drivers/net: update Rx RSS hash offload capabilities
[dpdk.git] / drivers / net / e1000 / igb_rxtx.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4
5 #include <sys/queue.h>
6
7 #include <stdio.h>
8 #include <stdlib.h>
9 #include <string.h>
10 #include <errno.h>
11 #include <stdint.h>
12 #include <stdarg.h>
13 #include <inttypes.h>
14
15 #include <rte_interrupts.h>
16 #include <rte_byteorder.h>
17 #include <rte_common.h>
18 #include <rte_log.h>
19 #include <rte_debug.h>
20 #include <rte_pci.h>
21 #include <rte_memory.h>
22 #include <rte_memcpy.h>
23 #include <rte_memzone.h>
24 #include <rte_launch.h>
25 #include <rte_eal.h>
26 #include <rte_per_lcore.h>
27 #include <rte_lcore.h>
28 #include <rte_atomic.h>
29 #include <rte_branch_prediction.h>
30 #include <rte_mempool.h>
31 #include <rte_malloc.h>
32 #include <rte_mbuf.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev_driver.h>
35 #include <rte_prefetch.h>
36 #include <rte_udp.h>
37 #include <rte_tcp.h>
38 #include <rte_sctp.h>
39 #include <rte_net.h>
40 #include <rte_string_fns.h>
41
42 #include "e1000_logs.h"
43 #include "base/e1000_api.h"
44 #include "e1000_ethdev.h"
45
46 #ifdef RTE_LIBRTE_IEEE1588
47 #define IGB_TX_IEEE1588_TMST PKT_TX_IEEE1588_TMST
48 #else
49 #define IGB_TX_IEEE1588_TMST 0
50 #endif
51 /* Bit Mask to indicate what bits required for building TX context */
52 #define IGB_TX_OFFLOAD_MASK (                    \
53                 PKT_TX_OUTER_IPV6 |      \
54                 PKT_TX_OUTER_IPV4 |      \
55                 PKT_TX_IPV6 |            \
56                 PKT_TX_IPV4 |            \
57                 PKT_TX_VLAN_PKT |                \
58                 PKT_TX_IP_CKSUM |                \
59                 PKT_TX_L4_MASK |                 \
60                 PKT_TX_TCP_SEG |                 \
61                 IGB_TX_IEEE1588_TMST)
62
63 #define IGB_TX_OFFLOAD_NOTSUP_MASK \
64                 (PKT_TX_OFFLOAD_MASK ^ IGB_TX_OFFLOAD_MASK)
65
66 /**
67  * Structure associated with each descriptor of the RX ring of a RX queue.
68  */
69 struct igb_rx_entry {
70         struct rte_mbuf *mbuf; /**< mbuf associated with RX descriptor. */
71 };
72
73 /**
74  * Structure associated with each descriptor of the TX ring of a TX queue.
75  */
76 struct igb_tx_entry {
77         struct rte_mbuf *mbuf; /**< mbuf associated with TX desc, if any. */
78         uint16_t next_id; /**< Index of next descriptor in ring. */
79         uint16_t last_id; /**< Index of last scattered descriptor. */
80 };
81
82 /**
83  * rx queue flags
84  */
85 enum igb_rxq_flags {
86         IGB_RXQ_FLAG_LB_BSWAP_VLAN = 0x01,
87 };
88
89 /**
90  * Structure associated with each RX queue.
91  */
92 struct igb_rx_queue {
93         struct rte_mempool  *mb_pool;   /**< mbuf pool to populate RX ring. */
94         volatile union e1000_adv_rx_desc *rx_ring; /**< RX ring virtual address. */
95         uint64_t            rx_ring_phys_addr; /**< RX ring DMA address. */
96         volatile uint32_t   *rdt_reg_addr; /**< RDT register address. */
97         volatile uint32_t   *rdh_reg_addr; /**< RDH register address. */
98         struct igb_rx_entry *sw_ring;   /**< address of RX software ring. */
99         struct rte_mbuf *pkt_first_seg; /**< First segment of current packet. */
100         struct rte_mbuf *pkt_last_seg;  /**< Last segment of current packet. */
101         uint16_t            nb_rx_desc; /**< number of RX descriptors. */
102         uint16_t            rx_tail;    /**< current value of RDT register. */
103         uint16_t            nb_rx_hold; /**< number of held free RX desc. */
104         uint16_t            rx_free_thresh; /**< max free RX desc to hold. */
105         uint16_t            queue_id;   /**< RX queue index. */
106         uint16_t            reg_idx;    /**< RX queue register index. */
107         uint16_t            port_id;    /**< Device port identifier. */
108         uint8_t             pthresh;    /**< Prefetch threshold register. */
109         uint8_t             hthresh;    /**< Host threshold register. */
110         uint8_t             wthresh;    /**< Write-back threshold register. */
111         uint8_t             crc_len;    /**< 0 if CRC stripped, 4 otherwise. */
112         uint8_t             drop_en;  /**< If not 0, set SRRCTL.Drop_En. */
113         uint32_t            flags;      /**< RX flags. */
114         uint64_t            offloads;   /**< offloads of DEV_RX_OFFLOAD_* */
115 };
116
117 /**
118  * Hardware context number
119  */
120 enum igb_advctx_num {
121         IGB_CTX_0    = 0, /**< CTX0    */
122         IGB_CTX_1    = 1, /**< CTX1    */
123         IGB_CTX_NUM  = 2, /**< CTX_NUM */
124 };
125
126 /** Offload features */
127 union igb_tx_offload {
128         uint64_t data;
129         struct {
130                 uint64_t l3_len:9; /**< L3 (IP) Header Length. */
131                 uint64_t l2_len:7; /**< L2 (MAC) Header Length. */
132                 uint64_t vlan_tci:16;  /**< VLAN Tag Control Identifier(CPU order). */
133                 uint64_t l4_len:8; /**< L4 (TCP/UDP) Header Length. */
134                 uint64_t tso_segsz:16; /**< TCP TSO segment size. */
135
136                 /* uint64_t unused:8; */
137         };
138 };
139
140 /*
141  * Compare mask for igb_tx_offload.data,
142  * should be in sync with igb_tx_offload layout.
143  * */
144 #define TX_MACIP_LEN_CMP_MASK   0x000000000000FFFFULL /**< L2L3 header mask. */
145 #define TX_VLAN_CMP_MASK                0x00000000FFFF0000ULL /**< Vlan mask. */
146 #define TX_TCP_LEN_CMP_MASK             0x000000FF00000000ULL /**< TCP header mask. */
147 #define TX_TSO_MSS_CMP_MASK             0x00FFFF0000000000ULL /**< TSO segsz mask. */
148 /** Mac + IP + TCP + Mss mask. */
149 #define TX_TSO_CMP_MASK \
150         (TX_MACIP_LEN_CMP_MASK | TX_TCP_LEN_CMP_MASK | TX_TSO_MSS_CMP_MASK)
151
152 /**
153  * Strucutre to check if new context need be built
154  */
155 struct igb_advctx_info {
156         uint64_t flags;           /**< ol_flags related to context build. */
157         /** tx offload: vlan, tso, l2-l3-l4 lengths. */
158         union igb_tx_offload tx_offload;
159         /** compare mask for tx offload. */
160         union igb_tx_offload tx_offload_mask;
161 };
162
163 /**
164  * Structure associated with each TX queue.
165  */
166 struct igb_tx_queue {
167         volatile union e1000_adv_tx_desc *tx_ring; /**< TX ring address */
168         uint64_t               tx_ring_phys_addr; /**< TX ring DMA address. */
169         struct igb_tx_entry    *sw_ring; /**< virtual address of SW ring. */
170         volatile uint32_t      *tdt_reg_addr; /**< Address of TDT register. */
171         uint32_t               txd_type;      /**< Device-specific TXD type */
172         uint16_t               nb_tx_desc;    /**< number of TX descriptors. */
173         uint16_t               tx_tail; /**< Current value of TDT register. */
174         uint16_t               tx_head;
175         /**< Index of first used TX descriptor. */
176         uint16_t               queue_id; /**< TX queue index. */
177         uint16_t               reg_idx;  /**< TX queue register index. */
178         uint16_t               port_id;  /**< Device port identifier. */
179         uint8_t                pthresh;  /**< Prefetch threshold register. */
180         uint8_t                hthresh;  /**< Host threshold register. */
181         uint8_t                wthresh;  /**< Write-back threshold register. */
182         uint32_t               ctx_curr;
183         /**< Current used hardware descriptor. */
184         uint32_t               ctx_start;
185         /**< Start context position for transmit queue. */
186         struct igb_advctx_info ctx_cache[IGB_CTX_NUM];
187         /**< Hardware context history.*/
188         uint64_t               offloads; /**< offloads of DEV_TX_OFFLOAD_* */
189 };
190
191 #if 1
192 #define RTE_PMD_USE_PREFETCH
193 #endif
194
195 #ifdef RTE_PMD_USE_PREFETCH
196 #define rte_igb_prefetch(p)     rte_prefetch0(p)
197 #else
198 #define rte_igb_prefetch(p)     do {} while(0)
199 #endif
200
201 #ifdef RTE_PMD_PACKET_PREFETCH
202 #define rte_packet_prefetch(p) rte_prefetch1(p)
203 #else
204 #define rte_packet_prefetch(p)  do {} while(0)
205 #endif
206
207 /*
208  * Macro for VMDq feature for 1 GbE NIC.
209  */
210 #define E1000_VMOLR_SIZE                        (8)
211 #define IGB_TSO_MAX_HDRLEN                      (512)
212 #define IGB_TSO_MAX_MSS                         (9216)
213
214 /*********************************************************************
215  *
216  *  TX function
217  *
218  **********************************************************************/
219
220 /*
221  *There're some limitations in hardware for TCP segmentation offload. We
222  *should check whether the parameters are valid.
223  */
224 static inline uint64_t
225 check_tso_para(uint64_t ol_req, union igb_tx_offload ol_para)
226 {
227         if (!(ol_req & PKT_TX_TCP_SEG))
228                 return ol_req;
229         if ((ol_para.tso_segsz > IGB_TSO_MAX_MSS) || (ol_para.l2_len +
230                         ol_para.l3_len + ol_para.l4_len > IGB_TSO_MAX_HDRLEN)) {
231                 ol_req &= ~PKT_TX_TCP_SEG;
232                 ol_req |= PKT_TX_TCP_CKSUM;
233         }
234         return ol_req;
235 }
236
237 /*
238  * Advanced context descriptor are almost same between igb/ixgbe
239  * This is a separate function, looking for optimization opportunity here
240  * Rework required to go with the pre-defined values.
241  */
242
243 static inline void
244 igbe_set_xmit_ctx(struct igb_tx_queue* txq,
245                 volatile struct e1000_adv_tx_context_desc *ctx_txd,
246                 uint64_t ol_flags, union igb_tx_offload tx_offload)
247 {
248         uint32_t type_tucmd_mlhl;
249         uint32_t mss_l4len_idx;
250         uint32_t ctx_idx, ctx_curr;
251         uint32_t vlan_macip_lens;
252         union igb_tx_offload tx_offload_mask;
253
254         ctx_curr = txq->ctx_curr;
255         ctx_idx = ctx_curr + txq->ctx_start;
256
257         tx_offload_mask.data = 0;
258         type_tucmd_mlhl = 0;
259
260         /* Specify which HW CTX to upload. */
261         mss_l4len_idx = (ctx_idx << E1000_ADVTXD_IDX_SHIFT);
262
263         if (ol_flags & PKT_TX_VLAN_PKT)
264                 tx_offload_mask.data |= TX_VLAN_CMP_MASK;
265
266         /* check if TCP segmentation required for this packet */
267         if (ol_flags & PKT_TX_TCP_SEG) {
268                 /* implies IP cksum in IPv4 */
269                 if (ol_flags & PKT_TX_IP_CKSUM)
270                         type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4 |
271                                 E1000_ADVTXD_TUCMD_L4T_TCP |
272                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
273                 else
274                         type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV6 |
275                                 E1000_ADVTXD_TUCMD_L4T_TCP |
276                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
277
278                 tx_offload_mask.data |= TX_TSO_CMP_MASK;
279                 mss_l4len_idx |= tx_offload.tso_segsz << E1000_ADVTXD_MSS_SHIFT;
280                 mss_l4len_idx |= tx_offload.l4_len << E1000_ADVTXD_L4LEN_SHIFT;
281         } else { /* no TSO, check if hardware checksum is needed */
282                 if (ol_flags & (PKT_TX_IP_CKSUM | PKT_TX_L4_MASK))
283                         tx_offload_mask.data |= TX_MACIP_LEN_CMP_MASK;
284
285                 if (ol_flags & PKT_TX_IP_CKSUM)
286                         type_tucmd_mlhl = E1000_ADVTXD_TUCMD_IPV4;
287
288                 switch (ol_flags & PKT_TX_L4_MASK) {
289                 case PKT_TX_UDP_CKSUM:
290                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP |
291                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
292                         mss_l4len_idx |= sizeof(struct rte_udp_hdr)
293                                 << E1000_ADVTXD_L4LEN_SHIFT;
294                         break;
295                 case PKT_TX_TCP_CKSUM:
296                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP |
297                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
298                         mss_l4len_idx |= sizeof(struct rte_tcp_hdr)
299                                 << E1000_ADVTXD_L4LEN_SHIFT;
300                         break;
301                 case PKT_TX_SCTP_CKSUM:
302                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP |
303                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
304                         mss_l4len_idx |= sizeof(struct rte_sctp_hdr)
305                                 << E1000_ADVTXD_L4LEN_SHIFT;
306                         break;
307                 default:
308                         type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_RSV |
309                                 E1000_ADVTXD_DTYP_CTXT | E1000_ADVTXD_DCMD_DEXT;
310                         break;
311                 }
312         }
313
314         txq->ctx_cache[ctx_curr].flags = ol_flags;
315         txq->ctx_cache[ctx_curr].tx_offload.data =
316                 tx_offload_mask.data & tx_offload.data;
317         txq->ctx_cache[ctx_curr].tx_offload_mask = tx_offload_mask;
318
319         ctx_txd->type_tucmd_mlhl = rte_cpu_to_le_32(type_tucmd_mlhl);
320         vlan_macip_lens = (uint32_t)tx_offload.data;
321         ctx_txd->vlan_macip_lens = rte_cpu_to_le_32(vlan_macip_lens);
322         ctx_txd->mss_l4len_idx = rte_cpu_to_le_32(mss_l4len_idx);
323         ctx_txd->seqnum_seed = 0;
324 }
325
326 /*
327  * Check which hardware context can be used. Use the existing match
328  * or create a new context descriptor.
329  */
330 static inline uint32_t
331 what_advctx_update(struct igb_tx_queue *txq, uint64_t flags,
332                 union igb_tx_offload tx_offload)
333 {
334         /* If match with the current context */
335         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
336                 (txq->ctx_cache[txq->ctx_curr].tx_offload.data ==
337                 (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data & tx_offload.data)))) {
338                         return txq->ctx_curr;
339         }
340
341         /* If match with the second context */
342         txq->ctx_curr ^= 1;
343         if (likely((txq->ctx_cache[txq->ctx_curr].flags == flags) &&
344                 (txq->ctx_cache[txq->ctx_curr].tx_offload.data ==
345                 (txq->ctx_cache[txq->ctx_curr].tx_offload_mask.data & tx_offload.data)))) {
346                         return txq->ctx_curr;
347         }
348
349         /* Mismatch, use the previous context */
350         return IGB_CTX_NUM;
351 }
352
353 static inline uint32_t
354 tx_desc_cksum_flags_to_olinfo(uint64_t ol_flags)
355 {
356         static const uint32_t l4_olinfo[2] = {0, E1000_ADVTXD_POPTS_TXSM};
357         static const uint32_t l3_olinfo[2] = {0, E1000_ADVTXD_POPTS_IXSM};
358         uint32_t tmp;
359
360         tmp  = l4_olinfo[(ol_flags & PKT_TX_L4_MASK)  != PKT_TX_L4_NO_CKSUM];
361         tmp |= l3_olinfo[(ol_flags & PKT_TX_IP_CKSUM) != 0];
362         tmp |= l4_olinfo[(ol_flags & PKT_TX_TCP_SEG) != 0];
363         return tmp;
364 }
365
366 static inline uint32_t
367 tx_desc_vlan_flags_to_cmdtype(uint64_t ol_flags)
368 {
369         uint32_t cmdtype;
370         static uint32_t vlan_cmd[2] = {0, E1000_ADVTXD_DCMD_VLE};
371         static uint32_t tso_cmd[2] = {0, E1000_ADVTXD_DCMD_TSE};
372         cmdtype = vlan_cmd[(ol_flags & PKT_TX_VLAN_PKT) != 0];
373         cmdtype |= tso_cmd[(ol_flags & PKT_TX_TCP_SEG) != 0];
374         return cmdtype;
375 }
376
377 uint16_t
378 eth_igb_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
379                uint16_t nb_pkts)
380 {
381         struct igb_tx_queue *txq;
382         struct igb_tx_entry *sw_ring;
383         struct igb_tx_entry *txe, *txn;
384         volatile union e1000_adv_tx_desc *txr;
385         volatile union e1000_adv_tx_desc *txd;
386         struct rte_mbuf     *tx_pkt;
387         struct rte_mbuf     *m_seg;
388         uint64_t buf_dma_addr;
389         uint32_t olinfo_status;
390         uint32_t cmd_type_len;
391         uint32_t pkt_len;
392         uint16_t slen;
393         uint64_t ol_flags;
394         uint16_t tx_end;
395         uint16_t tx_id;
396         uint16_t tx_last;
397         uint16_t nb_tx;
398         uint64_t tx_ol_req;
399         uint32_t new_ctx = 0;
400         uint32_t ctx = 0;
401         union igb_tx_offload tx_offload = {0};
402
403         txq = tx_queue;
404         sw_ring = txq->sw_ring;
405         txr     = txq->tx_ring;
406         tx_id   = txq->tx_tail;
407         txe = &sw_ring[tx_id];
408
409         for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
410                 tx_pkt = *tx_pkts++;
411                 pkt_len = tx_pkt->pkt_len;
412
413                 RTE_MBUF_PREFETCH_TO_FREE(txe->mbuf);
414
415                 /*
416                  * The number of descriptors that must be allocated for a
417                  * packet is the number of segments of that packet, plus 1
418                  * Context Descriptor for the VLAN Tag Identifier, if any.
419                  * Determine the last TX descriptor to allocate in the TX ring
420                  * for the packet, starting from the current position (tx_id)
421                  * in the ring.
422                  */
423                 tx_last = (uint16_t) (tx_id + tx_pkt->nb_segs - 1);
424
425                 ol_flags = tx_pkt->ol_flags;
426                 tx_ol_req = ol_flags & IGB_TX_OFFLOAD_MASK;
427
428                 /* If a Context Descriptor need be built . */
429                 if (tx_ol_req) {
430                         tx_offload.l2_len = tx_pkt->l2_len;
431                         tx_offload.l3_len = tx_pkt->l3_len;
432                         tx_offload.l4_len = tx_pkt->l4_len;
433                         tx_offload.vlan_tci = tx_pkt->vlan_tci;
434                         tx_offload.tso_segsz = tx_pkt->tso_segsz;
435                         tx_ol_req = check_tso_para(tx_ol_req, tx_offload);
436
437                         ctx = what_advctx_update(txq, tx_ol_req, tx_offload);
438                         /* Only allocate context descriptor if required*/
439                         new_ctx = (ctx == IGB_CTX_NUM);
440                         ctx = txq->ctx_curr + txq->ctx_start;
441                         tx_last = (uint16_t) (tx_last + new_ctx);
442                 }
443                 if (tx_last >= txq->nb_tx_desc)
444                         tx_last = (uint16_t) (tx_last - txq->nb_tx_desc);
445
446                 PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u pktlen=%u"
447                            " tx_first=%u tx_last=%u",
448                            (unsigned) txq->port_id,
449                            (unsigned) txq->queue_id,
450                            (unsigned) pkt_len,
451                            (unsigned) tx_id,
452                            (unsigned) tx_last);
453
454                 /*
455                  * Check if there are enough free descriptors in the TX ring
456                  * to transmit the next packet.
457                  * This operation is based on the two following rules:
458                  *
459                  *   1- Only check that the last needed TX descriptor can be
460                  *      allocated (by construction, if that descriptor is free,
461                  *      all intermediate ones are also free).
462                  *
463                  *      For this purpose, the index of the last TX descriptor
464                  *      used for a packet (the "last descriptor" of a packet)
465                  *      is recorded in the TX entries (the last one included)
466                  *      that are associated with all TX descriptors allocated
467                  *      for that packet.
468                  *
469                  *   2- Avoid to allocate the last free TX descriptor of the
470                  *      ring, in order to never set the TDT register with the
471                  *      same value stored in parallel by the NIC in the TDH
472                  *      register, which makes the TX engine of the NIC enter
473                  *      in a deadlock situation.
474                  *
475                  *      By extension, avoid to allocate a free descriptor that
476                  *      belongs to the last set of free descriptors allocated
477                  *      to the same packet previously transmitted.
478                  */
479
480                 /*
481                  * The "last descriptor" of the previously sent packet, if any,
482                  * which used the last descriptor to allocate.
483                  */
484                 tx_end = sw_ring[tx_last].last_id;
485
486                 /*
487                  * The next descriptor following that "last descriptor" in the
488                  * ring.
489                  */
490                 tx_end = sw_ring[tx_end].next_id;
491
492                 /*
493                  * The "last descriptor" associated with that next descriptor.
494                  */
495                 tx_end = sw_ring[tx_end].last_id;
496
497                 /*
498                  * Check that this descriptor is free.
499                  */
500                 if (! (txr[tx_end].wb.status & E1000_TXD_STAT_DD)) {
501                         if (nb_tx == 0)
502                                 return 0;
503                         goto end_of_tx;
504                 }
505
506                 /*
507                  * Set common flags of all TX Data Descriptors.
508                  *
509                  * The following bits must be set in all Data Descriptors:
510                  *   - E1000_ADVTXD_DTYP_DATA
511                  *   - E1000_ADVTXD_DCMD_DEXT
512                  *
513                  * The following bits must be set in the first Data Descriptor
514                  * and are ignored in the other ones:
515                  *   - E1000_ADVTXD_DCMD_IFCS
516                  *   - E1000_ADVTXD_MAC_1588
517                  *   - E1000_ADVTXD_DCMD_VLE
518                  *
519                  * The following bits must only be set in the last Data
520                  * Descriptor:
521                  *   - E1000_TXD_CMD_EOP
522                  *
523                  * The following bits can be set in any Data Descriptor, but
524                  * are only set in the last Data Descriptor:
525                  *   - E1000_TXD_CMD_RS
526                  */
527                 cmd_type_len = txq->txd_type |
528                         E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT;
529                 if (tx_ol_req & PKT_TX_TCP_SEG)
530                         pkt_len -= (tx_pkt->l2_len + tx_pkt->l3_len + tx_pkt->l4_len);
531                 olinfo_status = (pkt_len << E1000_ADVTXD_PAYLEN_SHIFT);
532 #if defined(RTE_LIBRTE_IEEE1588)
533                 if (ol_flags & PKT_TX_IEEE1588_TMST)
534                         cmd_type_len |= E1000_ADVTXD_MAC_TSTAMP;
535 #endif
536                 if (tx_ol_req) {
537                         /* Setup TX Advanced context descriptor if required */
538                         if (new_ctx) {
539                                 volatile struct e1000_adv_tx_context_desc *
540                                     ctx_txd;
541
542                                 ctx_txd = (volatile struct
543                                     e1000_adv_tx_context_desc *)
544                                     &txr[tx_id];
545
546                                 txn = &sw_ring[txe->next_id];
547                                 RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
548
549                                 if (txe->mbuf != NULL) {
550                                         rte_pktmbuf_free_seg(txe->mbuf);
551                                         txe->mbuf = NULL;
552                                 }
553
554                                 igbe_set_xmit_ctx(txq, ctx_txd, tx_ol_req, tx_offload);
555
556                                 txe->last_id = tx_last;
557                                 tx_id = txe->next_id;
558                                 txe = txn;
559                         }
560
561                         /* Setup the TX Advanced Data Descriptor */
562                         cmd_type_len  |= tx_desc_vlan_flags_to_cmdtype(tx_ol_req);
563                         olinfo_status |= tx_desc_cksum_flags_to_olinfo(tx_ol_req);
564                         olinfo_status |= (ctx << E1000_ADVTXD_IDX_SHIFT);
565                 }
566
567                 m_seg = tx_pkt;
568                 do {
569                         txn = &sw_ring[txe->next_id];
570                         txd = &txr[tx_id];
571
572                         if (txe->mbuf != NULL)
573                                 rte_pktmbuf_free_seg(txe->mbuf);
574                         txe->mbuf = m_seg;
575
576                         /*
577                          * Set up transmit descriptor.
578                          */
579                         slen = (uint16_t) m_seg->data_len;
580                         buf_dma_addr = rte_mbuf_data_iova(m_seg);
581                         txd->read.buffer_addr =
582                                 rte_cpu_to_le_64(buf_dma_addr);
583                         txd->read.cmd_type_len =
584                                 rte_cpu_to_le_32(cmd_type_len | slen);
585                         txd->read.olinfo_status =
586                                 rte_cpu_to_le_32(olinfo_status);
587                         txe->last_id = tx_last;
588                         tx_id = txe->next_id;
589                         txe = txn;
590                         m_seg = m_seg->next;
591                 } while (m_seg != NULL);
592
593                 /*
594                  * The last packet data descriptor needs End Of Packet (EOP)
595                  * and Report Status (RS).
596                  */
597                 txd->read.cmd_type_len |=
598                         rte_cpu_to_le_32(E1000_TXD_CMD_EOP | E1000_TXD_CMD_RS);
599         }
600  end_of_tx:
601         rte_wmb();
602
603         /*
604          * Set the Transmit Descriptor Tail (TDT).
605          */
606         E1000_PCI_REG_WRITE_RELAXED(txq->tdt_reg_addr, tx_id);
607         PMD_TX_LOG(DEBUG, "port_id=%u queue_id=%u tx_tail=%u nb_tx=%u",
608                    (unsigned) txq->port_id, (unsigned) txq->queue_id,
609                    (unsigned) tx_id, (unsigned) nb_tx);
610         txq->tx_tail = tx_id;
611
612         return nb_tx;
613 }
614
615 /*********************************************************************
616  *
617  *  TX prep functions
618  *
619  **********************************************************************/
620 uint16_t
621 eth_igb_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
622                 uint16_t nb_pkts)
623 {
624         int i, ret;
625         struct rte_mbuf *m;
626
627         for (i = 0; i < nb_pkts; i++) {
628                 m = tx_pkts[i];
629
630                 /* Check some limitations for TSO in hardware */
631                 if (m->ol_flags & PKT_TX_TCP_SEG)
632                         if ((m->tso_segsz > IGB_TSO_MAX_MSS) ||
633                                         (m->l2_len + m->l3_len + m->l4_len >
634                                         IGB_TSO_MAX_HDRLEN)) {
635                                 rte_errno = EINVAL;
636                                 return i;
637                         }
638
639                 if (m->ol_flags & IGB_TX_OFFLOAD_NOTSUP_MASK) {
640                         rte_errno = ENOTSUP;
641                         return i;
642                 }
643
644 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
645                 ret = rte_validate_tx_offload(m);
646                 if (ret != 0) {
647                         rte_errno = -ret;
648                         return i;
649                 }
650 #endif
651                 ret = rte_net_intel_cksum_prepare(m);
652                 if (ret != 0) {
653                         rte_errno = -ret;
654                         return i;
655                 }
656         }
657
658         return i;
659 }
660
661 /*********************************************************************
662  *
663  *  RX functions
664  *
665  **********************************************************************/
666 #define IGB_PACKET_TYPE_IPV4              0X01
667 #define IGB_PACKET_TYPE_IPV4_TCP          0X11
668 #define IGB_PACKET_TYPE_IPV4_UDP          0X21
669 #define IGB_PACKET_TYPE_IPV4_SCTP         0X41
670 #define IGB_PACKET_TYPE_IPV4_EXT          0X03
671 #define IGB_PACKET_TYPE_IPV4_EXT_SCTP     0X43
672 #define IGB_PACKET_TYPE_IPV6              0X04
673 #define IGB_PACKET_TYPE_IPV6_TCP          0X14
674 #define IGB_PACKET_TYPE_IPV6_UDP          0X24
675 #define IGB_PACKET_TYPE_IPV6_EXT          0X0C
676 #define IGB_PACKET_TYPE_IPV6_EXT_TCP      0X1C
677 #define IGB_PACKET_TYPE_IPV6_EXT_UDP      0X2C
678 #define IGB_PACKET_TYPE_IPV4_IPV6         0X05
679 #define IGB_PACKET_TYPE_IPV4_IPV6_TCP     0X15
680 #define IGB_PACKET_TYPE_IPV4_IPV6_UDP     0X25
681 #define IGB_PACKET_TYPE_IPV4_IPV6_EXT     0X0D
682 #define IGB_PACKET_TYPE_IPV4_IPV6_EXT_TCP 0X1D
683 #define IGB_PACKET_TYPE_IPV4_IPV6_EXT_UDP 0X2D
684 #define IGB_PACKET_TYPE_MAX               0X80
685 #define IGB_PACKET_TYPE_MASK              0X7F
686 #define IGB_PACKET_TYPE_SHIFT             0X04
687 static inline uint32_t
688 igb_rxd_pkt_info_to_pkt_type(uint16_t pkt_info)
689 {
690         static const uint32_t
691                 ptype_table[IGB_PACKET_TYPE_MAX] __rte_cache_aligned = {
692                 [IGB_PACKET_TYPE_IPV4] = RTE_PTYPE_L2_ETHER |
693                         RTE_PTYPE_L3_IPV4,
694                 [IGB_PACKET_TYPE_IPV4_EXT] = RTE_PTYPE_L2_ETHER |
695                         RTE_PTYPE_L3_IPV4_EXT,
696                 [IGB_PACKET_TYPE_IPV6] = RTE_PTYPE_L2_ETHER |
697                         RTE_PTYPE_L3_IPV6,
698                 [IGB_PACKET_TYPE_IPV4_IPV6] = RTE_PTYPE_L2_ETHER |
699                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
700                         RTE_PTYPE_INNER_L3_IPV6,
701                 [IGB_PACKET_TYPE_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
702                         RTE_PTYPE_L3_IPV6_EXT,
703                 [IGB_PACKET_TYPE_IPV4_IPV6_EXT] = RTE_PTYPE_L2_ETHER |
704                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
705                         RTE_PTYPE_INNER_L3_IPV6_EXT,
706                 [IGB_PACKET_TYPE_IPV4_TCP] = RTE_PTYPE_L2_ETHER |
707                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_TCP,
708                 [IGB_PACKET_TYPE_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
709                         RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_TCP,
710                 [IGB_PACKET_TYPE_IPV4_IPV6_TCP] = RTE_PTYPE_L2_ETHER |
711                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
712                         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_TCP,
713                 [IGB_PACKET_TYPE_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
714                         RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_TCP,
715                 [IGB_PACKET_TYPE_IPV4_IPV6_EXT_TCP] = RTE_PTYPE_L2_ETHER |
716                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
717                         RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_TCP,
718                 [IGB_PACKET_TYPE_IPV4_UDP] = RTE_PTYPE_L2_ETHER |
719                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_UDP,
720                 [IGB_PACKET_TYPE_IPV6_UDP] = RTE_PTYPE_L2_ETHER |
721                         RTE_PTYPE_L3_IPV6 | RTE_PTYPE_L4_UDP,
722                 [IGB_PACKET_TYPE_IPV4_IPV6_UDP] =  RTE_PTYPE_L2_ETHER |
723                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
724                         RTE_PTYPE_INNER_L3_IPV6 | RTE_PTYPE_INNER_L4_UDP,
725                 [IGB_PACKET_TYPE_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
726                         RTE_PTYPE_L3_IPV6_EXT | RTE_PTYPE_L4_UDP,
727                 [IGB_PACKET_TYPE_IPV4_IPV6_EXT_UDP] = RTE_PTYPE_L2_ETHER |
728                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_TUNNEL_IP |
729                         RTE_PTYPE_INNER_L3_IPV6_EXT | RTE_PTYPE_INNER_L4_UDP,
730                 [IGB_PACKET_TYPE_IPV4_SCTP] = RTE_PTYPE_L2_ETHER |
731                         RTE_PTYPE_L3_IPV4 | RTE_PTYPE_L4_SCTP,
732                 [IGB_PACKET_TYPE_IPV4_EXT_SCTP] = RTE_PTYPE_L2_ETHER |
733                         RTE_PTYPE_L3_IPV4_EXT | RTE_PTYPE_L4_SCTP,
734         };
735         if (unlikely(pkt_info & E1000_RXDADV_PKTTYPE_ETQF))
736                 return RTE_PTYPE_UNKNOWN;
737
738         pkt_info = (pkt_info >> IGB_PACKET_TYPE_SHIFT) & IGB_PACKET_TYPE_MASK;
739
740         return ptype_table[pkt_info];
741 }
742
743 static inline uint64_t
744 rx_desc_hlen_type_rss_to_pkt_flags(struct igb_rx_queue *rxq, uint32_t hl_tp_rs)
745 {
746         uint64_t pkt_flags = ((hl_tp_rs & 0x0F) == 0) ?  0 : PKT_RX_RSS_HASH;
747
748 #if defined(RTE_LIBRTE_IEEE1588)
749         static uint32_t ip_pkt_etqf_map[8] = {
750                 0, 0, 0, PKT_RX_IEEE1588_PTP,
751                 0, 0, 0, 0,
752         };
753
754         struct rte_eth_dev dev = rte_eth_devices[rxq->port_id];
755         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev.data->dev_private);
756
757         /* EtherType is in bits 8:10 in Packet Type, and not in the default 0:2 */
758         if (hw->mac.type == e1000_i210)
759                 pkt_flags |= ip_pkt_etqf_map[(hl_tp_rs >> 12) & 0x07];
760         else
761                 pkt_flags |= ip_pkt_etqf_map[(hl_tp_rs >> 4) & 0x07];
762 #else
763         RTE_SET_USED(rxq);
764 #endif
765
766         return pkt_flags;
767 }
768
769 static inline uint64_t
770 rx_desc_status_to_pkt_flags(uint32_t rx_status)
771 {
772         uint64_t pkt_flags;
773
774         /* Check if VLAN present */
775         pkt_flags = ((rx_status & E1000_RXD_STAT_VP) ?
776                 PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED : 0);
777
778 #if defined(RTE_LIBRTE_IEEE1588)
779         if (rx_status & E1000_RXD_STAT_TMST)
780                 pkt_flags = pkt_flags | PKT_RX_IEEE1588_TMST;
781 #endif
782         return pkt_flags;
783 }
784
785 static inline uint64_t
786 rx_desc_error_to_pkt_flags(uint32_t rx_status)
787 {
788         /*
789          * Bit 30: IPE, IPv4 checksum error
790          * Bit 29: L4I, L4I integrity error
791          */
792
793         static uint64_t error_to_pkt_flags_map[4] = {
794                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD,
795                 PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD,
796                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD,
797                 PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD
798         };
799         return error_to_pkt_flags_map[(rx_status >>
800                 E1000_RXD_ERR_CKSUM_BIT) & E1000_RXD_ERR_CKSUM_MSK];
801 }
802
803 uint16_t
804 eth_igb_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
805                uint16_t nb_pkts)
806 {
807         struct igb_rx_queue *rxq;
808         volatile union e1000_adv_rx_desc *rx_ring;
809         volatile union e1000_adv_rx_desc *rxdp;
810         struct igb_rx_entry *sw_ring;
811         struct igb_rx_entry *rxe;
812         struct rte_mbuf *rxm;
813         struct rte_mbuf *nmb;
814         union e1000_adv_rx_desc rxd;
815         uint64_t dma_addr;
816         uint32_t staterr;
817         uint32_t hlen_type_rss;
818         uint16_t pkt_len;
819         uint16_t rx_id;
820         uint16_t nb_rx;
821         uint16_t nb_hold;
822         uint64_t pkt_flags;
823
824         nb_rx = 0;
825         nb_hold = 0;
826         rxq = rx_queue;
827         rx_id = rxq->rx_tail;
828         rx_ring = rxq->rx_ring;
829         sw_ring = rxq->sw_ring;
830         while (nb_rx < nb_pkts) {
831                 /*
832                  * The order of operations here is important as the DD status
833                  * bit must not be read after any other descriptor fields.
834                  * rx_ring and rxdp are pointing to volatile data so the order
835                  * of accesses cannot be reordered by the compiler. If they were
836                  * not volatile, they could be reordered which could lead to
837                  * using invalid descriptor fields when read from rxd.
838                  */
839                 rxdp = &rx_ring[rx_id];
840                 staterr = rxdp->wb.upper.status_error;
841                 if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
842                         break;
843                 rxd = *rxdp;
844
845                 /*
846                  * End of packet.
847                  *
848                  * If the E1000_RXD_STAT_EOP flag is not set, the RX packet is
849                  * likely to be invalid and to be dropped by the various
850                  * validation checks performed by the network stack.
851                  *
852                  * Allocate a new mbuf to replenish the RX ring descriptor.
853                  * If the allocation fails:
854                  *    - arrange for that RX descriptor to be the first one
855                  *      being parsed the next time the receive function is
856                  *      invoked [on the same queue].
857                  *
858                  *    - Stop parsing the RX ring and return immediately.
859                  *
860                  * This policy do not drop the packet received in the RX
861                  * descriptor for which the allocation of a new mbuf failed.
862                  * Thus, it allows that packet to be later retrieved if
863                  * mbuf have been freed in the mean time.
864                  * As a side effect, holding RX descriptors instead of
865                  * systematically giving them back to the NIC may lead to
866                  * RX ring exhaustion situations.
867                  * However, the NIC can gracefully prevent such situations
868                  * to happen by sending specific "back-pressure" flow control
869                  * frames to its peer(s).
870                  */
871                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
872                            "staterr=0x%x pkt_len=%u",
873                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
874                            (unsigned) rx_id, (unsigned) staterr,
875                            (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
876
877                 nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
878                 if (nmb == NULL) {
879                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
880                                    "queue_id=%u", (unsigned) rxq->port_id,
881                                    (unsigned) rxq->queue_id);
882                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
883                         break;
884                 }
885
886                 nb_hold++;
887                 rxe = &sw_ring[rx_id];
888                 rx_id++;
889                 if (rx_id == rxq->nb_rx_desc)
890                         rx_id = 0;
891
892                 /* Prefetch next mbuf while processing current one. */
893                 rte_igb_prefetch(sw_ring[rx_id].mbuf);
894
895                 /*
896                  * When next RX descriptor is on a cache-line boundary,
897                  * prefetch the next 4 RX descriptors and the next 8 pointers
898                  * to mbufs.
899                  */
900                 if ((rx_id & 0x3) == 0) {
901                         rte_igb_prefetch(&rx_ring[rx_id]);
902                         rte_igb_prefetch(&sw_ring[rx_id]);
903                 }
904
905                 rxm = rxe->mbuf;
906                 rxe->mbuf = nmb;
907                 dma_addr =
908                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
909                 rxdp->read.hdr_addr = 0;
910                 rxdp->read.pkt_addr = dma_addr;
911
912                 /*
913                  * Initialize the returned mbuf.
914                  * 1) setup generic mbuf fields:
915                  *    - number of segments,
916                  *    - next segment,
917                  *    - packet length,
918                  *    - RX port identifier.
919                  * 2) integrate hardware offload data, if any:
920                  *    - RSS flag & hash,
921                  *    - IP checksum flag,
922                  *    - VLAN TCI, if any,
923                  *    - error flags.
924                  */
925                 pkt_len = (uint16_t) (rte_le_to_cpu_16(rxd.wb.upper.length) -
926                                       rxq->crc_len);
927                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
928                 rte_packet_prefetch((char *)rxm->buf_addr + rxm->data_off);
929                 rxm->nb_segs = 1;
930                 rxm->next = NULL;
931                 rxm->pkt_len = pkt_len;
932                 rxm->data_len = pkt_len;
933                 rxm->port = rxq->port_id;
934
935                 rxm->hash.rss = rxd.wb.lower.hi_dword.rss;
936                 hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
937
938                 /*
939                  * The vlan_tci field is only valid when PKT_RX_VLAN is
940                  * set in the pkt_flags field and must be in CPU byte order.
941                  */
942                 if ((staterr & rte_cpu_to_le_32(E1000_RXDEXT_STATERR_LB)) &&
943                                 (rxq->flags & IGB_RXQ_FLAG_LB_BSWAP_VLAN)) {
944                         rxm->vlan_tci = rte_be_to_cpu_16(rxd.wb.upper.vlan);
945                 } else {
946                         rxm->vlan_tci = rte_le_to_cpu_16(rxd.wb.upper.vlan);
947                 }
948                 pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(rxq, hlen_type_rss);
949                 pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
950                 pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
951                 rxm->ol_flags = pkt_flags;
952                 rxm->packet_type = igb_rxd_pkt_info_to_pkt_type(rxd.wb.lower.
953                                                 lo_dword.hs_rss.pkt_info);
954
955                 /*
956                  * Store the mbuf address into the next entry of the array
957                  * of returned packets.
958                  */
959                 rx_pkts[nb_rx++] = rxm;
960         }
961         rxq->rx_tail = rx_id;
962
963         /*
964          * If the number of free RX descriptors is greater than the RX free
965          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
966          * register.
967          * Update the RDT with the value of the last processed RX descriptor
968          * minus 1, to guarantee that the RDT register is never equal to the
969          * RDH register, which creates a "full" ring situtation from the
970          * hardware point of view...
971          */
972         nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
973         if (nb_hold > rxq->rx_free_thresh) {
974                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
975                            "nb_hold=%u nb_rx=%u",
976                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
977                            (unsigned) rx_id, (unsigned) nb_hold,
978                            (unsigned) nb_rx);
979                 rx_id = (uint16_t) ((rx_id == 0) ?
980                                      (rxq->nb_rx_desc - 1) : (rx_id - 1));
981                 E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
982                 nb_hold = 0;
983         }
984         rxq->nb_rx_hold = nb_hold;
985         return nb_rx;
986 }
987
988 uint16_t
989 eth_igb_recv_scattered_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
990                          uint16_t nb_pkts)
991 {
992         struct igb_rx_queue *rxq;
993         volatile union e1000_adv_rx_desc *rx_ring;
994         volatile union e1000_adv_rx_desc *rxdp;
995         struct igb_rx_entry *sw_ring;
996         struct igb_rx_entry *rxe;
997         struct rte_mbuf *first_seg;
998         struct rte_mbuf *last_seg;
999         struct rte_mbuf *rxm;
1000         struct rte_mbuf *nmb;
1001         union e1000_adv_rx_desc rxd;
1002         uint64_t dma; /* Physical address of mbuf data buffer */
1003         uint32_t staterr;
1004         uint32_t hlen_type_rss;
1005         uint16_t rx_id;
1006         uint16_t nb_rx;
1007         uint16_t nb_hold;
1008         uint16_t data_len;
1009         uint64_t pkt_flags;
1010
1011         nb_rx = 0;
1012         nb_hold = 0;
1013         rxq = rx_queue;
1014         rx_id = rxq->rx_tail;
1015         rx_ring = rxq->rx_ring;
1016         sw_ring = rxq->sw_ring;
1017
1018         /*
1019          * Retrieve RX context of current packet, if any.
1020          */
1021         first_seg = rxq->pkt_first_seg;
1022         last_seg = rxq->pkt_last_seg;
1023
1024         while (nb_rx < nb_pkts) {
1025         next_desc:
1026                 /*
1027                  * The order of operations here is important as the DD status
1028                  * bit must not be read after any other descriptor fields.
1029                  * rx_ring and rxdp are pointing to volatile data so the order
1030                  * of accesses cannot be reordered by the compiler. If they were
1031                  * not volatile, they could be reordered which could lead to
1032                  * using invalid descriptor fields when read from rxd.
1033                  */
1034                 rxdp = &rx_ring[rx_id];
1035                 staterr = rxdp->wb.upper.status_error;
1036                 if (! (staterr & rte_cpu_to_le_32(E1000_RXD_STAT_DD)))
1037                         break;
1038                 rxd = *rxdp;
1039
1040                 /*
1041                  * Descriptor done.
1042                  *
1043                  * Allocate a new mbuf to replenish the RX ring descriptor.
1044                  * If the allocation fails:
1045                  *    - arrange for that RX descriptor to be the first one
1046                  *      being parsed the next time the receive function is
1047                  *      invoked [on the same queue].
1048                  *
1049                  *    - Stop parsing the RX ring and return immediately.
1050                  *
1051                  * This policy does not drop the packet received in the RX
1052                  * descriptor for which the allocation of a new mbuf failed.
1053                  * Thus, it allows that packet to be later retrieved if
1054                  * mbuf have been freed in the mean time.
1055                  * As a side effect, holding RX descriptors instead of
1056                  * systematically giving them back to the NIC may lead to
1057                  * RX ring exhaustion situations.
1058                  * However, the NIC can gracefully prevent such situations
1059                  * to happen by sending specific "back-pressure" flow control
1060                  * frames to its peer(s).
1061                  */
1062                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_id=%u "
1063                            "staterr=0x%x data_len=%u",
1064                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1065                            (unsigned) rx_id, (unsigned) staterr,
1066                            (unsigned) rte_le_to_cpu_16(rxd.wb.upper.length));
1067
1068                 nmb = rte_mbuf_raw_alloc(rxq->mb_pool);
1069                 if (nmb == NULL) {
1070                         PMD_RX_LOG(DEBUG, "RX mbuf alloc failed port_id=%u "
1071                                    "queue_id=%u", (unsigned) rxq->port_id,
1072                                    (unsigned) rxq->queue_id);
1073                         rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed++;
1074                         break;
1075                 }
1076
1077                 nb_hold++;
1078                 rxe = &sw_ring[rx_id];
1079                 rx_id++;
1080                 if (rx_id == rxq->nb_rx_desc)
1081                         rx_id = 0;
1082
1083                 /* Prefetch next mbuf while processing current one. */
1084                 rte_igb_prefetch(sw_ring[rx_id].mbuf);
1085
1086                 /*
1087                  * When next RX descriptor is on a cache-line boundary,
1088                  * prefetch the next 4 RX descriptors and the next 8 pointers
1089                  * to mbufs.
1090                  */
1091                 if ((rx_id & 0x3) == 0) {
1092                         rte_igb_prefetch(&rx_ring[rx_id]);
1093                         rte_igb_prefetch(&sw_ring[rx_id]);
1094                 }
1095
1096                 /*
1097                  * Update RX descriptor with the physical address of the new
1098                  * data buffer of the new allocated mbuf.
1099                  */
1100                 rxm = rxe->mbuf;
1101                 rxe->mbuf = nmb;
1102                 dma = rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
1103                 rxdp->read.pkt_addr = dma;
1104                 rxdp->read.hdr_addr = 0;
1105
1106                 /*
1107                  * Set data length & data buffer address of mbuf.
1108                  */
1109                 data_len = rte_le_to_cpu_16(rxd.wb.upper.length);
1110                 rxm->data_len = data_len;
1111                 rxm->data_off = RTE_PKTMBUF_HEADROOM;
1112
1113                 /*
1114                  * If this is the first buffer of the received packet,
1115                  * set the pointer to the first mbuf of the packet and
1116                  * initialize its context.
1117                  * Otherwise, update the total length and the number of segments
1118                  * of the current scattered packet, and update the pointer to
1119                  * the last mbuf of the current packet.
1120                  */
1121                 if (first_seg == NULL) {
1122                         first_seg = rxm;
1123                         first_seg->pkt_len = data_len;
1124                         first_seg->nb_segs = 1;
1125                 } else {
1126                         first_seg->pkt_len += data_len;
1127                         first_seg->nb_segs++;
1128                         last_seg->next = rxm;
1129                 }
1130
1131                 /*
1132                  * If this is not the last buffer of the received packet,
1133                  * update the pointer to the last mbuf of the current scattered
1134                  * packet and continue to parse the RX ring.
1135                  */
1136                 if (! (staterr & E1000_RXD_STAT_EOP)) {
1137                         last_seg = rxm;
1138                         goto next_desc;
1139                 }
1140
1141                 /*
1142                  * This is the last buffer of the received packet.
1143                  * If the CRC is not stripped by the hardware:
1144                  *   - Subtract the CRC length from the total packet length.
1145                  *   - If the last buffer only contains the whole CRC or a part
1146                  *     of it, free the mbuf associated to the last buffer.
1147                  *     If part of the CRC is also contained in the previous
1148                  *     mbuf, subtract the length of that CRC part from the
1149                  *     data length of the previous mbuf.
1150                  */
1151                 rxm->next = NULL;
1152                 if (unlikely(rxq->crc_len > 0)) {
1153                         first_seg->pkt_len -= RTE_ETHER_CRC_LEN;
1154                         if (data_len <= RTE_ETHER_CRC_LEN) {
1155                                 rte_pktmbuf_free_seg(rxm);
1156                                 first_seg->nb_segs--;
1157                                 last_seg->data_len = (uint16_t)
1158                                         (last_seg->data_len -
1159                                          (RTE_ETHER_CRC_LEN - data_len));
1160                                 last_seg->next = NULL;
1161                         } else
1162                                 rxm->data_len = (uint16_t)
1163                                         (data_len - RTE_ETHER_CRC_LEN);
1164                 }
1165
1166                 /*
1167                  * Initialize the first mbuf of the returned packet:
1168                  *    - RX port identifier,
1169                  *    - hardware offload data, if any:
1170                  *      - RSS flag & hash,
1171                  *      - IP checksum flag,
1172                  *      - VLAN TCI, if any,
1173                  *      - error flags.
1174                  */
1175                 first_seg->port = rxq->port_id;
1176                 first_seg->hash.rss = rxd.wb.lower.hi_dword.rss;
1177
1178                 /*
1179                  * The vlan_tci field is only valid when PKT_RX_VLAN is
1180                  * set in the pkt_flags field and must be in CPU byte order.
1181                  */
1182                 if ((staterr & rte_cpu_to_le_32(E1000_RXDEXT_STATERR_LB)) &&
1183                                 (rxq->flags & IGB_RXQ_FLAG_LB_BSWAP_VLAN)) {
1184                         first_seg->vlan_tci =
1185                                 rte_be_to_cpu_16(rxd.wb.upper.vlan);
1186                 } else {
1187                         first_seg->vlan_tci =
1188                                 rte_le_to_cpu_16(rxd.wb.upper.vlan);
1189                 }
1190                 hlen_type_rss = rte_le_to_cpu_32(rxd.wb.lower.lo_dword.data);
1191                 pkt_flags = rx_desc_hlen_type_rss_to_pkt_flags(rxq, hlen_type_rss);
1192                 pkt_flags = pkt_flags | rx_desc_status_to_pkt_flags(staterr);
1193                 pkt_flags = pkt_flags | rx_desc_error_to_pkt_flags(staterr);
1194                 first_seg->ol_flags = pkt_flags;
1195                 first_seg->packet_type = igb_rxd_pkt_info_to_pkt_type(rxd.wb.
1196                                         lower.lo_dword.hs_rss.pkt_info);
1197
1198                 /* Prefetch data of first segment, if configured to do so. */
1199                 rte_packet_prefetch((char *)first_seg->buf_addr +
1200                         first_seg->data_off);
1201
1202                 /*
1203                  * Store the mbuf address into the next entry of the array
1204                  * of returned packets.
1205                  */
1206                 rx_pkts[nb_rx++] = first_seg;
1207
1208                 /*
1209                  * Setup receipt context for a new packet.
1210                  */
1211                 first_seg = NULL;
1212         }
1213
1214         /*
1215          * Record index of the next RX descriptor to probe.
1216          */
1217         rxq->rx_tail = rx_id;
1218
1219         /*
1220          * Save receive context.
1221          */
1222         rxq->pkt_first_seg = first_seg;
1223         rxq->pkt_last_seg = last_seg;
1224
1225         /*
1226          * If the number of free RX descriptors is greater than the RX free
1227          * threshold of the queue, advance the Receive Descriptor Tail (RDT)
1228          * register.
1229          * Update the RDT with the value of the last processed RX descriptor
1230          * minus 1, to guarantee that the RDT register is never equal to the
1231          * RDH register, which creates a "full" ring situtation from the
1232          * hardware point of view...
1233          */
1234         nb_hold = (uint16_t) (nb_hold + rxq->nb_rx_hold);
1235         if (nb_hold > rxq->rx_free_thresh) {
1236                 PMD_RX_LOG(DEBUG, "port_id=%u queue_id=%u rx_tail=%u "
1237                            "nb_hold=%u nb_rx=%u",
1238                            (unsigned) rxq->port_id, (unsigned) rxq->queue_id,
1239                            (unsigned) rx_id, (unsigned) nb_hold,
1240                            (unsigned) nb_rx);
1241                 rx_id = (uint16_t) ((rx_id == 0) ?
1242                                      (rxq->nb_rx_desc - 1) : (rx_id - 1));
1243                 E1000_PCI_REG_WRITE(rxq->rdt_reg_addr, rx_id);
1244                 nb_hold = 0;
1245         }
1246         rxq->nb_rx_hold = nb_hold;
1247         return nb_rx;
1248 }
1249
1250 /*
1251  * Maximum number of Ring Descriptors.
1252  *
1253  * Since RDLEN/TDLEN should be multiple of 128bytes, the number of ring
1254  * desscriptors should meet the following condition:
1255  *      (num_ring_desc * sizeof(struct e1000_rx/tx_desc)) % 128 == 0
1256  */
1257
1258 static void
1259 igb_tx_queue_release_mbufs(struct igb_tx_queue *txq)
1260 {
1261         unsigned i;
1262
1263         if (txq->sw_ring != NULL) {
1264                 for (i = 0; i < txq->nb_tx_desc; i++) {
1265                         if (txq->sw_ring[i].mbuf != NULL) {
1266                                 rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
1267                                 txq->sw_ring[i].mbuf = NULL;
1268                         }
1269                 }
1270         }
1271 }
1272
1273 static void
1274 igb_tx_queue_release(struct igb_tx_queue *txq)
1275 {
1276         if (txq != NULL) {
1277                 igb_tx_queue_release_mbufs(txq);
1278                 rte_free(txq->sw_ring);
1279                 rte_free(txq);
1280         }
1281 }
1282
1283 void
1284 eth_igb_tx_queue_release(void *txq)
1285 {
1286         igb_tx_queue_release(txq);
1287 }
1288
1289 static int
1290 igb_tx_done_cleanup(struct igb_tx_queue *txq, uint32_t free_cnt)
1291 {
1292         struct igb_tx_entry *sw_ring;
1293         volatile union e1000_adv_tx_desc *txr;
1294         uint16_t tx_first; /* First segment analyzed. */
1295         uint16_t tx_id;    /* Current segment being processed. */
1296         uint16_t tx_last;  /* Last segment in the current packet. */
1297         uint16_t tx_next;  /* First segment of the next packet. */
1298         int count;
1299
1300         if (txq != NULL) {
1301                 count = 0;
1302                 sw_ring = txq->sw_ring;
1303                 txr = txq->tx_ring;
1304
1305                 /*
1306                  * tx_tail is the last sent packet on the sw_ring. Goto the end
1307                  * of that packet (the last segment in the packet chain) and
1308                  * then the next segment will be the start of the oldest segment
1309                  * in the sw_ring. This is the first packet that will be
1310                  * attempted to be freed.
1311                  */
1312
1313                 /* Get last segment in most recently added packet. */
1314                 tx_first = sw_ring[txq->tx_tail].last_id;
1315
1316                 /* Get the next segment, which is the oldest segment in ring. */
1317                 tx_first = sw_ring[tx_first].next_id;
1318
1319                 /* Set the current index to the first. */
1320                 tx_id = tx_first;
1321
1322                 /*
1323                  * Loop through each packet. For each packet, verify that an
1324                  * mbuf exists and that the last segment is free. If so, free
1325                  * it and move on.
1326                  */
1327                 while (1) {
1328                         tx_last = sw_ring[tx_id].last_id;
1329
1330                         if (sw_ring[tx_last].mbuf) {
1331                                 if (txr[tx_last].wb.status &
1332                                                 E1000_TXD_STAT_DD) {
1333                                         /*
1334                                          * Increment the number of packets
1335                                          * freed.
1336                                          */
1337                                         count++;
1338
1339                                         /* Get the start of the next packet. */
1340                                         tx_next = sw_ring[tx_last].next_id;
1341
1342                                         /*
1343                                          * Loop through all segments in a
1344                                          * packet.
1345                                          */
1346                                         do {
1347                                                 rte_pktmbuf_free_seg(sw_ring[tx_id].mbuf);
1348                                                 sw_ring[tx_id].mbuf = NULL;
1349                                                 sw_ring[tx_id].last_id = tx_id;
1350
1351                                                 /* Move to next segemnt. */
1352                                                 tx_id = sw_ring[tx_id].next_id;
1353
1354                                         } while (tx_id != tx_next);
1355
1356                                         if (unlikely(count == (int)free_cnt))
1357                                                 break;
1358                                 } else
1359                                         /*
1360                                          * mbuf still in use, nothing left to
1361                                          * free.
1362                                          */
1363                                         break;
1364                         } else {
1365                                 /*
1366                                  * There are multiple reasons to be here:
1367                                  * 1) All the packets on the ring have been
1368                                  *    freed - tx_id is equal to tx_first
1369                                  *    and some packets have been freed.
1370                                  *    - Done, exit
1371                                  * 2) Interfaces has not sent a rings worth of
1372                                  *    packets yet, so the segment after tail is
1373                                  *    still empty. Or a previous call to this
1374                                  *    function freed some of the segments but
1375                                  *    not all so there is a hole in the list.
1376                                  *    Hopefully this is a rare case.
1377                                  *    - Walk the list and find the next mbuf. If
1378                                  *      there isn't one, then done.
1379                                  */
1380                                 if (likely((tx_id == tx_first) && (count != 0)))
1381                                         break;
1382
1383                                 /*
1384                                  * Walk the list and find the next mbuf, if any.
1385                                  */
1386                                 do {
1387                                         /* Move to next segemnt. */
1388                                         tx_id = sw_ring[tx_id].next_id;
1389
1390                                         if (sw_ring[tx_id].mbuf)
1391                                                 break;
1392
1393                                 } while (tx_id != tx_first);
1394
1395                                 /*
1396                                  * Determine why previous loop bailed. If there
1397                                  * is not an mbuf, done.
1398                                  */
1399                                 if (sw_ring[tx_id].mbuf == NULL)
1400                                         break;
1401                         }
1402                 }
1403         } else
1404                 count = -ENODEV;
1405
1406         return count;
1407 }
1408
1409 int
1410 eth_igb_tx_done_cleanup(void *txq, uint32_t free_cnt)
1411 {
1412         return igb_tx_done_cleanup(txq, free_cnt);
1413 }
1414
1415 static void
1416 igb_reset_tx_queue_stat(struct igb_tx_queue *txq)
1417 {
1418         txq->tx_head = 0;
1419         txq->tx_tail = 0;
1420         txq->ctx_curr = 0;
1421         memset((void*)&txq->ctx_cache, 0,
1422                 IGB_CTX_NUM * sizeof(struct igb_advctx_info));
1423 }
1424
1425 static void
1426 igb_reset_tx_queue(struct igb_tx_queue *txq, struct rte_eth_dev *dev)
1427 {
1428         static const union e1000_adv_tx_desc zeroed_desc = {{0}};
1429         struct igb_tx_entry *txe = txq->sw_ring;
1430         uint16_t i, prev;
1431         struct e1000_hw *hw;
1432
1433         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1434         /* Zero out HW ring memory */
1435         for (i = 0; i < txq->nb_tx_desc; i++) {
1436                 txq->tx_ring[i] = zeroed_desc;
1437         }
1438
1439         /* Initialize ring entries */
1440         prev = (uint16_t)(txq->nb_tx_desc - 1);
1441         for (i = 0; i < txq->nb_tx_desc; i++) {
1442                 volatile union e1000_adv_tx_desc *txd = &(txq->tx_ring[i]);
1443
1444                 txd->wb.status = E1000_TXD_STAT_DD;
1445                 txe[i].mbuf = NULL;
1446                 txe[i].last_id = i;
1447                 txe[prev].next_id = i;
1448                 prev = i;
1449         }
1450
1451         txq->txd_type = E1000_ADVTXD_DTYP_DATA;
1452         /* 82575 specific, each tx queue will use 2 hw contexts */
1453         if (hw->mac.type == e1000_82575)
1454                 txq->ctx_start = txq->queue_id * IGB_CTX_NUM;
1455
1456         igb_reset_tx_queue_stat(txq);
1457 }
1458
1459 uint64_t
1460 igb_get_tx_port_offloads_capa(struct rte_eth_dev *dev)
1461 {
1462         uint64_t tx_offload_capa;
1463
1464         RTE_SET_USED(dev);
1465         tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
1466                           DEV_TX_OFFLOAD_IPV4_CKSUM  |
1467                           DEV_TX_OFFLOAD_UDP_CKSUM   |
1468                           DEV_TX_OFFLOAD_TCP_CKSUM   |
1469                           DEV_TX_OFFLOAD_SCTP_CKSUM  |
1470                           DEV_TX_OFFLOAD_TCP_TSO     |
1471                           DEV_TX_OFFLOAD_MULTI_SEGS;
1472
1473         return tx_offload_capa;
1474 }
1475
1476 uint64_t
1477 igb_get_tx_queue_offloads_capa(struct rte_eth_dev *dev)
1478 {
1479         uint64_t tx_queue_offload_capa;
1480
1481         tx_queue_offload_capa = igb_get_tx_port_offloads_capa(dev);
1482
1483         return tx_queue_offload_capa;
1484 }
1485
1486 int
1487 eth_igb_tx_queue_setup(struct rte_eth_dev *dev,
1488                          uint16_t queue_idx,
1489                          uint16_t nb_desc,
1490                          unsigned int socket_id,
1491                          const struct rte_eth_txconf *tx_conf)
1492 {
1493         const struct rte_memzone *tz;
1494         struct igb_tx_queue *txq;
1495         struct e1000_hw     *hw;
1496         uint32_t size;
1497         uint64_t offloads;
1498
1499         offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1500
1501         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1502
1503         /*
1504          * Validate number of transmit descriptors.
1505          * It must not exceed hardware maximum, and must be multiple
1506          * of E1000_ALIGN.
1507          */
1508         if (nb_desc % IGB_TXD_ALIGN != 0 ||
1509                         (nb_desc > E1000_MAX_RING_DESC) ||
1510                         (nb_desc < E1000_MIN_RING_DESC)) {
1511                 return -EINVAL;
1512         }
1513
1514         /*
1515          * The tx_free_thresh and tx_rs_thresh values are not used in the 1G
1516          * driver.
1517          */
1518         if (tx_conf->tx_free_thresh != 0)
1519                 PMD_INIT_LOG(INFO, "The tx_free_thresh parameter is not "
1520                              "used for the 1G driver.");
1521         if (tx_conf->tx_rs_thresh != 0)
1522                 PMD_INIT_LOG(INFO, "The tx_rs_thresh parameter is not "
1523                              "used for the 1G driver.");
1524         if (tx_conf->tx_thresh.wthresh == 0 && hw->mac.type != e1000_82576)
1525                 PMD_INIT_LOG(INFO, "To improve 1G driver performance, "
1526                              "consider setting the TX WTHRESH value to 4, 8, "
1527                              "or 16.");
1528
1529         /* Free memory prior to re-allocation if needed */
1530         if (dev->data->tx_queues[queue_idx] != NULL) {
1531                 igb_tx_queue_release(dev->data->tx_queues[queue_idx]);
1532                 dev->data->tx_queues[queue_idx] = NULL;
1533         }
1534
1535         /* First allocate the tx queue data structure */
1536         txq = rte_zmalloc("ethdev TX queue", sizeof(struct igb_tx_queue),
1537                                                         RTE_CACHE_LINE_SIZE);
1538         if (txq == NULL)
1539                 return -ENOMEM;
1540
1541         /*
1542          * Allocate TX ring hardware descriptors. A memzone large enough to
1543          * handle the maximum ring size is allocated in order to allow for
1544          * resizing in later calls to the queue setup function.
1545          */
1546         size = sizeof(union e1000_adv_tx_desc) * E1000_MAX_RING_DESC;
1547         tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx, size,
1548                                       E1000_ALIGN, socket_id);
1549         if (tz == NULL) {
1550                 igb_tx_queue_release(txq);
1551                 return -ENOMEM;
1552         }
1553
1554         txq->nb_tx_desc = nb_desc;
1555         txq->pthresh = tx_conf->tx_thresh.pthresh;
1556         txq->hthresh = tx_conf->tx_thresh.hthresh;
1557         txq->wthresh = tx_conf->tx_thresh.wthresh;
1558         if (txq->wthresh > 0 && hw->mac.type == e1000_82576)
1559                 txq->wthresh = 1;
1560         txq->queue_id = queue_idx;
1561         txq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
1562                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
1563         txq->port_id = dev->data->port_id;
1564
1565         txq->tdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_TDT(txq->reg_idx));
1566         txq->tx_ring_phys_addr = tz->iova;
1567
1568         txq->tx_ring = (union e1000_adv_tx_desc *) tz->addr;
1569         /* Allocate software ring */
1570         txq->sw_ring = rte_zmalloc("txq->sw_ring",
1571                                    sizeof(struct igb_tx_entry) * nb_desc,
1572                                    RTE_CACHE_LINE_SIZE);
1573         if (txq->sw_ring == NULL) {
1574                 igb_tx_queue_release(txq);
1575                 return -ENOMEM;
1576         }
1577         PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
1578                      txq->sw_ring, txq->tx_ring, txq->tx_ring_phys_addr);
1579
1580         igb_reset_tx_queue(txq, dev);
1581         dev->tx_pkt_burst = eth_igb_xmit_pkts;
1582         dev->tx_pkt_prepare = &eth_igb_prep_pkts;
1583         dev->data->tx_queues[queue_idx] = txq;
1584         txq->offloads = offloads;
1585
1586         return 0;
1587 }
1588
1589 static void
1590 igb_rx_queue_release_mbufs(struct igb_rx_queue *rxq)
1591 {
1592         unsigned i;
1593
1594         if (rxq->sw_ring != NULL) {
1595                 for (i = 0; i < rxq->nb_rx_desc; i++) {
1596                         if (rxq->sw_ring[i].mbuf != NULL) {
1597                                 rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
1598                                 rxq->sw_ring[i].mbuf = NULL;
1599                         }
1600                 }
1601         }
1602 }
1603
1604 static void
1605 igb_rx_queue_release(struct igb_rx_queue *rxq)
1606 {
1607         if (rxq != NULL) {
1608                 igb_rx_queue_release_mbufs(rxq);
1609                 rte_free(rxq->sw_ring);
1610                 rte_free(rxq);
1611         }
1612 }
1613
1614 void
1615 eth_igb_rx_queue_release(void *rxq)
1616 {
1617         igb_rx_queue_release(rxq);
1618 }
1619
1620 static void
1621 igb_reset_rx_queue(struct igb_rx_queue *rxq)
1622 {
1623         static const union e1000_adv_rx_desc zeroed_desc = {{0}};
1624         unsigned i;
1625
1626         /* Zero out HW ring memory */
1627         for (i = 0; i < rxq->nb_rx_desc; i++) {
1628                 rxq->rx_ring[i] = zeroed_desc;
1629         }
1630
1631         rxq->rx_tail = 0;
1632         rxq->pkt_first_seg = NULL;
1633         rxq->pkt_last_seg = NULL;
1634 }
1635
1636 uint64_t
1637 igb_get_rx_port_offloads_capa(struct rte_eth_dev *dev)
1638 {
1639         uint64_t rx_offload_capa;
1640
1641         RTE_SET_USED(dev);
1642         rx_offload_capa = DEV_RX_OFFLOAD_VLAN_STRIP  |
1643                           DEV_RX_OFFLOAD_VLAN_FILTER |
1644                           DEV_RX_OFFLOAD_IPV4_CKSUM  |
1645                           DEV_RX_OFFLOAD_UDP_CKSUM   |
1646                           DEV_RX_OFFLOAD_TCP_CKSUM   |
1647                           DEV_RX_OFFLOAD_JUMBO_FRAME |
1648                           DEV_RX_OFFLOAD_KEEP_CRC    |
1649                           DEV_RX_OFFLOAD_SCATTER     |
1650                           DEV_RX_OFFLOAD_RSS_HASH;
1651
1652         return rx_offload_capa;
1653 }
1654
1655 uint64_t
1656 igb_get_rx_queue_offloads_capa(struct rte_eth_dev *dev)
1657 {
1658         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1659         uint64_t rx_queue_offload_capa;
1660
1661         switch (hw->mac.type) {
1662         case e1000_vfadapt_i350:
1663                 /*
1664                  * As only one Rx queue can be used, let per queue offloading
1665                  * capability be same to per port queue offloading capability
1666                  * for better convenience.
1667                  */
1668                 rx_queue_offload_capa = igb_get_rx_port_offloads_capa(dev);
1669                 break;
1670         default:
1671                 rx_queue_offload_capa = 0;
1672         }
1673         return rx_queue_offload_capa;
1674 }
1675
1676 int
1677 eth_igb_rx_queue_setup(struct rte_eth_dev *dev,
1678                          uint16_t queue_idx,
1679                          uint16_t nb_desc,
1680                          unsigned int socket_id,
1681                          const struct rte_eth_rxconf *rx_conf,
1682                          struct rte_mempool *mp)
1683 {
1684         const struct rte_memzone *rz;
1685         struct igb_rx_queue *rxq;
1686         struct e1000_hw     *hw;
1687         unsigned int size;
1688         uint64_t offloads;
1689
1690         offloads = rx_conf->offloads | dev->data->dev_conf.rxmode.offloads;
1691
1692         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1693
1694         /*
1695          * Validate number of receive descriptors.
1696          * It must not exceed hardware maximum, and must be multiple
1697          * of E1000_ALIGN.
1698          */
1699         if (nb_desc % IGB_RXD_ALIGN != 0 ||
1700                         (nb_desc > E1000_MAX_RING_DESC) ||
1701                         (nb_desc < E1000_MIN_RING_DESC)) {
1702                 return -EINVAL;
1703         }
1704
1705         /* Free memory prior to re-allocation if needed */
1706         if (dev->data->rx_queues[queue_idx] != NULL) {
1707                 igb_rx_queue_release(dev->data->rx_queues[queue_idx]);
1708                 dev->data->rx_queues[queue_idx] = NULL;
1709         }
1710
1711         /* First allocate the RX queue data structure. */
1712         rxq = rte_zmalloc("ethdev RX queue", sizeof(struct igb_rx_queue),
1713                           RTE_CACHE_LINE_SIZE);
1714         if (rxq == NULL)
1715                 return -ENOMEM;
1716         rxq->offloads = offloads;
1717         rxq->mb_pool = mp;
1718         rxq->nb_rx_desc = nb_desc;
1719         rxq->pthresh = rx_conf->rx_thresh.pthresh;
1720         rxq->hthresh = rx_conf->rx_thresh.hthresh;
1721         rxq->wthresh = rx_conf->rx_thresh.wthresh;
1722         if (rxq->wthresh > 0 &&
1723             (hw->mac.type == e1000_82576 || hw->mac.type == e1000_vfadapt_i350))
1724                 rxq->wthresh = 1;
1725         rxq->drop_en = rx_conf->rx_drop_en;
1726         rxq->rx_free_thresh = rx_conf->rx_free_thresh;
1727         rxq->queue_id = queue_idx;
1728         rxq->reg_idx = (uint16_t)((RTE_ETH_DEV_SRIOV(dev).active == 0) ?
1729                 queue_idx : RTE_ETH_DEV_SRIOV(dev).def_pool_q_idx + queue_idx);
1730         rxq->port_id = dev->data->port_id;
1731         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
1732                 rxq->crc_len = RTE_ETHER_CRC_LEN;
1733         else
1734                 rxq->crc_len = 0;
1735
1736         /*
1737          *  Allocate RX ring hardware descriptors. A memzone large enough to
1738          *  handle the maximum ring size is allocated in order to allow for
1739          *  resizing in later calls to the queue setup function.
1740          */
1741         size = sizeof(union e1000_adv_rx_desc) * E1000_MAX_RING_DESC;
1742         rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx, size,
1743                                       E1000_ALIGN, socket_id);
1744         if (rz == NULL) {
1745                 igb_rx_queue_release(rxq);
1746                 return -ENOMEM;
1747         }
1748         rxq->rdt_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDT(rxq->reg_idx));
1749         rxq->rdh_reg_addr = E1000_PCI_REG_ADDR(hw, E1000_RDH(rxq->reg_idx));
1750         rxq->rx_ring_phys_addr = rz->iova;
1751         rxq->rx_ring = (union e1000_adv_rx_desc *) rz->addr;
1752
1753         /* Allocate software ring. */
1754         rxq->sw_ring = rte_zmalloc("rxq->sw_ring",
1755                                    sizeof(struct igb_rx_entry) * nb_desc,
1756                                    RTE_CACHE_LINE_SIZE);
1757         if (rxq->sw_ring == NULL) {
1758                 igb_rx_queue_release(rxq);
1759                 return -ENOMEM;
1760         }
1761         PMD_INIT_LOG(DEBUG, "sw_ring=%p hw_ring=%p dma_addr=0x%"PRIx64,
1762                      rxq->sw_ring, rxq->rx_ring, rxq->rx_ring_phys_addr);
1763
1764         dev->data->rx_queues[queue_idx] = rxq;
1765         igb_reset_rx_queue(rxq);
1766
1767         return 0;
1768 }
1769
1770 uint32_t
1771 eth_igb_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1772 {
1773 #define IGB_RXQ_SCAN_INTERVAL 4
1774         volatile union e1000_adv_rx_desc *rxdp;
1775         struct igb_rx_queue *rxq;
1776         uint32_t desc = 0;
1777
1778         rxq = dev->data->rx_queues[rx_queue_id];
1779         rxdp = &(rxq->rx_ring[rxq->rx_tail]);
1780
1781         while ((desc < rxq->nb_rx_desc) &&
1782                 (rxdp->wb.upper.status_error & E1000_RXD_STAT_DD)) {
1783                 desc += IGB_RXQ_SCAN_INTERVAL;
1784                 rxdp += IGB_RXQ_SCAN_INTERVAL;
1785                 if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
1786                         rxdp = &(rxq->rx_ring[rxq->rx_tail +
1787                                 desc - rxq->nb_rx_desc]);
1788         }
1789
1790         return desc;
1791 }
1792
1793 int
1794 eth_igb_rx_descriptor_done(void *rx_queue, uint16_t offset)
1795 {
1796         volatile union e1000_adv_rx_desc *rxdp;
1797         struct igb_rx_queue *rxq = rx_queue;
1798         uint32_t desc;
1799
1800         if (unlikely(offset >= rxq->nb_rx_desc))
1801                 return 0;
1802         desc = rxq->rx_tail + offset;
1803         if (desc >= rxq->nb_rx_desc)
1804                 desc -= rxq->nb_rx_desc;
1805
1806         rxdp = &rxq->rx_ring[desc];
1807         return !!(rxdp->wb.upper.status_error & E1000_RXD_STAT_DD);
1808 }
1809
1810 int
1811 eth_igb_rx_descriptor_status(void *rx_queue, uint16_t offset)
1812 {
1813         struct igb_rx_queue *rxq = rx_queue;
1814         volatile uint32_t *status;
1815         uint32_t desc;
1816
1817         if (unlikely(offset >= rxq->nb_rx_desc))
1818                 return -EINVAL;
1819
1820         if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
1821                 return RTE_ETH_RX_DESC_UNAVAIL;
1822
1823         desc = rxq->rx_tail + offset;
1824         if (desc >= rxq->nb_rx_desc)
1825                 desc -= rxq->nb_rx_desc;
1826
1827         status = &rxq->rx_ring[desc].wb.upper.status_error;
1828         if (*status & rte_cpu_to_le_32(E1000_RXD_STAT_DD))
1829                 return RTE_ETH_RX_DESC_DONE;
1830
1831         return RTE_ETH_RX_DESC_AVAIL;
1832 }
1833
1834 int
1835 eth_igb_tx_descriptor_status(void *tx_queue, uint16_t offset)
1836 {
1837         struct igb_tx_queue *txq = tx_queue;
1838         volatile uint32_t *status;
1839         uint32_t desc;
1840
1841         if (unlikely(offset >= txq->nb_tx_desc))
1842                 return -EINVAL;
1843
1844         desc = txq->tx_tail + offset;
1845         if (desc >= txq->nb_tx_desc)
1846                 desc -= txq->nb_tx_desc;
1847
1848         status = &txq->tx_ring[desc].wb.status;
1849         if (*status & rte_cpu_to_le_32(E1000_TXD_STAT_DD))
1850                 return RTE_ETH_TX_DESC_DONE;
1851
1852         return RTE_ETH_TX_DESC_FULL;
1853 }
1854
1855 void
1856 igb_dev_clear_queues(struct rte_eth_dev *dev)
1857 {
1858         uint16_t i;
1859         struct igb_tx_queue *txq;
1860         struct igb_rx_queue *rxq;
1861
1862         for (i = 0; i < dev->data->nb_tx_queues; i++) {
1863                 txq = dev->data->tx_queues[i];
1864                 if (txq != NULL) {
1865                         igb_tx_queue_release_mbufs(txq);
1866                         igb_reset_tx_queue(txq, dev);
1867                 }
1868         }
1869
1870         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1871                 rxq = dev->data->rx_queues[i];
1872                 if (rxq != NULL) {
1873                         igb_rx_queue_release_mbufs(rxq);
1874                         igb_reset_rx_queue(rxq);
1875                 }
1876         }
1877 }
1878
1879 void
1880 igb_dev_free_queues(struct rte_eth_dev *dev)
1881 {
1882         uint16_t i;
1883
1884         for (i = 0; i < dev->data->nb_rx_queues; i++) {
1885                 eth_igb_rx_queue_release(dev->data->rx_queues[i]);
1886                 dev->data->rx_queues[i] = NULL;
1887         }
1888         dev->data->nb_rx_queues = 0;
1889
1890         for (i = 0; i < dev->data->nb_tx_queues; i++) {
1891                 eth_igb_tx_queue_release(dev->data->tx_queues[i]);
1892                 dev->data->tx_queues[i] = NULL;
1893         }
1894         dev->data->nb_tx_queues = 0;
1895 }
1896
1897 /**
1898  * Receive Side Scaling (RSS).
1899  * See section 7.1.1.7 in the following document:
1900  *     "Intel 82576 GbE Controller Datasheet" - Revision 2.45 October 2009
1901  *
1902  * Principles:
1903  * The source and destination IP addresses of the IP header and the source and
1904  * destination ports of TCP/UDP headers, if any, of received packets are hashed
1905  * against a configurable random key to compute a 32-bit RSS hash result.
1906  * The seven (7) LSBs of the 32-bit hash result are used as an index into a
1907  * 128-entry redirection table (RETA).  Each entry of the RETA provides a 3-bit
1908  * RSS output index which is used as the RX queue index where to store the
1909  * received packets.
1910  * The following output is supplied in the RX write-back descriptor:
1911  *     - 32-bit result of the Microsoft RSS hash function,
1912  *     - 4-bit RSS type field.
1913  */
1914
1915 /*
1916  * RSS random key supplied in section 7.1.1.7.3 of the Intel 82576 datasheet.
1917  * Used as the default key.
1918  */
1919 static uint8_t rss_intel_key[40] = {
1920         0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
1921         0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
1922         0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
1923         0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
1924         0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA,
1925 };
1926
1927 static void
1928 igb_rss_disable(struct rte_eth_dev *dev)
1929 {
1930         struct e1000_hw *hw;
1931         uint32_t mrqc;
1932
1933         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1934         mrqc = E1000_READ_REG(hw, E1000_MRQC);
1935         mrqc &= ~E1000_MRQC_ENABLE_MASK;
1936         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
1937 }
1938
1939 static void
1940 igb_hw_rss_hash_set(struct e1000_hw *hw, struct rte_eth_rss_conf *rss_conf)
1941 {
1942         uint8_t  *hash_key;
1943         uint32_t rss_key;
1944         uint32_t mrqc;
1945         uint64_t rss_hf;
1946         uint16_t i;
1947
1948         hash_key = rss_conf->rss_key;
1949         if (hash_key != NULL) {
1950                 /* Fill in RSS hash key */
1951                 for (i = 0; i < 10; i++) {
1952                         rss_key  = hash_key[(i * 4)];
1953                         rss_key |= hash_key[(i * 4) + 1] << 8;
1954                         rss_key |= hash_key[(i * 4) + 2] << 16;
1955                         rss_key |= hash_key[(i * 4) + 3] << 24;
1956                         E1000_WRITE_REG_ARRAY(hw, E1000_RSSRK(0), i, rss_key);
1957                 }
1958         }
1959
1960         /* Set configured hashing protocols in MRQC register */
1961         rss_hf = rss_conf->rss_hf;
1962         mrqc = E1000_MRQC_ENABLE_RSS_4Q; /* RSS enabled. */
1963         if (rss_hf & ETH_RSS_IPV4)
1964                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4;
1965         if (rss_hf & ETH_RSS_NONFRAG_IPV4_TCP)
1966                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_TCP;
1967         if (rss_hf & ETH_RSS_IPV6)
1968                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6;
1969         if (rss_hf & ETH_RSS_IPV6_EX)
1970                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_EX;
1971         if (rss_hf & ETH_RSS_NONFRAG_IPV6_TCP)
1972                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP;
1973         if (rss_hf & ETH_RSS_IPV6_TCP_EX)
1974                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
1975         if (rss_hf & ETH_RSS_NONFRAG_IPV4_UDP)
1976                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
1977         if (rss_hf & ETH_RSS_NONFRAG_IPV6_UDP)
1978                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
1979         if (rss_hf & ETH_RSS_IPV6_UDP_EX)
1980                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP_EX;
1981         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
1982 }
1983
1984 int
1985 eth_igb_rss_hash_update(struct rte_eth_dev *dev,
1986                         struct rte_eth_rss_conf *rss_conf)
1987 {
1988         struct e1000_hw *hw;
1989         uint32_t mrqc;
1990         uint64_t rss_hf;
1991
1992         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1993
1994         /*
1995          * Before changing anything, first check that the update RSS operation
1996          * does not attempt to disable RSS, if RSS was enabled at
1997          * initialization time, or does not attempt to enable RSS, if RSS was
1998          * disabled at initialization time.
1999          */
2000         rss_hf = rss_conf->rss_hf & IGB_RSS_OFFLOAD_ALL;
2001         mrqc = E1000_READ_REG(hw, E1000_MRQC);
2002         if (!(mrqc & E1000_MRQC_ENABLE_MASK)) { /* RSS disabled */
2003                 if (rss_hf != 0) /* Enable RSS */
2004                         return -(EINVAL);
2005                 return 0; /* Nothing to do */
2006         }
2007         /* RSS enabled */
2008         if (rss_hf == 0) /* Disable RSS */
2009                 return -(EINVAL);
2010         igb_hw_rss_hash_set(hw, rss_conf);
2011         return 0;
2012 }
2013
2014 int eth_igb_rss_hash_conf_get(struct rte_eth_dev *dev,
2015                               struct rte_eth_rss_conf *rss_conf)
2016 {
2017         struct e1000_hw *hw;
2018         uint8_t *hash_key;
2019         uint32_t rss_key;
2020         uint32_t mrqc;
2021         uint64_t rss_hf;
2022         uint16_t i;
2023
2024         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2025         hash_key = rss_conf->rss_key;
2026         if (hash_key != NULL) {
2027                 /* Return RSS hash key */
2028                 for (i = 0; i < 10; i++) {
2029                         rss_key = E1000_READ_REG_ARRAY(hw, E1000_RSSRK(0), i);
2030                         hash_key[(i * 4)] = rss_key & 0x000000FF;
2031                         hash_key[(i * 4) + 1] = (rss_key >> 8) & 0x000000FF;
2032                         hash_key[(i * 4) + 2] = (rss_key >> 16) & 0x000000FF;
2033                         hash_key[(i * 4) + 3] = (rss_key >> 24) & 0x000000FF;
2034                 }
2035         }
2036
2037         /* Get RSS functions configured in MRQC register */
2038         mrqc = E1000_READ_REG(hw, E1000_MRQC);
2039         if ((mrqc & E1000_MRQC_ENABLE_RSS_4Q) == 0) { /* RSS is disabled */
2040                 rss_conf->rss_hf = 0;
2041                 return 0;
2042         }
2043         rss_hf = 0;
2044         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2045                 rss_hf |= ETH_RSS_IPV4;
2046         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2047                 rss_hf |= ETH_RSS_NONFRAG_IPV4_TCP;
2048         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2049                 rss_hf |= ETH_RSS_IPV6;
2050         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_EX)
2051                 rss_hf |= ETH_RSS_IPV6_EX;
2052         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2053                 rss_hf |= ETH_RSS_NONFRAG_IPV6_TCP;
2054         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP_EX)
2055                 rss_hf |= ETH_RSS_IPV6_TCP_EX;
2056         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_UDP)
2057                 rss_hf |= ETH_RSS_NONFRAG_IPV4_UDP;
2058         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP)
2059                 rss_hf |= ETH_RSS_NONFRAG_IPV6_UDP;
2060         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_UDP_EX)
2061                 rss_hf |= ETH_RSS_IPV6_UDP_EX;
2062         rss_conf->rss_hf = rss_hf;
2063         return 0;
2064 }
2065
2066 static void
2067 igb_rss_configure(struct rte_eth_dev *dev)
2068 {
2069         struct rte_eth_rss_conf rss_conf;
2070         struct e1000_hw *hw;
2071         uint32_t shift;
2072         uint16_t i;
2073
2074         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2075
2076         /* Fill in redirection table. */
2077         shift = (hw->mac.type == e1000_82575) ? 6 : 0;
2078         for (i = 0; i < 128; i++) {
2079                 union e1000_reta {
2080                         uint32_t dword;
2081                         uint8_t  bytes[4];
2082                 } reta;
2083                 uint8_t q_idx;
2084
2085                 q_idx = (uint8_t) ((dev->data->nb_rx_queues > 1) ?
2086                                    i % dev->data->nb_rx_queues : 0);
2087                 reta.bytes[i & 3] = (uint8_t) (q_idx << shift);
2088                 if ((i & 3) == 3)
2089                         E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword);
2090         }
2091
2092         /*
2093          * Configure the RSS key and the RSS protocols used to compute
2094          * the RSS hash of input packets.
2095          */
2096         rss_conf = dev->data->dev_conf.rx_adv_conf.rss_conf;
2097         if ((rss_conf.rss_hf & IGB_RSS_OFFLOAD_ALL) == 0) {
2098                 igb_rss_disable(dev);
2099                 return;
2100         }
2101         if (rss_conf.rss_key == NULL)
2102                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
2103         igb_hw_rss_hash_set(hw, &rss_conf);
2104 }
2105
2106 /*
2107  * Check if the mac type support VMDq or not.
2108  * Return 1 if it supports, otherwise, return 0.
2109  */
2110 static int
2111 igb_is_vmdq_supported(const struct rte_eth_dev *dev)
2112 {
2113         const struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2114
2115         switch (hw->mac.type) {
2116         case e1000_82576:
2117         case e1000_82580:
2118         case e1000_i350:
2119                 return 1;
2120         case e1000_82540:
2121         case e1000_82541:
2122         case e1000_82542:
2123         case e1000_82543:
2124         case e1000_82544:
2125         case e1000_82545:
2126         case e1000_82546:
2127         case e1000_82547:
2128         case e1000_82571:
2129         case e1000_82572:
2130         case e1000_82573:
2131         case e1000_82574:
2132         case e1000_82583:
2133         case e1000_i210:
2134         case e1000_i211:
2135         default:
2136                 PMD_INIT_LOG(ERR, "Cannot support VMDq feature");
2137                 return 0;
2138         }
2139 }
2140
2141 static int
2142 igb_vmdq_rx_hw_configure(struct rte_eth_dev *dev)
2143 {
2144         struct rte_eth_vmdq_rx_conf *cfg;
2145         struct e1000_hw *hw;
2146         uint32_t mrqc, vt_ctl, vmolr, rctl;
2147         int i;
2148
2149         PMD_INIT_FUNC_TRACE();
2150
2151         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2152         cfg = &dev->data->dev_conf.rx_adv_conf.vmdq_rx_conf;
2153
2154         /* Check if mac type can support VMDq, return value of 0 means NOT support */
2155         if (igb_is_vmdq_supported(dev) == 0)
2156                 return -1;
2157
2158         igb_rss_disable(dev);
2159
2160         /* RCTL: eanble VLAN filter */
2161         rctl = E1000_READ_REG(hw, E1000_RCTL);
2162         rctl |= E1000_RCTL_VFE;
2163         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2164
2165         /* MRQC: enable vmdq */
2166         mrqc = E1000_READ_REG(hw, E1000_MRQC);
2167         mrqc |= E1000_MRQC_ENABLE_VMDQ;
2168         E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2169
2170         /* VTCTL:  pool selection according to VLAN tag */
2171         vt_ctl = E1000_READ_REG(hw, E1000_VT_CTL);
2172         if (cfg->enable_default_pool)
2173                 vt_ctl |= (cfg->default_pool << E1000_VT_CTL_DEFAULT_POOL_SHIFT);
2174         vt_ctl |= E1000_VT_CTL_IGNORE_MAC;
2175         E1000_WRITE_REG(hw, E1000_VT_CTL, vt_ctl);
2176
2177         for (i = 0; i < E1000_VMOLR_SIZE; i++) {
2178                 vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
2179                 vmolr &= ~(E1000_VMOLR_AUPE | E1000_VMOLR_ROMPE |
2180                         E1000_VMOLR_ROPE | E1000_VMOLR_BAM |
2181                         E1000_VMOLR_MPME);
2182
2183                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_UNTAG)
2184                         vmolr |= E1000_VMOLR_AUPE;
2185                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_MC)
2186                         vmolr |= E1000_VMOLR_ROMPE;
2187                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_HASH_UC)
2188                         vmolr |= E1000_VMOLR_ROPE;
2189                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_BROADCAST)
2190                         vmolr |= E1000_VMOLR_BAM;
2191                 if (cfg->rx_mode & ETH_VMDQ_ACCEPT_MULTICAST)
2192                         vmolr |= E1000_VMOLR_MPME;
2193
2194                 E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
2195         }
2196
2197         /*
2198          * VMOLR: set STRVLAN as 1 if IGMAC in VTCTL is set as 1
2199          * Both 82576 and 82580 support it
2200          */
2201         if (hw->mac.type != e1000_i350) {
2202                 for (i = 0; i < E1000_VMOLR_SIZE; i++) {
2203                         vmolr = E1000_READ_REG(hw, E1000_VMOLR(i));
2204                         vmolr |= E1000_VMOLR_STRVLAN;
2205                         E1000_WRITE_REG(hw, E1000_VMOLR(i), vmolr);
2206                 }
2207         }
2208
2209         /* VFTA - enable all vlan filters */
2210         for (i = 0; i < IGB_VFTA_SIZE; i++)
2211                 E1000_WRITE_REG(hw, (E1000_VFTA+(i*4)), UINT32_MAX);
2212
2213         /* VFRE: 8 pools enabling for rx, both 82576 and i350 support it */
2214         if (hw->mac.type != e1000_82580)
2215                 E1000_WRITE_REG(hw, E1000_VFRE, E1000_MBVFICR_VFREQ_MASK);
2216
2217         /*
2218          * RAH/RAL - allow pools to read specific mac addresses
2219          * In this case, all pools should be able to read from mac addr 0
2220          */
2221         E1000_WRITE_REG(hw, E1000_RAH(0), (E1000_RAH_AV | UINT16_MAX));
2222         E1000_WRITE_REG(hw, E1000_RAL(0), UINT32_MAX);
2223
2224         /* VLVF: set up filters for vlan tags as configured */
2225         for (i = 0; i < cfg->nb_pool_maps; i++) {
2226                 /* set vlan id in VF register and set the valid bit */
2227                 E1000_WRITE_REG(hw, E1000_VLVF(i), (E1000_VLVF_VLANID_ENABLE | \
2228                         (cfg->pool_map[i].vlan_id & ETH_VLAN_ID_MAX) | \
2229                         ((cfg->pool_map[i].pools << E1000_VLVF_POOLSEL_SHIFT ) & \
2230                         E1000_VLVF_POOLSEL_MASK)));
2231         }
2232
2233         E1000_WRITE_FLUSH(hw);
2234
2235         return 0;
2236 }
2237
2238
2239 /*********************************************************************
2240  *
2241  *  Enable receive unit.
2242  *
2243  **********************************************************************/
2244
2245 static int
2246 igb_alloc_rx_queue_mbufs(struct igb_rx_queue *rxq)
2247 {
2248         struct igb_rx_entry *rxe = rxq->sw_ring;
2249         uint64_t dma_addr;
2250         unsigned i;
2251
2252         /* Initialize software ring entries. */
2253         for (i = 0; i < rxq->nb_rx_desc; i++) {
2254                 volatile union e1000_adv_rx_desc *rxd;
2255                 struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mb_pool);
2256
2257                 if (mbuf == NULL) {
2258                         PMD_INIT_LOG(ERR, "RX mbuf alloc failed "
2259                                      "queue_id=%hu", rxq->queue_id);
2260                         return -ENOMEM;
2261                 }
2262                 dma_addr =
2263                         rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
2264                 rxd = &rxq->rx_ring[i];
2265                 rxd->read.hdr_addr = 0;
2266                 rxd->read.pkt_addr = dma_addr;
2267                 rxe[i].mbuf = mbuf;
2268         }
2269
2270         return 0;
2271 }
2272
2273 #define E1000_MRQC_DEF_Q_SHIFT               (3)
2274 static int
2275 igb_dev_mq_rx_configure(struct rte_eth_dev *dev)
2276 {
2277         struct e1000_hw *hw =
2278                 E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2279         uint32_t mrqc;
2280
2281         if (RTE_ETH_DEV_SRIOV(dev).active == ETH_8_POOLS) {
2282                 /*
2283                  * SRIOV active scheme
2284                  * FIXME if support RSS together with VMDq & SRIOV
2285                  */
2286                 mrqc = E1000_MRQC_ENABLE_VMDQ;
2287                 /* 011b Def_Q ignore, according to VT_CTL.DEF_PL */
2288                 mrqc |= 0x3 << E1000_MRQC_DEF_Q_SHIFT;
2289                 E1000_WRITE_REG(hw, E1000_MRQC, mrqc);
2290         } else if(RTE_ETH_DEV_SRIOV(dev).active == 0) {
2291                 /*
2292                  * SRIOV inactive scheme
2293                  */
2294                 switch (dev->data->dev_conf.rxmode.mq_mode) {
2295                         case ETH_MQ_RX_RSS:
2296                                 igb_rss_configure(dev);
2297                                 break;
2298                         case ETH_MQ_RX_VMDQ_ONLY:
2299                                 /*Configure general VMDQ only RX parameters*/
2300                                 igb_vmdq_rx_hw_configure(dev);
2301                                 break;
2302                         case ETH_MQ_RX_NONE:
2303                                 /* if mq_mode is none, disable rss mode.*/
2304                         default:
2305                                 igb_rss_disable(dev);
2306                                 break;
2307                 }
2308         }
2309
2310         return 0;
2311 }
2312
2313 int
2314 eth_igb_rx_init(struct rte_eth_dev *dev)
2315 {
2316         struct rte_eth_rxmode *rxmode;
2317         struct e1000_hw     *hw;
2318         struct igb_rx_queue *rxq;
2319         uint32_t rctl;
2320         uint32_t rxcsum;
2321         uint32_t srrctl;
2322         uint16_t buf_size;
2323         uint16_t rctl_bsize;
2324         uint16_t i;
2325         int ret;
2326
2327         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2328         srrctl = 0;
2329
2330         /*
2331          * Make sure receives are disabled while setting
2332          * up the descriptor ring.
2333          */
2334         rctl = E1000_READ_REG(hw, E1000_RCTL);
2335         E1000_WRITE_REG(hw, E1000_RCTL, rctl & ~E1000_RCTL_EN);
2336
2337         rxmode = &dev->data->dev_conf.rxmode;
2338
2339         /*
2340          * Configure support of jumbo frames, if any.
2341          */
2342         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
2343                 rctl |= E1000_RCTL_LPE;
2344
2345                 /*
2346                  * Set maximum packet length by default, and might be updated
2347                  * together with enabling/disabling dual VLAN.
2348                  */
2349                 E1000_WRITE_REG(hw, E1000_RLPML,
2350                         dev->data->dev_conf.rxmode.max_rx_pkt_len +
2351                                                 VLAN_TAG_SIZE);
2352         } else
2353                 rctl &= ~E1000_RCTL_LPE;
2354
2355         /* Configure and enable each RX queue. */
2356         rctl_bsize = 0;
2357         dev->rx_pkt_burst = eth_igb_recv_pkts;
2358         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2359                 uint64_t bus_addr;
2360                 uint32_t rxdctl;
2361
2362                 rxq = dev->data->rx_queues[i];
2363
2364                 rxq->flags = 0;
2365                 /*
2366                  * i350 and i354 vlan packets have vlan tags byte swapped.
2367                  */
2368                 if (hw->mac.type == e1000_i350 || hw->mac.type == e1000_i354) {
2369                         rxq->flags |= IGB_RXQ_FLAG_LB_BSWAP_VLAN;
2370                         PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap required");
2371                 } else {
2372                         PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap not required");
2373                 }
2374
2375                 /* Allocate buffers for descriptor rings and set up queue */
2376                 ret = igb_alloc_rx_queue_mbufs(rxq);
2377                 if (ret)
2378                         return ret;
2379
2380                 /*
2381                  * Reset crc_len in case it was changed after queue setup by a
2382                  *  call to configure
2383                  */
2384                 if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
2385                         rxq->crc_len = RTE_ETHER_CRC_LEN;
2386                 else
2387                         rxq->crc_len = 0;
2388
2389                 bus_addr = rxq->rx_ring_phys_addr;
2390                 E1000_WRITE_REG(hw, E1000_RDLEN(rxq->reg_idx),
2391                                 rxq->nb_rx_desc *
2392                                 sizeof(union e1000_adv_rx_desc));
2393                 E1000_WRITE_REG(hw, E1000_RDBAH(rxq->reg_idx),
2394                                 (uint32_t)(bus_addr >> 32));
2395                 E1000_WRITE_REG(hw, E1000_RDBAL(rxq->reg_idx), (uint32_t)bus_addr);
2396
2397                 srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2398
2399                 /*
2400                  * Configure RX buffer size.
2401                  */
2402                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
2403                         RTE_PKTMBUF_HEADROOM);
2404                 if (buf_size >= 1024) {
2405                         /*
2406                          * Configure the BSIZEPACKET field of the SRRCTL
2407                          * register of the queue.
2408                          * Value is in 1 KB resolution, from 1 KB to 127 KB.
2409                          * If this field is equal to 0b, then RCTL.BSIZE
2410                          * determines the RX packet buffer size.
2411                          */
2412                         srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
2413                                    E1000_SRRCTL_BSIZEPKT_MASK);
2414                         buf_size = (uint16_t) ((srrctl &
2415                                                 E1000_SRRCTL_BSIZEPKT_MASK) <<
2416                                                E1000_SRRCTL_BSIZEPKT_SHIFT);
2417
2418                         /* It adds dual VLAN length for supporting dual VLAN */
2419                         if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
2420                                                 2 * VLAN_TAG_SIZE) > buf_size){
2421                                 if (!dev->data->scattered_rx)
2422                                         PMD_INIT_LOG(DEBUG,
2423                                                      "forcing scatter mode");
2424                                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2425                                 dev->data->scattered_rx = 1;
2426                         }
2427                 } else {
2428                         /*
2429                          * Use BSIZE field of the device RCTL register.
2430                          */
2431                         if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
2432                                 rctl_bsize = buf_size;
2433                         if (!dev->data->scattered_rx)
2434                                 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2435                         dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2436                         dev->data->scattered_rx = 1;
2437                 }
2438
2439                 /* Set if packets are dropped when no descriptors available */
2440                 if (rxq->drop_en)
2441                         srrctl |= E1000_SRRCTL_DROP_EN;
2442
2443                 E1000_WRITE_REG(hw, E1000_SRRCTL(rxq->reg_idx), srrctl);
2444
2445                 /* Enable this RX queue. */
2446                 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(rxq->reg_idx));
2447                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2448                 rxdctl &= 0xFFF00000;
2449                 rxdctl |= (rxq->pthresh & 0x1F);
2450                 rxdctl |= ((rxq->hthresh & 0x1F) << 8);
2451                 rxdctl |= ((rxq->wthresh & 0x1F) << 16);
2452                 E1000_WRITE_REG(hw, E1000_RXDCTL(rxq->reg_idx), rxdctl);
2453         }
2454
2455         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) {
2456                 if (!dev->data->scattered_rx)
2457                         PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2458                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2459                 dev->data->scattered_rx = 1;
2460         }
2461
2462         /*
2463          * Setup BSIZE field of RCTL register, if needed.
2464          * Buffer sizes >= 1024 are not [supposed to be] setup in the RCTL
2465          * register, since the code above configures the SRRCTL register of
2466          * the RX queue in such a case.
2467          * All configurable sizes are:
2468          * 16384: rctl |= (E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX);
2469          *  8192: rctl |= (E1000_RCTL_SZ_8192  | E1000_RCTL_BSEX);
2470          *  4096: rctl |= (E1000_RCTL_SZ_4096  | E1000_RCTL_BSEX);
2471          *  2048: rctl |= E1000_RCTL_SZ_2048;
2472          *  1024: rctl |= E1000_RCTL_SZ_1024;
2473          *   512: rctl |= E1000_RCTL_SZ_512;
2474          *   256: rctl |= E1000_RCTL_SZ_256;
2475          */
2476         if (rctl_bsize > 0) {
2477                 if (rctl_bsize >= 512) /* 512 <= buf_size < 1024 - use 512 */
2478                         rctl |= E1000_RCTL_SZ_512;
2479                 else /* 256 <= buf_size < 512 - use 256 */
2480                         rctl |= E1000_RCTL_SZ_256;
2481         }
2482
2483         /*
2484          * Configure RSS if device configured with multiple RX queues.
2485          */
2486         igb_dev_mq_rx_configure(dev);
2487
2488         /* Update the rctl since igb_dev_mq_rx_configure may change its value */
2489         rctl |= E1000_READ_REG(hw, E1000_RCTL);
2490
2491         /*
2492          * Setup the Checksum Register.
2493          * Receive Full-Packet Checksum Offload is mutually exclusive with RSS.
2494          */
2495         rxcsum = E1000_READ_REG(hw, E1000_RXCSUM);
2496         rxcsum |= E1000_RXCSUM_PCSD;
2497
2498         /* Enable both L3/L4 rx checksum offload */
2499         if (rxmode->offloads & DEV_RX_OFFLOAD_IPV4_CKSUM)
2500                 rxcsum |= E1000_RXCSUM_IPOFL;
2501         else
2502                 rxcsum &= ~E1000_RXCSUM_IPOFL;
2503         if (rxmode->offloads &
2504                 (DEV_RX_OFFLOAD_TCP_CKSUM | DEV_RX_OFFLOAD_UDP_CKSUM))
2505                 rxcsum |= E1000_RXCSUM_TUOFL;
2506         else
2507                 rxcsum &= ~E1000_RXCSUM_TUOFL;
2508         if (rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM)
2509                 rxcsum |= E1000_RXCSUM_CRCOFL;
2510         else
2511                 rxcsum &= ~E1000_RXCSUM_CRCOFL;
2512
2513         E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum);
2514
2515         /* Setup the Receive Control Register. */
2516         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC) {
2517                 rctl &= ~E1000_RCTL_SECRC; /* Do not Strip Ethernet CRC. */
2518
2519                 /* clear STRCRC bit in all queues */
2520                 if (hw->mac.type == e1000_i350 ||
2521                     hw->mac.type == e1000_i210 ||
2522                     hw->mac.type == e1000_i211 ||
2523                     hw->mac.type == e1000_i354) {
2524                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2525                                 rxq = dev->data->rx_queues[i];
2526                                 uint32_t dvmolr = E1000_READ_REG(hw,
2527                                         E1000_DVMOLR(rxq->reg_idx));
2528                                 dvmolr &= ~E1000_DVMOLR_STRCRC;
2529                                 E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
2530                         }
2531                 }
2532         } else {
2533                 rctl |= E1000_RCTL_SECRC; /* Strip Ethernet CRC. */
2534
2535                 /* set STRCRC bit in all queues */
2536                 if (hw->mac.type == e1000_i350 ||
2537                     hw->mac.type == e1000_i210 ||
2538                     hw->mac.type == e1000_i211 ||
2539                     hw->mac.type == e1000_i354) {
2540                         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2541                                 rxq = dev->data->rx_queues[i];
2542                                 uint32_t dvmolr = E1000_READ_REG(hw,
2543                                         E1000_DVMOLR(rxq->reg_idx));
2544                                 dvmolr |= E1000_DVMOLR_STRCRC;
2545                                 E1000_WRITE_REG(hw, E1000_DVMOLR(rxq->reg_idx), dvmolr);
2546                         }
2547                 }
2548         }
2549
2550         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2551         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
2552                 E1000_RCTL_RDMTS_HALF |
2553                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2554
2555         /* Make sure VLAN Filters are off. */
2556         if (dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_VMDQ_ONLY)
2557                 rctl &= ~E1000_RCTL_VFE;
2558         /* Don't store bad packets. */
2559         rctl &= ~E1000_RCTL_SBP;
2560
2561         /* Enable Receives. */
2562         E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2563
2564         /*
2565          * Setup the HW Rx Head and Tail Descriptor Pointers.
2566          * This needs to be done after enable.
2567          */
2568         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2569                 rxq = dev->data->rx_queues[i];
2570                 E1000_WRITE_REG(hw, E1000_RDH(rxq->reg_idx), 0);
2571                 E1000_WRITE_REG(hw, E1000_RDT(rxq->reg_idx), rxq->nb_rx_desc - 1);
2572         }
2573
2574         return 0;
2575 }
2576
2577 /*********************************************************************
2578  *
2579  *  Enable transmit unit.
2580  *
2581  **********************************************************************/
2582 void
2583 eth_igb_tx_init(struct rte_eth_dev *dev)
2584 {
2585         struct e1000_hw     *hw;
2586         struct igb_tx_queue *txq;
2587         uint32_t tctl;
2588         uint32_t txdctl;
2589         uint16_t i;
2590
2591         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2592
2593         /* Setup the Base and Length of the Tx Descriptor Rings. */
2594         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2595                 uint64_t bus_addr;
2596                 txq = dev->data->tx_queues[i];
2597                 bus_addr = txq->tx_ring_phys_addr;
2598
2599                 E1000_WRITE_REG(hw, E1000_TDLEN(txq->reg_idx),
2600                                 txq->nb_tx_desc *
2601                                 sizeof(union e1000_adv_tx_desc));
2602                 E1000_WRITE_REG(hw, E1000_TDBAH(txq->reg_idx),
2603                                 (uint32_t)(bus_addr >> 32));
2604                 E1000_WRITE_REG(hw, E1000_TDBAL(txq->reg_idx), (uint32_t)bus_addr);
2605
2606                 /* Setup the HW Tx Head and Tail descriptor pointers. */
2607                 E1000_WRITE_REG(hw, E1000_TDT(txq->reg_idx), 0);
2608                 E1000_WRITE_REG(hw, E1000_TDH(txq->reg_idx), 0);
2609
2610                 /* Setup Transmit threshold registers. */
2611                 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(txq->reg_idx));
2612                 txdctl |= txq->pthresh & 0x1F;
2613                 txdctl |= ((txq->hthresh & 0x1F) << 8);
2614                 txdctl |= ((txq->wthresh & 0x1F) << 16);
2615                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2616                 E1000_WRITE_REG(hw, E1000_TXDCTL(txq->reg_idx), txdctl);
2617         }
2618
2619         /* Program the Transmit Control Register. */
2620         tctl = E1000_READ_REG(hw, E1000_TCTL);
2621         tctl &= ~E1000_TCTL_CT;
2622         tctl |= (E1000_TCTL_PSP | E1000_TCTL_RTLC | E1000_TCTL_EN |
2623                  (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT));
2624
2625         e1000_config_collision_dist(hw);
2626
2627         /* This write will effectively turn on the transmit unit. */
2628         E1000_WRITE_REG(hw, E1000_TCTL, tctl);
2629 }
2630
2631 /*********************************************************************
2632  *
2633  *  Enable VF receive unit.
2634  *
2635  **********************************************************************/
2636 int
2637 eth_igbvf_rx_init(struct rte_eth_dev *dev)
2638 {
2639         struct e1000_hw     *hw;
2640         struct igb_rx_queue *rxq;
2641         uint32_t srrctl;
2642         uint16_t buf_size;
2643         uint16_t rctl_bsize;
2644         uint16_t i;
2645         int ret;
2646
2647         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2648
2649         /* setup MTU */
2650         e1000_rlpml_set_vf(hw,
2651                 (uint16_t)(dev->data->dev_conf.rxmode.max_rx_pkt_len +
2652                 VLAN_TAG_SIZE));
2653
2654         /* Configure and enable each RX queue. */
2655         rctl_bsize = 0;
2656         dev->rx_pkt_burst = eth_igb_recv_pkts;
2657         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2658                 uint64_t bus_addr;
2659                 uint32_t rxdctl;
2660
2661                 rxq = dev->data->rx_queues[i];
2662
2663                 rxq->flags = 0;
2664                 /*
2665                  * i350VF LB vlan packets have vlan tags byte swapped.
2666                  */
2667                 if (hw->mac.type == e1000_vfadapt_i350) {
2668                         rxq->flags |= IGB_RXQ_FLAG_LB_BSWAP_VLAN;
2669                         PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap required");
2670                 } else {
2671                         PMD_INIT_LOG(DEBUG, "IGB rx vlan bswap not required");
2672                 }
2673
2674                 /* Allocate buffers for descriptor rings and set up queue */
2675                 ret = igb_alloc_rx_queue_mbufs(rxq);
2676                 if (ret)
2677                         return ret;
2678
2679                 bus_addr = rxq->rx_ring_phys_addr;
2680                 E1000_WRITE_REG(hw, E1000_RDLEN(i),
2681                                 rxq->nb_rx_desc *
2682                                 sizeof(union e1000_adv_rx_desc));
2683                 E1000_WRITE_REG(hw, E1000_RDBAH(i),
2684                                 (uint32_t)(bus_addr >> 32));
2685                 E1000_WRITE_REG(hw, E1000_RDBAL(i), (uint32_t)bus_addr);
2686
2687                 srrctl = E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
2688
2689                 /*
2690                  * Configure RX buffer size.
2691                  */
2692                 buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mb_pool) -
2693                         RTE_PKTMBUF_HEADROOM);
2694                 if (buf_size >= 1024) {
2695                         /*
2696                          * Configure the BSIZEPACKET field of the SRRCTL
2697                          * register of the queue.
2698                          * Value is in 1 KB resolution, from 1 KB to 127 KB.
2699                          * If this field is equal to 0b, then RCTL.BSIZE
2700                          * determines the RX packet buffer size.
2701                          */
2702                         srrctl |= ((buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) &
2703                                    E1000_SRRCTL_BSIZEPKT_MASK);
2704                         buf_size = (uint16_t) ((srrctl &
2705                                                 E1000_SRRCTL_BSIZEPKT_MASK) <<
2706                                                E1000_SRRCTL_BSIZEPKT_SHIFT);
2707
2708                         /* It adds dual VLAN length for supporting dual VLAN */
2709                         if ((dev->data->dev_conf.rxmode.max_rx_pkt_len +
2710                                                 2 * VLAN_TAG_SIZE) > buf_size){
2711                                 if (!dev->data->scattered_rx)
2712                                         PMD_INIT_LOG(DEBUG,
2713                                                      "forcing scatter mode");
2714                                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2715                                 dev->data->scattered_rx = 1;
2716                         }
2717                 } else {
2718                         /*
2719                          * Use BSIZE field of the device RCTL register.
2720                          */
2721                         if ((rctl_bsize == 0) || (rctl_bsize > buf_size))
2722                                 rctl_bsize = buf_size;
2723                         if (!dev->data->scattered_rx)
2724                                 PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2725                         dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2726                         dev->data->scattered_rx = 1;
2727                 }
2728
2729                 /* Set if packets are dropped when no descriptors available */
2730                 if (rxq->drop_en)
2731                         srrctl |= E1000_SRRCTL_DROP_EN;
2732
2733                 E1000_WRITE_REG(hw, E1000_SRRCTL(i), srrctl);
2734
2735                 /* Enable this RX queue. */
2736                 rxdctl = E1000_READ_REG(hw, E1000_RXDCTL(i));
2737                 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
2738                 rxdctl &= 0xFFF00000;
2739                 rxdctl |= (rxq->pthresh & 0x1F);
2740                 rxdctl |= ((rxq->hthresh & 0x1F) << 8);
2741                 if (hw->mac.type == e1000_vfadapt) {
2742                         /*
2743                          * Workaround of 82576 VF Erratum
2744                          * force set WTHRESH to 1
2745                          * to avoid Write-Back not triggered sometimes
2746                          */
2747                         rxdctl |= 0x10000;
2748                         PMD_INIT_LOG(DEBUG, "Force set RX WTHRESH to 1 !");
2749                 }
2750                 else
2751                         rxdctl |= ((rxq->wthresh & 0x1F) << 16);
2752                 E1000_WRITE_REG(hw, E1000_RXDCTL(i), rxdctl);
2753         }
2754
2755         if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) {
2756                 if (!dev->data->scattered_rx)
2757                         PMD_INIT_LOG(DEBUG, "forcing scatter mode");
2758                 dev->rx_pkt_burst = eth_igb_recv_scattered_pkts;
2759                 dev->data->scattered_rx = 1;
2760         }
2761
2762         /*
2763          * Setup the HW Rx Head and Tail Descriptor Pointers.
2764          * This needs to be done after enable.
2765          */
2766         for (i = 0; i < dev->data->nb_rx_queues; i++) {
2767                 rxq = dev->data->rx_queues[i];
2768                 E1000_WRITE_REG(hw, E1000_RDH(i), 0);
2769                 E1000_WRITE_REG(hw, E1000_RDT(i), rxq->nb_rx_desc - 1);
2770         }
2771
2772         return 0;
2773 }
2774
2775 /*********************************************************************
2776  *
2777  *  Enable VF transmit unit.
2778  *
2779  **********************************************************************/
2780 void
2781 eth_igbvf_tx_init(struct rte_eth_dev *dev)
2782 {
2783         struct e1000_hw     *hw;
2784         struct igb_tx_queue *txq;
2785         uint32_t txdctl;
2786         uint16_t i;
2787
2788         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2789
2790         /* Setup the Base and Length of the Tx Descriptor Rings. */
2791         for (i = 0; i < dev->data->nb_tx_queues; i++) {
2792                 uint64_t bus_addr;
2793
2794                 txq = dev->data->tx_queues[i];
2795                 bus_addr = txq->tx_ring_phys_addr;
2796                 E1000_WRITE_REG(hw, E1000_TDLEN(i),
2797                                 txq->nb_tx_desc *
2798                                 sizeof(union e1000_adv_tx_desc));
2799                 E1000_WRITE_REG(hw, E1000_TDBAH(i),
2800                                 (uint32_t)(bus_addr >> 32));
2801                 E1000_WRITE_REG(hw, E1000_TDBAL(i), (uint32_t)bus_addr);
2802
2803                 /* Setup the HW Tx Head and Tail descriptor pointers. */
2804                 E1000_WRITE_REG(hw, E1000_TDT(i), 0);
2805                 E1000_WRITE_REG(hw, E1000_TDH(i), 0);
2806
2807                 /* Setup Transmit threshold registers. */
2808                 txdctl = E1000_READ_REG(hw, E1000_TXDCTL(i));
2809                 txdctl |= txq->pthresh & 0x1F;
2810                 txdctl |= ((txq->hthresh & 0x1F) << 8);
2811                 if (hw->mac.type == e1000_82576) {
2812                         /*
2813                          * Workaround of 82576 VF Erratum
2814                          * force set WTHRESH to 1
2815                          * to avoid Write-Back not triggered sometimes
2816                          */
2817                         txdctl |= 0x10000;
2818                         PMD_INIT_LOG(DEBUG, "Force set TX WTHRESH to 1 !");
2819                 }
2820                 else
2821                         txdctl |= ((txq->wthresh & 0x1F) << 16);
2822                 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2823                 E1000_WRITE_REG(hw, E1000_TXDCTL(i), txdctl);
2824         }
2825
2826 }
2827
2828 void
2829 igb_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2830         struct rte_eth_rxq_info *qinfo)
2831 {
2832         struct igb_rx_queue *rxq;
2833
2834         rxq = dev->data->rx_queues[queue_id];
2835
2836         qinfo->mp = rxq->mb_pool;
2837         qinfo->scattered_rx = dev->data->scattered_rx;
2838         qinfo->nb_desc = rxq->nb_rx_desc;
2839
2840         qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
2841         qinfo->conf.rx_drop_en = rxq->drop_en;
2842         qinfo->conf.offloads = rxq->offloads;
2843 }
2844
2845 void
2846 igb_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
2847         struct rte_eth_txq_info *qinfo)
2848 {
2849         struct igb_tx_queue *txq;
2850
2851         txq = dev->data->tx_queues[queue_id];
2852
2853         qinfo->nb_desc = txq->nb_tx_desc;
2854
2855         qinfo->conf.tx_thresh.pthresh = txq->pthresh;
2856         qinfo->conf.tx_thresh.hthresh = txq->hthresh;
2857         qinfo->conf.tx_thresh.wthresh = txq->wthresh;
2858         qinfo->conf.offloads = txq->offloads;
2859 }
2860
2861 int
2862 igb_rss_conf_init(struct rte_eth_dev *dev,
2863                   struct igb_rte_flow_rss_conf *out,
2864                   const struct rte_flow_action_rss *in)
2865 {
2866         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2867
2868         if (in->key_len > RTE_DIM(out->key) ||
2869             ((hw->mac.type == e1000_82576) &&
2870              (in->queue_num > IGB_MAX_RX_QUEUE_NUM_82576)) ||
2871             ((hw->mac.type != e1000_82576) &&
2872              (in->queue_num > IGB_MAX_RX_QUEUE_NUM)))
2873                 return -EINVAL;
2874         out->conf = (struct rte_flow_action_rss){
2875                 .func = in->func,
2876                 .level = in->level,
2877                 .types = in->types,
2878                 .key_len = in->key_len,
2879                 .queue_num = in->queue_num,
2880                 .key = memcpy(out->key, in->key, in->key_len),
2881                 .queue = memcpy(out->queue, in->queue,
2882                                 sizeof(*in->queue) * in->queue_num),
2883         };
2884         return 0;
2885 }
2886
2887 int
2888 igb_action_rss_same(const struct rte_flow_action_rss *comp,
2889                     const struct rte_flow_action_rss *with)
2890 {
2891         return (comp->func == with->func &&
2892                 comp->level == with->level &&
2893                 comp->types == with->types &&
2894                 comp->key_len == with->key_len &&
2895                 comp->queue_num == with->queue_num &&
2896                 !memcmp(comp->key, with->key, with->key_len) &&
2897                 !memcmp(comp->queue, with->queue,
2898                         sizeof(*with->queue) * with->queue_num));
2899 }
2900
2901 int
2902 igb_config_rss_filter(struct rte_eth_dev *dev,
2903                 struct igb_rte_flow_rss_conf *conf, bool add)
2904 {
2905         uint32_t shift;
2906         uint16_t i, j;
2907         struct rte_eth_rss_conf rss_conf = {
2908                 .rss_key = conf->conf.key_len ?
2909                         (void *)(uintptr_t)conf->conf.key : NULL,
2910                 .rss_key_len = conf->conf.key_len,
2911                 .rss_hf = conf->conf.types,
2912         };
2913         struct e1000_filter_info *filter_info =
2914                 E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
2915         struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2916
2917         hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2918
2919         if (!add) {
2920                 if (igb_action_rss_same(&filter_info->rss_info.conf,
2921                                         &conf->conf)) {
2922                         igb_rss_disable(dev);
2923                         memset(&filter_info->rss_info, 0,
2924                                 sizeof(struct igb_rte_flow_rss_conf));
2925                         return 0;
2926                 }
2927                 return -EINVAL;
2928         }
2929
2930         if (filter_info->rss_info.conf.queue_num)
2931                 return -EINVAL;
2932
2933         /* Fill in redirection table. */
2934         shift = (hw->mac.type == e1000_82575) ? 6 : 0;
2935         for (i = 0, j = 0; i < 128; i++, j++) {
2936                 union e1000_reta {
2937                         uint32_t dword;
2938                         uint8_t  bytes[4];
2939                 } reta;
2940                 uint8_t q_idx;
2941
2942                 if (j == conf->conf.queue_num)
2943                         j = 0;
2944                 q_idx = conf->conf.queue[j];
2945                 reta.bytes[i & 3] = (uint8_t)(q_idx << shift);
2946                 if ((i & 3) == 3)
2947                         E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta.dword);
2948         }
2949
2950         /* Configure the RSS key and the RSS protocols used to compute
2951          * the RSS hash of input packets.
2952          */
2953         if ((rss_conf.rss_hf & IGB_RSS_OFFLOAD_ALL) == 0) {
2954                 igb_rss_disable(dev);
2955                 return 0;
2956         }
2957         if (rss_conf.rss_key == NULL)
2958                 rss_conf.rss_key = rss_intel_key; /* Default hash key */
2959         igb_hw_rss_hash_set(hw, &rss_conf);
2960
2961         if (igb_rss_conf_init(dev, &filter_info->rss_info, &conf->conf))
2962                 return -EINVAL;
2963
2964         return 0;
2965 }