common/mlx5: fix user mode register access command
[dpdk.git] / drivers / net / ena / ena_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright (c) 2015-2020 Amazon.com, Inc. or its affiliates.
3  * All rights reserved.
4  */
5
6 #include <rte_string_fns.h>
7 #include <rte_ether.h>
8 #include <rte_ethdev_driver.h>
9 #include <rte_ethdev_pci.h>
10 #include <rte_tcp.h>
11 #include <rte_atomic.h>
12 #include <rte_dev.h>
13 #include <rte_errno.h>
14 #include <rte_version.h>
15 #include <rte_net.h>
16 #include <rte_kvargs.h>
17
18 #include "ena_ethdev.h"
19 #include "ena_logs.h"
20 #include "ena_platform.h"
21 #include "ena_com.h"
22 #include "ena_eth_com.h"
23
24 #include <ena_common_defs.h>
25 #include <ena_regs_defs.h>
26 #include <ena_admin_defs.h>
27 #include <ena_eth_io_defs.h>
28
29 #define DRV_MODULE_VER_MAJOR    2
30 #define DRV_MODULE_VER_MINOR    1
31 #define DRV_MODULE_VER_SUBMINOR 0
32
33 #define ENA_IO_TXQ_IDX(q)       (2 * (q))
34 #define ENA_IO_RXQ_IDX(q)       (2 * (q) + 1)
35 /*reverse version of ENA_IO_RXQ_IDX*/
36 #define ENA_IO_RXQ_IDX_REV(q)   ((q - 1) / 2)
37
38 #define __MERGE_64B_H_L(h, l) (((uint64_t)h << 32) | l)
39 #define TEST_BIT(val, bit_shift) (val & (1UL << bit_shift))
40
41 #define GET_L4_HDR_LEN(mbuf)                                    \
42         ((rte_pktmbuf_mtod_offset(mbuf, struct rte_tcp_hdr *,   \
43                 mbuf->l3_len + mbuf->l2_len)->data_off) >> 4)
44
45 #define ENA_RX_RSS_TABLE_LOG_SIZE  7
46 #define ENA_RX_RSS_TABLE_SIZE   (1 << ENA_RX_RSS_TABLE_LOG_SIZE)
47 #define ENA_HASH_KEY_SIZE       40
48 #define ETH_GSTRING_LEN 32
49
50 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
51
52 #define ENA_MIN_RING_DESC       128
53
54 enum ethtool_stringset {
55         ETH_SS_TEST             = 0,
56         ETH_SS_STATS,
57 };
58
59 struct ena_stats {
60         char name[ETH_GSTRING_LEN];
61         int stat_offset;
62 };
63
64 #define ENA_STAT_ENTRY(stat, stat_type) { \
65         .name = #stat, \
66         .stat_offset = offsetof(struct ena_stats_##stat_type, stat) \
67 }
68
69 #define ENA_STAT_RX_ENTRY(stat) \
70         ENA_STAT_ENTRY(stat, rx)
71
72 #define ENA_STAT_TX_ENTRY(stat) \
73         ENA_STAT_ENTRY(stat, tx)
74
75 #define ENA_STAT_GLOBAL_ENTRY(stat) \
76         ENA_STAT_ENTRY(stat, dev)
77
78 /* Device arguments */
79 #define ENA_DEVARG_LARGE_LLQ_HDR "large_llq_hdr"
80
81 /*
82  * Each rte_memzone should have unique name.
83  * To satisfy it, count number of allocation and add it to name.
84  */
85 rte_atomic32_t ena_alloc_cnt;
86
87 static const struct ena_stats ena_stats_global_strings[] = {
88         ENA_STAT_GLOBAL_ENTRY(wd_expired),
89         ENA_STAT_GLOBAL_ENTRY(dev_start),
90         ENA_STAT_GLOBAL_ENTRY(dev_stop),
91         ENA_STAT_GLOBAL_ENTRY(tx_drops),
92 };
93
94 static const struct ena_stats ena_stats_tx_strings[] = {
95         ENA_STAT_TX_ENTRY(cnt),
96         ENA_STAT_TX_ENTRY(bytes),
97         ENA_STAT_TX_ENTRY(prepare_ctx_err),
98         ENA_STAT_TX_ENTRY(linearize),
99         ENA_STAT_TX_ENTRY(linearize_failed),
100         ENA_STAT_TX_ENTRY(tx_poll),
101         ENA_STAT_TX_ENTRY(doorbells),
102         ENA_STAT_TX_ENTRY(bad_req_id),
103         ENA_STAT_TX_ENTRY(available_desc),
104 };
105
106 static const struct ena_stats ena_stats_rx_strings[] = {
107         ENA_STAT_RX_ENTRY(cnt),
108         ENA_STAT_RX_ENTRY(bytes),
109         ENA_STAT_RX_ENTRY(refill_partial),
110         ENA_STAT_RX_ENTRY(bad_csum),
111         ENA_STAT_RX_ENTRY(mbuf_alloc_fail),
112         ENA_STAT_RX_ENTRY(bad_desc_num),
113         ENA_STAT_RX_ENTRY(bad_req_id),
114 };
115
116 #define ENA_STATS_ARRAY_GLOBAL  ARRAY_SIZE(ena_stats_global_strings)
117 #define ENA_STATS_ARRAY_TX      ARRAY_SIZE(ena_stats_tx_strings)
118 #define ENA_STATS_ARRAY_RX      ARRAY_SIZE(ena_stats_rx_strings)
119
120 #define QUEUE_OFFLOADS (DEV_TX_OFFLOAD_TCP_CKSUM |\
121                         DEV_TX_OFFLOAD_UDP_CKSUM |\
122                         DEV_TX_OFFLOAD_IPV4_CKSUM |\
123                         DEV_TX_OFFLOAD_TCP_TSO)
124 #define MBUF_OFFLOADS (PKT_TX_L4_MASK |\
125                        PKT_TX_IP_CKSUM |\
126                        PKT_TX_TCP_SEG)
127
128 /** Vendor ID used by Amazon devices */
129 #define PCI_VENDOR_ID_AMAZON 0x1D0F
130 /** Amazon devices */
131 #define PCI_DEVICE_ID_ENA_VF    0xEC20
132 #define PCI_DEVICE_ID_ENA_LLQ_VF        0xEC21
133
134 #define ENA_TX_OFFLOAD_MASK     (\
135         PKT_TX_L4_MASK |         \
136         PKT_TX_IPV6 |            \
137         PKT_TX_IPV4 |            \
138         PKT_TX_IP_CKSUM |        \
139         PKT_TX_TCP_SEG)
140
141 #define ENA_TX_OFFLOAD_NOTSUP_MASK      \
142         (PKT_TX_OFFLOAD_MASK ^ ENA_TX_OFFLOAD_MASK)
143
144 static const struct rte_pci_id pci_id_ena_map[] = {
145         { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_VF) },
146         { RTE_PCI_DEVICE(PCI_VENDOR_ID_AMAZON, PCI_DEVICE_ID_ENA_LLQ_VF) },
147         { .device_id = 0 },
148 };
149
150 static struct ena_aenq_handlers aenq_handlers;
151
152 static int ena_device_init(struct ena_com_dev *ena_dev,
153                            struct ena_com_dev_get_features_ctx *get_feat_ctx,
154                            bool *wd_state);
155 static int ena_dev_configure(struct rte_eth_dev *dev);
156 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
157         struct ena_tx_buffer *tx_info,
158         struct rte_mbuf *mbuf,
159         void **push_header,
160         uint16_t *header_len);
161 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf);
162 static void ena_tx_cleanup(struct ena_ring *tx_ring);
163 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
164                                   uint16_t nb_pkts);
165 static uint16_t eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
166                 uint16_t nb_pkts);
167 static int ena_tx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
168                               uint16_t nb_desc, unsigned int socket_id,
169                               const struct rte_eth_txconf *tx_conf);
170 static int ena_rx_queue_setup(struct rte_eth_dev *dev, uint16_t queue_idx,
171                               uint16_t nb_desc, unsigned int socket_id,
172                               const struct rte_eth_rxconf *rx_conf,
173                               struct rte_mempool *mp);
174 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len);
175 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
176                                     struct ena_com_rx_buf_info *ena_bufs,
177                                     uint32_t descs,
178                                     uint16_t *next_to_clean,
179                                     uint8_t offset);
180 static uint16_t eth_ena_recv_pkts(void *rx_queue,
181                                   struct rte_mbuf **rx_pkts, uint16_t nb_pkts);
182 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
183                                   struct rte_mbuf *mbuf, uint16_t id);
184 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count);
185 static void ena_init_rings(struct ena_adapter *adapter,
186                            bool disable_meta_caching);
187 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
188 static int ena_start(struct rte_eth_dev *dev);
189 static void ena_stop(struct rte_eth_dev *dev);
190 static void ena_close(struct rte_eth_dev *dev);
191 static int ena_dev_reset(struct rte_eth_dev *dev);
192 static int ena_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats);
193 static void ena_rx_queue_release_all(struct rte_eth_dev *dev);
194 static void ena_tx_queue_release_all(struct rte_eth_dev *dev);
195 static void ena_rx_queue_release(void *queue);
196 static void ena_tx_queue_release(void *queue);
197 static void ena_rx_queue_release_bufs(struct ena_ring *ring);
198 static void ena_tx_queue_release_bufs(struct ena_ring *ring);
199 static int ena_link_update(struct rte_eth_dev *dev,
200                            int wait_to_complete);
201 static int ena_create_io_queue(struct ena_ring *ring);
202 static void ena_queue_stop(struct ena_ring *ring);
203 static void ena_queue_stop_all(struct rte_eth_dev *dev,
204                               enum ena_ring_type ring_type);
205 static int ena_queue_start(struct ena_ring *ring);
206 static int ena_queue_start_all(struct rte_eth_dev *dev,
207                                enum ena_ring_type ring_type);
208 static void ena_stats_restart(struct rte_eth_dev *dev);
209 static int ena_infos_get(struct rte_eth_dev *dev,
210                          struct rte_eth_dev_info *dev_info);
211 static int ena_rss_reta_update(struct rte_eth_dev *dev,
212                                struct rte_eth_rss_reta_entry64 *reta_conf,
213                                uint16_t reta_size);
214 static int ena_rss_reta_query(struct rte_eth_dev *dev,
215                               struct rte_eth_rss_reta_entry64 *reta_conf,
216                               uint16_t reta_size);
217 static void ena_interrupt_handler_rte(void *cb_arg);
218 static void ena_timer_wd_callback(struct rte_timer *timer, void *arg);
219 static void ena_destroy_device(struct rte_eth_dev *eth_dev);
220 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev);
221 static int ena_xstats_get_names(struct rte_eth_dev *dev,
222                                 struct rte_eth_xstat_name *xstats_names,
223                                 unsigned int n);
224 static int ena_xstats_get(struct rte_eth_dev *dev,
225                           struct rte_eth_xstat *stats,
226                           unsigned int n);
227 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
228                                 const uint64_t *ids,
229                                 uint64_t *values,
230                                 unsigned int n);
231 static int ena_process_bool_devarg(const char *key,
232                                    const char *value,
233                                    void *opaque);
234 static int ena_parse_devargs(struct ena_adapter *adapter,
235                              struct rte_devargs *devargs);
236
237 static const struct eth_dev_ops ena_dev_ops = {
238         .dev_configure        = ena_dev_configure,
239         .dev_infos_get        = ena_infos_get,
240         .rx_queue_setup       = ena_rx_queue_setup,
241         .tx_queue_setup       = ena_tx_queue_setup,
242         .dev_start            = ena_start,
243         .dev_stop             = ena_stop,
244         .link_update          = ena_link_update,
245         .stats_get            = ena_stats_get,
246         .xstats_get_names     = ena_xstats_get_names,
247         .xstats_get           = ena_xstats_get,
248         .xstats_get_by_id     = ena_xstats_get_by_id,
249         .mtu_set              = ena_mtu_set,
250         .rx_queue_release     = ena_rx_queue_release,
251         .tx_queue_release     = ena_tx_queue_release,
252         .dev_close            = ena_close,
253         .dev_reset            = ena_dev_reset,
254         .reta_update          = ena_rss_reta_update,
255         .reta_query           = ena_rss_reta_query,
256 };
257
258 void ena_rss_key_fill(void *key, size_t size)
259 {
260         static bool key_generated;
261         static uint8_t default_key[ENA_HASH_KEY_SIZE];
262         size_t i;
263
264         RTE_ASSERT(size <= ENA_HASH_KEY_SIZE);
265
266         if (!key_generated) {
267                 for (i = 0; i < ENA_HASH_KEY_SIZE; ++i)
268                         default_key[i] = rte_rand() & 0xff;
269                 key_generated = true;
270         }
271
272         rte_memcpy(key, default_key, size);
273 }
274
275 static inline void ena_rx_mbuf_prepare(struct rte_mbuf *mbuf,
276                                        struct ena_com_rx_ctx *ena_rx_ctx)
277 {
278         uint64_t ol_flags = 0;
279         uint32_t packet_type = 0;
280
281         if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_TCP)
282                 packet_type |= RTE_PTYPE_L4_TCP;
283         else if (ena_rx_ctx->l4_proto == ENA_ETH_IO_L4_PROTO_UDP)
284                 packet_type |= RTE_PTYPE_L4_UDP;
285
286         if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV4)
287                 packet_type |= RTE_PTYPE_L3_IPV4;
288         else if (ena_rx_ctx->l3_proto == ENA_ETH_IO_L3_PROTO_IPV6)
289                 packet_type |= RTE_PTYPE_L3_IPV6;
290
291         if (!ena_rx_ctx->l4_csum_checked)
292                 ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
293         else
294                 if (unlikely(ena_rx_ctx->l4_csum_err) && !ena_rx_ctx->frag)
295                         ol_flags |= PKT_RX_L4_CKSUM_BAD;
296                 else
297                         ol_flags |= PKT_RX_L4_CKSUM_UNKNOWN;
298
299         if (unlikely(ena_rx_ctx->l3_csum_err))
300                 ol_flags |= PKT_RX_IP_CKSUM_BAD;
301
302         mbuf->ol_flags = ol_flags;
303         mbuf->packet_type = packet_type;
304 }
305
306 static inline void ena_tx_mbuf_prepare(struct rte_mbuf *mbuf,
307                                        struct ena_com_tx_ctx *ena_tx_ctx,
308                                        uint64_t queue_offloads,
309                                        bool disable_meta_caching)
310 {
311         struct ena_com_tx_meta *ena_meta = &ena_tx_ctx->ena_meta;
312
313         if ((mbuf->ol_flags & MBUF_OFFLOADS) &&
314             (queue_offloads & QUEUE_OFFLOADS)) {
315                 /* check if TSO is required */
316                 if ((mbuf->ol_flags & PKT_TX_TCP_SEG) &&
317                     (queue_offloads & DEV_TX_OFFLOAD_TCP_TSO)) {
318                         ena_tx_ctx->tso_enable = true;
319
320                         ena_meta->l4_hdr_len = GET_L4_HDR_LEN(mbuf);
321                 }
322
323                 /* check if L3 checksum is needed */
324                 if ((mbuf->ol_flags & PKT_TX_IP_CKSUM) &&
325                     (queue_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM))
326                         ena_tx_ctx->l3_csum_enable = true;
327
328                 if (mbuf->ol_flags & PKT_TX_IPV6) {
329                         ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV6;
330                 } else {
331                         ena_tx_ctx->l3_proto = ENA_ETH_IO_L3_PROTO_IPV4;
332
333                         /* set don't fragment (DF) flag */
334                         if (mbuf->packet_type &
335                                 (RTE_PTYPE_L4_NONFRAG
336                                  | RTE_PTYPE_INNER_L4_NONFRAG))
337                                 ena_tx_ctx->df = true;
338                 }
339
340                 /* check if L4 checksum is needed */
341                 if (((mbuf->ol_flags & PKT_TX_L4_MASK) == PKT_TX_TCP_CKSUM) &&
342                     (queue_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)) {
343                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_TCP;
344                         ena_tx_ctx->l4_csum_enable = true;
345                 } else if (((mbuf->ol_flags & PKT_TX_L4_MASK) ==
346                                 PKT_TX_UDP_CKSUM) &&
347                                 (queue_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)) {
348                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UDP;
349                         ena_tx_ctx->l4_csum_enable = true;
350                 } else {
351                         ena_tx_ctx->l4_proto = ENA_ETH_IO_L4_PROTO_UNKNOWN;
352                         ena_tx_ctx->l4_csum_enable = false;
353                 }
354
355                 ena_meta->mss = mbuf->tso_segsz;
356                 ena_meta->l3_hdr_len = mbuf->l3_len;
357                 ena_meta->l3_hdr_offset = mbuf->l2_len;
358
359                 ena_tx_ctx->meta_valid = true;
360         } else if (disable_meta_caching) {
361                 memset(ena_meta, 0, sizeof(*ena_meta));
362                 ena_tx_ctx->meta_valid = true;
363         } else {
364                 ena_tx_ctx->meta_valid = false;
365         }
366 }
367
368 static inline int validate_rx_req_id(struct ena_ring *rx_ring, uint16_t req_id)
369 {
370         if (likely(req_id < rx_ring->ring_size))
371                 return 0;
372
373         PMD_DRV_LOG(ERR, "Invalid rx req_id: %hu\n", req_id);
374
375         rx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_RX_REQ_ID;
376         rx_ring->adapter->trigger_reset = true;
377         ++rx_ring->rx_stats.bad_req_id;
378
379         return -EFAULT;
380 }
381
382 static int validate_tx_req_id(struct ena_ring *tx_ring, u16 req_id)
383 {
384         struct ena_tx_buffer *tx_info = NULL;
385
386         if (likely(req_id < tx_ring->ring_size)) {
387                 tx_info = &tx_ring->tx_buffer_info[req_id];
388                 if (likely(tx_info->mbuf))
389                         return 0;
390         }
391
392         if (tx_info)
393                 PMD_DRV_LOG(ERR, "tx_info doesn't have valid mbuf\n");
394         else
395                 PMD_DRV_LOG(ERR, "Invalid req_id: %hu\n", req_id);
396
397         /* Trigger device reset */
398         ++tx_ring->tx_stats.bad_req_id;
399         tx_ring->adapter->reset_reason = ENA_REGS_RESET_INV_TX_REQ_ID;
400         tx_ring->adapter->trigger_reset = true;
401         return -EFAULT;
402 }
403
404 static void ena_config_host_info(struct ena_com_dev *ena_dev)
405 {
406         struct ena_admin_host_info *host_info;
407         int rc;
408
409         /* Allocate only the host info */
410         rc = ena_com_allocate_host_info(ena_dev);
411         if (rc) {
412                 PMD_DRV_LOG(ERR, "Cannot allocate host info\n");
413                 return;
414         }
415
416         host_info = ena_dev->host_attr.host_info;
417
418         host_info->os_type = ENA_ADMIN_OS_DPDK;
419         host_info->kernel_ver = RTE_VERSION;
420         strlcpy((char *)host_info->kernel_ver_str, rte_version(),
421                 sizeof(host_info->kernel_ver_str));
422         host_info->os_dist = RTE_VERSION;
423         strlcpy((char *)host_info->os_dist_str, rte_version(),
424                 sizeof(host_info->os_dist_str));
425         host_info->driver_version =
426                 (DRV_MODULE_VER_MAJOR) |
427                 (DRV_MODULE_VER_MINOR << ENA_ADMIN_HOST_INFO_MINOR_SHIFT) |
428                 (DRV_MODULE_VER_SUBMINOR <<
429                         ENA_ADMIN_HOST_INFO_SUB_MINOR_SHIFT);
430         host_info->num_cpus = rte_lcore_count();
431
432         host_info->driver_supported_features =
433                 ENA_ADMIN_HOST_INFO_RX_OFFSET_MASK;
434
435         rc = ena_com_set_host_attributes(ena_dev);
436         if (rc) {
437                 if (rc == -ENA_COM_UNSUPPORTED)
438                         PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
439                 else
440                         PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
441
442                 goto err;
443         }
444
445         return;
446
447 err:
448         ena_com_delete_host_info(ena_dev);
449 }
450
451 /* This function calculates the number of xstats based on the current config */
452 static unsigned int ena_xstats_calc_num(struct rte_eth_dev *dev)
453 {
454         return ENA_STATS_ARRAY_GLOBAL +
455                 (dev->data->nb_tx_queues * ENA_STATS_ARRAY_TX) +
456                 (dev->data->nb_rx_queues * ENA_STATS_ARRAY_RX);
457 }
458
459 static void ena_config_debug_area(struct ena_adapter *adapter)
460 {
461         u32 debug_area_size;
462         int rc, ss_count;
463
464         ss_count = ena_xstats_calc_num(adapter->rte_dev);
465
466         /* allocate 32 bytes for each string and 64bit for the value */
467         debug_area_size = ss_count * ETH_GSTRING_LEN + sizeof(u64) * ss_count;
468
469         rc = ena_com_allocate_debug_area(&adapter->ena_dev, debug_area_size);
470         if (rc) {
471                 PMD_DRV_LOG(ERR, "Cannot allocate debug area\n");
472                 return;
473         }
474
475         rc = ena_com_set_host_attributes(&adapter->ena_dev);
476         if (rc) {
477                 if (rc == -ENA_COM_UNSUPPORTED)
478                         PMD_DRV_LOG(WARNING, "Cannot set host attributes\n");
479                 else
480                         PMD_DRV_LOG(ERR, "Cannot set host attributes\n");
481
482                 goto err;
483         }
484
485         return;
486 err:
487         ena_com_delete_debug_area(&adapter->ena_dev);
488 }
489
490 static void ena_close(struct rte_eth_dev *dev)
491 {
492         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
493         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
494         struct ena_adapter *adapter = dev->data->dev_private;
495
496         if (adapter->state == ENA_ADAPTER_STATE_RUNNING)
497                 ena_stop(dev);
498         adapter->state = ENA_ADAPTER_STATE_CLOSED;
499
500         ena_rx_queue_release_all(dev);
501         ena_tx_queue_release_all(dev);
502
503         rte_free(adapter->drv_stats);
504         adapter->drv_stats = NULL;
505
506         rte_intr_disable(intr_handle);
507         rte_intr_callback_unregister(intr_handle,
508                                      ena_interrupt_handler_rte,
509                                      adapter);
510
511         /*
512          * MAC is not allocated dynamically. Setting NULL should prevent from
513          * release of the resource in the rte_eth_dev_release_port().
514          */
515         dev->data->mac_addrs = NULL;
516 }
517
518 static int
519 ena_dev_reset(struct rte_eth_dev *dev)
520 {
521         int rc = 0;
522
523         ena_destroy_device(dev);
524         rc = eth_ena_dev_init(dev);
525         if (rc)
526                 PMD_INIT_LOG(CRIT, "Cannot initialize device");
527
528         return rc;
529 }
530
531 static int ena_rss_reta_update(struct rte_eth_dev *dev,
532                                struct rte_eth_rss_reta_entry64 *reta_conf,
533                                uint16_t reta_size)
534 {
535         struct ena_adapter *adapter = dev->data->dev_private;
536         struct ena_com_dev *ena_dev = &adapter->ena_dev;
537         int rc, i;
538         u16 entry_value;
539         int conf_idx;
540         int idx;
541
542         if ((reta_size == 0) || (reta_conf == NULL))
543                 return -EINVAL;
544
545         if (reta_size > ENA_RX_RSS_TABLE_SIZE) {
546                 PMD_DRV_LOG(WARNING,
547                         "indirection table %d is bigger than supported (%d)\n",
548                         reta_size, ENA_RX_RSS_TABLE_SIZE);
549                 return -EINVAL;
550         }
551
552         for (i = 0 ; i < reta_size ; i++) {
553                 /* each reta_conf is for 64 entries.
554                  * to support 128 we use 2 conf of 64
555                  */
556                 conf_idx = i / RTE_RETA_GROUP_SIZE;
557                 idx = i % RTE_RETA_GROUP_SIZE;
558                 if (TEST_BIT(reta_conf[conf_idx].mask, idx)) {
559                         entry_value =
560                                 ENA_IO_RXQ_IDX(reta_conf[conf_idx].reta[idx]);
561
562                         rc = ena_com_indirect_table_fill_entry(ena_dev,
563                                                                i,
564                                                                entry_value);
565                         if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
566                                 PMD_DRV_LOG(ERR,
567                                         "Cannot fill indirect table\n");
568                                 return rc;
569                         }
570                 }
571         }
572
573         rc = ena_com_indirect_table_set(ena_dev);
574         if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
575                 PMD_DRV_LOG(ERR, "Cannot flush the indirect table\n");
576                 return rc;
577         }
578
579         PMD_DRV_LOG(DEBUG, "%s(): RSS configured %d entries  for port %d\n",
580                 __func__, reta_size, adapter->rte_dev->data->port_id);
581
582         return 0;
583 }
584
585 /* Query redirection table. */
586 static int ena_rss_reta_query(struct rte_eth_dev *dev,
587                               struct rte_eth_rss_reta_entry64 *reta_conf,
588                               uint16_t reta_size)
589 {
590         struct ena_adapter *adapter = dev->data->dev_private;
591         struct ena_com_dev *ena_dev = &adapter->ena_dev;
592         int rc;
593         int i;
594         u32 indirect_table[ENA_RX_RSS_TABLE_SIZE] = {0};
595         int reta_conf_idx;
596         int reta_idx;
597
598         if (reta_size == 0 || reta_conf == NULL ||
599             (reta_size > RTE_RETA_GROUP_SIZE && ((reta_conf + 1) == NULL)))
600                 return -EINVAL;
601
602         rc = ena_com_indirect_table_get(ena_dev, indirect_table);
603         if (unlikely(rc && rc != ENA_COM_UNSUPPORTED)) {
604                 PMD_DRV_LOG(ERR, "cannot get indirect table\n");
605                 return -ENOTSUP;
606         }
607
608         for (i = 0 ; i < reta_size ; i++) {
609                 reta_conf_idx = i / RTE_RETA_GROUP_SIZE;
610                 reta_idx = i % RTE_RETA_GROUP_SIZE;
611                 if (TEST_BIT(reta_conf[reta_conf_idx].mask, reta_idx))
612                         reta_conf[reta_conf_idx].reta[reta_idx] =
613                                 ENA_IO_RXQ_IDX_REV(indirect_table[i]);
614         }
615
616         return 0;
617 }
618
619 static int ena_rss_init_default(struct ena_adapter *adapter)
620 {
621         struct ena_com_dev *ena_dev = &adapter->ena_dev;
622         uint16_t nb_rx_queues = adapter->rte_dev->data->nb_rx_queues;
623         int rc, i;
624         u32 val;
625
626         rc = ena_com_rss_init(ena_dev, ENA_RX_RSS_TABLE_LOG_SIZE);
627         if (unlikely(rc)) {
628                 PMD_DRV_LOG(ERR, "Cannot init indirect table\n");
629                 goto err_rss_init;
630         }
631
632         for (i = 0; i < ENA_RX_RSS_TABLE_SIZE; i++) {
633                 val = i % nb_rx_queues;
634                 rc = ena_com_indirect_table_fill_entry(ena_dev, i,
635                                                        ENA_IO_RXQ_IDX(val));
636                 if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
637                         PMD_DRV_LOG(ERR, "Cannot fill indirect table\n");
638                         goto err_fill_indir;
639                 }
640         }
641
642         rc = ena_com_fill_hash_function(ena_dev, ENA_ADMIN_CRC32, NULL,
643                                         ENA_HASH_KEY_SIZE, 0xFFFFFFFF);
644         if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
645                 PMD_DRV_LOG(INFO, "Cannot fill hash function\n");
646                 goto err_fill_indir;
647         }
648
649         rc = ena_com_set_default_hash_ctrl(ena_dev);
650         if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
651                 PMD_DRV_LOG(INFO, "Cannot fill hash control\n");
652                 goto err_fill_indir;
653         }
654
655         rc = ena_com_indirect_table_set(ena_dev);
656         if (unlikely(rc && (rc != ENA_COM_UNSUPPORTED))) {
657                 PMD_DRV_LOG(ERR, "Cannot flush the indirect table\n");
658                 goto err_fill_indir;
659         }
660         PMD_DRV_LOG(DEBUG, "RSS configured for port %d\n",
661                 adapter->rte_dev->data->port_id);
662
663         return 0;
664
665 err_fill_indir:
666         ena_com_rss_destroy(ena_dev);
667 err_rss_init:
668
669         return rc;
670 }
671
672 static void ena_rx_queue_release_all(struct rte_eth_dev *dev)
673 {
674         struct ena_ring **queues = (struct ena_ring **)dev->data->rx_queues;
675         int nb_queues = dev->data->nb_rx_queues;
676         int i;
677
678         for (i = 0; i < nb_queues; i++)
679                 ena_rx_queue_release(queues[i]);
680 }
681
682 static void ena_tx_queue_release_all(struct rte_eth_dev *dev)
683 {
684         struct ena_ring **queues = (struct ena_ring **)dev->data->tx_queues;
685         int nb_queues = dev->data->nb_tx_queues;
686         int i;
687
688         for (i = 0; i < nb_queues; i++)
689                 ena_tx_queue_release(queues[i]);
690 }
691
692 static void ena_rx_queue_release(void *queue)
693 {
694         struct ena_ring *ring = (struct ena_ring *)queue;
695
696         /* Free ring resources */
697         if (ring->rx_buffer_info)
698                 rte_free(ring->rx_buffer_info);
699         ring->rx_buffer_info = NULL;
700
701         if (ring->rx_refill_buffer)
702                 rte_free(ring->rx_refill_buffer);
703         ring->rx_refill_buffer = NULL;
704
705         if (ring->empty_rx_reqs)
706                 rte_free(ring->empty_rx_reqs);
707         ring->empty_rx_reqs = NULL;
708
709         ring->configured = 0;
710
711         PMD_DRV_LOG(NOTICE, "RX Queue %d:%d released\n",
712                 ring->port_id, ring->id);
713 }
714
715 static void ena_tx_queue_release(void *queue)
716 {
717         struct ena_ring *ring = (struct ena_ring *)queue;
718
719         /* Free ring resources */
720         if (ring->push_buf_intermediate_buf)
721                 rte_free(ring->push_buf_intermediate_buf);
722
723         if (ring->tx_buffer_info)
724                 rte_free(ring->tx_buffer_info);
725
726         if (ring->empty_tx_reqs)
727                 rte_free(ring->empty_tx_reqs);
728
729         ring->empty_tx_reqs = NULL;
730         ring->tx_buffer_info = NULL;
731         ring->push_buf_intermediate_buf = NULL;
732
733         ring->configured = 0;
734
735         PMD_DRV_LOG(NOTICE, "TX Queue %d:%d released\n",
736                 ring->port_id, ring->id);
737 }
738
739 static void ena_rx_queue_release_bufs(struct ena_ring *ring)
740 {
741         unsigned int i;
742
743         for (i = 0; i < ring->ring_size; ++i) {
744                 struct ena_rx_buffer *rx_info = &ring->rx_buffer_info[i];
745                 if (rx_info->mbuf) {
746                         rte_mbuf_raw_free(rx_info->mbuf);
747                         rx_info->mbuf = NULL;
748                 }
749         }
750 }
751
752 static void ena_tx_queue_release_bufs(struct ena_ring *ring)
753 {
754         unsigned int i;
755
756         for (i = 0; i < ring->ring_size; ++i) {
757                 struct ena_tx_buffer *tx_buf = &ring->tx_buffer_info[i];
758
759                 if (tx_buf->mbuf)
760                         rte_pktmbuf_free(tx_buf->mbuf);
761         }
762 }
763
764 static int ena_link_update(struct rte_eth_dev *dev,
765                            __rte_unused int wait_to_complete)
766 {
767         struct rte_eth_link *link = &dev->data->dev_link;
768         struct ena_adapter *adapter = dev->data->dev_private;
769
770         link->link_status = adapter->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
771         link->link_speed = ETH_SPEED_NUM_NONE;
772         link->link_duplex = ETH_LINK_FULL_DUPLEX;
773
774         return 0;
775 }
776
777 static int ena_queue_start_all(struct rte_eth_dev *dev,
778                                enum ena_ring_type ring_type)
779 {
780         struct ena_adapter *adapter = dev->data->dev_private;
781         struct ena_ring *queues = NULL;
782         int nb_queues;
783         int i = 0;
784         int rc = 0;
785
786         if (ring_type == ENA_RING_TYPE_RX) {
787                 queues = adapter->rx_ring;
788                 nb_queues = dev->data->nb_rx_queues;
789         } else {
790                 queues = adapter->tx_ring;
791                 nb_queues = dev->data->nb_tx_queues;
792         }
793         for (i = 0; i < nb_queues; i++) {
794                 if (queues[i].configured) {
795                         if (ring_type == ENA_RING_TYPE_RX) {
796                                 ena_assert_msg(
797                                         dev->data->rx_queues[i] == &queues[i],
798                                         "Inconsistent state of rx queues\n");
799                         } else {
800                                 ena_assert_msg(
801                                         dev->data->tx_queues[i] == &queues[i],
802                                         "Inconsistent state of tx queues\n");
803                         }
804
805                         rc = ena_queue_start(&queues[i]);
806
807                         if (rc) {
808                                 PMD_INIT_LOG(ERR,
809                                              "failed to start queue %d type(%d)",
810                                              i, ring_type);
811                                 goto err;
812                         }
813                 }
814         }
815
816         return 0;
817
818 err:
819         while (i--)
820                 if (queues[i].configured)
821                         ena_queue_stop(&queues[i]);
822
823         return rc;
824 }
825
826 static uint32_t ena_get_mtu_conf(struct ena_adapter *adapter)
827 {
828         uint32_t max_frame_len = adapter->max_mtu;
829
830         if (adapter->rte_eth_dev_data->dev_conf.rxmode.offloads &
831             DEV_RX_OFFLOAD_JUMBO_FRAME)
832                 max_frame_len =
833                         adapter->rte_eth_dev_data->dev_conf.rxmode.max_rx_pkt_len;
834
835         return max_frame_len;
836 }
837
838 static int ena_check_valid_conf(struct ena_adapter *adapter)
839 {
840         uint32_t max_frame_len = ena_get_mtu_conf(adapter);
841
842         if (max_frame_len > adapter->max_mtu || max_frame_len < ENA_MIN_MTU) {
843                 PMD_INIT_LOG(ERR, "Unsupported MTU of %d. "
844                                   "max mtu: %d, min mtu: %d",
845                              max_frame_len, adapter->max_mtu, ENA_MIN_MTU);
846                 return ENA_COM_UNSUPPORTED;
847         }
848
849         return 0;
850 }
851
852 static int
853 ena_calc_io_queue_size(struct ena_calc_queue_size_ctx *ctx,
854                        bool use_large_llq_hdr)
855 {
856         struct ena_admin_feature_llq_desc *llq = &ctx->get_feat_ctx->llq;
857         struct ena_com_dev *ena_dev = ctx->ena_dev;
858         uint32_t max_tx_queue_size;
859         uint32_t max_rx_queue_size;
860
861         if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
862                 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
863                         &ctx->get_feat_ctx->max_queue_ext.max_queue_ext;
864                 max_rx_queue_size = RTE_MIN(max_queue_ext->max_rx_cq_depth,
865                         max_queue_ext->max_rx_sq_depth);
866                 max_tx_queue_size = max_queue_ext->max_tx_cq_depth;
867
868                 if (ena_dev->tx_mem_queue_type ==
869                     ENA_ADMIN_PLACEMENT_POLICY_DEV) {
870                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
871                                 llq->max_llq_depth);
872                 } else {
873                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
874                                 max_queue_ext->max_tx_sq_depth);
875                 }
876
877                 ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
878                         max_queue_ext->max_per_packet_rx_descs);
879                 ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
880                         max_queue_ext->max_per_packet_tx_descs);
881         } else {
882                 struct ena_admin_queue_feature_desc *max_queues =
883                         &ctx->get_feat_ctx->max_queues;
884                 max_rx_queue_size = RTE_MIN(max_queues->max_cq_depth,
885                         max_queues->max_sq_depth);
886                 max_tx_queue_size = max_queues->max_cq_depth;
887
888                 if (ena_dev->tx_mem_queue_type ==
889                     ENA_ADMIN_PLACEMENT_POLICY_DEV) {
890                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
891                                 llq->max_llq_depth);
892                 } else {
893                         max_tx_queue_size = RTE_MIN(max_tx_queue_size,
894                                 max_queues->max_sq_depth);
895                 }
896
897                 ctx->max_rx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
898                         max_queues->max_packet_rx_descs);
899                 ctx->max_tx_sgl_size = RTE_MIN(ENA_PKT_MAX_BUFS,
900                         max_queues->max_packet_tx_descs);
901         }
902
903         /* Round down to the nearest power of 2 */
904         max_rx_queue_size = rte_align32prevpow2(max_rx_queue_size);
905         max_tx_queue_size = rte_align32prevpow2(max_tx_queue_size);
906
907         if (use_large_llq_hdr) {
908                 if ((llq->entry_size_ctrl_supported &
909                      ENA_ADMIN_LIST_ENTRY_SIZE_256B) &&
910                     (ena_dev->tx_mem_queue_type ==
911                      ENA_ADMIN_PLACEMENT_POLICY_DEV)) {
912                         max_tx_queue_size /= 2;
913                         PMD_INIT_LOG(INFO,
914                                 "Forcing large headers and decreasing maximum TX queue size to %d\n",
915                                 max_tx_queue_size);
916                 } else {
917                         PMD_INIT_LOG(ERR,
918                                 "Forcing large headers failed: LLQ is disabled or device does not support large headers\n");
919                 }
920         }
921
922         if (unlikely(max_rx_queue_size == 0 || max_tx_queue_size == 0)) {
923                 PMD_INIT_LOG(ERR, "Invalid queue size");
924                 return -EFAULT;
925         }
926
927         ctx->max_tx_queue_size = max_tx_queue_size;
928         ctx->max_rx_queue_size = max_rx_queue_size;
929
930         return 0;
931 }
932
933 static void ena_stats_restart(struct rte_eth_dev *dev)
934 {
935         struct ena_adapter *adapter = dev->data->dev_private;
936
937         rte_atomic64_init(&adapter->drv_stats->ierrors);
938         rte_atomic64_init(&adapter->drv_stats->oerrors);
939         rte_atomic64_init(&adapter->drv_stats->rx_nombuf);
940         adapter->drv_stats->rx_drops = 0;
941 }
942
943 static int ena_stats_get(struct rte_eth_dev *dev,
944                           struct rte_eth_stats *stats)
945 {
946         struct ena_admin_basic_stats ena_stats;
947         struct ena_adapter *adapter = dev->data->dev_private;
948         struct ena_com_dev *ena_dev = &adapter->ena_dev;
949         int rc;
950         int i;
951         int max_rings_stats;
952
953         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
954                 return -ENOTSUP;
955
956         memset(&ena_stats, 0, sizeof(ena_stats));
957         rc = ena_com_get_dev_basic_stats(ena_dev, &ena_stats);
958         if (unlikely(rc)) {
959                 PMD_DRV_LOG(ERR, "Could not retrieve statistics from ENA\n");
960                 return rc;
961         }
962
963         /* Set of basic statistics from ENA */
964         stats->ipackets = __MERGE_64B_H_L(ena_stats.rx_pkts_high,
965                                           ena_stats.rx_pkts_low);
966         stats->opackets = __MERGE_64B_H_L(ena_stats.tx_pkts_high,
967                                           ena_stats.tx_pkts_low);
968         stats->ibytes = __MERGE_64B_H_L(ena_stats.rx_bytes_high,
969                                         ena_stats.rx_bytes_low);
970         stats->obytes = __MERGE_64B_H_L(ena_stats.tx_bytes_high,
971                                         ena_stats.tx_bytes_low);
972
973         /* Driver related stats */
974         stats->imissed = adapter->drv_stats->rx_drops;
975         stats->ierrors = rte_atomic64_read(&adapter->drv_stats->ierrors);
976         stats->oerrors = rte_atomic64_read(&adapter->drv_stats->oerrors);
977         stats->rx_nombuf = rte_atomic64_read(&adapter->drv_stats->rx_nombuf);
978
979         max_rings_stats = RTE_MIN(dev->data->nb_rx_queues,
980                 RTE_ETHDEV_QUEUE_STAT_CNTRS);
981         for (i = 0; i < max_rings_stats; ++i) {
982                 struct ena_stats_rx *rx_stats = &adapter->rx_ring[i].rx_stats;
983
984                 stats->q_ibytes[i] = rx_stats->bytes;
985                 stats->q_ipackets[i] = rx_stats->cnt;
986                 stats->q_errors[i] = rx_stats->bad_desc_num +
987                         rx_stats->bad_req_id;
988         }
989
990         max_rings_stats = RTE_MIN(dev->data->nb_tx_queues,
991                 RTE_ETHDEV_QUEUE_STAT_CNTRS);
992         for (i = 0; i < max_rings_stats; ++i) {
993                 struct ena_stats_tx *tx_stats = &adapter->tx_ring[i].tx_stats;
994
995                 stats->q_obytes[i] = tx_stats->bytes;
996                 stats->q_opackets[i] = tx_stats->cnt;
997         }
998
999         return 0;
1000 }
1001
1002 static int ena_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1003 {
1004         struct ena_adapter *adapter;
1005         struct ena_com_dev *ena_dev;
1006         int rc = 0;
1007
1008         ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1009         ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1010         adapter = dev->data->dev_private;
1011
1012         ena_dev = &adapter->ena_dev;
1013         ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1014
1015         if (mtu > ena_get_mtu_conf(adapter) || mtu < ENA_MIN_MTU) {
1016                 PMD_DRV_LOG(ERR,
1017                         "Invalid MTU setting. new_mtu: %d "
1018                         "max mtu: %d min mtu: %d\n",
1019                         mtu, ena_get_mtu_conf(adapter), ENA_MIN_MTU);
1020                 return -EINVAL;
1021         }
1022
1023         rc = ena_com_set_dev_mtu(ena_dev, mtu);
1024         if (rc)
1025                 PMD_DRV_LOG(ERR, "Could not set MTU: %d\n", mtu);
1026         else
1027                 PMD_DRV_LOG(NOTICE, "Set MTU: %d\n", mtu);
1028
1029         return rc;
1030 }
1031
1032 static int ena_start(struct rte_eth_dev *dev)
1033 {
1034         struct ena_adapter *adapter = dev->data->dev_private;
1035         uint64_t ticks;
1036         int rc = 0;
1037
1038         rc = ena_check_valid_conf(adapter);
1039         if (rc)
1040                 return rc;
1041
1042         rc = ena_queue_start_all(dev, ENA_RING_TYPE_RX);
1043         if (rc)
1044                 return rc;
1045
1046         rc = ena_queue_start_all(dev, ENA_RING_TYPE_TX);
1047         if (rc)
1048                 goto err_start_tx;
1049
1050         if (adapter->rte_dev->data->dev_conf.rxmode.mq_mode &
1051             ETH_MQ_RX_RSS_FLAG && adapter->rte_dev->data->nb_rx_queues > 0) {
1052                 rc = ena_rss_init_default(adapter);
1053                 if (rc)
1054                         goto err_rss_init;
1055         }
1056
1057         ena_stats_restart(dev);
1058
1059         adapter->timestamp_wd = rte_get_timer_cycles();
1060         adapter->keep_alive_timeout = ENA_DEVICE_KALIVE_TIMEOUT;
1061
1062         ticks = rte_get_timer_hz();
1063         rte_timer_reset(&adapter->timer_wd, ticks, PERIODICAL, rte_lcore_id(),
1064                         ena_timer_wd_callback, adapter);
1065
1066         ++adapter->dev_stats.dev_start;
1067         adapter->state = ENA_ADAPTER_STATE_RUNNING;
1068
1069         return 0;
1070
1071 err_rss_init:
1072         ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1073 err_start_tx:
1074         ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1075         return rc;
1076 }
1077
1078 static void ena_stop(struct rte_eth_dev *dev)
1079 {
1080         struct ena_adapter *adapter = dev->data->dev_private;
1081         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1082         int rc;
1083
1084         rte_timer_stop_sync(&adapter->timer_wd);
1085         ena_queue_stop_all(dev, ENA_RING_TYPE_TX);
1086         ena_queue_stop_all(dev, ENA_RING_TYPE_RX);
1087
1088         if (adapter->trigger_reset) {
1089                 rc = ena_com_dev_reset(ena_dev, adapter->reset_reason);
1090                 if (rc)
1091                         PMD_DRV_LOG(ERR, "Device reset failed rc=%d\n", rc);
1092         }
1093
1094         ++adapter->dev_stats.dev_stop;
1095         adapter->state = ENA_ADAPTER_STATE_STOPPED;
1096 }
1097
1098 static int ena_create_io_queue(struct ena_ring *ring)
1099 {
1100         struct ena_adapter *adapter;
1101         struct ena_com_dev *ena_dev;
1102         struct ena_com_create_io_ctx ctx =
1103                 /* policy set to _HOST just to satisfy icc compiler */
1104                 { ENA_ADMIN_PLACEMENT_POLICY_HOST,
1105                   0, 0, 0, 0, 0 };
1106         uint16_t ena_qid;
1107         unsigned int i;
1108         int rc;
1109
1110         adapter = ring->adapter;
1111         ena_dev = &adapter->ena_dev;
1112
1113         if (ring->type == ENA_RING_TYPE_TX) {
1114                 ena_qid = ENA_IO_TXQ_IDX(ring->id);
1115                 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_TX;
1116                 ctx.mem_queue_type = ena_dev->tx_mem_queue_type;
1117                 for (i = 0; i < ring->ring_size; i++)
1118                         ring->empty_tx_reqs[i] = i;
1119         } else {
1120                 ena_qid = ENA_IO_RXQ_IDX(ring->id);
1121                 ctx.direction = ENA_COM_IO_QUEUE_DIRECTION_RX;
1122                 for (i = 0; i < ring->ring_size; i++)
1123                         ring->empty_rx_reqs[i] = i;
1124         }
1125         ctx.queue_size = ring->ring_size;
1126         ctx.qid = ena_qid;
1127         ctx.msix_vector = -1; /* interrupts not used */
1128         ctx.numa_node = ring->numa_socket_id;
1129
1130         rc = ena_com_create_io_queue(ena_dev, &ctx);
1131         if (rc) {
1132                 PMD_DRV_LOG(ERR,
1133                         "failed to create io queue #%d (qid:%d) rc: %d\n",
1134                         ring->id, ena_qid, rc);
1135                 return rc;
1136         }
1137
1138         rc = ena_com_get_io_handlers(ena_dev, ena_qid,
1139                                      &ring->ena_com_io_sq,
1140                                      &ring->ena_com_io_cq);
1141         if (rc) {
1142                 PMD_DRV_LOG(ERR,
1143                         "Failed to get io queue handlers. queue num %d rc: %d\n",
1144                         ring->id, rc);
1145                 ena_com_destroy_io_queue(ena_dev, ena_qid);
1146                 return rc;
1147         }
1148
1149         if (ring->type == ENA_RING_TYPE_TX)
1150                 ena_com_update_numa_node(ring->ena_com_io_cq, ctx.numa_node);
1151
1152         return 0;
1153 }
1154
1155 static void ena_queue_stop(struct ena_ring *ring)
1156 {
1157         struct ena_com_dev *ena_dev = &ring->adapter->ena_dev;
1158
1159         if (ring->type == ENA_RING_TYPE_RX) {
1160                 ena_com_destroy_io_queue(ena_dev, ENA_IO_RXQ_IDX(ring->id));
1161                 ena_rx_queue_release_bufs(ring);
1162         } else {
1163                 ena_com_destroy_io_queue(ena_dev, ENA_IO_TXQ_IDX(ring->id));
1164                 ena_tx_queue_release_bufs(ring);
1165         }
1166 }
1167
1168 static void ena_queue_stop_all(struct rte_eth_dev *dev,
1169                               enum ena_ring_type ring_type)
1170 {
1171         struct ena_adapter *adapter = dev->data->dev_private;
1172         struct ena_ring *queues = NULL;
1173         uint16_t nb_queues, i;
1174
1175         if (ring_type == ENA_RING_TYPE_RX) {
1176                 queues = adapter->rx_ring;
1177                 nb_queues = dev->data->nb_rx_queues;
1178         } else {
1179                 queues = adapter->tx_ring;
1180                 nb_queues = dev->data->nb_tx_queues;
1181         }
1182
1183         for (i = 0; i < nb_queues; ++i)
1184                 if (queues[i].configured)
1185                         ena_queue_stop(&queues[i]);
1186 }
1187
1188 static int ena_queue_start(struct ena_ring *ring)
1189 {
1190         int rc, bufs_num;
1191
1192         ena_assert_msg(ring->configured == 1,
1193                        "Trying to start unconfigured queue\n");
1194
1195         rc = ena_create_io_queue(ring);
1196         if (rc) {
1197                 PMD_INIT_LOG(ERR, "Failed to create IO queue!");
1198                 return rc;
1199         }
1200
1201         ring->next_to_clean = 0;
1202         ring->next_to_use = 0;
1203
1204         if (ring->type == ENA_RING_TYPE_TX) {
1205                 ring->tx_stats.available_desc =
1206                         ena_com_free_q_entries(ring->ena_com_io_sq);
1207                 return 0;
1208         }
1209
1210         bufs_num = ring->ring_size - 1;
1211         rc = ena_populate_rx_queue(ring, bufs_num);
1212         if (rc != bufs_num) {
1213                 ena_com_destroy_io_queue(&ring->adapter->ena_dev,
1214                                          ENA_IO_RXQ_IDX(ring->id));
1215                 PMD_INIT_LOG(ERR, "Failed to populate rx ring !");
1216                 return ENA_COM_FAULT;
1217         }
1218
1219         return 0;
1220 }
1221
1222 static int ena_tx_queue_setup(struct rte_eth_dev *dev,
1223                               uint16_t queue_idx,
1224                               uint16_t nb_desc,
1225                               unsigned int socket_id,
1226                               const struct rte_eth_txconf *tx_conf)
1227 {
1228         struct ena_ring *txq = NULL;
1229         struct ena_adapter *adapter = dev->data->dev_private;
1230         unsigned int i;
1231
1232         txq = &adapter->tx_ring[queue_idx];
1233
1234         if (txq->configured) {
1235                 PMD_DRV_LOG(CRIT,
1236                         "API violation. Queue %d is already configured\n",
1237                         queue_idx);
1238                 return ENA_COM_FAULT;
1239         }
1240
1241         if (!rte_is_power_of_2(nb_desc)) {
1242                 PMD_DRV_LOG(ERR,
1243                         "Unsupported size of TX queue: %d is not a power of 2.\n",
1244                         nb_desc);
1245                 return -EINVAL;
1246         }
1247
1248         if (nb_desc > adapter->max_tx_ring_size) {
1249                 PMD_DRV_LOG(ERR,
1250                         "Unsupported size of TX queue (max size: %d)\n",
1251                         adapter->max_tx_ring_size);
1252                 return -EINVAL;
1253         }
1254
1255         if (nb_desc == RTE_ETH_DEV_FALLBACK_TX_RINGSIZE)
1256                 nb_desc = adapter->max_tx_ring_size;
1257
1258         txq->port_id = dev->data->port_id;
1259         txq->next_to_clean = 0;
1260         txq->next_to_use = 0;
1261         txq->ring_size = nb_desc;
1262         txq->size_mask = nb_desc - 1;
1263         txq->numa_socket_id = socket_id;
1264
1265         txq->tx_buffer_info = rte_zmalloc("txq->tx_buffer_info",
1266                                           sizeof(struct ena_tx_buffer) *
1267                                           txq->ring_size,
1268                                           RTE_CACHE_LINE_SIZE);
1269         if (!txq->tx_buffer_info) {
1270                 PMD_DRV_LOG(ERR, "failed to alloc mem for tx buffer info\n");
1271                 return -ENOMEM;
1272         }
1273
1274         txq->empty_tx_reqs = rte_zmalloc("txq->empty_tx_reqs",
1275                                          sizeof(u16) * txq->ring_size,
1276                                          RTE_CACHE_LINE_SIZE);
1277         if (!txq->empty_tx_reqs) {
1278                 PMD_DRV_LOG(ERR, "failed to alloc mem for tx reqs\n");
1279                 rte_free(txq->tx_buffer_info);
1280                 return -ENOMEM;
1281         }
1282
1283         txq->push_buf_intermediate_buf =
1284                 rte_zmalloc("txq->push_buf_intermediate_buf",
1285                             txq->tx_max_header_size,
1286                             RTE_CACHE_LINE_SIZE);
1287         if (!txq->push_buf_intermediate_buf) {
1288                 PMD_DRV_LOG(ERR, "failed to alloc push buff for LLQ\n");
1289                 rte_free(txq->tx_buffer_info);
1290                 rte_free(txq->empty_tx_reqs);
1291                 return -ENOMEM;
1292         }
1293
1294         for (i = 0; i < txq->ring_size; i++)
1295                 txq->empty_tx_reqs[i] = i;
1296
1297         if (tx_conf != NULL) {
1298                 txq->offloads =
1299                         tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1300         }
1301         /* Store pointer to this queue in upper layer */
1302         txq->configured = 1;
1303         dev->data->tx_queues[queue_idx] = txq;
1304
1305         return 0;
1306 }
1307
1308 static int ena_rx_queue_setup(struct rte_eth_dev *dev,
1309                               uint16_t queue_idx,
1310                               uint16_t nb_desc,
1311                               unsigned int socket_id,
1312                               __rte_unused const struct rte_eth_rxconf *rx_conf,
1313                               struct rte_mempool *mp)
1314 {
1315         struct ena_adapter *adapter = dev->data->dev_private;
1316         struct ena_ring *rxq = NULL;
1317         size_t buffer_size;
1318         int i;
1319
1320         rxq = &adapter->rx_ring[queue_idx];
1321         if (rxq->configured) {
1322                 PMD_DRV_LOG(CRIT,
1323                         "API violation. Queue %d is already configured\n",
1324                         queue_idx);
1325                 return ENA_COM_FAULT;
1326         }
1327
1328         if (nb_desc == RTE_ETH_DEV_FALLBACK_RX_RINGSIZE)
1329                 nb_desc = adapter->max_rx_ring_size;
1330
1331         if (!rte_is_power_of_2(nb_desc)) {
1332                 PMD_DRV_LOG(ERR,
1333                         "Unsupported size of RX queue: %d is not a power of 2.\n",
1334                         nb_desc);
1335                 return -EINVAL;
1336         }
1337
1338         if (nb_desc > adapter->max_rx_ring_size) {
1339                 PMD_DRV_LOG(ERR,
1340                         "Unsupported size of RX queue (max size: %d)\n",
1341                         adapter->max_rx_ring_size);
1342                 return -EINVAL;
1343         }
1344
1345         /* ENA isn't supporting buffers smaller than 1400 bytes */
1346         buffer_size = rte_pktmbuf_data_room_size(mp) - RTE_PKTMBUF_HEADROOM;
1347         if (buffer_size < ENA_RX_BUF_MIN_SIZE) {
1348                 PMD_DRV_LOG(ERR,
1349                         "Unsupported size of RX buffer: %zu (min size: %d)\n",
1350                         buffer_size, ENA_RX_BUF_MIN_SIZE);
1351                 return -EINVAL;
1352         }
1353
1354         rxq->port_id = dev->data->port_id;
1355         rxq->next_to_clean = 0;
1356         rxq->next_to_use = 0;
1357         rxq->ring_size = nb_desc;
1358         rxq->size_mask = nb_desc - 1;
1359         rxq->numa_socket_id = socket_id;
1360         rxq->mb_pool = mp;
1361
1362         rxq->rx_buffer_info = rte_zmalloc("rxq->buffer_info",
1363                 sizeof(struct ena_rx_buffer) * nb_desc,
1364                 RTE_CACHE_LINE_SIZE);
1365         if (!rxq->rx_buffer_info) {
1366                 PMD_DRV_LOG(ERR, "failed to alloc mem for rx buffer info\n");
1367                 return -ENOMEM;
1368         }
1369
1370         rxq->rx_refill_buffer = rte_zmalloc("rxq->rx_refill_buffer",
1371                                             sizeof(struct rte_mbuf *) * nb_desc,
1372                                             RTE_CACHE_LINE_SIZE);
1373
1374         if (!rxq->rx_refill_buffer) {
1375                 PMD_DRV_LOG(ERR, "failed to alloc mem for rx refill buffer\n");
1376                 rte_free(rxq->rx_buffer_info);
1377                 rxq->rx_buffer_info = NULL;
1378                 return -ENOMEM;
1379         }
1380
1381         rxq->empty_rx_reqs = rte_zmalloc("rxq->empty_rx_reqs",
1382                                          sizeof(uint16_t) * nb_desc,
1383                                          RTE_CACHE_LINE_SIZE);
1384         if (!rxq->empty_rx_reqs) {
1385                 PMD_DRV_LOG(ERR, "failed to alloc mem for empty rx reqs\n");
1386                 rte_free(rxq->rx_buffer_info);
1387                 rxq->rx_buffer_info = NULL;
1388                 rte_free(rxq->rx_refill_buffer);
1389                 rxq->rx_refill_buffer = NULL;
1390                 return -ENOMEM;
1391         }
1392
1393         for (i = 0; i < nb_desc; i++)
1394                 rxq->empty_rx_reqs[i] = i;
1395
1396         /* Store pointer to this queue in upper layer */
1397         rxq->configured = 1;
1398         dev->data->rx_queues[queue_idx] = rxq;
1399
1400         return 0;
1401 }
1402
1403 static int ena_add_single_rx_desc(struct ena_com_io_sq *io_sq,
1404                                   struct rte_mbuf *mbuf, uint16_t id)
1405 {
1406         struct ena_com_buf ebuf;
1407         int rc;
1408
1409         /* prepare physical address for DMA transaction */
1410         ebuf.paddr = mbuf->buf_iova + RTE_PKTMBUF_HEADROOM;
1411         ebuf.len = mbuf->buf_len - RTE_PKTMBUF_HEADROOM;
1412
1413         /* pass resource to device */
1414         rc = ena_com_add_single_rx_desc(io_sq, &ebuf, id);
1415         if (unlikely(rc != 0))
1416                 PMD_DRV_LOG(WARNING, "failed adding rx desc\n");
1417
1418         return rc;
1419 }
1420
1421 static int ena_populate_rx_queue(struct ena_ring *rxq, unsigned int count)
1422 {
1423         unsigned int i;
1424         int rc;
1425         uint16_t next_to_use = rxq->next_to_use;
1426         uint16_t in_use, req_id;
1427         struct rte_mbuf **mbufs = rxq->rx_refill_buffer;
1428
1429         if (unlikely(!count))
1430                 return 0;
1431
1432         in_use = rxq->ring_size - 1 -
1433                 ena_com_free_q_entries(rxq->ena_com_io_sq);
1434         ena_assert_msg(((in_use + count) < rxq->ring_size),
1435                 "bad ring state\n");
1436
1437         /* get resources for incoming packets */
1438         rc = rte_mempool_get_bulk(rxq->mb_pool, (void **)mbufs, count);
1439         if (unlikely(rc < 0)) {
1440                 rte_atomic64_inc(&rxq->adapter->drv_stats->rx_nombuf);
1441                 ++rxq->rx_stats.mbuf_alloc_fail;
1442                 PMD_RX_LOG(DEBUG, "there are no enough free buffers");
1443                 return 0;
1444         }
1445
1446         for (i = 0; i < count; i++) {
1447                 struct rte_mbuf *mbuf = mbufs[i];
1448                 struct ena_rx_buffer *rx_info;
1449
1450                 if (likely((i + 4) < count))
1451                         rte_prefetch0(mbufs[i + 4]);
1452
1453                 req_id = rxq->empty_rx_reqs[next_to_use];
1454                 rc = validate_rx_req_id(rxq, req_id);
1455                 if (unlikely(rc))
1456                         break;
1457
1458                 rx_info = &rxq->rx_buffer_info[req_id];
1459
1460                 rc = ena_add_single_rx_desc(rxq->ena_com_io_sq, mbuf, req_id);
1461                 if (unlikely(rc != 0))
1462                         break;
1463
1464                 rx_info->mbuf = mbuf;
1465                 next_to_use = ENA_IDX_NEXT_MASKED(next_to_use, rxq->size_mask);
1466         }
1467
1468         if (unlikely(i < count)) {
1469                 PMD_DRV_LOG(WARNING, "refilled rx qid %d with only %d "
1470                         "buffers (from %d)\n", rxq->id, i, count);
1471                 rte_mempool_put_bulk(rxq->mb_pool, (void **)(&mbufs[i]),
1472                                      count - i);
1473                 ++rxq->rx_stats.refill_partial;
1474         }
1475
1476         /* When we submitted free recources to device... */
1477         if (likely(i > 0)) {
1478                 /* ...let HW know that it can fill buffers with data. */
1479                 ena_com_write_sq_doorbell(rxq->ena_com_io_sq);
1480
1481                 rxq->next_to_use = next_to_use;
1482         }
1483
1484         return i;
1485 }
1486
1487 static int ena_device_init(struct ena_com_dev *ena_dev,
1488                            struct ena_com_dev_get_features_ctx *get_feat_ctx,
1489                            bool *wd_state)
1490 {
1491         uint32_t aenq_groups;
1492         int rc;
1493         bool readless_supported;
1494
1495         /* Initialize mmio registers */
1496         rc = ena_com_mmio_reg_read_request_init(ena_dev);
1497         if (rc) {
1498                 PMD_DRV_LOG(ERR, "failed to init mmio read less\n");
1499                 return rc;
1500         }
1501
1502         /* The PCIe configuration space revision id indicate if mmio reg
1503          * read is disabled.
1504          */
1505         readless_supported =
1506                 !(((struct rte_pci_device *)ena_dev->dmadev)->id.class_id
1507                                & ENA_MMIO_DISABLE_REG_READ);
1508         ena_com_set_mmio_read_mode(ena_dev, readless_supported);
1509
1510         /* reset device */
1511         rc = ena_com_dev_reset(ena_dev, ENA_REGS_RESET_NORMAL);
1512         if (rc) {
1513                 PMD_DRV_LOG(ERR, "cannot reset device\n");
1514                 goto err_mmio_read_less;
1515         }
1516
1517         /* check FW version */
1518         rc = ena_com_validate_version(ena_dev);
1519         if (rc) {
1520                 PMD_DRV_LOG(ERR, "device version is too low\n");
1521                 goto err_mmio_read_less;
1522         }
1523
1524         ena_dev->dma_addr_bits = ena_com_get_dma_width(ena_dev);
1525
1526         /* ENA device administration layer init */
1527         rc = ena_com_admin_init(ena_dev, &aenq_handlers);
1528         if (rc) {
1529                 PMD_DRV_LOG(ERR,
1530                         "cannot initialize ena admin queue with device\n");
1531                 goto err_mmio_read_less;
1532         }
1533
1534         /* To enable the msix interrupts the driver needs to know the number
1535          * of queues. So the driver uses polling mode to retrieve this
1536          * information.
1537          */
1538         ena_com_set_admin_polling_mode(ena_dev, true);
1539
1540         ena_config_host_info(ena_dev);
1541
1542         /* Get Device Attributes and features */
1543         rc = ena_com_get_dev_attr_feat(ena_dev, get_feat_ctx);
1544         if (rc) {
1545                 PMD_DRV_LOG(ERR,
1546                         "cannot get attribute for ena device rc= %d\n", rc);
1547                 goto err_admin_init;
1548         }
1549
1550         aenq_groups = BIT(ENA_ADMIN_LINK_CHANGE) |
1551                       BIT(ENA_ADMIN_NOTIFICATION) |
1552                       BIT(ENA_ADMIN_KEEP_ALIVE) |
1553                       BIT(ENA_ADMIN_FATAL_ERROR) |
1554                       BIT(ENA_ADMIN_WARNING);
1555
1556         aenq_groups &= get_feat_ctx->aenq.supported_groups;
1557         rc = ena_com_set_aenq_config(ena_dev, aenq_groups);
1558         if (rc) {
1559                 PMD_DRV_LOG(ERR, "Cannot configure aenq groups rc: %d\n", rc);
1560                 goto err_admin_init;
1561         }
1562
1563         *wd_state = !!(aenq_groups & BIT(ENA_ADMIN_KEEP_ALIVE));
1564
1565         return 0;
1566
1567 err_admin_init:
1568         ena_com_admin_destroy(ena_dev);
1569
1570 err_mmio_read_less:
1571         ena_com_mmio_reg_read_request_destroy(ena_dev);
1572
1573         return rc;
1574 }
1575
1576 static void ena_interrupt_handler_rte(void *cb_arg)
1577 {
1578         struct ena_adapter *adapter = cb_arg;
1579         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1580
1581         ena_com_admin_q_comp_intr_handler(ena_dev);
1582         if (likely(adapter->state != ENA_ADAPTER_STATE_CLOSED))
1583                 ena_com_aenq_intr_handler(ena_dev, adapter);
1584 }
1585
1586 static void check_for_missing_keep_alive(struct ena_adapter *adapter)
1587 {
1588         if (!adapter->wd_state)
1589                 return;
1590
1591         if (adapter->keep_alive_timeout == ENA_HW_HINTS_NO_TIMEOUT)
1592                 return;
1593
1594         if (unlikely((rte_get_timer_cycles() - adapter->timestamp_wd) >=
1595             adapter->keep_alive_timeout)) {
1596                 PMD_DRV_LOG(ERR, "Keep alive timeout\n");
1597                 adapter->reset_reason = ENA_REGS_RESET_KEEP_ALIVE_TO;
1598                 adapter->trigger_reset = true;
1599                 ++adapter->dev_stats.wd_expired;
1600         }
1601 }
1602
1603 /* Check if admin queue is enabled */
1604 static void check_for_admin_com_state(struct ena_adapter *adapter)
1605 {
1606         if (unlikely(!ena_com_get_admin_running_state(&adapter->ena_dev))) {
1607                 PMD_DRV_LOG(ERR, "ENA admin queue is not in running state!\n");
1608                 adapter->reset_reason = ENA_REGS_RESET_ADMIN_TO;
1609                 adapter->trigger_reset = true;
1610         }
1611 }
1612
1613 static void ena_timer_wd_callback(__rte_unused struct rte_timer *timer,
1614                                   void *arg)
1615 {
1616         struct ena_adapter *adapter = arg;
1617         struct rte_eth_dev *dev = adapter->rte_dev;
1618
1619         check_for_missing_keep_alive(adapter);
1620         check_for_admin_com_state(adapter);
1621
1622         if (unlikely(adapter->trigger_reset)) {
1623                 PMD_DRV_LOG(ERR, "Trigger reset is on\n");
1624                 _rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
1625                         NULL);
1626         }
1627 }
1628
1629 static inline void
1630 set_default_llq_configurations(struct ena_llq_configurations *llq_config,
1631                                struct ena_admin_feature_llq_desc *llq,
1632                                bool use_large_llq_hdr)
1633 {
1634         llq_config->llq_header_location = ENA_ADMIN_INLINE_HEADER;
1635         llq_config->llq_stride_ctrl = ENA_ADMIN_MULTIPLE_DESCS_PER_ENTRY;
1636         llq_config->llq_num_decs_before_header =
1637                 ENA_ADMIN_LLQ_NUM_DESCS_BEFORE_HEADER_2;
1638
1639         if (use_large_llq_hdr &&
1640             (llq->entry_size_ctrl_supported & ENA_ADMIN_LIST_ENTRY_SIZE_256B)) {
1641                 llq_config->llq_ring_entry_size =
1642                         ENA_ADMIN_LIST_ENTRY_SIZE_256B;
1643                 llq_config->llq_ring_entry_size_value = 256;
1644         } else {
1645                 llq_config->llq_ring_entry_size =
1646                         ENA_ADMIN_LIST_ENTRY_SIZE_128B;
1647                 llq_config->llq_ring_entry_size_value = 128;
1648         }
1649 }
1650
1651 static int
1652 ena_set_queues_placement_policy(struct ena_adapter *adapter,
1653                                 struct ena_com_dev *ena_dev,
1654                                 struct ena_admin_feature_llq_desc *llq,
1655                                 struct ena_llq_configurations *llq_default_configurations)
1656 {
1657         int rc;
1658         u32 llq_feature_mask;
1659
1660         llq_feature_mask = 1 << ENA_ADMIN_LLQ;
1661         if (!(ena_dev->supported_features & llq_feature_mask)) {
1662                 PMD_DRV_LOG(INFO,
1663                         "LLQ is not supported. Fallback to host mode policy.\n");
1664                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1665                 return 0;
1666         }
1667
1668         rc = ena_com_config_dev_mode(ena_dev, llq, llq_default_configurations);
1669         if (unlikely(rc)) {
1670                 PMD_INIT_LOG(WARNING, "Failed to config dev mode. "
1671                         "Fallback to host mode policy.");
1672                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1673                 return 0;
1674         }
1675
1676         /* Nothing to config, exit */
1677         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1678                 return 0;
1679
1680         if (!adapter->dev_mem_base) {
1681                 PMD_DRV_LOG(ERR, "Unable to access LLQ bar resource. "
1682                         "Fallback to host mode policy.\n.");
1683                 ena_dev->tx_mem_queue_type = ENA_ADMIN_PLACEMENT_POLICY_HOST;
1684                 return 0;
1685         }
1686
1687         ena_dev->mem_bar = adapter->dev_mem_base;
1688
1689         return 0;
1690 }
1691
1692 static uint32_t ena_calc_max_io_queue_num(struct ena_com_dev *ena_dev,
1693         struct ena_com_dev_get_features_ctx *get_feat_ctx)
1694 {
1695         uint32_t io_tx_sq_num, io_tx_cq_num, io_rx_num, max_num_io_queues;
1696
1697         /* Regular queues capabilities */
1698         if (ena_dev->supported_features & BIT(ENA_ADMIN_MAX_QUEUES_EXT)) {
1699                 struct ena_admin_queue_ext_feature_fields *max_queue_ext =
1700                         &get_feat_ctx->max_queue_ext.max_queue_ext;
1701                 io_rx_num = RTE_MIN(max_queue_ext->max_rx_sq_num,
1702                                     max_queue_ext->max_rx_cq_num);
1703                 io_tx_sq_num = max_queue_ext->max_tx_sq_num;
1704                 io_tx_cq_num = max_queue_ext->max_tx_cq_num;
1705         } else {
1706                 struct ena_admin_queue_feature_desc *max_queues =
1707                         &get_feat_ctx->max_queues;
1708                 io_tx_sq_num = max_queues->max_sq_num;
1709                 io_tx_cq_num = max_queues->max_cq_num;
1710                 io_rx_num = RTE_MIN(io_tx_sq_num, io_tx_cq_num);
1711         }
1712
1713         /* In case of LLQ use the llq number in the get feature cmd */
1714         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV)
1715                 io_tx_sq_num = get_feat_ctx->llq.max_llq_num;
1716
1717         max_num_io_queues = RTE_MIN(ENA_MAX_NUM_IO_QUEUES, io_rx_num);
1718         max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_sq_num);
1719         max_num_io_queues = RTE_MIN(max_num_io_queues, io_tx_cq_num);
1720
1721         if (unlikely(max_num_io_queues == 0)) {
1722                 PMD_DRV_LOG(ERR, "Number of IO queues should not be 0\n");
1723                 return -EFAULT;
1724         }
1725
1726         return max_num_io_queues;
1727 }
1728
1729 static int eth_ena_dev_init(struct rte_eth_dev *eth_dev)
1730 {
1731         struct ena_calc_queue_size_ctx calc_queue_ctx = { 0 };
1732         struct rte_pci_device *pci_dev;
1733         struct rte_intr_handle *intr_handle;
1734         struct ena_adapter *adapter = eth_dev->data->dev_private;
1735         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1736         struct ena_com_dev_get_features_ctx get_feat_ctx;
1737         struct ena_llq_configurations llq_config;
1738         const char *queue_type_str;
1739         uint32_t max_num_io_queues;
1740         int rc;
1741         static int adapters_found;
1742         bool disable_meta_caching;
1743         bool wd_state = false;
1744
1745         eth_dev->dev_ops = &ena_dev_ops;
1746         eth_dev->rx_pkt_burst = &eth_ena_recv_pkts;
1747         eth_dev->tx_pkt_burst = &eth_ena_xmit_pkts;
1748         eth_dev->tx_pkt_prepare = &eth_ena_prep_pkts;
1749
1750         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1751                 return 0;
1752
1753         memset(adapter, 0, sizeof(struct ena_adapter));
1754         ena_dev = &adapter->ena_dev;
1755
1756         adapter->rte_eth_dev_data = eth_dev->data;
1757         adapter->rte_dev = eth_dev;
1758
1759         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1760         adapter->pdev = pci_dev;
1761
1762         PMD_INIT_LOG(INFO, "Initializing %x:%x:%x.%d",
1763                      pci_dev->addr.domain,
1764                      pci_dev->addr.bus,
1765                      pci_dev->addr.devid,
1766                      pci_dev->addr.function);
1767
1768         intr_handle = &pci_dev->intr_handle;
1769
1770         adapter->regs = pci_dev->mem_resource[ENA_REGS_BAR].addr;
1771         adapter->dev_mem_base = pci_dev->mem_resource[ENA_MEM_BAR].addr;
1772
1773         if (!adapter->regs) {
1774                 PMD_INIT_LOG(CRIT, "Failed to access registers BAR(%d)",
1775                              ENA_REGS_BAR);
1776                 return -ENXIO;
1777         }
1778
1779         ena_dev->reg_bar = adapter->regs;
1780         ena_dev->dmadev = adapter->pdev;
1781
1782         adapter->id_number = adapters_found;
1783
1784         snprintf(adapter->name, ENA_NAME_MAX_LEN, "ena_%d",
1785                  adapter->id_number);
1786
1787         rc = ena_parse_devargs(adapter, pci_dev->device.devargs);
1788         if (rc != 0) {
1789                 PMD_INIT_LOG(CRIT, "Failed to parse devargs\n");
1790                 goto err;
1791         }
1792
1793         /* device specific initialization routine */
1794         rc = ena_device_init(ena_dev, &get_feat_ctx, &wd_state);
1795         if (rc) {
1796                 PMD_INIT_LOG(CRIT, "Failed to init ENA device");
1797                 goto err;
1798         }
1799         adapter->wd_state = wd_state;
1800
1801         set_default_llq_configurations(&llq_config, &get_feat_ctx.llq,
1802                 adapter->use_large_llq_hdr);
1803         rc = ena_set_queues_placement_policy(adapter, ena_dev,
1804                                              &get_feat_ctx.llq, &llq_config);
1805         if (unlikely(rc)) {
1806                 PMD_INIT_LOG(CRIT, "Failed to set placement policy");
1807                 return rc;
1808         }
1809
1810         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_HOST)
1811                 queue_type_str = "Regular";
1812         else
1813                 queue_type_str = "Low latency";
1814         PMD_DRV_LOG(INFO, "Placement policy: %s\n", queue_type_str);
1815
1816         calc_queue_ctx.ena_dev = ena_dev;
1817         calc_queue_ctx.get_feat_ctx = &get_feat_ctx;
1818
1819         max_num_io_queues = ena_calc_max_io_queue_num(ena_dev, &get_feat_ctx);
1820         rc = ena_calc_io_queue_size(&calc_queue_ctx,
1821                 adapter->use_large_llq_hdr);
1822         if (unlikely((rc != 0) || (max_num_io_queues == 0))) {
1823                 rc = -EFAULT;
1824                 goto err_device_destroy;
1825         }
1826
1827         adapter->max_tx_ring_size = calc_queue_ctx.max_tx_queue_size;
1828         adapter->max_rx_ring_size = calc_queue_ctx.max_rx_queue_size;
1829         adapter->max_tx_sgl_size = calc_queue_ctx.max_tx_sgl_size;
1830         adapter->max_rx_sgl_size = calc_queue_ctx.max_rx_sgl_size;
1831         adapter->max_num_io_queues = max_num_io_queues;
1832
1833         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
1834                 disable_meta_caching =
1835                         !!(get_feat_ctx.llq.accel_mode.u.get.supported_flags &
1836                         BIT(ENA_ADMIN_DISABLE_META_CACHING));
1837         } else {
1838                 disable_meta_caching = false;
1839         }
1840
1841         /* prepare ring structures */
1842         ena_init_rings(adapter, disable_meta_caching);
1843
1844         ena_config_debug_area(adapter);
1845
1846         /* Set max MTU for this device */
1847         adapter->max_mtu = get_feat_ctx.dev_attr.max_mtu;
1848
1849         /* set device support for offloads */
1850         adapter->offloads.tso4_supported = (get_feat_ctx.offload.tx &
1851                 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TSO_IPV4_MASK) != 0;
1852         adapter->offloads.tx_csum_supported = (get_feat_ctx.offload.tx &
1853                 ENA_ADMIN_FEATURE_OFFLOAD_DESC_TX_L4_IPV4_CSUM_PART_MASK) != 0;
1854         adapter->offloads.rx_csum_supported =
1855                 (get_feat_ctx.offload.rx_supported &
1856                 ENA_ADMIN_FEATURE_OFFLOAD_DESC_RX_L4_IPV4_CSUM_MASK) != 0;
1857
1858         /* Copy MAC address and point DPDK to it */
1859         eth_dev->data->mac_addrs = (struct rte_ether_addr *)adapter->mac_addr;
1860         rte_ether_addr_copy((struct rte_ether_addr *)
1861                         get_feat_ctx.dev_attr.mac_addr,
1862                         (struct rte_ether_addr *)adapter->mac_addr);
1863
1864         /*
1865          * Pass the information to the rte_eth_dev_close() that it should also
1866          * release the private port resources.
1867          */
1868         eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
1869
1870         adapter->drv_stats = rte_zmalloc("adapter stats",
1871                                          sizeof(*adapter->drv_stats),
1872                                          RTE_CACHE_LINE_SIZE);
1873         if (!adapter->drv_stats) {
1874                 PMD_DRV_LOG(ERR, "failed to alloc mem for adapter stats\n");
1875                 rc = -ENOMEM;
1876                 goto err_delete_debug_area;
1877         }
1878
1879         rte_intr_callback_register(intr_handle,
1880                                    ena_interrupt_handler_rte,
1881                                    adapter);
1882         rte_intr_enable(intr_handle);
1883         ena_com_set_admin_polling_mode(ena_dev, false);
1884         ena_com_admin_aenq_enable(ena_dev);
1885
1886         if (adapters_found == 0)
1887                 rte_timer_subsystem_init();
1888         rte_timer_init(&adapter->timer_wd);
1889
1890         adapters_found++;
1891         adapter->state = ENA_ADAPTER_STATE_INIT;
1892
1893         return 0;
1894
1895 err_delete_debug_area:
1896         ena_com_delete_debug_area(ena_dev);
1897
1898 err_device_destroy:
1899         ena_com_delete_host_info(ena_dev);
1900         ena_com_admin_destroy(ena_dev);
1901
1902 err:
1903         return rc;
1904 }
1905
1906 static void ena_destroy_device(struct rte_eth_dev *eth_dev)
1907 {
1908         struct ena_adapter *adapter = eth_dev->data->dev_private;
1909         struct ena_com_dev *ena_dev = &adapter->ena_dev;
1910
1911         if (adapter->state == ENA_ADAPTER_STATE_FREE)
1912                 return;
1913
1914         ena_com_set_admin_running_state(ena_dev, false);
1915
1916         if (adapter->state != ENA_ADAPTER_STATE_CLOSED)
1917                 ena_close(eth_dev);
1918
1919         ena_com_delete_debug_area(ena_dev);
1920         ena_com_delete_host_info(ena_dev);
1921
1922         ena_com_abort_admin_commands(ena_dev);
1923         ena_com_wait_for_abort_completion(ena_dev);
1924         ena_com_admin_destroy(ena_dev);
1925         ena_com_mmio_reg_read_request_destroy(ena_dev);
1926
1927         adapter->state = ENA_ADAPTER_STATE_FREE;
1928 }
1929
1930 static int eth_ena_dev_uninit(struct rte_eth_dev *eth_dev)
1931 {
1932         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1933                 return 0;
1934
1935         ena_destroy_device(eth_dev);
1936
1937         eth_dev->dev_ops = NULL;
1938         eth_dev->rx_pkt_burst = NULL;
1939         eth_dev->tx_pkt_burst = NULL;
1940         eth_dev->tx_pkt_prepare = NULL;
1941
1942         return 0;
1943 }
1944
1945 static int ena_dev_configure(struct rte_eth_dev *dev)
1946 {
1947         struct ena_adapter *adapter = dev->data->dev_private;
1948
1949         adapter->state = ENA_ADAPTER_STATE_CONFIG;
1950
1951         adapter->tx_selected_offloads = dev->data->dev_conf.txmode.offloads;
1952         adapter->rx_selected_offloads = dev->data->dev_conf.rxmode.offloads;
1953         return 0;
1954 }
1955
1956 static void ena_init_rings(struct ena_adapter *adapter,
1957                            bool disable_meta_caching)
1958 {
1959         size_t i;
1960
1961         for (i = 0; i < adapter->max_num_io_queues; i++) {
1962                 struct ena_ring *ring = &adapter->tx_ring[i];
1963
1964                 ring->configured = 0;
1965                 ring->type = ENA_RING_TYPE_TX;
1966                 ring->adapter = adapter;
1967                 ring->id = i;
1968                 ring->tx_mem_queue_type = adapter->ena_dev.tx_mem_queue_type;
1969                 ring->tx_max_header_size = adapter->ena_dev.tx_max_header_size;
1970                 ring->sgl_size = adapter->max_tx_sgl_size;
1971                 ring->disable_meta_caching = disable_meta_caching;
1972         }
1973
1974         for (i = 0; i < adapter->max_num_io_queues; i++) {
1975                 struct ena_ring *ring = &adapter->rx_ring[i];
1976
1977                 ring->configured = 0;
1978                 ring->type = ENA_RING_TYPE_RX;
1979                 ring->adapter = adapter;
1980                 ring->id = i;
1981                 ring->sgl_size = adapter->max_rx_sgl_size;
1982         }
1983 }
1984
1985 static int ena_infos_get(struct rte_eth_dev *dev,
1986                           struct rte_eth_dev_info *dev_info)
1987 {
1988         struct ena_adapter *adapter;
1989         struct ena_com_dev *ena_dev;
1990         uint64_t rx_feat = 0, tx_feat = 0;
1991
1992         ena_assert_msg(dev->data != NULL, "Uninitialized device\n");
1993         ena_assert_msg(dev->data->dev_private != NULL, "Uninitialized device\n");
1994         adapter = dev->data->dev_private;
1995
1996         ena_dev = &adapter->ena_dev;
1997         ena_assert_msg(ena_dev != NULL, "Uninitialized device\n");
1998
1999         dev_info->speed_capa =
2000                         ETH_LINK_SPEED_1G   |
2001                         ETH_LINK_SPEED_2_5G |
2002                         ETH_LINK_SPEED_5G   |
2003                         ETH_LINK_SPEED_10G  |
2004                         ETH_LINK_SPEED_25G  |
2005                         ETH_LINK_SPEED_40G  |
2006                         ETH_LINK_SPEED_50G  |
2007                         ETH_LINK_SPEED_100G;
2008
2009         /* Set Tx & Rx features available for device */
2010         if (adapter->offloads.tso4_supported)
2011                 tx_feat |= DEV_TX_OFFLOAD_TCP_TSO;
2012
2013         if (adapter->offloads.tx_csum_supported)
2014                 tx_feat |= DEV_TX_OFFLOAD_IPV4_CKSUM |
2015                         DEV_TX_OFFLOAD_UDP_CKSUM |
2016                         DEV_TX_OFFLOAD_TCP_CKSUM;
2017
2018         if (adapter->offloads.rx_csum_supported)
2019                 rx_feat |= DEV_RX_OFFLOAD_IPV4_CKSUM |
2020                         DEV_RX_OFFLOAD_UDP_CKSUM  |
2021                         DEV_RX_OFFLOAD_TCP_CKSUM;
2022
2023         rx_feat |= DEV_RX_OFFLOAD_JUMBO_FRAME;
2024
2025         /* Inform framework about available features */
2026         dev_info->rx_offload_capa = rx_feat;
2027         dev_info->rx_queue_offload_capa = rx_feat;
2028         dev_info->tx_offload_capa = tx_feat;
2029         dev_info->tx_queue_offload_capa = tx_feat;
2030
2031         dev_info->flow_type_rss_offloads = ETH_RSS_IP | ETH_RSS_TCP |
2032                                            ETH_RSS_UDP;
2033
2034         dev_info->min_rx_bufsize = ENA_MIN_FRAME_LEN;
2035         dev_info->max_rx_pktlen  = adapter->max_mtu;
2036         dev_info->max_mac_addrs = 1;
2037
2038         dev_info->max_rx_queues = adapter->max_num_io_queues;
2039         dev_info->max_tx_queues = adapter->max_num_io_queues;
2040         dev_info->reta_size = ENA_RX_RSS_TABLE_SIZE;
2041
2042         adapter->tx_supported_offloads = tx_feat;
2043         adapter->rx_supported_offloads = rx_feat;
2044
2045         dev_info->rx_desc_lim.nb_max = adapter->max_rx_ring_size;
2046         dev_info->rx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2047         dev_info->rx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2048                                         adapter->max_rx_sgl_size);
2049         dev_info->rx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2050                                         adapter->max_rx_sgl_size);
2051
2052         dev_info->tx_desc_lim.nb_max = adapter->max_tx_ring_size;
2053         dev_info->tx_desc_lim.nb_min = ENA_MIN_RING_DESC;
2054         dev_info->tx_desc_lim.nb_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2055                                         adapter->max_tx_sgl_size);
2056         dev_info->tx_desc_lim.nb_mtu_seg_max = RTE_MIN(ENA_PKT_MAX_BUFS,
2057                                         adapter->max_tx_sgl_size);
2058
2059         return 0;
2060 }
2061
2062 static inline void ena_init_rx_mbuf(struct rte_mbuf *mbuf, uint16_t len)
2063 {
2064         mbuf->data_len = len;
2065         mbuf->data_off = RTE_PKTMBUF_HEADROOM;
2066         mbuf->refcnt = 1;
2067         mbuf->next = NULL;
2068 }
2069
2070 static struct rte_mbuf *ena_rx_mbuf(struct ena_ring *rx_ring,
2071                                     struct ena_com_rx_buf_info *ena_bufs,
2072                                     uint32_t descs,
2073                                     uint16_t *next_to_clean,
2074                                     uint8_t offset)
2075 {
2076         struct rte_mbuf *mbuf;
2077         struct rte_mbuf *mbuf_head;
2078         struct ena_rx_buffer *rx_info;
2079         int rc;
2080         uint16_t ntc, len, req_id, buf = 0;
2081
2082         if (unlikely(descs == 0))
2083                 return NULL;
2084
2085         ntc = *next_to_clean;
2086
2087         len = ena_bufs[buf].len;
2088         req_id = ena_bufs[buf].req_id;
2089         if (unlikely(validate_rx_req_id(rx_ring, req_id)))
2090                 return NULL;
2091
2092         rx_info = &rx_ring->rx_buffer_info[req_id];
2093
2094         mbuf = rx_info->mbuf;
2095         RTE_ASSERT(mbuf != NULL);
2096
2097         ena_init_rx_mbuf(mbuf, len);
2098
2099         /* Fill the mbuf head with the data specific for 1st segment. */
2100         mbuf_head = mbuf;
2101         mbuf_head->nb_segs = descs;
2102         mbuf_head->port = rx_ring->port_id;
2103         mbuf_head->pkt_len = len;
2104         mbuf_head->data_off += offset;
2105
2106         rx_info->mbuf = NULL;
2107         rx_ring->empty_rx_reqs[ntc] = req_id;
2108         ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2109
2110         while (--descs) {
2111                 ++buf;
2112                 len = ena_bufs[buf].len;
2113                 req_id = ena_bufs[buf].req_id;
2114                 if (unlikely(validate_rx_req_id(rx_ring, req_id))) {
2115                         rte_mbuf_raw_free(mbuf_head);
2116                         return NULL;
2117                 }
2118
2119                 rx_info = &rx_ring->rx_buffer_info[req_id];
2120                 RTE_ASSERT(rx_info->mbuf != NULL);
2121
2122                 if (unlikely(len == 0)) {
2123                         /*
2124                          * Some devices can pass descriptor with the length 0.
2125                          * To avoid confusion, the PMD is simply putting the
2126                          * descriptor back, as it was never used. We'll avoid
2127                          * mbuf allocation that way.
2128                          */
2129                         rc = ena_add_single_rx_desc(rx_ring->ena_com_io_sq,
2130                                 rx_info->mbuf, req_id);
2131                         if (unlikely(rc != 0)) {
2132                                 /* Free the mbuf in case of an error. */
2133                                 rte_mbuf_raw_free(rx_info->mbuf);
2134                         } else {
2135                                 /*
2136                                  * If there was no error, just exit the loop as
2137                                  * 0 length descriptor is always the last one.
2138                                  */
2139                                 break;
2140                         }
2141                 } else {
2142                         /* Create an mbuf chain. */
2143                         mbuf->next = rx_info->mbuf;
2144                         mbuf = mbuf->next;
2145
2146                         ena_init_rx_mbuf(mbuf, len);
2147                         mbuf_head->pkt_len += len;
2148                 }
2149
2150                 /*
2151                  * Mark the descriptor as depleted and perform necessary
2152                  * cleanup.
2153                  * This code will execute in two cases:
2154                  *  1. Descriptor len was greater than 0 - normal situation.
2155                  *  2. Descriptor len was 0 and we failed to add the descriptor
2156                  *     to the device. In that situation, we should try to add
2157                  *     the mbuf again in the populate routine and mark the
2158                  *     descriptor as used up by the device.
2159                  */
2160                 rx_info->mbuf = NULL;
2161                 rx_ring->empty_rx_reqs[ntc] = req_id;
2162                 ntc = ENA_IDX_NEXT_MASKED(ntc, rx_ring->size_mask);
2163         }
2164
2165         *next_to_clean = ntc;
2166
2167         return mbuf_head;
2168 }
2169
2170 static uint16_t eth_ena_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts,
2171                                   uint16_t nb_pkts)
2172 {
2173         struct ena_ring *rx_ring = (struct ena_ring *)(rx_queue);
2174         unsigned int free_queue_entries;
2175         unsigned int refill_threshold;
2176         uint16_t next_to_clean = rx_ring->next_to_clean;
2177         uint16_t descs_in_use;
2178         struct rte_mbuf *mbuf;
2179         uint16_t completed;
2180         struct ena_com_rx_ctx ena_rx_ctx;
2181         int i, rc = 0;
2182
2183         /* Check adapter state */
2184         if (unlikely(rx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2185                 PMD_DRV_LOG(ALERT,
2186                         "Trying to receive pkts while device is NOT running\n");
2187                 return 0;
2188         }
2189
2190         descs_in_use = rx_ring->ring_size -
2191                 ena_com_free_q_entries(rx_ring->ena_com_io_sq) - 1;
2192         nb_pkts = RTE_MIN(descs_in_use, nb_pkts);
2193
2194         for (completed = 0; completed < nb_pkts; completed++) {
2195                 ena_rx_ctx.max_bufs = rx_ring->sgl_size;
2196                 ena_rx_ctx.ena_bufs = rx_ring->ena_bufs;
2197                 ena_rx_ctx.descs = 0;
2198                 ena_rx_ctx.pkt_offset = 0;
2199                 /* receive packet context */
2200                 rc = ena_com_rx_pkt(rx_ring->ena_com_io_cq,
2201                                     rx_ring->ena_com_io_sq,
2202                                     &ena_rx_ctx);
2203                 if (unlikely(rc)) {
2204                         PMD_DRV_LOG(ERR, "ena_com_rx_pkt error %d\n", rc);
2205                         rx_ring->adapter->reset_reason =
2206                                 ENA_REGS_RESET_TOO_MANY_RX_DESCS;
2207                         rx_ring->adapter->trigger_reset = true;
2208                         ++rx_ring->rx_stats.bad_desc_num;
2209                         return 0;
2210                 }
2211
2212                 mbuf = ena_rx_mbuf(rx_ring,
2213                         ena_rx_ctx.ena_bufs,
2214                         ena_rx_ctx.descs,
2215                         &next_to_clean,
2216                         ena_rx_ctx.pkt_offset);
2217                 if (unlikely(mbuf == NULL)) {
2218                         for (i = 0; i < ena_rx_ctx.descs; ++i) {
2219                                 rx_ring->empty_rx_reqs[next_to_clean] =
2220                                         rx_ring->ena_bufs[i].req_id;
2221                                 next_to_clean = ENA_IDX_NEXT_MASKED(
2222                                         next_to_clean, rx_ring->size_mask);
2223                         }
2224                         break;
2225                 }
2226
2227                 /* fill mbuf attributes if any */
2228                 ena_rx_mbuf_prepare(mbuf, &ena_rx_ctx);
2229
2230                 if (unlikely(mbuf->ol_flags &
2231                                 (PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD))) {
2232                         rte_atomic64_inc(&rx_ring->adapter->drv_stats->ierrors);
2233                         ++rx_ring->rx_stats.bad_csum;
2234                 }
2235
2236                 mbuf->hash.rss = ena_rx_ctx.hash;
2237
2238                 rx_pkts[completed] = mbuf;
2239                 rx_ring->rx_stats.bytes += mbuf->pkt_len;
2240         }
2241
2242         rx_ring->rx_stats.cnt += completed;
2243         rx_ring->next_to_clean = next_to_clean;
2244
2245         free_queue_entries = ena_com_free_q_entries(rx_ring->ena_com_io_sq);
2246         refill_threshold =
2247                 RTE_MIN(rx_ring->ring_size / ENA_REFILL_THRESH_DIVIDER,
2248                 (unsigned int)ENA_REFILL_THRESH_PACKET);
2249
2250         /* Burst refill to save doorbells, memory barriers, const interval */
2251         if (free_queue_entries > refill_threshold) {
2252                 ena_com_update_dev_comp_head(rx_ring->ena_com_io_cq);
2253                 ena_populate_rx_queue(rx_ring, free_queue_entries);
2254         }
2255
2256         return completed;
2257 }
2258
2259 static uint16_t
2260 eth_ena_prep_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2261                 uint16_t nb_pkts)
2262 {
2263         int32_t ret;
2264         uint32_t i;
2265         struct rte_mbuf *m;
2266         struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2267         struct rte_ipv4_hdr *ip_hdr;
2268         uint64_t ol_flags;
2269         uint16_t frag_field;
2270
2271         for (i = 0; i != nb_pkts; i++) {
2272                 m = tx_pkts[i];
2273                 ol_flags = m->ol_flags;
2274
2275                 if (!(ol_flags & PKT_TX_IPV4))
2276                         continue;
2277
2278                 /* If there was not L2 header length specified, assume it is
2279                  * length of the ethernet header.
2280                  */
2281                 if (unlikely(m->l2_len == 0))
2282                         m->l2_len = sizeof(struct rte_ether_hdr);
2283
2284                 ip_hdr = rte_pktmbuf_mtod_offset(m, struct rte_ipv4_hdr *,
2285                                                  m->l2_len);
2286                 frag_field = rte_be_to_cpu_16(ip_hdr->fragment_offset);
2287
2288                 if ((frag_field & RTE_IPV4_HDR_DF_FLAG) != 0) {
2289                         m->packet_type |= RTE_PTYPE_L4_NONFRAG;
2290
2291                         /* If IPv4 header has DF flag enabled and TSO support is
2292                          * disabled, partial chcecksum should not be calculated.
2293                          */
2294                         if (!tx_ring->adapter->offloads.tso4_supported)
2295                                 continue;
2296                 }
2297
2298                 if ((ol_flags & ENA_TX_OFFLOAD_NOTSUP_MASK) != 0 ||
2299                                 (ol_flags & PKT_TX_L4_MASK) ==
2300                                 PKT_TX_SCTP_CKSUM) {
2301                         rte_errno = ENOTSUP;
2302                         return i;
2303                 }
2304
2305 #ifdef RTE_LIBRTE_ETHDEV_DEBUG
2306                 ret = rte_validate_tx_offload(m);
2307                 if (ret != 0) {
2308                         rte_errno = -ret;
2309                         return i;
2310                 }
2311 #endif
2312
2313                 /* In case we are supposed to TSO and have DF not set (DF=0)
2314                  * hardware must be provided with partial checksum, otherwise
2315                  * it will take care of necessary calculations.
2316                  */
2317
2318                 ret = rte_net_intel_cksum_flags_prepare(m,
2319                         ol_flags & ~PKT_TX_TCP_SEG);
2320                 if (ret != 0) {
2321                         rte_errno = -ret;
2322                         return i;
2323                 }
2324         }
2325
2326         return i;
2327 }
2328
2329 static void ena_update_hints(struct ena_adapter *adapter,
2330                              struct ena_admin_ena_hw_hints *hints)
2331 {
2332         if (hints->admin_completion_tx_timeout)
2333                 adapter->ena_dev.admin_queue.completion_timeout =
2334                         hints->admin_completion_tx_timeout * 1000;
2335
2336         if (hints->mmio_read_timeout)
2337                 /* convert to usec */
2338                 adapter->ena_dev.mmio_read.reg_read_to =
2339                         hints->mmio_read_timeout * 1000;
2340
2341         if (hints->driver_watchdog_timeout) {
2342                 if (hints->driver_watchdog_timeout == ENA_HW_HINTS_NO_TIMEOUT)
2343                         adapter->keep_alive_timeout = ENA_HW_HINTS_NO_TIMEOUT;
2344                 else
2345                         // Convert msecs to ticks
2346                         adapter->keep_alive_timeout =
2347                                 (hints->driver_watchdog_timeout *
2348                                 rte_get_timer_hz()) / 1000;
2349         }
2350 }
2351
2352 static int ena_check_and_linearize_mbuf(struct ena_ring *tx_ring,
2353                                         struct rte_mbuf *mbuf)
2354 {
2355         struct ena_com_dev *ena_dev;
2356         int num_segments, header_len, rc;
2357
2358         ena_dev = &tx_ring->adapter->ena_dev;
2359         num_segments = mbuf->nb_segs;
2360         header_len = mbuf->data_len;
2361
2362         if (likely(num_segments < tx_ring->sgl_size))
2363                 return 0;
2364
2365         if (ena_dev->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV &&
2366             (num_segments == tx_ring->sgl_size) &&
2367             (header_len < tx_ring->tx_max_header_size))
2368                 return 0;
2369
2370         ++tx_ring->tx_stats.linearize;
2371         rc = rte_pktmbuf_linearize(mbuf);
2372         if (unlikely(rc)) {
2373                 PMD_DRV_LOG(WARNING, "Mbuf linearize failed\n");
2374                 rte_atomic64_inc(&tx_ring->adapter->drv_stats->ierrors);
2375                 ++tx_ring->tx_stats.linearize_failed;
2376                 return rc;
2377         }
2378
2379         return rc;
2380 }
2381
2382 static void ena_tx_map_mbuf(struct ena_ring *tx_ring,
2383         struct ena_tx_buffer *tx_info,
2384         struct rte_mbuf *mbuf,
2385         void **push_header,
2386         uint16_t *header_len)
2387 {
2388         struct ena_com_buf *ena_buf;
2389         uint16_t delta, seg_len, push_len;
2390
2391         delta = 0;
2392         seg_len = mbuf->data_len;
2393
2394         tx_info->mbuf = mbuf;
2395         ena_buf = tx_info->bufs;
2396
2397         if (tx_ring->tx_mem_queue_type == ENA_ADMIN_PLACEMENT_POLICY_DEV) {
2398                 /*
2399                  * Tx header might be (and will be in most cases) smaller than
2400                  * tx_max_header_size. But it's not an issue to send more data
2401                  * to the device, than actually needed if the mbuf size is
2402                  * greater than tx_max_header_size.
2403                  */
2404                 push_len = RTE_MIN(mbuf->pkt_len, tx_ring->tx_max_header_size);
2405                 *header_len = push_len;
2406
2407                 if (likely(push_len <= seg_len)) {
2408                         /* If the push header is in the single segment, then
2409                          * just point it to the 1st mbuf data.
2410                          */
2411                         *push_header = rte_pktmbuf_mtod(mbuf, uint8_t *);
2412                 } else {
2413                         /* If the push header lays in the several segments, copy
2414                          * it to the intermediate buffer.
2415                          */
2416                         rte_pktmbuf_read(mbuf, 0, push_len,
2417                                 tx_ring->push_buf_intermediate_buf);
2418                         *push_header = tx_ring->push_buf_intermediate_buf;
2419                         delta = push_len - seg_len;
2420                 }
2421         } else {
2422                 *push_header = NULL;
2423                 *header_len = 0;
2424                 push_len = 0;
2425         }
2426
2427         /* Process first segment taking into consideration pushed header */
2428         if (seg_len > push_len) {
2429                 ena_buf->paddr = mbuf->buf_iova +
2430                                 mbuf->data_off +
2431                                 push_len;
2432                 ena_buf->len = seg_len - push_len;
2433                 ena_buf++;
2434                 tx_info->num_of_bufs++;
2435         }
2436
2437         while ((mbuf = mbuf->next) != NULL) {
2438                 seg_len = mbuf->data_len;
2439
2440                 /* Skip mbufs if whole data is pushed as a header */
2441                 if (unlikely(delta > seg_len)) {
2442                         delta -= seg_len;
2443                         continue;
2444                 }
2445
2446                 ena_buf->paddr = mbuf->buf_iova + mbuf->data_off + delta;
2447                 ena_buf->len = seg_len - delta;
2448                 ena_buf++;
2449                 tx_info->num_of_bufs++;
2450
2451                 delta = 0;
2452         }
2453 }
2454
2455 static int ena_xmit_mbuf(struct ena_ring *tx_ring, struct rte_mbuf *mbuf)
2456 {
2457         struct ena_tx_buffer *tx_info;
2458         struct ena_com_tx_ctx ena_tx_ctx = { { 0 } };
2459         uint16_t next_to_use;
2460         uint16_t header_len;
2461         uint16_t req_id;
2462         void *push_header;
2463         int nb_hw_desc;
2464         int rc;
2465
2466         rc = ena_check_and_linearize_mbuf(tx_ring, mbuf);
2467         if (unlikely(rc))
2468                 return rc;
2469
2470         next_to_use = tx_ring->next_to_use;
2471
2472         req_id = tx_ring->empty_tx_reqs[next_to_use];
2473         tx_info = &tx_ring->tx_buffer_info[req_id];
2474         tx_info->num_of_bufs = 0;
2475
2476         ena_tx_map_mbuf(tx_ring, tx_info, mbuf, &push_header, &header_len);
2477
2478         ena_tx_ctx.ena_bufs = tx_info->bufs;
2479         ena_tx_ctx.push_header = push_header;
2480         ena_tx_ctx.num_bufs = tx_info->num_of_bufs;
2481         ena_tx_ctx.req_id = req_id;
2482         ena_tx_ctx.header_len = header_len;
2483
2484         /* Set Tx offloads flags, if applicable */
2485         ena_tx_mbuf_prepare(mbuf, &ena_tx_ctx, tx_ring->offloads,
2486                 tx_ring->disable_meta_caching);
2487
2488         if (unlikely(ena_com_is_doorbell_needed(tx_ring->ena_com_io_sq,
2489                         &ena_tx_ctx))) {
2490                 PMD_DRV_LOG(DEBUG,
2491                         "llq tx max burst size of queue %d achieved, writing doorbell to send burst\n",
2492                         tx_ring->id);
2493                 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2494         }
2495
2496         /* prepare the packet's descriptors to dma engine */
2497         rc = ena_com_prepare_tx(tx_ring->ena_com_io_sq, &ena_tx_ctx,
2498                 &nb_hw_desc);
2499         if (unlikely(rc)) {
2500                 ++tx_ring->tx_stats.prepare_ctx_err;
2501                 return rc;
2502         }
2503
2504         tx_info->tx_descs = nb_hw_desc;
2505
2506         tx_ring->tx_stats.cnt++;
2507         tx_ring->tx_stats.bytes += mbuf->pkt_len;
2508
2509         tx_ring->next_to_use = ENA_IDX_NEXT_MASKED(next_to_use,
2510                 tx_ring->size_mask);
2511
2512         return 0;
2513 }
2514
2515 static void ena_tx_cleanup(struct ena_ring *tx_ring)
2516 {
2517         unsigned int cleanup_budget;
2518         unsigned int total_tx_descs = 0;
2519         uint16_t next_to_clean = tx_ring->next_to_clean;
2520
2521         cleanup_budget = RTE_MIN(tx_ring->ring_size / ENA_REFILL_THRESH_DIVIDER,
2522                 (unsigned int)ENA_REFILL_THRESH_PACKET);
2523
2524         while (likely(total_tx_descs < cleanup_budget)) {
2525                 struct rte_mbuf *mbuf;
2526                 struct ena_tx_buffer *tx_info;
2527                 uint16_t req_id;
2528
2529                 if (ena_com_tx_comp_req_id_get(tx_ring->ena_com_io_cq, &req_id) != 0)
2530                         break;
2531
2532                 if (unlikely(validate_tx_req_id(tx_ring, req_id) != 0))
2533                         break;
2534
2535                 /* Get Tx info & store how many descs were processed  */
2536                 tx_info = &tx_ring->tx_buffer_info[req_id];
2537
2538                 mbuf = tx_info->mbuf;
2539                 rte_pktmbuf_free(mbuf);
2540
2541                 tx_info->mbuf = NULL;
2542                 tx_ring->empty_tx_reqs[next_to_clean] = req_id;
2543
2544                 total_tx_descs += tx_info->tx_descs;
2545
2546                 /* Put back descriptor to the ring for reuse */
2547                 next_to_clean = ENA_IDX_NEXT_MASKED(next_to_clean,
2548                         tx_ring->size_mask);
2549         }
2550
2551         if (likely(total_tx_descs > 0)) {
2552                 /* acknowledge completion of sent packets */
2553                 tx_ring->next_to_clean = next_to_clean;
2554                 ena_com_comp_ack(tx_ring->ena_com_io_sq, total_tx_descs);
2555                 ena_com_update_dev_comp_head(tx_ring->ena_com_io_cq);
2556         }
2557 }
2558
2559 static uint16_t eth_ena_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
2560                                   uint16_t nb_pkts)
2561 {
2562         struct ena_ring *tx_ring = (struct ena_ring *)(tx_queue);
2563         uint16_t sent_idx = 0;
2564
2565         /* Check adapter state */
2566         if (unlikely(tx_ring->adapter->state != ENA_ADAPTER_STATE_RUNNING)) {
2567                 PMD_DRV_LOG(ALERT,
2568                         "Trying to xmit pkts while device is NOT running\n");
2569                 return 0;
2570         }
2571
2572         nb_pkts = RTE_MIN(ena_com_free_q_entries(tx_ring->ena_com_io_sq),
2573                 nb_pkts);
2574
2575         for (sent_idx = 0; sent_idx < nb_pkts; sent_idx++) {
2576                 if (ena_xmit_mbuf(tx_ring, tx_pkts[sent_idx]))
2577                         break;
2578
2579                 rte_prefetch0(tx_pkts[ENA_IDX_ADD_MASKED(sent_idx, 4,
2580                         tx_ring->size_mask)]);
2581         }
2582
2583         tx_ring->tx_stats.available_desc =
2584                 ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2585
2586         /* If there are ready packets to be xmitted... */
2587         if (sent_idx > 0) {
2588                 /* ...let HW do its best :-) */
2589                 ena_com_write_sq_doorbell(tx_ring->ena_com_io_sq);
2590                 tx_ring->tx_stats.doorbells++;
2591         }
2592
2593         ena_tx_cleanup(tx_ring);
2594
2595         tx_ring->tx_stats.available_desc =
2596                 ena_com_free_q_entries(tx_ring->ena_com_io_sq);
2597         tx_ring->tx_stats.tx_poll++;
2598
2599         return sent_idx;
2600 }
2601
2602 /**
2603  * DPDK callback to retrieve names of extended device statistics
2604  *
2605  * @param dev
2606  *   Pointer to Ethernet device structure.
2607  * @param[out] xstats_names
2608  *   Buffer to insert names into.
2609  * @param n
2610  *   Number of names.
2611  *
2612  * @return
2613  *   Number of xstats names.
2614  */
2615 static int ena_xstats_get_names(struct rte_eth_dev *dev,
2616                                 struct rte_eth_xstat_name *xstats_names,
2617                                 unsigned int n)
2618 {
2619         unsigned int xstats_count = ena_xstats_calc_num(dev);
2620         unsigned int stat, i, count = 0;
2621
2622         if (n < xstats_count || !xstats_names)
2623                 return xstats_count;
2624
2625         for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++)
2626                 strcpy(xstats_names[count].name,
2627                         ena_stats_global_strings[stat].name);
2628
2629         for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++)
2630                 for (i = 0; i < dev->data->nb_rx_queues; i++, count++)
2631                         snprintf(xstats_names[count].name,
2632                                 sizeof(xstats_names[count].name),
2633                                 "rx_q%d_%s", i,
2634                                 ena_stats_rx_strings[stat].name);
2635
2636         for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++)
2637                 for (i = 0; i < dev->data->nb_tx_queues; i++, count++)
2638                         snprintf(xstats_names[count].name,
2639                                 sizeof(xstats_names[count].name),
2640                                 "tx_q%d_%s", i,
2641                                 ena_stats_tx_strings[stat].name);
2642
2643         return xstats_count;
2644 }
2645
2646 /**
2647  * DPDK callback to get extended device statistics.
2648  *
2649  * @param dev
2650  *   Pointer to Ethernet device structure.
2651  * @param[out] stats
2652  *   Stats table output buffer.
2653  * @param n
2654  *   The size of the stats table.
2655  *
2656  * @return
2657  *   Number of xstats on success, negative on failure.
2658  */
2659 static int ena_xstats_get(struct rte_eth_dev *dev,
2660                           struct rte_eth_xstat *xstats,
2661                           unsigned int n)
2662 {
2663         struct ena_adapter *adapter = dev->data->dev_private;
2664         unsigned int xstats_count = ena_xstats_calc_num(dev);
2665         unsigned int stat, i, count = 0;
2666         int stat_offset;
2667         void *stats_begin;
2668
2669         if (n < xstats_count)
2670                 return xstats_count;
2671
2672         if (!xstats)
2673                 return 0;
2674
2675         for (stat = 0; stat < ENA_STATS_ARRAY_GLOBAL; stat++, count++) {
2676                 stat_offset = ena_stats_rx_strings[stat].stat_offset;
2677                 stats_begin = &adapter->dev_stats;
2678
2679                 xstats[count].id = count;
2680                 xstats[count].value = *((uint64_t *)
2681                         ((char *)stats_begin + stat_offset));
2682         }
2683
2684         for (stat = 0; stat < ENA_STATS_ARRAY_RX; stat++) {
2685                 for (i = 0; i < dev->data->nb_rx_queues; i++, count++) {
2686                         stat_offset = ena_stats_rx_strings[stat].stat_offset;
2687                         stats_begin = &adapter->rx_ring[i].rx_stats;
2688
2689                         xstats[count].id = count;
2690                         xstats[count].value = *((uint64_t *)
2691                                 ((char *)stats_begin + stat_offset));
2692                 }
2693         }
2694
2695         for (stat = 0; stat < ENA_STATS_ARRAY_TX; stat++) {
2696                 for (i = 0; i < dev->data->nb_tx_queues; i++, count++) {
2697                         stat_offset = ena_stats_tx_strings[stat].stat_offset;
2698                         stats_begin = &adapter->tx_ring[i].rx_stats;
2699
2700                         xstats[count].id = count;
2701                         xstats[count].value = *((uint64_t *)
2702                                 ((char *)stats_begin + stat_offset));
2703                 }
2704         }
2705
2706         return count;
2707 }
2708
2709 static int ena_xstats_get_by_id(struct rte_eth_dev *dev,
2710                                 const uint64_t *ids,
2711                                 uint64_t *values,
2712                                 unsigned int n)
2713 {
2714         struct ena_adapter *adapter = dev->data->dev_private;
2715         uint64_t id;
2716         uint64_t rx_entries, tx_entries;
2717         unsigned int i;
2718         int qid;
2719         int valid = 0;
2720         for (i = 0; i < n; ++i) {
2721                 id = ids[i];
2722                 /* Check if id belongs to global statistics */
2723                 if (id < ENA_STATS_ARRAY_GLOBAL) {
2724                         values[i] = *((uint64_t *)&adapter->dev_stats + id);
2725                         ++valid;
2726                         continue;
2727                 }
2728
2729                 /* Check if id belongs to rx queue statistics */
2730                 id -= ENA_STATS_ARRAY_GLOBAL;
2731                 rx_entries = ENA_STATS_ARRAY_RX * dev->data->nb_rx_queues;
2732                 if (id < rx_entries) {
2733                         qid = id % dev->data->nb_rx_queues;
2734                         id /= dev->data->nb_rx_queues;
2735                         values[i] = *((uint64_t *)
2736                                 &adapter->rx_ring[qid].rx_stats + id);
2737                         ++valid;
2738                         continue;
2739                 }
2740                                 /* Check if id belongs to rx queue statistics */
2741                 id -= rx_entries;
2742                 tx_entries = ENA_STATS_ARRAY_TX * dev->data->nb_tx_queues;
2743                 if (id < tx_entries) {
2744                         qid = id % dev->data->nb_tx_queues;
2745                         id /= dev->data->nb_tx_queues;
2746                         values[i] = *((uint64_t *)
2747                                 &adapter->tx_ring[qid].tx_stats + id);
2748                         ++valid;
2749                         continue;
2750                 }
2751         }
2752
2753         return valid;
2754 }
2755
2756 static int ena_process_bool_devarg(const char *key,
2757                                    const char *value,
2758                                    void *opaque)
2759 {
2760         struct ena_adapter *adapter = opaque;
2761         bool bool_value;
2762
2763         /* Parse the value. */
2764         if (strcmp(value, "1") == 0) {
2765                 bool_value = true;
2766         } else if (strcmp(value, "0") == 0) {
2767                 bool_value = false;
2768         } else {
2769                 PMD_INIT_LOG(ERR,
2770                         "Invalid value: '%s' for key '%s'. Accepted: '0' or '1'\n",
2771                         value, key);
2772                 return -EINVAL;
2773         }
2774
2775         /* Now, assign it to the proper adapter field. */
2776         if (strcmp(key, ENA_DEVARG_LARGE_LLQ_HDR))
2777                 adapter->use_large_llq_hdr = bool_value;
2778
2779         return 0;
2780 }
2781
2782 static int ena_parse_devargs(struct ena_adapter *adapter,
2783                              struct rte_devargs *devargs)
2784 {
2785         static const char * const allowed_args[] = {
2786                 ENA_DEVARG_LARGE_LLQ_HDR,
2787         };
2788         struct rte_kvargs *kvlist;
2789         int rc;
2790
2791         if (devargs == NULL)
2792                 return 0;
2793
2794         kvlist = rte_kvargs_parse(devargs->args, allowed_args);
2795         if (kvlist == NULL) {
2796                 PMD_INIT_LOG(ERR, "Invalid device arguments: %s\n",
2797                         devargs->args);
2798                 return -EINVAL;
2799         }
2800
2801         rc = rte_kvargs_process(kvlist, ENA_DEVARG_LARGE_LLQ_HDR,
2802                 ena_process_bool_devarg, adapter);
2803
2804         rte_kvargs_free(kvlist);
2805
2806         return rc;
2807 }
2808
2809 /*********************************************************************
2810  *  PMD configuration
2811  *********************************************************************/
2812 static int eth_ena_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2813         struct rte_pci_device *pci_dev)
2814 {
2815         return rte_eth_dev_pci_generic_probe(pci_dev,
2816                 sizeof(struct ena_adapter), eth_ena_dev_init);
2817 }
2818
2819 static int eth_ena_pci_remove(struct rte_pci_device *pci_dev)
2820 {
2821         return rte_eth_dev_pci_generic_remove(pci_dev, eth_ena_dev_uninit);
2822 }
2823
2824 static struct rte_pci_driver rte_ena_pmd = {
2825         .id_table = pci_id_ena_map,
2826         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC |
2827                      RTE_PCI_DRV_WC_ACTIVATE,
2828         .probe = eth_ena_pci_probe,
2829         .remove = eth_ena_pci_remove,
2830 };
2831
2832 RTE_PMD_REGISTER_PCI(net_ena, rte_ena_pmd);
2833 RTE_PMD_REGISTER_PCI_TABLE(net_ena, pci_id_ena_map);
2834 RTE_PMD_REGISTER_KMOD_DEP(net_ena, "* igb_uio | uio_pci_generic | vfio-pci");
2835 RTE_PMD_REGISTER_PARAM_STRING(net_ena, ENA_DEVARG_LARGE_LLQ_HDR "=<0|1>");
2836 RTE_LOG_REGISTER(ena_logtype_init, pmd.net.ena.init, NOTICE);
2837 RTE_LOG_REGISTER(ena_logtype_driver, pmd.net.ena.driver, NOTICE);
2838 #ifdef RTE_LIBRTE_ENA_DEBUG_RX
2839 RTE_LOG_REGISTER(ena_logtype_rx, pmd.net.ena.rx, NOTICE);
2840 #endif
2841 #ifdef RTE_LIBRTE_ENA_DEBUG_TX
2842 RTE_LOG_REGISTER(ena_logtype_tx, pmd.net.ena.tx, NOTICE);
2843 #endif
2844 #ifdef RTE_LIBRTE_ENA_DEBUG_TX_FREE
2845 RTE_LOG_REGISTER(ena_logtype_tx_free, pmd.net.ena.tx_free, NOTICE);
2846 #endif
2847 #ifdef RTE_LIBRTE_ENA_COM_DEBUG
2848 RTE_LOG_REGISTER(ena_logtype_com, pmd.net.ena.com, NOTICE);
2849 #endif
2850
2851 /******************************************************************************
2852  ******************************** AENQ Handlers *******************************
2853  *****************************************************************************/
2854 static void ena_update_on_link_change(void *adapter_data,
2855                                       struct ena_admin_aenq_entry *aenq_e)
2856 {
2857         struct rte_eth_dev *eth_dev;
2858         struct ena_adapter *adapter;
2859         struct ena_admin_aenq_link_change_desc *aenq_link_desc;
2860         uint32_t status;
2861
2862         adapter = adapter_data;
2863         aenq_link_desc = (struct ena_admin_aenq_link_change_desc *)aenq_e;
2864         eth_dev = adapter->rte_dev;
2865
2866         status = get_ena_admin_aenq_link_change_desc_link_status(aenq_link_desc);
2867         adapter->link_status = status;
2868
2869         ena_link_update(eth_dev, 0);
2870         _rte_eth_dev_callback_process(eth_dev, RTE_ETH_EVENT_INTR_LSC, NULL);
2871 }
2872
2873 static void ena_notification(void *data,
2874                              struct ena_admin_aenq_entry *aenq_e)
2875 {
2876         struct ena_adapter *adapter = data;
2877         struct ena_admin_ena_hw_hints *hints;
2878
2879         if (aenq_e->aenq_common_desc.group != ENA_ADMIN_NOTIFICATION)
2880                 PMD_DRV_LOG(WARNING, "Invalid group(%x) expected %x\n",
2881                         aenq_e->aenq_common_desc.group,
2882                         ENA_ADMIN_NOTIFICATION);
2883
2884         switch (aenq_e->aenq_common_desc.syndrom) {
2885         case ENA_ADMIN_UPDATE_HINTS:
2886                 hints = (struct ena_admin_ena_hw_hints *)
2887                         (&aenq_e->inline_data_w4);
2888                 ena_update_hints(adapter, hints);
2889                 break;
2890         default:
2891                 PMD_DRV_LOG(ERR, "Invalid aenq notification link state %d\n",
2892                         aenq_e->aenq_common_desc.syndrom);
2893         }
2894 }
2895
2896 static void ena_keep_alive(void *adapter_data,
2897                            __rte_unused struct ena_admin_aenq_entry *aenq_e)
2898 {
2899         struct ena_adapter *adapter = adapter_data;
2900         struct ena_admin_aenq_keep_alive_desc *desc;
2901         uint64_t rx_drops;
2902         uint64_t tx_drops;
2903
2904         adapter->timestamp_wd = rte_get_timer_cycles();
2905
2906         desc = (struct ena_admin_aenq_keep_alive_desc *)aenq_e;
2907         rx_drops = ((uint64_t)desc->rx_drops_high << 32) | desc->rx_drops_low;
2908         tx_drops = ((uint64_t)desc->tx_drops_high << 32) | desc->tx_drops_low;
2909
2910         adapter->drv_stats->rx_drops = rx_drops;
2911         adapter->dev_stats.tx_drops = tx_drops;
2912 }
2913
2914 /**
2915  * This handler will called for unknown event group or unimplemented handlers
2916  **/
2917 static void unimplemented_aenq_handler(__rte_unused void *data,
2918                                        __rte_unused struct ena_admin_aenq_entry *aenq_e)
2919 {
2920         PMD_DRV_LOG(ERR, "Unknown event was received or event with "
2921                           "unimplemented handler\n");
2922 }
2923
2924 static struct ena_aenq_handlers aenq_handlers = {
2925         .handlers = {
2926                 [ENA_ADMIN_LINK_CHANGE] = ena_update_on_link_change,
2927                 [ENA_ADMIN_NOTIFICATION] = ena_notification,
2928                 [ENA_ADMIN_KEEP_ALIVE] = ena_keep_alive
2929         },
2930         .unimplemented_handler = unimplemented_aenq_handler
2931 };