net/fm10k: convert to new Rx offloads API
[dpdk.git] / drivers / net / fm10k / fm10k_rxtx_vec.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2013-2015 Intel Corporation
3  */
4
5 #include <inttypes.h>
6
7 #include <rte_ethdev_driver.h>
8 #include <rte_common.h>
9 #include "fm10k.h"
10 #include "base/fm10k_type.h"
11
12 #include <tmmintrin.h>
13
14 #ifndef __INTEL_COMPILER
15 #pragma GCC diagnostic ignored "-Wcast-qual"
16 #endif
17
18 static void
19 fm10k_reset_tx_queue(struct fm10k_tx_queue *txq);
20
21 /* Handling the offload flags (olflags) field takes computation
22  * time when receiving packets. Therefore we provide a flag to disable
23  * the processing of the olflags field when they are not needed. This
24  * gives improved performance, at the cost of losing the offload info
25  * in the received packet
26  */
27 #ifdef RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE
28
29 /* Vlan present flag shift */
30 #define VP_SHIFT     (2)
31 /* L3 type shift */
32 #define L3TYPE_SHIFT     (4)
33 /* L4 type shift */
34 #define L4TYPE_SHIFT     (7)
35 /* HBO flag shift */
36 #define HBOFLAG_SHIFT     (10)
37 /* RXE flag shift */
38 #define RXEFLAG_SHIFT     (13)
39 /* IPE/L4E flag shift */
40 #define L3L4EFLAG_SHIFT     (14)
41 /* shift PKT_RX_L4_CKSUM_GOOD into one byte by 1 bit */
42 #define CKSUM_SHIFT     (1)
43
44 static inline void
45 fm10k_desc_to_olflags_v(__m128i descs[4], struct rte_mbuf **rx_pkts)
46 {
47         __m128i ptype0, ptype1, vtag0, vtag1, eflag0, eflag1, cksumflag;
48         union {
49                 uint16_t e[4];
50                 uint64_t dword;
51         } vol;
52
53         const __m128i pkttype_msk = _mm_set_epi16(
54                         0x0000, 0x0000, 0x0000, 0x0000,
55                         PKT_RX_VLAN, PKT_RX_VLAN,
56                         PKT_RX_VLAN, PKT_RX_VLAN);
57
58         /* mask everything except rss type */
59         const __m128i rsstype_msk = _mm_set_epi16(
60                         0x0000, 0x0000, 0x0000, 0x0000,
61                         0x000F, 0x000F, 0x000F, 0x000F);
62
63         /* mask for HBO and RXE flag flags */
64         const __m128i rxe_msk = _mm_set_epi16(
65                         0x0000, 0x0000, 0x0000, 0x0000,
66                         0x0001, 0x0001, 0x0001, 0x0001);
67
68         /* mask the lower byte of ol_flags */
69         const __m128i ol_flags_msk = _mm_set_epi16(
70                         0x0000, 0x0000, 0x0000, 0x0000,
71                         0x00FF, 0x00FF, 0x00FF, 0x00FF);
72
73         const __m128i l3l4cksum_flag = _mm_set_epi8(0, 0, 0, 0,
74                         0, 0, 0, 0,
75                         0, 0, 0, 0,
76                         (PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD) >> CKSUM_SHIFT,
77                         (PKT_RX_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_GOOD) >> CKSUM_SHIFT,
78                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_BAD) >> CKSUM_SHIFT,
79                         (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD) >> CKSUM_SHIFT);
80
81         const __m128i rxe_flag = _mm_set_epi8(0, 0, 0, 0,
82                         0, 0, 0, 0,
83                         0, 0, 0, 0,
84                         0, 0, 0, 0);
85
86         /* map rss type to rss hash flag */
87         const __m128i rss_flags = _mm_set_epi8(0, 0, 0, 0,
88                         0, 0, 0, PKT_RX_RSS_HASH,
89                         PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH, 0,
90                         PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, 0);
91
92         /* Calculate RSS_hash and Vlan fields */
93         ptype0 = _mm_unpacklo_epi16(descs[0], descs[1]);
94         ptype1 = _mm_unpacklo_epi16(descs[2], descs[3]);
95         vtag0 = _mm_unpackhi_epi16(descs[0], descs[1]);
96         vtag1 = _mm_unpackhi_epi16(descs[2], descs[3]);
97
98         ptype0 = _mm_unpacklo_epi32(ptype0, ptype1);
99         ptype0 = _mm_and_si128(ptype0, rsstype_msk);
100         ptype0 = _mm_shuffle_epi8(rss_flags, ptype0);
101
102         vtag1 = _mm_unpacklo_epi32(vtag0, vtag1);
103         eflag0 = vtag1;
104         cksumflag = vtag1;
105         vtag1 = _mm_srli_epi16(vtag1, VP_SHIFT);
106         vtag1 = _mm_and_si128(vtag1, pkttype_msk);
107
108         vtag1 = _mm_or_si128(ptype0, vtag1);
109
110         /* Process err flags, simply set RECIP_ERR bit if HBO/IXE is set */
111         eflag1 = _mm_srli_epi16(eflag0, RXEFLAG_SHIFT);
112         eflag0 = _mm_srli_epi16(eflag0, HBOFLAG_SHIFT);
113         eflag0 = _mm_or_si128(eflag0, eflag1);
114         eflag0 = _mm_and_si128(eflag0, rxe_msk);
115         eflag0 = _mm_shuffle_epi8(rxe_flag, eflag0);
116
117         vtag1 = _mm_or_si128(eflag0, vtag1);
118
119         /* Process L4/L3 checksum error flags */
120         cksumflag = _mm_srli_epi16(cksumflag, L3L4EFLAG_SHIFT);
121         cksumflag = _mm_shuffle_epi8(l3l4cksum_flag, cksumflag);
122
123         /* clean the higher byte and shift back the flag bits */
124         cksumflag = _mm_and_si128(cksumflag, ol_flags_msk);
125         cksumflag = _mm_slli_epi16(cksumflag, CKSUM_SHIFT);
126         vtag1 = _mm_or_si128(cksumflag, vtag1);
127
128         vol.dword = _mm_cvtsi128_si64(vtag1);
129
130         rx_pkts[0]->ol_flags = vol.e[0];
131         rx_pkts[1]->ol_flags = vol.e[1];
132         rx_pkts[2]->ol_flags = vol.e[2];
133         rx_pkts[3]->ol_flags = vol.e[3];
134 }
135
136 /* @note: When this function is changed, make corresponding change to
137  * fm10k_dev_supported_ptypes_get().
138  */
139 static inline void
140 fm10k_desc_to_pktype_v(__m128i descs[4], struct rte_mbuf **rx_pkts)
141 {
142         __m128i l3l4type0, l3l4type1, l3type, l4type;
143         union {
144                 uint16_t e[4];
145                 uint64_t dword;
146         } vol;
147
148         /* L3 pkt type mask  Bit4 to Bit6 */
149         const __m128i l3type_msk = _mm_set_epi16(
150                         0x0000, 0x0000, 0x0000, 0x0000,
151                         0x0070, 0x0070, 0x0070, 0x0070);
152
153         /* L4 pkt type mask  Bit7 to Bit9 */
154         const __m128i l4type_msk = _mm_set_epi16(
155                         0x0000, 0x0000, 0x0000, 0x0000,
156                         0x0380, 0x0380, 0x0380, 0x0380);
157
158         /* convert RRC l3 type to mbuf format */
159         const __m128i l3type_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
160                         0, 0, 0, RTE_PTYPE_L3_IPV6_EXT,
161                         RTE_PTYPE_L3_IPV6, RTE_PTYPE_L3_IPV4_EXT,
162                         RTE_PTYPE_L3_IPV4, 0);
163
164         /* Convert RRC l4 type to mbuf format l4type_flags shift-left 8 bits
165          * to fill into8 bits length.
166          */
167         const __m128i l4type_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
168                         RTE_PTYPE_TUNNEL_GENEVE >> 8,
169                         RTE_PTYPE_TUNNEL_NVGRE >> 8,
170                         RTE_PTYPE_TUNNEL_VXLAN >> 8,
171                         RTE_PTYPE_TUNNEL_GRE >> 8,
172                         RTE_PTYPE_L4_UDP >> 8,
173                         RTE_PTYPE_L4_TCP >> 8,
174                         0);
175
176         l3l4type0 = _mm_unpacklo_epi16(descs[0], descs[1]);
177         l3l4type1 = _mm_unpacklo_epi16(descs[2], descs[3]);
178         l3l4type0 = _mm_unpacklo_epi32(l3l4type0, l3l4type1);
179
180         l3type = _mm_and_si128(l3l4type0, l3type_msk);
181         l4type = _mm_and_si128(l3l4type0, l4type_msk);
182
183         l3type = _mm_srli_epi16(l3type, L3TYPE_SHIFT);
184         l4type = _mm_srli_epi16(l4type, L4TYPE_SHIFT);
185
186         l3type = _mm_shuffle_epi8(l3type_flags, l3type);
187         /* l4type_flags shift-left for 8 bits, need shift-right back */
188         l4type = _mm_shuffle_epi8(l4type_flags, l4type);
189
190         l4type = _mm_slli_epi16(l4type, 8);
191         l3l4type0 = _mm_or_si128(l3type, l4type);
192         vol.dword = _mm_cvtsi128_si64(l3l4type0);
193
194         rx_pkts[0]->packet_type = vol.e[0];
195         rx_pkts[1]->packet_type = vol.e[1];
196         rx_pkts[2]->packet_type = vol.e[2];
197         rx_pkts[3]->packet_type = vol.e[3];
198 }
199 #else
200 #define fm10k_desc_to_olflags_v(desc, rx_pkts) do {} while (0)
201 #define fm10k_desc_to_pktype_v(desc, rx_pkts) do {} while (0)
202 #endif
203
204 int __attribute__((cold))
205 fm10k_rx_vec_condition_check(struct rte_eth_dev *dev)
206 {
207 #ifndef RTE_LIBRTE_IEEE1588
208         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
209         struct rte_fdir_conf *fconf = &dev->data->dev_conf.fdir_conf;
210
211 #ifndef RTE_FM10K_RX_OLFLAGS_ENABLE
212         /* whithout rx ol_flags, no VP flag report */
213         if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
214                 return -1;
215 #endif
216
217         /* no fdir support */
218         if (fconf->mode != RTE_FDIR_MODE_NONE)
219                 return -1;
220
221         /* no header split support */
222         if (rxmode->offloads & DEV_RX_OFFLOAD_HEADER_SPLIT)
223                 return -1;
224
225         return 0;
226 #else
227         RTE_SET_USED(dev);
228         return -1;
229 #endif
230 }
231
232 int __attribute__((cold))
233 fm10k_rxq_vec_setup(struct fm10k_rx_queue *rxq)
234 {
235         uintptr_t p;
236         struct rte_mbuf mb_def = { .buf_addr = 0 }; /* zeroed mbuf */
237
238         mb_def.nb_segs = 1;
239         /* data_off will be ajusted after new mbuf allocated for 512-byte
240          * alignment.
241          */
242         mb_def.data_off = RTE_PKTMBUF_HEADROOM;
243         mb_def.port = rxq->port_id;
244         rte_mbuf_refcnt_set(&mb_def, 1);
245
246         /* prevent compiler reordering: rearm_data covers previous fields */
247         rte_compiler_barrier();
248         p = (uintptr_t)&mb_def.rearm_data;
249         rxq->mbuf_initializer = *(uint64_t *)p;
250         return 0;
251 }
252
253 static inline void
254 fm10k_rxq_rearm(struct fm10k_rx_queue *rxq)
255 {
256         int i;
257         uint16_t rx_id;
258         volatile union fm10k_rx_desc *rxdp;
259         struct rte_mbuf **mb_alloc = &rxq->sw_ring[rxq->rxrearm_start];
260         struct rte_mbuf *mb0, *mb1;
261         __m128i head_off = _mm_set_epi64x(
262                         RTE_PKTMBUF_HEADROOM + FM10K_RX_DATABUF_ALIGN - 1,
263                         RTE_PKTMBUF_HEADROOM + FM10K_RX_DATABUF_ALIGN - 1);
264         __m128i dma_addr0, dma_addr1;
265         /* Rx buffer need to be aligned with 512 byte */
266         const __m128i hba_msk = _mm_set_epi64x(0,
267                                 UINT64_MAX - FM10K_RX_DATABUF_ALIGN + 1);
268
269         rxdp = rxq->hw_ring + rxq->rxrearm_start;
270
271         /* Pull 'n' more MBUFs into the software ring */
272         if (rte_mempool_get_bulk(rxq->mp,
273                                  (void *)mb_alloc,
274                                  RTE_FM10K_RXQ_REARM_THRESH) < 0) {
275                 dma_addr0 = _mm_setzero_si128();
276                 /* Clean up all the HW/SW ring content */
277                 for (i = 0; i < RTE_FM10K_RXQ_REARM_THRESH; i++) {
278                         mb_alloc[i] = &rxq->fake_mbuf;
279                         _mm_store_si128((__m128i *)&rxdp[i].q,
280                                                 dma_addr0);
281                 }
282
283                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
284                         RTE_FM10K_RXQ_REARM_THRESH;
285                 return;
286         }
287
288         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
289         for (i = 0; i < RTE_FM10K_RXQ_REARM_THRESH; i += 2, mb_alloc += 2) {
290                 __m128i vaddr0, vaddr1;
291                 uintptr_t p0, p1;
292
293                 mb0 = mb_alloc[0];
294                 mb1 = mb_alloc[1];
295
296                 /* Flush mbuf with pkt template.
297                  * Data to be rearmed is 6 bytes long.
298                  */
299                 p0 = (uintptr_t)&mb0->rearm_data;
300                 *(uint64_t *)p0 = rxq->mbuf_initializer;
301                 p1 = (uintptr_t)&mb1->rearm_data;
302                 *(uint64_t *)p1 = rxq->mbuf_initializer;
303
304                 /* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
305                 RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
306                                 offsetof(struct rte_mbuf, buf_addr) + 8);
307                 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
308                 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
309
310                 /* convert pa to dma_addr hdr/data */
311                 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
312                 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
313
314                 /* add headroom to pa values */
315                 dma_addr0 = _mm_add_epi64(dma_addr0, head_off);
316                 dma_addr1 = _mm_add_epi64(dma_addr1, head_off);
317
318                 /* Do 512 byte alignment to satisfy HW requirement, in the
319                  * meanwhile, set Header Buffer Address to zero.
320                  */
321                 dma_addr0 = _mm_and_si128(dma_addr0, hba_msk);
322                 dma_addr1 = _mm_and_si128(dma_addr1, hba_msk);
323
324                 /* flush desc with pa dma_addr */
325                 _mm_store_si128((__m128i *)&rxdp++->q, dma_addr0);
326                 _mm_store_si128((__m128i *)&rxdp++->q, dma_addr1);
327
328                 /* enforce 512B alignment on default Rx virtual addresses */
329                 mb0->data_off = (uint16_t)(RTE_PTR_ALIGN((char *)mb0->buf_addr
330                                 + RTE_PKTMBUF_HEADROOM, FM10K_RX_DATABUF_ALIGN)
331                                 - (char *)mb0->buf_addr);
332                 mb1->data_off = (uint16_t)(RTE_PTR_ALIGN((char *)mb1->buf_addr
333                                 + RTE_PKTMBUF_HEADROOM, FM10K_RX_DATABUF_ALIGN)
334                                 - (char *)mb1->buf_addr);
335         }
336
337         rxq->rxrearm_start += RTE_FM10K_RXQ_REARM_THRESH;
338         if (rxq->rxrearm_start >= rxq->nb_desc)
339                 rxq->rxrearm_start = 0;
340
341         rxq->rxrearm_nb -= RTE_FM10K_RXQ_REARM_THRESH;
342
343         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
344                         (rxq->nb_desc - 1) : (rxq->rxrearm_start - 1));
345
346         /* Update the tail pointer on the NIC */
347         FM10K_PCI_REG_WRITE(rxq->tail_ptr, rx_id);
348 }
349
350 void __attribute__((cold))
351 fm10k_rx_queue_release_mbufs_vec(struct fm10k_rx_queue *rxq)
352 {
353         const unsigned mask = rxq->nb_desc - 1;
354         unsigned i;
355
356         if (rxq->sw_ring == NULL || rxq->rxrearm_nb >= rxq->nb_desc)
357                 return;
358
359         /* free all mbufs that are valid in the ring */
360         for (i = rxq->next_dd; i != rxq->rxrearm_start; i = (i + 1) & mask)
361                 rte_pktmbuf_free_seg(rxq->sw_ring[i]);
362         rxq->rxrearm_nb = rxq->nb_desc;
363
364         /* set all entries to NULL */
365         memset(rxq->sw_ring, 0, sizeof(rxq->sw_ring[0]) * rxq->nb_desc);
366 }
367
368 static inline uint16_t
369 fm10k_recv_raw_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
370                 uint16_t nb_pkts, uint8_t *split_packet)
371 {
372         volatile union fm10k_rx_desc *rxdp;
373         struct rte_mbuf **mbufp;
374         uint16_t nb_pkts_recd;
375         int pos;
376         struct fm10k_rx_queue *rxq = rx_queue;
377         uint64_t var;
378         __m128i shuf_msk;
379         __m128i dd_check, eop_check;
380         uint16_t next_dd;
381
382         next_dd = rxq->next_dd;
383
384         /* Just the act of getting into the function from the application is
385          * going to cost about 7 cycles
386          */
387         rxdp = rxq->hw_ring + next_dd;
388
389         rte_prefetch0(rxdp);
390
391         /* See if we need to rearm the RX queue - gives the prefetch a bit
392          * of time to act
393          */
394         if (rxq->rxrearm_nb > RTE_FM10K_RXQ_REARM_THRESH)
395                 fm10k_rxq_rearm(rxq);
396
397         /* Before we start moving massive data around, check to see if
398          * there is actually a packet available
399          */
400         if (!(rxdp->d.staterr & FM10K_RXD_STATUS_DD))
401                 return 0;
402
403         /* Vecotr RX will process 4 packets at a time, strip the unaligned
404          * tails in case it's not multiple of 4.
405          */
406         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_FM10K_DESCS_PER_LOOP);
407
408         /* 4 packets DD mask */
409         dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);
410
411         /* 4 packets EOP mask */
412         eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);
413
414         /* mask to shuffle from desc. to mbuf */
415         shuf_msk = _mm_set_epi8(
416                 7, 6, 5, 4,  /* octet 4~7, 32bits rss */
417                 15, 14,      /* octet 14~15, low 16 bits vlan_macip */
418                 13, 12,      /* octet 12~13, 16 bits data_len */
419                 0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
420                 13, 12,      /* octet 12~13, low 16 bits pkt_len */
421                 0xFF, 0xFF,  /* skip high 16 bits pkt_type */
422                 0xFF, 0xFF   /* Skip pkt_type field in shuffle operation */
423                 );
424         /*
425          * Compile-time verify the shuffle mask
426          * NOTE: some field positions already verified above, but duplicated
427          * here for completeness in case of future modifications.
428          */
429         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
430                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
431         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
432                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
433         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
434                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
435         RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
436                         offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);
437
438         /* Cache is empty -> need to scan the buffer rings, but first move
439          * the next 'n' mbufs into the cache
440          */
441         mbufp = &rxq->sw_ring[next_dd];
442
443         /* A. load 4 packet in one loop
444          * [A*. mask out 4 unused dirty field in desc]
445          * B. copy 4 mbuf point from swring to rx_pkts
446          * C. calc the number of DD bits among the 4 packets
447          * [C*. extract the end-of-packet bit, if requested]
448          * D. fill info. from desc to mbuf
449          */
450         for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
451                         pos += RTE_FM10K_DESCS_PER_LOOP,
452                         rxdp += RTE_FM10K_DESCS_PER_LOOP) {
453                 __m128i descs0[RTE_FM10K_DESCS_PER_LOOP];
454                 __m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
455                 __m128i zero, staterr, sterr_tmp1, sterr_tmp2;
456                 __m128i mbp1;
457                 /* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
458 #if defined(RTE_ARCH_X86_64)
459                 __m128i mbp2;
460 #endif
461
462                 /* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
463                 mbp1 = _mm_loadu_si128((__m128i *)&mbufp[pos]);
464
465                 /* Read desc statuses backwards to avoid race condition */
466                 /* A.1 load 4 pkts desc */
467                 descs0[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
468                 rte_compiler_barrier();
469
470                 /* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
471                 _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
472
473 #if defined(RTE_ARCH_X86_64)
474                 /* B.1 load 2 64 bit mbuf poitns */
475                 mbp2 = _mm_loadu_si128((__m128i *)&mbufp[pos+2]);
476 #endif
477
478                 descs0[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
479                 rte_compiler_barrier();
480                 /* B.1 load 2 mbuf point */
481                 descs0[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
482                 rte_compiler_barrier();
483                 descs0[0] = _mm_loadu_si128((__m128i *)(rxdp));
484
485 #if defined(RTE_ARCH_X86_64)
486                 /* B.2 copy 2 mbuf point into rx_pkts  */
487                 _mm_storeu_si128((__m128i *)&rx_pkts[pos+2], mbp2);
488 #endif
489
490                 /* avoid compiler reorder optimization */
491                 rte_compiler_barrier();
492
493                 if (split_packet) {
494                         rte_mbuf_prefetch_part2(rx_pkts[pos]);
495                         rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
496                         rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
497                         rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
498                 }
499
500                 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
501                 pkt_mb4 = _mm_shuffle_epi8(descs0[3], shuf_msk);
502                 pkt_mb3 = _mm_shuffle_epi8(descs0[2], shuf_msk);
503
504                 /* C.1 4=>2 filter staterr info only */
505                 sterr_tmp2 = _mm_unpackhi_epi32(descs0[3], descs0[2]);
506                 /* C.1 4=>2 filter staterr info only */
507                 sterr_tmp1 = _mm_unpackhi_epi32(descs0[1], descs0[0]);
508
509                 /* set ol_flags with vlan packet type */
510                 fm10k_desc_to_olflags_v(descs0, &rx_pkts[pos]);
511
512                 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
513                 pkt_mb2 = _mm_shuffle_epi8(descs0[1], shuf_msk);
514                 pkt_mb1 = _mm_shuffle_epi8(descs0[0], shuf_msk);
515
516                 /* C.2 get 4 pkts staterr value  */
517                 zero = _mm_xor_si128(dd_check, dd_check);
518                 staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
519
520                 /* D.3 copy final 3,4 data to rx_pkts */
521                 _mm_storeu_si128((void *)&rx_pkts[pos+3]->rx_descriptor_fields1,
522                                 pkt_mb4);
523                 _mm_storeu_si128((void *)&rx_pkts[pos+2]->rx_descriptor_fields1,
524                                 pkt_mb3);
525
526                 /* C* extract and record EOP bit */
527                 if (split_packet) {
528                         __m128i eop_shuf_mask = _mm_set_epi8(
529                                         0xFF, 0xFF, 0xFF, 0xFF,
530                                         0xFF, 0xFF, 0xFF, 0xFF,
531                                         0xFF, 0xFF, 0xFF, 0xFF,
532                                         0x04, 0x0C, 0x00, 0x08
533                                         );
534
535                         /* and with mask to extract bits, flipping 1-0 */
536                         __m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
537                         /* the staterr values are not in order, as the count
538                          * count of dd bits doesn't care. However, for end of
539                          * packet tracking, we do care, so shuffle. This also
540                          * compresses the 32-bit values to 8-bit
541                          */
542                         eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
543                         /* store the resulting 32-bit value */
544                         *(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
545                         split_packet += RTE_FM10K_DESCS_PER_LOOP;
546
547                         /* zero-out next pointers */
548                         rx_pkts[pos]->next = NULL;
549                         rx_pkts[pos + 1]->next = NULL;
550                         rx_pkts[pos + 2]->next = NULL;
551                         rx_pkts[pos + 3]->next = NULL;
552                 }
553
554                 /* C.3 calc available number of desc */
555                 staterr = _mm_and_si128(staterr, dd_check);
556                 staterr = _mm_packs_epi32(staterr, zero);
557
558                 /* D.3 copy final 1,2 data to rx_pkts */
559                 _mm_storeu_si128((void *)&rx_pkts[pos+1]->rx_descriptor_fields1,
560                                 pkt_mb2);
561                 _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
562                                 pkt_mb1);
563
564                 fm10k_desc_to_pktype_v(descs0, &rx_pkts[pos]);
565
566                 /* C.4 calc avaialbe number of desc */
567                 var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
568                 nb_pkts_recd += var;
569                 if (likely(var != RTE_FM10K_DESCS_PER_LOOP))
570                         break;
571         }
572
573         /* Update our internal tail pointer */
574         rxq->next_dd = (uint16_t)(rxq->next_dd + nb_pkts_recd);
575         rxq->next_dd = (uint16_t)(rxq->next_dd & (rxq->nb_desc - 1));
576         rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
577
578         return nb_pkts_recd;
579 }
580
581 /* vPMD receive routine
582  *
583  * Notice:
584  * - don't support ol_flags for rss and csum err
585  */
586 uint16_t
587 fm10k_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
588                 uint16_t nb_pkts)
589 {
590         return fm10k_recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
591 }
592
593 static inline uint16_t
594 fm10k_reassemble_packets(struct fm10k_rx_queue *rxq,
595                 struct rte_mbuf **rx_bufs,
596                 uint16_t nb_bufs, uint8_t *split_flags)
597 {
598         struct rte_mbuf *pkts[RTE_FM10K_MAX_RX_BURST]; /*finished pkts*/
599         struct rte_mbuf *start = rxq->pkt_first_seg;
600         struct rte_mbuf *end =  rxq->pkt_last_seg;
601         unsigned pkt_idx, buf_idx;
602
603         for (buf_idx = 0, pkt_idx = 0; buf_idx < nb_bufs; buf_idx++) {
604                 if (end != NULL) {
605                         /* processing a split packet */
606                         end->next = rx_bufs[buf_idx];
607                         start->nb_segs++;
608                         start->pkt_len += rx_bufs[buf_idx]->data_len;
609                         end = end->next;
610
611                         if (!split_flags[buf_idx]) {
612                                 /* it's the last packet of the set */
613 #ifdef RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE
614                                 start->hash = end->hash;
615                                 start->ol_flags = end->ol_flags;
616                                 start->packet_type = end->packet_type;
617 #endif
618                                 pkts[pkt_idx++] = start;
619                                 start = end = NULL;
620                         }
621                 } else {
622                         /* not processing a split packet */
623                         if (!split_flags[buf_idx]) {
624                                 /* not a split packet, save and skip */
625                                 pkts[pkt_idx++] = rx_bufs[buf_idx];
626                                 continue;
627                         }
628                         end = start = rx_bufs[buf_idx];
629                 }
630         }
631
632         /* save the partial packet for next time */
633         rxq->pkt_first_seg = start;
634         rxq->pkt_last_seg = end;
635         memcpy(rx_bufs, pkts, pkt_idx * (sizeof(*pkts)));
636         return pkt_idx;
637 }
638
639 /*
640  * vPMD receive routine that reassembles scattered packets
641  *
642  * Notice:
643  * - don't support ol_flags for rss and csum err
644  * - nb_pkts > RTE_FM10K_MAX_RX_BURST, only scan RTE_FM10K_MAX_RX_BURST
645  *   numbers of DD bit
646  */
647 uint16_t
648 fm10k_recv_scattered_pkts_vec(void *rx_queue,
649                                 struct rte_mbuf **rx_pkts,
650                                 uint16_t nb_pkts)
651 {
652         struct fm10k_rx_queue *rxq = rx_queue;
653         uint8_t split_flags[RTE_FM10K_MAX_RX_BURST] = {0};
654         unsigned i = 0;
655
656         /* Split_flags only can support max of RTE_FM10K_MAX_RX_BURST */
657         nb_pkts = RTE_MIN(nb_pkts, RTE_FM10K_MAX_RX_BURST);
658         /* get some new buffers */
659         uint16_t nb_bufs = fm10k_recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
660                         split_flags);
661         if (nb_bufs == 0)
662                 return 0;
663
664         /* happy day case, full burst + no packets to be joined */
665         const uint64_t *split_fl64 = (uint64_t *)split_flags;
666
667         if (rxq->pkt_first_seg == NULL &&
668                         split_fl64[0] == 0 && split_fl64[1] == 0 &&
669                         split_fl64[2] == 0 && split_fl64[3] == 0)
670                 return nb_bufs;
671
672         /* reassemble any packets that need reassembly*/
673         if (rxq->pkt_first_seg == NULL) {
674                 /* find the first split flag, and only reassemble then*/
675                 while (i < nb_bufs && !split_flags[i])
676                         i++;
677                 if (i == nb_bufs)
678                         return nb_bufs;
679         }
680         return i + fm10k_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
681                 &split_flags[i]);
682 }
683
684 static const struct fm10k_txq_ops vec_txq_ops = {
685         .reset = fm10k_reset_tx_queue,
686 };
687
688 void __attribute__((cold))
689 fm10k_txq_vec_setup(struct fm10k_tx_queue *txq)
690 {
691         txq->ops = &vec_txq_ops;
692 }
693
694 int __attribute__((cold))
695 fm10k_tx_vec_condition_check(struct fm10k_tx_queue *txq)
696 {
697         /* Vector TX can't offload any features yet */
698         if ((txq->txq_flags & FM10K_SIMPLE_TX_FLAG) != FM10K_SIMPLE_TX_FLAG)
699                 return -1;
700
701         if (txq->tx_ftag_en)
702                 return -1;
703
704         return 0;
705 }
706
707 static inline void
708 vtx1(volatile struct fm10k_tx_desc *txdp,
709                 struct rte_mbuf *pkt, uint64_t flags)
710 {
711         __m128i descriptor = _mm_set_epi64x(flags << 56 |
712                         pkt->vlan_tci << 16 | pkt->data_len,
713                         MBUF_DMA_ADDR(pkt));
714         _mm_store_si128((__m128i *)txdp, descriptor);
715 }
716
717 static inline void
718 vtx(volatile struct fm10k_tx_desc *txdp,
719                 struct rte_mbuf **pkt, uint16_t nb_pkts,  uint64_t flags)
720 {
721         int i;
722
723         for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
724                 vtx1(txdp, *pkt, flags);
725 }
726
727 static __rte_always_inline int
728 fm10k_tx_free_bufs(struct fm10k_tx_queue *txq)
729 {
730         struct rte_mbuf **txep;
731         uint8_t flags;
732         uint32_t n;
733         uint32_t i;
734         int nb_free = 0;
735         struct rte_mbuf *m, *free[RTE_FM10K_TX_MAX_FREE_BUF_SZ];
736
737         /* check DD bit on threshold descriptor */
738         flags = txq->hw_ring[txq->next_dd].flags;
739         if (!(flags & FM10K_TXD_FLAG_DONE))
740                 return 0;
741
742         n = txq->rs_thresh;
743
744         /* First buffer to free from S/W ring is at index
745          * next_dd - (rs_thresh-1)
746          */
747         txep = &txq->sw_ring[txq->next_dd - (n - 1)];
748         m = rte_pktmbuf_prefree_seg(txep[0]);
749         if (likely(m != NULL)) {
750                 free[0] = m;
751                 nb_free = 1;
752                 for (i = 1; i < n; i++) {
753                         m = rte_pktmbuf_prefree_seg(txep[i]);
754                         if (likely(m != NULL)) {
755                                 if (likely(m->pool == free[0]->pool))
756                                         free[nb_free++] = m;
757                                 else {
758                                         rte_mempool_put_bulk(free[0]->pool,
759                                                         (void *)free, nb_free);
760                                         free[0] = m;
761                                         nb_free = 1;
762                                 }
763                         }
764                 }
765                 rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
766         } else {
767                 for (i = 1; i < n; i++) {
768                         m = rte_pktmbuf_prefree_seg(txep[i]);
769                         if (m != NULL)
770                                 rte_mempool_put(m->pool, m);
771                 }
772         }
773
774         /* buffers were freed, update counters */
775         txq->nb_free = (uint16_t)(txq->nb_free + txq->rs_thresh);
776         txq->next_dd = (uint16_t)(txq->next_dd + txq->rs_thresh);
777         if (txq->next_dd >= txq->nb_desc)
778                 txq->next_dd = (uint16_t)(txq->rs_thresh - 1);
779
780         return txq->rs_thresh;
781 }
782
783 static __rte_always_inline void
784 tx_backlog_entry(struct rte_mbuf **txep,
785                  struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
786 {
787         int i;
788
789         for (i = 0; i < (int)nb_pkts; ++i)
790                 txep[i] = tx_pkts[i];
791 }
792
793 uint16_t
794 fm10k_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
795                            uint16_t nb_pkts)
796 {
797         struct fm10k_tx_queue *txq = (struct fm10k_tx_queue *)tx_queue;
798         volatile struct fm10k_tx_desc *txdp;
799         struct rte_mbuf **txep;
800         uint16_t n, nb_commit, tx_id;
801         uint64_t flags = FM10K_TXD_FLAG_LAST;
802         uint64_t rs = FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_LAST;
803         int i;
804
805         /* cross rx_thresh boundary is not allowed */
806         nb_pkts = RTE_MIN(nb_pkts, txq->rs_thresh);
807
808         if (txq->nb_free < txq->free_thresh)
809                 fm10k_tx_free_bufs(txq);
810
811         nb_commit = nb_pkts = (uint16_t)RTE_MIN(txq->nb_free, nb_pkts);
812         if (unlikely(nb_pkts == 0))
813                 return 0;
814
815         tx_id = txq->next_free;
816         txdp = &txq->hw_ring[tx_id];
817         txep = &txq->sw_ring[tx_id];
818
819         txq->nb_free = (uint16_t)(txq->nb_free - nb_pkts);
820
821         n = (uint16_t)(txq->nb_desc - tx_id);
822         if (nb_commit >= n) {
823                 tx_backlog_entry(txep, tx_pkts, n);
824
825                 for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
826                         vtx1(txdp, *tx_pkts, flags);
827
828                 vtx1(txdp, *tx_pkts++, rs);
829
830                 nb_commit = (uint16_t)(nb_commit - n);
831
832                 tx_id = 0;
833                 txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
834
835                 /* avoid reach the end of ring */
836                 txdp = &(txq->hw_ring[tx_id]);
837                 txep = &txq->sw_ring[tx_id];
838         }
839
840         tx_backlog_entry(txep, tx_pkts, nb_commit);
841
842         vtx(txdp, tx_pkts, nb_commit, flags);
843
844         tx_id = (uint16_t)(tx_id + nb_commit);
845         if (tx_id > txq->next_rs) {
846                 txq->hw_ring[txq->next_rs].flags |= FM10K_TXD_FLAG_RS;
847                 txq->next_rs = (uint16_t)(txq->next_rs + txq->rs_thresh);
848         }
849
850         txq->next_free = tx_id;
851
852         FM10K_PCI_REG_WRITE(txq->tail_ptr, txq->next_free);
853
854         return nb_pkts;
855 }
856
857 static void __attribute__((cold))
858 fm10k_reset_tx_queue(struct fm10k_tx_queue *txq)
859 {
860         static const struct fm10k_tx_desc zeroed_desc = {0};
861         struct rte_mbuf **txe = txq->sw_ring;
862         uint16_t i;
863
864         /* Zero out HW ring memory */
865         for (i = 0; i < txq->nb_desc; i++)
866                 txq->hw_ring[i] = zeroed_desc;
867
868         /* Initialize SW ring entries */
869         for (i = 0; i < txq->nb_desc; i++)
870                 txe[i] = NULL;
871
872         txq->next_dd = (uint16_t)(txq->rs_thresh - 1);
873         txq->next_rs = (uint16_t)(txq->rs_thresh - 1);
874
875         txq->next_free = 0;
876         txq->nb_used = 0;
877         /* Always allow 1 descriptor to be un-allocated to avoid
878          * a H/W race condition
879          */
880         txq->nb_free = (uint16_t)(txq->nb_desc - 1);
881         FM10K_PCI_REG_WRITE(txq->tail_ptr, 0);
882 }