fm10k: add vector Rx condition check
[dpdk.git] / drivers / net / fm10k / fm10k_rxtx_vec.c
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
5  *   All rights reserved.
6  *
7  *   Redistribution and use in source and binary forms, with or without
8  *   modification, are permitted provided that the following conditions
9  *   are met:
10  *
11  *     * Redistributions of source code must retain the above copyright
12  *       notice, this list of conditions and the following disclaimer.
13  *     * Redistributions in binary form must reproduce the above copyright
14  *       notice, this list of conditions and the following disclaimer in
15  *       the documentation and/or other materials provided with the
16  *       distribution.
17  *     * Neither the name of Intel Corporation nor the names of its
18  *       contributors may be used to endorse or promote products derived
19  *       from this software without specific prior written permission.
20  *
21  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33
34 #include <inttypes.h>
35
36 #include <rte_ethdev.h>
37 #include <rte_common.h>
38 #include "fm10k.h"
39 #include "base/fm10k_type.h"
40
41 #include <tmmintrin.h>
42
43 #ifndef __INTEL_COMPILER
44 #pragma GCC diagnostic ignored "-Wcast-qual"
45 #endif
46
47 /* Handling the offload flags (olflags) field takes computation
48  * time when receiving packets. Therefore we provide a flag to disable
49  * the processing of the olflags field when they are not needed. This
50  * gives improved performance, at the cost of losing the offload info
51  * in the received packet
52  */
53 #ifdef RTE_LIBRTE_FM10K_RX_OLFLAGS_ENABLE
54
55 /* Vlan present flag shift */
56 #define VP_SHIFT     (2)
57 /* L3 type shift */
58 #define L3TYPE_SHIFT     (4)
59 /* L4 type shift */
60 #define L4TYPE_SHIFT     (7)
61
62 static inline void
63 fm10k_desc_to_olflags_v(__m128i descs[4], struct rte_mbuf **rx_pkts)
64 {
65         __m128i ptype0, ptype1, vtag0, vtag1;
66         union {
67                 uint16_t e[4];
68                 uint64_t dword;
69         } vol;
70
71         const __m128i pkttype_msk = _mm_set_epi16(
72                         0x0000, 0x0000, 0x0000, 0x0000,
73                         PKT_RX_VLAN_PKT, PKT_RX_VLAN_PKT,
74                         PKT_RX_VLAN_PKT, PKT_RX_VLAN_PKT);
75
76         /* mask everything except rss type */
77         const __m128i rsstype_msk = _mm_set_epi16(
78                         0x0000, 0x0000, 0x0000, 0x0000,
79                         0x000F, 0x000F, 0x000F, 0x000F);
80
81         /* map rss type to rss hash flag */
82         const __m128i rss_flags = _mm_set_epi8(0, 0, 0, 0,
83                         0, 0, 0, PKT_RX_RSS_HASH,
84                         PKT_RX_RSS_HASH, 0, PKT_RX_RSS_HASH, 0,
85                         PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, PKT_RX_RSS_HASH, 0);
86
87         ptype0 = _mm_unpacklo_epi16(descs[0], descs[1]);
88         ptype1 = _mm_unpacklo_epi16(descs[2], descs[3]);
89         vtag0 = _mm_unpackhi_epi16(descs[0], descs[1]);
90         vtag1 = _mm_unpackhi_epi16(descs[2], descs[3]);
91
92         ptype0 = _mm_unpacklo_epi32(ptype0, ptype1);
93         ptype0 = _mm_and_si128(ptype0, rsstype_msk);
94         ptype0 = _mm_shuffle_epi8(rss_flags, ptype0);
95
96         vtag1 = _mm_unpacklo_epi32(vtag0, vtag1);
97         vtag1 = _mm_srli_epi16(vtag1, VP_SHIFT);
98         vtag1 = _mm_and_si128(vtag1, pkttype_msk);
99
100         vtag1 = _mm_or_si128(ptype0, vtag1);
101         vol.dword = _mm_cvtsi128_si64(vtag1);
102
103         rx_pkts[0]->ol_flags = vol.e[0];
104         rx_pkts[1]->ol_flags = vol.e[1];
105         rx_pkts[2]->ol_flags = vol.e[2];
106         rx_pkts[3]->ol_flags = vol.e[3];
107 }
108
109 static inline void
110 fm10k_desc_to_pktype_v(__m128i descs[4], struct rte_mbuf **rx_pkts)
111 {
112         __m128i l3l4type0, l3l4type1, l3type, l4type;
113         union {
114                 uint16_t e[4];
115                 uint64_t dword;
116         } vol;
117
118         /* L3 pkt type mask  Bit4 to Bit6 */
119         const __m128i l3type_msk = _mm_set_epi16(
120                         0x0000, 0x0000, 0x0000, 0x0000,
121                         0x0070, 0x0070, 0x0070, 0x0070);
122
123         /* L4 pkt type mask  Bit7 to Bit9 */
124         const __m128i l4type_msk = _mm_set_epi16(
125                         0x0000, 0x0000, 0x0000, 0x0000,
126                         0x0380, 0x0380, 0x0380, 0x0380);
127
128         /* convert RRC l3 type to mbuf format */
129         const __m128i l3type_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0,
130                         0, 0, 0, RTE_PTYPE_L3_IPV6_EXT,
131                         RTE_PTYPE_L3_IPV6, RTE_PTYPE_L3_IPV4_EXT,
132                         RTE_PTYPE_L3_IPV4, 0);
133
134         /* Convert RRC l4 type to mbuf format l4type_flags shift-left 8 bits
135          * to fill into8 bits length.
136          */
137         const __m128i l4type_flags = _mm_set_epi8(0, 0, 0, 0, 0, 0, 0, 0, 0,
138                         RTE_PTYPE_TUNNEL_GENEVE >> 8,
139                         RTE_PTYPE_TUNNEL_NVGRE >> 8,
140                         RTE_PTYPE_TUNNEL_VXLAN >> 8,
141                         RTE_PTYPE_TUNNEL_GRE >> 8,
142                         RTE_PTYPE_L4_UDP >> 8,
143                         RTE_PTYPE_L4_TCP >> 8,
144                         0);
145
146         l3l4type0 = _mm_unpacklo_epi16(descs[0], descs[1]);
147         l3l4type1 = _mm_unpacklo_epi16(descs[2], descs[3]);
148         l3l4type0 = _mm_unpacklo_epi32(l3l4type0, l3l4type1);
149
150         l3type = _mm_and_si128(l3l4type0, l3type_msk);
151         l4type = _mm_and_si128(l3l4type0, l4type_msk);
152
153         l3type = _mm_srli_epi16(l3type, L3TYPE_SHIFT);
154         l4type = _mm_srli_epi16(l4type, L4TYPE_SHIFT);
155
156         l3type = _mm_shuffle_epi8(l3type_flags, l3type);
157         /* l4type_flags shift-left for 8 bits, need shift-right back */
158         l4type = _mm_shuffle_epi8(l4type_flags, l4type);
159
160         l4type = _mm_slli_epi16(l4type, 8);
161         l3l4type0 = _mm_or_si128(l3type, l4type);
162         vol.dword = _mm_cvtsi128_si64(l3l4type0);
163
164         rx_pkts[0]->packet_type = vol.e[0];
165         rx_pkts[1]->packet_type = vol.e[1];
166         rx_pkts[2]->packet_type = vol.e[2];
167         rx_pkts[3]->packet_type = vol.e[3];
168 }
169 #else
170 #define fm10k_desc_to_olflags_v(desc, rx_pkts) do {} while (0)
171 #define fm10k_desc_to_pktype_v(desc, rx_pkts) do {} while (0)
172 #endif
173
174 int __attribute__((cold))
175 fm10k_rx_vec_condition_check(struct rte_eth_dev *dev)
176 {
177 #ifndef RTE_LIBRTE_IEEE1588
178         struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
179         struct rte_fdir_conf *fconf = &dev->data->dev_conf.fdir_conf;
180
181 #ifndef RTE_FM10K_RX_OLFLAGS_ENABLE
182         /* whithout rx ol_flags, no VP flag report */
183         if (rxmode->hw_vlan_extend != 0)
184                 return -1;
185 #endif
186
187         /* no fdir support */
188         if (fconf->mode != RTE_FDIR_MODE_NONE)
189                 return -1;
190
191         /* - no csum error report support
192          * - no header split support
193          */
194         if (rxmode->hw_ip_checksum == 1 ||
195             rxmode->header_split == 1)
196                 return -1;
197
198         return 0;
199 #else
200         RTE_SET_USED(dev);
201         return -1;
202 #endif
203 }
204
205 int __attribute__((cold))
206 fm10k_rxq_vec_setup(struct fm10k_rx_queue *rxq)
207 {
208         uintptr_t p;
209         struct rte_mbuf mb_def = { .buf_addr = 0 }; /* zeroed mbuf */
210
211         mb_def.nb_segs = 1;
212         /* data_off will be ajusted after new mbuf allocated for 512-byte
213          * alignment.
214          */
215         mb_def.data_off = RTE_PKTMBUF_HEADROOM;
216         mb_def.port = rxq->port_id;
217         rte_mbuf_refcnt_set(&mb_def, 1);
218
219         /* prevent compiler reordering: rearm_data covers previous fields */
220         rte_compiler_barrier();
221         p = (uintptr_t)&mb_def.rearm_data;
222         rxq->mbuf_initializer = *(uint64_t *)p;
223         return 0;
224 }
225
226 static inline void
227 fm10k_rxq_rearm(struct fm10k_rx_queue *rxq)
228 {
229         int i;
230         uint16_t rx_id;
231         volatile union fm10k_rx_desc *rxdp;
232         struct rte_mbuf **mb_alloc = &rxq->sw_ring[rxq->rxrearm_start];
233         struct rte_mbuf *mb0, *mb1;
234         __m128i head_off = _mm_set_epi64x(
235                         RTE_PKTMBUF_HEADROOM + FM10K_RX_DATABUF_ALIGN - 1,
236                         RTE_PKTMBUF_HEADROOM + FM10K_RX_DATABUF_ALIGN - 1);
237         __m128i dma_addr0, dma_addr1;
238         /* Rx buffer need to be aligned with 512 byte */
239         const __m128i hba_msk = _mm_set_epi64x(0,
240                                 UINT64_MAX - FM10K_RX_DATABUF_ALIGN + 1);
241
242         rxdp = rxq->hw_ring + rxq->rxrearm_start;
243
244         /* Pull 'n' more MBUFs into the software ring */
245         if (rte_mempool_get_bulk(rxq->mp,
246                                  (void *)mb_alloc,
247                                  RTE_FM10K_RXQ_REARM_THRESH) < 0) {
248                 dma_addr0 = _mm_setzero_si128();
249                 /* Clean up all the HW/SW ring content */
250                 for (i = 0; i < RTE_FM10K_RXQ_REARM_THRESH; i++) {
251                         mb_alloc[i] = &rxq->fake_mbuf;
252                         _mm_store_si128((__m128i *)&rxdp[i].q,
253                                                 dma_addr0);
254                 }
255
256                 rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
257                         RTE_FM10K_RXQ_REARM_THRESH;
258                 return;
259         }
260
261         /* Initialize the mbufs in vector, process 2 mbufs in one loop */
262         for (i = 0; i < RTE_FM10K_RXQ_REARM_THRESH; i += 2, mb_alloc += 2) {
263                 __m128i vaddr0, vaddr1;
264                 uintptr_t p0, p1;
265
266                 mb0 = mb_alloc[0];
267                 mb1 = mb_alloc[1];
268
269                 /* Flush mbuf with pkt template.
270                  * Data to be rearmed is 6 bytes long.
271                  * Though, RX will overwrite ol_flags that are coming next
272                  * anyway. So overwrite whole 8 bytes with one load:
273                  * 6 bytes of rearm_data plus first 2 bytes of ol_flags.
274                  */
275                 p0 = (uintptr_t)&mb0->rearm_data;
276                 *(uint64_t *)p0 = rxq->mbuf_initializer;
277                 p1 = (uintptr_t)&mb1->rearm_data;
278                 *(uint64_t *)p1 = rxq->mbuf_initializer;
279
280                 /* load buf_addr(lo 64bit) and buf_physaddr(hi 64bit) */
281                 vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
282                 vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
283
284                 /* convert pa to dma_addr hdr/data */
285                 dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
286                 dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);
287
288                 /* add headroom to pa values */
289                 dma_addr0 = _mm_add_epi64(dma_addr0, head_off);
290                 dma_addr1 = _mm_add_epi64(dma_addr1, head_off);
291
292                 /* Do 512 byte alignment to satisfy HW requirement, in the
293                  * meanwhile, set Header Buffer Address to zero.
294                  */
295                 dma_addr0 = _mm_and_si128(dma_addr0, hba_msk);
296                 dma_addr1 = _mm_and_si128(dma_addr1, hba_msk);
297
298                 /* flush desc with pa dma_addr */
299                 _mm_store_si128((__m128i *)&rxdp++->q, dma_addr0);
300                 _mm_store_si128((__m128i *)&rxdp++->q, dma_addr1);
301
302                 /* enforce 512B alignment on default Rx virtual addresses */
303                 mb0->data_off = (uint16_t)(RTE_PTR_ALIGN((char *)mb0->buf_addr
304                                 + RTE_PKTMBUF_HEADROOM, FM10K_RX_DATABUF_ALIGN)
305                                 - (char *)mb0->buf_addr);
306                 mb1->data_off = (uint16_t)(RTE_PTR_ALIGN((char *)mb1->buf_addr
307                                 + RTE_PKTMBUF_HEADROOM, FM10K_RX_DATABUF_ALIGN)
308                                 - (char *)mb1->buf_addr);
309         }
310
311         rxq->rxrearm_start += RTE_FM10K_RXQ_REARM_THRESH;
312         if (rxq->rxrearm_start >= rxq->nb_desc)
313                 rxq->rxrearm_start = 0;
314
315         rxq->rxrearm_nb -= RTE_FM10K_RXQ_REARM_THRESH;
316
317         rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
318                         (rxq->nb_desc - 1) : (rxq->rxrearm_start - 1));
319
320         /* Update the tail pointer on the NIC */
321         FM10K_PCI_REG_WRITE(rxq->tail_ptr, rx_id);
322 }
323
324 static inline uint16_t
325 fm10k_recv_raw_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
326                 uint16_t nb_pkts, uint8_t *split_packet)
327 {
328         volatile union fm10k_rx_desc *rxdp;
329         struct rte_mbuf **mbufp;
330         uint16_t nb_pkts_recd;
331         int pos;
332         struct fm10k_rx_queue *rxq = rx_queue;
333         uint64_t var;
334         __m128i shuf_msk;
335         __m128i dd_check, eop_check;
336         uint16_t next_dd;
337
338         next_dd = rxq->next_dd;
339
340         /* Just the act of getting into the function from the application is
341          * going to cost about 7 cycles
342          */
343         rxdp = rxq->hw_ring + next_dd;
344
345         _mm_prefetch((const void *)rxdp, _MM_HINT_T0);
346
347         /* See if we need to rearm the RX queue - gives the prefetch a bit
348          * of time to act
349          */
350         if (rxq->rxrearm_nb > RTE_FM10K_RXQ_REARM_THRESH)
351                 fm10k_rxq_rearm(rxq);
352
353         /* Before we start moving massive data around, check to see if
354          * there is actually a packet available
355          */
356         if (!(rxdp->d.staterr & FM10K_RXD_STATUS_DD))
357                 return 0;
358
359         /* Vecotr RX will process 4 packets at a time, strip the unaligned
360          * tails in case it's not multiple of 4.
361          */
362         nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, RTE_FM10K_DESCS_PER_LOOP);
363
364         /* 4 packets DD mask */
365         dd_check = _mm_set_epi64x(0x0000000100000001LL, 0x0000000100000001LL);
366
367         /* 4 packets EOP mask */
368         eop_check = _mm_set_epi64x(0x0000000200000002LL, 0x0000000200000002LL);
369
370         /* mask to shuffle from desc. to mbuf */
371         shuf_msk = _mm_set_epi8(
372                 7, 6, 5, 4,  /* octet 4~7, 32bits rss */
373                 15, 14,      /* octet 14~15, low 16 bits vlan_macip */
374                 13, 12,      /* octet 12~13, 16 bits data_len */
375                 0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
376                 13, 12,      /* octet 12~13, low 16 bits pkt_len */
377                 0xFF, 0xFF,  /* skip high 16 bits pkt_type */
378                 0xFF, 0xFF   /* Skip pkt_type field in shuffle operation */
379                 );
380
381         /* Cache is empty -> need to scan the buffer rings, but first move
382          * the next 'n' mbufs into the cache
383          */
384         mbufp = &rxq->sw_ring[next_dd];
385
386         /* A. load 4 packet in one loop
387          * [A*. mask out 4 unused dirty field in desc]
388          * B. copy 4 mbuf point from swring to rx_pkts
389          * C. calc the number of DD bits among the 4 packets
390          * [C*. extract the end-of-packet bit, if requested]
391          * D. fill info. from desc to mbuf
392          */
393         for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
394                         pos += RTE_FM10K_DESCS_PER_LOOP,
395                         rxdp += RTE_FM10K_DESCS_PER_LOOP) {
396                 __m128i descs0[RTE_FM10K_DESCS_PER_LOOP];
397                 __m128i pkt_mb1, pkt_mb2, pkt_mb3, pkt_mb4;
398                 __m128i zero, staterr, sterr_tmp1, sterr_tmp2;
399                 __m128i mbp1, mbp2; /* two mbuf pointer in one XMM reg. */
400
401                 /* B.1 load 1 mbuf point */
402                 mbp1 = _mm_loadu_si128((__m128i *)&mbufp[pos]);
403
404                 /* Read desc statuses backwards to avoid race condition */
405                 /* A.1 load 4 pkts desc */
406                 descs0[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
407
408                 /* B.2 copy 2 mbuf point into rx_pkts  */
409                 _mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);
410
411                 /* B.1 load 1 mbuf point */
412                 mbp2 = _mm_loadu_si128((__m128i *)&mbufp[pos+2]);
413
414                 descs0[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
415                 /* B.1 load 2 mbuf point */
416                 descs0[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
417                 descs0[0] = _mm_loadu_si128((__m128i *)(rxdp));
418
419                 /* B.2 copy 2 mbuf point into rx_pkts  */
420                 _mm_storeu_si128((__m128i *)&rx_pkts[pos+2], mbp2);
421
422                 /* avoid compiler reorder optimization */
423                 rte_compiler_barrier();
424
425                 if (split_packet) {
426                         rte_prefetch0(&rx_pkts[pos]->cacheline1);
427                         rte_prefetch0(&rx_pkts[pos + 1]->cacheline1);
428                         rte_prefetch0(&rx_pkts[pos + 2]->cacheline1);
429                         rte_prefetch0(&rx_pkts[pos + 3]->cacheline1);
430                 }
431
432                 /* D.1 pkt 3,4 convert format from desc to pktmbuf */
433                 pkt_mb4 = _mm_shuffle_epi8(descs0[3], shuf_msk);
434                 pkt_mb3 = _mm_shuffle_epi8(descs0[2], shuf_msk);
435
436                 /* C.1 4=>2 filter staterr info only */
437                 sterr_tmp2 = _mm_unpackhi_epi32(descs0[3], descs0[2]);
438                 /* C.1 4=>2 filter staterr info only */
439                 sterr_tmp1 = _mm_unpackhi_epi32(descs0[1], descs0[0]);
440
441                 /* set ol_flags with vlan packet type */
442                 fm10k_desc_to_olflags_v(descs0, &rx_pkts[pos]);
443
444                 /* D.1 pkt 1,2 convert format from desc to pktmbuf */
445                 pkt_mb2 = _mm_shuffle_epi8(descs0[1], shuf_msk);
446                 pkt_mb1 = _mm_shuffle_epi8(descs0[0], shuf_msk);
447
448                 /* C.2 get 4 pkts staterr value  */
449                 zero = _mm_xor_si128(dd_check, dd_check);
450                 staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);
451
452                 /* D.3 copy final 3,4 data to rx_pkts */
453                 _mm_storeu_si128((void *)&rx_pkts[pos+3]->rx_descriptor_fields1,
454                                 pkt_mb4);
455                 _mm_storeu_si128((void *)&rx_pkts[pos+2]->rx_descriptor_fields1,
456                                 pkt_mb3);
457
458                 /* C* extract and record EOP bit */
459                 if (split_packet) {
460                         __m128i eop_shuf_mask = _mm_set_epi8(
461                                         0xFF, 0xFF, 0xFF, 0xFF,
462                                         0xFF, 0xFF, 0xFF, 0xFF,
463                                         0xFF, 0xFF, 0xFF, 0xFF,
464                                         0x04, 0x0C, 0x00, 0x08
465                                         );
466
467                         /* and with mask to extract bits, flipping 1-0 */
468                         __m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
469                         /* the staterr values are not in order, as the count
470                          * count of dd bits doesn't care. However, for end of
471                          * packet tracking, we do care, so shuffle. This also
472                          * compresses the 32-bit values to 8-bit
473                          */
474                         eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
475                         /* store the resulting 32-bit value */
476                         *(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
477                         split_packet += RTE_FM10K_DESCS_PER_LOOP;
478
479                         /* zero-out next pointers */
480                         rx_pkts[pos]->next = NULL;
481                         rx_pkts[pos + 1]->next = NULL;
482                         rx_pkts[pos + 2]->next = NULL;
483                         rx_pkts[pos + 3]->next = NULL;
484                 }
485
486                 /* C.3 calc available number of desc */
487                 staterr = _mm_and_si128(staterr, dd_check);
488                 staterr = _mm_packs_epi32(staterr, zero);
489
490                 /* D.3 copy final 1,2 data to rx_pkts */
491                 _mm_storeu_si128((void *)&rx_pkts[pos+1]->rx_descriptor_fields1,
492                                 pkt_mb2);
493                 _mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
494                                 pkt_mb1);
495
496                 fm10k_desc_to_pktype_v(descs0, &rx_pkts[pos]);
497
498                 /* C.4 calc avaialbe number of desc */
499                 var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
500                 nb_pkts_recd += var;
501                 if (likely(var != RTE_FM10K_DESCS_PER_LOOP))
502                         break;
503         }
504
505         /* Update our internal tail pointer */
506         rxq->next_dd = (uint16_t)(rxq->next_dd + nb_pkts_recd);
507         rxq->next_dd = (uint16_t)(rxq->next_dd & (rxq->nb_desc - 1));
508         rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);
509
510         return nb_pkts_recd;
511 }
512
513 /* vPMD receive routine
514  *
515  * Notice:
516  * - don't support ol_flags for rss and csum err
517  */
518 uint16_t
519 fm10k_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
520                 uint16_t nb_pkts)
521 {
522         return fm10k_recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
523 }