.type == e1000_82580) ||
4938                         (hw->mac.type == e1000_i350) ||
4939                         (hw->mac.type == e1000_i354) ||
4940                         (hw->mac.type == e1000_i210) ||
4941                         (hw->mac.type == e1000_i211)) {
4942                 /* turn on MSI-X capability first */
4943                 E1000_WRITE_REG(hw, E1000_GPIE, E1000_GPIE_MSIX_MODE |
4944                                         E1000_GPIE_PBA | E1000_GPIE_EIAME |
4945                                         E1000_GPIE_NSICR);
4946                 intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
4947                         misc_shift;
4948                 regval = E1000_READ_REG(hw, E1000_EIAC);
4949                 E1000_WRITE_REG(hw, E1000_EIAC, regval | intr_mask);
4950
4951                 /* enable msix_other interrupt */
4952                 regval = E1000_READ_REG(hw, E1000_EIMS);
4953                 E1000_WRITE_REG(hw, E1000_EIMS, regval | intr_mask);
4954                 tmpval = (dev->data->nb_rx_queues | E1000_IVAR_VALID) << 8;
4955                 E1000_WRITE_REG(hw, E1000_IVAR_MISC, tmpval);
4956         }
4957
4958         /* use EIAM to auto-mask when MSI-X interrupt
4959          * is asserted, this saves a register write for every interrupt
4960          */
4961         intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
4962                 misc_shift;
4963         regval = E1000_READ_REG(hw, E1000_EIAM);
4964         E1000_WRITE_REG(hw, E1000_EIAM, regval | intr_mask);
4965
4966         for (queue_id = 0; queue_id < dev->data->nb_rx_queues; queue_id++) {
4967                 eth_igb_assign_msix_vector(hw, 0, queue_id, vec);
4968                 intr_handle->intr_vec[queue_id] = vec;
4969                 if (vec < base + intr_handle->nb_efd - 1)
4970                         vec++;
4971         }
4972
4973         E1000_WRITE_FLUSH(hw);
4974 }
4975
4976 PMD_REGISTER_DRIVER(pmd_igb_drv);
4977 PMD_REGISTER_DRIVER(pmd_igbvf_drv);