ethdev: fix max Rx packet length
[dpdk.git] / drivers / net / e1000 / igb_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6
7 #include <stdio.h>
8 #include <stdlib.h>
9 #include <string.h>
10 #include <errno.h>
11 #include <stdint.h>
12 #include <stdarg.h>
13 #include <inttypes.h>
14
15 #include <rte_interrupts.h>
16 #include <rte_byteorder.h>
17 #include <rte_common.h>
18 #include <rte_log.h>
19 #include <rte_debug.h>
20 #include <rte_pci.h>
21 #include <rte_memory.h>
22 #include <rte_memcpy.h>
23 #include <rte_memzone.h>
24 #include <rte_launch.h>
25 #include <rte_eal.h>
26 #include <rte_per_lcore.h>
27 #include <rte_lcore.h>
28 #include <rte_atomic.h>
29 #include <rte_branch_prediction.h>
30 #include <rte_mempool.h>
31 #include <rte_malloc.h>
32 #include <rte_mbuf.h>
33 #include <rte_ether.h>
34 #include <ethdev_driver.h>
35 #include <rte_prefetch.h>
36 #include <rte_udp.h>
37 #include <rte_tcp.h>
38 #include <rte_sctp.h>
39 #include <rte_net.h>
40 #include <rte_string_fns.h>
41
42 #include "e1000_logs.h"
43 #include "base/e1000_api.h"
44 #include "e1000_ethdev.h"
45
46 #ifdef RTE_LIBRTE_IEEE1588
47 #define IGB_TX_IEEE1588_TMST PKT_TX_IEEE1588_TMST
48 #else
49 #define IGB_TX_IEEE1588_TMST 0
50 #endif
51 /* Bit Mask to indicate what bits required for building TX context */
52 #define IGB_TX_OFFLOAD_MASK (                    \
53                 PKT_TX_OUTER_IPV6 |      \
54                 PKT_TX_OUTER_IPV4 |      \
55                 PKT_TX_IPV6 |            \
56                 PKT_TX_IPV4 |            \
57                 PKT_TX_VLAN_PKT |                \
58                 PKT_TX_IP_CKSUM |                \
59                 PKT_TX_L4_MASK |                 \
60                 PKT_TX_TCP_SEG |                 \
61                 IGB_TX_IEEE1588_TMST)
62
63 #define IGB_TX_OFFLOAD_NOTSUP_MASK \
64                 (PKT_TX_OFFLOAD_MASK ^ IGB_TX_OFFLOAD_MASK)
65
66 /**
67  * Structure associated with each descriptor of the RX ring of a RX queue.
68  */
69 struct igb_rx_entry {
70         struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
71 };
72
73 /**
74  * Structure associated with each descriptor of the TX ring of a TX queue.
75  */
76 struct igb_tx_entry {
77         struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
78         uint16_t next_id; /**< Index of next descriptor in ring. */
79         uint16_t last_id; /**< Index of last scattered descriptor. */
80 };
81
82 /**
83  * rx queue flags
84  */
85 enum igb_rxq_flags {
86         IGB_RXQ_FLAG_LB_BSWAP_VLAN = 0x01,
87 };
88
89 /**
90  * Structure associated with each RX queue.
91  */
92 struct igb_rx_queue {
93         struct rte_mempool  *mb_pool;   /**< mbuf pool to populate RX ring. */
94         volatile union e1000_adv_rx_desc *rx_ring; /**< RX ring virtual address. */
95         uint64_t            rx_ring_phys_addr; /**< RX ring DMA address. */
96         volatile uint32_t   *rdt_reg_addr; /**< RDT register address. */
97         volatile uint32_t   *rdh_reg_addr; /**< RDH register address. */
98         struct igb_rx_entry *sw_ring;   /**< address of RX software ring. */
99         struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
100         struct rte_mbuf *pkt_last_seg;  /**< Last segment of current packet. */
101         uint16_t            nb_rx_desc; /**< number of RX descriptors. */
102         uint16_t            rx_tail;    /**< current value of RDT register. */
103         uint16_t            nb_rx_hold; /**< number of held free RX desc. */
104         uint16_t            rx_free_thresh; /**< max free RX desc to hold. */
105         uint16_t            queue_id;   /**< RX queue index. */
106         uint16_t            reg_idx;    /**< RX queue register index. */
107         uint16_t            port_id;    /**< Device port identifier. */
108         uint8_t             pthresh;    /**< Prefetch threshold register. */
109         uint8_t             hthresh;    /**< Host threshold register. */
110         uint8_t             wthresh;    /**< Write-back threshold register. */
111         uint8_t             crc_len;    /**< 0 if CRC stripped, 4 otherwise. */
112         uint8_t             drop_en;  /**< If not 0, set SRRCTL.Drop_En. */
113         uint32_t            flags;      /**< RX flags. */
114         uint64_t            offloads;   /**< offloads of DEV_RX_OFFLOAD_* */
115         const struct rte_memzone *mz;
116 };
117
118 /**
119  * Hardware context number
120  */
121 enum igb_advctx_num {
122         IGB_CTX_0    = 0, /**< CTX0    */
123         IGB_CTX_1    = 1, /**< CTX1    */
124         IGB_CTX_NUM  = 2, /**< CTX_NUM */
125 };
126
127 /** Offload features */
128 union igb_tx_offload {
129         uint64_t data;
130         struct {
131                 uint64_t l3_len:9; /**< L3 (IP) Header Length. */
132                 uint64_t l2_len:7; /**< L2 (MAC) Header Length. */
133                 uint64_t vlan_tci:16;  /**< VLAN Tag Control Identifier(CPU order). */
134                 uint64_t l4_len:8; /**< L4 (TCP/UDP) Header Length. */
135                 uint64_t tso_segsz:16; /**< TCP TSO segment size. */
136
137                 /* uint64_t unused:8; */
138         };
139 };
140
141 /*
142  * Compare mask for igb_tx_offload.data,
143  * should be in sync with igb_tx_offload layout.
144  * */
145 #define TX_MACIP_LEN_CMP_MASK   0x000000000000FFFFULL /**< L2L3 header mask. */
146 #define TX_VLAN_CMP_MASK                0x00000000FFFF0000ULL /**< Vlan mask. */
147 #define TX_TCP_LEN_CMP_MASK             0x000000FF00000000ULL /**< TCP header mask. */
148 #define TX_TSO_MSS_CMP_MASK             0x00FFFF0000000000ULL /**< TSO segsz mask. */
149 /** Mac + IP + TCP + Mss mask. */
150 #define TX_TSO_CMP_MASK \
151         (TX_MACIP_LEN_CMP_MASK | TX_TCP_LEN_CMP_MASK | TX_TSO_MSS_CMP_MASK)
152
153 /**
154  * Strucutre to check if new context need be built
155  */
156 struct igb_advctx_info {
157         uint64_t flags;           /**< ol_flags related to context build. */
158         /** tx offload: vlan, tso, l2-l3-l4 lengths. */
159         union igb_tx_offload tx_offload;
160         /** compare mask for tx offload. */
161         union igb_tx_offload tx_offload_mask;
162 };
163
164 /**
165  * Structure associated with each TX queue.
166  */
167 struct igb_tx_queue {
168         volatile union e1000_adv_tx_desc *tx_ring; /**< TX ring address */
169         uint64_t               tx_ring_phys_addr; /**< TX ring DMA address. */
170         struct igb_tx_entry    *sw_ring; /**< virtual address of SW ring. */
171         volatile uint32_t      *tdt_reg_addr; /**< Address of TDT register. */
172         uint32_t               txd_type;      /**< Device-specific TXD type */
173         uint16_t               nb_tx_desc;    /**< number of TX descriptors. */
174         uint16_t               tx_tail; /**< Current value of TDT register. */
175         uint16_t               tx_head;
176         /**< Index of first used TX descriptor. */
177         uint16_t               queue_id; /**< TX queue index. */
178         uint16_t               reg_idx;  /**< TX queue register index. */
179         uint16_t               port_id;  /**< Device port identifier. */
180         uint8_t                pthresh;  /**< Prefetch threshold register. */
181         uint8_t                hthresh;  /**< Host threshold register. */
182         uint8_t                wthresh;  /**< Write-back threshold register. */
183         uint32_t               ctx_curr;
184         /**< Current used hardware descriptor. */
185         uint32_t               ctx_start;
186         /**< Start context position for transmit queue. */
187         struct igb_advctx_info ctx_cache[IGB_CTX_NUM];
188         /**< Hardware context history.*/
189         uint64_t               offloads; /**< offloads of DEV_TX_OFFLOAD_* */
190         const struct rte_memzone *mz;
191 };
192
193 #if 1
194 #define RTE_PMD_USE_PREFETCH
195 #endif
196
197 #ifdef RTE_PMD_USE_PREFETCH
198 #define rte_igb_prefetch(p)     rte_prefetch0(p)
199 #else
200 #define rte_igb_prefetch(p)     do {} while(0)
201 #endif
202
203 #ifdef RTE_PMD_PACKET_PREFETCH
204 #define rte_packet_prefetch(p) rte_prefetch1(p)
205 #else
206 #define rte_packet_prefetch(p)  do {} while(0)
207 #endif
208
209 /*
210  * Macro for VMDq feature for 1 GbE NIC.
211  */
212 #define E1000_VMOLR_SIZE                        (8)
213 #define IGB_TSO_MAX_HDRLEN                      (512)
214 #define IGB_TSO_MAX_MSS                         (9216)
215
216 /*********************************************************************
217  *
218  *  TX function
219  *
220  **********************************************************************/
221
222 /*
223  *There're some limitations in hardware for TCP segmentation offload. We
224  *should check whether the parameters are valid.
225  */
226 static inline uint64_t
227 check_tso_para(uint64_t ol_req, union igb_tx_offload ol_para)
228 {
229         if (!(ol_req & PKT_TX_TCP_SEG))
230                 return ol_req;
231         if ((ol_para.tso_segsz > IGB_TSO_MAX_MSS) || (ol_para.l2_len +
232                         ol_para.l3_len + ol_para.l4_len > IGB_TSO_MAX_HDRLEN)) {
233                 ol_req &= ~PKT_TX_TCP_SEG;
234                 ol_req |= PKT_TX_TCP_CKSUM;
235         }
236         return ol_req;
237 }
238
239 /*
240  * Advanced context descriptor are almost same between igb/ixgbe
241  * This is a separate function, looking for optimization opportunity here
242  * Rework required to go with the pre-defined values.
243  */
244
245 static inline void
246 igbe_set_xmit_ctx(struct igb_tx_queue* txq,
247                 volatile struct e1000_adv_tx_context_desc *ctx_txd,
248                 uint64_t ol_flags, union igb_tx_offload tx_offload)
249 {
250         uint32_t type_tucmd_mlhl;
251         uint32_t mss_l4len_idx;
252         uint32_t ctx_idx, ctx_curr;
253         uint32_t vlan_macip_lens;
254         union igb_tx_offload tx_offload_mask;
255
256         ctx_curr = txq->ctx_curr;
257         ctx_idx = ctx_curr + txq->ctx_start;
258
259         tx_offload_mask.data = 0;
260         type_tucmd_mlhl = 0;
261
262         /* Specify which HW CTX to upload. */
263         mss_l4len_idx = (ctx_idx << E1000_ADVTXD_IDX_SHIFT);
264
265         if (ol_flags & PKT_TX_VLAN_PKT)
266                 tx_offload_mask.data |= TX_VLAN_CMP_MASK;
267
268         /* check if TCP segmentation required for this packet */
269         if (ol_flags & PKT_TX_TCP_SEG) {
270                 /* implies IP cksum in IPv4 */
271                 if (ol_flags & PKT_TX_IP_CKSUM)
272                         type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4 |
273                                 E1000_ADVTXD_TUCMD_L4T_TCP |
274                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
275                 else
276                         type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV6 |
277                                 E1000_ADVTXD_TUCMD_L4T_TCP |
278                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
279
280                 tx_offload_mask.data |= TX_TSO_CMP_MASK;
281                 mss_l4len_idx |= tx_offload.tso_segsz << E1000_ADVTXD_MSS_SHIFT;
282                 mss_l4len_idx |= tx_offload.l4_len << E1000_ADVTXD_L4LEN_SHIFT;
283         } else { /* no TSO, check if hardware checksum is needed */
284                 if (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK))
285                         tx_offload_mask.data |= TX_MACIP_LEN_CMP_MASK;
286
287                 if (ol_flags & PKT_TX_IP_CKSUM)
288                         type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4;
289
290                 switch (ol_flags & PKT_TX_L4_MASK) {
291                 case PKT_TX_UDP_CKSUM:
292                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP |
293                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
294                         mss_l4len_idx |= sizeof(struct rte_udp_hdr)
295                                 << E1000_ADVTXD_L4LEN_SHIFT;
296                         break;
297                 case PKT_TX_TCP_CKSUM:
298                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP |
299                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
300                         mss_l4len_idx |= sizeof(struct rte_tcp_hdr)
301                                 << E1000_ADVTXD_L4LEN_SHIFT;
302                         break;
303                 case PKT_TX_SCTP_CKSUM:
304                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP |
305                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
306                         mss_l4len_idx |= sizeof(struct rte_sctp_hdr)
307                                 << E1000_ADVTXD_L4LEN_SHIFT;
308                         break;
309                 default:
310                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_RSV |
311                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
312                         break;
313                 }
314         }
315
316         txq->ctx_cache[ctx_curr].flags = ol_flags;
317         txq->ctx_cache[ctx_curr].tx_offload.data =
318                 tx_offload_mask.data & tx_offload.data;
319         txq->ctx_cache[ctx_curr].tx_offload_mask = tx_offload_mask;
320
321         ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
322         vlan_macip_lens = (uint32_t)tx_offload.data;
323         ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
324         ctx_txd->mss_l4len_idx = rte_cpu_to_le_32(mss_l4len_idx);
325         ctx_txd->u.seqnum_seed = 0;
326 }
327
328 /*
329  * Check which hardware context can be used. Use the existing match
330  * or create a new context descriptor.
331  */
332 static inline uint32_t
333 what_advctx_update(struct igb_tx_queue *txq, uint64_t flags,
334                 union igb_tx_offload tx_offload)
335 {
336         /* If match with the current context */
337         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
338                 (txq->ctx_cache[txq->ctx_curr].tx_offload.data ==
339                 (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data & tx_offload.data)))) {
340                         return txq->ctx_curr;
341         }
342
343         /* If match with the second context */
344         txq->ctx_curr ^= 1;
345         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
346                 (txq->ctx_cache[txq->ctx_curr].tx_offload.data ==
347                 (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data & tx_offload.data)))) {
348                         return txq->ctx_curr;
349         }
350
351         /* Mismatch, use the previous context */
352         return IGB_CTX_NUM;
353 }
354
355 static inline uint32_t
356 tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
357 {
358         static const uint32_t l4_olinfo[2] = {0, E1000_ADVTXD_POPTS_TXSM};
359         static const uint32_t l3_olinfo[2] = {0, E1000_ADVTXD_POPTS_IXSM};
360         uint32_t tmp;
361
362         tmp  = l4_olinfo[(ol_flags & PKT_TX_L4_MASK)  != PKT_TX_L4_NO_CKSUM];
363         tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
364         tmp |= l4_olinfo[(ol_flags & PKT_TX_TCP_SEG) != 0];
365         return tmp;
366 }
367
368 static inline uint32_t
369 tx_desc_vlan_flags_to_cmdtype(uint64_t ol_flags)
370 {
371         uint32_t cmdtype;
372         static uint32_t vlan_cmd[2] = {0, E1000_ADVTXD_DCMD_VLE};
373         static uint32_t tso_cmd[2] = {0, E1000_ADVTXD_DCMD_TSE};
374         cmdtype = vlan_cmd[(ol_flags & PKT_TX_VLAN_PKT) != 0];
375         cmdtype |= tso_cmd[(ol_flags & PKT_TX_TCP_SEG) != 0];
376         return cmdtype;
377 }
378
379 uint16_t
380 eth_igb_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
381                uint16_t nb_pkts)
382 {
383         struct igb_tx_queue *txq;
384         struct igb_tx_entry *sw_ring;
385         struct igb_tx_entry *txe, *txn;
386         volatile union e1000_adv_tx_desc *txr;
387         volatile union e1000_adv_tx_desc *txd;
388         struct rte_mbuf     *tx_pkt;
389         struct rte_mbuf     *m_seg;
390         uint64_t buf_dma_addr;
391         uint32_t olinfo_status;
392         uint32_t cmd_type_len;
393         uint32_t pkt_len;
394         uint16_t slen;
395         uint64_t ol_flags;
396         uint16_t tx_end;
397         uint16_t tx_id;
398         uint16_t tx_last;
399         uint16_t nb_tx;
400         uint64_t tx_ol_req;
401         uint32_t new_ctx = 0;
402         uint32_t ctx = 0;
403         union igb_tx_offload tx_offload = {0};
404
405         txq = tx_queue;
406         sw_ring = txq->sw_ring;
407         txr     = txq->tx_ring;
408         tx_id   = txq->tx_tail;
409         txe = &sw_ring[tx_id];
410
411         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
412                 tx_pkt = *tx_pkts++;
413                 pkt_len = tx_pkt->pkt_len;
414
415                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
416
417                 /*
418                  * The number of descriptors that must be allocated for a
419                  * packet is the number of segments of that packet, plus 1
420                  * Context Descriptor for the VLAN Tag Identifier, if any.
421                  * Determine the last TX descriptor to allocate in the TX ring
422                  * for the packet, starting from the current position (tx_id)
423                  * in the ring.
424                  */
425                 tx_last = (uint16_t) (tx_id + tx_pkt->nb_segs - 1);
426
427                 ol_flags = tx_pkt->ol_flags;
428                 tx_ol_req = ol_flags & IGB_TX_OFFLOAD_MASK;
429
430                 /* If a Context Descriptor need be built . */
431                 if (tx_ol_req) {
432                         tx_offload.l2_len = tx_pkt->l2_len;
433                         tx_offload.l3_len = tx_pkt->l3_len;
434                         tx_offload.l4_len = tx_pkt->l4_len;
435                         tx_offload.vlan_tci = tx_pkt->vlan_tci;
436                         tx_offload.tso_segsz = tx_pkt->tso_segsz;
437                         tx_ol_req = check_tso_para(tx_ol_req, tx_offload);
438
439                         ctx = what_advctx_update(txq, tx_ol_req, tx_offload);
440                         /* Only allocate context descriptor if required*/
441                         new_ctx = (ctx == IGB_CTX_NUM);
442                         ctx = txq->ctx_curr + txq->ctx_start;
443                         tx_last = (uint16_t) (tx_last + new_ctx);
444                 }
445                 if (tx_last >= txq->nb_tx_desc)
446                         tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
447
448                 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
449                            " tx_first=%u tx_last=%u",
450                            (unsigned) txq->port_id,
451                            (unsigned) txq->queue_id,
452                            (unsigned) pkt_len,
453                            (unsigned) tx_id,
454                            (unsigned) tx_last);
455
456                 /*
457                  * Check if there are enough free descriptors in the TX ring
458                  * to transmit the next packet.
459                  * This operation is based on the two following rules:
460                  *
461                  *   1- Only check that the last needed TX descriptor can be
462                  *      allocated (by construction, if that descriptor is free,
463                  *      all intermediate ones are also free).
464                  *
465                  *      For this purpose, the index of the last TX descriptor
466                  *      used for a packet (the "last descriptor" of a packet)
467                  *      is recorded in the TX entries (the last one included)
468                  *      that are associated with all TX descriptors allocated
469                  *      for that packet.
470                  *
471                  *   2- Avoid to allocate the last free TX descriptor of the
472                  *      ring, in order to never set the TDT register with the
473                  *      same value stored in parallel by the NIC in the TDH
474                  *      register, which makes the TX engine of the NIC enter
475                  *      in a deadlock situation.
476                  *
477                  *      By extension, avoid to allocate a free descriptor that
478                  *      belongs to the last set of free descriptors allocated
479                  *      to the same packet previously transmitted.
480                  */
481
482                 /*
483                  * The "last descriptor" of the previously sent packet, if any,
484                  * which used the last descriptor to allocate.
485                  */
486                 tx_end = sw_ring[tx_last].last_id;
487
488                 /*
489                  * The next descriptor following that "last descriptor" in the
490                  * ring.
491                  */
492                 tx_end = sw_ring[tx_end].next_id;
493
494                 /*
495                  * The "last descriptor" associated with that next descriptor.
496                  */
497                 tx_end = sw_ring[tx_end].last_id;
498
499                 /*
500                  * Check that this descriptor is free.
501                  */
502                 if (! (txr[tx_end].wb.status & E1000_TXD_STAT_DD)) {
503                         if (nb_tx == 0)
504                                 return 0;
505                         goto end_of_tx;
506                 }
507
508                 /*
509                  * Set common flags of all TX Data Descriptors.
510                  *
511                  * The following bits must be set in all Data Descriptors:
512                  *   - E1000_ADVTXD_DTYP_DATA
513                  *   - E1000_ADVTXD_DCMD_DEXT
514                  *
515                  * The following bits must be set in the first Data Descriptor
516                  * and are ignored in the other ones:
517                  *   - E1000_ADVTXD_DCMD_IFCS
518                  *   - E1000_ADVTXD_MAC_1588
519                  *   - E1000_ADVTXD_DCMD_VLE
520                  *
521                  * The following bits must only be set in the last Data
522                  * Descriptor:
523                  *   - E1000_TXD_CMD_EOP
524                  *
525                  * The following bits can be set in any Data Descriptor, but
526                  * are only set in the last Data Descriptor:
527                  *   - E1000_TXD_CMD_RS
528                  */
529                 cmd_type_len = txq->txd_type |
530                         E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
531                 if (tx_ol_req & PKT_TX_TCP_SEG)
532                         pkt_len -= (tx_pkt->l2_len + tx_pkt->l3_len + tx_pkt->l4_len);
533                 olinfo_status = (pkt_len << E1000_ADVTXD_PAYLEN_SHIFT);
534 #if defined(RTE_LIBRTE_IEEE1588)
535                 if (ol_flags & PKT_TX_IEEE1588_TMST)
536                         cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
537 #endif
538                 if (tx_ol_req) {
539                         /* Setup TX Advanced context descriptor if required */
540                         if (new_ctx) {
541                                 volatile struct e1000_adv_tx_context_desc *
542                                     ctx_txd;
543
544                                 ctx_txd = (volatile struct
545                                     e1000_adv_tx_context_desc *)
546                                     &txr[tx_id];
547
548                                 txn = &sw_ring[txe->next_id];
549                                 RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
550
551                                 if (txe->mbuf != NULL) {
552                                         rte_pktmbuf_free_seg(txe->mbuf);
553                                         txe->mbuf = NULL;
554                                 }
555
556                                 igbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req, tx_offload);
557
558                                 txe->last_id = tx_last;
559                                 tx_id = txe->next_id;
560                                 txe = txn;
561                         }
562
563                         /* Setup the TX Advanced Data Descriptor */
564                         cmd_type_len  |= tx_desc_vlan_flags_to_cmdtype(tx_ol_req);
565                         olinfo_status |= tx_desc_cksum_flags_to_olinfo(tx_ol_req);
566                         olinfo_status |= (ctx << E1000_ADVTXD_IDX_SHIFT);
567                 }
568
569                 m_seg = tx_pkt;
570                 do {
571                         txn = &sw_ring[txe->next_id];
572                         txd = &txr[tx_id];
573
574                         if (txe->mbuf != NULL)
575                                 rte_pktmbuf_free_seg(txe->mbuf);
576                         txe->mbuf = m_seg;
577
578                         /*
579                          * Set up transmit descriptor.
580                          */
581                         slen = (uint16_t) m_seg->data_len;
582                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
583                         txd->read.buffer_addr =
584                                 rte_cpu_to_le_64(buf_dma_addr);
585                         txd->read.cmd_type_len =
586                                 rte_cpu_to_le_32(cmd_type_len | slen);
587                         txd->read.olinfo_status =
588                                 rte_cpu_to_le_32(olinfo_status);
589                         txe->last_id = tx_last;
590                         tx_id = txe->next_id;
591                         txe = txn;
592                         m_seg = m_seg->next;
593                 } while (m_seg != NULL);
594
595                 /*
596                  * The last packet data descriptor needs End Of Packet (EOP)
597                  * and Report Status (RS).
598                  */
599                 txd->read.cmd_type_len |=
600                         rte_cpu_to_le_32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
601         }
602  end_of_tx:
603         rte_wmb();
604
605         /*
606          * Set the Transmit Descriptor Tail (TDT).
607          */
608         E1000_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, tx_id);
609         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
610                    (unsigned) txq->port_id, (unsigned) txq->queue_id,
611                    (unsigned) tx_id, (unsigned) nb_tx);
612         txq->tx_tail = tx_id;
613
614         return nb_tx;
615 }
616
617 /*********************************************************************
618  *
619  *  TX prep functions
620  *
621  **********************************************************************/
622 uint16_t
623 eth_igb_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
624                 uint16_t nb_pkts)
625 {
626         int i, ret;
627         struct rte_mbuf *m;
628
629         for (i = 0; i < nb_pkts; i++) {
630                 m = tx_pkts[i];
631
632                 /* Check some limitations for TSO in hardware */
633                 if (m->ol_flags & PKT_TX_TCP_SEG)
634                         if ((m->tso_segsz > IGB_TSO_MAX_MSS) ||
635                                         (m->l2_len + m->l3_len + m->l4_len >
636                                         IGB_TSO_MAX_HDRLEN)) {
637                                 rte_errno = EINVAL;
638                                 return i;
639                         }
640
641                 if (m->ol_flags & IGB_TX_OFFLOAD_NOTSUP_MASK) {
642                         rte_errno = ENOTSUP;
643                         return i;
644                 }
645
646 #ifdef RTE_ETHDEV_DEBUG_TX
647                 ret = rte_validate_tx_offload(m);
648                 if (ret != 0) {
649                         rte_errno = -ret;
650                         return i;
651                 }
652 #endif
653                 ret = rte_net_intel_cksum_prepare(m);
654                 if (ret != 0) {
655                         rte_errno = -ret;
656                         return i;
657                 }
658         }
659
660         return i;
661 }
662
663 /*********************************************************************
664  *
665  *  RX functions
666  *
667  **********************************************************************/
668 #define IGB_PACKET_TYPE_IPV4              0X01
669 #define IGB_PACKET_TYPE_IPV4_TCP          0X11
670 #define IGB_PACKET_TYPE_IPV4_UDP          0X21
671 #define IGB_PACKET_TYPE_IPV4_SCTP         0X41
672 #define IGB_PACKET_TYPE_IPV4_EXT          0X03
673 #define IGB_PACKET_TYPE_IPV4_EXT_SCTP     0X43
674 #define IGB_PACKET_TYPE_IPV6              0X04
675 #define IGB_PACKET_TYPE_IPV6_TCP          0X14
676 #define IGB_PACKET_TYPE_IPV6_UDP          0X24
677 #define IGB_PACKET_TYPE_IPV6_EXT          0X0C
678 #define IGB_PACKET_TYPE_IPV6_EXT_TCP      0X1C
679 #define IGB_PACKET_TYPE_IPV6_EXT_UDP      0X2C
680 #define IGB_PACKET_TYPE_IPV4_IPV6         0X05
681 #define IGB_PACKET_TYPE_IPV4_IPV6_TCP     0X15
682 #define IGB_PACKET_TYPE_IPV4_IPV6_UDP     0X25
683 #define IGB_PACKET_TYPE_IPV4_IPV6_EXT     0X0D
684 #define IGB_PACKET_TYPE_IPV4_IPV6_EXT_TCP 0X1D
685 #define IGB_PACKET_TYPE_IPV4_IPV6_EXT_UDP 0X2D
686 #define IGB_PACKET_TYPE_MAX               0X80
687 #define IGB_PACKET_TYPE_MASK              0X7F
688 #define IGB_PACKET_TYPE_SHIFT             0X04
689 static inline uint32_t
690 igb_rxd_pkt_info_to_pkt_type(uint16_t pkt_info)
691 {
692         static const uint32_t
693                 ptype_table[IGB_PACKET_TYPE_MAX] __rte_cache_aligned = {
694                 [IGB_PACKET_TYPE_IPV4] = RTE_PTYPE_L2_ETHER |
695                         RTE_PTYPE_L3_IPV4,
696                 [IGB_PACKET_TYPE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
697                         RTE_PTYPE_L3_IPV4_EXT,
698                 [IGB_PACKET_TYPE_IPV6] = RTE_PTYPE_L2_ETHER |
699                         RTE_PTYPE_L3_IPV6,
700                 [IGB_PACKET_TYPE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
701                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
702                         RTE_PTYPE_INNER_L3_IPV6,
703                 [IGB_PACKET_TYPE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
704                         RTE_PTYPE_L3_IPV6_EXT,
705                 [IGB_PACKET_TYPE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
706                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
707                         RTE_PTYPE_INNER_L3_IPV6_EXT,
708                 [IGB_PACKET_TYPE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
709                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
710                 [IGB_PACKET_TYPE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
711                         RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
712                 [IGB_PACKET_TYPE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
713                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
714                         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
715                 [IGB_PACKET_TYPE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
716                         RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP,
717                 [IGB_PACKET_TYPE_IPV4_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
718                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
719                         RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
720                 [IGB_PACKET_TYPE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
721                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
722                 [IGB_PACKET_TYPE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
723                         RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
724                 [IGB_PACKET_TYPE_IPV4_IPV6_UDP] =  RTE_PTYPE_L2_ETHER |
725                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
726                         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
727                 [IGB_PACKET_TYPE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
728                         RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
729                 [IGB_PACKET_TYPE_IPV4_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
730                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
731                         RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
732                 [IGB_PACKET_TYPE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
733                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_SCTP,
734                 [IGB_PACKET_TYPE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
735                         RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_SCTP,
736         };
737         if (unlikely(pkt_info & E1000_RXDADV_PKTTYPE_ETQF))
738                 return RTE_PTYPE_UNKNOWN;
739
740         pkt_info = (pkt_info >> IGB_PACKET_TYPE_SHIFT) & IGB_PACKET_TYPE_MASK;
741
742         return ptype_table[pkt_info];
743 }
744
745 static inline uint64_t
746 rx_desc_hlen_type_rss_to_pkt_flags(struct igb_rx_queue *rxq, uint32_t hl_tp_rs)
747 {
748         uint64_t pkt_flags = ((hl_tp_rs & 0x0F) == 0) ?  0 : PKT_RX_RSS_HASH;
749
750 #if defined(RTE_LIBRTE_IEEE1588)
751         static uint32_t ip_pkt_etqf_map[8] = {
752                 0, 0, 0, PKT_RX_IEEE1588_PTP,
753                 0, 0, 0, 0,
754         };
755
756         struct rte_eth_dev dev = rte_eth_devices[rxq->port_id];
757         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev.data->dev_private);
758
759         /* EtherType is in bits 8:10 in Packet Type, and not in the default 0:2 */
760         if (hw->mac.type == e1000_i210)
761                 pkt_flags |= ip_pkt_etqf_map[(hl_tp_rs >> 12) & 0x07];
762         else
763                 pkt_flags |= ip_pkt_etqf_map[(hl_tp_rs >> 4) & 0x07];
764 #else
765         RTE_SET_USED(rxq);
766 #endif
767
768         return pkt_flags;
769 }
770
771 static inline uint64_t
772 rx_desc_status_to_pkt_flags(uint32_t rx_status)
773 {
774         uint64_t pkt_flags;
775
776         /* Check if VLAN present */
777         pkt_flags = ((rx_status & E1000_RXD_STAT_VP) ?
778                 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED : 0);
779
780 #if defined(RTE_LIBRTE_IEEE1588)
781         if (rx_status & E1000_RXD_STAT_TMST)
782                 pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST;
783 #endif
784         return pkt_flags;
785 }
786
787 static inline uint64_t
788 rx_desc_error_to_pkt_flags(uint32_t rx_status)
789 {
790         /*
791          * Bit 30: IPE, IPv4 checksum error
792          * Bit 29: L4I, L4I integrity error
793          */
794
795         static uint64_t error_to_pkt_flags_map[4] = {
796                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD,
797                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
798                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD,
799                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
800         };
801         return error_to_pkt_flags_map[(rx_status >>
802                 E1000_RXD_ERR_CKSUM_BIT) & E1000_RXD_ERR_CKSUM_MSK];
803 }
804
805 uint16_t
806 eth_igb_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
807                uint16_t nb_pkts)
808 {
809         struct igb_rx_queue *rxq;
810         volatile union e1000_adv_rx_desc *rx_ring;
811         volatile union e1000_adv_rx_desc *rxdp;
812         struct igb_rx_entry *sw_ring;
813         struct igb_rx_entry *rxe;
814         struct rte_mbuf *rxm;
815         struct rte_mbuf *nmb;
816         union e1000_adv_rx_desc rxd;
817         uint64_t dma_addr;
818         uint32_t staterr;
819         uint32_t hlen_type_rss;
820         uint16_t pkt_len;
821         uint16_t rx_id;
822         uint16_t nb_rx;
823         uint16_t nb_hold;
824         uint64_t pkt_flags;
825
826         nb_rx = 0;
827         nb_hold = 0;
828         rxq = rx_queue;
829         rx_id = rxq->rx_tail;
830         rx_ring = rxq->rx_ring;
831         sw_ring = rxq->sw_ring;
832         while (nb_rx < nb_pkts) {
833                 /*
834                  * The order of operations here is important as the DD status
835                  * bit must not be read after any other descriptor fields.
836                  * rx_ring and rxdp are pointing to volatile data so the order
837                  * of accesses cannot be reordered by the compiler. If they were
838                  * not volatile, they could be reordered which could lead to
839                  * using invalid descriptor fields when read from rxd.
840                  */
841                 rxdp = &rx_ring[rx_id];
842                 staterr = rxdp->wb.upper.status_error;
843                 if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
844                         break;
845                 rxd = *rxdp;
846
847                 /*
848                  * End of packet.
849                  *
850                  * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
851                  * likely to be invalid and to be dropped by the various
852                  * validation checks performed by the network stack.
853                  *
854                  * Allocate a new mbuf to replenish the RX ring descriptor.
855                  * If the allocation fails:
856                  *    - arrange for that RX descriptor to be the first one
857                  *      being parsed the next time the receive function is
858                  *      invoked [on the same queue].
859                  *
860                  *    - Stop parsing the RX ring and return immediately.
861                  *
862                  * This policy do not drop the packet received in the RX
863                  * descriptor for which the allocation of a new mbuf failed.
864                  * Thus, it allows that packet to be later retrieved if
865                  * mbuf have been freed in the mean time.
866                  * As a side effect, holding RX descriptors instead of
867                  * systematically giving them back to the NIC may lead to
868                  * RX ring exhaustion situations.
869                  * However, the NIC can gracefully prevent such situations
870                  * to happen by sending specific "back-pressure" flow control
871                  * frames to its peer(s).
872                  */
873                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
874                            "staterr=0x%x pkt_len=%u",
875                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
876                            (unsigned) rx_id, (unsigned) staterr,
877                            (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
878
879                 nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
880                 if (nmb == NULL) {
881                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
882                                    "queue_id=%u", (unsigned) rxq->port_id,
883                                    (unsigned) rxq->queue_id);
884                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
885                         break;
886                 }
887
888                 nb_hold++;
889                 rxe = &sw_ring[rx_id];
890                 rx_id++;
891                 if (rx_id == rxq->nb_rx_desc)
892                         rx_id = 0;
893
894                 /* Prefetch next mbuf while processing current one. */
895                 rte_igb_prefetch(sw_ring[rx_id].mbuf);
896
897                 /*
898                  * When next RX descriptor is on a cache-line boundary,
899                  * prefetch the next 4 RX descriptors and the next 8 pointers
900                  * to mbufs.
901                  */
902                 if ((rx_id & 0x3) == 0) {
903                         rte_igb_prefetch(&rx_ring[rx_id]);
904                         rte_igb_prefetch(&sw_ring[rx_id]);
905                 }
906
907                 rxm = rxe->mbuf;
908                 rxe->mbuf = nmb;
909                 dma_addr =
910                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
911                 rxdp->read.hdr_addr = 0;
912                 rxdp->read.pkt_addr = dma_addr;
913
914                 /*
915                  * Initialize the returned mbuf.
916                  * 1) setup generic mbuf fields:
917                  *    - number of segments,
918                  *    - next segment,
919                  *    - packet length,
920                  *    - RX port identifier.
921                  * 2) integrate hardware offload data, if any:
922                  *    - RSS flag & hash,
923                  *    - IP checksum flag,
924                  *    - VLAN TCI, if any,
925                  *    - error flags.
926                  */
927                 pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
928                                       rxq->crc_len);
929                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
930                 rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
931                 rxm->nb_segs = 1;
932                 rxm->next = NULL;
933                 rxm->pkt_len = pkt_len;
934                 rxm->data_len = pkt_len;
935                 rxm->port = rxq->port_id;
936
937                 rxm->hash.rss = rxd.wb.lower.hi_dword.rss;
938                 hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
939
940                 /*
941                  * The vlan_tci field is only valid when PKT_RX_VLAN is
942                  * set in the pkt_flags field and must be in CPU byte order.
943                  */
944                 if ((staterr & rte_cpu_to_le_32(E1000_RXDEXT_STATERR_LB)) &&
945                                 (rxq->flags & IGB_RXQ_FLAG_LB_BSWAP_VLAN)) {
946                         rxm->vlan_tci = rte_be_to_cpu_16(rxd.wb.upper.vlan);
947                 } else {
948                         rxm->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
949                 }
950                 pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(rxq, hlen_type_rss);
951                 pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
952                 pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
953                 rxm->ol_flags = pkt_flags;
954                 rxm->packet_type = igb_rxd_pkt_info_to_pkt_type(rxd.wb.lower.
955                                                 lo_dword.hs_rss.pkt_info);
956
957                 /*
958                  * Store the mbuf address into the next entry of the array
959                  * of returned packets.
960                  */
961                 rx_pkts[nb_rx++] = rxm;
962         }
963         rxq->rx_tail = rx_id;
964
965         /*
966          * If the number of free RX descriptors is greater than the RX free
967          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
968          * register.
969          * Update the RDT with the value of the last processed RX descriptor
970          * minus 1, to guarantee that the RDT register is never equal to the
971          * RDH register, which creates a "full" ring situtation from the
972          * hardware point of view...
973          */
974         nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
975         if (nb_hold > rxq->rx_free_thresh) {
976                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
977                            "nb_hold=%u nb_rx=%u",
978                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
979                            (unsigned) rx_id, (unsigned) nb_hold,
980                            (unsigned) nb_rx);
981                 rx_id = (uint16_t) ((rx_id == 0) ?
982                                      (rxq->nb_rx_desc - 1) : (rx_id - 1));
983                 E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
984                 nb_hold = 0;
985         }
986         rxq->nb_rx_hold = nb_hold;
987         return nb_rx;
988 }
989
990 uint16_t
991 eth_igb_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
992                          uint16_t nb_pkts)
993 {
994         struct igb_rx_queue *rxq;
995         volatile union e1000_adv_rx_desc *rx_ring;
996         volatile union e1000_adv_rx_desc *rxdp;
997         struct igb_rx_entry *sw_ring;
998         struct igb_rx_entry *rxe;
999         struct rte_mbuf *first_seg;
1000         struct rte_mbuf *last_seg;
1001         struct rte_mbuf *rxm;
1002         struct rte_mbuf *nmb;
1003         union e1000_adv_rx_desc rxd;
1004         uint64_t dma; /* Physical address of mbuf data buffer */
1005         uint32_t staterr;
1006         uint32_t hlen_type_rss;
1007         uint16_t rx_id;
1008         uint16_t nb_rx;
1009         uint16_t nb_hold;
1010         uint16_t data_len;
1011         uint64_t pkt_flags;
1012
1013         nb_rx = 0;
1014         nb_hold = 0;
1015         rxq = rx_queue;
1016         rx_id = rxq->rx_tail;
1017         rx_ring = rxq->rx_ring;
1018         sw_ring = rxq->sw_ring;
1019
1020         /*
1021          * Retrieve RX context of current packet, if any.
1022          */
1023         first_seg = rxq->pkt_first_seg;
1024         last_seg = rxq->pkt_last_seg;
1025
1026         while (nb_rx < nb_pkts) {
1027         next_desc:
1028                 /*
1029                  * The order of operations here is important as the DD status
1030                  * bit must not be read after any other descriptor fields.
1031                  * rx_ring and rxdp are pointing to volatile data so the order
1032                  * of accesses cannot be reordered by the compiler. If they were
1033                  * not volatile, they could be reordered which could lead to
1034                  * using invalid descriptor fields when read from rxd.
1035                  */
1036                 rxdp = &rx_ring[rx_id];
1037                 staterr = rxdp->wb.upper.status_error;
1038                 if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
1039                         break;
1040                 rxd = *rxdp;
1041
1042                 /*
1043                  * Descriptor done.
1044                  *
1045                  * Allocate a new mbuf to replenish the RX ring descriptor.
1046                  * If the allocation fails:
1047                  *    - arrange for that RX descriptor to be the first one
1048                  *      being parsed the next time the receive function is
1049                  *      invoked [on the same queue].
1050                  *
1051                  *    - Stop parsing the RX ring and return immediately.
1052                  *
1053                  * This policy does not drop the packet received in the RX
1054                  * descriptor for which the allocation of a new mbuf failed.
1055                  * Thus, it allows that packet to be later retrieved if
1056                  * mbuf have been freed in the mean time.
1057                  * As a side effect, holding RX descriptors instead of
1058                  * systematically giving them back to the NIC may lead to
1059                  * RX ring exhaustion situations.
1060                  * However, the NIC can gracefully prevent such situations
1061                  * to happen by sending specific "back-pressure" flow control
1062                  * frames to its peer(s).
1063                  */
1064                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
1065                            "staterr=0x%x data_len=%u",
1066                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1067                            (unsigned) rx_id, (unsigned) staterr,
1068                            (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
1069
1070                 nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
1071                 if (nmb == NULL) {
1072                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1073                                    "queue_id=%u", (unsigned) rxq->port_id,
1074                                    (unsigned) rxq->queue_id);
1075                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
1076                         break;
1077                 }
1078
1079                 nb_hold++;
1080                 rxe = &sw_ring[rx_id];
1081                 rx_id++;
1082                 if (rx_id == rxq->nb_rx_desc)
1083                         rx_id = 0;
1084
1085                 /* Prefetch next mbuf while processing current one. */
1086                 rte_igb_prefetch(sw_ring[rx_id].mbuf);
1087
1088                 /*
1089                  * When next RX descriptor is on a cache-line boundary,
1090                  * prefetch the next 4 RX descriptors and the next 8 pointers
1091                  * to mbufs.
1092                  */
1093                 if ((rx_id & 0x3) == 0) {
1094                         rte_igb_prefetch(&rx_ring[rx_id]);
1095                         rte_igb_prefetch(&sw_ring[rx_id]);
1096                 }
1097
1098                 /*
1099                  * Update RX descriptor with the physical address of the new
1100                  * data buffer of the new allocated mbuf.
1101                  */
1102                 rxm = rxe->mbuf;
1103                 rxe->mbuf = nmb;
1104                 dma = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1105                 rxdp->read.pkt_addr = dma;
1106                 rxdp->read.hdr_addr = 0;
1107
1108                 /*
1109                  * Set data length & data buffer address of mbuf.
1110                  */
1111                 data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
1112                 rxm->data_len = data_len;
1113                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1114
1115                 /*
1116                  * If this is the first buffer of the received packet,
1117                  * set the pointer to the first mbuf of the packet and
1118                  * initialize its context.
1119                  * Otherwise, update the total length and the number of segments
1120                  * of the current scattered packet, and update the pointer to
1121                  * the last mbuf of the current packet.
1122                  */
1123                 if (first_seg == NULL) {
1124                         first_seg = rxm;
1125                         first_seg->pkt_len = data_len;
1126                         first_seg->nb_segs = 1;
1127                 } else {
1128                         first_seg->pkt_len += data_len;
1129                         first_seg->nb_segs++;
1130                         last_seg->next = rxm;
1131                 }
1132
1133                 /*
1134                  * If this is not the last buffer of the received packet,
1135                  * update the pointer to the last mbuf of the current scattered
1136                  * packet and continue to parse the RX ring.
1137                  */
1138                 if (! (staterr & E1000_RXD_STAT_EOP)) {
1139                         last_seg = rxm;
1140                         goto next_desc;
1141                 }
1142
1143                 /*
1144                  * This is the last buffer of the received packet.
1145                  * If the CRC is not stripped by the hardware:
1146                  *   - Subtract the CRC length from the total packet length.
1147                  *   - If the last buffer only contains the whole CRC or a part
1148                  *     of it, free the mbuf associated to the last buffer.
1149                  *     If part of the CRC is also contained in the previous
1150                  *     mbuf, subtract the length of that CRC part from the
1151                  *     data length of the previous mbuf.
1152                  */
1153                 rxm->next = NULL;
1154                 if (unlikely(rxq->crc_len > 0)) {
1155                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1156                         if (data_len <= RTE_ETHER_CRC_LEN) {
1157                                 rte_pktmbuf_free_seg(rxm);
1158                                 first_seg->nb_segs--;
1159                                 last_seg->data_len = (uint16_t)
1160                                         (last_seg->data_len -
1161                                          (RTE_ETHER_CRC_LEN - data_len));
1162                                 last_seg->next = NULL;
1163                         } else
1164                                 rxm->data_len = (uint16_t)
1165                                         (data_len - RTE_ETHER_CRC_LEN);
1166                 }
1167
1168                 /*
1169                  * Initialize the first mbuf of the returned packet:
1170                  *    - RX port identifier,
1171                  *    - hardware offload data, if any:
1172                  *      - RSS flag & hash,
1173                  *      - IP checksum flag,
1174                  *      - VLAN TCI, if any,
1175                  *      - error flags.
1176                  */
1177                 first_seg->port = rxq->port_id;
1178                 first_seg->hash.rss = rxd.wb.lower.hi_dword.rss;
1179
1180                 /*
1181                  * The vlan_tci field is only valid when PKT_RX_VLAN is
1182                  * set in the pkt_flags field and must be in CPU byte order.
1183                  */
1184                 if ((staterr & rte_cpu_to_le_32(E1000_RXDEXT_STATERR_LB)) &&
1185                                 (rxq->flags & IGB_RXQ_FLAG_LB_BSWAP_VLAN)) {
1186                         first_seg->vlan_tci =
1187                                 rte_be_to_cpu_16(rxd.wb.upper.vlan);
1188                 } else {
1189                         first_seg->vlan_tci =
1190                                 rte_le_to_cpu_16(rxd.wb.upper.vlan);
1191                 }
1192                 hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
1193                 pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(rxq, hlen_type_rss);
1194                 pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
1195                 pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
1196                 first_seg->ol_flags = pkt_flags;
1197                 first_seg->packet_type = igb_rxd_pkt_info_to_pkt_type(rxd.wb.
1198                                         lower.lo_dword.hs_rss.pkt_info);
1199
1200                 /* Prefetch data of first segment, if configured to do so. */
1201                 rte_packet_prefetch((char *)first_seg->buf_addr +
1202                         first_seg->data_off);
1203
1204                 /*
1205                  * Store the mbuf address into the next entry of the array
1206                  * of returned packets.
1207                  */
1208                 rx_pkts[nb_rx++] = first_seg;
1209
1210                 /*
1211                  * Setup receipt context for a new packet.
1212                  */
1213                 first_seg = NULL;
1214         }
1215
1216         /*
1217          * Record index of the next RX descriptor to probe.
1218          */
1219         rxq->rx_tail = rx_id;
1220
1221         /*
1222          * Save receive context.
1223          */
1224         rxq->pkt_first_seg = first_seg;
1225         rxq->pkt_last_seg = last_seg;
1226
1227         /*
1228          * If the number of free RX descriptors is greater than the RX free
1229          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1230          * register.
1231          * Update the RDT with the value of the last processed RX descriptor
1232          * minus 1, to guarantee that the RDT register is never equal to the
1233          * RDH register, which creates a "full" ring situtation from the
1234          * hardware point of view...
1235          */
1236         nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
1237         if (nb_hold > rxq->rx_free_thresh) {
1238                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
1239                            "nb_hold=%u nb_rx=%u",
1240                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1241                            (unsigned) rx_id, (unsigned) nb_hold,
1242                            (unsigned) nb_rx);
1243                 rx_id = (uint16_t) ((rx_id == 0) ?
1244                                      (rxq->nb_rx_desc - 1) : (rx_id - 1));
1245                 E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
1246                 nb_hold = 0;
1247         }
1248         rxq->nb_rx_hold = nb_hold;
1249         return nb_rx;
1250 }
1251
1252 /*
1253  * Maximum number of Ring Descriptors.
1254  *
1255  * Since RDLEN/TDLEN should be multiple of 128bytes, the number of ring
1256  * desscriptors should meet the following condition:
1257  *      (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0
1258  */
1259
1260 static void
1261 igb_tx_queue_release_mbufs(struct igb_tx_queue *txq)
1262 {
1263         unsigned i;
1264
1265         if (txq->sw_ring != NULL) {
1266                 for (i = 0; i < txq->nb_tx_desc; i++) {
1267                         if (txq->sw_ring[i].mbuf != NULL) {
1268                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
1269                                 txq->sw_ring[i].mbuf = NULL;
1270                         }
1271                 }
1272         }
1273 }
1274
1275 static void
1276 igb_tx_queue_release(struct igb_tx_queue *txq)
1277 {
1278         if (txq != NULL) {
1279                 igb_tx_queue_release_mbufs(txq);
1280                 rte_free(txq->sw_ring);
1281                 rte_memzone_free(txq->mz);
1282                 rte_free(txq);
1283         }
1284 }
1285
1286 void
1287 eth_igb_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
1288 {
1289         igb_tx_queue_release(dev->data->tx_queues[qid]);
1290 }
1291
1292 static int
1293 igb_tx_done_cleanup(struct igb_tx_queue *txq, uint32_t free_cnt)
1294 {
1295         struct igb_tx_entry *sw_ring;
1296         volatile union e1000_adv_tx_desc *txr;
1297         uint16_t tx_first; /* First segment analyzed. */
1298         uint16_t tx_id;    /* Current segment being processed. */
1299         uint16_t tx_last;  /* Last segment in the current packet. */
1300         uint16_t tx_next;  /* First segment of the next packet. */
1301         int count = 0;
1302
1303         if (!txq)
1304                 return -ENODEV;
1305
1306         sw_ring = txq->sw_ring;
1307         txr = txq->tx_ring;
1308
1309         /* tx_tail is the last sent packet on the sw_ring. Goto the end
1310          * of that packet (the last segment in the packet chain) and
1311          * then the next segment will be the start of the oldest segment
1312          * in the sw_ring. This is the first packet that will be
1313          * attempted to be freed.
1314          */
1315
1316         /* Get last segment in most recently added packet. */
1317         tx_first = sw_ring[txq->tx_tail].last_id;
1318
1319         /* Get the next segment, which is the oldest segment in ring. */
1320         tx_first = sw_ring[tx_first].next_id;
1321
1322         /* Set the current index to the first. */
1323         tx_id = tx_first;
1324
1325         /* Loop through each packet. For each packet, verify that an
1326          * mbuf exists and that the last segment is free. If so, free
1327          * it and move on.
1328          */
1329         while (1) {
1330                 tx_last = sw_ring[tx_id].last_id;
1331
1332                 if (sw_ring[tx_last].mbuf) {
1333                         if (txr[tx_last].wb.status &
1334                             E1000_TXD_STAT_DD) {
1335                                 /* Increment the number of packets
1336                                  * freed.
1337                                  */
1338                                 count++;
1339
1340                                 /* Get the start of the next packet. */
1341                                 tx_next = sw_ring[tx_last].next_id;
1342
1343                                 /* Loop through all segments in a
1344                                  * packet.
1345                                  */
1346                                 do {
1347                                         if (sw_ring[tx_id].mbuf) {
1348                                                 rte_pktmbuf_free_seg(
1349                                                         sw_ring[tx_id].mbuf);
1350                                                 sw_ring[tx_id].mbuf = NULL;
1351                                                 sw_ring[tx_id].last_id = tx_id;
1352                                         }
1353
1354                                         /* Move to next segemnt. */
1355                                         tx_id = sw_ring[tx_id].next_id;
1356
1357                                 } while (tx_id != tx_next);
1358
1359                                 if (unlikely(count == (int)free_cnt))
1360                                         break;
1361                         } else {
1362                                 /* mbuf still in use, nothing left to
1363                                  * free.
1364                                  */
1365                                 break;
1366                         }
1367                 } else {
1368                         /* There are multiple reasons to be here:
1369                          * 1) All the packets on the ring have been
1370                          *    freed - tx_id is equal to tx_first
1371                          *    and some packets have been freed.
1372                          *    - Done, exit
1373                          * 2) Interfaces has not sent a rings worth of
1374                          *    packets yet, so the segment after tail is
1375                          *    still empty. Or a previous call to this
1376                          *    function freed some of the segments but
1377                          *    not all so there is a hole in the list.
1378                          *    Hopefully this is a rare case.
1379                          *    - Walk the list and find the next mbuf. If
1380                          *      there isn't one, then done.
1381                          */
1382                         if (likely(tx_id == tx_first && count != 0))
1383                                 break;
1384
1385                         /* Walk the list and find the next mbuf, if any. */
1386                         do {
1387                                 /* Move to next segemnt. */
1388                                 tx_id = sw_ring[tx_id].next_id;
1389
1390                                 if (sw_ring[tx_id].mbuf)
1391                                         break;
1392
1393                         } while (tx_id != tx_first);
1394
1395                         /* Determine why previous loop bailed. If there
1396                          * is not an mbuf, done.
1397                          */
1398                         if (!sw_ring[tx_id].mbuf)
1399                                 break;
1400                 }
1401         }
1402
1403         return count;
1404 }
1405
1406 int
1407 eth_igb_tx_done_cleanup(void *txq, uint32_t free_cnt)
1408 {
1409         return igb_tx_done_cleanup(txq, free_cnt);
1410 }
1411
1412 static void
1413 igb_reset_tx_queue_stat(struct igb_tx_queue *txq)
1414 {
1415         txq->tx_head = 0;
1416         txq->tx_tail = 0;
1417         txq->ctx_curr = 0;
1418         memset((void*)&txq->ctx_cache, 0,
1419                 IGB_CTX_NUM * sizeof(struct igb_advctx_info));
1420 }
1421
1422 static void
1423 igb_reset_tx_queue(struct igb_tx_queue *txq, struct rte_eth_dev *dev)
1424 {
1425         static const union e1000_adv_tx_desc zeroed_desc = {{0}};
1426         struct igb_tx_entry *txe = txq->sw_ring;
1427         uint16_t i, prev;
1428         struct e1000_hw *hw;
1429
1430         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1431         /* Zero out HW ring memory */
1432         for (i = 0; i < txq->nb_tx_desc; i++) {
1433                 txq->tx_ring[i] = zeroed_desc;
1434         }
1435
1436         /* Initialize ring entries */
1437         prev = (uint16_t)(txq->nb_tx_desc - 1);
1438         for (i = 0; i < txq->nb_tx_desc; i++) {
1439                 volatile union e1000_adv_tx_desc *txd = &(txq->tx_ring[i]);
1440
1441                 txd->wb.status = E1000_TXD_STAT_DD;
1442                 txe[i].mbuf = NULL;
1443                 txe[i].last_id = i;
1444                 txe[prev].next_id = i;
1445                 prev = i;
1446         }
1447
1448         txq->txd_type = E1000_ADVTXD_DTYP_DATA;
1449         /* 82575 specific, each tx queue will use 2 hw contexts */
1450         if (hw->mac.type == e1000_82575)
1451                 txq->ctx_start = txq->queue_id * IGB_CTX_NUM;
1452
1453         igb_reset_tx_queue_stat(txq);
1454 }
1455
1456 uint64_t
1457 igb_get_tx_port_offloads_capa(struct rte_eth_dev *dev)
1458 {
1459         uint64_t tx_offload_capa;
1460
1461         RTE_SET_USED(dev);
1462         tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
1463                           DEV_TX_OFFLOAD_IPV4_CKSUM  |
1464                           DEV_TX_OFFLOAD_UDP_CKSUM   |
1465                           DEV_TX_OFFLOAD_TCP_CKSUM   |
1466                           DEV_TX_OFFLOAD_SCTP_CKSUM  |
1467                           DEV_TX_OFFLOAD_TCP_TSO     |
1468                           DEV_TX_OFFLOAD_MULTI_SEGS;
1469
1470         return tx_offload_capa;
1471 }
1472
1473 uint64_t
1474 igb_get_tx_queue_offloads_capa(struct rte_eth_dev *dev)
1475 {
1476         uint64_t tx_queue_offload_capa;
1477
1478         tx_queue_offload_capa = igb_get_tx_port_offloads_capa(dev);
1479
1480         return tx_queue_offload_capa;
1481 }
1482
1483 int
1484 eth_igb_tx_queue_setup(struct rte_eth_dev *dev,
1485                          uint16_t queue_idx,
1486                          uint16_t nb_desc,
1487                          unsigned int socket_id,
1488                          const struct rte_eth_txconf *tx_conf)
1489 {
1490         const struct rte_memzone *tz;
1491         struct igb_tx_queue *txq;
1492         struct e1000_hw     *hw;
1493         uint32_t size;
1494         uint64_t offloads;
1495
1496         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1497
1498         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1499
1500         /*
1501          * Validate number of transmit descriptors.
1502          * It must not exceed hardware maximum, and must be multiple
1503          * of E1000_ALIGN.
1504          */
1505         if (nb_desc % IGB_TXD_ALIGN != 0 ||
1506                         (nb_desc > E1000_MAX_RING_DESC) ||
1507                         (nb_desc < E1000_MIN_RING_DESC)) {
1508                 return -EINVAL;
1509         }
1510
1511         /*
1512          * The tx_free_thresh and tx_rs_thresh values are not used in the 1G
1513          * driver.
1514          */
1515         if (tx_conf->tx_free_thresh != 0)
1516                 PMD_INIT_LOG(INFO, "The tx_free_thresh parameter is not "
1517                              "used for the 1G driver.");
1518         if (tx_conf->tx_rs_thresh != 0)
1519                 PMD_INIT_LOG(INFO, "The tx_rs_thresh parameter is not "
1520                              "used for the 1G driver.");
1521         if (tx_conf->tx_thresh.wthresh == 0 && hw->mac.type != e1000_82576)
1522                 PMD_INIT_LOG(INFO, "To improve 1G driver performance, "
1523                              "consider setting the TX WTHRESH value to 4, 8, "
1524                              "or 16.");
1525
1526         /* Free memory prior to re-allocation if needed */
1527         if (dev->data->tx_queues[queue_idx] != NULL) {
1528                 igb_tx_queue_release(dev->data->tx_queues[queue_idx]);
1529                 dev->data->tx_queues[queue_idx] = NULL;
1530         }
1531
1532         /* First allocate the tx queue data structure */
1533         txq = rte_zmalloc("ethdev TX queue", sizeof(struct igb_tx_queue),
1534                                                         RTE_CACHE_LINE_SIZE);
1535         if (txq == NULL)
1536                 return -ENOMEM;
1537
1538         /*
1539          * Allocate TX ring hardware descriptors. A memzone large enough to
1540          * handle the maximum ring size is allocated in order to allow for
1541          * resizing in later calls to the queue setup function.
1542          */
1543         size = sizeof(union e1000_adv_tx_desc) * E1000_MAX_RING_DESC;
1544         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx, size,
1545                                       E1000_ALIGN, socket_id);
1546         if (tz == NULL) {
1547                 igb_tx_queue_release(txq);
1548                 return -ENOMEM;
1549         }
1550
1551         txq->mz = tz;
1552         txq->nb_tx_desc = nb_desc;
1553         txq->pthresh = tx_conf->tx_thresh.pthresh;
1554         txq->hthresh = tx_conf->tx_thresh.hthresh;
1555         txq->wthresh = tx_conf->tx_thresh.wthresh;
1556         if (txq->wthresh > 0 && hw->mac.type == e1000_82576)
1557                 txq->wthresh = 1;
1558         txq->queue_id = queue_idx;
1559         txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
1560                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
1561         txq->port_id = dev->data->port_id;
1562
1563         txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(txq->reg_idx));
1564         txq->tx_ring_phys_addr = tz->iova;
1565
1566         txq->tx_ring = (union e1000_adv_tx_desc *) tz->addr;
1567         /* Allocate software ring */
1568         txq->sw_ring = rte_zmalloc("txq->sw_ring",
1569                                    sizeof(struct igb_tx_entry) * nb_desc,
1570                                    RTE_CACHE_LINE_SIZE);
1571         if (txq->sw_ring == NULL) {
1572                 igb_tx_queue_release(txq);
1573                 return -ENOMEM;
1574         }
1575         PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
1576                      txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
1577
1578         igb_reset_tx_queue(txq, dev);
1579         dev->tx_pkt_burst = eth_igb_xmit_pkts;
1580         dev->tx_pkt_prepare = &eth_igb_prep_pkts;
1581         dev->data->tx_queues[queue_idx] = txq;
1582         txq->offloads = offloads;
1583
1584         return 0;
1585 }
1586
1587 static void
1588 igb_rx_queue_release_mbufs(struct igb_rx_queue *rxq)
1589 {
1590         unsigned i;
1591
1592         if (rxq->sw_ring != NULL) {
1593                 for (i = 0; i < rxq->nb_rx_desc; i++) {
1594                         if (rxq->sw_ring[i].mbuf != NULL) {
1595                                 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
1596                                 rxq->sw_ring[i].mbuf = NULL;
1597                         }
1598                 }
1599         }
1600 }
1601
1602 static void
1603 igb_rx_queue_release(struct igb_rx_queue *rxq)
1604 {
1605         if (rxq != NULL) {
1606                 igb_rx_queue_release_mbufs(rxq);
1607                 rte_free(rxq->sw_ring);
1608                 rte_memzone_free(rxq->mz);
1609                 rte_free(rxq);
1610         }
1611 }
1612
1613 void
1614 eth_igb_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
1615 {
1616         igb_rx_queue_release(dev->data->rx_queues[qid]);
1617 }
1618
1619 static void
1620 igb_reset_rx_queue(struct igb_rx_queue *rxq)
1621 {
1622         static const union e1000_adv_rx_desc zeroed_desc = {{0}};
1623         unsigned i;
1624
1625         /* Zero out HW ring memory */
1626         for (i = 0; i < rxq->nb_rx_desc; i++) {
1627                 rxq->rx_ring[i] = zeroed_desc;
1628         }
1629
1630         rxq->rx_tail = 0;
1631         rxq->pkt_first_seg = NULL;
1632         rxq->pkt_last_seg = NULL;
1633 }
1634
1635 uint64_t
1636 igb_get_rx_port_offloads_capa(struct rte_eth_dev *dev)
1637 {
1638         uint64_t rx_offload_capa;
1639         struct e1000_hw *hw;
1640
1641         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1642
1643         rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP  |
1644                           DEV_RX_OFFLOAD_VLAN_FILTER |
1645                           DEV_RX_OFFLOAD_IPV4_CKSUM  |
1646                           DEV_RX_OFFLOAD_UDP_CKSUM   |
1647                           DEV_RX_OFFLOAD_TCP_CKSUM   |
1648                           DEV_RX_OFFLOAD_JUMBO_FRAME |
1649                           DEV_RX_OFFLOAD_KEEP_CRC    |
1650                           DEV_RX_OFFLOAD_SCATTER     |
1651                           DEV_RX_OFFLOAD_RSS_HASH;
1652
1653         if (hw->mac.type == e1000_i350 ||
1654             hw->mac.type == e1000_i210 ||
1655             hw->mac.type == e1000_i211)
1656                 rx_offload_capa |= DEV_RX_OFFLOAD_VLAN_EXTEND;
1657
1658         return rx_offload_capa;
1659 }
1660
1661 uint64_t
1662 igb_get_rx_queue_offloads_capa(struct rte_eth_dev *dev)
1663 {
1664         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1665         uint64_t rx_queue_offload_capa;
1666
1667         switch (hw->mac.type) {
1668         case e1000_vfadapt_i350:
1669                 /*
1670                  * As only one Rx queue can be used, let per queue offloading
1671                  * capability be same to per port queue offloading capability
1672                  * for better convenience.
1673                  */
1674                 rx_queue_offload_capa = igb_get_rx_port_offloads_capa(dev);
1675                 break;
1676         default:
1677                 rx_queue_offload_capa = 0;
1678         }
1679         return rx_queue_offload_capa;
1680 }
1681
1682 int
1683 eth_igb_rx_queue_setup(struct rte_eth_dev *dev,
1684                          uint16_t queue_idx,
1685                          uint16_t nb_desc,
1686                          unsigned int socket_id,
1687                          const struct rte_eth_rxconf *rx_conf,
1688                          struct rte_mempool *mp)
1689 {
1690         const struct rte_memzone *rz;
1691         struct igb_rx_queue *rxq;
1692         struct e1000_hw     *hw;
1693         unsigned int size;
1694         uint64_t offloads;
1695
1696         offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1697
1698         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1699
1700         /*
1701          * Validate number of receive descriptors.
1702          * It must not exceed hardware maximum, and must be multiple
1703          * of E1000_ALIGN.
1704          */
1705         if (nb_desc % IGB_RXD_ALIGN != 0 ||
1706                         (nb_desc > E1000_MAX_RING_DESC) ||
1707                         (nb_desc < E1000_MIN_RING_DESC)) {
1708                 return -EINVAL;
1709         }
1710
1711         /* Free memory prior to re-allocation if needed */
1712         if (dev->data->rx_queues[queue_idx] != NULL) {
1713                 igb_rx_queue_release(dev->data->rx_queues[queue_idx]);
1714                 dev->data->rx_queues[queue_idx] = NULL;
1715         }
1716
1717         /* First allocate the RX queue data structure. */
1718         rxq = rte_zmalloc("ethdev RX queue", sizeof(struct igb_rx_queue),
1719                           RTE_CACHE_LINE_SIZE);
1720         if (rxq == NULL)
1721                 return -ENOMEM;
1722         rxq->offloads = offloads;
1723         rxq->mb_pool = mp;
1724         rxq->nb_rx_desc = nb_desc;
1725         rxq->pthresh = rx_conf->rx_thresh.pthresh;
1726         rxq->hthresh = rx_conf->rx_thresh.hthresh;
1727         rxq->wthresh = rx_conf->rx_thresh.wthresh;
1728         if (rxq->wthresh > 0 &&
1729             (hw->mac.type == e1000_82576 || hw->mac.type == e1000_vfadapt_i350))
1730                 rxq->wthresh = 1;
1731         rxq->drop_en = rx_conf->rx_drop_en;
1732         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1733         rxq->queue_id = queue_idx;
1734         rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
1735                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
1736         rxq->port_id = dev->data->port_id;
1737         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
1738                 rxq->crc_len = RTE_ETHER_CRC_LEN;
1739         else
1740                 rxq->crc_len = 0;
1741
1742         /*
1743          *  Allocate RX ring hardware descriptors. A memzone large enough to
1744          *  handle the maximum ring size is allocated in order to allow for
1745          *  resizing in later calls to the queue setup function.
1746          */
1747         size = sizeof(union e1000_adv_rx_desc) * E1000_MAX_RING_DESC;
1748         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx, size,
1749                                       E1000_ALIGN, socket_id);
1750         if (rz == NULL) {
1751                 igb_rx_queue_release(rxq);
1752                 return -ENOMEM;
1753         }
1754
1755         rxq->mz = rz;
1756         rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(rxq->reg_idx));
1757         rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(rxq->reg_idx));
1758         rxq->rx_ring_phys_addr = rz->iova;
1759         rxq->rx_ring = (union e1000_adv_rx_desc *) rz->addr;
1760
1761         /* Allocate software ring. */
1762         rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
1763                                    sizeof(struct igb_rx_entry) * nb_desc,
1764                                    RTE_CACHE_LINE_SIZE);
1765         if (rxq->sw_ring == NULL) {
1766                 igb_rx_queue_release(rxq);
1767                 return -ENOMEM;
1768         }
1769         PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
1770                      rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
1771
1772         dev->data->rx_queues[queue_idx] = rxq;
1773         igb_reset_rx_queue(rxq);
1774
1775         return 0;
1776 }
1777
1778 uint32_t
1779 eth_igb_rx_queue_count(void *rx_queue)
1780 {
1781 #define IGB_RXQ_SCAN_INTERVAL 4
1782         volatile union e1000_adv_rx_desc *rxdp;
1783         struct igb_rx_queue *rxq;
1784         uint32_t desc = 0;
1785
1786         rxq = rx_queue;
1787         rxdp = &(rxq->rx_ring[rxq->rx_tail]);
1788
1789         while ((desc < rxq->nb_rx_desc) &&
1790                 (rxdp->wb.upper.status_error & E1000_RXD_STAT_DD)) {
1791                 desc += IGB_RXQ_SCAN_INTERVAL;
1792                 rxdp += IGB_RXQ_SCAN_INTERVAL;
1793                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1794                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
1795                                 desc - rxq->nb_rx_desc]);
1796         }
1797
1798         return desc;
1799 }
1800
1801 int
1802 eth_igb_rx_descriptor_status(void *rx_queue, uint16_t offset)
1803 {
1804         struct igb_rx_queue *rxq = rx_queue;
1805         volatile uint32_t *status;
1806         uint32_t desc;
1807
1808         if (unlikely(offset >= rxq->nb_rx_desc))
1809                 return -EINVAL;
1810
1811         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
1812                 return RTE_ETH_RX_DESC_UNAVAIL;
1813
1814         desc = rxq->rx_tail + offset;
1815         if (desc >= rxq->nb_rx_desc)
1816                 desc -= rxq->nb_rx_desc;
1817
1818         status = &rxq->rx_ring[desc].wb.upper.status_error;
1819         if (*status & rte_cpu_to_le_32(E1000_RXD_STAT_DD))
1820                 return RTE_ETH_RX_DESC_DONE;
1821
1822         return RTE_ETH_RX_DESC_AVAIL;
1823 }
1824
1825 int
1826 eth_igb_tx_descriptor_status(void *tx_queue, uint16_t offset)
1827 {
1828         struct igb_tx_queue *txq = tx_queue;
1829         volatile uint32_t *status;
1830         uint32_t desc;
1831
1832         if (unlikely(offset >= txq->nb_tx_desc))
1833                 return -EINVAL;
1834
1835         desc = txq->tx_tail + offset;
1836         if (desc >= txq->nb_tx_desc)
1837                 desc -= txq->nb_tx_desc;
1838
1839         status = &txq->tx_ring[desc].wb.status;
1840         if (*status & rte_cpu_to_le_32(E1000_TXD_STAT_DD))
1841                 return RTE_ETH_TX_DESC_DONE;
1842
1843         return RTE_ETH_TX_DESC_FULL;
1844 }
1845
1846 void
1847 igb_dev_clear_queues(struct rte_eth_dev *dev)
1848 {
1849         uint16_t i;
1850         struct igb_tx_queue *txq;
1851         struct igb_rx_queue *rxq;
1852
1853         for (i = 0; i < dev->data->nb_tx_queues; i++) {
1854                 txq = dev->data->tx_queues[i];
1855                 if (txq != NULL) {
1856                         igb_tx_queue_release_mbufs(txq);
1857                         igb_reset_tx_queue(txq, dev);
1858                 }
1859         }
1860
1861         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1862                 rxq = dev->data->rx_queues[i];
1863                 if (rxq != NULL) {
1864                         igb_rx_queue_release_mbufs(rxq);
1865                         igb_reset_rx_queue(rxq);
1866                 }
1867         }
1868 }
1869
1870 void
1871 igb_dev_free_queues(struct rte_eth_dev *dev)
1872 {
1873         uint16_t i;
1874
1875         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1876                 eth_igb_rx_queue_release(dev, i);
1877                 dev->data->rx_queues[i] = NULL;
1878         }
1879         dev->data->nb_rx_queues = 0;
1880
1881         for (i = 0; i < dev->data->nb_tx_queues; i++) {
1882                 eth_igb_tx_queue_release(dev, i);
1883                 dev->data->tx_queues[i] = NULL;
1884         }
1885         dev->data->nb_tx_queues = 0;
1886 }
1887
1888 /**
1889  * Receive Side Scaling (RSS).
1890  * See section 7.1.1.7 in the following document:
1891  *     "Intel 82576 GbE Controller Datasheet" - Revision 2.45 October 2009
1892  *
1893  * Principles:
1894  * The source and destination IP addresses of the IP header and the source and
1895  * destination ports of TCP/UDP headers, if any, of received packets are hashed
1896  * against a configurable random key to compute a 32-bit RSS hash result.
1897  * The seven (7) LSBs of the 32-bit hash result are used as an index into a
1898  * 128-entry redirection table (RETA).  Each entry of the RETA provides a 3-bit
1899  * RSS output index which is used as the RX queue index where to store the
1900  * received packets.
1901  * The following output is supplied in the RX write-back descriptor:
1902  *     - 32-bit result of the Microsoft RSS hash function,
1903  *     - 4-bit RSS type field.
1904  */
1905
1906 /*
1907  * RSS random key supplied in section 7.1.1.7.3 of the Intel 82576 datasheet.
1908  * Used as the default key.
1909  */
1910 static uint8_t rss_intel_key[40] = {
1911         0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
1912         0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
1913         0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
1914         0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
1915         0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
1916 };
1917
1918 static void
1919 igb_rss_disable(struct rte_eth_dev *dev)
1920 {
1921         struct e1000_hw *hw;
1922         uint32_t mrqc;
1923
1924         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1925         mrqc = E1000_READ_REG(hw, E1000_MRQC);
1926         mrqc &= ~E1000_MRQC_ENABLE_MASK;
1927         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
1928 }
1929
1930 static void
1931 igb_hw_rss_hash_set(struct e1000_hw *hw, struct rte_eth_rss_conf *rss_conf)
1932 {
1933         uint8_t  *hash_key;
1934         uint32_t rss_key;
1935         uint32_t mrqc;
1936         uint64_t rss_hf;
1937         uint16_t i;
1938
1939         hash_key = rss_conf->rss_key;
1940         if (hash_key != NULL) {
1941                 /* Fill in RSS hash key */
1942                 for (i = 0; i < 10; i++) {
1943                         rss_key  = hash_key[(i * 4)];
1944                         rss_key |= hash_key[(i * 4) + 1] << 8;
1945                         rss_key |= hash_key[(i * 4) + 2] << 16;
1946                         rss_key |= hash_key[(i * 4) + 3] << 24;
1947                         E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key);
1948                 }
1949         }
1950
1951         /* Set configured hashing protocols in MRQC register */
1952         rss_hf = rss_conf->rss_hf;
1953         mrqc = E1000_MRQC_ENABLE_RSS_4Q; /* RSS enabled. */
1954         if (rss_hf & ETH_RSS_IPV4)
1955                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4;
1956         if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
1957                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_TCP;
1958         if (rss_hf & ETH_RSS_IPV6)
1959                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6;
1960         if (rss_hf & ETH_RSS_IPV6_EX)
1961                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_EX;
1962         if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
1963                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP;
1964         if (rss_hf & ETH_RSS_IPV6_TCP_EX)
1965                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
1966         if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
1967                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
1968         if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
1969                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
1970         if (rss_hf & ETH_RSS_IPV6_UDP_EX)
1971                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP_EX;
1972         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
1973 }
1974
1975 int
1976 eth_igb_rss_hash_update(struct rte_eth_dev *dev,
1977                         struct rte_eth_rss_conf *rss_conf)
1978 {
1979         struct e1000_hw *hw;
1980         uint32_t mrqc;
1981         uint64_t rss_hf;
1982
1983         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1984
1985         /*
1986          * Before changing anything, first check that the update RSS operation
1987          * does not attempt to disable RSS, if RSS was enabled at
1988          * initialization time, or does not attempt to enable RSS, if RSS was
1989          * disabled at initialization time.
1990          */
1991         rss_hf = rss_conf->rss_hf & IGB_RSS_OFFLOAD_ALL;
1992         mrqc = E1000_READ_REG(hw, E1000_MRQC);
1993         if (!(mrqc & E1000_MRQC_ENABLE_MASK)) { /* RSS disabled */
1994                 if (rss_hf != 0) /* Enable RSS */
1995                         return -(EINVAL);
1996                 return 0; /* Nothing to do */
1997         }
1998         /* RSS enabled */
1999         if (rss_hf == 0) /* Disable RSS */
2000                 return -(EINVAL);
2001         igb_hw_rss_hash_set(hw, rss_conf);
2002         return 0;
2003 }
2004
2005 int eth_igb_rss_hash_conf_get(struct rte_eth_dev *dev,
2006                               struct rte_eth_rss_conf *rss_conf)
2007 {
2008         struct e1000_hw *hw;
2009         uint8_t *hash_key;
2010         uint32_t rss_key;
2011         uint32_t mrqc;
2012         uint64_t rss_hf;
2013         uint16_t i;
2014
2015         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2016         hash_key = rss_conf->rss_key;
2017         if (hash_key != NULL) {
2018                 /* Return RSS hash key */
2019                 for (i = 0; i < 10; i++) {
2020                         rss_key = E1000_READ_REG_ARRAY(hw, E1000_RSSRK(0), i);
2021                         hash_key[(i * 4)] = rss_key & 0x000000FF;
2022                         hash_key[(i * 4) + 1] = (rss_key >> 8) & 0x000000FF;
2023                         hash_key[(i * 4) + 2] = (rss_key >> 16) & 0x000000FF;
2024                         hash_key[(i * 4) + 3] = (rss_key >> 24) & 0x000000FF;
2025                 }
2026         }
2027
2028         /* Get RSS functions configured in MRQC register */
2029         mrqc = E1000_READ_REG(hw, E1000_MRQC);
2030         if ((mrqc & E1000_MRQC_ENABLE_RSS_4Q) == 0) { /* RSS is disabled */
2031                 rss_conf->rss_hf = 0;
2032                 return 0;
2033         }
2034         rss_hf = 0;
2035         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2036                 rss_hf |= ETH_RSS_IPV4;
2037         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2038                 rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
2039         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2040                 rss_hf |= ETH_RSS_IPV6;
2041         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_EX)
2042                 rss_hf |= ETH_RSS_IPV6_EX;
2043         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2044                 rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
2045         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP_EX)
2046                 rss_hf |= ETH_RSS_IPV6_TCP_EX;
2047         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_UDP)
2048                 rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
2049         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP)
2050                 rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
2051         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP_EX)
2052                 rss_hf |= ETH_RSS_IPV6_UDP_EX;
2053         rss_conf->rss_hf = rss_hf;
2054         return 0;
2055 }
2056
2057 static void
2058 igb_rss_configure(struct rte_eth_dev *dev)
2059 {
2060         struct rte_eth_rss_conf rss_conf;
2061         struct e1000_hw *hw;
2062         uint32_t shift;
2063         uint16_t i;
2064
2065         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2066
2067         /* Fill in redirection table. */
2068         shift = (hw->mac.type == e1000_82575) ? 6 : 0;
2069         for (i = 0; i < 128; i++) {
2070                 union e1000_reta {
2071                         uint32_t dword;
2072                         uint8_t  bytes[4];
2073                 } reta;
2074                 uint8_t q_idx;
2075
2076                 q_idx = (uint8_t) ((dev->data->nb_rx_queues > 1) ?
2077                                    i % dev->data->nb_rx_queues : 0);
2078                 reta.bytes[i & 3] = (uint8_t) (q_idx << shift);
2079                 if ((i & 3) == 3)
2080                         E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword);
2081         }
2082
2083         /*
2084          * Configure the RSS key and the RSS protocols used to compute
2085          * the RSS hash of input packets.
2086          */
2087         rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
2088         if ((rss_conf.rss_hf & IGB_RSS_OFFLOAD_ALL) == 0) {
2089                 igb_rss_disable(dev);
2090                 return;
2091         }
2092         if (rss_conf.rss_key == NULL)
2093                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
2094         igb_hw_rss_hash_set(hw, &rss_conf);
2095 }
2096
2097 /*
2098  * Check if the mac type support VMDq or not.
2099  * Return 1 if it supports, otherwise, return 0.
2100  */
2101 static int
2102 igb_is_vmdq_supported(const struct rte_eth_dev *dev)
2103 {
2104         const struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2105
2106         switch (hw->mac.type) {
2107         case e1000_82576:
2108         case e1000_82580:
2109         case e1000_i350:
2110                 return 1;
2111         case e1000_82540:
2112         case e1000_82541:
2113         case e1000_82542:
2114         case e1000_82543:
2115         case e1000_82544:
2116         case e1000_82545:
2117         case e1000_82546:
2118         case e1000_82547:
2119         case e1000_82571:
2120         case e1000_82572:
2121         case e1000_82573:
2122         case e1000_82574:
2123         case e1000_82583:
2124         case e1000_i210:
2125         case e1000_i211:
2126         default:
2127                 PMD_INIT_LOG(ERR, "Cannot support VMDq feature");
2128                 return 0;
2129         }
2130 }
2131
2132 static int
2133 igb_vmdq_rx_hw_configure(struct rte_eth_dev *dev)
2134 {
2135         struct rte_eth_vmdq_rx_conf *cfg;
2136         struct e1000_hw *hw;
2137         uint32_t mrqc, vt_ctl, vmolr, rctl;
2138         int i;
2139
2140         PMD_INIT_FUNC_TRACE();
2141
2142         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2143         cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
2144
2145         /* Check if mac type can support VMDq, return value of 0 means NOT support */
2146         if (igb_is_vmdq_supported(dev) == 0)
2147                 return -1;
2148
2149         igb_rss_disable(dev);
2150
2151         /* RCTL: eanble VLAN filter */
2152         rctl = E1000_READ_REG(hw, E1000_RCTL);
2153         rctl |= E1000_RCTL_VFE;
2154         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2155
2156         /* MRQC: enable vmdq */
2157         mrqc = E1000_READ_REG(hw, E1000_MRQC);
2158         mrqc |= E1000_MRQC_ENABLE_VMDQ;
2159         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2160
2161         /* VTCTL:  pool selection according to VLAN tag */
2162         vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
2163         if (cfg->enable_default_pool)
2164                 vt_ctl |= (cfg->default_pool << E1000_VT_CTL_DEFAULT_POOL_SHIFT);
2165         vt_ctl |= E1000_VT_CTL_IGNORE_MAC;
2166         E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
2167
2168         for (i = 0; i < E1000_VMOLR_SIZE; i++) {
2169                 vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
2170                 vmolr &= ~(E1000_VMOLR_AUPE | E1000_VMOLR_ROMPE |
2171                         E1000_VMOLR_ROPE | E1000_VMOLR_BAM |
2172                         E1000_VMOLR_MPME);
2173
2174                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_UNTAG)
2175                         vmolr |= E1000_VMOLR_AUPE;
2176                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_MC)
2177                         vmolr |= E1000_VMOLR_ROMPE;
2178                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_UC)
2179                         vmolr |= E1000_VMOLR_ROPE;
2180                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_BROADCAST)
2181                         vmolr |= E1000_VMOLR_BAM;
2182                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_MULTICAST)
2183                         vmolr |= E1000_VMOLR_MPME;
2184
2185                 E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
2186         }
2187
2188         /*
2189          * VMOLR: set STRVLAN as 1 if IGMAC in VTCTL is set as 1
2190          * Both 82576 and 82580 support it
2191          */
2192         if (hw->mac.type != e1000_i350) {
2193                 for (i = 0; i < E1000_VMOLR_SIZE; i++) {
2194                         vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
2195                         vmolr |= E1000_VMOLR_STRVLAN;
2196                         E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
2197                 }
2198         }
2199
2200         /* VFTA - enable all vlan filters */
2201         for (i = 0; i < IGB_VFTA_SIZE; i++)
2202                 E1000_WRITE_REG(hw, (E1000_VFTA+(i*4)), UINT32_MAX);
2203
2204         /* VFRE: 8 pools enabling for rx, both 82576 and i350 support it */
2205         if (hw->mac.type != e1000_82580)
2206                 E1000_WRITE_REG(hw, E1000_VFRE, E1000_MBVFICR_VFREQ_MASK);
2207
2208         /*
2209          * RAH/RAL - allow pools to read specific mac addresses
2210          * In this case, all pools should be able to read from mac addr 0
2211          */
2212         E1000_WRITE_REG(hw, E1000_RAH(0), (E1000_RAH_AV | UINT16_MAX));
2213         E1000_WRITE_REG(hw, E1000_RAL(0), UINT32_MAX);
2214
2215         /* VLVF: set up filters for vlan tags as configured */
2216         for (i = 0; i < cfg->nb_pool_maps; i++) {
2217                 /* set vlan id in VF register and set the valid bit */
2218                 E1000_WRITE_REG(hw, E1000_VLVF(i), (E1000_VLVF_VLANID_ENABLE | \
2219                         (cfg->pool_map[i].vlan_id & ETH_VLAN_ID_MAX) | \
2220                         ((cfg->pool_map[i].pools << E1000_VLVF_POOLSEL_SHIFT ) & \
2221                         E1000_VLVF_POOLSEL_MASK)));
2222         }
2223
2224         E1000_WRITE_FLUSH(hw);
2225
2226         return 0;
2227 }
2228
2229
2230 /*********************************************************************
2231  *
2232  *  Enable receive unit.
2233  *
2234  **********************************************************************/
2235
2236 static int
2237 igb_alloc_rx_queue_mbufs(struct igb_rx_queue *rxq)
2238 {
2239         struct igb_rx_entry *rxe = rxq->sw_ring;
2240         uint64_t dma_addr;
2241         unsigned i;
2242
2243         /* Initialize software ring entries. */
2244         for (i = 0; i < rxq->nb_rx_desc; i++) {
2245                 volatile union e1000_adv_rx_desc *rxd;
2246                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
2247
2248                 if (mbuf == NULL) {
2249                         PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
2250                                      "queue_id=%hu", rxq->queue_id);
2251                         return -ENOMEM;
2252                 }
2253                 dma_addr =
2254                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
2255                 rxd = &rxq->rx_ring[i];
2256                 rxd->read.hdr_addr = 0;
2257                 rxd->read.pkt_addr = dma_addr;
2258                 rxe[i].mbuf = mbuf;
2259         }
2260
2261         return 0;
2262 }
2263
2264 #define E1000_MRQC_DEF_Q_SHIFT               (3)
2265 static int
2266 igb_dev_mq_rx_configure(struct rte_eth_dev *dev)
2267 {
2268         struct e1000_hw *hw =
2269                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2270         uint32_t mrqc;
2271
2272         if (RTE_ETH_DEV_SRIOV(dev).active == ETH_8_POOLS) {
2273                 /*
2274                  * SRIOV active scheme
2275                  * FIXME if support RSS together with VMDq & SRIOV
2276                  */
2277                 mrqc = E1000_MRQC_ENABLE_VMDQ;
2278                 /* 011b Def_Q ignore, according to VT_CTL.DEF_PL */
2279                 mrqc |= 0x3 << E1000_MRQC_DEF_Q_SHIFT;
2280                 E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2281         } else if(RTE_ETH_DEV_SRIOV(dev).active == 0) {
2282                 /*
2283                  * SRIOV inactive scheme
2284                  */
2285                 switch (dev->data->dev_conf.rxmode.mq_mode) {
2286                         case ETH_MQ_RX_RSS:
2287                                 igb_rss_configure(dev);
2288                                 break;
2289                         case ETH_MQ_RX_VMDQ_ONLY:
2290                                 /*Configure general VMDQ only RX parameters*/
2291                                 igb_vmdq_rx_hw_configure(dev);
2292                                 break;
2293                         case ETH_MQ_RX_NONE:
2294                                 /* if mq_mode is none, disable rss mode.*/
2295                         default:
2296                                 igb_rss_disable(dev);
2297                                 break;
2298                 }
2299         }
2300
2301         return 0;
2302 }
2303
2304 int
2305 eth_igb_rx_init(struct rte_eth_dev *dev)
2306 {
2307         struct rte_eth_rxmode *rxmode;
2308         struct e1000_hw     *hw;
2309         struct igb_rx_queue *rxq;
2310         uint32_t rctl;
2311         uint32_t rxcsum;
2312         uint32_t srrctl;
2313         uint16_t buf_size;
2314         uint16_t rctl_bsize;
2315         uint32_t max_len;
2316         uint16_t i;
2317         int ret;
2318
2319         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2320         srrctl = 0;
2321
2322         /*
2323          * Make sure receives are disabled while setting
2324          * up the descriptor ring.
2325          */
2326         rctl = E1000_READ_REG(hw, E1000_RCTL);
2327         E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2328
2329         rxmode = &dev->data->dev_conf.rxmode;
2330
2331         /*
2332          * Configure support of jumbo frames, if any.
2333          */
2334         max_len = dev->data->mtu + E1000_ETH_OVERHEAD;
2335         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
2336                 rctl |= E1000_RCTL_LPE;
2337
2338                 /*
2339                  * Set maximum packet length by default, and might be updated
2340                  * together with enabling/disabling dual VLAN.
2341                  */
2342                 if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
2343                         max_len += VLAN_TAG_SIZE;
2344
2345                 E1000_WRITE_REG(hw, E1000_RLPML, max_len);
2346         } else
2347                 rctl &= ~E1000_RCTL_LPE;
2348
2349         /* Configure and enable each RX queue. */
2350         rctl_bsize = 0;
2351         dev->rx_pkt_burst = eth_igb_recv_pkts;
2352         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2353                 uint64_t bus_addr;
2354                 uint32_t rxdctl;
2355
2356                 rxq = dev->data->rx_queues[i];
2357
2358                 rxq->flags = 0;
2359                 /*
2360                  * i350 and i354 vlan packets have vlan tags byte swapped.
2361                  */
2362                 if (hw->mac.type == e1000_i350 || hw->mac.type == e1000_i354) {
2363                         rxq->flags |= IGB_RXQ_FLAG_LB_BSWAP_VLAN;
2364                         PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap required");
2365                 } else {
2366                         PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap not required");
2367                 }
2368
2369                 /* Allocate buffers for descriptor rings and set up queue */
2370                 ret = igb_alloc_rx_queue_mbufs(rxq);
2371                 if (ret)
2372                         return ret;
2373
2374                 /*
2375                  * Reset crc_len in case it was changed after queue setup by a
2376                  *  call to configure
2377                  */
2378                 if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
2379                         rxq->crc_len = RTE_ETHER_CRC_LEN;
2380                 else
2381                         rxq->crc_len = 0;
2382
2383                 bus_addr = rxq->rx_ring_phys_addr;
2384                 E1000_WRITE_REG(hw, E1000_RDLEN(rxq->reg_idx),
2385                                 rxq->nb_rx_desc *
2386                                 sizeof(union e1000_adv_rx_desc));
2387                 E1000_WRITE_REG(hw, E1000_RDBAH(rxq->reg_idx),
2388                                 (uint32_t)(bus_addr >> 32));
2389                 E1000_WRITE_REG(hw, E1000_RDBAL(rxq->reg_idx), (uint32_t)bus_addr);
2390
2391                 srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2392
2393                 /*
2394                  * Configure RX buffer size.
2395                  */
2396                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
2397                         RTE_PKTMBUF_HEADROOM);
2398                 if (buf_size >= 1024) {
2399                         /*
2400                          * Configure the BSIZEPACKET field of the SRRCTL
2401                          * register of the queue.
2402                          * Value is in 1 KB resolution, from 1 KB to 127 KB.
2403                          * If this field is equal to 0b, then RCTL.BSIZE
2404                          * determines the RX packet buffer size.
2405                          */
2406                         srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
2407                                    E1000_SRRCTL_BSIZEPKT_MASK);
2408                         buf_size = (uint16_t) ((srrctl &
2409                                                 E1000_SRRCTL_BSIZEPKT_MASK) <<
2410                                                E1000_SRRCTL_BSIZEPKT_SHIFT);
2411
2412                         /* It adds dual VLAN length for supporting dual VLAN */
2413                         if ((max_len + 2 * VLAN_TAG_SIZE) > buf_size) {
2414                                 if (!dev->data->scattered_rx)
2415                                         PMD_INIT_LOG(DEBUG,
2416                                                      "forcing scatter mode");
2417                                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2418                                 dev->data->scattered_rx = 1;
2419                         }
2420                 } else {
2421                         /*
2422                          * Use BSIZE field of the device RCTL register.
2423                          */
2424                         if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
2425                                 rctl_bsize = buf_size;
2426                         if (!dev->data->scattered_rx)
2427                                 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2428                         dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2429                         dev->data->scattered_rx = 1;
2430                 }
2431
2432                 /* Set if packets are dropped when no descriptors available */
2433                 if (rxq->drop_en)
2434                         srrctl |= E1000_SRRCTL_DROP_EN;
2435
2436                 E1000_WRITE_REG(hw, E1000_SRRCTL(rxq->reg_idx), srrctl);
2437
2438                 /* Enable this RX queue. */
2439                 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rxq->reg_idx));
2440                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2441                 rxdctl &= 0xFFF00000;
2442                 rxdctl |= (rxq->pthresh & 0x1F);
2443                 rxdctl |= ((rxq->hthresh & 0x1F) << 8);
2444                 rxdctl |= ((rxq->wthresh & 0x1F) << 16);
2445                 E1000_WRITE_REG(hw, E1000_RXDCTL(rxq->reg_idx), rxdctl);
2446         }
2447
2448         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) {
2449                 if (!dev->data->scattered_rx)
2450                         PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2451                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2452                 dev->data->scattered_rx = 1;
2453         }
2454
2455         /*
2456          * Setup BSIZE field of RCTL register, if needed.
2457          * Buffer sizes >= 1024 are not [supposed to be] setup in the RCTL
2458          * register, since the code above configures the SRRCTL register of
2459          * the RX queue in such a case.
2460          * All configurable sizes are:
2461          * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
2462          *  8192: rctl |= (E1000_RCTL_SZ_8192  | E1000_RCTL_BSEX);
2463          *  4096: rctl |= (E1000_RCTL_SZ_4096  | E1000_RCTL_BSEX);
2464          *  2048: rctl |= E1000_RCTL_SZ_2048;
2465          *  1024: rctl |= E1000_RCTL_SZ_1024;
2466          *   512: rctl |= E1000_RCTL_SZ_512;
2467          *   256: rctl |= E1000_RCTL_SZ_256;
2468          */
2469         if (rctl_bsize > 0) {
2470                 if (rctl_bsize >= 512) /* 512 <= buf_size < 1024 - use 512 */
2471                         rctl |= E1000_RCTL_SZ_512;
2472                 else /* 256 <= buf_size < 512 - use 256 */
2473                         rctl |= E1000_RCTL_SZ_256;
2474         }
2475
2476         /*
2477          * Configure RSS if device configured with multiple RX queues.
2478          */
2479         igb_dev_mq_rx_configure(dev);
2480
2481         /* Update the rctl since igb_dev_mq_rx_configure may change its value */
2482         rctl |= E1000_READ_REG(hw, E1000_RCTL);
2483
2484         /*
2485          * Setup the Checksum Register.
2486          * Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
2487          */
2488         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2489         rxcsum |= E1000_RXCSUM_PCSD;
2490
2491         /* Enable both L3/L4 rx checksum offload */
2492         if (rxmode->offloads & DEV_RX_OFFLOAD_IPV4_CKSUM)
2493                 rxcsum |= E1000_RXCSUM_IPOFL;
2494         else
2495                 rxcsum &= ~E1000_RXCSUM_IPOFL;
2496         if (rxmode->offloads &
2497                 (DEV_RX_OFFLOAD_TCP_CKSUM | DEV_RX_OFFLOAD_UDP_CKSUM))
2498                 rxcsum |= E1000_RXCSUM_TUOFL;
2499         else
2500                 rxcsum &= ~E1000_RXCSUM_TUOFL;
2501         if (rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM)
2502                 rxcsum |= E1000_RXCSUM_CRCOFL;
2503         else
2504                 rxcsum &= ~E1000_RXCSUM_CRCOFL;
2505
2506         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2507
2508         /* Setup the Receive Control Register. */
2509         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC) {
2510                 rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
2511
2512                 /* clear STRCRC bit in all queues */
2513                 if (hw->mac.type == e1000_i350 ||
2514                     hw->mac.type == e1000_i210 ||
2515                     hw->mac.type == e1000_i211 ||
2516                     hw->mac.type == e1000_i354) {
2517                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2518                                 rxq = dev->data->rx_queues[i];
2519                                 uint32_t dvmolr = E1000_READ_REG(hw,
2520                                         E1000_DVMOLR(rxq->reg_idx));
2521                                 dvmolr &= ~E1000_DVMOLR_STRCRC;
2522                                 E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
2523                         }
2524                 }
2525         } else {
2526                 rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
2527
2528                 /* set STRCRC bit in all queues */
2529                 if (hw->mac.type == e1000_i350 ||
2530                     hw->mac.type == e1000_i210 ||
2531                     hw->mac.type == e1000_i211 ||
2532                     hw->mac.type == e1000_i354) {
2533                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2534                                 rxq = dev->data->rx_queues[i];
2535                                 uint32_t dvmolr = E1000_READ_REG(hw,
2536                                         E1000_DVMOLR(rxq->reg_idx));
2537                                 dvmolr |= E1000_DVMOLR_STRCRC;
2538                                 E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
2539                         }
2540                 }
2541         }
2542
2543         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2544         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2545                 E1000_RCTL_RDMTS_HALF |
2546                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2547
2548         /* Make sure VLAN Filters are off. */
2549         if (dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_VMDQ_ONLY)
2550                 rctl &= ~E1000_RCTL_VFE;
2551         /* Don't store bad packets. */
2552         rctl &= ~E1000_RCTL_SBP;
2553
2554         /* Enable Receives. */
2555         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2556
2557         /*
2558          * Setup the HW Rx Head and Tail Descriptor Pointers.
2559          * This needs to be done after enable.
2560          */
2561         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2562                 rxq = dev->data->rx_queues[i];
2563                 E1000_WRITE_REG(hw, E1000_RDH(rxq->reg_idx), 0);
2564                 E1000_WRITE_REG(hw, E1000_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1);
2565         }
2566
2567         return 0;
2568 }
2569
2570 /*********************************************************************
2571  *
2572  *  Enable transmit unit.
2573  *
2574  **********************************************************************/
2575 void
2576 eth_igb_tx_init(struct rte_eth_dev *dev)
2577 {
2578         struct e1000_hw     *hw;
2579         struct igb_tx_queue *txq;
2580         uint32_t tctl;
2581         uint32_t txdctl;
2582         uint16_t i;
2583
2584         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2585
2586         /* Setup the Base and Length of the Tx Descriptor Rings. */
2587         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2588                 uint64_t bus_addr;
2589                 txq = dev->data->tx_queues[i];
2590                 bus_addr = txq->tx_ring_phys_addr;
2591
2592                 E1000_WRITE_REG(hw, E1000_TDLEN(txq->reg_idx),
2593                                 txq->nb_tx_desc *
2594                                 sizeof(union e1000_adv_tx_desc));
2595                 E1000_WRITE_REG(hw, E1000_TDBAH(txq->reg_idx),
2596                                 (uint32_t)(bus_addr >> 32));
2597                 E1000_WRITE_REG(hw, E1000_TDBAL(txq->reg_idx), (uint32_t)bus_addr);
2598
2599                 /* Setup the HW Tx Head and Tail descriptor pointers. */
2600                 E1000_WRITE_REG(hw, E1000_TDT(txq->reg_idx), 0);
2601                 E1000_WRITE_REG(hw, E1000_TDH(txq->reg_idx), 0);
2602
2603                 /* Setup Transmit threshold registers. */
2604                 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(txq->reg_idx));
2605                 txdctl |= txq->pthresh & 0x1F;
2606                 txdctl |= ((txq->hthresh & 0x1F) << 8);
2607                 txdctl |= ((txq->wthresh & 0x1F) << 16);
2608                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2609                 E1000_WRITE_REG(hw, E1000_TXDCTL(txq->reg_idx), txdctl);
2610         }
2611
2612         /* Program the Transmit Control Register. */
2613         tctl = E1000_READ_REG(hw, E1000_TCTL);
2614         tctl &= ~E1000_TCTL_CT;
2615         tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2616                  (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
2617
2618         e1000_config_collision_dist(hw);
2619
2620         /* This write will effectively turn on the transmit unit. */
2621         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
2622 }
2623
2624 /*********************************************************************
2625  *
2626  *  Enable VF receive unit.
2627  *
2628  **********************************************************************/
2629 int
2630 eth_igbvf_rx_init(struct rte_eth_dev *dev)
2631 {
2632         struct e1000_hw     *hw;
2633         struct igb_rx_queue *rxq;
2634         uint32_t srrctl;
2635         uint16_t buf_size;
2636         uint16_t rctl_bsize;
2637         uint32_t max_len;
2638         uint16_t i;
2639         int ret;
2640
2641         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2642
2643         /* setup MTU */
2644         max_len = dev->data->mtu + E1000_ETH_OVERHEAD;
2645         e1000_rlpml_set_vf(hw, (uint16_t)(max_len + VLAN_TAG_SIZE));
2646
2647         /* Configure and enable each RX queue. */
2648         rctl_bsize = 0;
2649         dev->rx_pkt_burst = eth_igb_recv_pkts;
2650         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2651                 uint64_t bus_addr;
2652                 uint32_t rxdctl;
2653
2654                 rxq = dev->data->rx_queues[i];
2655
2656                 rxq->flags = 0;
2657                 /*
2658                  * i350VF LB vlan packets have vlan tags byte swapped.
2659                  */
2660                 if (hw->mac.type == e1000_vfadapt_i350) {
2661                         rxq->flags |= IGB_RXQ_FLAG_LB_BSWAP_VLAN;
2662                         PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap required");
2663                 } else {
2664                         PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap not required");
2665                 }
2666
2667                 /* Allocate buffers for descriptor rings and set up queue */
2668                 ret = igb_alloc_rx_queue_mbufs(rxq);
2669                 if (ret)
2670                         return ret;
2671
2672                 bus_addr = rxq->rx_ring_phys_addr;
2673                 E1000_WRITE_REG(hw, E1000_RDLEN(i),
2674                                 rxq->nb_rx_desc *
2675                                 sizeof(union e1000_adv_rx_desc));
2676                 E1000_WRITE_REG(hw, E1000_RDBAH(i),
2677                                 (uint32_t)(bus_addr >> 32));
2678                 E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
2679
2680                 srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2681
2682                 /*
2683                  * Configure RX buffer size.
2684                  */
2685                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
2686                         RTE_PKTMBUF_HEADROOM);
2687                 if (buf_size >= 1024) {
2688                         /*
2689                          * Configure the BSIZEPACKET field of the SRRCTL
2690                          * register of the queue.
2691                          * Value is in 1 KB resolution, from 1 KB to 127 KB.
2692                          * If this field is equal to 0b, then RCTL.BSIZE
2693                          * determines the RX packet buffer size.
2694                          */
2695                         srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
2696                                    E1000_SRRCTL_BSIZEPKT_MASK);
2697                         buf_size = (uint16_t) ((srrctl &
2698                                                 E1000_SRRCTL_BSIZEPKT_MASK) <<
2699                                                E1000_SRRCTL_BSIZEPKT_SHIFT);
2700
2701                         /* It adds dual VLAN length for supporting dual VLAN */
2702                         if ((max_len + 2 * VLAN_TAG_SIZE) > buf_size) {
2703                                 if (!dev->data->scattered_rx)
2704                                         PMD_INIT_LOG(DEBUG,
2705                                                      "forcing scatter mode");
2706                                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2707                                 dev->data->scattered_rx = 1;
2708                         }
2709                 } else {
2710                         /*
2711                          * Use BSIZE field of the device RCTL register.
2712                          */
2713                         if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
2714                                 rctl_bsize = buf_size;
2715                         if (!dev->data->scattered_rx)
2716                                 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2717                         dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2718                         dev->data->scattered_rx = 1;
2719                 }
2720
2721                 /* Set if packets are dropped when no descriptors available */
2722                 if (rxq->drop_en)
2723                         srrctl |= E1000_SRRCTL_DROP_EN;
2724
2725                 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
2726
2727                 /* Enable this RX queue. */
2728                 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2729                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2730                 rxdctl &= 0xFFF00000;
2731                 rxdctl |= (rxq->pthresh & 0x1F);
2732                 rxdctl |= ((rxq->hthresh & 0x1F) << 8);
2733                 if (hw->mac.type == e1000_vfadapt) {
2734                         /*
2735                          * Workaround of 82576 VF Erratum
2736                          * force set WTHRESH to 1
2737                          * to avoid Write-Back not triggered sometimes
2738                          */
2739                         rxdctl |= 0x10000;
2740                         PMD_INIT_LOG(DEBUG, "Force set RX WTHRESH to 1 !");
2741                 }
2742                 else
2743                         rxdctl |= ((rxq->wthresh & 0x1F) << 16);
2744                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2745         }
2746
2747         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) {
2748                 if (!dev->data->scattered_rx)
2749                         PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2750                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2751                 dev->data->scattered_rx = 1;
2752         }
2753
2754         /*
2755          * Setup the HW Rx Head and Tail Descriptor Pointers.
2756          * This needs to be done after enable.
2757          */
2758         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2759                 rxq = dev->data->rx_queues[i];
2760                 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
2761                 E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
2762         }
2763
2764         return 0;
2765 }
2766
2767 /*********************************************************************
2768  *
2769  *  Enable VF transmit unit.
2770  *
2771  **********************************************************************/
2772 void
2773 eth_igbvf_tx_init(struct rte_eth_dev *dev)
2774 {
2775         struct e1000_hw     *hw;
2776         struct igb_tx_queue *txq;
2777         uint32_t txdctl;
2778         uint16_t i;
2779
2780         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2781
2782         /* Setup the Base and Length of the Tx Descriptor Rings. */
2783         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2784                 uint64_t bus_addr;
2785
2786                 txq = dev->data->tx_queues[i];
2787                 bus_addr = txq->tx_ring_phys_addr;
2788                 E1000_WRITE_REG(hw, E1000_TDLEN(i),
2789                                 txq->nb_tx_desc *
2790                                 sizeof(union e1000_adv_tx_desc));
2791                 E1000_WRITE_REG(hw, E1000_TDBAH(i),
2792                                 (uint32_t)(bus_addr >> 32));
2793                 E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
2794
2795                 /* Setup the HW Tx Head and Tail descriptor pointers. */
2796                 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
2797                 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
2798
2799                 /* Setup Transmit threshold registers. */
2800                 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
2801                 txdctl |= txq->pthresh & 0x1F;
2802                 txdctl |= ((txq->hthresh & 0x1F) << 8);
2803                 if (hw->mac.type == e1000_82576) {
2804                         /*
2805                          * Workaround of 82576 VF Erratum
2806                          * force set WTHRESH to 1
2807                          * to avoid Write-Back not triggered sometimes
2808                          */
2809                         txdctl |= 0x10000;
2810                         PMD_INIT_LOG(DEBUG, "Force set TX WTHRESH to 1 !");
2811                 }
2812                 else
2813                         txdctl |= ((txq->wthresh & 0x1F) << 16);
2814                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2815                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
2816         }
2817
2818 }
2819
2820 void
2821 igb_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2822         struct rte_eth_rxq_info *qinfo)
2823 {
2824         struct igb_rx_queue *rxq;
2825
2826         rxq = dev->data->rx_queues[queue_id];
2827
2828         qinfo->mp = rxq->mb_pool;
2829         qinfo->scattered_rx = dev->data->scattered_rx;
2830         qinfo->nb_desc = rxq->nb_rx_desc;
2831
2832         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
2833         qinfo->conf.rx_drop_en = rxq->drop_en;
2834         qinfo->conf.offloads = rxq->offloads;
2835 }
2836
2837 void
2838 igb_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2839         struct rte_eth_txq_info *qinfo)
2840 {
2841         struct igb_tx_queue *txq;
2842
2843         txq = dev->data->tx_queues[queue_id];
2844
2845         qinfo->nb_desc = txq->nb_tx_desc;
2846
2847         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
2848         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
2849         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
2850         qinfo->conf.offloads = txq->offloads;
2851 }
2852
2853 int
2854 igb_rss_conf_init(struct rte_eth_dev *dev,
2855                   struct igb_rte_flow_rss_conf *out,
2856                   const struct rte_flow_action_rss *in)
2857 {
2858         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2859
2860         if (in->key_len > RTE_DIM(out->key) ||
2861             ((hw->mac.type == e1000_82576) &&
2862              (in->queue_num > IGB_MAX_RX_QUEUE_NUM_82576)) ||
2863             ((hw->mac.type != e1000_82576) &&
2864              (in->queue_num > IGB_MAX_RX_QUEUE_NUM)))
2865                 return -EINVAL;
2866         out->conf = (struct rte_flow_action_rss){
2867                 .func = in->func,
2868                 .level = in->level,
2869                 .types = in->types,
2870                 .key_len = in->key_len,
2871                 .queue_num = in->queue_num,
2872                 .key = memcpy(out->key, in->key, in->key_len),
2873                 .queue = memcpy(out->queue, in->queue,
2874                                 sizeof(*in->queue) * in->queue_num),
2875         };
2876         return 0;
2877 }
2878
2879 int
2880 igb_action_rss_same(const struct rte_flow_action_rss *comp,
2881                     const struct rte_flow_action_rss *with)
2882 {
2883         return (comp->func == with->func &&
2884                 comp->level == with->level &&
2885                 comp->types == with->types &&
2886                 comp->key_len == with->key_len &&
2887                 comp->queue_num == with->queue_num &&
2888                 !memcmp(comp->key, with->key, with->key_len) &&
2889                 !memcmp(comp->queue, with->queue,
2890                         sizeof(*with->queue) * with->queue_num));
2891 }
2892
2893 int
2894 igb_config_rss_filter(struct rte_eth_dev *dev,
2895                 struct igb_rte_flow_rss_conf *conf, bool add)
2896 {
2897         uint32_t shift;
2898         uint16_t i, j;
2899         struct rte_eth_rss_conf rss_conf = {
2900                 .rss_key = conf->conf.key_len ?
2901                         (void *)(uintptr_t)conf->conf.key : NULL,
2902                 .rss_key_len = conf->conf.key_len,
2903                 .rss_hf = conf->conf.types,
2904         };
2905         struct e1000_filter_info *filter_info =
2906                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
2907         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2908
2909         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2910
2911         if (!add) {
2912                 if (igb_action_rss_same(&filter_info->rss_info.conf,
2913                                         &conf->conf)) {
2914                         igb_rss_disable(dev);
2915                         memset(&filter_info->rss_info, 0,
2916                                 sizeof(struct igb_rte_flow_rss_conf));
2917                         return 0;
2918                 }
2919                 return -EINVAL;
2920         }
2921
2922         if (filter_info->rss_info.conf.queue_num)
2923                 return -EINVAL;
2924
2925         /* Fill in redirection table. */
2926         shift = (hw->mac.type == e1000_82575) ? 6 : 0;
2927         for (i = 0, j = 0; i < 128; i++, j++) {
2928                 union e1000_reta {
2929                         uint32_t dword;
2930                         uint8_t  bytes[4];
2931                 } reta;
2932                 uint8_t q_idx;
2933
2934                 if (j == conf->conf.queue_num)
2935                         j = 0;
2936                 q_idx = conf->conf.queue[j];
2937                 reta.bytes[i & 3] = (uint8_t)(q_idx << shift);
2938                 if ((i & 3) == 3)
2939                         E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword);
2940         }
2941
2942         /* Configure the RSS key and the RSS protocols used to compute
2943          * the RSS hash of input packets.
2944          */
2945         if ((rss_conf.rss_hf & IGB_RSS_OFFLOAD_ALL) == 0) {
2946                 igb_rss_disable(dev);
2947                 return 0;
2948         }
2949         if (rss_conf.rss_key == NULL)
2950                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
2951         igb_hw_rss_hash_set(hw, &rss_conf);
2952
2953         if (igb_rss_conf_init(dev, &filter_info->rss_info, &conf->conf))
2954                 return -EINVAL;
2955
2956         return 0;
2957 }