ethdev: new Rx/Tx offloads API
[dpdk.git] / drivers / net / e1000 / igb_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6
7 #include <stdio.h>
8 #include <stdlib.h>
9 #include <string.h>
10 #include <errno.h>
11 #include <stdint.h>
12 #include <stdarg.h>
13 #include <inttypes.h>
14
15 #include <rte_interrupts.h>
16 #include <rte_byteorder.h>
17 #include <rte_common.h>
18 #include <rte_log.h>
19 #include <rte_debug.h>
20 #include <rte_pci.h>
21 #include <rte_memory.h>
22 #include <rte_memcpy.h>
23 #include <rte_memzone.h>
24 #include <rte_launch.h>
25 #include <rte_eal.h>
26 #include <rte_per_lcore.h>
27 #include <rte_lcore.h>
28 #include <rte_atomic.h>
29 #include <rte_branch_prediction.h>
30 #include <rte_mempool.h>
31 #include <rte_malloc.h>
32 #include <rte_mbuf.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev_driver.h>
35 #include <rte_prefetch.h>
36 #include <rte_udp.h>
37 #include <rte_tcp.h>
38 #include <rte_sctp.h>
39 #include <rte_net.h>
40 #include <rte_string_fns.h>
41
42 #include "e1000_logs.h"
43 #include "base/e1000_api.h"
44 #include "e1000_ethdev.h"
45
46 #ifdef RTE_LIBRTE_IEEE1588
47 #define IGB_TX_IEEE1588_TMST PKT_TX_IEEE1588_TMST
48 #else
49 #define IGB_TX_IEEE1588_TMST 0
50 #endif
51 /* Bit Mask to indicate what bits required for building TX context */
52 #define IGB_TX_OFFLOAD_MASK (                    \
53                 PKT_TX_VLAN_PKT |                \
54                 PKT_TX_IP_CKSUM |                \
55                 PKT_TX_L4_MASK |                 \
56                 PKT_TX_TCP_SEG |                 \
57                 IGB_TX_IEEE1588_TMST)
58
59 #define IGB_TX_OFFLOAD_NOTSUP_MASK \
60                 (PKT_TX_OFFLOAD_MASK ^ IGB_TX_OFFLOAD_MASK)
61
62 /**
63  * Structure associated with each descriptor of the RX ring of a RX queue.
64  */
65 struct igb_rx_entry {
66         struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
67 };
68
69 /**
70  * Structure associated with each descriptor of the TX ring of a TX queue.
71  */
72 struct igb_tx_entry {
73         struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
74         uint16_t next_id; /**< Index of next descriptor in ring. */
75         uint16_t last_id; /**< Index of last scattered descriptor. */
76 };
77
78 /**
79  * rx queue flags
80  */
81 enum igb_rxq_flags {
82         IGB_RXQ_FLAG_LB_BSWAP_VLAN = 0x01,
83 };
84
85 /**
86  * Structure associated with each RX queue.
87  */
88 struct igb_rx_queue {
89         struct rte_mempool  *mb_pool;   /**< mbuf pool to populate RX ring. */
90         volatile union e1000_adv_rx_desc *rx_ring; /**< RX ring virtual address. */
91         uint64_t            rx_ring_phys_addr; /**< RX ring DMA address. */
92         volatile uint32_t   *rdt_reg_addr; /**< RDT register address. */
93         volatile uint32_t   *rdh_reg_addr; /**< RDH register address. */
94         struct igb_rx_entry *sw_ring;   /**< address of RX software ring. */
95         struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
96         struct rte_mbuf *pkt_last_seg;  /**< Last segment of current packet. */
97         uint16_t            nb_rx_desc; /**< number of RX descriptors. */
98         uint16_t            rx_tail;    /**< current value of RDT register. */
99         uint16_t            nb_rx_hold; /**< number of held free RX desc. */
100         uint16_t            rx_free_thresh; /**< max free RX desc to hold. */
101         uint16_t            queue_id;   /**< RX queue index. */
102         uint16_t            reg_idx;    /**< RX queue register index. */
103         uint16_t            port_id;    /**< Device port identifier. */
104         uint8_t             pthresh;    /**< Prefetch threshold register. */
105         uint8_t             hthresh;    /**< Host threshold register. */
106         uint8_t             wthresh;    /**< Write-back threshold register. */
107         uint8_t             crc_len;    /**< 0 if CRC stripped, 4 otherwise. */
108         uint8_t             drop_en;  /**< If not 0, set SRRCTL.Drop_En. */
109         uint32_t            flags;      /**< RX flags. */
110         uint64_t            offloads;   /**< offloads of DEV_RX_OFFLOAD_* */
111 };
112
113 /**
114  * Hardware context number
115  */
116 enum igb_advctx_num {
117         IGB_CTX_0    = 0, /**< CTX0    */
118         IGB_CTX_1    = 1, /**< CTX1    */
119         IGB_CTX_NUM  = 2, /**< CTX_NUM */
120 };
121
122 /** Offload features */
123 union igb_tx_offload {
124         uint64_t data;
125         struct {
126                 uint64_t l3_len:9; /**< L3 (IP) Header Length. */
127                 uint64_t l2_len:7; /**< L2 (MAC) Header Length. */
128                 uint64_t vlan_tci:16;  /**< VLAN Tag Control Identifier(CPU order). */
129                 uint64_t l4_len:8; /**< L4 (TCP/UDP) Header Length. */
130                 uint64_t tso_segsz:16; /**< TCP TSO segment size. */
131
132                 /* uint64_t unused:8; */
133         };
134 };
135
136 /*
137  * Compare mask for igb_tx_offload.data,
138  * should be in sync with igb_tx_offload layout.
139  * */
140 #define TX_MACIP_LEN_CMP_MASK   0x000000000000FFFFULL /**< L2L3 header mask. */
141 #define TX_VLAN_CMP_MASK                0x00000000FFFF0000ULL /**< Vlan mask. */
142 #define TX_TCP_LEN_CMP_MASK             0x000000FF00000000ULL /**< TCP header mask. */
143 #define TX_TSO_MSS_CMP_MASK             0x00FFFF0000000000ULL /**< TSO segsz mask. */
144 /** Mac + IP + TCP + Mss mask. */
145 #define TX_TSO_CMP_MASK \
146         (TX_MACIP_LEN_CMP_MASK | TX_TCP_LEN_CMP_MASK | TX_TSO_MSS_CMP_MASK)
147
148 /**
149  * Strucutre to check if new context need be built
150  */
151 struct igb_advctx_info {
152         uint64_t flags;           /**< ol_flags related to context build. */
153         /** tx offload: vlan, tso, l2-l3-l4 lengths. */
154         union igb_tx_offload tx_offload;
155         /** compare mask for tx offload. */
156         union igb_tx_offload tx_offload_mask;
157 };
158
159 /**
160  * Structure associated with each TX queue.
161  */
162 struct igb_tx_queue {
163         volatile union e1000_adv_tx_desc *tx_ring; /**< TX ring address */
164         uint64_t               tx_ring_phys_addr; /**< TX ring DMA address. */
165         struct igb_tx_entry    *sw_ring; /**< virtual address of SW ring. */
166         volatile uint32_t      *tdt_reg_addr; /**< Address of TDT register. */
167         uint32_t               txd_type;      /**< Device-specific TXD type */
168         uint16_t               nb_tx_desc;    /**< number of TX descriptors. */
169         uint16_t               tx_tail; /**< Current value of TDT register. */
170         uint16_t               tx_head;
171         /**< Index of first used TX descriptor. */
172         uint16_t               queue_id; /**< TX queue index. */
173         uint16_t               reg_idx;  /**< TX queue register index. */
174         uint16_t               port_id;  /**< Device port identifier. */
175         uint8_t                pthresh;  /**< Prefetch threshold register. */
176         uint8_t                hthresh;  /**< Host threshold register. */
177         uint8_t                wthresh;  /**< Write-back threshold register. */
178         uint32_t               ctx_curr;
179         /**< Current used hardware descriptor. */
180         uint32_t               ctx_start;
181         /**< Start context position for transmit queue. */
182         struct igb_advctx_info ctx_cache[IGB_CTX_NUM];
183         /**< Hardware context history.*/
184         uint64_t               offloads; /**< offloads of DEV_TX_OFFLOAD_* */
185 };
186
187 #if 1
188 #define RTE_PMD_USE_PREFETCH
189 #endif
190
191 #ifdef RTE_PMD_USE_PREFETCH
192 #define rte_igb_prefetch(p)     rte_prefetch0(p)
193 #else
194 #define rte_igb_prefetch(p)     do {} while(0)
195 #endif
196
197 #ifdef RTE_PMD_PACKET_PREFETCH
198 #define rte_packet_prefetch(p) rte_prefetch1(p)
199 #else
200 #define rte_packet_prefetch(p)  do {} while(0)
201 #endif
202
203 /*
204  * Macro for VMDq feature for 1 GbE NIC.
205  */
206 #define E1000_VMOLR_SIZE                        (8)
207 #define IGB_TSO_MAX_HDRLEN                      (512)
208 #define IGB_TSO_MAX_MSS                         (9216)
209
210 /*********************************************************************
211  *
212  *  TX function
213  *
214  **********************************************************************/
215
216 /*
217  *There're some limitations in hardware for TCP segmentation offload. We
218  *should check whether the parameters are valid.
219  */
220 static inline uint64_t
221 check_tso_para(uint64_t ol_req, union igb_tx_offload ol_para)
222 {
223         if (!(ol_req & PKT_TX_TCP_SEG))
224                 return ol_req;
225         if ((ol_para.tso_segsz > IGB_TSO_MAX_MSS) || (ol_para.l2_len +
226                         ol_para.l3_len + ol_para.l4_len > IGB_TSO_MAX_HDRLEN)) {
227                 ol_req &= ~PKT_TX_TCP_SEG;
228                 ol_req |= PKT_TX_TCP_CKSUM;
229         }
230         return ol_req;
231 }
232
233 /*
234  * Advanced context descriptor are almost same between igb/ixgbe
235  * This is a separate function, looking for optimization opportunity here
236  * Rework required to go with the pre-defined values.
237  */
238
239 static inline void
240 igbe_set_xmit_ctx(struct igb_tx_queue* txq,
241                 volatile struct e1000_adv_tx_context_desc *ctx_txd,
242                 uint64_t ol_flags, union igb_tx_offload tx_offload)
243 {
244         uint32_t type_tucmd_mlhl;
245         uint32_t mss_l4len_idx;
246         uint32_t ctx_idx, ctx_curr;
247         uint32_t vlan_macip_lens;
248         union igb_tx_offload tx_offload_mask;
249
250         ctx_curr = txq->ctx_curr;
251         ctx_idx = ctx_curr + txq->ctx_start;
252
253         tx_offload_mask.data = 0;
254         type_tucmd_mlhl = 0;
255
256         /* Specify which HW CTX to upload. */
257         mss_l4len_idx = (ctx_idx << E1000_ADVTXD_IDX_SHIFT);
258
259         if (ol_flags & PKT_TX_VLAN_PKT)
260                 tx_offload_mask.data |= TX_VLAN_CMP_MASK;
261
262         /* check if TCP segmentation required for this packet */
263         if (ol_flags & PKT_TX_TCP_SEG) {
264                 /* implies IP cksum in IPv4 */
265                 if (ol_flags & PKT_TX_IP_CKSUM)
266                         type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4 |
267                                 E1000_ADVTXD_TUCMD_L4T_TCP |
268                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
269                 else
270                         type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV6 |
271                                 E1000_ADVTXD_TUCMD_L4T_TCP |
272                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
273
274                 tx_offload_mask.data |= TX_TSO_CMP_MASK;
275                 mss_l4len_idx |= tx_offload.tso_segsz << E1000_ADVTXD_MSS_SHIFT;
276                 mss_l4len_idx |= tx_offload.l4_len << E1000_ADVTXD_L4LEN_SHIFT;
277         } else { /* no TSO, check if hardware checksum is needed */
278                 if (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK))
279                         tx_offload_mask.data |= TX_MACIP_LEN_CMP_MASK;
280
281                 if (ol_flags & PKT_TX_IP_CKSUM)
282                         type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4;
283
284                 switch (ol_flags & PKT_TX_L4_MASK) {
285                 case PKT_TX_UDP_CKSUM:
286                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP |
287                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
288                         mss_l4len_idx |= sizeof(struct udp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
289                         break;
290                 case PKT_TX_TCP_CKSUM:
291                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP |
292                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
293                         mss_l4len_idx |= sizeof(struct tcp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
294                         break;
295                 case PKT_TX_SCTP_CKSUM:
296                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP |
297                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
298                         mss_l4len_idx |= sizeof(struct sctp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
299                         break;
300                 default:
301                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_RSV |
302                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
303                         break;
304                 }
305         }
306
307         txq->ctx_cache[ctx_curr].flags = ol_flags;
308         txq->ctx_cache[ctx_curr].tx_offload.data =
309                 tx_offload_mask.data & tx_offload.data;
310         txq->ctx_cache[ctx_curr].tx_offload_mask = tx_offload_mask;
311
312         ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
313         vlan_macip_lens = (uint32_t)tx_offload.data;
314         ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
315         ctx_txd->mss_l4len_idx = rte_cpu_to_le_32(mss_l4len_idx);
316         ctx_txd->seqnum_seed = 0;
317 }
318
319 /*
320  * Check which hardware context can be used. Use the existing match
321  * or create a new context descriptor.
322  */
323 static inline uint32_t
324 what_advctx_update(struct igb_tx_queue *txq, uint64_t flags,
325                 union igb_tx_offload tx_offload)
326 {
327         /* If match with the current context */
328         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
329                 (txq->ctx_cache[txq->ctx_curr].tx_offload.data ==
330                 (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data & tx_offload.data)))) {
331                         return txq->ctx_curr;
332         }
333
334         /* If match with the second context */
335         txq->ctx_curr ^= 1;
336         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
337                 (txq->ctx_cache[txq->ctx_curr].tx_offload.data ==
338                 (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data & tx_offload.data)))) {
339                         return txq->ctx_curr;
340         }
341
342         /* Mismatch, use the previous context */
343         return IGB_CTX_NUM;
344 }
345
346 static inline uint32_t
347 tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
348 {
349         static const uint32_t l4_olinfo[2] = {0, E1000_ADVTXD_POPTS_TXSM};
350         static const uint32_t l3_olinfo[2] = {0, E1000_ADVTXD_POPTS_IXSM};
351         uint32_t tmp;
352
353         tmp  = l4_olinfo[(ol_flags & PKT_TX_L4_MASK)  != PKT_TX_L4_NO_CKSUM];
354         tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
355         tmp |= l4_olinfo[(ol_flags & PKT_TX_TCP_SEG) != 0];
356         return tmp;
357 }
358
359 static inline uint32_t
360 tx_desc_vlan_flags_to_cmdtype(uint64_t ol_flags)
361 {
362         uint32_t cmdtype;
363         static uint32_t vlan_cmd[2] = {0, E1000_ADVTXD_DCMD_VLE};
364         static uint32_t tso_cmd[2] = {0, E1000_ADVTXD_DCMD_TSE};
365         cmdtype = vlan_cmd[(ol_flags & PKT_TX_VLAN_PKT) != 0];
366         cmdtype |= tso_cmd[(ol_flags & PKT_TX_TCP_SEG) != 0];
367         return cmdtype;
368 }
369
370 uint16_t
371 eth_igb_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
372                uint16_t nb_pkts)
373 {
374         struct igb_tx_queue *txq;
375         struct igb_tx_entry *sw_ring;
376         struct igb_tx_entry *txe, *txn;
377         volatile union e1000_adv_tx_desc *txr;
378         volatile union e1000_adv_tx_desc *txd;
379         struct rte_mbuf     *tx_pkt;
380         struct rte_mbuf     *m_seg;
381         uint64_t buf_dma_addr;
382         uint32_t olinfo_status;
383         uint32_t cmd_type_len;
384         uint32_t pkt_len;
385         uint16_t slen;
386         uint64_t ol_flags;
387         uint16_t tx_end;
388         uint16_t tx_id;
389         uint16_t tx_last;
390         uint16_t nb_tx;
391         uint64_t tx_ol_req;
392         uint32_t new_ctx = 0;
393         uint32_t ctx = 0;
394         union igb_tx_offload tx_offload = {0};
395
396         txq = tx_queue;
397         sw_ring = txq->sw_ring;
398         txr     = txq->tx_ring;
399         tx_id   = txq->tx_tail;
400         txe = &sw_ring[tx_id];
401
402         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
403                 tx_pkt = *tx_pkts++;
404                 pkt_len = tx_pkt->pkt_len;
405
406                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
407
408                 /*
409                  * The number of descriptors that must be allocated for a
410                  * packet is the number of segments of that packet, plus 1
411                  * Context Descriptor for the VLAN Tag Identifier, if any.
412                  * Determine the last TX descriptor to allocate in the TX ring
413                  * for the packet, starting from the current position (tx_id)
414                  * in the ring.
415                  */
416                 tx_last = (uint16_t) (tx_id + tx_pkt->nb_segs - 1);
417
418                 ol_flags = tx_pkt->ol_flags;
419                 tx_ol_req = ol_flags & IGB_TX_OFFLOAD_MASK;
420
421                 /* If a Context Descriptor need be built . */
422                 if (tx_ol_req) {
423                         tx_offload.l2_len = tx_pkt->l2_len;
424                         tx_offload.l3_len = tx_pkt->l3_len;
425                         tx_offload.l4_len = tx_pkt->l4_len;
426                         tx_offload.vlan_tci = tx_pkt->vlan_tci;
427                         tx_offload.tso_segsz = tx_pkt->tso_segsz;
428                         tx_ol_req = check_tso_para(tx_ol_req, tx_offload);
429
430                         ctx = what_advctx_update(txq, tx_ol_req, tx_offload);
431                         /* Only allocate context descriptor if required*/
432                         new_ctx = (ctx == IGB_CTX_NUM);
433                         ctx = txq->ctx_curr + txq->ctx_start;
434                         tx_last = (uint16_t) (tx_last + new_ctx);
435                 }
436                 if (tx_last >= txq->nb_tx_desc)
437                         tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
438
439                 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
440                            " tx_first=%u tx_last=%u",
441                            (unsigned) txq->port_id,
442                            (unsigned) txq->queue_id,
443                            (unsigned) pkt_len,
444                            (unsigned) tx_id,
445                            (unsigned) tx_last);
446
447                 /*
448                  * Check if there are enough free descriptors in the TX ring
449                  * to transmit the next packet.
450                  * This operation is based on the two following rules:
451                  *
452                  *   1- Only check that the last needed TX descriptor can be
453                  *      allocated (by construction, if that descriptor is free,
454                  *      all intermediate ones are also free).
455                  *
456                  *      For this purpose, the index of the last TX descriptor
457                  *      used for a packet (the "last descriptor" of a packet)
458                  *      is recorded in the TX entries (the last one included)
459                  *      that are associated with all TX descriptors allocated
460                  *      for that packet.
461                  *
462                  *   2- Avoid to allocate the last free TX descriptor of the
463                  *      ring, in order to never set the TDT register with the
464                  *      same value stored in parallel by the NIC in the TDH
465                  *      register, which makes the TX engine of the NIC enter
466                  *      in a deadlock situation.
467                  *
468                  *      By extension, avoid to allocate a free descriptor that
469                  *      belongs to the last set of free descriptors allocated
470                  *      to the same packet previously transmitted.
471                  */
472
473                 /*
474                  * The "last descriptor" of the previously sent packet, if any,
475                  * which used the last descriptor to allocate.
476                  */
477                 tx_end = sw_ring[tx_last].last_id;
478
479                 /*
480                  * The next descriptor following that "last descriptor" in the
481                  * ring.
482                  */
483                 tx_end = sw_ring[tx_end].next_id;
484
485                 /*
486                  * The "last descriptor" associated with that next descriptor.
487                  */
488                 tx_end = sw_ring[tx_end].last_id;
489
490                 /*
491                  * Check that this descriptor is free.
492                  */
493                 if (! (txr[tx_end].wb.status & E1000_TXD_STAT_DD)) {
494                         if (nb_tx == 0)
495                                 return 0;
496                         goto end_of_tx;
497                 }
498
499                 /*
500                  * Set common flags of all TX Data Descriptors.
501                  *
502                  * The following bits must be set in all Data Descriptors:
503                  *   - E1000_ADVTXD_DTYP_DATA
504                  *   - E1000_ADVTXD_DCMD_DEXT
505                  *
506                  * The following bits must be set in the first Data Descriptor
507                  * and are ignored in the other ones:
508                  *   - E1000_ADVTXD_DCMD_IFCS
509                  *   - E1000_ADVTXD_MAC_1588
510                  *   - E1000_ADVTXD_DCMD_VLE
511                  *
512                  * The following bits must only be set in the last Data
513                  * Descriptor:
514                  *   - E1000_TXD_CMD_EOP
515                  *
516                  * The following bits can be set in any Data Descriptor, but
517                  * are only set in the last Data Descriptor:
518                  *   - E1000_TXD_CMD_RS
519                  */
520                 cmd_type_len = txq->txd_type |
521                         E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
522                 if (tx_ol_req & PKT_TX_TCP_SEG)
523                         pkt_len -= (tx_pkt->l2_len + tx_pkt->l3_len + tx_pkt->l4_len);
524                 olinfo_status = (pkt_len << E1000_ADVTXD_PAYLEN_SHIFT);
525 #if defined(RTE_LIBRTE_IEEE1588)
526                 if (ol_flags & PKT_TX_IEEE1588_TMST)
527                         cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
528 #endif
529                 if (tx_ol_req) {
530                         /* Setup TX Advanced context descriptor if required */
531                         if (new_ctx) {
532                                 volatile struct e1000_adv_tx_context_desc *
533                                     ctx_txd;
534
535                                 ctx_txd = (volatile struct
536                                     e1000_adv_tx_context_desc *)
537                                     &txr[tx_id];
538
539                                 txn = &sw_ring[txe->next_id];
540                                 RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
541
542                                 if (txe->mbuf != NULL) {
543                                         rte_pktmbuf_free_seg(txe->mbuf);
544                                         txe->mbuf = NULL;
545                                 }
546
547                                 igbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req, tx_offload);
548
549                                 txe->last_id = tx_last;
550                                 tx_id = txe->next_id;
551                                 txe = txn;
552                         }
553
554                         /* Setup the TX Advanced Data Descriptor */
555                         cmd_type_len  |= tx_desc_vlan_flags_to_cmdtype(tx_ol_req);
556                         olinfo_status |= tx_desc_cksum_flags_to_olinfo(tx_ol_req);
557                         olinfo_status |= (ctx << E1000_ADVTXD_IDX_SHIFT);
558                 }
559
560                 m_seg = tx_pkt;
561                 do {
562                         txn = &sw_ring[txe->next_id];
563                         txd = &txr[tx_id];
564
565                         if (txe->mbuf != NULL)
566                                 rte_pktmbuf_free_seg(txe->mbuf);
567                         txe->mbuf = m_seg;
568
569                         /*
570                          * Set up transmit descriptor.
571                          */
572                         slen = (uint16_t) m_seg->data_len;
573                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
574                         txd->read.buffer_addr =
575                                 rte_cpu_to_le_64(buf_dma_addr);
576                         txd->read.cmd_type_len =
577                                 rte_cpu_to_le_32(cmd_type_len | slen);
578                         txd->read.olinfo_status =
579                                 rte_cpu_to_le_32(olinfo_status);
580                         txe->last_id = tx_last;
581                         tx_id = txe->next_id;
582                         txe = txn;
583                         m_seg = m_seg->next;
584                 } while (m_seg != NULL);
585
586                 /*
587                  * The last packet data descriptor needs End Of Packet (EOP)
588                  * and Report Status (RS).
589                  */
590                 txd->read.cmd_type_len |=
591                         rte_cpu_to_le_32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
592         }
593  end_of_tx:
594         rte_wmb();
595
596         /*
597          * Set the Transmit Descriptor Tail (TDT).
598          */
599         E1000_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, tx_id);
600         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
601                    (unsigned) txq->port_id, (unsigned) txq->queue_id,
602                    (unsigned) tx_id, (unsigned) nb_tx);
603         txq->tx_tail = tx_id;
604
605         return nb_tx;
606 }
607
608 /*********************************************************************
609  *
610  *  TX prep functions
611  *
612  **********************************************************************/
613 uint16_t
614 eth_igb_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
615                 uint16_t nb_pkts)
616 {
617         int i, ret;
618         struct rte_mbuf *m;
619
620         for (i = 0; i < nb_pkts; i++) {
621                 m = tx_pkts[i];
622
623                 /* Check some limitations for TSO in hardware */
624                 if (m->ol_flags & PKT_TX_TCP_SEG)
625                         if ((m->tso_segsz > IGB_TSO_MAX_MSS) ||
626                                         (m->l2_len + m->l3_len + m->l4_len >
627                                         IGB_TSO_MAX_HDRLEN)) {
628                                 rte_errno = -EINVAL;
629                                 return i;
630                         }
631
632                 if (m->ol_flags & IGB_TX_OFFLOAD_NOTSUP_MASK) {
633                         rte_errno = -ENOTSUP;
634                         return i;
635                 }
636
637 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
638                 ret = rte_validate_tx_offload(m);
639                 if (ret != 0) {
640                         rte_errno = ret;
641                         return i;
642                 }
643 #endif
644                 ret = rte_net_intel_cksum_prepare(m);
645                 if (ret != 0) {
646                         rte_errno = ret;
647                         return i;
648                 }
649         }
650
651         return i;
652 }
653
654 /*********************************************************************
655  *
656  *  RX functions
657  *
658  **********************************************************************/
659 #define IGB_PACKET_TYPE_IPV4              0X01
660 #define IGB_PACKET_TYPE_IPV4_TCP          0X11
661 #define IGB_PACKET_TYPE_IPV4_UDP          0X21
662 #define IGB_PACKET_TYPE_IPV4_SCTP         0X41
663 #define IGB_PACKET_TYPE_IPV4_EXT          0X03
664 #define IGB_PACKET_TYPE_IPV4_EXT_SCTP     0X43
665 #define IGB_PACKET_TYPE_IPV6              0X04
666 #define IGB_PACKET_TYPE_IPV6_TCP          0X14
667 #define IGB_PACKET_TYPE_IPV6_UDP          0X24
668 #define IGB_PACKET_TYPE_IPV6_EXT          0X0C
669 #define IGB_PACKET_TYPE_IPV6_EXT_TCP      0X1C
670 #define IGB_PACKET_TYPE_IPV6_EXT_UDP      0X2C
671 #define IGB_PACKET_TYPE_IPV4_IPV6         0X05
672 #define IGB_PACKET_TYPE_IPV4_IPV6_TCP     0X15
673 #define IGB_PACKET_TYPE_IPV4_IPV6_UDP     0X25
674 #define IGB_PACKET_TYPE_IPV4_IPV6_EXT     0X0D
675 #define IGB_PACKET_TYPE_IPV4_IPV6_EXT_TCP 0X1D
676 #define IGB_PACKET_TYPE_IPV4_IPV6_EXT_UDP 0X2D
677 #define IGB_PACKET_TYPE_MAX               0X80
678 #define IGB_PACKET_TYPE_MASK              0X7F
679 #define IGB_PACKET_TYPE_SHIFT             0X04
680 static inline uint32_t
681 igb_rxd_pkt_info_to_pkt_type(uint16_t pkt_info)
682 {
683         static const uint32_t
684                 ptype_table[IGB_PACKET_TYPE_MAX] __rte_cache_aligned = {
685                 [IGB_PACKET_TYPE_IPV4] = RTE_PTYPE_L2_ETHER |
686                         RTE_PTYPE_L3_IPV4,
687                 [IGB_PACKET_TYPE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
688                         RTE_PTYPE_L3_IPV4_EXT,
689                 [IGB_PACKET_TYPE_IPV6] = RTE_PTYPE_L2_ETHER |
690                         RTE_PTYPE_L3_IPV6,
691                 [IGB_PACKET_TYPE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
692                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
693                         RTE_PTYPE_INNER_L3_IPV6,
694                 [IGB_PACKET_TYPE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
695                         RTE_PTYPE_L3_IPV6_EXT,
696                 [IGB_PACKET_TYPE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
697                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
698                         RTE_PTYPE_INNER_L3_IPV6_EXT,
699                 [IGB_PACKET_TYPE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
700                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
701                 [IGB_PACKET_TYPE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
702                         RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
703                 [IGB_PACKET_TYPE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
704                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
705                         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
706                 [IGB_PACKET_TYPE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
707                         RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP,
708                 [IGB_PACKET_TYPE_IPV4_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
709                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
710                         RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
711                 [IGB_PACKET_TYPE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
712                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
713                 [IGB_PACKET_TYPE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
714                         RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
715                 [IGB_PACKET_TYPE_IPV4_IPV6_UDP] =  RTE_PTYPE_L2_ETHER |
716                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
717                         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
718                 [IGB_PACKET_TYPE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
719                         RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
720                 [IGB_PACKET_TYPE_IPV4_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
721                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
722                         RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
723                 [IGB_PACKET_TYPE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
724                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_SCTP,
725                 [IGB_PACKET_TYPE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
726                         RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_SCTP,
727         };
728         if (unlikely(pkt_info & E1000_RXDADV_PKTTYPE_ETQF))
729                 return RTE_PTYPE_UNKNOWN;
730
731         pkt_info = (pkt_info >> IGB_PACKET_TYPE_SHIFT) & IGB_PACKET_TYPE_MASK;
732
733         return ptype_table[pkt_info];
734 }
735
736 static inline uint64_t
737 rx_desc_hlen_type_rss_to_pkt_flags(struct igb_rx_queue *rxq, uint32_t hl_tp_rs)
738 {
739         uint64_t pkt_flags = ((hl_tp_rs & 0x0F) == 0) ?  0 : PKT_RX_RSS_HASH;
740
741 #if defined(RTE_LIBRTE_IEEE1588)
742         static uint32_t ip_pkt_etqf_map[8] = {
743                 0, 0, 0, PKT_RX_IEEE1588_PTP,
744                 0, 0, 0, 0,
745         };
746
747         struct rte_eth_dev dev = rte_eth_devices[rxq->port_id];
748         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev.data->dev_private);
749
750         /* EtherType is in bits 8:10 in Packet Type, and not in the default 0:2 */
751         if (hw->mac.type == e1000_i210)
752                 pkt_flags |= ip_pkt_etqf_map[(hl_tp_rs >> 12) & 0x07];
753         else
754                 pkt_flags |= ip_pkt_etqf_map[(hl_tp_rs >> 4) & 0x07];
755 #else
756         RTE_SET_USED(rxq);
757 #endif
758
759         return pkt_flags;
760 }
761
762 static inline uint64_t
763 rx_desc_status_to_pkt_flags(uint32_t rx_status)
764 {
765         uint64_t pkt_flags;
766
767         /* Check if VLAN present */
768         pkt_flags = ((rx_status & E1000_RXD_STAT_VP) ?
769                 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED : 0);
770
771 #if defined(RTE_LIBRTE_IEEE1588)
772         if (rx_status & E1000_RXD_STAT_TMST)
773                 pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST;
774 #endif
775         return pkt_flags;
776 }
777
778 static inline uint64_t
779 rx_desc_error_to_pkt_flags(uint32_t rx_status)
780 {
781         /*
782          * Bit 30: IPE, IPv4 checksum error
783          * Bit 29: L4I, L4I integrity error
784          */
785
786         static uint64_t error_to_pkt_flags_map[4] = {
787                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD,
788                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
789                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD,
790                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
791         };
792         return error_to_pkt_flags_map[(rx_status >>
793                 E1000_RXD_ERR_CKSUM_BIT) & E1000_RXD_ERR_CKSUM_MSK];
794 }
795
796 uint16_t
797 eth_igb_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
798                uint16_t nb_pkts)
799 {
800         struct igb_rx_queue *rxq;
801         volatile union e1000_adv_rx_desc *rx_ring;
802         volatile union e1000_adv_rx_desc *rxdp;
803         struct igb_rx_entry *sw_ring;
804         struct igb_rx_entry *rxe;
805         struct rte_mbuf *rxm;
806         struct rte_mbuf *nmb;
807         union e1000_adv_rx_desc rxd;
808         uint64_t dma_addr;
809         uint32_t staterr;
810         uint32_t hlen_type_rss;
811         uint16_t pkt_len;
812         uint16_t rx_id;
813         uint16_t nb_rx;
814         uint16_t nb_hold;
815         uint64_t pkt_flags;
816
817         nb_rx = 0;
818         nb_hold = 0;
819         rxq = rx_queue;
820         rx_id = rxq->rx_tail;
821         rx_ring = rxq->rx_ring;
822         sw_ring = rxq->sw_ring;
823         while (nb_rx < nb_pkts) {
824                 /*
825                  * The order of operations here is important as the DD status
826                  * bit must not be read after any other descriptor fields.
827                  * rx_ring and rxdp are pointing to volatile data so the order
828                  * of accesses cannot be reordered by the compiler. If they were
829                  * not volatile, they could be reordered which could lead to
830                  * using invalid descriptor fields when read from rxd.
831                  */
832                 rxdp = &rx_ring[rx_id];
833                 staterr = rxdp->wb.upper.status_error;
834                 if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
835                         break;
836                 rxd = *rxdp;
837
838                 /*
839                  * End of packet.
840                  *
841                  * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
842                  * likely to be invalid and to be dropped by the various
843                  * validation checks performed by the network stack.
844                  *
845                  * Allocate a new mbuf to replenish the RX ring descriptor.
846                  * If the allocation fails:
847                  *    - arrange for that RX descriptor to be the first one
848                  *      being parsed the next time the receive function is
849                  *      invoked [on the same queue].
850                  *
851                  *    - Stop parsing the RX ring and return immediately.
852                  *
853                  * This policy do not drop the packet received in the RX
854                  * descriptor for which the allocation of a new mbuf failed.
855                  * Thus, it allows that packet to be later retrieved if
856                  * mbuf have been freed in the mean time.
857                  * As a side effect, holding RX descriptors instead of
858                  * systematically giving them back to the NIC may lead to
859                  * RX ring exhaustion situations.
860                  * However, the NIC can gracefully prevent such situations
861                  * to happen by sending specific "back-pressure" flow control
862                  * frames to its peer(s).
863                  */
864                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
865                            "staterr=0x%x pkt_len=%u",
866                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
867                            (unsigned) rx_id, (unsigned) staterr,
868                            (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
869
870                 nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
871                 if (nmb == NULL) {
872                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
873                                    "queue_id=%u", (unsigned) rxq->port_id,
874                                    (unsigned) rxq->queue_id);
875                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
876                         break;
877                 }
878
879                 nb_hold++;
880                 rxe = &sw_ring[rx_id];
881                 rx_id++;
882                 if (rx_id == rxq->nb_rx_desc)
883                         rx_id = 0;
884
885                 /* Prefetch next mbuf while processing current one. */
886                 rte_igb_prefetch(sw_ring[rx_id].mbuf);
887
888                 /*
889                  * When next RX descriptor is on a cache-line boundary,
890                  * prefetch the next 4 RX descriptors and the next 8 pointers
891                  * to mbufs.
892                  */
893                 if ((rx_id & 0x3) == 0) {
894                         rte_igb_prefetch(&rx_ring[rx_id]);
895                         rte_igb_prefetch(&sw_ring[rx_id]);
896                 }
897
898                 rxm = rxe->mbuf;
899                 rxe->mbuf = nmb;
900                 dma_addr =
901                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
902                 rxdp->read.hdr_addr = 0;
903                 rxdp->read.pkt_addr = dma_addr;
904
905                 /*
906                  * Initialize the returned mbuf.
907                  * 1) setup generic mbuf fields:
908                  *    - number of segments,
909                  *    - next segment,
910                  *    - packet length,
911                  *    - RX port identifier.
912                  * 2) integrate hardware offload data, if any:
913                  *    - RSS flag & hash,
914                  *    - IP checksum flag,
915                  *    - VLAN TCI, if any,
916                  *    - error flags.
917                  */
918                 pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
919                                       rxq->crc_len);
920                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
921                 rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
922                 rxm->nb_segs = 1;
923                 rxm->next = NULL;
924                 rxm->pkt_len = pkt_len;
925                 rxm->data_len = pkt_len;
926                 rxm->port = rxq->port_id;
927
928                 rxm->hash.rss = rxd.wb.lower.hi_dword.rss;
929                 hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
930
931                 /*
932                  * The vlan_tci field is only valid when PKT_RX_VLAN is
933                  * set in the pkt_flags field and must be in CPU byte order.
934                  */
935                 if ((staterr & rte_cpu_to_le_32(E1000_RXDEXT_STATERR_LB)) &&
936                                 (rxq->flags & IGB_RXQ_FLAG_LB_BSWAP_VLAN)) {
937                         rxm->vlan_tci = rte_be_to_cpu_16(rxd.wb.upper.vlan);
938                 } else {
939                         rxm->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
940                 }
941                 pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(rxq, hlen_type_rss);
942                 pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
943                 pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
944                 rxm->ol_flags = pkt_flags;
945                 rxm->packet_type = igb_rxd_pkt_info_to_pkt_type(rxd.wb.lower.
946                                                 lo_dword.hs_rss.pkt_info);
947
948                 /*
949                  * Store the mbuf address into the next entry of the array
950                  * of returned packets.
951                  */
952                 rx_pkts[nb_rx++] = rxm;
953         }
954         rxq->rx_tail = rx_id;
955
956         /*
957          * If the number of free RX descriptors is greater than the RX free
958          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
959          * register.
960          * Update the RDT with the value of the last processed RX descriptor
961          * minus 1, to guarantee that the RDT register is never equal to the
962          * RDH register, which creates a "full" ring situtation from the
963          * hardware point of view...
964          */
965         nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
966         if (nb_hold > rxq->rx_free_thresh) {
967                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
968                            "nb_hold=%u nb_rx=%u",
969                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
970                            (unsigned) rx_id, (unsigned) nb_hold,
971                            (unsigned) nb_rx);
972                 rx_id = (uint16_t) ((rx_id == 0) ?
973                                      (rxq->nb_rx_desc - 1) : (rx_id - 1));
974                 E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
975                 nb_hold = 0;
976         }
977         rxq->nb_rx_hold = nb_hold;
978         return nb_rx;
979 }
980
981 uint16_t
982 eth_igb_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
983                          uint16_t nb_pkts)
984 {
985         struct igb_rx_queue *rxq;
986         volatile union e1000_adv_rx_desc *rx_ring;
987         volatile union e1000_adv_rx_desc *rxdp;
988         struct igb_rx_entry *sw_ring;
989         struct igb_rx_entry *rxe;
990         struct rte_mbuf *first_seg;
991         struct rte_mbuf *last_seg;
992         struct rte_mbuf *rxm;
993         struct rte_mbuf *nmb;
994         union e1000_adv_rx_desc rxd;
995         uint64_t dma; /* Physical address of mbuf data buffer */
996         uint32_t staterr;
997         uint32_t hlen_type_rss;
998         uint16_t rx_id;
999         uint16_t nb_rx;
1000         uint16_t nb_hold;
1001         uint16_t data_len;
1002         uint64_t pkt_flags;
1003
1004         nb_rx = 0;
1005         nb_hold = 0;
1006         rxq = rx_queue;
1007         rx_id = rxq->rx_tail;
1008         rx_ring = rxq->rx_ring;
1009         sw_ring = rxq->sw_ring;
1010
1011         /*
1012          * Retrieve RX context of current packet, if any.
1013          */
1014         first_seg = rxq->pkt_first_seg;
1015         last_seg = rxq->pkt_last_seg;
1016
1017         while (nb_rx < nb_pkts) {
1018         next_desc:
1019                 /*
1020                  * The order of operations here is important as the DD status
1021                  * bit must not be read after any other descriptor fields.
1022                  * rx_ring and rxdp are pointing to volatile data so the order
1023                  * of accesses cannot be reordered by the compiler. If they were
1024                  * not volatile, they could be reordered which could lead to
1025                  * using invalid descriptor fields when read from rxd.
1026                  */
1027                 rxdp = &rx_ring[rx_id];
1028                 staterr = rxdp->wb.upper.status_error;
1029                 if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
1030                         break;
1031                 rxd = *rxdp;
1032
1033                 /*
1034                  * Descriptor done.
1035                  *
1036                  * Allocate a new mbuf to replenish the RX ring descriptor.
1037                  * If the allocation fails:
1038                  *    - arrange for that RX descriptor to be the first one
1039                  *      being parsed the next time the receive function is
1040                  *      invoked [on the same queue].
1041                  *
1042                  *    - Stop parsing the RX ring and return immediately.
1043                  *
1044                  * This policy does not drop the packet received in the RX
1045                  * descriptor for which the allocation of a new mbuf failed.
1046                  * Thus, it allows that packet to be later retrieved if
1047                  * mbuf have been freed in the mean time.
1048                  * As a side effect, holding RX descriptors instead of
1049                  * systematically giving them back to the NIC may lead to
1050                  * RX ring exhaustion situations.
1051                  * However, the NIC can gracefully prevent such situations
1052                  * to happen by sending specific "back-pressure" flow control
1053                  * frames to its peer(s).
1054                  */
1055                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
1056                            "staterr=0x%x data_len=%u",
1057                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1058                            (unsigned) rx_id, (unsigned) staterr,
1059                            (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
1060
1061                 nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
1062                 if (nmb == NULL) {
1063                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1064                                    "queue_id=%u", (unsigned) rxq->port_id,
1065                                    (unsigned) rxq->queue_id);
1066                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
1067                         break;
1068                 }
1069
1070                 nb_hold++;
1071                 rxe = &sw_ring[rx_id];
1072                 rx_id++;
1073                 if (rx_id == rxq->nb_rx_desc)
1074                         rx_id = 0;
1075
1076                 /* Prefetch next mbuf while processing current one. */
1077                 rte_igb_prefetch(sw_ring[rx_id].mbuf);
1078
1079                 /*
1080                  * When next RX descriptor is on a cache-line boundary,
1081                  * prefetch the next 4 RX descriptors and the next 8 pointers
1082                  * to mbufs.
1083                  */
1084                 if ((rx_id & 0x3) == 0) {
1085                         rte_igb_prefetch(&rx_ring[rx_id]);
1086                         rte_igb_prefetch(&sw_ring[rx_id]);
1087                 }
1088
1089                 /*
1090                  * Update RX descriptor with the physical address of the new
1091                  * data buffer of the new allocated mbuf.
1092                  */
1093                 rxm = rxe->mbuf;
1094                 rxe->mbuf = nmb;
1095                 dma = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1096                 rxdp->read.pkt_addr = dma;
1097                 rxdp->read.hdr_addr = 0;
1098
1099                 /*
1100                  * Set data length & data buffer address of mbuf.
1101                  */
1102                 data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
1103                 rxm->data_len = data_len;
1104                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1105
1106                 /*
1107                  * If this is the first buffer of the received packet,
1108                  * set the pointer to the first mbuf of the packet and
1109                  * initialize its context.
1110                  * Otherwise, update the total length and the number of segments
1111                  * of the current scattered packet, and update the pointer to
1112                  * the last mbuf of the current packet.
1113                  */
1114                 if (first_seg == NULL) {
1115                         first_seg = rxm;
1116                         first_seg->pkt_len = data_len;
1117                         first_seg->nb_segs = 1;
1118                 } else {
1119                         first_seg->pkt_len += data_len;
1120                         first_seg->nb_segs++;
1121                         last_seg->next = rxm;
1122                 }
1123
1124                 /*
1125                  * If this is not the last buffer of the received packet,
1126                  * update the pointer to the last mbuf of the current scattered
1127                  * packet and continue to parse the RX ring.
1128                  */
1129                 if (! (staterr & E1000_RXD_STAT_EOP)) {
1130                         last_seg = rxm;
1131                         goto next_desc;
1132                 }
1133
1134                 /*
1135                  * This is the last buffer of the received packet.
1136                  * If the CRC is not stripped by the hardware:
1137                  *   - Subtract the CRC length from the total packet length.
1138                  *   - If the last buffer only contains the whole CRC or a part
1139                  *     of it, free the mbuf associated to the last buffer.
1140                  *     If part of the CRC is also contained in the previous
1141                  *     mbuf, subtract the length of that CRC part from the
1142                  *     data length of the previous mbuf.
1143                  */
1144                 rxm->next = NULL;
1145                 if (unlikely(rxq->crc_len > 0)) {
1146                         first_seg->pkt_len -= ETHER_CRC_LEN;
1147                         if (data_len <= ETHER_CRC_LEN) {
1148                                 rte_pktmbuf_free_seg(rxm);
1149                                 first_seg->nb_segs--;
1150                                 last_seg->data_len = (uint16_t)
1151                                         (last_seg->data_len -
1152                                          (ETHER_CRC_LEN - data_len));
1153                                 last_seg->next = NULL;
1154                         } else
1155                                 rxm->data_len =
1156                                         (uint16_t) (data_len - ETHER_CRC_LEN);
1157                 }
1158
1159                 /*
1160                  * Initialize the first mbuf of the returned packet:
1161                  *    - RX port identifier,
1162                  *    - hardware offload data, if any:
1163                  *      - RSS flag & hash,
1164                  *      - IP checksum flag,
1165                  *      - VLAN TCI, if any,
1166                  *      - error flags.
1167                  */
1168                 first_seg->port = rxq->port_id;
1169                 first_seg->hash.rss = rxd.wb.lower.hi_dword.rss;
1170
1171                 /*
1172                  * The vlan_tci field is only valid when PKT_RX_VLAN is
1173                  * set in the pkt_flags field and must be in CPU byte order.
1174                  */
1175                 if ((staterr & rte_cpu_to_le_32(E1000_RXDEXT_STATERR_LB)) &&
1176                                 (rxq->flags & IGB_RXQ_FLAG_LB_BSWAP_VLAN)) {
1177                         first_seg->vlan_tci =
1178                                 rte_be_to_cpu_16(rxd.wb.upper.vlan);
1179                 } else {
1180                         first_seg->vlan_tci =
1181                                 rte_le_to_cpu_16(rxd.wb.upper.vlan);
1182                 }
1183                 hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
1184                 pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(rxq, hlen_type_rss);
1185                 pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
1186                 pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
1187                 first_seg->ol_flags = pkt_flags;
1188                 first_seg->packet_type = igb_rxd_pkt_info_to_pkt_type(rxd.wb.
1189                                         lower.lo_dword.hs_rss.pkt_info);
1190
1191                 /* Prefetch data of first segment, if configured to do so. */
1192                 rte_packet_prefetch((char *)first_seg->buf_addr +
1193                         first_seg->data_off);
1194
1195                 /*
1196                  * Store the mbuf address into the next entry of the array
1197                  * of returned packets.
1198                  */
1199                 rx_pkts[nb_rx++] = first_seg;
1200
1201                 /*
1202                  * Setup receipt context for a new packet.
1203                  */
1204                 first_seg = NULL;
1205         }
1206
1207         /*
1208          * Record index of the next RX descriptor to probe.
1209          */
1210         rxq->rx_tail = rx_id;
1211
1212         /*
1213          * Save receive context.
1214          */
1215         rxq->pkt_first_seg = first_seg;
1216         rxq->pkt_last_seg = last_seg;
1217
1218         /*
1219          * If the number of free RX descriptors is greater than the RX free
1220          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1221          * register.
1222          * Update the RDT with the value of the last processed RX descriptor
1223          * minus 1, to guarantee that the RDT register is never equal to the
1224          * RDH register, which creates a "full" ring situtation from the
1225          * hardware point of view...
1226          */
1227         nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
1228         if (nb_hold > rxq->rx_free_thresh) {
1229                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
1230                            "nb_hold=%u nb_rx=%u",
1231                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1232                            (unsigned) rx_id, (unsigned) nb_hold,
1233                            (unsigned) nb_rx);
1234                 rx_id = (uint16_t) ((rx_id == 0) ?
1235                                      (rxq->nb_rx_desc - 1) : (rx_id - 1));
1236                 E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
1237                 nb_hold = 0;
1238         }
1239         rxq->nb_rx_hold = nb_hold;
1240         return nb_rx;
1241 }
1242
1243 /*
1244  * Maximum number of Ring Descriptors.
1245  *
1246  * Since RDLEN/TDLEN should be multiple of 128bytes, the number of ring
1247  * desscriptors should meet the following condition:
1248  *      (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0
1249  */
1250
1251 static void
1252 igb_tx_queue_release_mbufs(struct igb_tx_queue *txq)
1253 {
1254         unsigned i;
1255
1256         if (txq->sw_ring != NULL) {
1257                 for (i = 0; i < txq->nb_tx_desc; i++) {
1258                         if (txq->sw_ring[i].mbuf != NULL) {
1259                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
1260                                 txq->sw_ring[i].mbuf = NULL;
1261                         }
1262                 }
1263         }
1264 }
1265
1266 static void
1267 igb_tx_queue_release(struct igb_tx_queue *txq)
1268 {
1269         if (txq != NULL) {
1270                 igb_tx_queue_release_mbufs(txq);
1271                 rte_free(txq->sw_ring);
1272                 rte_free(txq);
1273         }
1274 }
1275
1276 void
1277 eth_igb_tx_queue_release(void *txq)
1278 {
1279         igb_tx_queue_release(txq);
1280 }
1281
1282 static int
1283 igb_tx_done_cleanup(struct igb_tx_queue *txq, uint32_t free_cnt)
1284 {
1285         struct igb_tx_entry *sw_ring;
1286         volatile union e1000_adv_tx_desc *txr;
1287         uint16_t tx_first; /* First segment analyzed. */
1288         uint16_t tx_id;    /* Current segment being processed. */
1289         uint16_t tx_last;  /* Last segment in the current packet. */
1290         uint16_t tx_next;  /* First segment of the next packet. */
1291         int count;
1292
1293         if (txq != NULL) {
1294                 count = 0;
1295                 sw_ring = txq->sw_ring;
1296                 txr = txq->tx_ring;
1297
1298                 /*
1299                  * tx_tail is the last sent packet on the sw_ring. Goto the end
1300                  * of that packet (the last segment in the packet chain) and
1301                  * then the next segment will be the start of the oldest segment
1302                  * in the sw_ring. This is the first packet that will be
1303                  * attempted to be freed.
1304                  */
1305
1306                 /* Get last segment in most recently added packet. */
1307                 tx_first = sw_ring[txq->tx_tail].last_id;
1308
1309                 /* Get the next segment, which is the oldest segment in ring. */
1310                 tx_first = sw_ring[tx_first].next_id;
1311
1312                 /* Set the current index to the first. */
1313                 tx_id = tx_first;
1314
1315                 /*
1316                  * Loop through each packet. For each packet, verify that an
1317                  * mbuf exists and that the last segment is free. If so, free
1318                  * it and move on.
1319                  */
1320                 while (1) {
1321                         tx_last = sw_ring[tx_id].last_id;
1322
1323                         if (sw_ring[tx_last].mbuf) {
1324                                 if (txr[tx_last].wb.status &
1325                                                 E1000_TXD_STAT_DD) {
1326                                         /*
1327                                          * Increment the number of packets
1328                                          * freed.
1329                                          */
1330                                         count++;
1331
1332                                         /* Get the start of the next packet. */
1333                                         tx_next = sw_ring[tx_last].next_id;
1334
1335                                         /*
1336                                          * Loop through all segments in a
1337                                          * packet.
1338                                          */
1339                                         do {
1340                                                 rte_pktmbuf_free_seg(sw_ring[tx_id].mbuf);
1341                                                 sw_ring[tx_id].mbuf = NULL;
1342                                                 sw_ring[tx_id].last_id = tx_id;
1343
1344                                                 /* Move to next segemnt. */
1345                                                 tx_id = sw_ring[tx_id].next_id;
1346
1347                                         } while (tx_id != tx_next);
1348
1349                                         if (unlikely(count == (int)free_cnt))
1350                                                 break;
1351                                 } else
1352                                         /*
1353                                          * mbuf still in use, nothing left to
1354                                          * free.
1355                                          */
1356                                         break;
1357                         } else {
1358                                 /*
1359                                  * There are multiple reasons to be here:
1360                                  * 1) All the packets on the ring have been
1361                                  *    freed - tx_id is equal to tx_first
1362                                  *    and some packets have been freed.
1363                                  *    - Done, exit
1364                                  * 2) Interfaces has not sent a rings worth of
1365                                  *    packets yet, so the segment after tail is
1366                                  *    still empty. Or a previous call to this
1367                                  *    function freed some of the segments but
1368                                  *    not all so there is a hole in the list.
1369                                  *    Hopefully this is a rare case.
1370                                  *    - Walk the list and find the next mbuf. If
1371                                  *      there isn't one, then done.
1372                                  */
1373                                 if (likely((tx_id == tx_first) && (count != 0)))
1374                                         break;
1375
1376                                 /*
1377                                  * Walk the list and find the next mbuf, if any.
1378                                  */
1379                                 do {
1380                                         /* Move to next segemnt. */
1381                                         tx_id = sw_ring[tx_id].next_id;
1382
1383                                         if (sw_ring[tx_id].mbuf)
1384                                                 break;
1385
1386                                 } while (tx_id != tx_first);
1387
1388                                 /*
1389                                  * Determine why previous loop bailed. If there
1390                                  * is not an mbuf, done.
1391                                  */
1392                                 if (sw_ring[tx_id].mbuf == NULL)
1393                                         break;
1394                         }
1395                 }
1396         } else
1397                 count = -ENODEV;
1398
1399         return count;
1400 }
1401
1402 int
1403 eth_igb_tx_done_cleanup(void *txq, uint32_t free_cnt)
1404 {
1405         return igb_tx_done_cleanup(txq, free_cnt);
1406 }
1407
1408 static void
1409 igb_reset_tx_queue_stat(struct igb_tx_queue *txq)
1410 {
1411         txq->tx_head = 0;
1412         txq->tx_tail = 0;
1413         txq->ctx_curr = 0;
1414         memset((void*)&txq->ctx_cache, 0,
1415                 IGB_CTX_NUM * sizeof(struct igb_advctx_info));
1416 }
1417
1418 static void
1419 igb_reset_tx_queue(struct igb_tx_queue *txq, struct rte_eth_dev *dev)
1420 {
1421         static const union e1000_adv_tx_desc zeroed_desc = {{0}};
1422         struct igb_tx_entry *txe = txq->sw_ring;
1423         uint16_t i, prev;
1424         struct e1000_hw *hw;
1425
1426         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1427         /* Zero out HW ring memory */
1428         for (i = 0; i < txq->nb_tx_desc; i++) {
1429                 txq->tx_ring[i] = zeroed_desc;
1430         }
1431
1432         /* Initialize ring entries */
1433         prev = (uint16_t)(txq->nb_tx_desc - 1);
1434         for (i = 0; i < txq->nb_tx_desc; i++) {
1435                 volatile union e1000_adv_tx_desc *txd = &(txq->tx_ring[i]);
1436
1437                 txd->wb.status = E1000_TXD_STAT_DD;
1438                 txe[i].mbuf = NULL;
1439                 txe[i].last_id = i;
1440                 txe[prev].next_id = i;
1441                 prev = i;
1442         }
1443
1444         txq->txd_type = E1000_ADVTXD_DTYP_DATA;
1445         /* 82575 specific, each tx queue will use 2 hw contexts */
1446         if (hw->mac.type == e1000_82575)
1447                 txq->ctx_start = txq->queue_id * IGB_CTX_NUM;
1448
1449         igb_reset_tx_queue_stat(txq);
1450 }
1451
1452 uint64_t
1453 igb_get_tx_port_offloads_capa(struct rte_eth_dev *dev)
1454 {
1455         uint64_t rx_offload_capa;
1456
1457         RTE_SET_USED(dev);
1458         rx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
1459                           DEV_TX_OFFLOAD_IPV4_CKSUM  |
1460                           DEV_TX_OFFLOAD_UDP_CKSUM   |
1461                           DEV_TX_OFFLOAD_TCP_CKSUM   |
1462                           DEV_TX_OFFLOAD_SCTP_CKSUM  |
1463                           DEV_TX_OFFLOAD_TCP_TSO;
1464
1465         return rx_offload_capa;
1466 }
1467
1468 uint64_t
1469 igb_get_tx_queue_offloads_capa(struct rte_eth_dev *dev)
1470 {
1471         uint64_t rx_queue_offload_capa;
1472
1473         rx_queue_offload_capa = igb_get_tx_port_offloads_capa(dev);
1474
1475         return rx_queue_offload_capa;
1476 }
1477
1478 int
1479 eth_igb_tx_queue_setup(struct rte_eth_dev *dev,
1480                          uint16_t queue_idx,
1481                          uint16_t nb_desc,
1482                          unsigned int socket_id,
1483                          const struct rte_eth_txconf *tx_conf)
1484 {
1485         const struct rte_memzone *tz;
1486         struct igb_tx_queue *txq;
1487         struct e1000_hw     *hw;
1488         uint32_t size;
1489         uint64_t offloads;
1490
1491         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1492
1493         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1494
1495         /*
1496          * Validate number of transmit descriptors.
1497          * It must not exceed hardware maximum, and must be multiple
1498          * of E1000_ALIGN.
1499          */
1500         if (nb_desc % IGB_TXD_ALIGN != 0 ||
1501                         (nb_desc > E1000_MAX_RING_DESC) ||
1502                         (nb_desc < E1000_MIN_RING_DESC)) {
1503                 return -EINVAL;
1504         }
1505
1506         /*
1507          * The tx_free_thresh and tx_rs_thresh values are not used in the 1G
1508          * driver.
1509          */
1510         if (tx_conf->tx_free_thresh != 0)
1511                 PMD_INIT_LOG(INFO, "The tx_free_thresh parameter is not "
1512                              "used for the 1G driver.");
1513         if (tx_conf->tx_rs_thresh != 0)
1514                 PMD_INIT_LOG(INFO, "The tx_rs_thresh parameter is not "
1515                              "used for the 1G driver.");
1516         if (tx_conf->tx_thresh.wthresh == 0 && hw->mac.type != e1000_82576)
1517                 PMD_INIT_LOG(INFO, "To improve 1G driver performance, "
1518                              "consider setting the TX WTHRESH value to 4, 8, "
1519                              "or 16.");
1520
1521         /* Free memory prior to re-allocation if needed */
1522         if (dev->data->tx_queues[queue_idx] != NULL) {
1523                 igb_tx_queue_release(dev->data->tx_queues[queue_idx]);
1524                 dev->data->tx_queues[queue_idx] = NULL;
1525         }
1526
1527         /* First allocate the tx queue data structure */
1528         txq = rte_zmalloc("ethdev TX queue", sizeof(struct igb_tx_queue),
1529                                                         RTE_CACHE_LINE_SIZE);
1530         if (txq == NULL)
1531                 return -ENOMEM;
1532
1533         /*
1534          * Allocate TX ring hardware descriptors. A memzone large enough to
1535          * handle the maximum ring size is allocated in order to allow for
1536          * resizing in later calls to the queue setup function.
1537          */
1538         size = sizeof(union e1000_adv_tx_desc) * E1000_MAX_RING_DESC;
1539         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx, size,
1540                                       E1000_ALIGN, socket_id);
1541         if (tz == NULL) {
1542                 igb_tx_queue_release(txq);
1543                 return -ENOMEM;
1544         }
1545
1546         txq->nb_tx_desc = nb_desc;
1547         txq->pthresh = tx_conf->tx_thresh.pthresh;
1548         txq->hthresh = tx_conf->tx_thresh.hthresh;
1549         txq->wthresh = tx_conf->tx_thresh.wthresh;
1550         if (txq->wthresh > 0 && hw->mac.type == e1000_82576)
1551                 txq->wthresh = 1;
1552         txq->queue_id = queue_idx;
1553         txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
1554                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
1555         txq->port_id = dev->data->port_id;
1556
1557         txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(txq->reg_idx));
1558         txq->tx_ring_phys_addr = tz->iova;
1559
1560         txq->tx_ring = (union e1000_adv_tx_desc *) tz->addr;
1561         /* Allocate software ring */
1562         txq->sw_ring = rte_zmalloc("txq->sw_ring",
1563                                    sizeof(struct igb_tx_entry) * nb_desc,
1564                                    RTE_CACHE_LINE_SIZE);
1565         if (txq->sw_ring == NULL) {
1566                 igb_tx_queue_release(txq);
1567                 return -ENOMEM;
1568         }
1569         PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
1570                      txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
1571
1572         igb_reset_tx_queue(txq, dev);
1573         dev->tx_pkt_burst = eth_igb_xmit_pkts;
1574         dev->tx_pkt_prepare = &eth_igb_prep_pkts;
1575         dev->data->tx_queues[queue_idx] = txq;
1576         txq->offloads = offloads;
1577
1578         return 0;
1579 }
1580
1581 static void
1582 igb_rx_queue_release_mbufs(struct igb_rx_queue *rxq)
1583 {
1584         unsigned i;
1585
1586         if (rxq->sw_ring != NULL) {
1587                 for (i = 0; i < rxq->nb_rx_desc; i++) {
1588                         if (rxq->sw_ring[i].mbuf != NULL) {
1589                                 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
1590                                 rxq->sw_ring[i].mbuf = NULL;
1591                         }
1592                 }
1593         }
1594 }
1595
1596 static void
1597 igb_rx_queue_release(struct igb_rx_queue *rxq)
1598 {
1599         if (rxq != NULL) {
1600                 igb_rx_queue_release_mbufs(rxq);
1601                 rte_free(rxq->sw_ring);
1602                 rte_free(rxq);
1603         }
1604 }
1605
1606 void
1607 eth_igb_rx_queue_release(void *rxq)
1608 {
1609         igb_rx_queue_release(rxq);
1610 }
1611
1612 static void
1613 igb_reset_rx_queue(struct igb_rx_queue *rxq)
1614 {
1615         static const union e1000_adv_rx_desc zeroed_desc = {{0}};
1616         unsigned i;
1617
1618         /* Zero out HW ring memory */
1619         for (i = 0; i < rxq->nb_rx_desc; i++) {
1620                 rxq->rx_ring[i] = zeroed_desc;
1621         }
1622
1623         rxq->rx_tail = 0;
1624         rxq->pkt_first_seg = NULL;
1625         rxq->pkt_last_seg = NULL;
1626 }
1627
1628 uint64_t
1629 igb_get_rx_port_offloads_capa(struct rte_eth_dev *dev)
1630 {
1631         uint64_t rx_offload_capa;
1632
1633         RTE_SET_USED(dev);
1634         rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP  |
1635                           DEV_RX_OFFLOAD_VLAN_FILTER |
1636                           DEV_RX_OFFLOAD_IPV4_CKSUM  |
1637                           DEV_RX_OFFLOAD_UDP_CKSUM   |
1638                           DEV_RX_OFFLOAD_TCP_CKSUM   |
1639                           DEV_RX_OFFLOAD_JUMBO_FRAME |
1640                           DEV_RX_OFFLOAD_CRC_STRIP   |
1641                           DEV_RX_OFFLOAD_SCATTER;
1642
1643         return rx_offload_capa;
1644 }
1645
1646 uint64_t
1647 igb_get_rx_queue_offloads_capa(struct rte_eth_dev *dev)
1648 {
1649         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1650         uint64_t rx_queue_offload_capa;
1651
1652         switch (hw->mac.type) {
1653         case e1000_vfadapt_i350:
1654                 /*
1655                  * As only one Rx queue can be used, let per queue offloading
1656                  * capability be same to per port queue offloading capability
1657                  * for better convenience.
1658                  */
1659                 rx_queue_offload_capa = igb_get_rx_port_offloads_capa(dev);
1660                 break;
1661         default:
1662                 rx_queue_offload_capa = 0;
1663         }
1664         return rx_queue_offload_capa;
1665 }
1666
1667 int
1668 eth_igb_rx_queue_setup(struct rte_eth_dev *dev,
1669                          uint16_t queue_idx,
1670                          uint16_t nb_desc,
1671                          unsigned int socket_id,
1672                          const struct rte_eth_rxconf *rx_conf,
1673                          struct rte_mempool *mp)
1674 {
1675         const struct rte_memzone *rz;
1676         struct igb_rx_queue *rxq;
1677         struct e1000_hw     *hw;
1678         unsigned int size;
1679         uint64_t offloads;
1680
1681         offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1682
1683         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1684
1685         /*
1686          * Validate number of receive descriptors.
1687          * It must not exceed hardware maximum, and must be multiple
1688          * of E1000_ALIGN.
1689          */
1690         if (nb_desc % IGB_RXD_ALIGN != 0 ||
1691                         (nb_desc > E1000_MAX_RING_DESC) ||
1692                         (nb_desc < E1000_MIN_RING_DESC)) {
1693                 return -EINVAL;
1694         }
1695
1696         /* Free memory prior to re-allocation if needed */
1697         if (dev->data->rx_queues[queue_idx] != NULL) {
1698                 igb_rx_queue_release(dev->data->rx_queues[queue_idx]);
1699                 dev->data->rx_queues[queue_idx] = NULL;
1700         }
1701
1702         /* First allocate the RX queue data structure. */
1703         rxq = rte_zmalloc("ethdev RX queue", sizeof(struct igb_rx_queue),
1704                           RTE_CACHE_LINE_SIZE);
1705         if (rxq == NULL)
1706                 return -ENOMEM;
1707         rxq->offloads = offloads;
1708         rxq->mb_pool = mp;
1709         rxq->nb_rx_desc = nb_desc;
1710         rxq->pthresh = rx_conf->rx_thresh.pthresh;
1711         rxq->hthresh = rx_conf->rx_thresh.hthresh;
1712         rxq->wthresh = rx_conf->rx_thresh.wthresh;
1713         if (rxq->wthresh > 0 &&
1714             (hw->mac.type == e1000_82576 || hw->mac.type == e1000_vfadapt_i350))
1715                 rxq->wthresh = 1;
1716         rxq->drop_en = rx_conf->rx_drop_en;
1717         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1718         rxq->queue_id = queue_idx;
1719         rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
1720                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
1721         rxq->port_id = dev->data->port_id;
1722         rxq->crc_len = (uint8_t)((dev->data->dev_conf.rxmode.offloads &
1723                         DEV_RX_OFFLOAD_CRC_STRIP) ? 0 : ETHER_CRC_LEN);
1724
1725         /*
1726          *  Allocate RX ring hardware descriptors. A memzone large enough to
1727          *  handle the maximum ring size is allocated in order to allow for
1728          *  resizing in later calls to the queue setup function.
1729          */
1730         size = sizeof(union e1000_adv_rx_desc) * E1000_MAX_RING_DESC;
1731         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx, size,
1732                                       E1000_ALIGN, socket_id);
1733         if (rz == NULL) {
1734                 igb_rx_queue_release(rxq);
1735                 return -ENOMEM;
1736         }
1737         rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(rxq->reg_idx));
1738         rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(rxq->reg_idx));
1739         rxq->rx_ring_phys_addr = rz->iova;
1740         rxq->rx_ring = (union e1000_adv_rx_desc *) rz->addr;
1741
1742         /* Allocate software ring. */
1743         rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
1744                                    sizeof(struct igb_rx_entry) * nb_desc,
1745                                    RTE_CACHE_LINE_SIZE);
1746         if (rxq->sw_ring == NULL) {
1747                 igb_rx_queue_release(rxq);
1748                 return -ENOMEM;
1749         }
1750         PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
1751                      rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
1752
1753         dev->data->rx_queues[queue_idx] = rxq;
1754         igb_reset_rx_queue(rxq);
1755
1756         return 0;
1757 }
1758
1759 uint32_t
1760 eth_igb_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1761 {
1762 #define IGB_RXQ_SCAN_INTERVAL 4
1763         volatile union e1000_adv_rx_desc *rxdp;
1764         struct igb_rx_queue *rxq;
1765         uint32_t desc = 0;
1766
1767         rxq = dev->data->rx_queues[rx_queue_id];
1768         rxdp = &(rxq->rx_ring[rxq->rx_tail]);
1769
1770         while ((desc < rxq->nb_rx_desc) &&
1771                 (rxdp->wb.upper.status_error & E1000_RXD_STAT_DD)) {
1772                 desc += IGB_RXQ_SCAN_INTERVAL;
1773                 rxdp += IGB_RXQ_SCAN_INTERVAL;
1774                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1775                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
1776                                 desc - rxq->nb_rx_desc]);
1777         }
1778
1779         return desc;
1780 }
1781
1782 int
1783 eth_igb_rx_descriptor_done(void *rx_queue, uint16_t offset)
1784 {
1785         volatile union e1000_adv_rx_desc *rxdp;
1786         struct igb_rx_queue *rxq = rx_queue;
1787         uint32_t desc;
1788
1789         if (unlikely(offset >= rxq->nb_rx_desc))
1790                 return 0;
1791         desc = rxq->rx_tail + offset;
1792         if (desc >= rxq->nb_rx_desc)
1793                 desc -= rxq->nb_rx_desc;
1794
1795         rxdp = &rxq->rx_ring[desc];
1796         return !!(rxdp->wb.upper.status_error & E1000_RXD_STAT_DD);
1797 }
1798
1799 int
1800 eth_igb_rx_descriptor_status(void *rx_queue, uint16_t offset)
1801 {
1802         struct igb_rx_queue *rxq = rx_queue;
1803         volatile uint32_t *status;
1804         uint32_t desc;
1805
1806         if (unlikely(offset >= rxq->nb_rx_desc))
1807                 return -EINVAL;
1808
1809         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
1810                 return RTE_ETH_RX_DESC_UNAVAIL;
1811
1812         desc = rxq->rx_tail + offset;
1813         if (desc >= rxq->nb_rx_desc)
1814                 desc -= rxq->nb_rx_desc;
1815
1816         status = &rxq->rx_ring[desc].wb.upper.status_error;
1817         if (*status & rte_cpu_to_le_32(E1000_RXD_STAT_DD))
1818                 return RTE_ETH_RX_DESC_DONE;
1819
1820         return RTE_ETH_RX_DESC_AVAIL;
1821 }
1822
1823 int
1824 eth_igb_tx_descriptor_status(void *tx_queue, uint16_t offset)
1825 {
1826         struct igb_tx_queue *txq = tx_queue;
1827         volatile uint32_t *status;
1828         uint32_t desc;
1829
1830         if (unlikely(offset >= txq->nb_tx_desc))
1831                 return -EINVAL;
1832
1833         desc = txq->tx_tail + offset;
1834         if (desc >= txq->nb_tx_desc)
1835                 desc -= txq->nb_tx_desc;
1836
1837         status = &txq->tx_ring[desc].wb.status;
1838         if (*status & rte_cpu_to_le_32(E1000_TXD_STAT_DD))
1839                 return RTE_ETH_TX_DESC_DONE;
1840
1841         return RTE_ETH_TX_DESC_FULL;
1842 }
1843
1844 void
1845 igb_dev_clear_queues(struct rte_eth_dev *dev)
1846 {
1847         uint16_t i;
1848         struct igb_tx_queue *txq;
1849         struct igb_rx_queue *rxq;
1850
1851         for (i = 0; i < dev->data->nb_tx_queues; i++) {
1852                 txq = dev->data->tx_queues[i];
1853                 if (txq != NULL) {
1854                         igb_tx_queue_release_mbufs(txq);
1855                         igb_reset_tx_queue(txq, dev);
1856                 }
1857         }
1858
1859         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1860                 rxq = dev->data->rx_queues[i];
1861                 if (rxq != NULL) {
1862                         igb_rx_queue_release_mbufs(rxq);
1863                         igb_reset_rx_queue(rxq);
1864                 }
1865         }
1866 }
1867
1868 void
1869 igb_dev_free_queues(struct rte_eth_dev *dev)
1870 {
1871         uint16_t i;
1872
1873         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1874                 eth_igb_rx_queue_release(dev->data->rx_queues[i]);
1875                 dev->data->rx_queues[i] = NULL;
1876         }
1877         dev->data->nb_rx_queues = 0;
1878
1879         for (i = 0; i < dev->data->nb_tx_queues; i++) {
1880                 eth_igb_tx_queue_release(dev->data->tx_queues[i]);
1881                 dev->data->tx_queues[i] = NULL;
1882         }
1883         dev->data->nb_tx_queues = 0;
1884 }
1885
1886 /**
1887  * Receive Side Scaling (RSS).
1888  * See section 7.1.1.7 in the following document:
1889  *     "Intel 82576 GbE Controller Datasheet" - Revision 2.45 October 2009
1890  *
1891  * Principles:
1892  * The source and destination IP addresses of the IP header and the source and
1893  * destination ports of TCP/UDP headers, if any, of received packets are hashed
1894  * against a configurable random key to compute a 32-bit RSS hash result.
1895  * The seven (7) LSBs of the 32-bit hash result are used as an index into a
1896  * 128-entry redirection table (RETA).  Each entry of the RETA provides a 3-bit
1897  * RSS output index which is used as the RX queue index where to store the
1898  * received packets.
1899  * The following output is supplied in the RX write-back descriptor:
1900  *     - 32-bit result of the Microsoft RSS hash function,
1901  *     - 4-bit RSS type field.
1902  */
1903
1904 /*
1905  * RSS random key supplied in section 7.1.1.7.3 of the Intel 82576 datasheet.
1906  * Used as the default key.
1907  */
1908 static uint8_t rss_intel_key[40] = {
1909         0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
1910         0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
1911         0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
1912         0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
1913         0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
1914 };
1915
1916 static void
1917 igb_rss_disable(struct rte_eth_dev *dev)
1918 {
1919         struct e1000_hw *hw;
1920         uint32_t mrqc;
1921
1922         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1923         mrqc = E1000_READ_REG(hw, E1000_MRQC);
1924         mrqc &= ~E1000_MRQC_ENABLE_MASK;
1925         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
1926 }
1927
1928 static void
1929 igb_hw_rss_hash_set(struct e1000_hw *hw, struct rte_eth_rss_conf *rss_conf)
1930 {
1931         uint8_t  *hash_key;
1932         uint32_t rss_key;
1933         uint32_t mrqc;
1934         uint64_t rss_hf;
1935         uint16_t i;
1936
1937         hash_key = rss_conf->rss_key;
1938         if (hash_key != NULL) {
1939                 /* Fill in RSS hash key */
1940                 for (i = 0; i < 10; i++) {
1941                         rss_key  = hash_key[(i * 4)];
1942                         rss_key |= hash_key[(i * 4) + 1] << 8;
1943                         rss_key |= hash_key[(i * 4) + 2] << 16;
1944                         rss_key |= hash_key[(i * 4) + 3] << 24;
1945                         E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key);
1946                 }
1947         }
1948
1949         /* Set configured hashing protocols in MRQC register */
1950         rss_hf = rss_conf->rss_hf;
1951         mrqc = E1000_MRQC_ENABLE_RSS_4Q; /* RSS enabled. */
1952         if (rss_hf & ETH_RSS_IPV4)
1953                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4;
1954         if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
1955                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_TCP;
1956         if (rss_hf & ETH_RSS_IPV6)
1957                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6;
1958         if (rss_hf & ETH_RSS_IPV6_EX)
1959                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_EX;
1960         if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
1961                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP;
1962         if (rss_hf & ETH_RSS_IPV6_TCP_EX)
1963                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
1964         if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
1965                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
1966         if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
1967                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
1968         if (rss_hf & ETH_RSS_IPV6_UDP_EX)
1969                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP_EX;
1970         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
1971 }
1972
1973 int
1974 eth_igb_rss_hash_update(struct rte_eth_dev *dev,
1975                         struct rte_eth_rss_conf *rss_conf)
1976 {
1977         struct e1000_hw *hw;
1978         uint32_t mrqc;
1979         uint64_t rss_hf;
1980
1981         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1982
1983         /*
1984          * Before changing anything, first check that the update RSS operation
1985          * does not attempt to disable RSS, if RSS was enabled at
1986          * initialization time, or does not attempt to enable RSS, if RSS was
1987          * disabled at initialization time.
1988          */
1989         rss_hf = rss_conf->rss_hf & IGB_RSS_OFFLOAD_ALL;
1990         mrqc = E1000_READ_REG(hw, E1000_MRQC);
1991         if (!(mrqc & E1000_MRQC_ENABLE_MASK)) { /* RSS disabled */
1992                 if (rss_hf != 0) /* Enable RSS */
1993                         return -(EINVAL);
1994                 return 0; /* Nothing to do */
1995         }
1996         /* RSS enabled */
1997         if (rss_hf == 0) /* Disable RSS */
1998                 return -(EINVAL);
1999         igb_hw_rss_hash_set(hw, rss_conf);
2000         return 0;
2001 }
2002
2003 int eth_igb_rss_hash_conf_get(struct rte_eth_dev *dev,
2004                               struct rte_eth_rss_conf *rss_conf)
2005 {
2006         struct e1000_hw *hw;
2007         uint8_t *hash_key;
2008         uint32_t rss_key;
2009         uint32_t mrqc;
2010         uint64_t rss_hf;
2011         uint16_t i;
2012
2013         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2014         hash_key = rss_conf->rss_key;
2015         if (hash_key != NULL) {
2016                 /* Return RSS hash key */
2017                 for (i = 0; i < 10; i++) {
2018                         rss_key = E1000_READ_REG_ARRAY(hw, E1000_RSSRK(0), i);
2019                         hash_key[(i * 4)] = rss_key & 0x000000FF;
2020                         hash_key[(i * 4) + 1] = (rss_key >> 8) & 0x000000FF;
2021                         hash_key[(i * 4) + 2] = (rss_key >> 16) & 0x000000FF;
2022                         hash_key[(i * 4) + 3] = (rss_key >> 24) & 0x000000FF;
2023                 }
2024         }
2025
2026         /* Get RSS functions configured in MRQC register */
2027         mrqc = E1000_READ_REG(hw, E1000_MRQC);
2028         if ((mrqc & E1000_MRQC_ENABLE_RSS_4Q) == 0) { /* RSS is disabled */
2029                 rss_conf->rss_hf = 0;
2030                 return 0;
2031         }
2032         rss_hf = 0;
2033         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2034                 rss_hf |= ETH_RSS_IPV4;
2035         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2036                 rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
2037         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2038                 rss_hf |= ETH_RSS_IPV6;
2039         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_EX)
2040                 rss_hf |= ETH_RSS_IPV6_EX;
2041         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2042                 rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
2043         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP_EX)
2044                 rss_hf |= ETH_RSS_IPV6_TCP_EX;
2045         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_UDP)
2046                 rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
2047         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP)
2048                 rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
2049         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP_EX)
2050                 rss_hf |= ETH_RSS_IPV6_UDP_EX;
2051         rss_conf->rss_hf = rss_hf;
2052         return 0;
2053 }
2054
2055 static void
2056 igb_rss_configure(struct rte_eth_dev *dev)
2057 {
2058         struct rte_eth_rss_conf rss_conf;
2059         struct e1000_hw *hw;
2060         uint32_t shift;
2061         uint16_t i;
2062
2063         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2064
2065         /* Fill in redirection table. */
2066         shift = (hw->mac.type == e1000_82575) ? 6 : 0;
2067         for (i = 0; i < 128; i++) {
2068                 union e1000_reta {
2069                         uint32_t dword;
2070                         uint8_t  bytes[4];
2071                 } reta;
2072                 uint8_t q_idx;
2073
2074                 q_idx = (uint8_t) ((dev->data->nb_rx_queues > 1) ?
2075                                    i % dev->data->nb_rx_queues : 0);
2076                 reta.bytes[i & 3] = (uint8_t) (q_idx << shift);
2077                 if ((i & 3) == 3)
2078                         E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword);
2079         }
2080
2081         /*
2082          * Configure the RSS key and the RSS protocols used to compute
2083          * the RSS hash of input packets.
2084          */
2085         rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
2086         if ((rss_conf.rss_hf & IGB_RSS_OFFLOAD_ALL) == 0) {
2087                 igb_rss_disable(dev);
2088                 return;
2089         }
2090         if (rss_conf.rss_key == NULL)
2091                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
2092         igb_hw_rss_hash_set(hw, &rss_conf);
2093 }
2094
2095 /*
2096  * Check if the mac type support VMDq or not.
2097  * Return 1 if it supports, otherwise, return 0.
2098  */
2099 static int
2100 igb_is_vmdq_supported(const struct rte_eth_dev *dev)
2101 {
2102         const struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2103
2104         switch (hw->mac.type) {
2105         case e1000_82576:
2106         case e1000_82580:
2107         case e1000_i350:
2108                 return 1;
2109         case e1000_82540:
2110         case e1000_82541:
2111         case e1000_82542:
2112         case e1000_82543:
2113         case e1000_82544:
2114         case e1000_82545:
2115         case e1000_82546:
2116         case e1000_82547:
2117         case e1000_82571:
2118         case e1000_82572:
2119         case e1000_82573:
2120         case e1000_82574:
2121         case e1000_82583:
2122         case e1000_i210:
2123         case e1000_i211:
2124         default:
2125                 PMD_INIT_LOG(ERR, "Cannot support VMDq feature");
2126                 return 0;
2127         }
2128 }
2129
2130 static int
2131 igb_vmdq_rx_hw_configure(struct rte_eth_dev *dev)
2132 {
2133         struct rte_eth_vmdq_rx_conf *cfg;
2134         struct e1000_hw *hw;
2135         uint32_t mrqc, vt_ctl, vmolr, rctl;
2136         int i;
2137
2138         PMD_INIT_FUNC_TRACE();
2139
2140         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2141         cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
2142
2143         /* Check if mac type can support VMDq, return value of 0 means NOT support */
2144         if (igb_is_vmdq_supported(dev) == 0)
2145                 return -1;
2146
2147         igb_rss_disable(dev);
2148
2149         /* RCTL: eanble VLAN filter */
2150         rctl = E1000_READ_REG(hw, E1000_RCTL);
2151         rctl |= E1000_RCTL_VFE;
2152         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2153
2154         /* MRQC: enable vmdq */
2155         mrqc = E1000_READ_REG(hw, E1000_MRQC);
2156         mrqc |= E1000_MRQC_ENABLE_VMDQ;
2157         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2158
2159         /* VTCTL:  pool selection according to VLAN tag */
2160         vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
2161         if (cfg->enable_default_pool)
2162                 vt_ctl |= (cfg->default_pool << E1000_VT_CTL_DEFAULT_POOL_SHIFT);
2163         vt_ctl |= E1000_VT_CTL_IGNORE_MAC;
2164         E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
2165
2166         for (i = 0; i < E1000_VMOLR_SIZE; i++) {
2167                 vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
2168                 vmolr &= ~(E1000_VMOLR_AUPE | E1000_VMOLR_ROMPE |
2169                         E1000_VMOLR_ROPE | E1000_VMOLR_BAM |
2170                         E1000_VMOLR_MPME);
2171
2172                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_UNTAG)
2173                         vmolr |= E1000_VMOLR_AUPE;
2174                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_MC)
2175                         vmolr |= E1000_VMOLR_ROMPE;
2176                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_UC)
2177                         vmolr |= E1000_VMOLR_ROPE;
2178                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_BROADCAST)
2179                         vmolr |= E1000_VMOLR_BAM;
2180                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_MULTICAST)
2181                         vmolr |= E1000_VMOLR_MPME;
2182
2183                 E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
2184         }
2185
2186         /*
2187          * VMOLR: set STRVLAN as 1 if IGMAC in VTCTL is set as 1
2188          * Both 82576 and 82580 support it
2189          */
2190         if (hw->mac.type != e1000_i350) {
2191                 for (i = 0; i < E1000_VMOLR_SIZE; i++) {
2192                         vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
2193                         vmolr |= E1000_VMOLR_STRVLAN;
2194                         E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
2195                 }
2196         }
2197
2198         /* VFTA - enable all vlan filters */
2199         for (i = 0; i < IGB_VFTA_SIZE; i++)
2200                 E1000_WRITE_REG(hw, (E1000_VFTA+(i*4)), UINT32_MAX);
2201
2202         /* VFRE: 8 pools enabling for rx, both 82576 and i350 support it */
2203         if (hw->mac.type != e1000_82580)
2204                 E1000_WRITE_REG(hw, E1000_VFRE, E1000_MBVFICR_VFREQ_MASK);
2205
2206         /*
2207          * RAH/RAL - allow pools to read specific mac addresses
2208          * In this case, all pools should be able to read from mac addr 0
2209          */
2210         E1000_WRITE_REG(hw, E1000_RAH(0), (E1000_RAH_AV | UINT16_MAX));
2211         E1000_WRITE_REG(hw, E1000_RAL(0), UINT32_MAX);
2212
2213         /* VLVF: set up filters for vlan tags as configured */
2214         for (i = 0; i < cfg->nb_pool_maps; i++) {
2215                 /* set vlan id in VF register and set the valid bit */
2216                 E1000_WRITE_REG(hw, E1000_VLVF(i), (E1000_VLVF_VLANID_ENABLE | \
2217                         (cfg->pool_map[i].vlan_id & ETH_VLAN_ID_MAX) | \
2218                         ((cfg->pool_map[i].pools << E1000_VLVF_POOLSEL_SHIFT ) & \
2219                         E1000_VLVF_POOLSEL_MASK)));
2220         }
2221
2222         E1000_WRITE_FLUSH(hw);
2223
2224         return 0;
2225 }
2226
2227
2228 /*********************************************************************
2229  *
2230  *  Enable receive unit.
2231  *
2232  **********************************************************************/
2233
2234 static int
2235 igb_alloc_rx_queue_mbufs(struct igb_rx_queue *rxq)
2236 {
2237         struct igb_rx_entry *rxe = rxq->sw_ring;
2238         uint64_t dma_addr;
2239         unsigned i;
2240
2241         /* Initialize software ring entries. */
2242         for (i = 0; i < rxq->nb_rx_desc; i++) {
2243                 volatile union e1000_adv_rx_desc *rxd;
2244                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
2245
2246                 if (mbuf == NULL) {
2247                         PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
2248                                      "queue_id=%hu", rxq->queue_id);
2249                         return -ENOMEM;
2250                 }
2251                 dma_addr =
2252                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
2253                 rxd = &rxq->rx_ring[i];
2254                 rxd->read.hdr_addr = 0;
2255                 rxd->read.pkt_addr = dma_addr;
2256                 rxe[i].mbuf = mbuf;
2257         }
2258
2259         return 0;
2260 }
2261
2262 #define E1000_MRQC_DEF_Q_SHIFT               (3)
2263 static int
2264 igb_dev_mq_rx_configure(struct rte_eth_dev *dev)
2265 {
2266         struct e1000_hw *hw =
2267                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2268         uint32_t mrqc;
2269
2270         if (RTE_ETH_DEV_SRIOV(dev).active == ETH_8_POOLS) {
2271                 /*
2272                  * SRIOV active scheme
2273                  * FIXME if support RSS together with VMDq & SRIOV
2274                  */
2275                 mrqc = E1000_MRQC_ENABLE_VMDQ;
2276                 /* 011b Def_Q ignore, according to VT_CTL.DEF_PL */
2277                 mrqc |= 0x3 << E1000_MRQC_DEF_Q_SHIFT;
2278                 E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2279         } else if(RTE_ETH_DEV_SRIOV(dev).active == 0) {
2280                 /*
2281                  * SRIOV inactive scheme
2282                  */
2283                 switch (dev->data->dev_conf.rxmode.mq_mode) {
2284                         case ETH_MQ_RX_RSS:
2285                                 igb_rss_configure(dev);
2286                                 break;
2287                         case ETH_MQ_RX_VMDQ_ONLY:
2288                                 /*Configure general VMDQ only RX parameters*/
2289                                 igb_vmdq_rx_hw_configure(dev);
2290                                 break;
2291                         case ETH_MQ_RX_NONE:
2292                                 /* if mq_mode is none, disable rss mode.*/
2293                         default:
2294                                 igb_rss_disable(dev);
2295                                 break;
2296                 }
2297         }
2298
2299         return 0;
2300 }
2301
2302 int
2303 eth_igb_rx_init(struct rte_eth_dev *dev)
2304 {
2305         struct rte_eth_rxmode *rxmode;
2306         struct e1000_hw     *hw;
2307         struct igb_rx_queue *rxq;
2308         uint32_t rctl;
2309         uint32_t rxcsum;
2310         uint32_t srrctl;
2311         uint16_t buf_size;
2312         uint16_t rctl_bsize;
2313         uint16_t i;
2314         int ret;
2315
2316         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2317         srrctl = 0;
2318
2319         /*
2320          * Make sure receives are disabled while setting
2321          * up the descriptor ring.
2322          */
2323         rctl = E1000_READ_REG(hw, E1000_RCTL);
2324         E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2325
2326         rxmode = &dev->data->dev_conf.rxmode;
2327
2328         /*
2329          * Configure support of jumbo frames, if any.
2330          */
2331         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
2332                 rctl |= E1000_RCTL_LPE;
2333
2334                 /*
2335                  * Set maximum packet length by default, and might be updated
2336                  * together with enabling/disabling dual VLAN.
2337                  */
2338                 E1000_WRITE_REG(hw, E1000_RLPML,
2339                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2340                                                 VLAN_TAG_SIZE);
2341         } else
2342                 rctl &= ~E1000_RCTL_LPE;
2343
2344         /* Configure and enable each RX queue. */
2345         rctl_bsize = 0;
2346         dev->rx_pkt_burst = eth_igb_recv_pkts;
2347         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2348                 uint64_t bus_addr;
2349                 uint32_t rxdctl;
2350
2351                 rxq = dev->data->rx_queues[i];
2352
2353                 rxq->flags = 0;
2354                 /*
2355                  * i350 and i354 vlan packets have vlan tags byte swapped.
2356                  */
2357                 if (hw->mac.type == e1000_i350 || hw->mac.type == e1000_i354) {
2358                         rxq->flags |= IGB_RXQ_FLAG_LB_BSWAP_VLAN;
2359                         PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap required");
2360                 } else {
2361                         PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap not required");
2362                 }
2363
2364                 /* Allocate buffers for descriptor rings and set up queue */
2365                 ret = igb_alloc_rx_queue_mbufs(rxq);
2366                 if (ret)
2367                         return ret;
2368
2369                 /*
2370                  * Reset crc_len in case it was changed after queue setup by a
2371                  *  call to configure
2372                  */
2373                 rxq->crc_len = (uint8_t)(dev->data->dev_conf.rxmode.offloads &
2374                                 DEV_RX_OFFLOAD_CRC_STRIP ? 0 : ETHER_CRC_LEN);
2375
2376                 bus_addr = rxq->rx_ring_phys_addr;
2377                 E1000_WRITE_REG(hw, E1000_RDLEN(rxq->reg_idx),
2378                                 rxq->nb_rx_desc *
2379                                 sizeof(union e1000_adv_rx_desc));
2380                 E1000_WRITE_REG(hw, E1000_RDBAH(rxq->reg_idx),
2381                                 (uint32_t)(bus_addr >> 32));
2382                 E1000_WRITE_REG(hw, E1000_RDBAL(rxq->reg_idx), (uint32_t)bus_addr);
2383
2384                 srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2385
2386                 /*
2387                  * Configure RX buffer size.
2388                  */
2389                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
2390                         RTE_PKTMBUF_HEADROOM);
2391                 if (buf_size >= 1024) {
2392                         /*
2393                          * Configure the BSIZEPACKET field of the SRRCTL
2394                          * register of the queue.
2395                          * Value is in 1 KB resolution, from 1 KB to 127 KB.
2396                          * If this field is equal to 0b, then RCTL.BSIZE
2397                          * determines the RX packet buffer size.
2398                          */
2399                         srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
2400                                    E1000_SRRCTL_BSIZEPKT_MASK);
2401                         buf_size = (uint16_t) ((srrctl &
2402                                                 E1000_SRRCTL_BSIZEPKT_MASK) <<
2403                                                E1000_SRRCTL_BSIZEPKT_SHIFT);
2404
2405                         /* It adds dual VLAN length for supporting dual VLAN */
2406                         if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
2407                                                 2 * VLAN_TAG_SIZE) > buf_size){
2408                                 if (!dev->data->scattered_rx)
2409                                         PMD_INIT_LOG(DEBUG,
2410                                                      "forcing scatter mode");
2411                                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2412                                 dev->data->scattered_rx = 1;
2413                         }
2414                 } else {
2415                         /*
2416                          * Use BSIZE field of the device RCTL register.
2417                          */
2418                         if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
2419                                 rctl_bsize = buf_size;
2420                         if (!dev->data->scattered_rx)
2421                                 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2422                         dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2423                         dev->data->scattered_rx = 1;
2424                 }
2425
2426                 /* Set if packets are dropped when no descriptors available */
2427                 if (rxq->drop_en)
2428                         srrctl |= E1000_SRRCTL_DROP_EN;
2429
2430                 E1000_WRITE_REG(hw, E1000_SRRCTL(rxq->reg_idx), srrctl);
2431
2432                 /* Enable this RX queue. */
2433                 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rxq->reg_idx));
2434                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2435                 rxdctl &= 0xFFF00000;
2436                 rxdctl |= (rxq->pthresh & 0x1F);
2437                 rxdctl |= ((rxq->hthresh & 0x1F) << 8);
2438                 rxdctl |= ((rxq->wthresh & 0x1F) << 16);
2439                 E1000_WRITE_REG(hw, E1000_RXDCTL(rxq->reg_idx), rxdctl);
2440         }
2441
2442         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) {
2443                 if (!dev->data->scattered_rx)
2444                         PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2445                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2446                 dev->data->scattered_rx = 1;
2447         }
2448
2449         /*
2450          * Setup BSIZE field of RCTL register, if needed.
2451          * Buffer sizes >= 1024 are not [supposed to be] setup in the RCTL
2452          * register, since the code above configures the SRRCTL register of
2453          * the RX queue in such a case.
2454          * All configurable sizes are:
2455          * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
2456          *  8192: rctl |= (E1000_RCTL_SZ_8192  | E1000_RCTL_BSEX);
2457          *  4096: rctl |= (E1000_RCTL_SZ_4096  | E1000_RCTL_BSEX);
2458          *  2048: rctl |= E1000_RCTL_SZ_2048;
2459          *  1024: rctl |= E1000_RCTL_SZ_1024;
2460          *   512: rctl |= E1000_RCTL_SZ_512;
2461          *   256: rctl |= E1000_RCTL_SZ_256;
2462          */
2463         if (rctl_bsize > 0) {
2464                 if (rctl_bsize >= 512) /* 512 <= buf_size < 1024 - use 512 */
2465                         rctl |= E1000_RCTL_SZ_512;
2466                 else /* 256 <= buf_size < 512 - use 256 */
2467                         rctl |= E1000_RCTL_SZ_256;
2468         }
2469
2470         /*
2471          * Configure RSS if device configured with multiple RX queues.
2472          */
2473         igb_dev_mq_rx_configure(dev);
2474
2475         /* Update the rctl since igb_dev_mq_rx_configure may change its value */
2476         rctl |= E1000_READ_REG(hw, E1000_RCTL);
2477
2478         /*
2479          * Setup the Checksum Register.
2480          * Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
2481          */
2482         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2483         rxcsum |= E1000_RXCSUM_PCSD;
2484
2485         /* Enable both L3/L4 rx checksum offload */
2486         if (rxmode->offloads & DEV_RX_OFFLOAD_IPV4_CKSUM)
2487                 rxcsum |= E1000_RXCSUM_IPOFL;
2488         else
2489                 rxcsum &= ~E1000_RXCSUM_IPOFL;
2490         if (rxmode->offloads &
2491                 (DEV_RX_OFFLOAD_TCP_CKSUM | DEV_RX_OFFLOAD_UDP_CKSUM))
2492                 rxcsum |= E1000_RXCSUM_TUOFL;
2493         else
2494                 rxcsum &= ~E1000_RXCSUM_TUOFL;
2495         if (rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM)
2496                 rxcsum |= E1000_RXCSUM_CRCOFL;
2497         else
2498                 rxcsum &= ~E1000_RXCSUM_CRCOFL;
2499
2500         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2501
2502         /* Setup the Receive Control Register. */
2503         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_CRC_STRIP) {
2504                 rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
2505
2506                 /* set STRCRC bit in all queues */
2507                 if (hw->mac.type == e1000_i350 ||
2508                     hw->mac.type == e1000_i210 ||
2509                     hw->mac.type == e1000_i211 ||
2510                     hw->mac.type == e1000_i354) {
2511                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2512                                 rxq = dev->data->rx_queues[i];
2513                                 uint32_t dvmolr = E1000_READ_REG(hw,
2514                                         E1000_DVMOLR(rxq->reg_idx));
2515                                 dvmolr |= E1000_DVMOLR_STRCRC;
2516                                 E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
2517                         }
2518                 }
2519         } else {
2520                 rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
2521
2522                 /* clear STRCRC bit in all queues */
2523                 if (hw->mac.type == e1000_i350 ||
2524                     hw->mac.type == e1000_i210 ||
2525                     hw->mac.type == e1000_i211 ||
2526                     hw->mac.type == e1000_i354) {
2527                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2528                                 rxq = dev->data->rx_queues[i];
2529                                 uint32_t dvmolr = E1000_READ_REG(hw,
2530                                         E1000_DVMOLR(rxq->reg_idx));
2531                                 dvmolr &= ~E1000_DVMOLR_STRCRC;
2532                                 E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
2533                         }
2534                 }
2535         }
2536
2537         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2538         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2539                 E1000_RCTL_RDMTS_HALF |
2540                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2541
2542         /* Make sure VLAN Filters are off. */
2543         if (dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_VMDQ_ONLY)
2544                 rctl &= ~E1000_RCTL_VFE;
2545         /* Don't store bad packets. */
2546         rctl &= ~E1000_RCTL_SBP;
2547
2548         /* Enable Receives. */
2549         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2550
2551         /*
2552          * Setup the HW Rx Head and Tail Descriptor Pointers.
2553          * This needs to be done after enable.
2554          */
2555         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2556                 rxq = dev->data->rx_queues[i];
2557                 E1000_WRITE_REG(hw, E1000_RDH(rxq->reg_idx), 0);
2558                 E1000_WRITE_REG(hw, E1000_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1);
2559         }
2560
2561         return 0;
2562 }
2563
2564 /*********************************************************************
2565  *
2566  *  Enable transmit unit.
2567  *
2568  **********************************************************************/
2569 void
2570 eth_igb_tx_init(struct rte_eth_dev *dev)
2571 {
2572         struct e1000_hw     *hw;
2573         struct igb_tx_queue *txq;
2574         uint32_t tctl;
2575         uint32_t txdctl;
2576         uint16_t i;
2577
2578         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2579
2580         /* Setup the Base and Length of the Tx Descriptor Rings. */
2581         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2582                 uint64_t bus_addr;
2583                 txq = dev->data->tx_queues[i];
2584                 bus_addr = txq->tx_ring_phys_addr;
2585
2586                 E1000_WRITE_REG(hw, E1000_TDLEN(txq->reg_idx),
2587                                 txq->nb_tx_desc *
2588                                 sizeof(union e1000_adv_tx_desc));
2589                 E1000_WRITE_REG(hw, E1000_TDBAH(txq->reg_idx),
2590                                 (uint32_t)(bus_addr >> 32));
2591                 E1000_WRITE_REG(hw, E1000_TDBAL(txq->reg_idx), (uint32_t)bus_addr);
2592
2593                 /* Setup the HW Tx Head and Tail descriptor pointers. */
2594                 E1000_WRITE_REG(hw, E1000_TDT(txq->reg_idx), 0);
2595                 E1000_WRITE_REG(hw, E1000_TDH(txq->reg_idx), 0);
2596
2597                 /* Setup Transmit threshold registers. */
2598                 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(txq->reg_idx));
2599                 txdctl |= txq->pthresh & 0x1F;
2600                 txdctl |= ((txq->hthresh & 0x1F) << 8);
2601                 txdctl |= ((txq->wthresh & 0x1F) << 16);
2602                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2603                 E1000_WRITE_REG(hw, E1000_TXDCTL(txq->reg_idx), txdctl);
2604         }
2605
2606         /* Program the Transmit Control Register. */
2607         tctl = E1000_READ_REG(hw, E1000_TCTL);
2608         tctl &= ~E1000_TCTL_CT;
2609         tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2610                  (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
2611
2612         e1000_config_collision_dist(hw);
2613
2614         /* This write will effectively turn on the transmit unit. */
2615         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
2616 }
2617
2618 /*********************************************************************
2619  *
2620  *  Enable VF receive unit.
2621  *
2622  **********************************************************************/
2623 int
2624 eth_igbvf_rx_init(struct rte_eth_dev *dev)
2625 {
2626         struct e1000_hw     *hw;
2627         struct igb_rx_queue *rxq;
2628         uint32_t srrctl;
2629         uint16_t buf_size;
2630         uint16_t rctl_bsize;
2631         uint16_t i;
2632         int ret;
2633
2634         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2635
2636         /* setup MTU */
2637         e1000_rlpml_set_vf(hw,
2638                 (uint16_t)(dev->data->dev_conf.rxmode.max_rx_pkt_len +
2639                 VLAN_TAG_SIZE));
2640
2641         /* Configure and enable each RX queue. */
2642         rctl_bsize = 0;
2643         dev->rx_pkt_burst = eth_igb_recv_pkts;
2644         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2645                 uint64_t bus_addr;
2646                 uint32_t rxdctl;
2647
2648                 rxq = dev->data->rx_queues[i];
2649
2650                 rxq->flags = 0;
2651                 /*
2652                  * i350VF LB vlan packets have vlan tags byte swapped.
2653                  */
2654                 if (hw->mac.type == e1000_vfadapt_i350) {
2655                         rxq->flags |= IGB_RXQ_FLAG_LB_BSWAP_VLAN;
2656                         PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap required");
2657                 } else {
2658                         PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap not required");
2659                 }
2660
2661                 /* Allocate buffers for descriptor rings and set up queue */
2662                 ret = igb_alloc_rx_queue_mbufs(rxq);
2663                 if (ret)
2664                         return ret;
2665
2666                 bus_addr = rxq->rx_ring_phys_addr;
2667                 E1000_WRITE_REG(hw, E1000_RDLEN(i),
2668                                 rxq->nb_rx_desc *
2669                                 sizeof(union e1000_adv_rx_desc));
2670                 E1000_WRITE_REG(hw, E1000_RDBAH(i),
2671                                 (uint32_t)(bus_addr >> 32));
2672                 E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
2673
2674                 srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2675
2676                 /*
2677                  * Configure RX buffer size.
2678                  */
2679                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
2680                         RTE_PKTMBUF_HEADROOM);
2681                 if (buf_size >= 1024) {
2682                         /*
2683                          * Configure the BSIZEPACKET field of the SRRCTL
2684                          * register of the queue.
2685                          * Value is in 1 KB resolution, from 1 KB to 127 KB.
2686                          * If this field is equal to 0b, then RCTL.BSIZE
2687                          * determines the RX packet buffer size.
2688                          */
2689                         srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
2690                                    E1000_SRRCTL_BSIZEPKT_MASK);
2691                         buf_size = (uint16_t) ((srrctl &
2692                                                 E1000_SRRCTL_BSIZEPKT_MASK) <<
2693                                                E1000_SRRCTL_BSIZEPKT_SHIFT);
2694
2695                         /* It adds dual VLAN length for supporting dual VLAN */
2696                         if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
2697                                                 2 * VLAN_TAG_SIZE) > buf_size){
2698                                 if (!dev->data->scattered_rx)
2699                                         PMD_INIT_LOG(DEBUG,
2700                                                      "forcing scatter mode");
2701                                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2702                                 dev->data->scattered_rx = 1;
2703                         }
2704                 } else {
2705                         /*
2706                          * Use BSIZE field of the device RCTL register.
2707                          */
2708                         if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
2709                                 rctl_bsize = buf_size;
2710                         if (!dev->data->scattered_rx)
2711                                 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2712                         dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2713                         dev->data->scattered_rx = 1;
2714                 }
2715
2716                 /* Set if packets are dropped when no descriptors available */
2717                 if (rxq->drop_en)
2718                         srrctl |= E1000_SRRCTL_DROP_EN;
2719
2720                 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
2721
2722                 /* Enable this RX queue. */
2723                 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2724                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2725                 rxdctl &= 0xFFF00000;
2726                 rxdctl |= (rxq->pthresh & 0x1F);
2727                 rxdctl |= ((rxq->hthresh & 0x1F) << 8);
2728                 if (hw->mac.type == e1000_vfadapt) {
2729                         /*
2730                          * Workaround of 82576 VF Erratum
2731                          * force set WTHRESH to 1
2732                          * to avoid Write-Back not triggered sometimes
2733                          */
2734                         rxdctl |= 0x10000;
2735                         PMD_INIT_LOG(DEBUG, "Force set RX WTHRESH to 1 !");
2736                 }
2737                 else
2738                         rxdctl |= ((rxq->wthresh & 0x1F) << 16);
2739                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2740         }
2741
2742         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) {
2743                 if (!dev->data->scattered_rx)
2744                         PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2745                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2746                 dev->data->scattered_rx = 1;
2747         }
2748
2749         /*
2750          * Setup the HW Rx Head and Tail Descriptor Pointers.
2751          * This needs to be done after enable.
2752          */
2753         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2754                 rxq = dev->data->rx_queues[i];
2755                 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
2756                 E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
2757         }
2758
2759         return 0;
2760 }
2761
2762 /*********************************************************************
2763  *
2764  *  Enable VF transmit unit.
2765  *
2766  **********************************************************************/
2767 void
2768 eth_igbvf_tx_init(struct rte_eth_dev *dev)
2769 {
2770         struct e1000_hw     *hw;
2771         struct igb_tx_queue *txq;
2772         uint32_t txdctl;
2773         uint16_t i;
2774
2775         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2776
2777         /* Setup the Base and Length of the Tx Descriptor Rings. */
2778         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2779                 uint64_t bus_addr;
2780
2781                 txq = dev->data->tx_queues[i];
2782                 bus_addr = txq->tx_ring_phys_addr;
2783                 E1000_WRITE_REG(hw, E1000_TDLEN(i),
2784                                 txq->nb_tx_desc *
2785                                 sizeof(union e1000_adv_tx_desc));
2786                 E1000_WRITE_REG(hw, E1000_TDBAH(i),
2787                                 (uint32_t)(bus_addr >> 32));
2788                 E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
2789
2790                 /* Setup the HW Tx Head and Tail descriptor pointers. */
2791                 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
2792                 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
2793
2794                 /* Setup Transmit threshold registers. */
2795                 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
2796                 txdctl |= txq->pthresh & 0x1F;
2797                 txdctl |= ((txq->hthresh & 0x1F) << 8);
2798                 if (hw->mac.type == e1000_82576) {
2799                         /*
2800                          * Workaround of 82576 VF Erratum
2801                          * force set WTHRESH to 1
2802                          * to avoid Write-Back not triggered sometimes
2803                          */
2804                         txdctl |= 0x10000;
2805                         PMD_INIT_LOG(DEBUG, "Force set TX WTHRESH to 1 !");
2806                 }
2807                 else
2808                         txdctl |= ((txq->wthresh & 0x1F) << 16);
2809                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2810                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
2811         }
2812
2813 }
2814
2815 void
2816 igb_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2817         struct rte_eth_rxq_info *qinfo)
2818 {
2819         struct igb_rx_queue *rxq;
2820
2821         rxq = dev->data->rx_queues[queue_id];
2822
2823         qinfo->mp = rxq->mb_pool;
2824         qinfo->scattered_rx = dev->data->scattered_rx;
2825         qinfo->nb_desc = rxq->nb_rx_desc;
2826
2827         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
2828         qinfo->conf.rx_drop_en = rxq->drop_en;
2829         qinfo->conf.offloads = rxq->offloads;
2830 }
2831
2832 void
2833 igb_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2834         struct rte_eth_txq_info *qinfo)
2835 {
2836         struct igb_tx_queue *txq;
2837
2838         txq = dev->data->tx_queues[queue_id];
2839
2840         qinfo->nb_desc = txq->nb_tx_desc;
2841
2842         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
2843         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
2844         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
2845         qinfo->conf.offloads = txq->offloads;
2846 }
2847
2848 int
2849 igb_rss_conf_init(struct igb_rte_flow_rss_conf *out,
2850                   const struct rte_flow_action_rss *in)
2851 {
2852         if (in->key_len > RTE_DIM(out->key) ||
2853             in->queue_num > RTE_DIM(out->queue))
2854                 return -EINVAL;
2855         out->conf = (struct rte_flow_action_rss){
2856                 .func = in->func,
2857                 .level = in->level,
2858                 .types = in->types,
2859                 .key_len = in->key_len,
2860                 .queue_num = in->queue_num,
2861                 .key = memcpy(out->key, in->key, in->key_len),
2862                 .queue = memcpy(out->queue, in->queue,
2863                                 sizeof(*in->queue) * in->queue_num),
2864         };
2865         return 0;
2866 }
2867
2868 int
2869 igb_action_rss_same(const struct rte_flow_action_rss *comp,
2870                     const struct rte_flow_action_rss *with)
2871 {
2872         return (comp->func == with->func &&
2873                 comp->level == with->level &&
2874                 comp->types == with->types &&
2875                 comp->key_len == with->key_len &&
2876                 comp->queue_num == with->queue_num &&
2877                 !memcmp(comp->key, with->key, with->key_len) &&
2878                 !memcmp(comp->queue, with->queue,
2879                         sizeof(*with->queue) * with->queue_num));
2880 }
2881
2882 int
2883 igb_config_rss_filter(struct rte_eth_dev *dev,
2884                 struct igb_rte_flow_rss_conf *conf, bool add)
2885 {
2886         uint32_t shift;
2887         uint16_t i, j;
2888         struct rte_eth_rss_conf rss_conf = {
2889                 .rss_key = conf->conf.key_len ?
2890                         (void *)(uintptr_t)conf->conf.key : NULL,
2891                 .rss_key_len = conf->conf.key_len,
2892                 .rss_hf = conf->conf.types,
2893         };
2894         struct e1000_filter_info *filter_info =
2895                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
2896         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2897
2898         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2899
2900         if (!add) {
2901                 if (igb_action_rss_same(&filter_info->rss_info.conf,
2902                                         &conf->conf)) {
2903                         igb_rss_disable(dev);
2904                         memset(&filter_info->rss_info, 0,
2905                                 sizeof(struct igb_rte_flow_rss_conf));
2906                         return 0;
2907                 }
2908                 return -EINVAL;
2909         }
2910
2911         if (filter_info->rss_info.conf.queue_num)
2912                 return -EINVAL;
2913
2914         /* Fill in redirection table. */
2915         shift = (hw->mac.type == e1000_82575) ? 6 : 0;
2916         for (i = 0, j = 0; i < 128; i++, j++) {
2917                 union e1000_reta {
2918                         uint32_t dword;
2919                         uint8_t  bytes[4];
2920                 } reta;
2921                 uint8_t q_idx;
2922
2923                 if (j == conf->conf.queue_num)
2924                         j = 0;
2925                 q_idx = conf->conf.queue[j];
2926                 reta.bytes[i & 3] = (uint8_t)(q_idx << shift);
2927                 if ((i & 3) == 3)
2928                         E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword);
2929         }
2930
2931         /* Configure the RSS key and the RSS protocols used to compute
2932          * the RSS hash of input packets.
2933          */
2934         if ((rss_conf.rss_hf & IGB_RSS_OFFLOAD_ALL) == 0) {
2935                 igb_rss_disable(dev);
2936                 return 0;
2937         }
2938         if (rss_conf.rss_key == NULL)
2939                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
2940         igb_hw_rss_hash_set(hw, &rss_conf);
2941
2942         if (igb_rss_conf_init(&filter_info->rss_info, &conf->conf))
2943                 return -EINVAL;
2944
2945         return 0;
2946 }