5f729f271048f227d643b97acbceb56ad93e20a6
[dpdk.git] / drivers / net / e1000 / igb_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6
7 #include <stdio.h>
8 #include <stdlib.h>
9 #include <string.h>
10 #include <errno.h>
11 #include <stdint.h>
12 #include <stdarg.h>
13 #include <inttypes.h>
14
15 #include <rte_interrupts.h>
16 #include <rte_byteorder.h>
17 #include <rte_common.h>
18 #include <rte_log.h>
19 #include <rte_debug.h>
20 #include <rte_pci.h>
21 #include <rte_memory.h>
22 #include <rte_memcpy.h>
23 #include <rte_memzone.h>
24 #include <rte_launch.h>
25 #include <rte_eal.h>
26 #include <rte_per_lcore.h>
27 #include <rte_lcore.h>
28 #include <rte_atomic.h>
29 #include <rte_branch_prediction.h>
30 #include <rte_mempool.h>
31 #include <rte_malloc.h>
32 #include <rte_mbuf.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev_driver.h>
35 #include <rte_prefetch.h>
36 #include <rte_udp.h>
37 #include <rte_tcp.h>
38 #include <rte_sctp.h>
39 #include <rte_net.h>
40 #include <rte_string_fns.h>
41
42 #include "e1000_logs.h"
43 #include "base/e1000_api.h"
44 #include "e1000_ethdev.h"
45
46 #ifdef RTE_LIBRTE_IEEE1588
47 #define IGB_TX_IEEE1588_TMST PKT_TX_IEEE1588_TMST
48 #else
49 #define IGB_TX_IEEE1588_TMST 0
50 #endif
51 /* Bit Mask to indicate what bits required for building TX context */
52 #define IGB_TX_OFFLOAD_MASK (                    \
53                 PKT_TX_VLAN_PKT |                \
54                 PKT_TX_IP_CKSUM |                \
55                 PKT_TX_L4_MASK |                 \
56                 PKT_TX_TCP_SEG |                 \
57                 IGB_TX_IEEE1588_TMST)
58
59 #define IGB_TX_OFFLOAD_NOTSUP_MASK \
60                 (PKT_TX_OFFLOAD_MASK ^ IGB_TX_OFFLOAD_MASK)
61
62 /**
63  * Structure associated with each descriptor of the RX ring of a RX queue.
64  */
65 struct igb_rx_entry {
66         struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
67 };
68
69 /**
70  * Structure associated with each descriptor of the TX ring of a TX queue.
71  */
72 struct igb_tx_entry {
73         struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
74         uint16_t next_id; /**< Index of next descriptor in ring. */
75         uint16_t last_id; /**< Index of last scattered descriptor. */
76 };
77
78 /**
79  * rx queue flags
80  */
81 enum igb_rxq_flags {
82         IGB_RXQ_FLAG_LB_BSWAP_VLAN = 0x01,
83 };
84
85 /**
86  * Structure associated with each RX queue.
87  */
88 struct igb_rx_queue {
89         struct rte_mempool  *mb_pool;   /**< mbuf pool to populate RX ring. */
90         volatile union e1000_adv_rx_desc *rx_ring; /**< RX ring virtual address. */
91         uint64_t            rx_ring_phys_addr; /**< RX ring DMA address. */
92         volatile uint32_t   *rdt_reg_addr; /**< RDT register address. */
93         volatile uint32_t   *rdh_reg_addr; /**< RDH register address. */
94         struct igb_rx_entry *sw_ring;   /**< address of RX software ring. */
95         struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
96         struct rte_mbuf *pkt_last_seg;  /**< Last segment of current packet. */
97         uint16_t            nb_rx_desc; /**< number of RX descriptors. */
98         uint16_t            rx_tail;    /**< current value of RDT register. */
99         uint16_t            nb_rx_hold; /**< number of held free RX desc. */
100         uint16_t            rx_free_thresh; /**< max free RX desc to hold. */
101         uint16_t            queue_id;   /**< RX queue index. */
102         uint16_t            reg_idx;    /**< RX queue register index. */
103         uint16_t            port_id;    /**< Device port identifier. */
104         uint8_t             pthresh;    /**< Prefetch threshold register. */
105         uint8_t             hthresh;    /**< Host threshold register. */
106         uint8_t             wthresh;    /**< Write-back threshold register. */
107         uint8_t             crc_len;    /**< 0 if CRC stripped, 4 otherwise. */
108         uint8_t             drop_en;  /**< If not 0, set SRRCTL.Drop_En. */
109         uint32_t            flags;      /**< RX flags. */
110         uint64_t            offloads;   /**< offloads of DEV_RX_OFFLOAD_* */
111 };
112
113 /**
114  * Hardware context number
115  */
116 enum igb_advctx_num {
117         IGB_CTX_0    = 0, /**< CTX0    */
118         IGB_CTX_1    = 1, /**< CTX1    */
119         IGB_CTX_NUM  = 2, /**< CTX_NUM */
120 };
121
122 /** Offload features */
123 union igb_tx_offload {
124         uint64_t data;
125         struct {
126                 uint64_t l3_len:9; /**< L3 (IP) Header Length. */
127                 uint64_t l2_len:7; /**< L2 (MAC) Header Length. */
128                 uint64_t vlan_tci:16;  /**< VLAN Tag Control Identifier(CPU order). */
129                 uint64_t l4_len:8; /**< L4 (TCP/UDP) Header Length. */
130                 uint64_t tso_segsz:16; /**< TCP TSO segment size. */
131
132                 /* uint64_t unused:8; */
133         };
134 };
135
136 /*
137  * Compare mask for igb_tx_offload.data,
138  * should be in sync with igb_tx_offload layout.
139  * */
140 #define TX_MACIP_LEN_CMP_MASK   0x000000000000FFFFULL /**< L2L3 header mask. */
141 #define TX_VLAN_CMP_MASK                0x00000000FFFF0000ULL /**< Vlan mask. */
142 #define TX_TCP_LEN_CMP_MASK             0x000000FF00000000ULL /**< TCP header mask. */
143 #define TX_TSO_MSS_CMP_MASK             0x00FFFF0000000000ULL /**< TSO segsz mask. */
144 /** Mac + IP + TCP + Mss mask. */
145 #define TX_TSO_CMP_MASK \
146         (TX_MACIP_LEN_CMP_MASK | TX_TCP_LEN_CMP_MASK | TX_TSO_MSS_CMP_MASK)
147
148 /**
149  * Strucutre to check if new context need be built
150  */
151 struct igb_advctx_info {
152         uint64_t flags;           /**< ol_flags related to context build. */
153         /** tx offload: vlan, tso, l2-l3-l4 lengths. */
154         union igb_tx_offload tx_offload;
155         /** compare mask for tx offload. */
156         union igb_tx_offload tx_offload_mask;
157 };
158
159 /**
160  * Structure associated with each TX queue.
161  */
162 struct igb_tx_queue {
163         volatile union e1000_adv_tx_desc *tx_ring; /**< TX ring address */
164         uint64_t               tx_ring_phys_addr; /**< TX ring DMA address. */
165         struct igb_tx_entry    *sw_ring; /**< virtual address of SW ring. */
166         volatile uint32_t      *tdt_reg_addr; /**< Address of TDT register. */
167         uint32_t               txd_type;      /**< Device-specific TXD type */
168         uint16_t               nb_tx_desc;    /**< number of TX descriptors. */
169         uint16_t               tx_tail; /**< Current value of TDT register. */
170         uint16_t               tx_head;
171         /**< Index of first used TX descriptor. */
172         uint16_t               queue_id; /**< TX queue index. */
173         uint16_t               reg_idx;  /**< TX queue register index. */
174         uint16_t               port_id;  /**< Device port identifier. */
175         uint8_t                pthresh;  /**< Prefetch threshold register. */
176         uint8_t                hthresh;  /**< Host threshold register. */
177         uint8_t                wthresh;  /**< Write-back threshold register. */
178         uint32_t               ctx_curr;
179         /**< Current used hardware descriptor. */
180         uint32_t               ctx_start;
181         /**< Start context position for transmit queue. */
182         struct igb_advctx_info ctx_cache[IGB_CTX_NUM];
183         /**< Hardware context history.*/
184         uint64_t               offloads; /**< offloads of DEV_TX_OFFLOAD_* */
185 };
186
187 #if 1
188 #define RTE_PMD_USE_PREFETCH
189 #endif
190
191 #ifdef RTE_PMD_USE_PREFETCH
192 #define rte_igb_prefetch(p)     rte_prefetch0(p)
193 #else
194 #define rte_igb_prefetch(p)     do {} while(0)
195 #endif
196
197 #ifdef RTE_PMD_PACKET_PREFETCH
198 #define rte_packet_prefetch(p) rte_prefetch1(p)
199 #else
200 #define rte_packet_prefetch(p)  do {} while(0)
201 #endif
202
203 /*
204  * Macro for VMDq feature for 1 GbE NIC.
205  */
206 #define E1000_VMOLR_SIZE                        (8)
207 #define IGB_TSO_MAX_HDRLEN                      (512)
208 #define IGB_TSO_MAX_MSS                         (9216)
209
210 /*********************************************************************
211  *
212  *  TX function
213  *
214  **********************************************************************/
215
216 /*
217  *There're some limitations in hardware for TCP segmentation offload. We
218  *should check whether the parameters are valid.
219  */
220 static inline uint64_t
221 check_tso_para(uint64_t ol_req, union igb_tx_offload ol_para)
222 {
223         if (!(ol_req & PKT_TX_TCP_SEG))
224                 return ol_req;
225         if ((ol_para.tso_segsz > IGB_TSO_MAX_MSS) || (ol_para.l2_len +
226                         ol_para.l3_len + ol_para.l4_len > IGB_TSO_MAX_HDRLEN)) {
227                 ol_req &= ~PKT_TX_TCP_SEG;
228                 ol_req |= PKT_TX_TCP_CKSUM;
229         }
230         return ol_req;
231 }
232
233 /*
234  * Advanced context descriptor are almost same between igb/ixgbe
235  * This is a separate function, looking for optimization opportunity here
236  * Rework required to go with the pre-defined values.
237  */
238
239 static inline void
240 igbe_set_xmit_ctx(struct igb_tx_queue* txq,
241                 volatile struct e1000_adv_tx_context_desc *ctx_txd,
242                 uint64_t ol_flags, union igb_tx_offload tx_offload)
243 {
244         uint32_t type_tucmd_mlhl;
245         uint32_t mss_l4len_idx;
246         uint32_t ctx_idx, ctx_curr;
247         uint32_t vlan_macip_lens;
248         union igb_tx_offload tx_offload_mask;
249
250         ctx_curr = txq->ctx_curr;
251         ctx_idx = ctx_curr + txq->ctx_start;
252
253         tx_offload_mask.data = 0;
254         type_tucmd_mlhl = 0;
255
256         /* Specify which HW CTX to upload. */
257         mss_l4len_idx = (ctx_idx << E1000_ADVTXD_IDX_SHIFT);
258
259         if (ol_flags & PKT_TX_VLAN_PKT)
260                 tx_offload_mask.data |= TX_VLAN_CMP_MASK;
261
262         /* check if TCP segmentation required for this packet */
263         if (ol_flags & PKT_TX_TCP_SEG) {
264                 /* implies IP cksum in IPv4 */
265                 if (ol_flags & PKT_TX_IP_CKSUM)
266                         type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4 |
267                                 E1000_ADVTXD_TUCMD_L4T_TCP |
268                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
269                 else
270                         type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV6 |
271                                 E1000_ADVTXD_TUCMD_L4T_TCP |
272                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
273
274                 tx_offload_mask.data |= TX_TSO_CMP_MASK;
275                 mss_l4len_idx |= tx_offload.tso_segsz << E1000_ADVTXD_MSS_SHIFT;
276                 mss_l4len_idx |= tx_offload.l4_len << E1000_ADVTXD_L4LEN_SHIFT;
277         } else { /* no TSO, check if hardware checksum is needed */
278                 if (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK))
279                         tx_offload_mask.data |= TX_MACIP_LEN_CMP_MASK;
280
281                 if (ol_flags & PKT_TX_IP_CKSUM)
282                         type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4;
283
284                 switch (ol_flags & PKT_TX_L4_MASK) {
285                 case PKT_TX_UDP_CKSUM:
286                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP |
287                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
288                         mss_l4len_idx |= sizeof(struct udp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
289                         break;
290                 case PKT_TX_TCP_CKSUM:
291                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP |
292                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
293                         mss_l4len_idx |= sizeof(struct tcp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
294                         break;
295                 case PKT_TX_SCTP_CKSUM:
296                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP |
297                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
298                         mss_l4len_idx |= sizeof(struct sctp_hdr) << E1000_ADVTXD_L4LEN_SHIFT;
299                         break;
300                 default:
301                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_RSV |
302                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
303                         break;
304                 }
305         }
306
307         txq->ctx_cache[ctx_curr].flags = ol_flags;
308         txq->ctx_cache[ctx_curr].tx_offload.data =
309                 tx_offload_mask.data & tx_offload.data;
310         txq->ctx_cache[ctx_curr].tx_offload_mask = tx_offload_mask;
311
312         ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
313         vlan_macip_lens = (uint32_t)tx_offload.data;
314         ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
315         ctx_txd->mss_l4len_idx = rte_cpu_to_le_32(mss_l4len_idx);
316         ctx_txd->seqnum_seed = 0;
317 }
318
319 /*
320  * Check which hardware context can be used. Use the existing match
321  * or create a new context descriptor.
322  */
323 static inline uint32_t
324 what_advctx_update(struct igb_tx_queue *txq, uint64_t flags,
325                 union igb_tx_offload tx_offload)
326 {
327         /* If match with the current context */
328         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
329                 (txq->ctx_cache[txq->ctx_curr].tx_offload.data ==
330                 (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data & tx_offload.data)))) {
331                         return txq->ctx_curr;
332         }
333
334         /* If match with the second context */
335         txq->ctx_curr ^= 1;
336         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
337                 (txq->ctx_cache[txq->ctx_curr].tx_offload.data ==
338                 (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data & tx_offload.data)))) {
339                         return txq->ctx_curr;
340         }
341
342         /* Mismatch, use the previous context */
343         return IGB_CTX_NUM;
344 }
345
346 static inline uint32_t
347 tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
348 {
349         static const uint32_t l4_olinfo[2] = {0, E1000_ADVTXD_POPTS_TXSM};
350         static const uint32_t l3_olinfo[2] = {0, E1000_ADVTXD_POPTS_IXSM};
351         uint32_t tmp;
352
353         tmp  = l4_olinfo[(ol_flags & PKT_TX_L4_MASK)  != PKT_TX_L4_NO_CKSUM];
354         tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
355         tmp |= l4_olinfo[(ol_flags & PKT_TX_TCP_SEG) != 0];
356         return tmp;
357 }
358
359 static inline uint32_t
360 tx_desc_vlan_flags_to_cmdtype(uint64_t ol_flags)
361 {
362         uint32_t cmdtype;
363         static uint32_t vlan_cmd[2] = {0, E1000_ADVTXD_DCMD_VLE};
364         static uint32_t tso_cmd[2] = {0, E1000_ADVTXD_DCMD_TSE};
365         cmdtype = vlan_cmd[(ol_flags & PKT_TX_VLAN_PKT) != 0];
366         cmdtype |= tso_cmd[(ol_flags & PKT_TX_TCP_SEG) != 0];
367         return cmdtype;
368 }
369
370 uint16_t
371 eth_igb_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
372                uint16_t nb_pkts)
373 {
374         struct igb_tx_queue *txq;
375         struct igb_tx_entry *sw_ring;
376         struct igb_tx_entry *txe, *txn;
377         volatile union e1000_adv_tx_desc *txr;
378         volatile union e1000_adv_tx_desc *txd;
379         struct rte_mbuf     *tx_pkt;
380         struct rte_mbuf     *m_seg;
381         uint64_t buf_dma_addr;
382         uint32_t olinfo_status;
383         uint32_t cmd_type_len;
384         uint32_t pkt_len;
385         uint16_t slen;
386         uint64_t ol_flags;
387         uint16_t tx_end;
388         uint16_t tx_id;
389         uint16_t tx_last;
390         uint16_t nb_tx;
391         uint64_t tx_ol_req;
392         uint32_t new_ctx = 0;
393         uint32_t ctx = 0;
394         union igb_tx_offload tx_offload = {0};
395
396         txq = tx_queue;
397         sw_ring = txq->sw_ring;
398         txr     = txq->tx_ring;
399         tx_id   = txq->tx_tail;
400         txe = &sw_ring[tx_id];
401
402         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
403                 tx_pkt = *tx_pkts++;
404                 pkt_len = tx_pkt->pkt_len;
405
406                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
407
408                 /*
409                  * The number of descriptors that must be allocated for a
410                  * packet is the number of segments of that packet, plus 1
411                  * Context Descriptor for the VLAN Tag Identifier, if any.
412                  * Determine the last TX descriptor to allocate in the TX ring
413                  * for the packet, starting from the current position (tx_id)
414                  * in the ring.
415                  */
416                 tx_last = (uint16_t) (tx_id + tx_pkt->nb_segs - 1);
417
418                 ol_flags = tx_pkt->ol_flags;
419                 tx_ol_req = ol_flags & IGB_TX_OFFLOAD_MASK;
420
421                 /* If a Context Descriptor need be built . */
422                 if (tx_ol_req) {
423                         tx_offload.l2_len = tx_pkt->l2_len;
424                         tx_offload.l3_len = tx_pkt->l3_len;
425                         tx_offload.l4_len = tx_pkt->l4_len;
426                         tx_offload.vlan_tci = tx_pkt->vlan_tci;
427                         tx_offload.tso_segsz = tx_pkt->tso_segsz;
428                         tx_ol_req = check_tso_para(tx_ol_req, tx_offload);
429
430                         ctx = what_advctx_update(txq, tx_ol_req, tx_offload);
431                         /* Only allocate context descriptor if required*/
432                         new_ctx = (ctx == IGB_CTX_NUM);
433                         ctx = txq->ctx_curr + txq->ctx_start;
434                         tx_last = (uint16_t) (tx_last + new_ctx);
435                 }
436                 if (tx_last >= txq->nb_tx_desc)
437                         tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
438
439                 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
440                            " tx_first=%u tx_last=%u",
441                            (unsigned) txq->port_id,
442                            (unsigned) txq->queue_id,
443                            (unsigned) pkt_len,
444                            (unsigned) tx_id,
445                            (unsigned) tx_last);
446
447                 /*
448                  * Check if there are enough free descriptors in the TX ring
449                  * to transmit the next packet.
450                  * This operation is based on the two following rules:
451                  *
452                  *   1- Only check that the last needed TX descriptor can be
453                  *      allocated (by construction, if that descriptor is free,
454                  *      all intermediate ones are also free).
455                  *
456                  *      For this purpose, the index of the last TX descriptor
457                  *      used for a packet (the "last descriptor" of a packet)
458                  *      is recorded in the TX entries (the last one included)
459                  *      that are associated with all TX descriptors allocated
460                  *      for that packet.
461                  *
462                  *   2- Avoid to allocate the last free TX descriptor of the
463                  *      ring, in order to never set the TDT register with the
464                  *      same value stored in parallel by the NIC in the TDH
465                  *      register, which makes the TX engine of the NIC enter
466                  *      in a deadlock situation.
467                  *
468                  *      By extension, avoid to allocate a free descriptor that
469                  *      belongs to the last set of free descriptors allocated
470                  *      to the same packet previously transmitted.
471                  */
472
473                 /*
474                  * The "last descriptor" of the previously sent packet, if any,
475                  * which used the last descriptor to allocate.
476                  */
477                 tx_end = sw_ring[tx_last].last_id;
478
479                 /*
480                  * The next descriptor following that "last descriptor" in the
481                  * ring.
482                  */
483                 tx_end = sw_ring[tx_end].next_id;
484
485                 /*
486                  * The "last descriptor" associated with that next descriptor.
487                  */
488                 tx_end = sw_ring[tx_end].last_id;
489
490                 /*
491                  * Check that this descriptor is free.
492                  */
493                 if (! (txr[tx_end].wb.status & E1000_TXD_STAT_DD)) {
494                         if (nb_tx == 0)
495                                 return 0;
496                         goto end_of_tx;
497                 }
498
499                 /*
500                  * Set common flags of all TX Data Descriptors.
501                  *
502                  * The following bits must be set in all Data Descriptors:
503                  *   - E1000_ADVTXD_DTYP_DATA
504                  *   - E1000_ADVTXD_DCMD_DEXT
505                  *
506                  * The following bits must be set in the first Data Descriptor
507                  * and are ignored in the other ones:
508                  *   - E1000_ADVTXD_DCMD_IFCS
509                  *   - E1000_ADVTXD_MAC_1588
510                  *   - E1000_ADVTXD_DCMD_VLE
511                  *
512                  * The following bits must only be set in the last Data
513                  * Descriptor:
514                  *   - E1000_TXD_CMD_EOP
515                  *
516                  * The following bits can be set in any Data Descriptor, but
517                  * are only set in the last Data Descriptor:
518                  *   - E1000_TXD_CMD_RS
519                  */
520                 cmd_type_len = txq->txd_type |
521                         E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
522                 if (tx_ol_req & PKT_TX_TCP_SEG)
523                         pkt_len -= (tx_pkt->l2_len + tx_pkt->l3_len + tx_pkt->l4_len);
524                 olinfo_status = (pkt_len << E1000_ADVTXD_PAYLEN_SHIFT);
525 #if defined(RTE_LIBRTE_IEEE1588)
526                 if (ol_flags & PKT_TX_IEEE1588_TMST)
527                         cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
528 #endif
529                 if (tx_ol_req) {
530                         /* Setup TX Advanced context descriptor if required */
531                         if (new_ctx) {
532                                 volatile struct e1000_adv_tx_context_desc *
533                                     ctx_txd;
534
535                                 ctx_txd = (volatile struct
536                                     e1000_adv_tx_context_desc *)
537                                     &txr[tx_id];
538
539                                 txn = &sw_ring[txe->next_id];
540                                 RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
541
542                                 if (txe->mbuf != NULL) {
543                                         rte_pktmbuf_free_seg(txe->mbuf);
544                                         txe->mbuf = NULL;
545                                 }
546
547                                 igbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req, tx_offload);
548
549                                 txe->last_id = tx_last;
550                                 tx_id = txe->next_id;
551                                 txe = txn;
552                         }
553
554                         /* Setup the TX Advanced Data Descriptor */
555                         cmd_type_len  |= tx_desc_vlan_flags_to_cmdtype(tx_ol_req);
556                         olinfo_status |= tx_desc_cksum_flags_to_olinfo(tx_ol_req);
557                         olinfo_status |= (ctx << E1000_ADVTXD_IDX_SHIFT);
558                 }
559
560                 m_seg = tx_pkt;
561                 do {
562                         txn = &sw_ring[txe->next_id];
563                         txd = &txr[tx_id];
564
565                         if (txe->mbuf != NULL)
566                                 rte_pktmbuf_free_seg(txe->mbuf);
567                         txe->mbuf = m_seg;
568
569                         /*
570                          * Set up transmit descriptor.
571                          */
572                         slen = (uint16_t) m_seg->data_len;
573                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
574                         txd->read.buffer_addr =
575                                 rte_cpu_to_le_64(buf_dma_addr);
576                         txd->read.cmd_type_len =
577                                 rte_cpu_to_le_32(cmd_type_len | slen);
578                         txd->read.olinfo_status =
579                                 rte_cpu_to_le_32(olinfo_status);
580                         txe->last_id = tx_last;
581                         tx_id = txe->next_id;
582                         txe = txn;
583                         m_seg = m_seg->next;
584                 } while (m_seg != NULL);
585
586                 /*
587                  * The last packet data descriptor needs End Of Packet (EOP)
588                  * and Report Status (RS).
589                  */
590                 txd->read.cmd_type_len |=
591                         rte_cpu_to_le_32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
592         }
593  end_of_tx:
594         rte_wmb();
595
596         /*
597          * Set the Transmit Descriptor Tail (TDT).
598          */
599         E1000_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, tx_id);
600         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
601                    (unsigned) txq->port_id, (unsigned) txq->queue_id,
602                    (unsigned) tx_id, (unsigned) nb_tx);
603         txq->tx_tail = tx_id;
604
605         return nb_tx;
606 }
607
608 /*********************************************************************
609  *
610  *  TX prep functions
611  *
612  **********************************************************************/
613 uint16_t
614 eth_igb_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
615                 uint16_t nb_pkts)
616 {
617         int i, ret;
618         struct rte_mbuf *m;
619
620         for (i = 0; i < nb_pkts; i++) {
621                 m = tx_pkts[i];
622
623                 /* Check some limitations for TSO in hardware */
624                 if (m->ol_flags & PKT_TX_TCP_SEG)
625                         if ((m->tso_segsz > IGB_TSO_MAX_MSS) ||
626                                         (m->l2_len + m->l3_len + m->l4_len >
627                                         IGB_TSO_MAX_HDRLEN)) {
628                                 rte_errno = -EINVAL;
629                                 return i;
630                         }
631
632                 if (m->ol_flags & IGB_TX_OFFLOAD_NOTSUP_MASK) {
633                         rte_errno = -ENOTSUP;
634                         return i;
635                 }
636
637 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
638                 ret = rte_validate_tx_offload(m);
639                 if (ret != 0) {
640                         rte_errno = ret;
641                         return i;
642                 }
643 #endif
644                 ret = rte_net_intel_cksum_prepare(m);
645                 if (ret != 0) {
646                         rte_errno = ret;
647                         return i;
648                 }
649         }
650
651         return i;
652 }
653
654 /*********************************************************************
655  *
656  *  RX functions
657  *
658  **********************************************************************/
659 #define IGB_PACKET_TYPE_IPV4              0X01
660 #define IGB_PACKET_TYPE_IPV4_TCP          0X11
661 #define IGB_PACKET_TYPE_IPV4_UDP          0X21
662 #define IGB_PACKET_TYPE_IPV4_SCTP         0X41
663 #define IGB_PACKET_TYPE_IPV4_EXT          0X03
664 #define IGB_PACKET_TYPE_IPV4_EXT_SCTP     0X43
665 #define IGB_PACKET_TYPE_IPV6              0X04
666 #define IGB_PACKET_TYPE_IPV6_TCP          0X14
667 #define IGB_PACKET_TYPE_IPV6_UDP          0X24
668 #define IGB_PACKET_TYPE_IPV6_EXT          0X0C
669 #define IGB_PACKET_TYPE_IPV6_EXT_TCP      0X1C
670 #define IGB_PACKET_TYPE_IPV6_EXT_UDP      0X2C
671 #define IGB_PACKET_TYPE_IPV4_IPV6         0X05
672 #define IGB_PACKET_TYPE_IPV4_IPV6_TCP     0X15
673 #define IGB_PACKET_TYPE_IPV4_IPV6_UDP     0X25
674 #define IGB_PACKET_TYPE_IPV4_IPV6_EXT     0X0D
675 #define IGB_PACKET_TYPE_IPV4_IPV6_EXT_TCP 0X1D
676 #define IGB_PACKET_TYPE_IPV4_IPV6_EXT_UDP 0X2D
677 #define IGB_PACKET_TYPE_MAX               0X80
678 #define IGB_PACKET_TYPE_MASK              0X7F
679 #define IGB_PACKET_TYPE_SHIFT             0X04
680 static inline uint32_t
681 igb_rxd_pkt_info_to_pkt_type(uint16_t pkt_info)
682 {
683         static const uint32_t
684                 ptype_table[IGB_PACKET_TYPE_MAX] __rte_cache_aligned = {
685                 [IGB_PACKET_TYPE_IPV4] = RTE_PTYPE_L2_ETHER |
686                         RTE_PTYPE_L3_IPV4,
687                 [IGB_PACKET_TYPE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
688                         RTE_PTYPE_L3_IPV4_EXT,
689                 [IGB_PACKET_TYPE_IPV6] = RTE_PTYPE_L2_ETHER |
690                         RTE_PTYPE_L3_IPV6,
691                 [IGB_PACKET_TYPE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
692                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
693                         RTE_PTYPE_INNER_L3_IPV6,
694                 [IGB_PACKET_TYPE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
695                         RTE_PTYPE_L3_IPV6_EXT,
696                 [IGB_PACKET_TYPE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
697                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
698                         RTE_PTYPE_INNER_L3_IPV6_EXT,
699                 [IGB_PACKET_TYPE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
700                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
701                 [IGB_PACKET_TYPE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
702                         RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
703                 [IGB_PACKET_TYPE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
704                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
705                         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
706                 [IGB_PACKET_TYPE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
707                         RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP,
708                 [IGB_PACKET_TYPE_IPV4_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
709                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
710                         RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
711                 [IGB_PACKET_TYPE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
712                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
713                 [IGB_PACKET_TYPE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
714                         RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
715                 [IGB_PACKET_TYPE_IPV4_IPV6_UDP] =  RTE_PTYPE_L2_ETHER |
716                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
717                         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
718                 [IGB_PACKET_TYPE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
719                         RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
720                 [IGB_PACKET_TYPE_IPV4_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
721                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
722                         RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
723                 [IGB_PACKET_TYPE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
724                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_SCTP,
725                 [IGB_PACKET_TYPE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
726                         RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_SCTP,
727         };
728         if (unlikely(pkt_info & E1000_RXDADV_PKTTYPE_ETQF))
729                 return RTE_PTYPE_UNKNOWN;
730
731         pkt_info = (pkt_info >> IGB_PACKET_TYPE_SHIFT) & IGB_PACKET_TYPE_MASK;
732
733         return ptype_table[pkt_info];
734 }
735
736 static inline uint64_t
737 rx_desc_hlen_type_rss_to_pkt_flags(struct igb_rx_queue *rxq, uint32_t hl_tp_rs)
738 {
739         uint64_t pkt_flags = ((hl_tp_rs & 0x0F) == 0) ?  0 : PKT_RX_RSS_HASH;
740
741 #if defined(RTE_LIBRTE_IEEE1588)
742         static uint32_t ip_pkt_etqf_map[8] = {
743                 0, 0, 0, PKT_RX_IEEE1588_PTP,
744                 0, 0, 0, 0,
745         };
746
747         struct rte_eth_dev dev = rte_eth_devices[rxq->port_id];
748         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev.data->dev_private);
749
750         /* EtherType is in bits 8:10 in Packet Type, and not in the default 0:2 */
751         if (hw->mac.type == e1000_i210)
752                 pkt_flags |= ip_pkt_etqf_map[(hl_tp_rs >> 12) & 0x07];
753         else
754                 pkt_flags |= ip_pkt_etqf_map[(hl_tp_rs >> 4) & 0x07];
755 #else
756         RTE_SET_USED(rxq);
757 #endif
758
759         return pkt_flags;
760 }
761
762 static inline uint64_t
763 rx_desc_status_to_pkt_flags(uint32_t rx_status)
764 {
765         uint64_t pkt_flags;
766
767         /* Check if VLAN present */
768         pkt_flags = ((rx_status & E1000_RXD_STAT_VP) ?
769                 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED : 0);
770
771 #if defined(RTE_LIBRTE_IEEE1588)
772         if (rx_status & E1000_RXD_STAT_TMST)
773                 pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST;
774 #endif
775         return pkt_flags;
776 }
777
778 static inline uint64_t
779 rx_desc_error_to_pkt_flags(uint32_t rx_status)
780 {
781         /*
782          * Bit 30: IPE, IPv4 checksum error
783          * Bit 29: L4I, L4I integrity error
784          */
785
786         static uint64_t error_to_pkt_flags_map[4] = {
787                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD,
788                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
789                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD,
790                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
791         };
792         return error_to_pkt_flags_map[(rx_status >>
793                 E1000_RXD_ERR_CKSUM_BIT) & E1000_RXD_ERR_CKSUM_MSK];
794 }
795
796 uint16_t
797 eth_igb_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
798                uint16_t nb_pkts)
799 {
800         struct igb_rx_queue *rxq;
801         volatile union e1000_adv_rx_desc *rx_ring;
802         volatile union e1000_adv_rx_desc *rxdp;
803         struct igb_rx_entry *sw_ring;
804         struct igb_rx_entry *rxe;
805         struct rte_mbuf *rxm;
806         struct rte_mbuf *nmb;
807         union e1000_adv_rx_desc rxd;
808         uint64_t dma_addr;
809         uint32_t staterr;
810         uint32_t hlen_type_rss;
811         uint16_t pkt_len;
812         uint16_t rx_id;
813         uint16_t nb_rx;
814         uint16_t nb_hold;
815         uint64_t pkt_flags;
816
817         nb_rx = 0;
818         nb_hold = 0;
819         rxq = rx_queue;
820         rx_id = rxq->rx_tail;
821         rx_ring = rxq->rx_ring;
822         sw_ring = rxq->sw_ring;
823         while (nb_rx < nb_pkts) {
824                 /*
825                  * The order of operations here is important as the DD status
826                  * bit must not be read after any other descriptor fields.
827                  * rx_ring and rxdp are pointing to volatile data so the order
828                  * of accesses cannot be reordered by the compiler. If they were
829                  * not volatile, they could be reordered which could lead to
830                  * using invalid descriptor fields when read from rxd.
831                  */
832                 rxdp = &rx_ring[rx_id];
833                 staterr = rxdp->wb.upper.status_error;
834                 if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
835                         break;
836                 rxd = *rxdp;
837
838                 /*
839                  * End of packet.
840                  *
841                  * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
842                  * likely to be invalid and to be dropped by the various
843                  * validation checks performed by the network stack.
844                  *
845                  * Allocate a new mbuf to replenish the RX ring descriptor.
846                  * If the allocation fails:
847                  *    - arrange for that RX descriptor to be the first one
848                  *      being parsed the next time the receive function is
849                  *      invoked [on the same queue].
850                  *
851                  *    - Stop parsing the RX ring and return immediately.
852                  *
853                  * This policy do not drop the packet received in the RX
854                  * descriptor for which the allocation of a new mbuf failed.
855                  * Thus, it allows that packet to be later retrieved if
856                  * mbuf have been freed in the mean time.
857                  * As a side effect, holding RX descriptors instead of
858                  * systematically giving them back to the NIC may lead to
859                  * RX ring exhaustion situations.
860                  * However, the NIC can gracefully prevent such situations
861                  * to happen by sending specific "back-pressure" flow control
862                  * frames to its peer(s).
863                  */
864                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
865                            "staterr=0x%x pkt_len=%u",
866                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
867                            (unsigned) rx_id, (unsigned) staterr,
868                            (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
869
870                 nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
871                 if (nmb == NULL) {
872                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
873                                    "queue_id=%u", (unsigned) rxq->port_id,
874                                    (unsigned) rxq->queue_id);
875                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
876                         break;
877                 }
878
879                 nb_hold++;
880                 rxe = &sw_ring[rx_id];
881                 rx_id++;
882                 if (rx_id == rxq->nb_rx_desc)
883                         rx_id = 0;
884
885                 /* Prefetch next mbuf while processing current one. */
886                 rte_igb_prefetch(sw_ring[rx_id].mbuf);
887
888                 /*
889                  * When next RX descriptor is on a cache-line boundary,
890                  * prefetch the next 4 RX descriptors and the next 8 pointers
891                  * to mbufs.
892                  */
893                 if ((rx_id & 0x3) == 0) {
894                         rte_igb_prefetch(&rx_ring[rx_id]);
895                         rte_igb_prefetch(&sw_ring[rx_id]);
896                 }
897
898                 rxm = rxe->mbuf;
899                 rxe->mbuf = nmb;
900                 dma_addr =
901                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
902                 rxdp->read.hdr_addr = 0;
903                 rxdp->read.pkt_addr = dma_addr;
904
905                 /*
906                  * Initialize the returned mbuf.
907                  * 1) setup generic mbuf fields:
908                  *    - number of segments,
909                  *    - next segment,
910                  *    - packet length,
911                  *    - RX port identifier.
912                  * 2) integrate hardware offload data, if any:
913                  *    - RSS flag & hash,
914                  *    - IP checksum flag,
915                  *    - VLAN TCI, if any,
916                  *    - error flags.
917                  */
918                 pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
919                                       rxq->crc_len);
920                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
921                 rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
922                 rxm->nb_segs = 1;
923                 rxm->next = NULL;
924                 rxm->pkt_len = pkt_len;
925                 rxm->data_len = pkt_len;
926                 rxm->port = rxq->port_id;
927
928                 rxm->hash.rss = rxd.wb.lower.hi_dword.rss;
929                 hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
930
931                 /*
932                  * The vlan_tci field is only valid when PKT_RX_VLAN is
933                  * set in the pkt_flags field and must be in CPU byte order.
934                  */
935                 if ((staterr & rte_cpu_to_le_32(E1000_RXDEXT_STATERR_LB)) &&
936                                 (rxq->flags & IGB_RXQ_FLAG_LB_BSWAP_VLAN)) {
937                         rxm->vlan_tci = rte_be_to_cpu_16(rxd.wb.upper.vlan);
938                 } else {
939                         rxm->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
940                 }
941                 pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(rxq, hlen_type_rss);
942                 pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
943                 pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
944                 rxm->ol_flags = pkt_flags;
945                 rxm->packet_type = igb_rxd_pkt_info_to_pkt_type(rxd.wb.lower.
946                                                 lo_dword.hs_rss.pkt_info);
947
948                 /*
949                  * Store the mbuf address into the next entry of the array
950                  * of returned packets.
951                  */
952                 rx_pkts[nb_rx++] = rxm;
953         }
954         rxq->rx_tail = rx_id;
955
956         /*
957          * If the number of free RX descriptors is greater than the RX free
958          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
959          * register.
960          * Update the RDT with the value of the last processed RX descriptor
961          * minus 1, to guarantee that the RDT register is never equal to the
962          * RDH register, which creates a "full" ring situtation from the
963          * hardware point of view...
964          */
965         nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
966         if (nb_hold > rxq->rx_free_thresh) {
967                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
968                            "nb_hold=%u nb_rx=%u",
969                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
970                            (unsigned) rx_id, (unsigned) nb_hold,
971                            (unsigned) nb_rx);
972                 rx_id = (uint16_t) ((rx_id == 0) ?
973                                      (rxq->nb_rx_desc - 1) : (rx_id - 1));
974                 E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
975                 nb_hold = 0;
976         }
977         rxq->nb_rx_hold = nb_hold;
978         return nb_rx;
979 }
980
981 uint16_t
982 eth_igb_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
983                          uint16_t nb_pkts)
984 {
985         struct igb_rx_queue *rxq;
986         volatile union e1000_adv_rx_desc *rx_ring;
987         volatile union e1000_adv_rx_desc *rxdp;
988         struct igb_rx_entry *sw_ring;
989         struct igb_rx_entry *rxe;
990         struct rte_mbuf *first_seg;
991         struct rte_mbuf *last_seg;
992         struct rte_mbuf *rxm;
993         struct rte_mbuf *nmb;
994         union e1000_adv_rx_desc rxd;
995         uint64_t dma; /* Physical address of mbuf data buffer */
996         uint32_t staterr;
997         uint32_t hlen_type_rss;
998         uint16_t rx_id;
999         uint16_t nb_rx;
1000         uint16_t nb_hold;
1001         uint16_t data_len;
1002         uint64_t pkt_flags;
1003
1004         nb_rx = 0;
1005         nb_hold = 0;
1006         rxq = rx_queue;
1007         rx_id = rxq->rx_tail;
1008         rx_ring = rxq->rx_ring;
1009         sw_ring = rxq->sw_ring;
1010
1011         /*
1012          * Retrieve RX context of current packet, if any.
1013          */
1014         first_seg = rxq->pkt_first_seg;
1015         last_seg = rxq->pkt_last_seg;
1016
1017         while (nb_rx < nb_pkts) {
1018         next_desc:
1019                 /*
1020                  * The order of operations here is important as the DD status
1021                  * bit must not be read after any other descriptor fields.
1022                  * rx_ring and rxdp are pointing to volatile data so the order
1023                  * of accesses cannot be reordered by the compiler. If they were
1024                  * not volatile, they could be reordered which could lead to
1025                  * using invalid descriptor fields when read from rxd.
1026                  */
1027                 rxdp = &rx_ring[rx_id];
1028                 staterr = rxdp->wb.upper.status_error;
1029                 if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
1030                         break;
1031                 rxd = *rxdp;
1032
1033                 /*
1034                  * Descriptor done.
1035                  *
1036                  * Allocate a new mbuf to replenish the RX ring descriptor.
1037                  * If the allocation fails:
1038                  *    - arrange for that RX descriptor to be the first one
1039                  *      being parsed the next time the receive function is
1040                  *      invoked [on the same queue].
1041                  *
1042                  *    - Stop parsing the RX ring and return immediately.
1043                  *
1044                  * This policy does not drop the packet received in the RX
1045                  * descriptor for which the allocation of a new mbuf failed.
1046                  * Thus, it allows that packet to be later retrieved if
1047                  * mbuf have been freed in the mean time.
1048                  * As a side effect, holding RX descriptors instead of
1049                  * systematically giving them back to the NIC may lead to
1050                  * RX ring exhaustion situations.
1051                  * However, the NIC can gracefully prevent such situations
1052                  * to happen by sending specific "back-pressure" flow control
1053                  * frames to its peer(s).
1054                  */
1055                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
1056                            "staterr=0x%x data_len=%u",
1057                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1058                            (unsigned) rx_id, (unsigned) staterr,
1059                            (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
1060
1061                 nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
1062                 if (nmb == NULL) {
1063                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1064                                    "queue_id=%u", (unsigned) rxq->port_id,
1065                                    (unsigned) rxq->queue_id);
1066                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
1067                         break;
1068                 }
1069
1070                 nb_hold++;
1071                 rxe = &sw_ring[rx_id];
1072                 rx_id++;
1073                 if (rx_id == rxq->nb_rx_desc)
1074                         rx_id = 0;
1075
1076                 /* Prefetch next mbuf while processing current one. */
1077                 rte_igb_prefetch(sw_ring[rx_id].mbuf);
1078
1079                 /*
1080                  * When next RX descriptor is on a cache-line boundary,
1081                  * prefetch the next 4 RX descriptors and the next 8 pointers
1082                  * to mbufs.
1083                  */
1084                 if ((rx_id & 0x3) == 0) {
1085                         rte_igb_prefetch(&rx_ring[rx_id]);
1086                         rte_igb_prefetch(&sw_ring[rx_id]);
1087                 }
1088
1089                 /*
1090                  * Update RX descriptor with the physical address of the new
1091                  * data buffer of the new allocated mbuf.
1092                  */
1093                 rxm = rxe->mbuf;
1094                 rxe->mbuf = nmb;
1095                 dma = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1096                 rxdp->read.pkt_addr = dma;
1097                 rxdp->read.hdr_addr = 0;
1098
1099                 /*
1100                  * Set data length & data buffer address of mbuf.
1101                  */
1102                 data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
1103                 rxm->data_len = data_len;
1104                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1105
1106                 /*
1107                  * If this is the first buffer of the received packet,
1108                  * set the pointer to the first mbuf of the packet and
1109                  * initialize its context.
1110                  * Otherwise, update the total length and the number of segments
1111                  * of the current scattered packet, and update the pointer to
1112                  * the last mbuf of the current packet.
1113                  */
1114                 if (first_seg == NULL) {
1115                         first_seg = rxm;
1116                         first_seg->pkt_len = data_len;
1117                         first_seg->nb_segs = 1;
1118                 } else {
1119                         first_seg->pkt_len += data_len;
1120                         first_seg->nb_segs++;
1121                         last_seg->next = rxm;
1122                 }
1123
1124                 /*
1125                  * If this is not the last buffer of the received packet,
1126                  * update the pointer to the last mbuf of the current scattered
1127                  * packet and continue to parse the RX ring.
1128                  */
1129                 if (! (staterr & E1000_RXD_STAT_EOP)) {
1130                         last_seg = rxm;
1131                         goto next_desc;
1132                 }
1133
1134                 /*
1135                  * This is the last buffer of the received packet.
1136                  * If the CRC is not stripped by the hardware:
1137                  *   - Subtract the CRC length from the total packet length.
1138                  *   - If the last buffer only contains the whole CRC or a part
1139                  *     of it, free the mbuf associated to the last buffer.
1140                  *     If part of the CRC is also contained in the previous
1141                  *     mbuf, subtract the length of that CRC part from the
1142                  *     data length of the previous mbuf.
1143                  */
1144                 rxm->next = NULL;
1145                 if (unlikely(rxq->crc_len > 0)) {
1146                         first_seg->pkt_len -= ETHER_CRC_LEN;
1147                         if (data_len <= ETHER_CRC_LEN) {
1148                                 rte_pktmbuf_free_seg(rxm);
1149                                 first_seg->nb_segs--;
1150                                 last_seg->data_len = (uint16_t)
1151                                         (last_seg->data_len -
1152                                          (ETHER_CRC_LEN - data_len));
1153                                 last_seg->next = NULL;
1154                         } else
1155                                 rxm->data_len =
1156                                         (uint16_t) (data_len - ETHER_CRC_LEN);
1157                 }
1158
1159                 /*
1160                  * Initialize the first mbuf of the returned packet:
1161                  *    - RX port identifier,
1162                  *    - hardware offload data, if any:
1163                  *      - RSS flag & hash,
1164                  *      - IP checksum flag,
1165                  *      - VLAN TCI, if any,
1166                  *      - error flags.
1167                  */
1168                 first_seg->port = rxq->port_id;
1169                 first_seg->hash.rss = rxd.wb.lower.hi_dword.rss;
1170
1171                 /*
1172                  * The vlan_tci field is only valid when PKT_RX_VLAN is
1173                  * set in the pkt_flags field and must be in CPU byte order.
1174                  */
1175                 if ((staterr & rte_cpu_to_le_32(E1000_RXDEXT_STATERR_LB)) &&
1176                                 (rxq->flags & IGB_RXQ_FLAG_LB_BSWAP_VLAN)) {
1177                         first_seg->vlan_tci =
1178                                 rte_be_to_cpu_16(rxd.wb.upper.vlan);
1179                 } else {
1180                         first_seg->vlan_tci =
1181                                 rte_le_to_cpu_16(rxd.wb.upper.vlan);
1182                 }
1183                 hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
1184                 pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(rxq, hlen_type_rss);
1185                 pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
1186                 pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
1187                 first_seg->ol_flags = pkt_flags;
1188                 first_seg->packet_type = igb_rxd_pkt_info_to_pkt_type(rxd.wb.
1189                                         lower.lo_dword.hs_rss.pkt_info);
1190
1191                 /* Prefetch data of first segment, if configured to do so. */
1192                 rte_packet_prefetch((char *)first_seg->buf_addr +
1193                         first_seg->data_off);
1194
1195                 /*
1196                  * Store the mbuf address into the next entry of the array
1197                  * of returned packets.
1198                  */
1199                 rx_pkts[nb_rx++] = first_seg;
1200
1201                 /*
1202                  * Setup receipt context for a new packet.
1203                  */
1204                 first_seg = NULL;
1205         }
1206
1207         /*
1208          * Record index of the next RX descriptor to probe.
1209          */
1210         rxq->rx_tail = rx_id;
1211
1212         /*
1213          * Save receive context.
1214          */
1215         rxq->pkt_first_seg = first_seg;
1216         rxq->pkt_last_seg = last_seg;
1217
1218         /*
1219          * If the number of free RX descriptors is greater than the RX free
1220          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1221          * register.
1222          * Update the RDT with the value of the last processed RX descriptor
1223          * minus 1, to guarantee that the RDT register is never equal to the
1224          * RDH register, which creates a "full" ring situtation from the
1225          * hardware point of view...
1226          */
1227         nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
1228         if (nb_hold > rxq->rx_free_thresh) {
1229                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
1230                            "nb_hold=%u nb_rx=%u",
1231                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1232                            (unsigned) rx_id, (unsigned) nb_hold,
1233                            (unsigned) nb_rx);
1234                 rx_id = (uint16_t) ((rx_id == 0) ?
1235                                      (rxq->nb_rx_desc - 1) : (rx_id - 1));
1236                 E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
1237                 nb_hold = 0;
1238         }
1239         rxq->nb_rx_hold = nb_hold;
1240         return nb_rx;
1241 }
1242
1243 /*
1244  * Maximum number of Ring Descriptors.
1245  *
1246  * Since RDLEN/TDLEN should be multiple of 128bytes, the number of ring
1247  * desscriptors should meet the following condition:
1248  *      (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0
1249  */
1250
1251 static void
1252 igb_tx_queue_release_mbufs(struct igb_tx_queue *txq)
1253 {
1254         unsigned i;
1255
1256         if (txq->sw_ring != NULL) {
1257                 for (i = 0; i < txq->nb_tx_desc; i++) {
1258                         if (txq->sw_ring[i].mbuf != NULL) {
1259                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
1260                                 txq->sw_ring[i].mbuf = NULL;
1261                         }
1262                 }
1263         }
1264 }
1265
1266 static void
1267 igb_tx_queue_release(struct igb_tx_queue *txq)
1268 {
1269         if (txq != NULL) {
1270                 igb_tx_queue_release_mbufs(txq);
1271                 rte_free(txq->sw_ring);
1272                 rte_free(txq);
1273         }
1274 }
1275
1276 void
1277 eth_igb_tx_queue_release(void *txq)
1278 {
1279         igb_tx_queue_release(txq);
1280 }
1281
1282 static int
1283 igb_tx_done_cleanup(struct igb_tx_queue *txq, uint32_t free_cnt)
1284 {
1285         struct igb_tx_entry *sw_ring;
1286         volatile union e1000_adv_tx_desc *txr;
1287         uint16_t tx_first; /* First segment analyzed. */
1288         uint16_t tx_id;    /* Current segment being processed. */
1289         uint16_t tx_last;  /* Last segment in the current packet. */
1290         uint16_t tx_next;  /* First segment of the next packet. */
1291         int count;
1292
1293         if (txq != NULL) {
1294                 count = 0;
1295                 sw_ring = txq->sw_ring;
1296                 txr = txq->tx_ring;
1297
1298                 /*
1299                  * tx_tail is the last sent packet on the sw_ring. Goto the end
1300                  * of that packet (the last segment in the packet chain) and
1301                  * then the next segment will be the start of the oldest segment
1302                  * in the sw_ring. This is the first packet that will be
1303                  * attempted to be freed.
1304                  */
1305
1306                 /* Get last segment in most recently added packet. */
1307                 tx_first = sw_ring[txq->tx_tail].last_id;
1308
1309                 /* Get the next segment, which is the oldest segment in ring. */
1310                 tx_first = sw_ring[tx_first].next_id;
1311
1312                 /* Set the current index to the first. */
1313                 tx_id = tx_first;
1314
1315                 /*
1316                  * Loop through each packet. For each packet, verify that an
1317                  * mbuf exists and that the last segment is free. If so, free
1318                  * it and move on.
1319                  */
1320                 while (1) {
1321                         tx_last = sw_ring[tx_id].last_id;
1322
1323                         if (sw_ring[tx_last].mbuf) {
1324                                 if (txr[tx_last].wb.status &
1325                                                 E1000_TXD_STAT_DD) {
1326                                         /*
1327                                          * Increment the number of packets
1328                                          * freed.
1329                                          */
1330                                         count++;
1331
1332                                         /* Get the start of the next packet. */
1333                                         tx_next = sw_ring[tx_last].next_id;
1334
1335                                         /*
1336                                          * Loop through all segments in a
1337                                          * packet.
1338                                          */
1339                                         do {
1340                                                 rte_pktmbuf_free_seg(sw_ring[tx_id].mbuf);
1341                                                 sw_ring[tx_id].mbuf = NULL;
1342                                                 sw_ring[tx_id].last_id = tx_id;
1343
1344                                                 /* Move to next segemnt. */
1345                                                 tx_id = sw_ring[tx_id].next_id;
1346
1347                                         } while (tx_id != tx_next);
1348
1349                                         if (unlikely(count == (int)free_cnt))
1350                                                 break;
1351                                 } else
1352                                         /*
1353                                          * mbuf still in use, nothing left to
1354                                          * free.
1355                                          */
1356                                         break;
1357                         } else {
1358                                 /*
1359                                  * There are multiple reasons to be here:
1360                                  * 1) All the packets on the ring have been
1361                                  *    freed - tx_id is equal to tx_first
1362                                  *    and some packets have been freed.
1363                                  *    - Done, exit
1364                                  * 2) Interfaces has not sent a rings worth of
1365                                  *    packets yet, so the segment after tail is
1366                                  *    still empty. Or a previous call to this
1367                                  *    function freed some of the segments but
1368                                  *    not all so there is a hole in the list.
1369                                  *    Hopefully this is a rare case.
1370                                  *    - Walk the list and find the next mbuf. If
1371                                  *      there isn't one, then done.
1372                                  */
1373                                 if (likely((tx_id == tx_first) && (count != 0)))
1374                                         break;
1375
1376                                 /*
1377                                  * Walk the list and find the next mbuf, if any.
1378                                  */
1379                                 do {
1380                                         /* Move to next segemnt. */
1381                                         tx_id = sw_ring[tx_id].next_id;
1382
1383                                         if (sw_ring[tx_id].mbuf)
1384                                                 break;
1385
1386                                 } while (tx_id != tx_first);
1387
1388                                 /*
1389                                  * Determine why previous loop bailed. If there
1390                                  * is not an mbuf, done.
1391                                  */
1392                                 if (sw_ring[tx_id].mbuf == NULL)
1393                                         break;
1394                         }
1395                 }
1396         } else
1397                 count = -ENODEV;
1398
1399         return count;
1400 }
1401
1402 int
1403 eth_igb_tx_done_cleanup(void *txq, uint32_t free_cnt)
1404 {
1405         return igb_tx_done_cleanup(txq, free_cnt);
1406 }
1407
1408 static void
1409 igb_reset_tx_queue_stat(struct igb_tx_queue *txq)
1410 {
1411         txq->tx_head = 0;
1412         txq->tx_tail = 0;
1413         txq->ctx_curr = 0;
1414         memset((void*)&txq->ctx_cache, 0,
1415                 IGB_CTX_NUM * sizeof(struct igb_advctx_info));
1416 }
1417
1418 static void
1419 igb_reset_tx_queue(struct igb_tx_queue *txq, struct rte_eth_dev *dev)
1420 {
1421         static const union e1000_adv_tx_desc zeroed_desc = {{0}};
1422         struct igb_tx_entry *txe = txq->sw_ring;
1423         uint16_t i, prev;
1424         struct e1000_hw *hw;
1425
1426         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1427         /* Zero out HW ring memory */
1428         for (i = 0; i < txq->nb_tx_desc; i++) {
1429                 txq->tx_ring[i] = zeroed_desc;
1430         }
1431
1432         /* Initialize ring entries */
1433         prev = (uint16_t)(txq->nb_tx_desc - 1);
1434         for (i = 0; i < txq->nb_tx_desc; i++) {
1435                 volatile union e1000_adv_tx_desc *txd = &(txq->tx_ring[i]);
1436
1437                 txd->wb.status = E1000_TXD_STAT_DD;
1438                 txe[i].mbuf = NULL;
1439                 txe[i].last_id = i;
1440                 txe[prev].next_id = i;
1441                 prev = i;
1442         }
1443
1444         txq->txd_type = E1000_ADVTXD_DTYP_DATA;
1445         /* 82575 specific, each tx queue will use 2 hw contexts */
1446         if (hw->mac.type == e1000_82575)
1447                 txq->ctx_start = txq->queue_id * IGB_CTX_NUM;
1448
1449         igb_reset_tx_queue_stat(txq);
1450 }
1451
1452 uint64_t
1453 igb_get_tx_port_offloads_capa(struct rte_eth_dev *dev)
1454 {
1455         uint64_t rx_offload_capa;
1456
1457         RTE_SET_USED(dev);
1458         rx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
1459                           DEV_TX_OFFLOAD_IPV4_CKSUM  |
1460                           DEV_TX_OFFLOAD_UDP_CKSUM   |
1461                           DEV_TX_OFFLOAD_TCP_CKSUM   |
1462                           DEV_TX_OFFLOAD_SCTP_CKSUM  |
1463                           DEV_TX_OFFLOAD_TCP_TSO     |
1464                           DEV_TX_OFFLOAD_MULTI_SEGS;
1465
1466         return rx_offload_capa;
1467 }
1468
1469 uint64_t
1470 igb_get_tx_queue_offloads_capa(struct rte_eth_dev *dev)
1471 {
1472         uint64_t rx_queue_offload_capa;
1473
1474         rx_queue_offload_capa = igb_get_tx_port_offloads_capa(dev);
1475
1476         return rx_queue_offload_capa;
1477 }
1478
1479 int
1480 eth_igb_tx_queue_setup(struct rte_eth_dev *dev,
1481                          uint16_t queue_idx,
1482                          uint16_t nb_desc,
1483                          unsigned int socket_id,
1484                          const struct rte_eth_txconf *tx_conf)
1485 {
1486         const struct rte_memzone *tz;
1487         struct igb_tx_queue *txq;
1488         struct e1000_hw     *hw;
1489         uint32_t size;
1490         uint64_t offloads;
1491
1492         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1493
1494         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1495
1496         /*
1497          * Validate number of transmit descriptors.
1498          * It must not exceed hardware maximum, and must be multiple
1499          * of E1000_ALIGN.
1500          */
1501         if (nb_desc % IGB_TXD_ALIGN != 0 ||
1502                         (nb_desc > E1000_MAX_RING_DESC) ||
1503                         (nb_desc < E1000_MIN_RING_DESC)) {
1504                 return -EINVAL;
1505         }
1506
1507         /*
1508          * The tx_free_thresh and tx_rs_thresh values are not used in the 1G
1509          * driver.
1510          */
1511         if (tx_conf->tx_free_thresh != 0)
1512                 PMD_INIT_LOG(INFO, "The tx_free_thresh parameter is not "
1513                              "used for the 1G driver.");
1514         if (tx_conf->tx_rs_thresh != 0)
1515                 PMD_INIT_LOG(INFO, "The tx_rs_thresh parameter is not "
1516                              "used for the 1G driver.");
1517         if (tx_conf->tx_thresh.wthresh == 0 && hw->mac.type != e1000_82576)
1518                 PMD_INIT_LOG(INFO, "To improve 1G driver performance, "
1519                              "consider setting the TX WTHRESH value to 4, 8, "
1520                              "or 16.");
1521
1522         /* Free memory prior to re-allocation if needed */
1523         if (dev->data->tx_queues[queue_idx] != NULL) {
1524                 igb_tx_queue_release(dev->data->tx_queues[queue_idx]);
1525                 dev->data->tx_queues[queue_idx] = NULL;
1526         }
1527
1528         /* First allocate the tx queue data structure */
1529         txq = rte_zmalloc("ethdev TX queue", sizeof(struct igb_tx_queue),
1530                                                         RTE_CACHE_LINE_SIZE);
1531         if (txq == NULL)
1532                 return -ENOMEM;
1533
1534         /*
1535          * Allocate TX ring hardware descriptors. A memzone large enough to
1536          * handle the maximum ring size is allocated in order to allow for
1537          * resizing in later calls to the queue setup function.
1538          */
1539         size = sizeof(union e1000_adv_tx_desc) * E1000_MAX_RING_DESC;
1540         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx, size,
1541                                       E1000_ALIGN, socket_id);
1542         if (tz == NULL) {
1543                 igb_tx_queue_release(txq);
1544                 return -ENOMEM;
1545         }
1546
1547         txq->nb_tx_desc = nb_desc;
1548         txq->pthresh = tx_conf->tx_thresh.pthresh;
1549         txq->hthresh = tx_conf->tx_thresh.hthresh;
1550         txq->wthresh = tx_conf->tx_thresh.wthresh;
1551         if (txq->wthresh > 0 && hw->mac.type == e1000_82576)
1552                 txq->wthresh = 1;
1553         txq->queue_id = queue_idx;
1554         txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
1555                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
1556         txq->port_id = dev->data->port_id;
1557
1558         txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(txq->reg_idx));
1559         txq->tx_ring_phys_addr = tz->iova;
1560
1561         txq->tx_ring = (union e1000_adv_tx_desc *) tz->addr;
1562         /* Allocate software ring */
1563         txq->sw_ring = rte_zmalloc("txq->sw_ring",
1564                                    sizeof(struct igb_tx_entry) * nb_desc,
1565                                    RTE_CACHE_LINE_SIZE);
1566         if (txq->sw_ring == NULL) {
1567                 igb_tx_queue_release(txq);
1568                 return -ENOMEM;
1569         }
1570         PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
1571                      txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
1572
1573         igb_reset_tx_queue(txq, dev);
1574         dev->tx_pkt_burst = eth_igb_xmit_pkts;
1575         dev->tx_pkt_prepare = &eth_igb_prep_pkts;
1576         dev->data->tx_queues[queue_idx] = txq;
1577         txq->offloads = offloads;
1578
1579         return 0;
1580 }
1581
1582 static void
1583 igb_rx_queue_release_mbufs(struct igb_rx_queue *rxq)
1584 {
1585         unsigned i;
1586
1587         if (rxq->sw_ring != NULL) {
1588                 for (i = 0; i < rxq->nb_rx_desc; i++) {
1589                         if (rxq->sw_ring[i].mbuf != NULL) {
1590                                 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
1591                                 rxq->sw_ring[i].mbuf = NULL;
1592                         }
1593                 }
1594         }
1595 }
1596
1597 static void
1598 igb_rx_queue_release(struct igb_rx_queue *rxq)
1599 {
1600         if (rxq != NULL) {
1601                 igb_rx_queue_release_mbufs(rxq);
1602                 rte_free(rxq->sw_ring);
1603                 rte_free(rxq);
1604         }
1605 }
1606
1607 void
1608 eth_igb_rx_queue_release(void *rxq)
1609 {
1610         igb_rx_queue_release(rxq);
1611 }
1612
1613 static void
1614 igb_reset_rx_queue(struct igb_rx_queue *rxq)
1615 {
1616         static const union e1000_adv_rx_desc zeroed_desc = {{0}};
1617         unsigned i;
1618
1619         /* Zero out HW ring memory */
1620         for (i = 0; i < rxq->nb_rx_desc; i++) {
1621                 rxq->rx_ring[i] = zeroed_desc;
1622         }
1623
1624         rxq->rx_tail = 0;
1625         rxq->pkt_first_seg = NULL;
1626         rxq->pkt_last_seg = NULL;
1627 }
1628
1629 uint64_t
1630 igb_get_rx_port_offloads_capa(struct rte_eth_dev *dev)
1631 {
1632         uint64_t rx_offload_capa;
1633
1634         RTE_SET_USED(dev);
1635         rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP  |
1636                           DEV_RX_OFFLOAD_VLAN_FILTER |
1637                           DEV_RX_OFFLOAD_IPV4_CKSUM  |
1638                           DEV_RX_OFFLOAD_UDP_CKSUM   |
1639                           DEV_RX_OFFLOAD_TCP_CKSUM   |
1640                           DEV_RX_OFFLOAD_JUMBO_FRAME |
1641                           DEV_RX_OFFLOAD_CRC_STRIP   |
1642                           DEV_RX_OFFLOAD_SCATTER;
1643
1644         return rx_offload_capa;
1645 }
1646
1647 uint64_t
1648 igb_get_rx_queue_offloads_capa(struct rte_eth_dev *dev)
1649 {
1650         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1651         uint64_t rx_queue_offload_capa;
1652
1653         switch (hw->mac.type) {
1654         case e1000_vfadapt_i350:
1655                 /*
1656                  * As only one Rx queue can be used, let per queue offloading
1657                  * capability be same to per port queue offloading capability
1658                  * for better convenience.
1659                  */
1660                 rx_queue_offload_capa = igb_get_rx_port_offloads_capa(dev);
1661                 break;
1662         default:
1663                 rx_queue_offload_capa = 0;
1664         }
1665         return rx_queue_offload_capa;
1666 }
1667
1668 int
1669 eth_igb_rx_queue_setup(struct rte_eth_dev *dev,
1670                          uint16_t queue_idx,
1671                          uint16_t nb_desc,
1672                          unsigned int socket_id,
1673                          const struct rte_eth_rxconf *rx_conf,
1674                          struct rte_mempool *mp)
1675 {
1676         const struct rte_memzone *rz;
1677         struct igb_rx_queue *rxq;
1678         struct e1000_hw     *hw;
1679         unsigned int size;
1680         uint64_t offloads;
1681
1682         offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1683
1684         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1685
1686         /*
1687          * Validate number of receive descriptors.
1688          * It must not exceed hardware maximum, and must be multiple
1689          * of E1000_ALIGN.
1690          */
1691         if (nb_desc % IGB_RXD_ALIGN != 0 ||
1692                         (nb_desc > E1000_MAX_RING_DESC) ||
1693                         (nb_desc < E1000_MIN_RING_DESC)) {
1694                 return -EINVAL;
1695         }
1696
1697         /* Free memory prior to re-allocation if needed */
1698         if (dev->data->rx_queues[queue_idx] != NULL) {
1699                 igb_rx_queue_release(dev->data->rx_queues[queue_idx]);
1700                 dev->data->rx_queues[queue_idx] = NULL;
1701         }
1702
1703         /* First allocate the RX queue data structure. */
1704         rxq = rte_zmalloc("ethdev RX queue", sizeof(struct igb_rx_queue),
1705                           RTE_CACHE_LINE_SIZE);
1706         if (rxq == NULL)
1707                 return -ENOMEM;
1708         rxq->offloads = offloads;
1709         rxq->mb_pool = mp;
1710         rxq->nb_rx_desc = nb_desc;
1711         rxq->pthresh = rx_conf->rx_thresh.pthresh;
1712         rxq->hthresh = rx_conf->rx_thresh.hthresh;
1713         rxq->wthresh = rx_conf->rx_thresh.wthresh;
1714         if (rxq->wthresh > 0 &&
1715             (hw->mac.type == e1000_82576 || hw->mac.type == e1000_vfadapt_i350))
1716                 rxq->wthresh = 1;
1717         rxq->drop_en = rx_conf->rx_drop_en;
1718         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1719         rxq->queue_id = queue_idx;
1720         rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
1721                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
1722         rxq->port_id = dev->data->port_id;
1723         rxq->crc_len = (uint8_t)((dev->data->dev_conf.rxmode.offloads &
1724                         DEV_RX_OFFLOAD_CRC_STRIP) ? 0 : ETHER_CRC_LEN);
1725
1726         /*
1727          *  Allocate RX ring hardware descriptors. A memzone large enough to
1728          *  handle the maximum ring size is allocated in order to allow for
1729          *  resizing in later calls to the queue setup function.
1730          */
1731         size = sizeof(union e1000_adv_rx_desc) * E1000_MAX_RING_DESC;
1732         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx, size,
1733                                       E1000_ALIGN, socket_id);
1734         if (rz == NULL) {
1735                 igb_rx_queue_release(rxq);
1736                 return -ENOMEM;
1737         }
1738         rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(rxq->reg_idx));
1739         rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(rxq->reg_idx));
1740         rxq->rx_ring_phys_addr = rz->iova;
1741         rxq->rx_ring = (union e1000_adv_rx_desc *) rz->addr;
1742
1743         /* Allocate software ring. */
1744         rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
1745                                    sizeof(struct igb_rx_entry) * nb_desc,
1746                                    RTE_CACHE_LINE_SIZE);
1747         if (rxq->sw_ring == NULL) {
1748                 igb_rx_queue_release(rxq);
1749                 return -ENOMEM;
1750         }
1751         PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
1752                      rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
1753
1754         dev->data->rx_queues[queue_idx] = rxq;
1755         igb_reset_rx_queue(rxq);
1756
1757         return 0;
1758 }
1759
1760 uint32_t
1761 eth_igb_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1762 {
1763 #define IGB_RXQ_SCAN_INTERVAL 4
1764         volatile union e1000_adv_rx_desc *rxdp;
1765         struct igb_rx_queue *rxq;
1766         uint32_t desc = 0;
1767
1768         rxq = dev->data->rx_queues[rx_queue_id];
1769         rxdp = &(rxq->rx_ring[rxq->rx_tail]);
1770
1771         while ((desc < rxq->nb_rx_desc) &&
1772                 (rxdp->wb.upper.status_error & E1000_RXD_STAT_DD)) {
1773                 desc += IGB_RXQ_SCAN_INTERVAL;
1774                 rxdp += IGB_RXQ_SCAN_INTERVAL;
1775                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1776                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
1777                                 desc - rxq->nb_rx_desc]);
1778         }
1779
1780         return desc;
1781 }
1782
1783 int
1784 eth_igb_rx_descriptor_done(void *rx_queue, uint16_t offset)
1785 {
1786         volatile union e1000_adv_rx_desc *rxdp;
1787         struct igb_rx_queue *rxq = rx_queue;
1788         uint32_t desc;
1789
1790         if (unlikely(offset >= rxq->nb_rx_desc))
1791                 return 0;
1792         desc = rxq->rx_tail + offset;
1793         if (desc >= rxq->nb_rx_desc)
1794                 desc -= rxq->nb_rx_desc;
1795
1796         rxdp = &rxq->rx_ring[desc];
1797         return !!(rxdp->wb.upper.status_error & E1000_RXD_STAT_DD);
1798 }
1799
1800 int
1801 eth_igb_rx_descriptor_status(void *rx_queue, uint16_t offset)
1802 {
1803         struct igb_rx_queue *rxq = rx_queue;
1804         volatile uint32_t *status;
1805         uint32_t desc;
1806
1807         if (unlikely(offset >= rxq->nb_rx_desc))
1808                 return -EINVAL;
1809
1810         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
1811                 return RTE_ETH_RX_DESC_UNAVAIL;
1812
1813         desc = rxq->rx_tail + offset;
1814         if (desc >= rxq->nb_rx_desc)
1815                 desc -= rxq->nb_rx_desc;
1816
1817         status = &rxq->rx_ring[desc].wb.upper.status_error;
1818         if (*status & rte_cpu_to_le_32(E1000_RXD_STAT_DD))
1819                 return RTE_ETH_RX_DESC_DONE;
1820
1821         return RTE_ETH_RX_DESC_AVAIL;
1822 }
1823
1824 int
1825 eth_igb_tx_descriptor_status(void *tx_queue, uint16_t offset)
1826 {
1827         struct igb_tx_queue *txq = tx_queue;
1828         volatile uint32_t *status;
1829         uint32_t desc;
1830
1831         if (unlikely(offset >= txq->nb_tx_desc))
1832                 return -EINVAL;
1833
1834         desc = txq->tx_tail + offset;
1835         if (desc >= txq->nb_tx_desc)
1836                 desc -= txq->nb_tx_desc;
1837
1838         status = &txq->tx_ring[desc].wb.status;
1839         if (*status & rte_cpu_to_le_32(E1000_TXD_STAT_DD))
1840                 return RTE_ETH_TX_DESC_DONE;
1841
1842         return RTE_ETH_TX_DESC_FULL;
1843 }
1844
1845 void
1846 igb_dev_clear_queues(struct rte_eth_dev *dev)
1847 {
1848         uint16_t i;
1849         struct igb_tx_queue *txq;
1850         struct igb_rx_queue *rxq;
1851
1852         for (i = 0; i < dev->data->nb_tx_queues; i++) {
1853                 txq = dev->data->tx_queues[i];
1854                 if (txq != NULL) {
1855                         igb_tx_queue_release_mbufs(txq);
1856                         igb_reset_tx_queue(txq, dev);
1857                 }
1858         }
1859
1860         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1861                 rxq = dev->data->rx_queues[i];
1862                 if (rxq != NULL) {
1863                         igb_rx_queue_release_mbufs(rxq);
1864                         igb_reset_rx_queue(rxq);
1865                 }
1866         }
1867 }
1868
1869 void
1870 igb_dev_free_queues(struct rte_eth_dev *dev)
1871 {
1872         uint16_t i;
1873
1874         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1875                 eth_igb_rx_queue_release(dev->data->rx_queues[i]);
1876                 dev->data->rx_queues[i] = NULL;
1877         }
1878         dev->data->nb_rx_queues = 0;
1879
1880         for (i = 0; i < dev->data->nb_tx_queues; i++) {
1881                 eth_igb_tx_queue_release(dev->data->tx_queues[i]);
1882                 dev->data->tx_queues[i] = NULL;
1883         }
1884         dev->data->nb_tx_queues = 0;
1885 }
1886
1887 /**
1888  * Receive Side Scaling (RSS).
1889  * See section 7.1.1.7 in the following document:
1890  *     "Intel 82576 GbE Controller Datasheet" - Revision 2.45 October 2009
1891  *
1892  * Principles:
1893  * The source and destination IP addresses of the IP header and the source and
1894  * destination ports of TCP/UDP headers, if any, of received packets are hashed
1895  * against a configurable random key to compute a 32-bit RSS hash result.
1896  * The seven (7) LSBs of the 32-bit hash result are used as an index into a
1897  * 128-entry redirection table (RETA).  Each entry of the RETA provides a 3-bit
1898  * RSS output index which is used as the RX queue index where to store the
1899  * received packets.
1900  * The following output is supplied in the RX write-back descriptor:
1901  *     - 32-bit result of the Microsoft RSS hash function,
1902  *     - 4-bit RSS type field.
1903  */
1904
1905 /*
1906  * RSS random key supplied in section 7.1.1.7.3 of the Intel 82576 datasheet.
1907  * Used as the default key.
1908  */
1909 static uint8_t rss_intel_key[40] = {
1910         0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
1911         0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
1912         0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
1913         0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
1914         0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
1915 };
1916
1917 static void
1918 igb_rss_disable(struct rte_eth_dev *dev)
1919 {
1920         struct e1000_hw *hw;
1921         uint32_t mrqc;
1922
1923         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1924         mrqc = E1000_READ_REG(hw, E1000_MRQC);
1925         mrqc &= ~E1000_MRQC_ENABLE_MASK;
1926         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
1927 }
1928
1929 static void
1930 igb_hw_rss_hash_set(struct e1000_hw *hw, struct rte_eth_rss_conf *rss_conf)
1931 {
1932         uint8_t  *hash_key;
1933         uint32_t rss_key;
1934         uint32_t mrqc;
1935         uint64_t rss_hf;
1936         uint16_t i;
1937
1938         hash_key = rss_conf->rss_key;
1939         if (hash_key != NULL) {
1940                 /* Fill in RSS hash key */
1941                 for (i = 0; i < 10; i++) {
1942                         rss_key  = hash_key[(i * 4)];
1943                         rss_key |= hash_key[(i * 4) + 1] << 8;
1944                         rss_key |= hash_key[(i * 4) + 2] << 16;
1945                         rss_key |= hash_key[(i * 4) + 3] << 24;
1946                         E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key);
1947                 }
1948         }
1949
1950         /* Set configured hashing protocols in MRQC register */
1951         rss_hf = rss_conf->rss_hf;
1952         mrqc = E1000_MRQC_ENABLE_RSS_4Q; /* RSS enabled. */
1953         if (rss_hf & ETH_RSS_IPV4)
1954                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4;
1955         if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
1956                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_TCP;
1957         if (rss_hf & ETH_RSS_IPV6)
1958                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6;
1959         if (rss_hf & ETH_RSS_IPV6_EX)
1960                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_EX;
1961         if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
1962                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP;
1963         if (rss_hf & ETH_RSS_IPV6_TCP_EX)
1964                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
1965         if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
1966                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
1967         if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
1968                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
1969         if (rss_hf & ETH_RSS_IPV6_UDP_EX)
1970                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP_EX;
1971         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
1972 }
1973
1974 int
1975 eth_igb_rss_hash_update(struct rte_eth_dev *dev,
1976                         struct rte_eth_rss_conf *rss_conf)
1977 {
1978         struct e1000_hw *hw;
1979         uint32_t mrqc;
1980         uint64_t rss_hf;
1981
1982         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1983
1984         /*
1985          * Before changing anything, first check that the update RSS operation
1986          * does not attempt to disable RSS, if RSS was enabled at
1987          * initialization time, or does not attempt to enable RSS, if RSS was
1988          * disabled at initialization time.
1989          */
1990         rss_hf = rss_conf->rss_hf & IGB_RSS_OFFLOAD_ALL;
1991         mrqc = E1000_READ_REG(hw, E1000_MRQC);
1992         if (!(mrqc & E1000_MRQC_ENABLE_MASK)) { /* RSS disabled */
1993                 if (rss_hf != 0) /* Enable RSS */
1994                         return -(EINVAL);
1995                 return 0; /* Nothing to do */
1996         }
1997         /* RSS enabled */
1998         if (rss_hf == 0) /* Disable RSS */
1999                 return -(EINVAL);
2000         igb_hw_rss_hash_set(hw, rss_conf);
2001         return 0;
2002 }
2003
2004 int eth_igb_rss_hash_conf_get(struct rte_eth_dev *dev,
2005                               struct rte_eth_rss_conf *rss_conf)
2006 {
2007         struct e1000_hw *hw;
2008         uint8_t *hash_key;
2009         uint32_t rss_key;
2010         uint32_t mrqc;
2011         uint64_t rss_hf;
2012         uint16_t i;
2013
2014         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2015         hash_key = rss_conf->rss_key;
2016         if (hash_key != NULL) {
2017                 /* Return RSS hash key */
2018                 for (i = 0; i < 10; i++) {
2019                         rss_key = E1000_READ_REG_ARRAY(hw, E1000_RSSRK(0), i);
2020                         hash_key[(i * 4)] = rss_key & 0x000000FF;
2021                         hash_key[(i * 4) + 1] = (rss_key >> 8) & 0x000000FF;
2022                         hash_key[(i * 4) + 2] = (rss_key >> 16) & 0x000000FF;
2023                         hash_key[(i * 4) + 3] = (rss_key >> 24) & 0x000000FF;
2024                 }
2025         }
2026
2027         /* Get RSS functions configured in MRQC register */
2028         mrqc = E1000_READ_REG(hw, E1000_MRQC);
2029         if ((mrqc & E1000_MRQC_ENABLE_RSS_4Q) == 0) { /* RSS is disabled */
2030                 rss_conf->rss_hf = 0;
2031                 return 0;
2032         }
2033         rss_hf = 0;
2034         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2035                 rss_hf |= ETH_RSS_IPV4;
2036         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2037                 rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
2038         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2039                 rss_hf |= ETH_RSS_IPV6;
2040         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_EX)
2041                 rss_hf |= ETH_RSS_IPV6_EX;
2042         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2043                 rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
2044         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP_EX)
2045                 rss_hf |= ETH_RSS_IPV6_TCP_EX;
2046         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_UDP)
2047                 rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
2048         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP)
2049                 rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
2050         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP_EX)
2051                 rss_hf |= ETH_RSS_IPV6_UDP_EX;
2052         rss_conf->rss_hf = rss_hf;
2053         return 0;
2054 }
2055
2056 static void
2057 igb_rss_configure(struct rte_eth_dev *dev)
2058 {
2059         struct rte_eth_rss_conf rss_conf;
2060         struct e1000_hw *hw;
2061         uint32_t shift;
2062         uint16_t i;
2063
2064         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2065
2066         /* Fill in redirection table. */
2067         shift = (hw->mac.type == e1000_82575) ? 6 : 0;
2068         for (i = 0; i < 128; i++) {
2069                 union e1000_reta {
2070                         uint32_t dword;
2071                         uint8_t  bytes[4];
2072                 } reta;
2073                 uint8_t q_idx;
2074
2075                 q_idx = (uint8_t) ((dev->data->nb_rx_queues > 1) ?
2076                                    i % dev->data->nb_rx_queues : 0);
2077                 reta.bytes[i & 3] = (uint8_t) (q_idx << shift);
2078                 if ((i & 3) == 3)
2079                         E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword);
2080         }
2081
2082         /*
2083          * Configure the RSS key and the RSS protocols used to compute
2084          * the RSS hash of input packets.
2085          */
2086         rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
2087         if ((rss_conf.rss_hf & IGB_RSS_OFFLOAD_ALL) == 0) {
2088                 igb_rss_disable(dev);
2089                 return;
2090         }
2091         if (rss_conf.rss_key == NULL)
2092                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
2093         igb_hw_rss_hash_set(hw, &rss_conf);
2094 }
2095
2096 /*
2097  * Check if the mac type support VMDq or not.
2098  * Return 1 if it supports, otherwise, return 0.
2099  */
2100 static int
2101 igb_is_vmdq_supported(const struct rte_eth_dev *dev)
2102 {
2103         const struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2104
2105         switch (hw->mac.type) {
2106         case e1000_82576:
2107         case e1000_82580:
2108         case e1000_i350:
2109                 return 1;
2110         case e1000_82540:
2111         case e1000_82541:
2112         case e1000_82542:
2113         case e1000_82543:
2114         case e1000_82544:
2115         case e1000_82545:
2116         case e1000_82546:
2117         case e1000_82547:
2118         case e1000_82571:
2119         case e1000_82572:
2120         case e1000_82573:
2121         case e1000_82574:
2122         case e1000_82583:
2123         case e1000_i210:
2124         case e1000_i211:
2125         default:
2126                 PMD_INIT_LOG(ERR, "Cannot support VMDq feature");
2127                 return 0;
2128         }
2129 }
2130
2131 static int
2132 igb_vmdq_rx_hw_configure(struct rte_eth_dev *dev)
2133 {
2134         struct rte_eth_vmdq_rx_conf *cfg;
2135         struct e1000_hw *hw;
2136         uint32_t mrqc, vt_ctl, vmolr, rctl;
2137         int i;
2138
2139         PMD_INIT_FUNC_TRACE();
2140
2141         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2142         cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
2143
2144         /* Check if mac type can support VMDq, return value of 0 means NOT support */
2145         if (igb_is_vmdq_supported(dev) == 0)
2146                 return -1;
2147
2148         igb_rss_disable(dev);
2149
2150         /* RCTL: eanble VLAN filter */
2151         rctl = E1000_READ_REG(hw, E1000_RCTL);
2152         rctl |= E1000_RCTL_VFE;
2153         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2154
2155         /* MRQC: enable vmdq */
2156         mrqc = E1000_READ_REG(hw, E1000_MRQC);
2157         mrqc |= E1000_MRQC_ENABLE_VMDQ;
2158         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2159
2160         /* VTCTL:  pool selection according to VLAN tag */
2161         vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
2162         if (cfg->enable_default_pool)
2163                 vt_ctl |= (cfg->default_pool << E1000_VT_CTL_DEFAULT_POOL_SHIFT);
2164         vt_ctl |= E1000_VT_CTL_IGNORE_MAC;
2165         E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
2166
2167         for (i = 0; i < E1000_VMOLR_SIZE; i++) {
2168                 vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
2169                 vmolr &= ~(E1000_VMOLR_AUPE | E1000_VMOLR_ROMPE |
2170                         E1000_VMOLR_ROPE | E1000_VMOLR_BAM |
2171                         E1000_VMOLR_MPME);
2172
2173                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_UNTAG)
2174                         vmolr |= E1000_VMOLR_AUPE;
2175                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_MC)
2176                         vmolr |= E1000_VMOLR_ROMPE;
2177                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_UC)
2178                         vmolr |= E1000_VMOLR_ROPE;
2179                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_BROADCAST)
2180                         vmolr |= E1000_VMOLR_BAM;
2181                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_MULTICAST)
2182                         vmolr |= E1000_VMOLR_MPME;
2183
2184                 E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
2185         }
2186
2187         /*
2188          * VMOLR: set STRVLAN as 1 if IGMAC in VTCTL is set as 1
2189          * Both 82576 and 82580 support it
2190          */
2191         if (hw->mac.type != e1000_i350) {
2192                 for (i = 0; i < E1000_VMOLR_SIZE; i++) {
2193                         vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
2194                         vmolr |= E1000_VMOLR_STRVLAN;
2195                         E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
2196                 }
2197         }
2198
2199         /* VFTA - enable all vlan filters */
2200         for (i = 0; i < IGB_VFTA_SIZE; i++)
2201                 E1000_WRITE_REG(hw, (E1000_VFTA+(i*4)), UINT32_MAX);
2202
2203         /* VFRE: 8 pools enabling for rx, both 82576 and i350 support it */
2204         if (hw->mac.type != e1000_82580)
2205                 E1000_WRITE_REG(hw, E1000_VFRE, E1000_MBVFICR_VFREQ_MASK);
2206
2207         /*
2208          * RAH/RAL - allow pools to read specific mac addresses
2209          * In this case, all pools should be able to read from mac addr 0
2210          */
2211         E1000_WRITE_REG(hw, E1000_RAH(0), (E1000_RAH_AV | UINT16_MAX));
2212         E1000_WRITE_REG(hw, E1000_RAL(0), UINT32_MAX);
2213
2214         /* VLVF: set up filters for vlan tags as configured */
2215         for (i = 0; i < cfg->nb_pool_maps; i++) {
2216                 /* set vlan id in VF register and set the valid bit */
2217                 E1000_WRITE_REG(hw, E1000_VLVF(i), (E1000_VLVF_VLANID_ENABLE | \
2218                         (cfg->pool_map[i].vlan_id & ETH_VLAN_ID_MAX) | \
2219                         ((cfg->pool_map[i].pools << E1000_VLVF_POOLSEL_SHIFT ) & \
2220                         E1000_VLVF_POOLSEL_MASK)));
2221         }
2222
2223         E1000_WRITE_FLUSH(hw);
2224
2225         return 0;
2226 }
2227
2228
2229 /*********************************************************************
2230  *
2231  *  Enable receive unit.
2232  *
2233  **********************************************************************/
2234
2235 static int
2236 igb_alloc_rx_queue_mbufs(struct igb_rx_queue *rxq)
2237 {
2238         struct igb_rx_entry *rxe = rxq->sw_ring;
2239         uint64_t dma_addr;
2240         unsigned i;
2241
2242         /* Initialize software ring entries. */
2243         for (i = 0; i < rxq->nb_rx_desc; i++) {
2244                 volatile union e1000_adv_rx_desc *rxd;
2245                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
2246
2247                 if (mbuf == NULL) {
2248                         PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
2249                                      "queue_id=%hu", rxq->queue_id);
2250                         return -ENOMEM;
2251                 }
2252                 dma_addr =
2253                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
2254                 rxd = &rxq->rx_ring[i];
2255                 rxd->read.hdr_addr = 0;
2256                 rxd->read.pkt_addr = dma_addr;
2257                 rxe[i].mbuf = mbuf;
2258         }
2259
2260         return 0;
2261 }
2262
2263 #define E1000_MRQC_DEF_Q_SHIFT               (3)
2264 static int
2265 igb_dev_mq_rx_configure(struct rte_eth_dev *dev)
2266 {
2267         struct e1000_hw *hw =
2268                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2269         uint32_t mrqc;
2270
2271         if (RTE_ETH_DEV_SRIOV(dev).active == ETH_8_POOLS) {
2272                 /*
2273                  * SRIOV active scheme
2274                  * FIXME if support RSS together with VMDq & SRIOV
2275                  */
2276                 mrqc = E1000_MRQC_ENABLE_VMDQ;
2277                 /* 011b Def_Q ignore, according to VT_CTL.DEF_PL */
2278                 mrqc |= 0x3 << E1000_MRQC_DEF_Q_SHIFT;
2279                 E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2280         } else if(RTE_ETH_DEV_SRIOV(dev).active == 0) {
2281                 /*
2282                  * SRIOV inactive scheme
2283                  */
2284                 switch (dev->data->dev_conf.rxmode.mq_mode) {
2285                         case ETH_MQ_RX_RSS:
2286                                 igb_rss_configure(dev);
2287                                 break;
2288                         case ETH_MQ_RX_VMDQ_ONLY:
2289                                 /*Configure general VMDQ only RX parameters*/
2290                                 igb_vmdq_rx_hw_configure(dev);
2291                                 break;
2292                         case ETH_MQ_RX_NONE:
2293                                 /* if mq_mode is none, disable rss mode.*/
2294                         default:
2295                                 igb_rss_disable(dev);
2296                                 break;
2297                 }
2298         }
2299
2300         return 0;
2301 }
2302
2303 int
2304 eth_igb_rx_init(struct rte_eth_dev *dev)
2305 {
2306         struct rte_eth_rxmode *rxmode;
2307         struct e1000_hw     *hw;
2308         struct igb_rx_queue *rxq;
2309         uint32_t rctl;
2310         uint32_t rxcsum;
2311         uint32_t srrctl;
2312         uint16_t buf_size;
2313         uint16_t rctl_bsize;
2314         uint16_t i;
2315         int ret;
2316
2317         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2318         srrctl = 0;
2319
2320         /*
2321          * Make sure receives are disabled while setting
2322          * up the descriptor ring.
2323          */
2324         rctl = E1000_READ_REG(hw, E1000_RCTL);
2325         E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2326
2327         rxmode = &dev->data->dev_conf.rxmode;
2328
2329         /*
2330          * Configure support of jumbo frames, if any.
2331          */
2332         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
2333                 rctl |= E1000_RCTL_LPE;
2334
2335                 /*
2336                  * Set maximum packet length by default, and might be updated
2337                  * together with enabling/disabling dual VLAN.
2338                  */
2339                 E1000_WRITE_REG(hw, E1000_RLPML,
2340                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2341                                                 VLAN_TAG_SIZE);
2342         } else
2343                 rctl &= ~E1000_RCTL_LPE;
2344
2345         /* Configure and enable each RX queue. */
2346         rctl_bsize = 0;
2347         dev->rx_pkt_burst = eth_igb_recv_pkts;
2348         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2349                 uint64_t bus_addr;
2350                 uint32_t rxdctl;
2351
2352                 rxq = dev->data->rx_queues[i];
2353
2354                 rxq->flags = 0;
2355                 /*
2356                  * i350 and i354 vlan packets have vlan tags byte swapped.
2357                  */
2358                 if (hw->mac.type == e1000_i350 || hw->mac.type == e1000_i354) {
2359                         rxq->flags |= IGB_RXQ_FLAG_LB_BSWAP_VLAN;
2360                         PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap required");
2361                 } else {
2362                         PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap not required");
2363                 }
2364
2365                 /* Allocate buffers for descriptor rings and set up queue */
2366                 ret = igb_alloc_rx_queue_mbufs(rxq);
2367                 if (ret)
2368                         return ret;
2369
2370                 /*
2371                  * Reset crc_len in case it was changed after queue setup by a
2372                  *  call to configure
2373                  */
2374                 rxq->crc_len = (uint8_t)(dev->data->dev_conf.rxmode.offloads &
2375                                 DEV_RX_OFFLOAD_CRC_STRIP ? 0 : ETHER_CRC_LEN);
2376
2377                 bus_addr = rxq->rx_ring_phys_addr;
2378                 E1000_WRITE_REG(hw, E1000_RDLEN(rxq->reg_idx),
2379                                 rxq->nb_rx_desc *
2380                                 sizeof(union e1000_adv_rx_desc));
2381                 E1000_WRITE_REG(hw, E1000_RDBAH(rxq->reg_idx),
2382                                 (uint32_t)(bus_addr >> 32));
2383                 E1000_WRITE_REG(hw, E1000_RDBAL(rxq->reg_idx), (uint32_t)bus_addr);
2384
2385                 srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2386
2387                 /*
2388                  * Configure RX buffer size.
2389                  */
2390                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
2391                         RTE_PKTMBUF_HEADROOM);
2392                 if (buf_size >= 1024) {
2393                         /*
2394                          * Configure the BSIZEPACKET field of the SRRCTL
2395                          * register of the queue.
2396                          * Value is in 1 KB resolution, from 1 KB to 127 KB.
2397                          * If this field is equal to 0b, then RCTL.BSIZE
2398                          * determines the RX packet buffer size.
2399                          */
2400                         srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
2401                                    E1000_SRRCTL_BSIZEPKT_MASK);
2402                         buf_size = (uint16_t) ((srrctl &
2403                                                 E1000_SRRCTL_BSIZEPKT_MASK) <<
2404                                                E1000_SRRCTL_BSIZEPKT_SHIFT);
2405
2406                         /* It adds dual VLAN length for supporting dual VLAN */
2407                         if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
2408                                                 2 * VLAN_TAG_SIZE) > buf_size){
2409                                 if (!dev->data->scattered_rx)
2410                                         PMD_INIT_LOG(DEBUG,
2411                                                      "forcing scatter mode");
2412                                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2413                                 dev->data->scattered_rx = 1;
2414                         }
2415                 } else {
2416                         /*
2417                          * Use BSIZE field of the device RCTL register.
2418                          */
2419                         if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
2420                                 rctl_bsize = buf_size;
2421                         if (!dev->data->scattered_rx)
2422                                 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2423                         dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2424                         dev->data->scattered_rx = 1;
2425                 }
2426
2427                 /* Set if packets are dropped when no descriptors available */
2428                 if (rxq->drop_en)
2429                         srrctl |= E1000_SRRCTL_DROP_EN;
2430
2431                 E1000_WRITE_REG(hw, E1000_SRRCTL(rxq->reg_idx), srrctl);
2432
2433                 /* Enable this RX queue. */
2434                 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rxq->reg_idx));
2435                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2436                 rxdctl &= 0xFFF00000;
2437                 rxdctl |= (rxq->pthresh & 0x1F);
2438                 rxdctl |= ((rxq->hthresh & 0x1F) << 8);
2439                 rxdctl |= ((rxq->wthresh & 0x1F) << 16);
2440                 E1000_WRITE_REG(hw, E1000_RXDCTL(rxq->reg_idx), rxdctl);
2441         }
2442
2443         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) {
2444                 if (!dev->data->scattered_rx)
2445                         PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2446                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2447                 dev->data->scattered_rx = 1;
2448         }
2449
2450         /*
2451          * Setup BSIZE field of RCTL register, if needed.
2452          * Buffer sizes >= 1024 are not [supposed to be] setup in the RCTL
2453          * register, since the code above configures the SRRCTL register of
2454          * the RX queue in such a case.
2455          * All configurable sizes are:
2456          * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
2457          *  8192: rctl |= (E1000_RCTL_SZ_8192  | E1000_RCTL_BSEX);
2458          *  4096: rctl |= (E1000_RCTL_SZ_4096  | E1000_RCTL_BSEX);
2459          *  2048: rctl |= E1000_RCTL_SZ_2048;
2460          *  1024: rctl |= E1000_RCTL_SZ_1024;
2461          *   512: rctl |= E1000_RCTL_SZ_512;
2462          *   256: rctl |= E1000_RCTL_SZ_256;
2463          */
2464         if (rctl_bsize > 0) {
2465                 if (rctl_bsize >= 512) /* 512 <= buf_size < 1024 - use 512 */
2466                         rctl |= E1000_RCTL_SZ_512;
2467                 else /* 256 <= buf_size < 512 - use 256 */
2468                         rctl |= E1000_RCTL_SZ_256;
2469         }
2470
2471         /*
2472          * Configure RSS if device configured with multiple RX queues.
2473          */
2474         igb_dev_mq_rx_configure(dev);
2475
2476         /* Update the rctl since igb_dev_mq_rx_configure may change its value */
2477         rctl |= E1000_READ_REG(hw, E1000_RCTL);
2478
2479         /*
2480          * Setup the Checksum Register.
2481          * Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
2482          */
2483         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2484         rxcsum |= E1000_RXCSUM_PCSD;
2485
2486         /* Enable both L3/L4 rx checksum offload */
2487         if (rxmode->offloads & DEV_RX_OFFLOAD_IPV4_CKSUM)
2488                 rxcsum |= E1000_RXCSUM_IPOFL;
2489         else
2490                 rxcsum &= ~E1000_RXCSUM_IPOFL;
2491         if (rxmode->offloads &
2492                 (DEV_RX_OFFLOAD_TCP_CKSUM | DEV_RX_OFFLOAD_UDP_CKSUM))
2493                 rxcsum |= E1000_RXCSUM_TUOFL;
2494         else
2495                 rxcsum &= ~E1000_RXCSUM_TUOFL;
2496         if (rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM)
2497                 rxcsum |= E1000_RXCSUM_CRCOFL;
2498         else
2499                 rxcsum &= ~E1000_RXCSUM_CRCOFL;
2500
2501         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2502
2503         /* Setup the Receive Control Register. */
2504         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_CRC_STRIP) {
2505                 rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
2506
2507                 /* set STRCRC bit in all queues */
2508                 if (hw->mac.type == e1000_i350 ||
2509                     hw->mac.type == e1000_i210 ||
2510                     hw->mac.type == e1000_i211 ||
2511                     hw->mac.type == e1000_i354) {
2512                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2513                                 rxq = dev->data->rx_queues[i];
2514                                 uint32_t dvmolr = E1000_READ_REG(hw,
2515                                         E1000_DVMOLR(rxq->reg_idx));
2516                                 dvmolr |= E1000_DVMOLR_STRCRC;
2517                                 E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
2518                         }
2519                 }
2520         } else {
2521                 rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
2522
2523                 /* clear STRCRC bit in all queues */
2524                 if (hw->mac.type == e1000_i350 ||
2525                     hw->mac.type == e1000_i210 ||
2526                     hw->mac.type == e1000_i211 ||
2527                     hw->mac.type == e1000_i354) {
2528                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2529                                 rxq = dev->data->rx_queues[i];
2530                                 uint32_t dvmolr = E1000_READ_REG(hw,
2531                                         E1000_DVMOLR(rxq->reg_idx));
2532                                 dvmolr &= ~E1000_DVMOLR_STRCRC;
2533                                 E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
2534                         }
2535                 }
2536         }
2537
2538         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2539         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2540                 E1000_RCTL_RDMTS_HALF |
2541                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2542
2543         /* Make sure VLAN Filters are off. */
2544         if (dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_VMDQ_ONLY)
2545                 rctl &= ~E1000_RCTL_VFE;
2546         /* Don't store bad packets. */
2547         rctl &= ~E1000_RCTL_SBP;
2548
2549         /* Enable Receives. */
2550         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2551
2552         /*
2553          * Setup the HW Rx Head and Tail Descriptor Pointers.
2554          * This needs to be done after enable.
2555          */
2556         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2557                 rxq = dev->data->rx_queues[i];
2558                 E1000_WRITE_REG(hw, E1000_RDH(rxq->reg_idx), 0);
2559                 E1000_WRITE_REG(hw, E1000_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1);
2560         }
2561
2562         return 0;
2563 }
2564
2565 /*********************************************************************
2566  *
2567  *  Enable transmit unit.
2568  *
2569  **********************************************************************/
2570 void
2571 eth_igb_tx_init(struct rte_eth_dev *dev)
2572 {
2573         struct e1000_hw     *hw;
2574         struct igb_tx_queue *txq;
2575         uint32_t tctl;
2576         uint32_t txdctl;
2577         uint16_t i;
2578
2579         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2580
2581         /* Setup the Base and Length of the Tx Descriptor Rings. */
2582         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2583                 uint64_t bus_addr;
2584                 txq = dev->data->tx_queues[i];
2585                 bus_addr = txq->tx_ring_phys_addr;
2586
2587                 E1000_WRITE_REG(hw, E1000_TDLEN(txq->reg_idx),
2588                                 txq->nb_tx_desc *
2589                                 sizeof(union e1000_adv_tx_desc));
2590                 E1000_WRITE_REG(hw, E1000_TDBAH(txq->reg_idx),
2591                                 (uint32_t)(bus_addr >> 32));
2592                 E1000_WRITE_REG(hw, E1000_TDBAL(txq->reg_idx), (uint32_t)bus_addr);
2593
2594                 /* Setup the HW Tx Head and Tail descriptor pointers. */
2595                 E1000_WRITE_REG(hw, E1000_TDT(txq->reg_idx), 0);
2596                 E1000_WRITE_REG(hw, E1000_TDH(txq->reg_idx), 0);
2597
2598                 /* Setup Transmit threshold registers. */
2599                 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(txq->reg_idx));
2600                 txdctl |= txq->pthresh & 0x1F;
2601                 txdctl |= ((txq->hthresh & 0x1F) << 8);
2602                 txdctl |= ((txq->wthresh & 0x1F) << 16);
2603                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2604                 E1000_WRITE_REG(hw, E1000_TXDCTL(txq->reg_idx), txdctl);
2605         }
2606
2607         /* Program the Transmit Control Register. */
2608         tctl = E1000_READ_REG(hw, E1000_TCTL);
2609         tctl &= ~E1000_TCTL_CT;
2610         tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2611                  (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
2612
2613         e1000_config_collision_dist(hw);
2614
2615         /* This write will effectively turn on the transmit unit. */
2616         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
2617 }
2618
2619 /*********************************************************************
2620  *
2621  *  Enable VF receive unit.
2622  *
2623  **********************************************************************/
2624 int
2625 eth_igbvf_rx_init(struct rte_eth_dev *dev)
2626 {
2627         struct e1000_hw     *hw;
2628         struct igb_rx_queue *rxq;
2629         uint32_t srrctl;
2630         uint16_t buf_size;
2631         uint16_t rctl_bsize;
2632         uint16_t i;
2633         int ret;
2634
2635         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2636
2637         /* setup MTU */
2638         e1000_rlpml_set_vf(hw,
2639                 (uint16_t)(dev->data->dev_conf.rxmode.max_rx_pkt_len +
2640                 VLAN_TAG_SIZE));
2641
2642         /* Configure and enable each RX queue. */
2643         rctl_bsize = 0;
2644         dev->rx_pkt_burst = eth_igb_recv_pkts;
2645         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2646                 uint64_t bus_addr;
2647                 uint32_t rxdctl;
2648
2649                 rxq = dev->data->rx_queues[i];
2650
2651                 rxq->flags = 0;
2652                 /*
2653                  * i350VF LB vlan packets have vlan tags byte swapped.
2654                  */
2655                 if (hw->mac.type == e1000_vfadapt_i350) {
2656                         rxq->flags |= IGB_RXQ_FLAG_LB_BSWAP_VLAN;
2657                         PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap required");
2658                 } else {
2659                         PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap not required");
2660                 }
2661
2662                 /* Allocate buffers for descriptor rings and set up queue */
2663                 ret = igb_alloc_rx_queue_mbufs(rxq);
2664                 if (ret)
2665                         return ret;
2666
2667                 bus_addr = rxq->rx_ring_phys_addr;
2668                 E1000_WRITE_REG(hw, E1000_RDLEN(i),
2669                                 rxq->nb_rx_desc *
2670                                 sizeof(union e1000_adv_rx_desc));
2671                 E1000_WRITE_REG(hw, E1000_RDBAH(i),
2672                                 (uint32_t)(bus_addr >> 32));
2673                 E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
2674
2675                 srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2676
2677                 /*
2678                  * Configure RX buffer size.
2679                  */
2680                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
2681                         RTE_PKTMBUF_HEADROOM);
2682                 if (buf_size >= 1024) {
2683                         /*
2684                          * Configure the BSIZEPACKET field of the SRRCTL
2685                          * register of the queue.
2686                          * Value is in 1 KB resolution, from 1 KB to 127 KB.
2687                          * If this field is equal to 0b, then RCTL.BSIZE
2688                          * determines the RX packet buffer size.
2689                          */
2690                         srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
2691                                    E1000_SRRCTL_BSIZEPKT_MASK);
2692                         buf_size = (uint16_t) ((srrctl &
2693                                                 E1000_SRRCTL_BSIZEPKT_MASK) <<
2694                                                E1000_SRRCTL_BSIZEPKT_SHIFT);
2695
2696                         /* It adds dual VLAN length for supporting dual VLAN */
2697                         if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
2698                                                 2 * VLAN_TAG_SIZE) > buf_size){
2699                                 if (!dev->data->scattered_rx)
2700                                         PMD_INIT_LOG(DEBUG,
2701                                                      "forcing scatter mode");
2702                                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2703                                 dev->data->scattered_rx = 1;
2704                         }
2705                 } else {
2706                         /*
2707                          * Use BSIZE field of the device RCTL register.
2708                          */
2709                         if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
2710                                 rctl_bsize = buf_size;
2711                         if (!dev->data->scattered_rx)
2712                                 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2713                         dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2714                         dev->data->scattered_rx = 1;
2715                 }
2716
2717                 /* Set if packets are dropped when no descriptors available */
2718                 if (rxq->drop_en)
2719                         srrctl |= E1000_SRRCTL_DROP_EN;
2720
2721                 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
2722
2723                 /* Enable this RX queue. */
2724                 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2725                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2726                 rxdctl &= 0xFFF00000;
2727                 rxdctl |= (rxq->pthresh & 0x1F);
2728                 rxdctl |= ((rxq->hthresh & 0x1F) << 8);
2729                 if (hw->mac.type == e1000_vfadapt) {
2730                         /*
2731                          * Workaround of 82576 VF Erratum
2732                          * force set WTHRESH to 1
2733                          * to avoid Write-Back not triggered sometimes
2734                          */
2735                         rxdctl |= 0x10000;
2736                         PMD_INIT_LOG(DEBUG, "Force set RX WTHRESH to 1 !");
2737                 }
2738                 else
2739                         rxdctl |= ((rxq->wthresh & 0x1F) << 16);
2740                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2741         }
2742
2743         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) {
2744                 if (!dev->data->scattered_rx)
2745                         PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2746                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2747                 dev->data->scattered_rx = 1;
2748         }
2749
2750         /*
2751          * Setup the HW Rx Head and Tail Descriptor Pointers.
2752          * This needs to be done after enable.
2753          */
2754         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2755                 rxq = dev->data->rx_queues[i];
2756                 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
2757                 E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
2758         }
2759
2760         return 0;
2761 }
2762
2763 /*********************************************************************
2764  *
2765  *  Enable VF transmit unit.
2766  *
2767  **********************************************************************/
2768 void
2769 eth_igbvf_tx_init(struct rte_eth_dev *dev)
2770 {
2771         struct e1000_hw     *hw;
2772         struct igb_tx_queue *txq;
2773         uint32_t txdctl;
2774         uint16_t i;
2775
2776         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2777
2778         /* Setup the Base and Length of the Tx Descriptor Rings. */
2779         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2780                 uint64_t bus_addr;
2781
2782                 txq = dev->data->tx_queues[i];
2783                 bus_addr = txq->tx_ring_phys_addr;
2784                 E1000_WRITE_REG(hw, E1000_TDLEN(i),
2785                                 txq->nb_tx_desc *
2786                                 sizeof(union e1000_adv_tx_desc));
2787                 E1000_WRITE_REG(hw, E1000_TDBAH(i),
2788                                 (uint32_t)(bus_addr >> 32));
2789                 E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
2790
2791                 /* Setup the HW Tx Head and Tail descriptor pointers. */
2792                 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
2793                 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
2794
2795                 /* Setup Transmit threshold registers. */
2796                 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
2797                 txdctl |= txq->pthresh & 0x1F;
2798                 txdctl |= ((txq->hthresh & 0x1F) << 8);
2799                 if (hw->mac.type == e1000_82576) {
2800                         /*
2801                          * Workaround of 82576 VF Erratum
2802                          * force set WTHRESH to 1
2803                          * to avoid Write-Back not triggered sometimes
2804                          */
2805                         txdctl |= 0x10000;
2806                         PMD_INIT_LOG(DEBUG, "Force set TX WTHRESH to 1 !");
2807                 }
2808                 else
2809                         txdctl |= ((txq->wthresh & 0x1F) << 16);
2810                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2811                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
2812         }
2813
2814 }
2815
2816 void
2817 igb_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2818         struct rte_eth_rxq_info *qinfo)
2819 {
2820         struct igb_rx_queue *rxq;
2821
2822         rxq = dev->data->rx_queues[queue_id];
2823
2824         qinfo->mp = rxq->mb_pool;
2825         qinfo->scattered_rx = dev->data->scattered_rx;
2826         qinfo->nb_desc = rxq->nb_rx_desc;
2827
2828         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
2829         qinfo->conf.rx_drop_en = rxq->drop_en;
2830         qinfo->conf.offloads = rxq->offloads;
2831 }
2832
2833 void
2834 igb_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2835         struct rte_eth_txq_info *qinfo)
2836 {
2837         struct igb_tx_queue *txq;
2838
2839         txq = dev->data->tx_queues[queue_id];
2840
2841         qinfo->nb_desc = txq->nb_tx_desc;
2842
2843         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
2844         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
2845         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
2846         qinfo->conf.offloads = txq->offloads;
2847 }
2848
2849 int
2850 igb_rss_conf_init(struct igb_rte_flow_rss_conf *out,
2851                   const struct rte_flow_action_rss *in)
2852 {
2853         if (in->key_len > RTE_DIM(out->key) ||
2854             in->queue_num > RTE_DIM(out->queue))
2855                 return -EINVAL;
2856         out->conf = (struct rte_flow_action_rss){
2857                 .func = in->func,
2858                 .level = in->level,
2859                 .types = in->types,
2860                 .key_len = in->key_len,
2861                 .queue_num = in->queue_num,
2862                 .key = memcpy(out->key, in->key, in->key_len),
2863                 .queue = memcpy(out->queue, in->queue,
2864                                 sizeof(*in->queue) * in->queue_num),
2865         };
2866         return 0;
2867 }
2868
2869 int
2870 igb_action_rss_same(const struct rte_flow_action_rss *comp,
2871                     const struct rte_flow_action_rss *with)
2872 {
2873         return (comp->func == with->func &&
2874                 comp->level == with->level &&
2875                 comp->types == with->types &&
2876                 comp->key_len == with->key_len &&
2877                 comp->queue_num == with->queue_num &&
2878                 !memcmp(comp->key, with->key, with->key_len) &&
2879                 !memcmp(comp->queue, with->queue,
2880                         sizeof(*with->queue) * with->queue_num));
2881 }
2882
2883 int
2884 igb_config_rss_filter(struct rte_eth_dev *dev,
2885                 struct igb_rte_flow_rss_conf *conf, bool add)
2886 {
2887         uint32_t shift;
2888         uint16_t i, j;
2889         struct rte_eth_rss_conf rss_conf = {
2890                 .rss_key = conf->conf.key_len ?
2891                         (void *)(uintptr_t)conf->conf.key : NULL,
2892                 .rss_key_len = conf->conf.key_len,
2893                 .rss_hf = conf->conf.types,
2894         };
2895         struct e1000_filter_info *filter_info =
2896                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
2897         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2898
2899         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2900
2901         if (!add) {
2902                 if (igb_action_rss_same(&filter_info->rss_info.conf,
2903                                         &conf->conf)) {
2904                         igb_rss_disable(dev);
2905                         memset(&filter_info->rss_info, 0,
2906                                 sizeof(struct igb_rte_flow_rss_conf));
2907                         return 0;
2908                 }
2909                 return -EINVAL;
2910         }
2911
2912         if (filter_info->rss_info.conf.queue_num)
2913                 return -EINVAL;
2914
2915         /* Fill in redirection table. */
2916         shift = (hw->mac.type == e1000_82575) ? 6 : 0;
2917         for (i = 0, j = 0; i < 128; i++, j++) {
2918                 union e1000_reta {
2919                         uint32_t dword;
2920                         uint8_t  bytes[4];
2921                 } reta;
2922                 uint8_t q_idx;
2923
2924                 if (j == conf->conf.queue_num)
2925                         j = 0;
2926                 q_idx = conf->conf.queue[j];
2927                 reta.bytes[i & 3] = (uint8_t)(q_idx << shift);
2928                 if ((i & 3) == 3)
2929                         E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword);
2930         }
2931
2932         /* Configure the RSS key and the RSS protocols used to compute
2933          * the RSS hash of input packets.
2934          */
2935         if ((rss_conf.rss_hf & IGB_RSS_OFFLOAD_ALL) == 0) {
2936                 igb_rss_disable(dev);
2937                 return 0;
2938         }
2939         if (rss_conf.rss_key == NULL)
2940                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
2941         igb_hw_rss_hash_set(hw, &rss_conf);
2942
2943         if (igb_rss_conf_init(&filter_info->rss_info, &conf->conf))
2944                 return -EINVAL;
2945
2946         return 0;
2947 }