139e893ac6468e811e830511610b7f842f31b400
[dpdk.git] / drivers / net / hns3 / hns3_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4
5 #include <rte_alarm.h>
6 #include <rte_bus_pci.h>
7 #include <ethdev_pci.h>
8 #include <rte_pci.h>
9 #include <rte_kvargs.h>
10
11 #include "hns3_ethdev.h"
12 #include "hns3_logs.h"
13 #include "hns3_rxtx.h"
14 #include "hns3_intr.h"
15 #include "hns3_regs.h"
16 #include "hns3_dcb.h"
17 #include "hns3_mp.h"
18
19 #define HNS3_DEFAULT_PORT_CONF_BURST_SIZE       32
20 #define HNS3_DEFAULT_PORT_CONF_QUEUES_NUM       1
21
22 #define HNS3_SERVICE_INTERVAL           1000000 /* us */
23 #define HNS3_SERVICE_QUICK_INTERVAL     10
24 #define HNS3_INVALID_PVID               0xFFFF
25
26 #define HNS3_FILTER_TYPE_VF             0
27 #define HNS3_FILTER_TYPE_PORT           1
28 #define HNS3_FILTER_FE_EGRESS_V1_B      BIT(0)
29 #define HNS3_FILTER_FE_NIC_INGRESS_B    BIT(0)
30 #define HNS3_FILTER_FE_NIC_EGRESS_B     BIT(1)
31 #define HNS3_FILTER_FE_ROCE_INGRESS_B   BIT(2)
32 #define HNS3_FILTER_FE_ROCE_EGRESS_B    BIT(3)
33 #define HNS3_FILTER_FE_EGRESS           (HNS3_FILTER_FE_NIC_EGRESS_B \
34                                         | HNS3_FILTER_FE_ROCE_EGRESS_B)
35 #define HNS3_FILTER_FE_INGRESS          (HNS3_FILTER_FE_NIC_INGRESS_B \
36                                         | HNS3_FILTER_FE_ROCE_INGRESS_B)
37
38 /* Reset related Registers */
39 #define HNS3_GLOBAL_RESET_BIT           0
40 #define HNS3_CORE_RESET_BIT             1
41 #define HNS3_IMP_RESET_BIT              2
42 #define HNS3_FUN_RST_ING_B              0
43
44 #define HNS3_VECTOR0_IMP_RESET_INT_B    1
45 #define HNS3_VECTOR0_IMP_CMDQ_ERR_B     4U
46 #define HNS3_VECTOR0_IMP_RD_POISON_B    5U
47 #define HNS3_VECTOR0_ALL_MSIX_ERR_B     6U
48
49 #define HNS3_RESET_WAIT_MS      100
50 #define HNS3_RESET_WAIT_CNT     200
51
52 /* FEC mode order defined in HNS3 hardware */
53 #define HNS3_HW_FEC_MODE_NOFEC  0
54 #define HNS3_HW_FEC_MODE_BASER  1
55 #define HNS3_HW_FEC_MODE_RS     2
56
57 enum hns3_evt_cause {
58         HNS3_VECTOR0_EVENT_RST,
59         HNS3_VECTOR0_EVENT_MBX,
60         HNS3_VECTOR0_EVENT_ERR,
61         HNS3_VECTOR0_EVENT_OTHER,
62 };
63
64 static const struct rte_eth_fec_capa speed_fec_capa_tbl[] = {
65         { ETH_SPEED_NUM_10G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
66                              RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
67                              RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
68
69         { ETH_SPEED_NUM_25G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
70                              RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
71                              RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
72                              RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
73
74         { ETH_SPEED_NUM_40G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
75                              RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
76                              RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
77
78         { ETH_SPEED_NUM_50G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
79                              RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
80                              RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
81                              RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
82
83         { ETH_SPEED_NUM_100G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
84                               RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
85                               RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
86
87         { ETH_SPEED_NUM_200G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
88                               RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
89                               RTE_ETH_FEC_MODE_CAPA_MASK(RS) }
90 };
91
92 static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns,
93                                                  uint64_t *levels);
94 static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
95 static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid,
96                                     int on);
97 static int hns3_update_link_info(struct rte_eth_dev *eth_dev);
98 static bool hns3_update_link_status(struct hns3_hw *hw);
99
100 static int hns3_add_mc_addr(struct hns3_hw *hw,
101                             struct rte_ether_addr *mac_addr);
102 static int hns3_remove_mc_addr(struct hns3_hw *hw,
103                             struct rte_ether_addr *mac_addr);
104 static int hns3_restore_fec(struct hns3_hw *hw);
105 static int hns3_query_dev_fec_info(struct hns3_hw *hw);
106 static int hns3_do_stop(struct hns3_adapter *hns);
107
108 void hns3_ether_format_addr(char *buf, uint16_t size,
109                             const struct rte_ether_addr *ether_addr)
110 {
111         snprintf(buf, size, "%02X:**:**:**:%02X:%02X",
112                 ether_addr->addr_bytes[0],
113                 ether_addr->addr_bytes[4],
114                 ether_addr->addr_bytes[5]);
115 }
116
117 static void
118 hns3_pf_disable_irq0(struct hns3_hw *hw)
119 {
120         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
121 }
122
123 static void
124 hns3_pf_enable_irq0(struct hns3_hw *hw)
125 {
126         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
127 }
128
129 static enum hns3_evt_cause
130 hns3_proc_imp_reset_event(struct hns3_adapter *hns, bool is_delay,
131                           uint32_t *vec_val)
132 {
133         struct hns3_hw *hw = &hns->hw;
134
135         __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
136         hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
137         *vec_val = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
138         if (!is_delay) {
139                 hw->reset.stats.imp_cnt++;
140                 hns3_warn(hw, "IMP reset detected, clear reset status");
141         } else {
142                 hns3_schedule_delayed_reset(hns);
143                 hns3_warn(hw, "IMP reset detected, don't clear reset status");
144         }
145
146         return HNS3_VECTOR0_EVENT_RST;
147 }
148
149 static enum hns3_evt_cause
150 hns3_proc_global_reset_event(struct hns3_adapter *hns, bool is_delay,
151                              uint32_t *vec_val)
152 {
153         struct hns3_hw *hw = &hns->hw;
154
155         __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
156         hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending);
157         *vec_val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
158         if (!is_delay) {
159                 hw->reset.stats.global_cnt++;
160                 hns3_warn(hw, "Global reset detected, clear reset status");
161         } else {
162                 hns3_schedule_delayed_reset(hns);
163                 hns3_warn(hw,
164                           "Global reset detected, don't clear reset status");
165         }
166
167         return HNS3_VECTOR0_EVENT_RST;
168 }
169
170 static enum hns3_evt_cause
171 hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
172 {
173         struct hns3_hw *hw = &hns->hw;
174         uint32_t vector0_int_stats;
175         uint32_t cmdq_src_val;
176         uint32_t hw_err_src_reg;
177         uint32_t val;
178         enum hns3_evt_cause ret;
179         bool is_delay;
180
181         /* fetch the events from their corresponding regs */
182         vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
183         cmdq_src_val = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
184         hw_err_src_reg = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
185
186         is_delay = clearval == NULL ? true : false;
187         /*
188          * Assumption: If by any chance reset and mailbox events are reported
189          * together then we will only process reset event and defer the
190          * processing of the mailbox events. Since, we would have not cleared
191          * RX CMDQ event this time we would receive again another interrupt
192          * from H/W just for the mailbox.
193          */
194         if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) { /* IMP */
195                 ret = hns3_proc_imp_reset_event(hns, is_delay, &val);
196                 goto out;
197         }
198
199         /* Global reset */
200         if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) {
201                 ret = hns3_proc_global_reset_event(hns, is_delay, &val);
202                 goto out;
203         }
204
205         /* check for vector0 msix event source */
206         if (vector0_int_stats & HNS3_VECTOR0_REG_MSIX_MASK ||
207             hw_err_src_reg & HNS3_RAS_REG_NFE_MASK) {
208                 val = vector0_int_stats | hw_err_src_reg;
209                 ret = HNS3_VECTOR0_EVENT_ERR;
210                 goto out;
211         }
212
213         /* check for vector0 mailbox(=CMDQ RX) event source */
214         if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_val) {
215                 cmdq_src_val &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
216                 val = cmdq_src_val;
217                 ret = HNS3_VECTOR0_EVENT_MBX;
218                 goto out;
219         }
220
221         val = vector0_int_stats;
222         ret = HNS3_VECTOR0_EVENT_OTHER;
223 out:
224
225         if (clearval)
226                 *clearval = val;
227         return ret;
228 }
229
230 static void
231 hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
232 {
233         if (event_type == HNS3_VECTOR0_EVENT_RST)
234                 hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr);
235         else if (event_type == HNS3_VECTOR0_EVENT_MBX)
236                 hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
237 }
238
239 static void
240 hns3_clear_all_event_cause(struct hns3_hw *hw)
241 {
242         uint32_t vector0_int_stats;
243         vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
244
245         if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats)
246                 hns3_warn(hw, "Probe during IMP reset interrupt");
247
248         if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats)
249                 hns3_warn(hw, "Probe during Global reset interrupt");
250
251         hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST,
252                                BIT(HNS3_VECTOR0_IMPRESET_INT_B) |
253                                BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) |
254                                BIT(HNS3_VECTOR0_CORERESET_INT_B));
255         hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0);
256 }
257
258 static void
259 hns3_handle_mac_tnl(struct hns3_hw *hw)
260 {
261         struct hns3_cmd_desc desc;
262         uint32_t status;
263         int ret;
264
265         /* query and clear mac tnl interruptions */
266         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_MAC_TNL_INT, true);
267         ret = hns3_cmd_send(hw, &desc, 1);
268         if (ret) {
269                 hns3_err(hw, "failed to query mac tnl int, ret = %d.", ret);
270                 return;
271         }
272
273         status = rte_le_to_cpu_32(desc.data[0]);
274         if (status) {
275                 hns3_warn(hw, "mac tnl int occurs, status = 0x%x.", status);
276                 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_MAC_TNL_INT,
277                                           false);
278                 desc.data[0] = rte_cpu_to_le_32(HNS3_MAC_TNL_INT_CLR);
279                 ret = hns3_cmd_send(hw, &desc, 1);
280                 if (ret)
281                         hns3_err(hw, "failed to clear mac tnl int, ret = %d.",
282                                  ret);
283         }
284 }
285
286 static void
287 hns3_interrupt_handler(void *param)
288 {
289         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
290         struct hns3_adapter *hns = dev->data->dev_private;
291         struct hns3_hw *hw = &hns->hw;
292         enum hns3_evt_cause event_cause;
293         uint32_t clearval = 0;
294         uint32_t vector0_int;
295         uint32_t ras_int;
296         uint32_t cmdq_int;
297
298         /* Disable interrupt */
299         hns3_pf_disable_irq0(hw);
300
301         event_cause = hns3_check_event_cause(hns, &clearval);
302         vector0_int = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
303         ras_int = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
304         cmdq_int = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
305         /* vector 0 interrupt is shared with reset and mailbox source events. */
306         if (event_cause == HNS3_VECTOR0_EVENT_ERR) {
307                 hns3_warn(hw, "received interrupt: vector0_int_stat:0x%x "
308                           "ras_int_stat:0x%x cmdq_int_stat:0x%x",
309                           vector0_int, ras_int, cmdq_int);
310                 hns3_handle_msix_error(hns, &hw->reset.request);
311                 hns3_handle_ras_error(hns, &hw->reset.request);
312                 hns3_handle_mac_tnl(hw);
313                 hns3_schedule_reset(hns);
314         } else if (event_cause == HNS3_VECTOR0_EVENT_RST) {
315                 hns3_warn(hw, "received reset interrupt");
316                 hns3_schedule_reset(hns);
317         } else if (event_cause == HNS3_VECTOR0_EVENT_MBX) {
318                 hns3_dev_handle_mbx_msg(hw);
319         } else {
320                 hns3_warn(hw, "received unknown event: vector0_int_stat:0x%x "
321                           "ras_int_stat:0x%x cmdq_int_stat:0x%x",
322                           vector0_int, ras_int, cmdq_int);
323         }
324
325         hns3_clear_event_cause(hw, event_cause, clearval);
326         /* Enable interrupt if it is not cause by reset */
327         hns3_pf_enable_irq0(hw);
328 }
329
330 static int
331 hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on)
332 {
333 #define HNS3_VLAN_ID_OFFSET_STEP        160
334 #define HNS3_VLAN_BYTE_SIZE             8
335         struct hns3_vlan_filter_pf_cfg_cmd *req;
336         struct hns3_hw *hw = &hns->hw;
337         uint8_t vlan_offset_byte_val;
338         struct hns3_cmd_desc desc;
339         uint8_t vlan_offset_byte;
340         uint8_t vlan_offset_base;
341         int ret;
342
343         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false);
344
345         vlan_offset_base = vlan_id / HNS3_VLAN_ID_OFFSET_STEP;
346         vlan_offset_byte = (vlan_id % HNS3_VLAN_ID_OFFSET_STEP) /
347                            HNS3_VLAN_BYTE_SIZE;
348         vlan_offset_byte_val = 1 << (vlan_id % HNS3_VLAN_BYTE_SIZE);
349
350         req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data;
351         req->vlan_offset = vlan_offset_base;
352         req->vlan_cfg = on ? 0 : 1;
353         req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
354
355         ret = hns3_cmd_send(hw, &desc, 1);
356         if (ret)
357                 hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d",
358                          vlan_id, ret);
359
360         return ret;
361 }
362
363 static void
364 hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id)
365 {
366         struct hns3_user_vlan_table *vlan_entry;
367         struct hns3_pf *pf = &hns->pf;
368
369         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
370                 if (vlan_entry->vlan_id == vlan_id) {
371                         if (vlan_entry->hd_tbl_status)
372                                 hns3_set_port_vlan_filter(hns, vlan_id, 0);
373                         LIST_REMOVE(vlan_entry, next);
374                         rte_free(vlan_entry);
375                         break;
376                 }
377         }
378 }
379
380 static void
381 hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id,
382                         bool writen_to_tbl)
383 {
384         struct hns3_user_vlan_table *vlan_entry;
385         struct hns3_hw *hw = &hns->hw;
386         struct hns3_pf *pf = &hns->pf;
387
388         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
389                 if (vlan_entry->vlan_id == vlan_id)
390                         return;
391         }
392
393         vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0);
394         if (vlan_entry == NULL) {
395                 hns3_err(hw, "Failed to malloc hns3 vlan table");
396                 return;
397         }
398
399         vlan_entry->hd_tbl_status = writen_to_tbl;
400         vlan_entry->vlan_id = vlan_id;
401
402         LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next);
403 }
404
405 static int
406 hns3_restore_vlan_table(struct hns3_adapter *hns)
407 {
408         struct hns3_user_vlan_table *vlan_entry;
409         struct hns3_hw *hw = &hns->hw;
410         struct hns3_pf *pf = &hns->pf;
411         uint16_t vlan_id;
412         int ret = 0;
413
414         if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE)
415                 return hns3_vlan_pvid_configure(hns,
416                                                 hw->port_base_vlan_cfg.pvid, 1);
417
418         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
419                 if (vlan_entry->hd_tbl_status) {
420                         vlan_id = vlan_entry->vlan_id;
421                         ret = hns3_set_port_vlan_filter(hns, vlan_id, 1);
422                         if (ret)
423                                 break;
424                 }
425         }
426
427         return ret;
428 }
429
430 static int
431 hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
432 {
433         struct hns3_hw *hw = &hns->hw;
434         bool writen_to_tbl = false;
435         int ret = 0;
436
437         /*
438          * When vlan filter is enabled, hardware regards packets without vlan
439          * as packets with vlan 0. So, to receive packets without vlan, vlan id
440          * 0 is not allowed to be removed by rte_eth_dev_vlan_filter.
441          */
442         if (on == 0 && vlan_id == 0)
443                 return 0;
444
445         /*
446          * When port base vlan enabled, we use port base vlan as the vlan
447          * filter condition. In this case, we don't update vlan filter table
448          * when user add new vlan or remove exist vlan, just update the
449          * vlan list. The vlan id in vlan list will be writen in vlan filter
450          * table until port base vlan disabled
451          */
452         if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
453                 ret = hns3_set_port_vlan_filter(hns, vlan_id, on);
454                 writen_to_tbl = true;
455         }
456
457         if (ret == 0) {
458                 if (on)
459                         hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl);
460                 else
461                         hns3_rm_dev_vlan_table(hns, vlan_id);
462         }
463         return ret;
464 }
465
466 static int
467 hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
468 {
469         struct hns3_adapter *hns = dev->data->dev_private;
470         struct hns3_hw *hw = &hns->hw;
471         int ret;
472
473         rte_spinlock_lock(&hw->lock);
474         ret = hns3_vlan_filter_configure(hns, vlan_id, on);
475         rte_spinlock_unlock(&hw->lock);
476         return ret;
477 }
478
479 static int
480 hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type,
481                          uint16_t tpid)
482 {
483         struct hns3_rx_vlan_type_cfg_cmd *rx_req;
484         struct hns3_tx_vlan_type_cfg_cmd *tx_req;
485         struct hns3_hw *hw = &hns->hw;
486         struct hns3_cmd_desc desc;
487         int ret;
488
489         if ((vlan_type != ETH_VLAN_TYPE_INNER &&
490              vlan_type != ETH_VLAN_TYPE_OUTER)) {
491                 hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type);
492                 return -EINVAL;
493         }
494
495         if (tpid != RTE_ETHER_TYPE_VLAN) {
496                 hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type);
497                 return -EINVAL;
498         }
499
500         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false);
501         rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data;
502
503         if (vlan_type == ETH_VLAN_TYPE_OUTER) {
504                 rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
505                 rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
506         } else if (vlan_type == ETH_VLAN_TYPE_INNER) {
507                 rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
508                 rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
509                 rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid);
510                 rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid);
511         }
512
513         ret = hns3_cmd_send(hw, &desc, 1);
514         if (ret) {
515                 hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d",
516                          ret);
517                 return ret;
518         }
519
520         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false);
521
522         tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data;
523         tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid);
524         tx_req->in_vlan_type = rte_cpu_to_le_16(tpid);
525
526         ret = hns3_cmd_send(hw, &desc, 1);
527         if (ret)
528                 hns3_err(hw, "Send txvlan protocol type command fail, ret =%d",
529                          ret);
530         return ret;
531 }
532
533 static int
534 hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
535                    uint16_t tpid)
536 {
537         struct hns3_adapter *hns = dev->data->dev_private;
538         struct hns3_hw *hw = &hns->hw;
539         int ret;
540
541         rte_spinlock_lock(&hw->lock);
542         ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid);
543         rte_spinlock_unlock(&hw->lock);
544         return ret;
545 }
546
547 static int
548 hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns,
549                              struct hns3_rx_vtag_cfg *vcfg)
550 {
551         struct hns3_vport_vtag_rx_cfg_cmd *req;
552         struct hns3_hw *hw = &hns->hw;
553         struct hns3_cmd_desc desc;
554         uint16_t vport_id;
555         uint8_t bitmap;
556         int ret;
557
558         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false);
559
560         req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data;
561         hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B,
562                      vcfg->strip_tag1_en ? 1 : 0);
563         hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B,
564                      vcfg->strip_tag2_en ? 1 : 0);
565         hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B,
566                      vcfg->vlan1_vlan_prionly ? 1 : 0);
567         hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B,
568                      vcfg->vlan2_vlan_prionly ? 1 : 0);
569
570         /* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
571         hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG1_EN_B,
572                      vcfg->strip_tag1_discard_en ? 1 : 0);
573         hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG2_EN_B,
574                      vcfg->strip_tag2_discard_en ? 1 : 0);
575         /*
576          * In current version VF is not supported when PF is driven by DPDK
577          * driver, just need to configure parameters for PF vport.
578          */
579         vport_id = HNS3_PF_FUNC_ID;
580         req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
581         bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
582         req->vf_bitmap[req->vf_offset] = bitmap;
583
584         ret = hns3_cmd_send(hw, &desc, 1);
585         if (ret)
586                 hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret);
587         return ret;
588 }
589
590 static void
591 hns3_update_rx_offload_cfg(struct hns3_adapter *hns,
592                            struct hns3_rx_vtag_cfg *vcfg)
593 {
594         struct hns3_pf *pf = &hns->pf;
595         memcpy(&pf->vtag_config.rx_vcfg, vcfg, sizeof(pf->vtag_config.rx_vcfg));
596 }
597
598 static void
599 hns3_update_tx_offload_cfg(struct hns3_adapter *hns,
600                            struct hns3_tx_vtag_cfg *vcfg)
601 {
602         struct hns3_pf *pf = &hns->pf;
603         memcpy(&pf->vtag_config.tx_vcfg, vcfg, sizeof(pf->vtag_config.tx_vcfg));
604 }
605
606 static int
607 hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable)
608 {
609         struct hns3_rx_vtag_cfg rxvlan_cfg;
610         struct hns3_hw *hw = &hns->hw;
611         int ret;
612
613         if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
614                 rxvlan_cfg.strip_tag1_en = false;
615                 rxvlan_cfg.strip_tag2_en = enable;
616                 rxvlan_cfg.strip_tag2_discard_en = false;
617         } else {
618                 rxvlan_cfg.strip_tag1_en = enable;
619                 rxvlan_cfg.strip_tag2_en = true;
620                 rxvlan_cfg.strip_tag2_discard_en = true;
621         }
622
623         rxvlan_cfg.strip_tag1_discard_en = false;
624         rxvlan_cfg.vlan1_vlan_prionly = false;
625         rxvlan_cfg.vlan2_vlan_prionly = false;
626         rxvlan_cfg.rx_vlan_offload_en = enable;
627
628         ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg);
629         if (ret) {
630                 hns3_err(hw, "enable strip rx vtag failed, ret =%d", ret);
631                 return ret;
632         }
633
634         hns3_update_rx_offload_cfg(hns, &rxvlan_cfg);
635
636         return ret;
637 }
638
639 static int
640 hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type,
641                           uint8_t fe_type, bool filter_en, uint8_t vf_id)
642 {
643         struct hns3_vlan_filter_ctrl_cmd *req;
644         struct hns3_cmd_desc desc;
645         int ret;
646
647         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false);
648
649         req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data;
650         req->vlan_type = vlan_type;
651         req->vlan_fe = filter_en ? fe_type : 0;
652         req->vf_id = vf_id;
653
654         ret = hns3_cmd_send(hw, &desc, 1);
655         if (ret)
656                 hns3_err(hw, "set vlan filter fail, ret =%d", ret);
657
658         return ret;
659 }
660
661 static int
662 hns3_vlan_filter_init(struct hns3_adapter *hns)
663 {
664         struct hns3_hw *hw = &hns->hw;
665         int ret;
666
667         ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF,
668                                         HNS3_FILTER_FE_EGRESS, false,
669                                         HNS3_PF_FUNC_ID);
670         if (ret) {
671                 hns3_err(hw, "failed to init vf vlan filter, ret = %d", ret);
672                 return ret;
673         }
674
675         ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
676                                         HNS3_FILTER_FE_INGRESS, false,
677                                         HNS3_PF_FUNC_ID);
678         if (ret)
679                 hns3_err(hw, "failed to init port vlan filter, ret = %d", ret);
680
681         return ret;
682 }
683
684 static int
685 hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable)
686 {
687         struct hns3_hw *hw = &hns->hw;
688         int ret;
689
690         ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
691                                         HNS3_FILTER_FE_INGRESS, enable,
692                                         HNS3_PF_FUNC_ID);
693         if (ret)
694                 hns3_err(hw, "failed to %s port vlan filter, ret = %d",
695                          enable ? "enable" : "disable", ret);
696
697         return ret;
698 }
699
700 static int
701 hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask)
702 {
703         struct hns3_adapter *hns = dev->data->dev_private;
704         struct hns3_hw *hw = &hns->hw;
705         struct rte_eth_rxmode *rxmode;
706         unsigned int tmp_mask;
707         bool enable;
708         int ret = 0;
709
710         rte_spinlock_lock(&hw->lock);
711         rxmode = &dev->data->dev_conf.rxmode;
712         tmp_mask = (unsigned int)mask;
713         if (tmp_mask & ETH_VLAN_FILTER_MASK) {
714                 /* ignore vlan filter configuration during promiscuous mode */
715                 if (!dev->data->promiscuous) {
716                         /* Enable or disable VLAN filter */
717                         enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER ?
718                                  true : false;
719
720                         ret = hns3_enable_vlan_filter(hns, enable);
721                         if (ret) {
722                                 rte_spinlock_unlock(&hw->lock);
723                                 hns3_err(hw, "failed to %s rx filter, ret = %d",
724                                          enable ? "enable" : "disable", ret);
725                                 return ret;
726                         }
727                 }
728         }
729
730         if (tmp_mask & ETH_VLAN_STRIP_MASK) {
731                 /* Enable or disable VLAN stripping */
732                 enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP ?
733                     true : false;
734
735                 ret = hns3_en_hw_strip_rxvtag(hns, enable);
736                 if (ret) {
737                         rte_spinlock_unlock(&hw->lock);
738                         hns3_err(hw, "failed to %s rx strip, ret = %d",
739                                  enable ? "enable" : "disable", ret);
740                         return ret;
741                 }
742         }
743
744         rte_spinlock_unlock(&hw->lock);
745
746         return ret;
747 }
748
749 static int
750 hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns,
751                              struct hns3_tx_vtag_cfg *vcfg)
752 {
753         struct hns3_vport_vtag_tx_cfg_cmd *req;
754         struct hns3_cmd_desc desc;
755         struct hns3_hw *hw = &hns->hw;
756         uint16_t vport_id;
757         uint8_t bitmap;
758         int ret;
759
760         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false);
761
762         req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data;
763         req->def_vlan_tag1 = vcfg->default_tag1;
764         req->def_vlan_tag2 = vcfg->default_tag2;
765         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B,
766                      vcfg->accept_tag1 ? 1 : 0);
767         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B,
768                      vcfg->accept_untag1 ? 1 : 0);
769         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B,
770                      vcfg->accept_tag2 ? 1 : 0);
771         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B,
772                      vcfg->accept_untag2 ? 1 : 0);
773         hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B,
774                      vcfg->insert_tag1_en ? 1 : 0);
775         hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B,
776                      vcfg->insert_tag2_en ? 1 : 0);
777         hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0);
778
779         /* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
780         hns3_set_bit(req->vport_vlan_cfg, HNS3_TAG_SHIFT_MODE_EN_B,
781                      vcfg->tag_shift_mode_en ? 1 : 0);
782
783         /*
784          * In current version VF is not supported when PF is driven by DPDK
785          * driver, just need to configure parameters for PF vport.
786          */
787         vport_id = HNS3_PF_FUNC_ID;
788         req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
789         bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
790         req->vf_bitmap[req->vf_offset] = bitmap;
791
792         ret = hns3_cmd_send(hw, &desc, 1);
793         if (ret)
794                 hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret);
795
796         return ret;
797 }
798
799 static int
800 hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state,
801                      uint16_t pvid)
802 {
803         struct hns3_hw *hw = &hns->hw;
804         struct hns3_tx_vtag_cfg txvlan_cfg;
805         int ret;
806
807         if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) {
808                 txvlan_cfg.accept_tag1 = true;
809                 txvlan_cfg.insert_tag1_en = false;
810                 txvlan_cfg.default_tag1 = 0;
811         } else {
812                 txvlan_cfg.accept_tag1 =
813                         hw->vlan_mode == HNS3_HW_SHIFT_AND_DISCARD_MODE;
814                 txvlan_cfg.insert_tag1_en = true;
815                 txvlan_cfg.default_tag1 = pvid;
816         }
817
818         txvlan_cfg.accept_untag1 = true;
819         txvlan_cfg.accept_tag2 = true;
820         txvlan_cfg.accept_untag2 = true;
821         txvlan_cfg.insert_tag2_en = false;
822         txvlan_cfg.default_tag2 = 0;
823         txvlan_cfg.tag_shift_mode_en = true;
824
825         ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg);
826         if (ret) {
827                 hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid,
828                          ret);
829                 return ret;
830         }
831
832         hns3_update_tx_offload_cfg(hns, &txvlan_cfg);
833         return ret;
834 }
835
836
837 static void
838 hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list)
839 {
840         struct hns3_user_vlan_table *vlan_entry;
841         struct hns3_pf *pf = &hns->pf;
842
843         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
844                 if (vlan_entry->hd_tbl_status) {
845                         hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0);
846                         vlan_entry->hd_tbl_status = false;
847                 }
848         }
849
850         if (is_del_list) {
851                 vlan_entry = LIST_FIRST(&pf->vlan_list);
852                 while (vlan_entry) {
853                         LIST_REMOVE(vlan_entry, next);
854                         rte_free(vlan_entry);
855                         vlan_entry = LIST_FIRST(&pf->vlan_list);
856                 }
857         }
858 }
859
860 static void
861 hns3_add_all_vlan_table(struct hns3_adapter *hns)
862 {
863         struct hns3_user_vlan_table *vlan_entry;
864         struct hns3_pf *pf = &hns->pf;
865
866         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
867                 if (!vlan_entry->hd_tbl_status) {
868                         hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1);
869                         vlan_entry->hd_tbl_status = true;
870                 }
871         }
872 }
873
874 static void
875 hns3_remove_all_vlan_table(struct hns3_adapter *hns)
876 {
877         struct hns3_hw *hw = &hns->hw;
878         int ret;
879
880         hns3_rm_all_vlan_table(hns, true);
881         if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID) {
882                 ret = hns3_set_port_vlan_filter(hns,
883                                                 hw->port_base_vlan_cfg.pvid, 0);
884                 if (ret) {
885                         hns3_err(hw, "Failed to remove all vlan table, ret =%d",
886                                  ret);
887                         return;
888                 }
889         }
890 }
891
892 static int
893 hns3_update_vlan_filter_entries(struct hns3_adapter *hns,
894                         uint16_t port_base_vlan_state, uint16_t new_pvid)
895 {
896         struct hns3_hw *hw = &hns->hw;
897         uint16_t old_pvid;
898         int ret;
899
900         if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) {
901                 old_pvid = hw->port_base_vlan_cfg.pvid;
902                 if (old_pvid != HNS3_INVALID_PVID) {
903                         ret = hns3_set_port_vlan_filter(hns, old_pvid, 0);
904                         if (ret) {
905                                 hns3_err(hw, "failed to remove old pvid %u, "
906                                                 "ret = %d", old_pvid, ret);
907                                 return ret;
908                         }
909                 }
910
911                 hns3_rm_all_vlan_table(hns, false);
912                 ret = hns3_set_port_vlan_filter(hns, new_pvid, 1);
913                 if (ret) {
914                         hns3_err(hw, "failed to add new pvid %u, ret = %d",
915                                         new_pvid, ret);
916                         return ret;
917                 }
918         } else {
919                 ret = hns3_set_port_vlan_filter(hns, new_pvid, 0);
920                 if (ret) {
921                         hns3_err(hw, "failed to remove pvid %u, ret = %d",
922                                         new_pvid, ret);
923                         return ret;
924                 }
925
926                 hns3_add_all_vlan_table(hns);
927         }
928         return 0;
929 }
930
931 static int
932 hns3_en_pvid_strip(struct hns3_adapter *hns, int on)
933 {
934         struct hns3_rx_vtag_cfg *old_cfg = &hns->pf.vtag_config.rx_vcfg;
935         struct hns3_rx_vtag_cfg rx_vlan_cfg;
936         bool rx_strip_en;
937         int ret;
938
939         rx_strip_en = old_cfg->rx_vlan_offload_en;
940         if (on) {
941                 rx_vlan_cfg.strip_tag1_en = rx_strip_en;
942                 rx_vlan_cfg.strip_tag2_en = true;
943                 rx_vlan_cfg.strip_tag2_discard_en = true;
944         } else {
945                 rx_vlan_cfg.strip_tag1_en = false;
946                 rx_vlan_cfg.strip_tag2_en = rx_strip_en;
947                 rx_vlan_cfg.strip_tag2_discard_en = false;
948         }
949         rx_vlan_cfg.strip_tag1_discard_en = false;
950         rx_vlan_cfg.vlan1_vlan_prionly = false;
951         rx_vlan_cfg.vlan2_vlan_prionly = false;
952         rx_vlan_cfg.rx_vlan_offload_en = old_cfg->rx_vlan_offload_en;
953
954         ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg);
955         if (ret)
956                 return ret;
957
958         hns3_update_rx_offload_cfg(hns, &rx_vlan_cfg);
959         return ret;
960 }
961
962 static int
963 hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on)
964 {
965         struct hns3_hw *hw = &hns->hw;
966         uint16_t port_base_vlan_state;
967         int ret;
968
969         if (on == 0 && pvid != hw->port_base_vlan_cfg.pvid) {
970                 if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID)
971                         hns3_warn(hw, "Invalid operation! As current pvid set "
972                                   "is %u, disable pvid %u is invalid",
973                                   hw->port_base_vlan_cfg.pvid, pvid);
974                 return 0;
975         }
976
977         port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE :
978                                     HNS3_PORT_BASE_VLAN_DISABLE;
979         ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid);
980         if (ret) {
981                 hns3_err(hw, "failed to config tx vlan for pvid, ret = %d",
982                          ret);
983                 return ret;
984         }
985
986         ret = hns3_en_pvid_strip(hns, on);
987         if (ret) {
988                 hns3_err(hw, "failed to config rx vlan strip for pvid, "
989                          "ret = %d", ret);
990                 return ret;
991         }
992
993         if (pvid == HNS3_INVALID_PVID)
994                 goto out;
995         ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid);
996         if (ret) {
997                 hns3_err(hw, "failed to update vlan filter entries, ret = %d",
998                          ret);
999                 return ret;
1000         }
1001
1002 out:
1003         hw->port_base_vlan_cfg.state = port_base_vlan_state;
1004         hw->port_base_vlan_cfg.pvid = on ? pvid : HNS3_INVALID_PVID;
1005         return ret;
1006 }
1007
1008 static int
1009 hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
1010 {
1011         struct hns3_adapter *hns = dev->data->dev_private;
1012         struct hns3_hw *hw = &hns->hw;
1013         bool pvid_en_state_change;
1014         uint16_t pvid_state;
1015         int ret;
1016
1017         if (pvid > RTE_ETHER_MAX_VLAN_ID) {
1018                 hns3_err(hw, "Invalid vlan_id = %u > %d", pvid,
1019                          RTE_ETHER_MAX_VLAN_ID);
1020                 return -EINVAL;
1021         }
1022
1023         /*
1024          * If PVID configuration state change, should refresh the PVID
1025          * configuration state in struct hns3_tx_queue/hns3_rx_queue.
1026          */
1027         pvid_state = hw->port_base_vlan_cfg.state;
1028         if ((on && pvid_state == HNS3_PORT_BASE_VLAN_ENABLE) ||
1029             (!on && pvid_state == HNS3_PORT_BASE_VLAN_DISABLE))
1030                 pvid_en_state_change = false;
1031         else
1032                 pvid_en_state_change = true;
1033
1034         rte_spinlock_lock(&hw->lock);
1035         ret = hns3_vlan_pvid_configure(hns, pvid, on);
1036         rte_spinlock_unlock(&hw->lock);
1037         if (ret)
1038                 return ret;
1039         /*
1040          * Only in HNS3_SW_SHIFT_AND_MODE the PVID related operation in Tx/Rx
1041          * need be processed by PMD driver.
1042          */
1043         if (pvid_en_state_change &&
1044             hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
1045                 hns3_update_all_queues_pvid_proc_en(hw);
1046
1047         return 0;
1048 }
1049
1050 static int
1051 hns3_default_vlan_config(struct hns3_adapter *hns)
1052 {
1053         struct hns3_hw *hw = &hns->hw;
1054         int ret;
1055
1056         /*
1057          * When vlan filter is enabled, hardware regards packets without vlan
1058          * as packets with vlan 0. Therefore, if vlan 0 is not in the vlan
1059          * table, packets without vlan won't be received. So, add vlan 0 as
1060          * the default vlan.
1061          */
1062         ret = hns3_vlan_filter_configure(hns, 0, 1);
1063         if (ret)
1064                 hns3_err(hw, "default vlan 0 config failed, ret =%d", ret);
1065         return ret;
1066 }
1067
1068 static int
1069 hns3_init_vlan_config(struct hns3_adapter *hns)
1070 {
1071         struct hns3_hw *hw = &hns->hw;
1072         int ret;
1073
1074         /*
1075          * This function can be called in the initialization and reset process,
1076          * when in reset process, it means that hardware had been reseted
1077          * successfully and we need to restore the hardware configuration to
1078          * ensure that the hardware configuration remains unchanged before and
1079          * after reset.
1080          */
1081         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1082                 hw->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE;
1083                 hw->port_base_vlan_cfg.pvid = HNS3_INVALID_PVID;
1084         }
1085
1086         ret = hns3_vlan_filter_init(hns);
1087         if (ret) {
1088                 hns3_err(hw, "vlan init fail in pf, ret =%d", ret);
1089                 return ret;
1090         }
1091
1092         ret = hns3_vlan_tpid_configure(hns, ETH_VLAN_TYPE_INNER,
1093                                        RTE_ETHER_TYPE_VLAN);
1094         if (ret) {
1095                 hns3_err(hw, "tpid set fail in pf, ret =%d", ret);
1096                 return ret;
1097         }
1098
1099         /*
1100          * When in the reinit dev stage of the reset process, the following
1101          * vlan-related configurations may differ from those at initialization,
1102          * we will restore configurations to hardware in hns3_restore_vlan_table
1103          * and hns3_restore_vlan_conf later.
1104          */
1105         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1106                 ret = hns3_vlan_pvid_configure(hns, HNS3_INVALID_PVID, 0);
1107                 if (ret) {
1108                         hns3_err(hw, "pvid set fail in pf, ret =%d", ret);
1109                         return ret;
1110                 }
1111
1112                 ret = hns3_en_hw_strip_rxvtag(hns, false);
1113                 if (ret) {
1114                         hns3_err(hw, "rx strip configure fail in pf, ret =%d",
1115                                  ret);
1116                         return ret;
1117                 }
1118         }
1119
1120         return hns3_default_vlan_config(hns);
1121 }
1122
1123 static int
1124 hns3_restore_vlan_conf(struct hns3_adapter *hns)
1125 {
1126         struct hns3_pf *pf = &hns->pf;
1127         struct hns3_hw *hw = &hns->hw;
1128         uint64_t offloads;
1129         bool enable;
1130         int ret;
1131
1132         if (!hw->data->promiscuous) {
1133                 /* restore vlan filter states */
1134                 offloads = hw->data->dev_conf.rxmode.offloads;
1135                 enable = offloads & DEV_RX_OFFLOAD_VLAN_FILTER ? true : false;
1136                 ret = hns3_enable_vlan_filter(hns, enable);
1137                 if (ret) {
1138                         hns3_err(hw, "failed to restore vlan rx filter conf, "
1139                                  "ret = %d", ret);
1140                         return ret;
1141                 }
1142         }
1143
1144         ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg);
1145         if (ret) {
1146                 hns3_err(hw, "failed to restore vlan rx conf, ret = %d", ret);
1147                 return ret;
1148         }
1149
1150         ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg);
1151         if (ret)
1152                 hns3_err(hw, "failed to restore vlan tx conf, ret = %d", ret);
1153
1154         return ret;
1155 }
1156
1157 static int
1158 hns3_dev_configure_vlan(struct rte_eth_dev *dev)
1159 {
1160         struct hns3_adapter *hns = dev->data->dev_private;
1161         struct rte_eth_dev_data *data = dev->data;
1162         struct rte_eth_txmode *txmode;
1163         struct hns3_hw *hw = &hns->hw;
1164         int mask;
1165         int ret;
1166
1167         txmode = &data->dev_conf.txmode;
1168         if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged)
1169                 hns3_warn(hw,
1170                           "hw_vlan_reject_tagged or hw_vlan_reject_untagged "
1171                           "configuration is not supported! Ignore these two "
1172                           "parameters: hw_vlan_reject_tagged(%u), "
1173                           "hw_vlan_reject_untagged(%u)",
1174                           txmode->hw_vlan_reject_tagged,
1175                           txmode->hw_vlan_reject_untagged);
1176
1177         /* Apply vlan offload setting */
1178         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK;
1179         ret = hns3_vlan_offload_set(dev, mask);
1180         if (ret) {
1181                 hns3_err(hw, "dev config rx vlan offload failed, ret = %d",
1182                          ret);
1183                 return ret;
1184         }
1185
1186         /*
1187          * If pvid config is not set in rte_eth_conf, driver needn't to set
1188          * VLAN pvid related configuration to hardware.
1189          */
1190         if (txmode->pvid == 0 && txmode->hw_vlan_insert_pvid == 0)
1191                 return 0;
1192
1193         /* Apply pvid setting */
1194         ret = hns3_vlan_pvid_set(dev, txmode->pvid,
1195                                  txmode->hw_vlan_insert_pvid);
1196         if (ret)
1197                 hns3_err(hw, "dev config vlan pvid(%u) failed, ret = %d",
1198                          txmode->pvid, ret);
1199
1200         return ret;
1201 }
1202
1203 static int
1204 hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min,
1205                 unsigned int tso_mss_max)
1206 {
1207         struct hns3_cfg_tso_status_cmd *req;
1208         struct hns3_cmd_desc desc;
1209         uint16_t tso_mss;
1210
1211         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false);
1212
1213         req = (struct hns3_cfg_tso_status_cmd *)desc.data;
1214
1215         tso_mss = 0;
1216         hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1217                        tso_mss_min);
1218         req->tso_mss_min = rte_cpu_to_le_16(tso_mss);
1219
1220         tso_mss = 0;
1221         hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1222                        tso_mss_max);
1223         req->tso_mss_max = rte_cpu_to_le_16(tso_mss);
1224
1225         return hns3_cmd_send(hw, &desc, 1);
1226 }
1227
1228 static int
1229 hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size,
1230                    uint16_t *allocated_size, bool is_alloc)
1231 {
1232         struct hns3_umv_spc_alc_cmd *req;
1233         struct hns3_cmd_desc desc;
1234         int ret;
1235
1236         req = (struct hns3_umv_spc_alc_cmd *)desc.data;
1237         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false);
1238         hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1);
1239         req->space_size = rte_cpu_to_le_32(space_size);
1240
1241         ret = hns3_cmd_send(hw, &desc, 1);
1242         if (ret) {
1243                 PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d",
1244                              is_alloc ? "allocate" : "free", ret);
1245                 return ret;
1246         }
1247
1248         if (is_alloc && allocated_size)
1249                 *allocated_size = rte_le_to_cpu_32(desc.data[1]);
1250
1251         return 0;
1252 }
1253
1254 static int
1255 hns3_init_umv_space(struct hns3_hw *hw)
1256 {
1257         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1258         struct hns3_pf *pf = &hns->pf;
1259         uint16_t allocated_size = 0;
1260         int ret;
1261
1262         ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size,
1263                                  true);
1264         if (ret)
1265                 return ret;
1266
1267         if (allocated_size < pf->wanted_umv_size)
1268                 PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u",
1269                              pf->wanted_umv_size, allocated_size);
1270
1271         pf->max_umv_size = (!!allocated_size) ? allocated_size :
1272                                                 pf->wanted_umv_size;
1273         pf->used_umv_size = 0;
1274         return 0;
1275 }
1276
1277 static int
1278 hns3_uninit_umv_space(struct hns3_hw *hw)
1279 {
1280         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1281         struct hns3_pf *pf = &hns->pf;
1282         int ret;
1283
1284         if (pf->max_umv_size == 0)
1285                 return 0;
1286
1287         ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false);
1288         if (ret)
1289                 return ret;
1290
1291         pf->max_umv_size = 0;
1292
1293         return 0;
1294 }
1295
1296 static bool
1297 hns3_is_umv_space_full(struct hns3_hw *hw)
1298 {
1299         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1300         struct hns3_pf *pf = &hns->pf;
1301         bool is_full;
1302
1303         is_full = (pf->used_umv_size >= pf->max_umv_size);
1304
1305         return is_full;
1306 }
1307
1308 static void
1309 hns3_update_umv_space(struct hns3_hw *hw, bool is_free)
1310 {
1311         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1312         struct hns3_pf *pf = &hns->pf;
1313
1314         if (is_free) {
1315                 if (pf->used_umv_size > 0)
1316                         pf->used_umv_size--;
1317         } else
1318                 pf->used_umv_size++;
1319 }
1320
1321 static void
1322 hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req,
1323                       const uint8_t *addr, bool is_mc)
1324 {
1325         const unsigned char *mac_addr = addr;
1326         uint32_t high_val = ((uint32_t)mac_addr[3] << 24) |
1327                             ((uint32_t)mac_addr[2] << 16) |
1328                             ((uint32_t)mac_addr[1] << 8) |
1329                             (uint32_t)mac_addr[0];
1330         uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4];
1331
1332         hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1333         if (is_mc) {
1334                 hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1335                 hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1);
1336                 hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1337         }
1338
1339         new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val);
1340         new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff);
1341 }
1342
1343 static int
1344 hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp,
1345                              uint8_t resp_code,
1346                              enum hns3_mac_vlan_tbl_opcode op)
1347 {
1348         if (cmdq_resp) {
1349                 hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u",
1350                          cmdq_resp);
1351                 return -EIO;
1352         }
1353
1354         if (op == HNS3_MAC_VLAN_ADD) {
1355                 if (resp_code == 0 || resp_code == 1) {
1356                         return 0;
1357                 } else if (resp_code == HNS3_ADD_UC_OVERFLOW) {
1358                         hns3_err(hw, "add mac addr failed for uc_overflow");
1359                         return -ENOSPC;
1360                 } else if (resp_code == HNS3_ADD_MC_OVERFLOW) {
1361                         hns3_err(hw, "add mac addr failed for mc_overflow");
1362                         return -ENOSPC;
1363                 }
1364
1365                 hns3_err(hw, "add mac addr failed for undefined, code=%u",
1366                          resp_code);
1367                 return -EIO;
1368         } else if (op == HNS3_MAC_VLAN_REMOVE) {
1369                 if (resp_code == 0) {
1370                         return 0;
1371                 } else if (resp_code == 1) {
1372                         hns3_dbg(hw, "remove mac addr failed for miss");
1373                         return -ENOENT;
1374                 }
1375
1376                 hns3_err(hw, "remove mac addr failed for undefined, code=%u",
1377                          resp_code);
1378                 return -EIO;
1379         } else if (op == HNS3_MAC_VLAN_LKUP) {
1380                 if (resp_code == 0) {
1381                         return 0;
1382                 } else if (resp_code == 1) {
1383                         hns3_dbg(hw, "lookup mac addr failed for miss");
1384                         return -ENOENT;
1385                 }
1386
1387                 hns3_err(hw, "lookup mac addr failed for undefined, code=%u",
1388                          resp_code);
1389                 return -EIO;
1390         }
1391
1392         hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u",
1393                  op);
1394
1395         return -EINVAL;
1396 }
1397
1398 static int
1399 hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw,
1400                          struct hns3_mac_vlan_tbl_entry_cmd *req,
1401                          struct hns3_cmd_desc *desc, bool is_mc)
1402 {
1403         uint8_t resp_code;
1404         uint16_t retval;
1405         int ret;
1406
1407         hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD, true);
1408         if (is_mc) {
1409                 desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1410                 memcpy(desc[0].data, req,
1411                            sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1412                 hns3_cmd_setup_basic_desc(&desc[1], HNS3_OPC_MAC_VLAN_ADD,
1413                                           true);
1414                 desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1415                 hns3_cmd_setup_basic_desc(&desc[2], HNS3_OPC_MAC_VLAN_ADD,
1416                                           true);
1417                 ret = hns3_cmd_send(hw, desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1418         } else {
1419                 memcpy(desc[0].data, req,
1420                        sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1421                 ret = hns3_cmd_send(hw, desc, 1);
1422         }
1423         if (ret) {
1424                 hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.",
1425                          ret);
1426                 return ret;
1427         }
1428         resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1429         retval = rte_le_to_cpu_16(desc[0].retval);
1430
1431         return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1432                                             HNS3_MAC_VLAN_LKUP);
1433 }
1434
1435 static int
1436 hns3_add_mac_vlan_tbl(struct hns3_hw *hw,
1437                       struct hns3_mac_vlan_tbl_entry_cmd *req,
1438                       struct hns3_cmd_desc *mc_desc)
1439 {
1440         uint8_t resp_code;
1441         uint16_t retval;
1442         int cfg_status;
1443         int ret;
1444
1445         if (mc_desc == NULL) {
1446                 struct hns3_cmd_desc desc;
1447
1448                 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ADD, false);
1449                 memcpy(desc.data, req,
1450                        sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1451                 ret = hns3_cmd_send(hw, &desc, 1);
1452                 resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1453                 retval = rte_le_to_cpu_16(desc.retval);
1454
1455                 cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1456                                                           HNS3_MAC_VLAN_ADD);
1457         } else {
1458                 hns3_cmd_reuse_desc(&mc_desc[0], false);
1459                 mc_desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1460                 hns3_cmd_reuse_desc(&mc_desc[1], false);
1461                 mc_desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1462                 hns3_cmd_reuse_desc(&mc_desc[2], false);
1463                 mc_desc[2].flag &= rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT);
1464                 memcpy(mc_desc[0].data, req,
1465                        sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1466                 mc_desc[0].retval = 0;
1467                 ret = hns3_cmd_send(hw, mc_desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1468                 resp_code = (rte_le_to_cpu_32(mc_desc[0].data[0]) >> 8) & 0xff;
1469                 retval = rte_le_to_cpu_16(mc_desc[0].retval);
1470
1471                 cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1472                                                           HNS3_MAC_VLAN_ADD);
1473         }
1474
1475         if (ret) {
1476                 hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret);
1477                 return ret;
1478         }
1479
1480         return cfg_status;
1481 }
1482
1483 static int
1484 hns3_remove_mac_vlan_tbl(struct hns3_hw *hw,
1485                          struct hns3_mac_vlan_tbl_entry_cmd *req)
1486 {
1487         struct hns3_cmd_desc desc;
1488         uint8_t resp_code;
1489         uint16_t retval;
1490         int ret;
1491
1492         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false);
1493
1494         memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1495
1496         ret = hns3_cmd_send(hw, &desc, 1);
1497         if (ret) {
1498                 hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret);
1499                 return ret;
1500         }
1501         resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1502         retval = rte_le_to_cpu_16(desc.retval);
1503
1504         return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1505                                             HNS3_MAC_VLAN_REMOVE);
1506 }
1507
1508 static int
1509 hns3_add_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1510 {
1511         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1512         struct hns3_mac_vlan_tbl_entry_cmd req;
1513         struct hns3_pf *pf = &hns->pf;
1514         struct hns3_cmd_desc desc[3];
1515         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1516         uint16_t egress_port = 0;
1517         uint8_t vf_id;
1518         int ret;
1519
1520         /* check if mac addr is valid */
1521         if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1522                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1523                                       mac_addr);
1524                 hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid",
1525                          mac_str);
1526                 return -EINVAL;
1527         }
1528
1529         memset(&req, 0, sizeof(req));
1530
1531         /*
1532          * In current version VF is not supported when PF is driven by DPDK
1533          * driver, just need to configure parameters for PF vport.
1534          */
1535         vf_id = HNS3_PF_FUNC_ID;
1536         hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M,
1537                        HNS3_MAC_EPORT_VFID_S, vf_id);
1538
1539         req.egress_port = rte_cpu_to_le_16(egress_port);
1540
1541         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1542
1543         /*
1544          * Lookup the mac address in the mac_vlan table, and add
1545          * it if the entry is inexistent. Repeated unicast entry
1546          * is not allowed in the mac vlan table.
1547          */
1548         ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, false);
1549         if (ret == -ENOENT) {
1550                 if (!hns3_is_umv_space_full(hw)) {
1551                         ret = hns3_add_mac_vlan_tbl(hw, &req, NULL);
1552                         if (!ret)
1553                                 hns3_update_umv_space(hw, false);
1554                         return ret;
1555                 }
1556
1557                 hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size);
1558
1559                 return -ENOSPC;
1560         }
1561
1562         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr);
1563
1564         /* check if we just hit the duplicate */
1565         if (ret == 0) {
1566                 hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str);
1567                 return 0;
1568         }
1569
1570         hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table",
1571                  mac_str);
1572
1573         return ret;
1574 }
1575
1576 static int
1577 hns3_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1578 {
1579         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1580         struct rte_ether_addr *addr;
1581         int ret;
1582         int i;
1583
1584         for (i = 0; i < hw->mc_addrs_num; i++) {
1585                 addr = &hw->mc_addrs[i];
1586                 /* Check if there are duplicate addresses */
1587                 if (rte_is_same_ether_addr(addr, mac_addr)) {
1588                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1589                                               addr);
1590                         hns3_err(hw, "failed to add mc mac addr, same addrs"
1591                                  "(%s) is added by the set_mc_mac_addr_list "
1592                                  "API", mac_str);
1593                         return -EINVAL;
1594                 }
1595         }
1596
1597         ret = hns3_add_mc_addr(hw, mac_addr);
1598         if (ret) {
1599                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1600                                       mac_addr);
1601                 hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
1602                          mac_str, ret);
1603         }
1604         return ret;
1605 }
1606
1607 static int
1608 hns3_remove_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1609 {
1610         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1611         int ret;
1612
1613         ret = hns3_remove_mc_addr(hw, mac_addr);
1614         if (ret) {
1615                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1616                                       mac_addr);
1617                 hns3_err(hw, "failed to remove mc mac addr(%s), ret = %d",
1618                          mac_str, ret);
1619         }
1620         return ret;
1621 }
1622
1623 static int
1624 hns3_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
1625                   uint32_t idx, __rte_unused uint32_t pool)
1626 {
1627         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1628         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1629         int ret;
1630
1631         rte_spinlock_lock(&hw->lock);
1632
1633         /*
1634          * In hns3 network engine adding UC and MC mac address with different
1635          * commands with firmware. We need to determine whether the input
1636          * address is a UC or a MC address to call different commands.
1637          * By the way, it is recommended calling the API function named
1638          * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
1639          * using the rte_eth_dev_mac_addr_add API function to set MC mac address
1640          * may affect the specifications of UC mac addresses.
1641          */
1642         if (rte_is_multicast_ether_addr(mac_addr))
1643                 ret = hns3_add_mc_addr_common(hw, mac_addr);
1644         else
1645                 ret = hns3_add_uc_addr_common(hw, mac_addr);
1646
1647         if (ret) {
1648                 rte_spinlock_unlock(&hw->lock);
1649                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1650                                       mac_addr);
1651                 hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
1652                          ret);
1653                 return ret;
1654         }
1655
1656         if (idx == 0)
1657                 hw->mac.default_addr_setted = true;
1658         rte_spinlock_unlock(&hw->lock);
1659
1660         return ret;
1661 }
1662
1663 static int
1664 hns3_remove_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1665 {
1666         struct hns3_mac_vlan_tbl_entry_cmd req;
1667         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1668         int ret;
1669
1670         /* check if mac addr is valid */
1671         if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1672                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1673                                       mac_addr);
1674                 hns3_err(hw, "remove unicast mac addr err! addr(%s) invalid",
1675                          mac_str);
1676                 return -EINVAL;
1677         }
1678
1679         memset(&req, 0, sizeof(req));
1680         hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1681         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1682         ret = hns3_remove_mac_vlan_tbl(hw, &req);
1683         if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */
1684                 return 0;
1685         else if (ret == 0)
1686                 hns3_update_umv_space(hw, true);
1687
1688         return ret;
1689 }
1690
1691 static void
1692 hns3_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
1693 {
1694         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1695         /* index will be checked by upper level rte interface */
1696         struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
1697         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1698         int ret;
1699
1700         rte_spinlock_lock(&hw->lock);
1701
1702         if (rte_is_multicast_ether_addr(mac_addr))
1703                 ret = hns3_remove_mc_addr_common(hw, mac_addr);
1704         else
1705                 ret = hns3_remove_uc_addr_common(hw, mac_addr);
1706         rte_spinlock_unlock(&hw->lock);
1707         if (ret) {
1708                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1709                                       mac_addr);
1710                 hns3_err(hw, "failed to remove mac addr(%s), ret = %d", mac_str,
1711                          ret);
1712         }
1713 }
1714
1715 static int
1716 hns3_set_default_mac_addr(struct rte_eth_dev *dev,
1717                           struct rte_ether_addr *mac_addr)
1718 {
1719         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1720         struct rte_ether_addr *oaddr;
1721         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1722         bool default_addr_setted;
1723         bool rm_succes = false;
1724         int ret, ret_val;
1725
1726         /*
1727          * It has been guaranteed that input parameter named mac_addr is valid
1728          * address in the rte layer of DPDK framework.
1729          */
1730         oaddr = (struct rte_ether_addr *)hw->mac.mac_addr;
1731         default_addr_setted = hw->mac.default_addr_setted;
1732         if (default_addr_setted && !!rte_is_same_ether_addr(mac_addr, oaddr))
1733                 return 0;
1734
1735         rte_spinlock_lock(&hw->lock);
1736         if (default_addr_setted) {
1737                 ret = hns3_remove_uc_addr_common(hw, oaddr);
1738                 if (ret) {
1739                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1740                                               oaddr);
1741                         hns3_warn(hw, "Remove old uc mac address(%s) fail: %d",
1742                                   mac_str, ret);
1743                         rm_succes = false;
1744                 } else
1745                         rm_succes = true;
1746         }
1747
1748         ret = hns3_add_uc_addr_common(hw, mac_addr);
1749         if (ret) {
1750                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1751                                       mac_addr);
1752                 hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret);
1753                 goto err_add_uc_addr;
1754         }
1755
1756         ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes);
1757         if (ret) {
1758                 hns3_err(hw, "Failed to configure mac pause address: %d", ret);
1759                 goto err_pause_addr_cfg;
1760         }
1761
1762         rte_ether_addr_copy(mac_addr,
1763                             (struct rte_ether_addr *)hw->mac.mac_addr);
1764         hw->mac.default_addr_setted = true;
1765         rte_spinlock_unlock(&hw->lock);
1766
1767         return 0;
1768
1769 err_pause_addr_cfg:
1770         ret_val = hns3_remove_uc_addr_common(hw, mac_addr);
1771         if (ret_val) {
1772                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1773                                       mac_addr);
1774                 hns3_warn(hw,
1775                           "Failed to roll back to del setted mac addr(%s): %d",
1776                           mac_str, ret_val);
1777         }
1778
1779 err_add_uc_addr:
1780         if (rm_succes) {
1781                 ret_val = hns3_add_uc_addr_common(hw, oaddr);
1782                 if (ret_val) {
1783                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1784                                               oaddr);
1785                         hns3_warn(hw,
1786                                   "Failed to restore old uc mac addr(%s): %d",
1787                                   mac_str, ret_val);
1788                         hw->mac.default_addr_setted = false;
1789                 }
1790         }
1791         rte_spinlock_unlock(&hw->lock);
1792
1793         return ret;
1794 }
1795
1796 static int
1797 hns3_configure_all_mac_addr(struct hns3_adapter *hns, bool del)
1798 {
1799         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1800         struct hns3_hw *hw = &hns->hw;
1801         struct rte_ether_addr *addr;
1802         int err = 0;
1803         int ret;
1804         int i;
1805
1806         for (i = 0; i < HNS3_UC_MACADDR_NUM; i++) {
1807                 addr = &hw->data->mac_addrs[i];
1808                 if (rte_is_zero_ether_addr(addr))
1809                         continue;
1810                 if (rte_is_multicast_ether_addr(addr))
1811                         ret = del ? hns3_remove_mc_addr(hw, addr) :
1812                               hns3_add_mc_addr(hw, addr);
1813                 else
1814                         ret = del ? hns3_remove_uc_addr_common(hw, addr) :
1815                               hns3_add_uc_addr_common(hw, addr);
1816
1817                 if (ret) {
1818                         err = ret;
1819                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1820                                               addr);
1821                         hns3_err(hw, "failed to %s mac addr(%s) index:%d "
1822                                  "ret = %d.", del ? "remove" : "restore",
1823                                  mac_str, i, ret);
1824                 }
1825         }
1826         return err;
1827 }
1828
1829 static void
1830 hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr)
1831 {
1832 #define HNS3_VF_NUM_IN_FIRST_DESC 192
1833         uint8_t word_num;
1834         uint8_t bit_num;
1835
1836         if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) {
1837                 word_num = vfid / 32;
1838                 bit_num = vfid % 32;
1839                 if (clr)
1840                         desc[1].data[word_num] &=
1841                             rte_cpu_to_le_32(~(1UL << bit_num));
1842                 else
1843                         desc[1].data[word_num] |=
1844                             rte_cpu_to_le_32(1UL << bit_num);
1845         } else {
1846                 word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32;
1847                 bit_num = vfid % 32;
1848                 if (clr)
1849                         desc[2].data[word_num] &=
1850                             rte_cpu_to_le_32(~(1UL << bit_num));
1851                 else
1852                         desc[2].data[word_num] |=
1853                             rte_cpu_to_le_32(1UL << bit_num);
1854         }
1855 }
1856
1857 static int
1858 hns3_add_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1859 {
1860         struct hns3_mac_vlan_tbl_entry_cmd req;
1861         struct hns3_cmd_desc desc[3];
1862         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1863         uint8_t vf_id;
1864         int ret;
1865
1866         /* Check if mac addr is valid */
1867         if (!rte_is_multicast_ether_addr(mac_addr)) {
1868                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1869                                       mac_addr);
1870                 hns3_err(hw, "failed to add mc mac addr, addr(%s) invalid",
1871                          mac_str);
1872                 return -EINVAL;
1873         }
1874
1875         memset(&req, 0, sizeof(req));
1876         hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1877         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1878         ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1879         if (ret) {
1880                 /* This mac addr do not exist, add new entry for it */
1881                 memset(desc[0].data, 0, sizeof(desc[0].data));
1882                 memset(desc[1].data, 0, sizeof(desc[0].data));
1883                 memset(desc[2].data, 0, sizeof(desc[0].data));
1884         }
1885
1886         /*
1887          * In current version VF is not supported when PF is driven by DPDK
1888          * driver, just need to configure parameters for PF vport.
1889          */
1890         vf_id = HNS3_PF_FUNC_ID;
1891         hns3_update_desc_vfid(desc, vf_id, false);
1892         ret = hns3_add_mac_vlan_tbl(hw, &req, desc);
1893         if (ret) {
1894                 if (ret == -ENOSPC)
1895                         hns3_err(hw, "mc mac vlan table is full");
1896                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1897                                       mac_addr);
1898                 hns3_err(hw, "failed to add mc mac addr(%s): %d", mac_str, ret);
1899         }
1900
1901         return ret;
1902 }
1903
1904 static int
1905 hns3_remove_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1906 {
1907         struct hns3_mac_vlan_tbl_entry_cmd req;
1908         struct hns3_cmd_desc desc[3];
1909         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1910         uint8_t vf_id;
1911         int ret;
1912
1913         /* Check if mac addr is valid */
1914         if (!rte_is_multicast_ether_addr(mac_addr)) {
1915                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1916                                       mac_addr);
1917                 hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid",
1918                          mac_str);
1919                 return -EINVAL;
1920         }
1921
1922         memset(&req, 0, sizeof(req));
1923         hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1924         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1925         ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1926         if (ret == 0) {
1927                 /*
1928                  * This mac addr exist, remove this handle's VFID for it.
1929                  * In current version VF is not supported when PF is driven by
1930                  * DPDK driver, just need to configure parameters for PF vport.
1931                  */
1932                 vf_id = HNS3_PF_FUNC_ID;
1933                 hns3_update_desc_vfid(desc, vf_id, true);
1934
1935                 /* All the vfid is zero, so need to delete this entry */
1936                 ret = hns3_remove_mac_vlan_tbl(hw, &req);
1937         } else if (ret == -ENOENT) {
1938                 /* This mac addr doesn't exist. */
1939                 return 0;
1940         }
1941
1942         if (ret) {
1943                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1944                                       mac_addr);
1945                 hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret);
1946         }
1947
1948         return ret;
1949 }
1950
1951 static int
1952 hns3_set_mc_addr_chk_param(struct hns3_hw *hw,
1953                            struct rte_ether_addr *mc_addr_set,
1954                            uint32_t nb_mc_addr)
1955 {
1956         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1957         struct rte_ether_addr *addr;
1958         uint32_t i;
1959         uint32_t j;
1960
1961         if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
1962                 hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%u) "
1963                          "invalid. valid range: 0~%d",
1964                          nb_mc_addr, HNS3_MC_MACADDR_NUM);
1965                 return -EINVAL;
1966         }
1967
1968         /* Check if input mac addresses are valid */
1969         for (i = 0; i < nb_mc_addr; i++) {
1970                 addr = &mc_addr_set[i];
1971                 if (!rte_is_multicast_ether_addr(addr)) {
1972                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1973                                               addr);
1974                         hns3_err(hw,
1975                                  "failed to set mc mac addr, addr(%s) invalid.",
1976                                  mac_str);
1977                         return -EINVAL;
1978                 }
1979
1980                 /* Check if there are duplicate addresses */
1981                 for (j = i + 1; j < nb_mc_addr; j++) {
1982                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
1983                                 hns3_ether_format_addr(mac_str,
1984                                                       RTE_ETHER_ADDR_FMT_SIZE,
1985                                                       addr);
1986                                 hns3_err(hw, "failed to set mc mac addr, "
1987                                          "addrs invalid. two same addrs(%s).",
1988                                          mac_str);
1989                                 return -EINVAL;
1990                         }
1991                 }
1992
1993                 /*
1994                  * Check if there are duplicate addresses between mac_addrs
1995                  * and mc_addr_set
1996                  */
1997                 for (j = 0; j < HNS3_UC_MACADDR_NUM; j++) {
1998                         if (rte_is_same_ether_addr(addr,
1999                                                    &hw->data->mac_addrs[j])) {
2000                                 hns3_ether_format_addr(mac_str,
2001                                                       RTE_ETHER_ADDR_FMT_SIZE,
2002                                                       addr);
2003                                 hns3_err(hw, "failed to set mc mac addr, "
2004                                          "addrs invalid. addrs(%s) has already "
2005                                          "configured in mac_addr add API",
2006                                          mac_str);
2007                                 return -EINVAL;
2008                         }
2009                 }
2010         }
2011
2012         return 0;
2013 }
2014
2015 static void
2016 hns3_set_mc_addr_calc_addr(struct hns3_hw *hw,
2017                            struct rte_ether_addr *mc_addr_set,
2018                            int mc_addr_num,
2019                            struct rte_ether_addr *reserved_addr_list,
2020                            int *reserved_addr_num,
2021                            struct rte_ether_addr *add_addr_list,
2022                            int *add_addr_num,
2023                            struct rte_ether_addr *rm_addr_list,
2024                            int *rm_addr_num)
2025 {
2026         struct rte_ether_addr *addr;
2027         int current_addr_num;
2028         int reserved_num = 0;
2029         int add_num = 0;
2030         int rm_num = 0;
2031         int num;
2032         int i;
2033         int j;
2034         bool same_addr;
2035
2036         /* Calculate the mc mac address list that should be removed */
2037         current_addr_num = hw->mc_addrs_num;
2038         for (i = 0; i < current_addr_num; i++) {
2039                 addr = &hw->mc_addrs[i];
2040                 same_addr = false;
2041                 for (j = 0; j < mc_addr_num; j++) {
2042                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
2043                                 same_addr = true;
2044                                 break;
2045                         }
2046                 }
2047
2048                 if (!same_addr) {
2049                         rte_ether_addr_copy(addr, &rm_addr_list[rm_num]);
2050                         rm_num++;
2051                 } else {
2052                         rte_ether_addr_copy(addr,
2053                                             &reserved_addr_list[reserved_num]);
2054                         reserved_num++;
2055                 }
2056         }
2057
2058         /* Calculate the mc mac address list that should be added */
2059         for (i = 0; i < mc_addr_num; i++) {
2060                 addr = &mc_addr_set[i];
2061                 same_addr = false;
2062                 for (j = 0; j < current_addr_num; j++) {
2063                         if (rte_is_same_ether_addr(addr, &hw->mc_addrs[j])) {
2064                                 same_addr = true;
2065                                 break;
2066                         }
2067                 }
2068
2069                 if (!same_addr) {
2070                         rte_ether_addr_copy(addr, &add_addr_list[add_num]);
2071                         add_num++;
2072                 }
2073         }
2074
2075         /* Reorder the mc mac address list maintained by driver */
2076         for (i = 0; i < reserved_num; i++)
2077                 rte_ether_addr_copy(&reserved_addr_list[i], &hw->mc_addrs[i]);
2078
2079         for (i = 0; i < rm_num; i++) {
2080                 num = reserved_num + i;
2081                 rte_ether_addr_copy(&rm_addr_list[i], &hw->mc_addrs[num]);
2082         }
2083
2084         *reserved_addr_num = reserved_num;
2085         *add_addr_num = add_num;
2086         *rm_addr_num = rm_num;
2087 }
2088
2089 static int
2090 hns3_set_mc_mac_addr_list(struct rte_eth_dev *dev,
2091                           struct rte_ether_addr *mc_addr_set,
2092                           uint32_t nb_mc_addr)
2093 {
2094         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2095         struct rte_ether_addr reserved_addr_list[HNS3_MC_MACADDR_NUM];
2096         struct rte_ether_addr add_addr_list[HNS3_MC_MACADDR_NUM];
2097         struct rte_ether_addr rm_addr_list[HNS3_MC_MACADDR_NUM];
2098         struct rte_ether_addr *addr;
2099         int reserved_addr_num;
2100         int add_addr_num;
2101         int rm_addr_num;
2102         int mc_addr_num;
2103         int num;
2104         int ret;
2105         int i;
2106
2107         /* Check if input parameters are valid */
2108         ret = hns3_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
2109         if (ret)
2110                 return ret;
2111
2112         rte_spinlock_lock(&hw->lock);
2113
2114         /*
2115          * Calculate the mc mac address lists those should be removed and be
2116          * added, Reorder the mc mac address list maintained by driver.
2117          */
2118         mc_addr_num = (int)nb_mc_addr;
2119         hns3_set_mc_addr_calc_addr(hw, mc_addr_set, mc_addr_num,
2120                                    reserved_addr_list, &reserved_addr_num,
2121                                    add_addr_list, &add_addr_num,
2122                                    rm_addr_list, &rm_addr_num);
2123
2124         /* Remove mc mac addresses */
2125         for (i = 0; i < rm_addr_num; i++) {
2126                 num = rm_addr_num - i - 1;
2127                 addr = &rm_addr_list[num];
2128                 ret = hns3_remove_mc_addr(hw, addr);
2129                 if (ret) {
2130                         rte_spinlock_unlock(&hw->lock);
2131                         return ret;
2132                 }
2133                 hw->mc_addrs_num--;
2134         }
2135
2136         /* Add mc mac addresses */
2137         for (i = 0; i < add_addr_num; i++) {
2138                 addr = &add_addr_list[i];
2139                 ret = hns3_add_mc_addr(hw, addr);
2140                 if (ret) {
2141                         rte_spinlock_unlock(&hw->lock);
2142                         return ret;
2143                 }
2144
2145                 num = reserved_addr_num + i;
2146                 rte_ether_addr_copy(addr, &hw->mc_addrs[num]);
2147                 hw->mc_addrs_num++;
2148         }
2149         rte_spinlock_unlock(&hw->lock);
2150
2151         return 0;
2152 }
2153
2154 static int
2155 hns3_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
2156 {
2157         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2158         struct hns3_hw *hw = &hns->hw;
2159         struct rte_ether_addr *addr;
2160         int err = 0;
2161         int ret;
2162         int i;
2163
2164         for (i = 0; i < hw->mc_addrs_num; i++) {
2165                 addr = &hw->mc_addrs[i];
2166                 if (!rte_is_multicast_ether_addr(addr))
2167                         continue;
2168                 if (del)
2169                         ret = hns3_remove_mc_addr(hw, addr);
2170                 else
2171                         ret = hns3_add_mc_addr(hw, addr);
2172                 if (ret) {
2173                         err = ret;
2174                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2175                                               addr);
2176                         hns3_dbg(hw, "%s mc mac addr: %s failed for pf: ret = %d",
2177                                  del ? "Remove" : "Restore", mac_str, ret);
2178                 }
2179         }
2180         return err;
2181 }
2182
2183 static int
2184 hns3_check_mq_mode(struct rte_eth_dev *dev)
2185 {
2186         enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
2187         enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
2188         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2189         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2190         struct rte_eth_dcb_rx_conf *dcb_rx_conf;
2191         struct rte_eth_dcb_tx_conf *dcb_tx_conf;
2192         uint8_t num_tc;
2193         int max_tc = 0;
2194         int i;
2195
2196         dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
2197         dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
2198
2199         if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB_RSS) {
2200                 hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB_RSS is not supported. "
2201                          "rx_mq_mode = %d", rx_mq_mode);
2202                 return -EINVAL;
2203         }
2204
2205         if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB ||
2206             tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
2207                 hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB and ETH_MQ_TX_VMDQ_DCB "
2208                          "is not supported. rx_mq_mode = %d, tx_mq_mode = %d",
2209                          rx_mq_mode, tx_mq_mode);
2210                 return -EINVAL;
2211         }
2212
2213         if (rx_mq_mode == ETH_MQ_RX_DCB_RSS) {
2214                 if (dcb_rx_conf->nb_tcs > pf->tc_max) {
2215                         hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.",
2216                                  dcb_rx_conf->nb_tcs, pf->tc_max);
2217                         return -EINVAL;
2218                 }
2219
2220                 if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS ||
2221                       dcb_rx_conf->nb_tcs == HNS3_8_TCS)) {
2222                         hns3_err(hw, "on ETH_MQ_RX_DCB_RSS mode, "
2223                                  "nb_tcs(%d) != %d or %d in rx direction.",
2224                                  dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS);
2225                         return -EINVAL;
2226                 }
2227
2228                 if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) {
2229                         hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)",
2230                                  dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs);
2231                         return -EINVAL;
2232                 }
2233
2234                 for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
2235                         if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) {
2236                                 hns3_err(hw, "dcb_tc[%d] = %u in rx direction, "
2237                                          "is not equal to one in tx direction.",
2238                                          i, dcb_rx_conf->dcb_tc[i]);
2239                                 return -EINVAL;
2240                         }
2241                         if (dcb_rx_conf->dcb_tc[i] > max_tc)
2242                                 max_tc = dcb_rx_conf->dcb_tc[i];
2243                 }
2244
2245                 num_tc = max_tc + 1;
2246                 if (num_tc > dcb_rx_conf->nb_tcs) {
2247                         hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)",
2248                                  num_tc, dcb_rx_conf->nb_tcs);
2249                         return -EINVAL;
2250                 }
2251         }
2252
2253         return 0;
2254 }
2255
2256 static int
2257 hns3_check_dcb_cfg(struct rte_eth_dev *dev)
2258 {
2259         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2260
2261         if (!hns3_dev_dcb_supported(hw)) {
2262                 hns3_err(hw, "this port does not support dcb configurations.");
2263                 return -EOPNOTSUPP;
2264         }
2265
2266         if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) {
2267                 hns3_err(hw, "MAC pause enabled, cannot config dcb info.");
2268                 return -EOPNOTSUPP;
2269         }
2270
2271         /* Check multiple queue mode */
2272         return hns3_check_mq_mode(dev);
2273 }
2274
2275 static int
2276 hns3_bind_ring_with_vector(struct hns3_hw *hw, uint16_t vector_id, bool en,
2277                            enum hns3_ring_type queue_type, uint16_t queue_id)
2278 {
2279         struct hns3_cmd_desc desc;
2280         struct hns3_ctrl_vector_chain_cmd *req =
2281                 (struct hns3_ctrl_vector_chain_cmd *)desc.data;
2282         enum hns3_cmd_status status;
2283         enum hns3_opcode_type op;
2284         uint16_t tqp_type_and_id = 0;
2285         uint16_t type;
2286         uint16_t gl;
2287
2288         op = en ? HNS3_OPC_ADD_RING_TO_VECTOR : HNS3_OPC_DEL_RING_TO_VECTOR;
2289         hns3_cmd_setup_basic_desc(&desc, op, false);
2290         req->int_vector_id = hns3_get_field(vector_id, HNS3_TQP_INT_ID_L_M,
2291                                               HNS3_TQP_INT_ID_L_S);
2292         req->int_vector_id_h = hns3_get_field(vector_id, HNS3_TQP_INT_ID_H_M,
2293                                               HNS3_TQP_INT_ID_H_S);
2294
2295         if (queue_type == HNS3_RING_TYPE_RX)
2296                 gl = HNS3_RING_GL_RX;
2297         else
2298                 gl = HNS3_RING_GL_TX;
2299
2300         type = queue_type;
2301
2302         hns3_set_field(tqp_type_and_id, HNS3_INT_TYPE_M, HNS3_INT_TYPE_S,
2303                        type);
2304         hns3_set_field(tqp_type_and_id, HNS3_TQP_ID_M, HNS3_TQP_ID_S, queue_id);
2305         hns3_set_field(tqp_type_and_id, HNS3_INT_GL_IDX_M, HNS3_INT_GL_IDX_S,
2306                        gl);
2307         req->tqp_type_and_id[0] = rte_cpu_to_le_16(tqp_type_and_id);
2308         req->int_cause_num = 1;
2309         status = hns3_cmd_send(hw, &desc, 1);
2310         if (status) {
2311                 hns3_err(hw, "%s TQP %u fail, vector_id is %u, status is %d.",
2312                          en ? "Map" : "Unmap", queue_id, vector_id, status);
2313                 return status;
2314         }
2315
2316         return 0;
2317 }
2318
2319 static int
2320 hns3_init_ring_with_vector(struct hns3_hw *hw)
2321 {
2322         uint16_t vec;
2323         int ret;
2324         int i;
2325
2326         /*
2327          * In hns3 network engine, vector 0 is always the misc interrupt of this
2328          * function, vector 1~N can be used respectively for the queues of the
2329          * function. Tx and Rx queues with the same number share the interrupt
2330          * vector. In the initialization clearing the all hardware mapping
2331          * relationship configurations between queues and interrupt vectors is
2332          * needed, so some error caused by the residual configurations, such as
2333          * the unexpected Tx interrupt, can be avoid.
2334          */
2335         vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
2336         if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
2337                 vec = vec - 1; /* the last interrupt is reserved */
2338         hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
2339         for (i = 0; i < hw->intr_tqps_num; i++) {
2340                 /*
2341                  * Set gap limiter/rate limiter/quanity limiter algorithm
2342                  * configuration for interrupt coalesce of queue's interrupt.
2343                  */
2344                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
2345                                        HNS3_TQP_INTR_GL_DEFAULT);
2346                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
2347                                        HNS3_TQP_INTR_GL_DEFAULT);
2348                 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
2349                 /*
2350                  * QL(quantity limiter) is not used currently, just set 0 to
2351                  * close it.
2352                  */
2353                 hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
2354
2355                 ret = hns3_bind_ring_with_vector(hw, vec, false,
2356                                                  HNS3_RING_TYPE_TX, i);
2357                 if (ret) {
2358                         PMD_INIT_LOG(ERR, "PF fail to unbind TX ring(%d) with "
2359                                           "vector: %u, ret=%d", i, vec, ret);
2360                         return ret;
2361                 }
2362
2363                 ret = hns3_bind_ring_with_vector(hw, vec, false,
2364                                                  HNS3_RING_TYPE_RX, i);
2365                 if (ret) {
2366                         PMD_INIT_LOG(ERR, "PF fail to unbind RX ring(%d) with "
2367                                           "vector: %u, ret=%d", i, vec, ret);
2368                         return ret;
2369                 }
2370         }
2371
2372         return 0;
2373 }
2374
2375 static int
2376 hns3_dev_configure(struct rte_eth_dev *dev)
2377 {
2378         struct hns3_adapter *hns = dev->data->dev_private;
2379         struct rte_eth_conf *conf = &dev->data->dev_conf;
2380         enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
2381         struct hns3_hw *hw = &hns->hw;
2382         uint16_t nb_rx_q = dev->data->nb_rx_queues;
2383         uint16_t nb_tx_q = dev->data->nb_tx_queues;
2384         struct rte_eth_rss_conf rss_conf;
2385         uint32_t max_rx_pkt_len;
2386         uint16_t mtu;
2387         bool gro_en;
2388         int ret;
2389
2390         hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
2391
2392         /*
2393          * Some versions of hardware network engine does not support
2394          * individually enable/disable/reset the Tx or Rx queue. These devices
2395          * must enable/disable/reset Tx and Rx queues at the same time. When the
2396          * numbers of Tx queues allocated by upper applications are not equal to
2397          * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
2398          * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
2399          * work as usual. But these fake queues are imperceptible, and can not
2400          * be used by upper applications.
2401          */
2402         if (!hns3_dev_indep_txrx_supported(hw)) {
2403                 ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
2404                 if (ret) {
2405                         hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.",
2406                                  ret);
2407                         return ret;
2408                 }
2409         }
2410
2411         hw->adapter_state = HNS3_NIC_CONFIGURING;
2412         if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
2413                 hns3_err(hw, "setting link speed/duplex not supported");
2414                 ret = -EINVAL;
2415                 goto cfg_err;
2416         }
2417
2418         if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG) {
2419                 ret = hns3_check_dcb_cfg(dev);
2420                 if (ret)
2421                         goto cfg_err;
2422         }
2423
2424         /* When RSS is not configured, redirect the packet queue 0 */
2425         if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
2426                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
2427                 rss_conf = conf->rx_adv_conf.rss_conf;
2428                 hw->rss_dis_flag = false;
2429                 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
2430                 if (ret)
2431                         goto cfg_err;
2432         }
2433
2434         /*
2435          * If jumbo frames are enabled, MTU needs to be refreshed
2436          * according to the maximum RX packet length.
2437          */
2438         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
2439                 max_rx_pkt_len = conf->rxmode.max_rx_pkt_len;
2440                 if (max_rx_pkt_len > HNS3_MAX_FRAME_LEN ||
2441                     max_rx_pkt_len <= HNS3_DEFAULT_FRAME_LEN) {
2442                         hns3_err(hw, "maximum Rx packet length must be greater "
2443                                  "than %u and less than %u when jumbo frame enabled.",
2444                                  (uint16_t)HNS3_DEFAULT_FRAME_LEN,
2445                                  (uint16_t)HNS3_MAX_FRAME_LEN);
2446                         ret = -EINVAL;
2447                         goto cfg_err;
2448                 }
2449
2450                 mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(max_rx_pkt_len);
2451                 ret = hns3_dev_mtu_set(dev, mtu);
2452                 if (ret)
2453                         goto cfg_err;
2454                 dev->data->mtu = mtu;
2455         }
2456
2457         ret = hns3_dev_configure_vlan(dev);
2458         if (ret)
2459                 goto cfg_err;
2460
2461         /* config hardware GRO */
2462         gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
2463         ret = hns3_config_gro(hw, gro_en);
2464         if (ret)
2465                 goto cfg_err;
2466
2467         hns->rx_simple_allowed = true;
2468         hns->rx_vec_allowed = true;
2469         hns->tx_simple_allowed = true;
2470         hns->tx_vec_allowed = true;
2471
2472         hns3_init_rx_ptype_tble(dev);
2473         hw->adapter_state = HNS3_NIC_CONFIGURED;
2474
2475         return 0;
2476
2477 cfg_err:
2478         (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
2479         hw->adapter_state = HNS3_NIC_INITIALIZED;
2480
2481         return ret;
2482 }
2483
2484 static int
2485 hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps)
2486 {
2487         struct hns3_config_max_frm_size_cmd *req;
2488         struct hns3_cmd_desc desc;
2489
2490         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false);
2491
2492         req = (struct hns3_config_max_frm_size_cmd *)desc.data;
2493         req->max_frm_size = rte_cpu_to_le_16(new_mps);
2494         req->min_frm_size = RTE_ETHER_MIN_LEN;
2495
2496         return hns3_cmd_send(hw, &desc, 1);
2497 }
2498
2499 static int
2500 hns3_config_mtu(struct hns3_hw *hw, uint16_t mps)
2501 {
2502         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2503         uint16_t original_mps = hns->pf.mps;
2504         int err;
2505         int ret;
2506
2507         ret = hns3_set_mac_mtu(hw, mps);
2508         if (ret) {
2509                 hns3_err(hw, "failed to set mtu, ret = %d", ret);
2510                 return ret;
2511         }
2512
2513         hns->pf.mps = mps;
2514         ret = hns3_buffer_alloc(hw);
2515         if (ret) {
2516                 hns3_err(hw, "failed to allocate buffer, ret = %d", ret);
2517                 goto rollback;
2518         }
2519
2520         return 0;
2521
2522 rollback:
2523         err = hns3_set_mac_mtu(hw, original_mps);
2524         if (err) {
2525                 hns3_err(hw, "fail to rollback MTU, err = %d", err);
2526                 return ret;
2527         }
2528         hns->pf.mps = original_mps;
2529
2530         return ret;
2531 }
2532
2533 static int
2534 hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
2535 {
2536         struct hns3_adapter *hns = dev->data->dev_private;
2537         uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
2538         struct hns3_hw *hw = &hns->hw;
2539         bool is_jumbo_frame;
2540         int ret;
2541
2542         if (dev->data->dev_started) {
2543                 hns3_err(hw, "Failed to set mtu, port %u must be stopped "
2544                          "before configuration", dev->data->port_id);
2545                 return -EBUSY;
2546         }
2547
2548         rte_spinlock_lock(&hw->lock);
2549         is_jumbo_frame = frame_size > HNS3_DEFAULT_FRAME_LEN ? true : false;
2550         frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN);
2551
2552         /*
2553          * Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely
2554          * assign to "uint16_t" type variable.
2555          */
2556         ret = hns3_config_mtu(hw, (uint16_t)frame_size);
2557         if (ret) {
2558                 rte_spinlock_unlock(&hw->lock);
2559                 hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d",
2560                          dev->data->port_id, mtu, ret);
2561                 return ret;
2562         }
2563
2564         if (is_jumbo_frame)
2565                 dev->data->dev_conf.rxmode.offloads |=
2566                                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
2567         else
2568                 dev->data->dev_conf.rxmode.offloads &=
2569                                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
2570         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
2571         rte_spinlock_unlock(&hw->lock);
2572
2573         return 0;
2574 }
2575
2576 int
2577 hns3_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
2578 {
2579         struct hns3_adapter *hns = eth_dev->data->dev_private;
2580         struct hns3_hw *hw = &hns->hw;
2581         uint16_t queue_num = hw->tqps_num;
2582
2583         /*
2584          * In interrupt mode, 'max_rx_queues' is set based on the number of
2585          * MSI-X interrupt resources of the hardware.
2586          */
2587         if (hw->data->dev_conf.intr_conf.rxq == 1)
2588                 queue_num = hw->intr_tqps_num;
2589
2590         info->max_rx_queues = queue_num;
2591         info->max_tx_queues = hw->tqps_num;
2592         info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
2593         info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
2594         info->max_mac_addrs = HNS3_UC_MACADDR_NUM;
2595         info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
2596         info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
2597         info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
2598                                  DEV_RX_OFFLOAD_TCP_CKSUM |
2599                                  DEV_RX_OFFLOAD_UDP_CKSUM |
2600                                  DEV_RX_OFFLOAD_SCTP_CKSUM |
2601                                  DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
2602                                  DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
2603                                  DEV_RX_OFFLOAD_KEEP_CRC |
2604                                  DEV_RX_OFFLOAD_SCATTER |
2605                                  DEV_RX_OFFLOAD_VLAN_STRIP |
2606                                  DEV_RX_OFFLOAD_VLAN_FILTER |
2607                                  DEV_RX_OFFLOAD_JUMBO_FRAME |
2608                                  DEV_RX_OFFLOAD_RSS_HASH |
2609                                  DEV_RX_OFFLOAD_TCP_LRO);
2610         info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
2611                                  DEV_TX_OFFLOAD_IPV4_CKSUM |
2612                                  DEV_TX_OFFLOAD_TCP_CKSUM |
2613                                  DEV_TX_OFFLOAD_UDP_CKSUM |
2614                                  DEV_TX_OFFLOAD_SCTP_CKSUM |
2615                                  DEV_TX_OFFLOAD_MULTI_SEGS |
2616                                  DEV_TX_OFFLOAD_TCP_TSO |
2617                                  DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
2618                                  DEV_TX_OFFLOAD_GRE_TNL_TSO |
2619                                  DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
2620                                  DEV_TX_OFFLOAD_MBUF_FAST_FREE |
2621                                  hns3_txvlan_cap_get(hw));
2622
2623         if (hns3_dev_outer_udp_cksum_supported(hw))
2624                 info->tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_UDP_CKSUM;
2625
2626         if (hns3_dev_indep_txrx_supported(hw))
2627                 info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
2628                                  RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
2629
2630         info->rx_desc_lim = (struct rte_eth_desc_lim) {
2631                 .nb_max = HNS3_MAX_RING_DESC,
2632                 .nb_min = HNS3_MIN_RING_DESC,
2633                 .nb_align = HNS3_ALIGN_RING_DESC,
2634         };
2635
2636         info->tx_desc_lim = (struct rte_eth_desc_lim) {
2637                 .nb_max = HNS3_MAX_RING_DESC,
2638                 .nb_min = HNS3_MIN_RING_DESC,
2639                 .nb_align = HNS3_ALIGN_RING_DESC,
2640                 .nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
2641                 .nb_mtu_seg_max = hw->max_non_tso_bd_num,
2642         };
2643
2644         info->default_rxconf = (struct rte_eth_rxconf) {
2645                 .rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
2646                 /*
2647                  * If there are no available Rx buffer descriptors, incoming
2648                  * packets are always dropped by hardware based on hns3 network
2649                  * engine.
2650                  */
2651                 .rx_drop_en = 1,
2652                 .offloads = 0,
2653         };
2654         info->default_txconf = (struct rte_eth_txconf) {
2655                 .tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
2656                 .offloads = 0,
2657         };
2658
2659         info->vmdq_queue_num = 0;
2660
2661         info->reta_size = hw->rss_ind_tbl_size;
2662         info->hash_key_size = HNS3_RSS_KEY_SIZE;
2663         info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
2664
2665         info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2666         info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2667         info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2668         info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2669         info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2670         info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2671
2672         return 0;
2673 }
2674
2675 static int
2676 hns3_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2677                     size_t fw_size)
2678 {
2679         struct hns3_adapter *hns = eth_dev->data->dev_private;
2680         struct hns3_hw *hw = &hns->hw;
2681         uint32_t version = hw->fw_version;
2682         int ret;
2683
2684         ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2685                        hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2686                                       HNS3_FW_VERSION_BYTE3_S),
2687                        hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2688                                       HNS3_FW_VERSION_BYTE2_S),
2689                        hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2690                                       HNS3_FW_VERSION_BYTE1_S),
2691                        hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2692                                       HNS3_FW_VERSION_BYTE0_S));
2693         ret += 1; /* add the size of '\0' */
2694         if (fw_size < (uint32_t)ret)
2695                 return ret;
2696         else
2697                 return 0;
2698 }
2699
2700 static int
2701 hns3_dev_link_update(struct rte_eth_dev *eth_dev,
2702                      __rte_unused int wait_to_complete)
2703 {
2704         struct hns3_adapter *hns = eth_dev->data->dev_private;
2705         struct hns3_hw *hw = &hns->hw;
2706         struct hns3_mac *mac = &hw->mac;
2707         struct rte_eth_link new_link;
2708
2709         if (!hns3_is_reset_pending(hns)) {
2710                 hns3_update_link_status(hw);
2711                 hns3_update_link_info(eth_dev);
2712         }
2713
2714         memset(&new_link, 0, sizeof(new_link));
2715         switch (mac->link_speed) {
2716         case ETH_SPEED_NUM_10M:
2717         case ETH_SPEED_NUM_100M:
2718         case ETH_SPEED_NUM_1G:
2719         case ETH_SPEED_NUM_10G:
2720         case ETH_SPEED_NUM_25G:
2721         case ETH_SPEED_NUM_40G:
2722         case ETH_SPEED_NUM_50G:
2723         case ETH_SPEED_NUM_100G:
2724         case ETH_SPEED_NUM_200G:
2725                 new_link.link_speed = mac->link_speed;
2726                 break;
2727         default:
2728                 new_link.link_speed = ETH_SPEED_NUM_100M;
2729                 break;
2730         }
2731
2732         new_link.link_duplex = mac->link_duplex;
2733         new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2734         new_link.link_autoneg =
2735             !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2736
2737         return rte_eth_linkstatus_set(eth_dev, &new_link);
2738 }
2739
2740 static int
2741 hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status)
2742 {
2743         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2744         struct hns3_pf *pf = &hns->pf;
2745
2746         if (!(status->pf_state & HNS3_PF_STATE_DONE))
2747                 return -EINVAL;
2748
2749         pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false;
2750
2751         return 0;
2752 }
2753
2754 static int
2755 hns3_query_function_status(struct hns3_hw *hw)
2756 {
2757 #define HNS3_QUERY_MAX_CNT              10
2758 #define HNS3_QUERY_SLEEP_MSCOEND        1
2759         struct hns3_func_status_cmd *req;
2760         struct hns3_cmd_desc desc;
2761         int timeout = 0;
2762         int ret;
2763
2764         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true);
2765         req = (struct hns3_func_status_cmd *)desc.data;
2766
2767         do {
2768                 ret = hns3_cmd_send(hw, &desc, 1);
2769                 if (ret) {
2770                         PMD_INIT_LOG(ERR, "query function status failed %d",
2771                                      ret);
2772                         return ret;
2773                 }
2774
2775                 /* Check pf reset is done */
2776                 if (req->pf_state)
2777                         break;
2778
2779                 rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND);
2780         } while (timeout++ < HNS3_QUERY_MAX_CNT);
2781
2782         return hns3_parse_func_status(hw, req);
2783 }
2784
2785 static int
2786 hns3_get_pf_max_tqp_num(struct hns3_hw *hw)
2787 {
2788         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2789         struct hns3_pf *pf = &hns->pf;
2790
2791         if (pf->tqp_config_mode == HNS3_FLEX_MAX_TQP_NUM_MODE) {
2792                 /*
2793                  * The total_tqps_num obtained from firmware is maximum tqp
2794                  * numbers of this port, which should be used for PF and VFs.
2795                  * There is no need for pf to have so many tqp numbers in
2796                  * most cases. RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2797                  * coming from config file, is assigned to maximum queue number
2798                  * for the PF of this port by user. So users can modify the
2799                  * maximum queue number of PF according to their own application
2800                  * scenarios, which is more flexible to use. In addition, many
2801                  * memories can be saved due to allocating queue statistics
2802                  * room according to the actual number of queues required. The
2803                  * maximum queue number of PF for network engine with
2804                  * revision_id greater than 0x30 is assigned by config file.
2805                  */
2806                 if (RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF <= 0) {
2807                         hns3_err(hw, "RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF(%d) "
2808                                  "must be greater than 0.",
2809                                  RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF);
2810                         return -EINVAL;
2811                 }
2812
2813                 hw->tqps_num = RTE_MIN(RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2814                                        hw->total_tqps_num);
2815         } else {
2816                 /*
2817                  * Due to the limitation on the number of PF interrupts
2818                  * available, the maximum queue number assigned to PF on
2819                  * the network engine with revision_id 0x21 is 64.
2820                  */
2821                 hw->tqps_num = RTE_MIN(hw->total_tqps_num,
2822                                        HNS3_MAX_TQP_NUM_HIP08_PF);
2823         }
2824
2825         return 0;
2826 }
2827
2828 static int
2829 hns3_query_pf_resource(struct hns3_hw *hw)
2830 {
2831         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2832         struct hns3_pf *pf = &hns->pf;
2833         struct hns3_pf_res_cmd *req;
2834         struct hns3_cmd_desc desc;
2835         int ret;
2836
2837         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true);
2838         ret = hns3_cmd_send(hw, &desc, 1);
2839         if (ret) {
2840                 PMD_INIT_LOG(ERR, "query pf resource failed %d", ret);
2841                 return ret;
2842         }
2843
2844         req = (struct hns3_pf_res_cmd *)desc.data;
2845         hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num) +
2846                              rte_le_to_cpu_16(req->ext_tqp_num);
2847         ret = hns3_get_pf_max_tqp_num(hw);
2848         if (ret)
2849                 return ret;
2850
2851         pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S;
2852         pf->func_num = rte_le_to_cpu_16(req->pf_own_fun_number);
2853
2854         if (req->tx_buf_size)
2855                 pf->tx_buf_size =
2856                     rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S;
2857         else
2858                 pf->tx_buf_size = HNS3_DEFAULT_TX_BUF;
2859
2860         pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT);
2861
2862         if (req->dv_buf_size)
2863                 pf->dv_buf_size =
2864                     rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S;
2865         else
2866                 pf->dv_buf_size = HNS3_DEFAULT_DV;
2867
2868         pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT);
2869
2870         hw->num_msi =
2871                 hns3_get_field(rte_le_to_cpu_16(req->nic_pf_intr_vector_number),
2872                                HNS3_PF_VEC_NUM_M, HNS3_PF_VEC_NUM_S);
2873
2874         return 0;
2875 }
2876
2877 static void
2878 hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc)
2879 {
2880         struct hns3_cfg_param_cmd *req;
2881         uint64_t mac_addr_tmp_high;
2882         uint8_t ext_rss_size_max;
2883         uint64_t mac_addr_tmp;
2884         uint32_t i;
2885
2886         req = (struct hns3_cfg_param_cmd *)desc[0].data;
2887
2888         /* get the configuration */
2889         cfg->vmdq_vport_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2890                                              HNS3_CFG_VMDQ_M, HNS3_CFG_VMDQ_S);
2891         cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2892                                      HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S);
2893         cfg->tqp_desc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2894                                            HNS3_CFG_TQP_DESC_N_M,
2895                                            HNS3_CFG_TQP_DESC_N_S);
2896
2897         cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2898                                        HNS3_CFG_PHY_ADDR_M,
2899                                        HNS3_CFG_PHY_ADDR_S);
2900         cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2901                                          HNS3_CFG_MEDIA_TP_M,
2902                                          HNS3_CFG_MEDIA_TP_S);
2903         cfg->rx_buf_len = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2904                                          HNS3_CFG_RX_BUF_LEN_M,
2905                                          HNS3_CFG_RX_BUF_LEN_S);
2906         /* get mac address */
2907         mac_addr_tmp = rte_le_to_cpu_32(req->param[2]);
2908         mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2909                                            HNS3_CFG_MAC_ADDR_H_M,
2910                                            HNS3_CFG_MAC_ADDR_H_S);
2911
2912         mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
2913
2914         cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2915                                             HNS3_CFG_DEFAULT_SPEED_M,
2916                                             HNS3_CFG_DEFAULT_SPEED_S);
2917         cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2918                                            HNS3_CFG_RSS_SIZE_M,
2919                                            HNS3_CFG_RSS_SIZE_S);
2920
2921         for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
2922                 cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
2923
2924         req = (struct hns3_cfg_param_cmd *)desc[1].data;
2925         cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]);
2926
2927         cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2928                                             HNS3_CFG_SPEED_ABILITY_M,
2929                                             HNS3_CFG_SPEED_ABILITY_S);
2930         cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2931                                         HNS3_CFG_UMV_TBL_SPACE_M,
2932                                         HNS3_CFG_UMV_TBL_SPACE_S);
2933         if (!cfg->umv_space)
2934                 cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF;
2935
2936         ext_rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[2]),
2937                                                HNS3_CFG_EXT_RSS_SIZE_M,
2938                                                HNS3_CFG_EXT_RSS_SIZE_S);
2939
2940         /*
2941          * Field ext_rss_size_max obtained from firmware will be more flexible
2942          * for future changes and expansions, which is an exponent of 2, instead
2943          * of reading out directly. If this field is not zero, hns3 PF PMD
2944          * driver uses it as rss_size_max under one TC. Device, whose revision
2945          * id is greater than or equal to PCI_REVISION_ID_HIP09_A, obtains the
2946          * maximum number of queues supported under a TC through this field.
2947          */
2948         if (ext_rss_size_max)
2949                 cfg->rss_size_max = 1U << ext_rss_size_max;
2950 }
2951
2952 /* hns3_get_board_cfg: query the static parameter from NCL_config file in flash
2953  * @hw: pointer to struct hns3_hw
2954  * @hcfg: the config structure to be getted
2955  */
2956 static int
2957 hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg)
2958 {
2959         struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM];
2960         struct hns3_cfg_param_cmd *req;
2961         uint32_t offset;
2962         uint32_t i;
2963         int ret;
2964
2965         for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) {
2966                 offset = 0;
2967                 req = (struct hns3_cfg_param_cmd *)desc[i].data;
2968                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM,
2969                                           true);
2970                 hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S,
2971                                i * HNS3_CFG_RD_LEN_BYTES);
2972                 /* Len should be divided by 4 when send to hardware */
2973                 hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S,
2974                                HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT);
2975                 req->offset = rte_cpu_to_le_32(offset);
2976         }
2977
2978         ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM);
2979         if (ret) {
2980                 PMD_INIT_LOG(ERR, "get config failed %d.", ret);
2981                 return ret;
2982         }
2983
2984         hns3_parse_cfg(hcfg, desc);
2985
2986         return 0;
2987 }
2988
2989 static int
2990 hns3_parse_speed(int speed_cmd, uint32_t *speed)
2991 {
2992         switch (speed_cmd) {
2993         case HNS3_CFG_SPEED_10M:
2994                 *speed = ETH_SPEED_NUM_10M;
2995                 break;
2996         case HNS3_CFG_SPEED_100M:
2997                 *speed = ETH_SPEED_NUM_100M;
2998                 break;
2999         case HNS3_CFG_SPEED_1G:
3000                 *speed = ETH_SPEED_NUM_1G;
3001                 break;
3002         case HNS3_CFG_SPEED_10G:
3003                 *speed = ETH_SPEED_NUM_10G;
3004                 break;
3005         case HNS3_CFG_SPEED_25G:
3006                 *speed = ETH_SPEED_NUM_25G;
3007                 break;
3008         case HNS3_CFG_SPEED_40G:
3009                 *speed = ETH_SPEED_NUM_40G;
3010                 break;
3011         case HNS3_CFG_SPEED_50G:
3012                 *speed = ETH_SPEED_NUM_50G;
3013                 break;
3014         case HNS3_CFG_SPEED_100G:
3015                 *speed = ETH_SPEED_NUM_100G;
3016                 break;
3017         case HNS3_CFG_SPEED_200G:
3018                 *speed = ETH_SPEED_NUM_200G;
3019                 break;
3020         default:
3021                 return -EINVAL;
3022         }
3023
3024         return 0;
3025 }
3026
3027 static void
3028 hns3_set_default_dev_specifications(struct hns3_hw *hw)
3029 {
3030         hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
3031         hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
3032         hw->rss_key_size = HNS3_RSS_KEY_SIZE;
3033         hw->max_tm_rate = HNS3_ETHER_MAX_RATE;
3034         hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
3035 }
3036
3037 static void
3038 hns3_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
3039 {
3040         struct hns3_dev_specs_0_cmd *req0;
3041
3042         req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
3043
3044         hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
3045         hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
3046         hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
3047         hw->max_tm_rate = rte_le_to_cpu_32(req0->max_tm_rate);
3048         hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
3049 }
3050
3051 static int
3052 hns3_check_dev_specifications(struct hns3_hw *hw)
3053 {
3054         if (hw->rss_ind_tbl_size == 0 ||
3055             hw->rss_ind_tbl_size > HNS3_RSS_IND_TBL_SIZE_MAX) {
3056                 hns3_err(hw, "the size of hash lookup table configured (%u)"
3057                               " exceeds the maximum(%u)", hw->rss_ind_tbl_size,
3058                               HNS3_RSS_IND_TBL_SIZE_MAX);
3059                 return -EINVAL;
3060         }
3061
3062         return 0;
3063 }
3064
3065 static int
3066 hns3_query_dev_specifications(struct hns3_hw *hw)
3067 {
3068         struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
3069         int ret;
3070         int i;
3071
3072         for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3073                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
3074                                           true);
3075                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3076         }
3077         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
3078
3079         ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
3080         if (ret)
3081                 return ret;
3082
3083         hns3_parse_dev_specifications(hw, desc);
3084
3085         return hns3_check_dev_specifications(hw);
3086 }
3087
3088 static int
3089 hns3_get_capability(struct hns3_hw *hw)
3090 {
3091         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3092         struct rte_pci_device *pci_dev;
3093         struct hns3_pf *pf = &hns->pf;
3094         struct rte_eth_dev *eth_dev;
3095         uint16_t device_id;
3096         uint8_t revision;
3097         int ret;
3098
3099         eth_dev = &rte_eth_devices[hw->data->port_id];
3100         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3101         device_id = pci_dev->id.device_id;
3102
3103         if (device_id == HNS3_DEV_ID_25GE_RDMA ||
3104             device_id == HNS3_DEV_ID_50GE_RDMA ||
3105             device_id == HNS3_DEV_ID_100G_RDMA_MACSEC ||
3106             device_id == HNS3_DEV_ID_200G_RDMA)
3107                 hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_DCB_B, 1);
3108
3109         /* Get PCI revision id */
3110         ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
3111                                   HNS3_PCI_REVISION_ID);
3112         if (ret != HNS3_PCI_REVISION_ID_LEN) {
3113                 PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
3114                              ret);
3115                 return -EIO;
3116         }
3117         hw->revision = revision;
3118
3119         if (revision < PCI_REVISION_ID_HIP09_A) {
3120                 hns3_set_default_dev_specifications(hw);
3121                 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
3122                 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
3123                 hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
3124                 hw->vlan_mode = HNS3_SW_SHIFT_AND_DISCARD_MODE;
3125                 hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
3126                 pf->tqp_config_mode = HNS3_FIXED_MAX_TQP_NUM_MODE;
3127                 hw->rss_info.ipv6_sctp_offload_supported = false;
3128                 return 0;
3129         }
3130
3131         ret = hns3_query_dev_specifications(hw);
3132         if (ret) {
3133                 PMD_INIT_LOG(ERR,
3134                              "failed to query dev specifications, ret = %d",
3135                              ret);
3136                 return ret;
3137         }
3138
3139         hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
3140         hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
3141         hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
3142         hw->vlan_mode = HNS3_HW_SHIFT_AND_DISCARD_MODE;
3143         hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
3144         pf->tqp_config_mode = HNS3_FLEX_MAX_TQP_NUM_MODE;
3145         hw->rss_info.ipv6_sctp_offload_supported = true;
3146
3147         return 0;
3148 }
3149
3150 static int
3151 hns3_check_media_type(struct hns3_hw *hw, uint8_t media_type)
3152 {
3153         int ret;
3154
3155         switch (media_type) {
3156         case HNS3_MEDIA_TYPE_COPPER:
3157                 if (!hns3_dev_copper_supported(hw)) {
3158                         PMD_INIT_LOG(ERR,
3159                                      "Media type is copper, not supported.");
3160                         ret = -EOPNOTSUPP;
3161                 } else {
3162                         ret = 0;
3163                 }
3164                 break;
3165         case HNS3_MEDIA_TYPE_FIBER:
3166                 ret = 0;
3167                 break;
3168         case HNS3_MEDIA_TYPE_BACKPLANE:
3169                 PMD_INIT_LOG(ERR, "Media type is Backplane, not supported.");
3170                 ret = -EOPNOTSUPP;
3171                 break;
3172         default:
3173                 PMD_INIT_LOG(ERR, "Unknown media type = %u!", media_type);
3174                 ret = -EINVAL;
3175                 break;
3176         }
3177
3178         return ret;
3179 }
3180
3181 static int
3182 hns3_get_board_configuration(struct hns3_hw *hw)
3183 {
3184         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3185         struct hns3_pf *pf = &hns->pf;
3186         struct hns3_cfg cfg;
3187         int ret;
3188
3189         ret = hns3_get_board_cfg(hw, &cfg);
3190         if (ret) {
3191                 PMD_INIT_LOG(ERR, "get board config failed %d", ret);
3192                 return ret;
3193         }
3194
3195         ret = hns3_check_media_type(hw, cfg.media_type);
3196         if (ret)
3197                 return ret;
3198
3199         hw->mac.media_type = cfg.media_type;
3200         hw->rss_size_max = cfg.rss_size_max;
3201         hw->rss_dis_flag = false;
3202         memcpy(hw->mac.mac_addr, cfg.mac_addr, RTE_ETHER_ADDR_LEN);
3203         hw->mac.phy_addr = cfg.phy_addr;
3204         hw->mac.default_addr_setted = false;
3205         hw->num_tx_desc = cfg.tqp_desc_num;
3206         hw->num_rx_desc = cfg.tqp_desc_num;
3207         hw->dcb_info.num_pg = 1;
3208         hw->dcb_info.hw_pfc_map = 0;
3209
3210         ret = hns3_parse_speed(cfg.default_speed, &hw->mac.link_speed);
3211         if (ret) {
3212                 PMD_INIT_LOG(ERR, "Get wrong speed %u, ret = %d",
3213                              cfg.default_speed, ret);
3214                 return ret;
3215         }
3216
3217         pf->tc_max = cfg.tc_num;
3218         if (pf->tc_max > HNS3_MAX_TC_NUM || pf->tc_max < 1) {
3219                 PMD_INIT_LOG(WARNING,
3220                              "Get TC num(%u) from flash, set TC num to 1",
3221                              pf->tc_max);
3222                 pf->tc_max = 1;
3223         }
3224
3225         /* Dev does not support DCB */
3226         if (!hns3_dev_dcb_supported(hw)) {
3227                 pf->tc_max = 1;
3228                 pf->pfc_max = 0;
3229         } else
3230                 pf->pfc_max = pf->tc_max;
3231
3232         hw->dcb_info.num_tc = 1;
3233         hw->alloc_rss_size = RTE_MIN(hw->rss_size_max,
3234                                      hw->tqps_num / hw->dcb_info.num_tc);
3235         hns3_set_bit(hw->hw_tc_map, 0, 1);
3236         pf->tx_sch_mode = HNS3_FLAG_TC_BASE_SCH_MODE;
3237
3238         pf->wanted_umv_size = cfg.umv_space;
3239
3240         return ret;
3241 }
3242
3243 static int
3244 hns3_get_configuration(struct hns3_hw *hw)
3245 {
3246         int ret;
3247
3248         ret = hns3_query_function_status(hw);
3249         if (ret) {
3250                 PMD_INIT_LOG(ERR, "Failed to query function status: %d.", ret);
3251                 return ret;
3252         }
3253
3254         /* Get device capability */
3255         ret = hns3_get_capability(hw);
3256         if (ret) {
3257                 PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
3258                 return ret;
3259         }
3260
3261         /* Get pf resource */
3262         ret = hns3_query_pf_resource(hw);
3263         if (ret) {
3264                 PMD_INIT_LOG(ERR, "Failed to query pf resource: %d", ret);
3265                 return ret;
3266         }
3267
3268         ret = hns3_get_board_configuration(hw);
3269         if (ret) {
3270                 PMD_INIT_LOG(ERR, "failed to get board configuration: %d", ret);
3271                 return ret;
3272         }
3273
3274         ret = hns3_query_dev_fec_info(hw);
3275         if (ret)
3276                 PMD_INIT_LOG(ERR,
3277                              "failed to query FEC information, ret = %d", ret);
3278
3279         return ret;
3280 }
3281
3282 static int
3283 hns3_map_tqps_to_func(struct hns3_hw *hw, uint16_t func_id, uint16_t tqp_pid,
3284                       uint16_t tqp_vid, bool is_pf)
3285 {
3286         struct hns3_tqp_map_cmd *req;
3287         struct hns3_cmd_desc desc;
3288         int ret;
3289
3290         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SET_TQP_MAP, false);
3291
3292         req = (struct hns3_tqp_map_cmd *)desc.data;
3293         req->tqp_id = rte_cpu_to_le_16(tqp_pid);
3294         req->tqp_vf = func_id;
3295         req->tqp_flag = 1 << HNS3_TQP_MAP_EN_B;
3296         if (!is_pf)
3297                 req->tqp_flag |= (1 << HNS3_TQP_MAP_TYPE_B);
3298         req->tqp_vid = rte_cpu_to_le_16(tqp_vid);
3299
3300         ret = hns3_cmd_send(hw, &desc, 1);
3301         if (ret)
3302                 PMD_INIT_LOG(ERR, "TQP map failed %d", ret);
3303
3304         return ret;
3305 }
3306
3307 static int
3308 hns3_map_tqp(struct hns3_hw *hw)
3309 {
3310         int ret;
3311         int i;
3312
3313         /*
3314          * In current version, VF is not supported when PF is driven by DPDK
3315          * driver, so we assign total tqps_num tqps allocated to this port
3316          * to PF.
3317          */
3318         for (i = 0; i < hw->total_tqps_num; i++) {
3319                 ret = hns3_map_tqps_to_func(hw, HNS3_PF_FUNC_ID, i, i, true);
3320                 if (ret)
3321                         return ret;
3322         }
3323
3324         return 0;
3325 }
3326
3327 static int
3328 hns3_cfg_mac_speed_dup_hw(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
3329 {
3330         struct hns3_config_mac_speed_dup_cmd *req;
3331         struct hns3_cmd_desc desc;
3332         int ret;
3333
3334         req = (struct hns3_config_mac_speed_dup_cmd *)desc.data;
3335
3336         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_SPEED_DUP, false);
3337
3338         hns3_set_bit(req->speed_dup, HNS3_CFG_DUPLEX_B, !!duplex ? 1 : 0);
3339
3340         switch (speed) {
3341         case ETH_SPEED_NUM_10M:
3342                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3343                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10M);
3344                 break;
3345         case ETH_SPEED_NUM_100M:
3346                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3347                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100M);
3348                 break;
3349         case ETH_SPEED_NUM_1G:
3350                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3351                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_1G);
3352                 break;
3353         case ETH_SPEED_NUM_10G:
3354                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3355                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10G);
3356                 break;
3357         case ETH_SPEED_NUM_25G:
3358                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3359                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_25G);
3360                 break;
3361         case ETH_SPEED_NUM_40G:
3362                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3363                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_40G);
3364                 break;
3365         case ETH_SPEED_NUM_50G:
3366                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3367                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_50G);
3368                 break;
3369         case ETH_SPEED_NUM_100G:
3370                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3371                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100G);
3372                 break;
3373         case ETH_SPEED_NUM_200G:
3374                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3375                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_200G);
3376                 break;
3377         default:
3378                 PMD_INIT_LOG(ERR, "invalid speed (%u)", speed);
3379                 return -EINVAL;
3380         }
3381
3382         hns3_set_bit(req->mac_change_fec_en, HNS3_CFG_MAC_SPEED_CHANGE_EN_B, 1);
3383
3384         ret = hns3_cmd_send(hw, &desc, 1);
3385         if (ret)
3386                 PMD_INIT_LOG(ERR, "mac speed/duplex config cmd failed %d", ret);
3387
3388         return ret;
3389 }
3390
3391 static int
3392 hns3_tx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3393 {
3394         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3395         struct hns3_pf *pf = &hns->pf;
3396         struct hns3_priv_buf *priv;
3397         uint32_t i, total_size;
3398
3399         total_size = pf->pkt_buf_size;
3400
3401         /* alloc tx buffer for all enabled tc */
3402         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3403                 priv = &buf_alloc->priv_buf[i];
3404
3405                 if (hw->hw_tc_map & BIT(i)) {
3406                         if (total_size < pf->tx_buf_size)
3407                                 return -ENOMEM;
3408
3409                         priv->tx_buf_size = pf->tx_buf_size;
3410                 } else
3411                         priv->tx_buf_size = 0;
3412
3413                 total_size -= priv->tx_buf_size;
3414         }
3415
3416         return 0;
3417 }
3418
3419 static int
3420 hns3_tx_buffer_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3421 {
3422 /* TX buffer size is unit by 128 byte */
3423 #define HNS3_BUF_SIZE_UNIT_SHIFT        7
3424 #define HNS3_BUF_SIZE_UPDATE_EN_MSK     BIT(15)
3425         struct hns3_tx_buff_alloc_cmd *req;
3426         struct hns3_cmd_desc desc;
3427         uint32_t buf_size;
3428         uint32_t i;
3429         int ret;
3430
3431         req = (struct hns3_tx_buff_alloc_cmd *)desc.data;
3432
3433         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TX_BUFF_ALLOC, 0);
3434         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3435                 buf_size = buf_alloc->priv_buf[i].tx_buf_size;
3436
3437                 buf_size = buf_size >> HNS3_BUF_SIZE_UNIT_SHIFT;
3438                 req->tx_pkt_buff[i] = rte_cpu_to_le_16(buf_size |
3439                                                 HNS3_BUF_SIZE_UPDATE_EN_MSK);
3440         }
3441
3442         ret = hns3_cmd_send(hw, &desc, 1);
3443         if (ret)
3444                 PMD_INIT_LOG(ERR, "tx buffer alloc cmd failed %d", ret);
3445
3446         return ret;
3447 }
3448
3449 static int
3450 hns3_get_tc_num(struct hns3_hw *hw)
3451 {
3452         int cnt = 0;
3453         uint8_t i;
3454
3455         for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3456                 if (hw->hw_tc_map & BIT(i))
3457                         cnt++;
3458         return cnt;
3459 }
3460
3461 static uint32_t
3462 hns3_get_rx_priv_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3463 {
3464         struct hns3_priv_buf *priv;
3465         uint32_t rx_priv = 0;
3466         int i;
3467
3468         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3469                 priv = &buf_alloc->priv_buf[i];
3470                 if (priv->enable)
3471                         rx_priv += priv->buf_size;
3472         }
3473         return rx_priv;
3474 }
3475
3476 static uint32_t
3477 hns3_get_tx_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3478 {
3479         uint32_t total_tx_size = 0;
3480         uint32_t i;
3481
3482         for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3483                 total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
3484
3485         return total_tx_size;
3486 }
3487
3488 /* Get the number of pfc enabled TCs, which have private buffer */
3489 static int
3490 hns3_get_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3491 {
3492         struct hns3_priv_buf *priv;
3493         int cnt = 0;
3494         uint8_t i;
3495
3496         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3497                 priv = &buf_alloc->priv_buf[i];
3498                 if ((hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3499                         cnt++;
3500         }
3501
3502         return cnt;
3503 }
3504
3505 /* Get the number of pfc disabled TCs, which have private buffer */
3506 static int
3507 hns3_get_no_pfc_priv_num(struct hns3_hw *hw,
3508                          struct hns3_pkt_buf_alloc *buf_alloc)
3509 {
3510         struct hns3_priv_buf *priv;
3511         int cnt = 0;
3512         uint8_t i;
3513
3514         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3515                 priv = &buf_alloc->priv_buf[i];
3516                 if (hw->hw_tc_map & BIT(i) &&
3517                     !(hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3518                         cnt++;
3519         }
3520
3521         return cnt;
3522 }
3523
3524 static bool
3525 hns3_is_rx_buf_ok(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc,
3526                   uint32_t rx_all)
3527 {
3528         uint32_t shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
3529         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3530         struct hns3_pf *pf = &hns->pf;
3531         uint32_t shared_buf, aligned_mps;
3532         uint32_t rx_priv;
3533         uint8_t tc_num;
3534         uint8_t i;
3535
3536         tc_num = hns3_get_tc_num(hw);
3537         aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3538
3539         if (hns3_dev_dcb_supported(hw))
3540                 shared_buf_min = HNS3_BUF_MUL_BY * aligned_mps +
3541                                         pf->dv_buf_size;
3542         else
3543                 shared_buf_min = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF
3544                                         + pf->dv_buf_size;
3545
3546         shared_buf_tc = tc_num * aligned_mps + aligned_mps;
3547         shared_std = roundup(RTE_MAX(shared_buf_min, shared_buf_tc),
3548                              HNS3_BUF_SIZE_UNIT);
3549
3550         rx_priv = hns3_get_rx_priv_buff_alloced(buf_alloc);
3551         if (rx_all < rx_priv + shared_std)
3552                 return false;
3553
3554         shared_buf = rounddown(rx_all - rx_priv, HNS3_BUF_SIZE_UNIT);
3555         buf_alloc->s_buf.buf_size = shared_buf;
3556         if (hns3_dev_dcb_supported(hw)) {
3557                 buf_alloc->s_buf.self.high = shared_buf - pf->dv_buf_size;
3558                 buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
3559                         - roundup(aligned_mps / HNS3_BUF_DIV_BY,
3560                                   HNS3_BUF_SIZE_UNIT);
3561         } else {
3562                 buf_alloc->s_buf.self.high =
3563                         aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3564                 buf_alloc->s_buf.self.low = aligned_mps;
3565         }
3566
3567         if (hns3_dev_dcb_supported(hw)) {
3568                 hi_thrd = shared_buf - pf->dv_buf_size;
3569
3570                 if (tc_num <= NEED_RESERVE_TC_NUM)
3571                         hi_thrd = hi_thrd * BUF_RESERVE_PERCENT /
3572                                   BUF_MAX_PERCENT;
3573
3574                 if (tc_num)
3575                         hi_thrd = hi_thrd / tc_num;
3576
3577                 hi_thrd = RTE_MAX(hi_thrd, HNS3_BUF_MUL_BY * aligned_mps);
3578                 hi_thrd = rounddown(hi_thrd, HNS3_BUF_SIZE_UNIT);
3579                 lo_thrd = hi_thrd - aligned_mps / HNS3_BUF_DIV_BY;
3580         } else {
3581                 hi_thrd = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3582                 lo_thrd = aligned_mps;
3583         }
3584
3585         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3586                 buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
3587                 buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
3588         }
3589
3590         return true;
3591 }
3592
3593 static bool
3594 hns3_rx_buf_calc_all(struct hns3_hw *hw, bool max,
3595                      struct hns3_pkt_buf_alloc *buf_alloc)
3596 {
3597         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3598         struct hns3_pf *pf = &hns->pf;
3599         struct hns3_priv_buf *priv;
3600         uint32_t aligned_mps;
3601         uint32_t rx_all;
3602         uint8_t i;
3603
3604         rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3605         aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3606
3607         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3608                 priv = &buf_alloc->priv_buf[i];
3609
3610                 priv->enable = 0;
3611                 priv->wl.low = 0;
3612                 priv->wl.high = 0;
3613                 priv->buf_size = 0;
3614
3615                 if (!(hw->hw_tc_map & BIT(i)))
3616                         continue;
3617
3618                 priv->enable = 1;
3619                 if (hw->dcb_info.hw_pfc_map & BIT(i)) {
3620                         priv->wl.low = max ? aligned_mps : HNS3_BUF_SIZE_UNIT;
3621                         priv->wl.high = roundup(priv->wl.low + aligned_mps,
3622                                                 HNS3_BUF_SIZE_UNIT);
3623                 } else {
3624                         priv->wl.low = 0;
3625                         priv->wl.high = max ? (aligned_mps * HNS3_BUF_MUL_BY) :
3626                                         aligned_mps;
3627                 }
3628
3629                 priv->buf_size = priv->wl.high + pf->dv_buf_size;
3630         }
3631
3632         return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3633 }
3634
3635 static bool
3636 hns3_drop_nopfc_buf_till_fit(struct hns3_hw *hw,
3637                              struct hns3_pkt_buf_alloc *buf_alloc)
3638 {
3639         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3640         struct hns3_pf *pf = &hns->pf;
3641         struct hns3_priv_buf *priv;
3642         int no_pfc_priv_num;
3643         uint32_t rx_all;
3644         uint8_t mask;
3645         int i;
3646
3647         rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3648         no_pfc_priv_num = hns3_get_no_pfc_priv_num(hw, buf_alloc);
3649
3650         /* let the last to be cleared first */
3651         for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3652                 priv = &buf_alloc->priv_buf[i];
3653                 mask = BIT((uint8_t)i);
3654
3655                 if (hw->hw_tc_map & mask &&
3656                     !(hw->dcb_info.hw_pfc_map & mask)) {
3657                         /* Clear the no pfc TC private buffer */
3658                         priv->wl.low = 0;
3659                         priv->wl.high = 0;
3660                         priv->buf_size = 0;
3661                         priv->enable = 0;
3662                         no_pfc_priv_num--;
3663                 }
3664
3665                 if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3666                     no_pfc_priv_num == 0)
3667                         break;
3668         }
3669
3670         return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3671 }
3672
3673 static bool
3674 hns3_drop_pfc_buf_till_fit(struct hns3_hw *hw,
3675                            struct hns3_pkt_buf_alloc *buf_alloc)
3676 {
3677         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3678         struct hns3_pf *pf = &hns->pf;
3679         struct hns3_priv_buf *priv;
3680         uint32_t rx_all;
3681         int pfc_priv_num;
3682         uint8_t mask;
3683         int i;
3684
3685         rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3686         pfc_priv_num = hns3_get_pfc_priv_num(hw, buf_alloc);
3687
3688         /* let the last to be cleared first */
3689         for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3690                 priv = &buf_alloc->priv_buf[i];
3691                 mask = BIT((uint8_t)i);
3692                 if (hw->hw_tc_map & mask && hw->dcb_info.hw_pfc_map & mask) {
3693                         /* Reduce the number of pfc TC with private buffer */
3694                         priv->wl.low = 0;
3695                         priv->enable = 0;
3696                         priv->wl.high = 0;
3697                         priv->buf_size = 0;
3698                         pfc_priv_num--;
3699                 }
3700                 if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3701                     pfc_priv_num == 0)
3702                         break;
3703         }
3704
3705         return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3706 }
3707
3708 static bool
3709 hns3_only_alloc_priv_buff(struct hns3_hw *hw,
3710                           struct hns3_pkt_buf_alloc *buf_alloc)
3711 {
3712 #define COMPENSATE_BUFFER       0x3C00
3713 #define COMPENSATE_HALF_MPS_NUM 5
3714 #define PRIV_WL_GAP             0x1800
3715         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3716         struct hns3_pf *pf = &hns->pf;
3717         uint32_t tc_num = hns3_get_tc_num(hw);
3718         uint32_t half_mps = pf->mps >> 1;
3719         struct hns3_priv_buf *priv;
3720         uint32_t min_rx_priv;
3721         uint32_t rx_priv;
3722         uint8_t i;
3723
3724         rx_priv = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3725         if (tc_num)
3726                 rx_priv = rx_priv / tc_num;
3727
3728         if (tc_num <= NEED_RESERVE_TC_NUM)
3729                 rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
3730
3731         /*
3732          * Minimum value of private buffer in rx direction (min_rx_priv) is
3733          * equal to "DV + 2.5 * MPS + 15KB". Driver only allocates rx private
3734          * buffer if rx_priv is greater than min_rx_priv.
3735          */
3736         min_rx_priv = pf->dv_buf_size + COMPENSATE_BUFFER +
3737                         COMPENSATE_HALF_MPS_NUM * half_mps;
3738         min_rx_priv = roundup(min_rx_priv, HNS3_BUF_SIZE_UNIT);
3739         rx_priv = rounddown(rx_priv, HNS3_BUF_SIZE_UNIT);
3740
3741         if (rx_priv < min_rx_priv)
3742                 return false;
3743
3744         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3745                 priv = &buf_alloc->priv_buf[i];
3746                 priv->enable = 0;
3747                 priv->wl.low = 0;
3748                 priv->wl.high = 0;
3749                 priv->buf_size = 0;
3750
3751                 if (!(hw->hw_tc_map & BIT(i)))
3752                         continue;
3753
3754                 priv->enable = 1;
3755                 priv->buf_size = rx_priv;
3756                 priv->wl.high = rx_priv - pf->dv_buf_size;
3757                 priv->wl.low = priv->wl.high - PRIV_WL_GAP;
3758         }
3759
3760         buf_alloc->s_buf.buf_size = 0;
3761
3762         return true;
3763 }
3764
3765 /*
3766  * hns3_rx_buffer_calc: calculate the rx private buffer size for all TCs
3767  * @hw: pointer to struct hns3_hw
3768  * @buf_alloc: pointer to buffer calculation data
3769  * @return: 0: calculate sucessful, negative: fail
3770  */
3771 static int
3772 hns3_rx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3773 {
3774         /* When DCB is not supported, rx private buffer is not allocated. */
3775         if (!hns3_dev_dcb_supported(hw)) {
3776                 struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3777                 struct hns3_pf *pf = &hns->pf;
3778                 uint32_t rx_all = pf->pkt_buf_size;
3779
3780                 rx_all -= hns3_get_tx_buff_alloced(buf_alloc);
3781                 if (!hns3_is_rx_buf_ok(hw, buf_alloc, rx_all))
3782                         return -ENOMEM;
3783
3784                 return 0;
3785         }
3786
3787         /*
3788          * Try to allocate privated packet buffer for all TCs without share
3789          * buffer.
3790          */
3791         if (hns3_only_alloc_priv_buff(hw, buf_alloc))
3792                 return 0;
3793
3794         /*
3795          * Try to allocate privated packet buffer for all TCs with share
3796          * buffer.
3797          */
3798         if (hns3_rx_buf_calc_all(hw, true, buf_alloc))
3799                 return 0;
3800
3801         /*
3802          * For different application scenes, the enabled port number, TC number
3803          * and no_drop TC number are different. In order to obtain the better
3804          * performance, software could allocate the buffer size and configure
3805          * the waterline by tring to decrease the private buffer size according
3806          * to the order, namely, waterline of valided tc, pfc disabled tc, pfc
3807          * enabled tc.
3808          */
3809         if (hns3_rx_buf_calc_all(hw, false, buf_alloc))
3810                 return 0;
3811
3812         if (hns3_drop_nopfc_buf_till_fit(hw, buf_alloc))
3813                 return 0;
3814
3815         if (hns3_drop_pfc_buf_till_fit(hw, buf_alloc))
3816                 return 0;
3817
3818         return -ENOMEM;
3819 }
3820
3821 static int
3822 hns3_rx_priv_buf_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3823 {
3824         struct hns3_rx_priv_buff_cmd *req;
3825         struct hns3_cmd_desc desc;
3826         uint32_t buf_size;
3827         int ret;
3828         int i;
3829
3830         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_PRIV_BUFF_ALLOC, false);
3831         req = (struct hns3_rx_priv_buff_cmd *)desc.data;
3832
3833         /* Alloc private buffer TCs */
3834         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3835                 struct hns3_priv_buf *priv = &buf_alloc->priv_buf[i];
3836
3837                 req->buf_num[i] =
3838                         rte_cpu_to_le_16(priv->buf_size >> HNS3_BUF_UNIT_S);
3839                 req->buf_num[i] |= rte_cpu_to_le_16(1 << HNS3_TC0_PRI_BUF_EN_B);
3840         }
3841
3842         buf_size = buf_alloc->s_buf.buf_size;
3843         req->shared_buf = rte_cpu_to_le_16((buf_size >> HNS3_BUF_UNIT_S) |
3844                                            (1 << HNS3_TC0_PRI_BUF_EN_B));
3845
3846         ret = hns3_cmd_send(hw, &desc, 1);
3847         if (ret)
3848                 PMD_INIT_LOG(ERR, "rx private buffer alloc cmd failed %d", ret);
3849
3850         return ret;
3851 }
3852
3853 static int
3854 hns3_rx_priv_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3855 {
3856 #define HNS3_RX_PRIV_WL_ALLOC_DESC_NUM 2
3857         struct hns3_rx_priv_wl_buf *req;
3858         struct hns3_priv_buf *priv;
3859         struct hns3_cmd_desc desc[HNS3_RX_PRIV_WL_ALLOC_DESC_NUM];
3860         int i, j;
3861         int ret;
3862
3863         for (i = 0; i < HNS3_RX_PRIV_WL_ALLOC_DESC_NUM; i++) {
3864                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_PRIV_WL_ALLOC,
3865                                           false);
3866                 req = (struct hns3_rx_priv_wl_buf *)desc[i].data;
3867
3868                 /* The first descriptor set the NEXT bit to 1 */
3869                 if (i == 0)
3870                         desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3871                 else
3872                         desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3873
3874                 for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3875                         uint32_t idx = i * HNS3_TC_NUM_ONE_DESC + j;
3876
3877                         priv = &buf_alloc->priv_buf[idx];
3878                         req->tc_wl[j].high = rte_cpu_to_le_16(priv->wl.high >>
3879                                                         HNS3_BUF_UNIT_S);
3880                         req->tc_wl[j].high |=
3881                                 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3882                         req->tc_wl[j].low = rte_cpu_to_le_16(priv->wl.low >>
3883                                                         HNS3_BUF_UNIT_S);
3884                         req->tc_wl[j].low |=
3885                                 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3886                 }
3887         }
3888
3889         /* Send 2 descriptor at one time */
3890         ret = hns3_cmd_send(hw, desc, HNS3_RX_PRIV_WL_ALLOC_DESC_NUM);
3891         if (ret)
3892                 PMD_INIT_LOG(ERR, "rx private waterline config cmd failed %d",
3893                              ret);
3894         return ret;
3895 }
3896
3897 static int
3898 hns3_common_thrd_config(struct hns3_hw *hw,
3899                         struct hns3_pkt_buf_alloc *buf_alloc)
3900 {
3901 #define HNS3_RX_COM_THRD_ALLOC_DESC_NUM 2
3902         struct hns3_shared_buf *s_buf = &buf_alloc->s_buf;
3903         struct hns3_rx_com_thrd *req;
3904         struct hns3_cmd_desc desc[HNS3_RX_COM_THRD_ALLOC_DESC_NUM];
3905         struct hns3_tc_thrd *tc;
3906         int tc_idx;
3907         int i, j;
3908         int ret;
3909
3910         for (i = 0; i < HNS3_RX_COM_THRD_ALLOC_DESC_NUM; i++) {
3911                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_COM_THRD_ALLOC,
3912                                           false);
3913                 req = (struct hns3_rx_com_thrd *)&desc[i].data;
3914
3915                 /* The first descriptor set the NEXT bit to 1 */
3916                 if (i == 0)
3917                         desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3918                 else
3919                         desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3920
3921                 for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3922                         tc_idx = i * HNS3_TC_NUM_ONE_DESC + j;
3923                         tc = &s_buf->tc_thrd[tc_idx];
3924
3925                         req->com_thrd[j].high =
3926                                 rte_cpu_to_le_16(tc->high >> HNS3_BUF_UNIT_S);
3927                         req->com_thrd[j].high |=
3928                                  rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3929                         req->com_thrd[j].low =
3930                                 rte_cpu_to_le_16(tc->low >> HNS3_BUF_UNIT_S);
3931                         req->com_thrd[j].low |=
3932                                  rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3933                 }
3934         }
3935
3936         /* Send 2 descriptors at one time */
3937         ret = hns3_cmd_send(hw, desc, HNS3_RX_COM_THRD_ALLOC_DESC_NUM);
3938         if (ret)
3939                 PMD_INIT_LOG(ERR, "common threshold config cmd failed %d", ret);
3940
3941         return ret;
3942 }
3943
3944 static int
3945 hns3_common_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3946 {
3947         struct hns3_shared_buf *buf = &buf_alloc->s_buf;
3948         struct hns3_rx_com_wl *req;
3949         struct hns3_cmd_desc desc;
3950         int ret;
3951
3952         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_COM_WL_ALLOC, false);
3953
3954         req = (struct hns3_rx_com_wl *)desc.data;
3955         req->com_wl.high = rte_cpu_to_le_16(buf->self.high >> HNS3_BUF_UNIT_S);
3956         req->com_wl.high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3957
3958         req->com_wl.low = rte_cpu_to_le_16(buf->self.low >> HNS3_BUF_UNIT_S);
3959         req->com_wl.low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3960
3961         ret = hns3_cmd_send(hw, &desc, 1);
3962         if (ret)
3963                 PMD_INIT_LOG(ERR, "common waterline config cmd failed %d", ret);
3964
3965         return ret;
3966 }
3967
3968 int
3969 hns3_buffer_alloc(struct hns3_hw *hw)
3970 {
3971         struct hns3_pkt_buf_alloc pkt_buf;
3972         int ret;
3973
3974         memset(&pkt_buf, 0, sizeof(pkt_buf));
3975         ret = hns3_tx_buffer_calc(hw, &pkt_buf);
3976         if (ret) {
3977                 PMD_INIT_LOG(ERR,
3978                              "could not calc tx buffer size for all TCs %d",
3979                              ret);
3980                 return ret;
3981         }
3982
3983         ret = hns3_tx_buffer_alloc(hw, &pkt_buf);
3984         if (ret) {
3985                 PMD_INIT_LOG(ERR, "could not alloc tx buffers %d", ret);
3986                 return ret;
3987         }
3988
3989         ret = hns3_rx_buffer_calc(hw, &pkt_buf);
3990         if (ret) {
3991                 PMD_INIT_LOG(ERR,
3992                              "could not calc rx priv buffer size for all TCs %d",
3993                              ret);
3994                 return ret;
3995         }
3996
3997         ret = hns3_rx_priv_buf_alloc(hw, &pkt_buf);
3998         if (ret) {
3999                 PMD_INIT_LOG(ERR, "could not alloc rx priv buffer %d", ret);
4000                 return ret;
4001         }
4002
4003         if (hns3_dev_dcb_supported(hw)) {
4004                 ret = hns3_rx_priv_wl_config(hw, &pkt_buf);
4005                 if (ret) {
4006                         PMD_INIT_LOG(ERR,
4007                                      "could not configure rx private waterline %d",
4008                                      ret);
4009                         return ret;
4010                 }
4011
4012                 ret = hns3_common_thrd_config(hw, &pkt_buf);
4013                 if (ret) {
4014                         PMD_INIT_LOG(ERR,
4015                                      "could not configure common threshold %d",
4016                                      ret);
4017                         return ret;
4018                 }
4019         }
4020
4021         ret = hns3_common_wl_config(hw, &pkt_buf);
4022         if (ret)
4023                 PMD_INIT_LOG(ERR, "could not configure common waterline %d",
4024                              ret);
4025
4026         return ret;
4027 }
4028
4029 static int
4030 hns3_firmware_compat_config(struct hns3_hw *hw, bool is_init)
4031 {
4032         struct hns3_firmware_compat_cmd *req;
4033         struct hns3_cmd_desc desc;
4034         uint32_t compat = 0;
4035
4036         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_FIRMWARE_COMPAT_CFG, false);
4037         req = (struct hns3_firmware_compat_cmd *)desc.data;
4038
4039         if (is_init) {
4040                 hns3_set_bit(compat, HNS3_LINK_EVENT_REPORT_EN_B, 1);
4041                 hns3_set_bit(compat, HNS3_NCSI_ERROR_REPORT_EN_B, 0);
4042                 if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER)
4043                         hns3_set_bit(compat, HNS3_FIRMWARE_PHY_DRIVER_EN_B, 1);
4044         }
4045
4046         req->compat = rte_cpu_to_le_32(compat);
4047
4048         return hns3_cmd_send(hw, &desc, 1);
4049 }
4050
4051 static int
4052 hns3_mac_init(struct hns3_hw *hw)
4053 {
4054         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4055         struct hns3_mac *mac = &hw->mac;
4056         struct hns3_pf *pf = &hns->pf;
4057         int ret;
4058
4059         pf->support_sfp_query = true;
4060         mac->link_duplex = ETH_LINK_FULL_DUPLEX;
4061         ret = hns3_cfg_mac_speed_dup_hw(hw, mac->link_speed, mac->link_duplex);
4062         if (ret) {
4063                 PMD_INIT_LOG(ERR, "Config mac speed dup fail ret = %d", ret);
4064                 return ret;
4065         }
4066
4067         mac->link_status = ETH_LINK_DOWN;
4068
4069         return hns3_config_mtu(hw, pf->mps);
4070 }
4071
4072 static int
4073 hns3_get_mac_ethertype_cmd_status(uint16_t cmdq_resp, uint8_t resp_code)
4074 {
4075 #define HNS3_ETHERTYPE_SUCCESS_ADD              0
4076 #define HNS3_ETHERTYPE_ALREADY_ADD              1
4077 #define HNS3_ETHERTYPE_MGR_TBL_OVERFLOW         2
4078 #define HNS3_ETHERTYPE_KEY_CONFLICT             3
4079         int return_status;
4080
4081         if (cmdq_resp) {
4082                 PMD_INIT_LOG(ERR,
4083                              "cmdq execute failed for get_mac_ethertype_cmd_status, status=%u.\n",
4084                              cmdq_resp);
4085                 return -EIO;
4086         }
4087
4088         switch (resp_code) {
4089         case HNS3_ETHERTYPE_SUCCESS_ADD:
4090         case HNS3_ETHERTYPE_ALREADY_ADD:
4091                 return_status = 0;
4092                 break;
4093         case HNS3_ETHERTYPE_MGR_TBL_OVERFLOW:
4094                 PMD_INIT_LOG(ERR,
4095                              "add mac ethertype failed for manager table overflow.");
4096                 return_status = -EIO;
4097                 break;
4098         case HNS3_ETHERTYPE_KEY_CONFLICT:
4099                 PMD_INIT_LOG(ERR, "add mac ethertype failed for key conflict.");
4100                 return_status = -EIO;
4101                 break;
4102         default:
4103                 PMD_INIT_LOG(ERR,
4104                              "add mac ethertype failed for undefined, code=%u.",
4105                              resp_code);
4106                 return_status = -EIO;
4107                 break;
4108         }
4109
4110         return return_status;
4111 }
4112
4113 static int
4114 hns3_add_mgr_tbl(struct hns3_hw *hw,
4115                  const struct hns3_mac_mgr_tbl_entry_cmd *req)
4116 {
4117         struct hns3_cmd_desc desc;
4118         uint8_t resp_code;
4119         uint16_t retval;
4120         int ret;
4121
4122         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_ETHTYPE_ADD, false);
4123         memcpy(desc.data, req, sizeof(struct hns3_mac_mgr_tbl_entry_cmd));
4124
4125         ret = hns3_cmd_send(hw, &desc, 1);
4126         if (ret) {
4127                 PMD_INIT_LOG(ERR,
4128                              "add mac ethertype failed for cmd_send, ret =%d.",
4129                              ret);
4130                 return ret;
4131         }
4132
4133         resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
4134         retval = rte_le_to_cpu_16(desc.retval);
4135
4136         return hns3_get_mac_ethertype_cmd_status(retval, resp_code);
4137 }
4138
4139 static void
4140 hns3_prepare_mgr_tbl(struct hns3_mac_mgr_tbl_entry_cmd *mgr_table,
4141                      int *table_item_num)
4142 {
4143         struct hns3_mac_mgr_tbl_entry_cmd *tbl;
4144
4145         /*
4146          * In current version, we add one item in management table as below:
4147          * 0x0180C200000E -- LLDP MC address
4148          */
4149         tbl = mgr_table;
4150         tbl->flags = HNS3_MAC_MGR_MASK_VLAN_B;
4151         tbl->ethter_type = rte_cpu_to_le_16(HNS3_MAC_ETHERTYPE_LLDP);
4152         tbl->mac_addr_hi32 = rte_cpu_to_le_32(htonl(0x0180C200));
4153         tbl->mac_addr_lo16 = rte_cpu_to_le_16(htons(0x000E));
4154         tbl->i_port_bitmap = 0x1;
4155         *table_item_num = 1;
4156 }
4157
4158 static int
4159 hns3_init_mgr_tbl(struct hns3_hw *hw)
4160 {
4161 #define HNS_MAC_MGR_TBL_MAX_SIZE        16
4162         struct hns3_mac_mgr_tbl_entry_cmd mgr_table[HNS_MAC_MGR_TBL_MAX_SIZE];
4163         int table_item_num;
4164         int ret;
4165         int i;
4166
4167         memset(mgr_table, 0, sizeof(mgr_table));
4168         hns3_prepare_mgr_tbl(mgr_table, &table_item_num);
4169         for (i = 0; i < table_item_num; i++) {
4170                 ret = hns3_add_mgr_tbl(hw, &mgr_table[i]);
4171                 if (ret) {
4172                         PMD_INIT_LOG(ERR, "add mac ethertype failed, ret =%d",
4173                                      ret);
4174                         return ret;
4175                 }
4176         }
4177
4178         return 0;
4179 }
4180
4181 static void
4182 hns3_promisc_param_init(struct hns3_promisc_param *param, bool en_uc,
4183                         bool en_mc, bool en_bc, int vport_id)
4184 {
4185         if (!param)
4186                 return;
4187
4188         memset(param, 0, sizeof(struct hns3_promisc_param));
4189         if (en_uc)
4190                 param->enable = HNS3_PROMISC_EN_UC;
4191         if (en_mc)
4192                 param->enable |= HNS3_PROMISC_EN_MC;
4193         if (en_bc)
4194                 param->enable |= HNS3_PROMISC_EN_BC;
4195         param->vf_id = vport_id;
4196 }
4197
4198 static int
4199 hns3_cmd_set_promisc_mode(struct hns3_hw *hw, struct hns3_promisc_param *param)
4200 {
4201         struct hns3_promisc_cfg_cmd *req;
4202         struct hns3_cmd_desc desc;
4203         int ret;
4204
4205         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PROMISC_MODE, false);
4206
4207         req = (struct hns3_promisc_cfg_cmd *)desc.data;
4208         req->vf_id = param->vf_id;
4209         req->flag = (param->enable << HNS3_PROMISC_EN_B) |
4210             HNS3_PROMISC_TX_EN_B | HNS3_PROMISC_RX_EN_B;
4211
4212         ret = hns3_cmd_send(hw, &desc, 1);
4213         if (ret)
4214                 PMD_INIT_LOG(ERR, "Set promisc mode fail, ret = %d", ret);
4215
4216         return ret;
4217 }
4218
4219 static int
4220 hns3_set_promisc_mode(struct hns3_hw *hw, bool en_uc_pmc, bool en_mc_pmc)
4221 {
4222         struct hns3_promisc_param param;
4223         bool en_bc_pmc = true;
4224         uint8_t vf_id;
4225
4226         /*
4227          * In current version VF is not supported when PF is driven by DPDK
4228          * driver, just need to configure parameters for PF vport.
4229          */
4230         vf_id = HNS3_PF_FUNC_ID;
4231
4232         hns3_promisc_param_init(&param, en_uc_pmc, en_mc_pmc, en_bc_pmc, vf_id);
4233         return hns3_cmd_set_promisc_mode(hw, &param);
4234 }
4235
4236 static int
4237 hns3_promisc_init(struct hns3_hw *hw)
4238 {
4239         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4240         struct hns3_pf *pf = &hns->pf;
4241         struct hns3_promisc_param param;
4242         uint16_t func_id;
4243         int ret;
4244
4245         ret = hns3_set_promisc_mode(hw, false, false);
4246         if (ret) {
4247                 PMD_INIT_LOG(ERR, "failed to set promisc mode, ret = %d", ret);
4248                 return ret;
4249         }
4250
4251         /*
4252          * In current version VFs are not supported when PF is driven by DPDK
4253          * driver. After PF has been taken over by DPDK, the original VF will
4254          * be invalid. So, there is a possibility of entry residues. It should
4255          * clear VFs's promisc mode to avoid unnecessary bandwidth usage
4256          * during init.
4257          */
4258         for (func_id = HNS3_1ST_VF_FUNC_ID; func_id < pf->func_num; func_id++) {
4259                 hns3_promisc_param_init(&param, false, false, false, func_id);
4260                 ret = hns3_cmd_set_promisc_mode(hw, &param);
4261                 if (ret) {
4262                         PMD_INIT_LOG(ERR, "failed to clear vf:%u promisc mode,"
4263                                         " ret = %d", func_id, ret);
4264                         return ret;
4265                 }
4266         }
4267
4268         return 0;
4269 }
4270
4271 static void
4272 hns3_promisc_uninit(struct hns3_hw *hw)
4273 {
4274         struct hns3_promisc_param param;
4275         uint16_t func_id;
4276         int ret;
4277
4278         func_id = HNS3_PF_FUNC_ID;
4279
4280         /*
4281          * In current version VFs are not supported when PF is driven by
4282          * DPDK driver, and VFs' promisc mode status has been cleared during
4283          * init and their status will not change. So just clear PF's promisc
4284          * mode status during uninit.
4285          */
4286         hns3_promisc_param_init(&param, false, false, false, func_id);
4287         ret = hns3_cmd_set_promisc_mode(hw, &param);
4288         if (ret)
4289                 PMD_INIT_LOG(ERR, "failed to clear promisc status during"
4290                                 " uninit, ret = %d", ret);
4291 }
4292
4293 static int
4294 hns3_dev_promiscuous_enable(struct rte_eth_dev *dev)
4295 {
4296         bool allmulti = dev->data->all_multicast ? true : false;
4297         struct hns3_adapter *hns = dev->data->dev_private;
4298         struct hns3_hw *hw = &hns->hw;
4299         uint64_t offloads;
4300         int err;
4301         int ret;
4302
4303         rte_spinlock_lock(&hw->lock);
4304         ret = hns3_set_promisc_mode(hw, true, true);
4305         if (ret) {
4306                 rte_spinlock_unlock(&hw->lock);
4307                 hns3_err(hw, "failed to enable promiscuous mode, ret = %d",
4308                          ret);
4309                 return ret;
4310         }
4311
4312         /*
4313          * When promiscuous mode was enabled, disable the vlan filter to let
4314          * all packets coming in in the receiving direction.
4315          */
4316         offloads = dev->data->dev_conf.rxmode.offloads;
4317         if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4318                 ret = hns3_enable_vlan_filter(hns, false);
4319                 if (ret) {
4320                         hns3_err(hw, "failed to enable promiscuous mode due to "
4321                                      "failure to disable vlan filter, ret = %d",
4322                                  ret);
4323                         err = hns3_set_promisc_mode(hw, false, allmulti);
4324                         if (err)
4325                                 hns3_err(hw, "failed to restore promiscuous "
4326                                          "status after disable vlan filter "
4327                                          "failed during enabling promiscuous "
4328                                          "mode, ret = %d", ret);
4329                 }
4330         }
4331
4332         rte_spinlock_unlock(&hw->lock);
4333
4334         return ret;
4335 }
4336
4337 static int
4338 hns3_dev_promiscuous_disable(struct rte_eth_dev *dev)
4339 {
4340         bool allmulti = dev->data->all_multicast ? true : false;
4341         struct hns3_adapter *hns = dev->data->dev_private;
4342         struct hns3_hw *hw = &hns->hw;
4343         uint64_t offloads;
4344         int err;
4345         int ret;
4346
4347         /* If now in all_multicast mode, must remain in all_multicast mode. */
4348         rte_spinlock_lock(&hw->lock);
4349         ret = hns3_set_promisc_mode(hw, false, allmulti);
4350         if (ret) {
4351                 rte_spinlock_unlock(&hw->lock);
4352                 hns3_err(hw, "failed to disable promiscuous mode, ret = %d",
4353                          ret);
4354                 return ret;
4355         }
4356         /* when promiscuous mode was disabled, restore the vlan filter status */
4357         offloads = dev->data->dev_conf.rxmode.offloads;
4358         if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4359                 ret = hns3_enable_vlan_filter(hns, true);
4360                 if (ret) {
4361                         hns3_err(hw, "failed to disable promiscuous mode due to"
4362                                  " failure to restore vlan filter, ret = %d",
4363                                  ret);
4364                         err = hns3_set_promisc_mode(hw, true, true);
4365                         if (err)
4366                                 hns3_err(hw, "failed to restore promiscuous "
4367                                          "status after enabling vlan filter "
4368                                          "failed during disabling promiscuous "
4369                                          "mode, ret = %d", ret);
4370                 }
4371         }
4372         rte_spinlock_unlock(&hw->lock);
4373
4374         return ret;
4375 }
4376
4377 static int
4378 hns3_dev_allmulticast_enable(struct rte_eth_dev *dev)
4379 {
4380         struct hns3_adapter *hns = dev->data->dev_private;
4381         struct hns3_hw *hw = &hns->hw;
4382         int ret;
4383
4384         if (dev->data->promiscuous)
4385                 return 0;
4386
4387         rte_spinlock_lock(&hw->lock);
4388         ret = hns3_set_promisc_mode(hw, false, true);
4389         rte_spinlock_unlock(&hw->lock);
4390         if (ret)
4391                 hns3_err(hw, "failed to enable allmulticast mode, ret = %d",
4392                          ret);
4393
4394         return ret;
4395 }
4396
4397 static int
4398 hns3_dev_allmulticast_disable(struct rte_eth_dev *dev)
4399 {
4400         struct hns3_adapter *hns = dev->data->dev_private;
4401         struct hns3_hw *hw = &hns->hw;
4402         int ret;
4403
4404         /* If now in promiscuous mode, must remain in all_multicast mode. */
4405         if (dev->data->promiscuous)
4406                 return 0;
4407
4408         rte_spinlock_lock(&hw->lock);
4409         ret = hns3_set_promisc_mode(hw, false, false);
4410         rte_spinlock_unlock(&hw->lock);
4411         if (ret)
4412                 hns3_err(hw, "failed to disable allmulticast mode, ret = %d",
4413                          ret);
4414
4415         return ret;
4416 }
4417
4418 static int
4419 hns3_dev_promisc_restore(struct hns3_adapter *hns)
4420 {
4421         struct hns3_hw *hw = &hns->hw;
4422         bool allmulti = hw->data->all_multicast ? true : false;
4423         int ret;
4424
4425         if (hw->data->promiscuous) {
4426                 ret = hns3_set_promisc_mode(hw, true, true);
4427                 if (ret)
4428                         hns3_err(hw, "failed to restore promiscuous mode, "
4429                                  "ret = %d", ret);
4430                 return ret;
4431         }
4432
4433         ret = hns3_set_promisc_mode(hw, false, allmulti);
4434         if (ret)
4435                 hns3_err(hw, "failed to restore allmulticast mode, ret = %d",
4436                          ret);
4437         return ret;
4438 }
4439
4440 static int
4441 hns3_get_sfp_speed(struct hns3_hw *hw, uint32_t *speed)
4442 {
4443         struct hns3_sfp_speed_cmd *resp;
4444         struct hns3_cmd_desc desc;
4445         int ret;
4446
4447         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SFP_GET_SPEED, true);
4448         resp = (struct hns3_sfp_speed_cmd *)desc.data;
4449         ret = hns3_cmd_send(hw, &desc, 1);
4450         if (ret == -EOPNOTSUPP) {
4451                 hns3_err(hw, "IMP do not support get SFP speed %d", ret);
4452                 return ret;
4453         } else if (ret) {
4454                 hns3_err(hw, "get sfp speed failed %d", ret);
4455                 return ret;
4456         }
4457
4458         *speed = resp->sfp_speed;
4459
4460         return 0;
4461 }
4462
4463 static uint8_t
4464 hns3_check_speed_dup(uint8_t duplex, uint32_t speed)
4465 {
4466         if (!(speed == ETH_SPEED_NUM_10M || speed == ETH_SPEED_NUM_100M))
4467                 duplex = ETH_LINK_FULL_DUPLEX;
4468
4469         return duplex;
4470 }
4471
4472 static int
4473 hns3_cfg_mac_speed_dup(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
4474 {
4475         struct hns3_mac *mac = &hw->mac;
4476         int ret;
4477
4478         duplex = hns3_check_speed_dup(duplex, speed);
4479         if (mac->link_speed == speed && mac->link_duplex == duplex)
4480                 return 0;
4481
4482         ret = hns3_cfg_mac_speed_dup_hw(hw, speed, duplex);
4483         if (ret)
4484                 return ret;
4485
4486         ret = hns3_port_shaper_update(hw, speed);
4487         if (ret)
4488                 return ret;
4489
4490         mac->link_speed = speed;
4491         mac->link_duplex = duplex;
4492
4493         return 0;
4494 }
4495
4496 static int
4497 hns3_update_fiber_link_info(struct hns3_hw *hw)
4498 {
4499         struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
4500         uint32_t speed;
4501         int ret;
4502
4503         /* If IMP do not support get SFP/qSFP speed, return directly */
4504         if (!pf->support_sfp_query)
4505                 return 0;
4506
4507         ret = hns3_get_sfp_speed(hw, &speed);
4508         if (ret == -EOPNOTSUPP) {
4509                 pf->support_sfp_query = false;
4510                 return ret;
4511         } else if (ret)
4512                 return ret;
4513
4514         if (speed == ETH_SPEED_NUM_NONE)
4515                 return 0; /* do nothing if no SFP */
4516
4517         /* Config full duplex for SFP */
4518         return hns3_cfg_mac_speed_dup(hw, speed, ETH_LINK_FULL_DUPLEX);
4519 }
4520
4521 static void
4522 hns3_parse_phy_params(struct hns3_cmd_desc *desc, struct hns3_mac *mac)
4523 {
4524         struct hns3_phy_params_bd0_cmd *req;
4525
4526         req = (struct hns3_phy_params_bd0_cmd *)desc[0].data;
4527         mac->link_speed = rte_le_to_cpu_32(req->speed);
4528         mac->link_duplex = hns3_get_bit(req->duplex,
4529                                            HNS3_PHY_DUPLEX_CFG_B);
4530         mac->link_autoneg = hns3_get_bit(req->autoneg,
4531                                            HNS3_PHY_AUTONEG_CFG_B);
4532         mac->supported_capa = rte_le_to_cpu_32(req->supported);
4533         mac->advertising = rte_le_to_cpu_32(req->advertising);
4534         mac->lp_advertising = rte_le_to_cpu_32(req->lp_advertising);
4535         mac->support_autoneg = !!(mac->supported_capa &
4536                                 HNS3_PHY_LINK_MODE_AUTONEG_BIT);
4537 }
4538
4539 static int
4540 hns3_get_phy_params(struct hns3_hw *hw, struct hns3_mac *mac)
4541 {
4542         struct hns3_cmd_desc desc[HNS3_PHY_PARAM_CFG_BD_NUM];
4543         uint16_t i;
4544         int ret;
4545
4546         for (i = 0; i < HNS3_PHY_PARAM_CFG_BD_NUM - 1; i++) {
4547                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG,
4548                                           true);
4549                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4550         }
4551         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, true);
4552
4553         ret = hns3_cmd_send(hw, desc, HNS3_PHY_PARAM_CFG_BD_NUM);
4554         if (ret) {
4555                 hns3_err(hw, "get phy parameters failed, ret = %d.", ret);
4556                 return ret;
4557         }
4558
4559         hns3_parse_phy_params(desc, mac);
4560
4561         return 0;
4562 }
4563
4564 static int
4565 hns3_update_phy_link_info(struct hns3_hw *hw)
4566 {
4567         struct hns3_mac *mac = &hw->mac;
4568         struct hns3_mac mac_info;
4569         int ret;
4570
4571         memset(&mac_info, 0, sizeof(struct hns3_mac));
4572         ret = hns3_get_phy_params(hw, &mac_info);
4573         if (ret)
4574                 return ret;
4575
4576         if (mac_info.link_speed != mac->link_speed) {
4577                 ret = hns3_port_shaper_update(hw, mac_info.link_speed);
4578                 if (ret)
4579                         return ret;
4580         }
4581
4582         mac->link_speed = mac_info.link_speed;
4583         mac->link_duplex = mac_info.link_duplex;
4584         mac->link_autoneg = mac_info.link_autoneg;
4585         mac->supported_capa = mac_info.supported_capa;
4586         mac->advertising = mac_info.advertising;
4587         mac->lp_advertising = mac_info.lp_advertising;
4588         mac->support_autoneg = mac_info.support_autoneg;
4589
4590         return 0;
4591 }
4592
4593 static int
4594 hns3_update_link_info(struct rte_eth_dev *eth_dev)
4595 {
4596         struct hns3_adapter *hns = eth_dev->data->dev_private;
4597         struct hns3_hw *hw = &hns->hw;
4598         int ret = 0;
4599
4600         if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER)
4601                 ret = hns3_update_phy_link_info(hw);
4602         else if (hw->mac.media_type == HNS3_MEDIA_TYPE_FIBER)
4603                 ret = hns3_update_fiber_link_info(hw);
4604
4605         return ret;
4606 }
4607
4608 static int
4609 hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable)
4610 {
4611         struct hns3_config_mac_mode_cmd *req;
4612         struct hns3_cmd_desc desc;
4613         uint32_t loop_en = 0;
4614         uint8_t val = 0;
4615         int ret;
4616
4617         req = (struct hns3_config_mac_mode_cmd *)desc.data;
4618
4619         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAC_MODE, false);
4620         if (enable)
4621                 val = 1;
4622         hns3_set_bit(loop_en, HNS3_MAC_TX_EN_B, val);
4623         hns3_set_bit(loop_en, HNS3_MAC_RX_EN_B, val);
4624         hns3_set_bit(loop_en, HNS3_MAC_PAD_TX_B, val);
4625         hns3_set_bit(loop_en, HNS3_MAC_PAD_RX_B, val);
4626         hns3_set_bit(loop_en, HNS3_MAC_1588_TX_B, 0);
4627         hns3_set_bit(loop_en, HNS3_MAC_1588_RX_B, 0);
4628         hns3_set_bit(loop_en, HNS3_MAC_APP_LP_B, 0);
4629         hns3_set_bit(loop_en, HNS3_MAC_LINE_LP_B, 0);
4630         hns3_set_bit(loop_en, HNS3_MAC_FCS_TX_B, val);
4631         hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_B, val);
4632
4633         /*
4634          * If DEV_RX_OFFLOAD_KEEP_CRC offload is set, MAC will not strip CRC
4635          * when receiving frames. Otherwise, CRC will be stripped.
4636          */
4637         if (hw->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
4638                 hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, 0);
4639         else
4640                 hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, val);
4641         hns3_set_bit(loop_en, HNS3_MAC_TX_OVERSIZE_TRUNCATE_B, val);
4642         hns3_set_bit(loop_en, HNS3_MAC_RX_OVERSIZE_TRUNCATE_B, val);
4643         hns3_set_bit(loop_en, HNS3_MAC_TX_UNDER_MIN_ERR_B, val);
4644         req->txrx_pad_fcs_loop_en = rte_cpu_to_le_32(loop_en);
4645
4646         ret = hns3_cmd_send(hw, &desc, 1);
4647         if (ret)
4648                 PMD_INIT_LOG(ERR, "mac enable fail, ret =%d.", ret);
4649
4650         return ret;
4651 }
4652
4653 static int
4654 hns3_get_mac_link_status(struct hns3_hw *hw)
4655 {
4656         struct hns3_link_status_cmd *req;
4657         struct hns3_cmd_desc desc;
4658         int link_status;
4659         int ret;
4660
4661         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_LINK_STATUS, true);
4662         ret = hns3_cmd_send(hw, &desc, 1);
4663         if (ret) {
4664                 hns3_err(hw, "get link status cmd failed %d", ret);
4665                 return ETH_LINK_DOWN;
4666         }
4667
4668         req = (struct hns3_link_status_cmd *)desc.data;
4669         link_status = req->status & HNS3_LINK_STATUS_UP_M;
4670
4671         return !!link_status;
4672 }
4673
4674 static bool
4675 hns3_update_link_status(struct hns3_hw *hw)
4676 {
4677         int state;
4678
4679         state = hns3_get_mac_link_status(hw);
4680         if (state != hw->mac.link_status) {
4681                 hw->mac.link_status = state;
4682                 hns3_warn(hw, "Link status change to %s!", state ? "up" : "down");
4683                 hns3_config_mac_tnl_int(hw,
4684                                         state == ETH_LINK_UP ? true : false);
4685                 return true;
4686         }
4687
4688         return false;
4689 }
4690
4691 /*
4692  * Current, the PF driver get link status by two ways:
4693  * 1) Periodic polling in the intr thread context, driver call
4694  *    hns3_update_link_status to update link status.
4695  * 2) Firmware report async interrupt, driver process the event in the intr
4696  *    thread context, and call hns3_update_link_status to update link status.
4697  *
4698  * If detect link status changed, driver need report LSE. One method is add the
4699  * report LSE logic in hns3_update_link_status.
4700  *
4701  * But the PF driver ops(link_update) also call hns3_update_link_status to
4702  * update link status.
4703  * If we report LSE in hns3_update_link_status, it may lead to deadlock in the
4704  * bonding application.
4705  *
4706  * So add the one new API which used only in intr thread context.
4707  */
4708 void
4709 hns3_update_link_status_and_event(struct hns3_hw *hw)
4710 {
4711         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
4712         bool changed = hns3_update_link_status(hw);
4713         if (changed)
4714                 rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
4715 }
4716
4717 static void
4718 hns3_service_handler(void *param)
4719 {
4720         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
4721         struct hns3_adapter *hns = eth_dev->data->dev_private;
4722         struct hns3_hw *hw = &hns->hw;
4723
4724         if (!hns3_is_reset_pending(hns)) {
4725                 hns3_update_link_status_and_event(hw);
4726                 hns3_update_link_info(eth_dev);
4727         } else {
4728                 hns3_warn(hw, "Cancel the query when reset is pending");
4729         }
4730
4731         rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev);
4732 }
4733
4734 static int
4735 hns3_init_hardware(struct hns3_adapter *hns)
4736 {
4737         struct hns3_hw *hw = &hns->hw;
4738         int ret;
4739
4740         ret = hns3_map_tqp(hw);
4741         if (ret) {
4742                 PMD_INIT_LOG(ERR, "Failed to map tqp: %d", ret);
4743                 return ret;
4744         }
4745
4746         ret = hns3_init_umv_space(hw);
4747         if (ret) {
4748                 PMD_INIT_LOG(ERR, "Failed to init umv space: %d", ret);
4749                 return ret;
4750         }
4751
4752         ret = hns3_mac_init(hw);
4753         if (ret) {
4754                 PMD_INIT_LOG(ERR, "Failed to init MAC: %d", ret);
4755                 goto err_mac_init;
4756         }
4757
4758         ret = hns3_init_mgr_tbl(hw);
4759         if (ret) {
4760                 PMD_INIT_LOG(ERR, "Failed to init manager table: %d", ret);
4761                 goto err_mac_init;
4762         }
4763
4764         ret = hns3_promisc_init(hw);
4765         if (ret) {
4766                 PMD_INIT_LOG(ERR, "Failed to init promisc: %d",
4767                              ret);
4768                 goto err_mac_init;
4769         }
4770
4771         ret = hns3_init_vlan_config(hns);
4772         if (ret) {
4773                 PMD_INIT_LOG(ERR, "Failed to init vlan: %d", ret);
4774                 goto err_mac_init;
4775         }
4776
4777         ret = hns3_dcb_init(hw);
4778         if (ret) {
4779                 PMD_INIT_LOG(ERR, "Failed to init dcb: %d", ret);
4780                 goto err_mac_init;
4781         }
4782
4783         ret = hns3_init_fd_config(hns);
4784         if (ret) {
4785                 PMD_INIT_LOG(ERR, "Failed to init flow director: %d", ret);
4786                 goto err_mac_init;
4787         }
4788
4789         ret = hns3_config_tso(hw, HNS3_TSO_MSS_MIN, HNS3_TSO_MSS_MAX);
4790         if (ret) {
4791                 PMD_INIT_LOG(ERR, "Failed to config tso: %d", ret);
4792                 goto err_mac_init;
4793         }
4794
4795         ret = hns3_config_gro(hw, false);
4796         if (ret) {
4797                 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
4798                 goto err_mac_init;
4799         }
4800
4801         /*
4802          * In the initialization clearing the all hardware mapping relationship
4803          * configurations between queues and interrupt vectors is needed, so
4804          * some error caused by the residual configurations, such as the
4805          * unexpected interrupt, can be avoid.
4806          */
4807         ret = hns3_init_ring_with_vector(hw);
4808         if (ret) {
4809                 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
4810                 goto err_mac_init;
4811         }
4812
4813         /*
4814          * Requiring firmware to enable some features, driver can
4815          * still work without it.
4816          */
4817         ret = hns3_firmware_compat_config(hw, true);
4818         if (ret)
4819                 PMD_INIT_LOG(WARNING, "firmware compatible features not "
4820                              "supported, ret = %d.", ret);
4821
4822         return 0;
4823
4824 err_mac_init:
4825         hns3_uninit_umv_space(hw);
4826         return ret;
4827 }
4828
4829 static int
4830 hns3_clear_hw(struct hns3_hw *hw)
4831 {
4832         struct hns3_cmd_desc desc;
4833         int ret;
4834
4835         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_HW_STATE, false);
4836
4837         ret = hns3_cmd_send(hw, &desc, 1);
4838         if (ret && ret != -EOPNOTSUPP)
4839                 return ret;
4840
4841         return 0;
4842 }
4843
4844 static void
4845 hns3_config_all_msix_error(struct hns3_hw *hw, bool enable)
4846 {
4847         uint32_t val;
4848
4849         /*
4850          * The new firmware support report more hardware error types by
4851          * msix mode. These errors are defined as RAS errors in hardware
4852          * and belong to a different type from the MSI-x errors processed
4853          * by the network driver.
4854          *
4855          * Network driver should open the new error report on initialition
4856          */
4857         val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
4858         hns3_set_bit(val, HNS3_VECTOR0_ALL_MSIX_ERR_B, enable ? 1 : 0);
4859         hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, val);
4860 }
4861
4862 static int
4863 hns3_init_pf(struct rte_eth_dev *eth_dev)
4864 {
4865         struct rte_device *dev = eth_dev->device;
4866         struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4867         struct hns3_adapter *hns = eth_dev->data->dev_private;
4868         struct hns3_hw *hw = &hns->hw;
4869         int ret;
4870
4871         PMD_INIT_FUNC_TRACE();
4872
4873         /* Get hardware io base address from pcie BAR2 IO space */
4874         hw->io_base = pci_dev->mem_resource[2].addr;
4875
4876         /* Firmware command queue initialize */
4877         ret = hns3_cmd_init_queue(hw);
4878         if (ret) {
4879                 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
4880                 goto err_cmd_init_queue;
4881         }
4882
4883         hns3_clear_all_event_cause(hw);
4884
4885         /* Firmware command initialize */
4886         ret = hns3_cmd_init(hw);
4887         if (ret) {
4888                 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
4889                 goto err_cmd_init;
4890         }
4891
4892         /*
4893          * To ensure that the hardware environment is clean during
4894          * initialization, the driver actively clear the hardware environment
4895          * during initialization, including PF and corresponding VFs' vlan, mac,
4896          * flow table configurations, etc.
4897          */
4898         ret = hns3_clear_hw(hw);
4899         if (ret) {
4900                 PMD_INIT_LOG(ERR, "failed to clear hardware: %d", ret);
4901                 goto err_cmd_init;
4902         }
4903
4904         /* Hardware statistics of imissed registers cleared. */
4905         ret = hns3_update_imissed_stats(hw, true);
4906         if (ret) {
4907                 hns3_err(hw, "clear imissed stats failed, ret = %d", ret);
4908                 return ret;
4909         }
4910
4911         hns3_config_all_msix_error(hw, true);
4912
4913         ret = rte_intr_callback_register(&pci_dev->intr_handle,
4914                                          hns3_interrupt_handler,
4915                                          eth_dev);
4916         if (ret) {
4917                 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
4918                 goto err_intr_callback_register;
4919         }
4920
4921         /* Enable interrupt */
4922         rte_intr_enable(&pci_dev->intr_handle);
4923         hns3_pf_enable_irq0(hw);
4924
4925         /* Get configuration */
4926         ret = hns3_get_configuration(hw);
4927         if (ret) {
4928                 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
4929                 goto err_get_config;
4930         }
4931
4932         ret = hns3_tqp_stats_init(hw);
4933         if (ret)
4934                 goto err_get_config;
4935
4936         ret = hns3_init_hardware(hns);
4937         if (ret) {
4938                 PMD_INIT_LOG(ERR, "Failed to init hardware: %d", ret);
4939                 goto err_init_hw;
4940         }
4941
4942         /* Initialize flow director filter list & hash */
4943         ret = hns3_fdir_filter_init(hns);
4944         if (ret) {
4945                 PMD_INIT_LOG(ERR, "Failed to alloc hashmap for fdir: %d", ret);
4946                 goto err_fdir;
4947         }
4948
4949         hns3_rss_set_default_args(hw);
4950
4951         ret = hns3_enable_hw_error_intr(hns, true);
4952         if (ret) {
4953                 PMD_INIT_LOG(ERR, "fail to enable hw error interrupts: %d",
4954                              ret);
4955                 goto err_enable_intr;
4956         }
4957
4958         hns3_tm_conf_init(eth_dev);
4959
4960         return 0;
4961
4962 err_enable_intr:
4963         hns3_fdir_filter_uninit(hns);
4964 err_fdir:
4965         (void)hns3_firmware_compat_config(hw, false);
4966         hns3_uninit_umv_space(hw);
4967 err_init_hw:
4968         hns3_tqp_stats_uninit(hw);
4969 err_get_config:
4970         hns3_pf_disable_irq0(hw);
4971         rte_intr_disable(&pci_dev->intr_handle);
4972         hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
4973                              eth_dev);
4974 err_intr_callback_register:
4975 err_cmd_init:
4976         hns3_cmd_uninit(hw);
4977         hns3_cmd_destroy_queue(hw);
4978 err_cmd_init_queue:
4979         hw->io_base = NULL;
4980
4981         return ret;
4982 }
4983
4984 static void
4985 hns3_uninit_pf(struct rte_eth_dev *eth_dev)
4986 {
4987         struct hns3_adapter *hns = eth_dev->data->dev_private;
4988         struct rte_device *dev = eth_dev->device;
4989         struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4990         struct hns3_hw *hw = &hns->hw;
4991
4992         PMD_INIT_FUNC_TRACE();
4993
4994         hns3_tm_conf_uninit(eth_dev);
4995         hns3_enable_hw_error_intr(hns, false);
4996         hns3_rss_uninit(hns);
4997         (void)hns3_config_gro(hw, false);
4998         hns3_promisc_uninit(hw);
4999         hns3_fdir_filter_uninit(hns);
5000         (void)hns3_firmware_compat_config(hw, false);
5001         hns3_uninit_umv_space(hw);
5002         hns3_tqp_stats_uninit(hw);
5003         hns3_config_mac_tnl_int(hw, false);
5004         hns3_pf_disable_irq0(hw);
5005         rte_intr_disable(&pci_dev->intr_handle);
5006         hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
5007                              eth_dev);
5008         hns3_config_all_msix_error(hw, false);
5009         hns3_cmd_uninit(hw);
5010         hns3_cmd_destroy_queue(hw);
5011         hw->io_base = NULL;
5012 }
5013
5014 static int
5015 hns3_do_start(struct hns3_adapter *hns, bool reset_queue)
5016 {
5017         struct hns3_hw *hw = &hns->hw;
5018         int ret;
5019
5020         ret = hns3_dcb_cfg_update(hns);
5021         if (ret)
5022                 return ret;
5023
5024         /*
5025          * The hns3_dcb_cfg_update may configure TM module, so
5026          * hns3_tm_conf_update must called later.
5027          */
5028         ret = hns3_tm_conf_update(hw);
5029         if (ret) {
5030                 PMD_INIT_LOG(ERR, "failed to update tm conf, ret = %d.", ret);
5031                 return ret;
5032         }
5033
5034         hns3_enable_rxd_adv_layout(hw);
5035
5036         ret = hns3_init_queues(hns, reset_queue);
5037         if (ret) {
5038                 PMD_INIT_LOG(ERR, "failed to init queues, ret = %d.", ret);
5039                 return ret;
5040         }
5041
5042         ret = hns3_cfg_mac_mode(hw, true);
5043         if (ret) {
5044                 PMD_INIT_LOG(ERR, "failed to enable MAC, ret = %d", ret);
5045                 goto err_config_mac_mode;
5046         }
5047         return 0;
5048
5049 err_config_mac_mode:
5050         hns3_dev_release_mbufs(hns);
5051         /*
5052          * Here is exception handling, hns3_reset_all_tqps will have the
5053          * corresponding error message if it is handled incorrectly, so it is
5054          * not necessary to check hns3_reset_all_tqps return value, here keep
5055          * ret as the error code causing the exception.
5056          */
5057         (void)hns3_reset_all_tqps(hns);
5058         return ret;
5059 }
5060
5061 static int
5062 hns3_map_rx_interrupt(struct rte_eth_dev *dev)
5063 {
5064         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5065         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5066         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5067         uint16_t base = RTE_INTR_VEC_ZERO_OFFSET;
5068         uint16_t vec = RTE_INTR_VEC_ZERO_OFFSET;
5069         uint32_t intr_vector;
5070         uint16_t q_id;
5071         int ret;
5072
5073         /*
5074          * hns3 needs a separate interrupt to be used as event interrupt which
5075          * could not be shared with task queue pair, so KERNEL drivers need
5076          * support multiple interrupt vectors.
5077          */
5078         if (dev->data->dev_conf.intr_conf.rxq == 0 ||
5079             !rte_intr_cap_multiple(intr_handle))
5080                 return 0;
5081
5082         rte_intr_disable(intr_handle);
5083         intr_vector = hw->used_rx_queues;
5084         /* creates event fd for each intr vector when MSIX is used */
5085         if (rte_intr_efd_enable(intr_handle, intr_vector))
5086                 return -EINVAL;
5087
5088         if (intr_handle->intr_vec == NULL) {
5089                 intr_handle->intr_vec =
5090                         rte_zmalloc("intr_vec",
5091                                     hw->used_rx_queues * sizeof(int), 0);
5092                 if (intr_handle->intr_vec == NULL) {
5093                         hns3_err(hw, "failed to allocate %u rx_queues intr_vec",
5094                                         hw->used_rx_queues);
5095                         ret = -ENOMEM;
5096                         goto alloc_intr_vec_error;
5097                 }
5098         }
5099
5100         if (rte_intr_allow_others(intr_handle)) {
5101                 vec = RTE_INTR_VEC_RXTX_OFFSET;
5102                 base = RTE_INTR_VEC_RXTX_OFFSET;
5103         }
5104
5105         for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5106                 ret = hns3_bind_ring_with_vector(hw, vec, true,
5107                                                  HNS3_RING_TYPE_RX, q_id);
5108                 if (ret)
5109                         goto bind_vector_error;
5110                 intr_handle->intr_vec[q_id] = vec;
5111                 /*
5112                  * If there are not enough efds (e.g. not enough interrupt),
5113                  * remaining queues will be bond to the last interrupt.
5114                  */
5115                 if (vec < base + intr_handle->nb_efd - 1)
5116                         vec++;
5117         }
5118         rte_intr_enable(intr_handle);
5119         return 0;
5120
5121 bind_vector_error:
5122         rte_free(intr_handle->intr_vec);
5123         intr_handle->intr_vec = NULL;
5124 alloc_intr_vec_error:
5125         rte_intr_efd_disable(intr_handle);
5126         return ret;
5127 }
5128
5129 static int
5130 hns3_restore_rx_interrupt(struct hns3_hw *hw)
5131 {
5132         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
5133         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5134         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5135         uint16_t q_id;
5136         int ret;
5137
5138         if (dev->data->dev_conf.intr_conf.rxq == 0)
5139                 return 0;
5140
5141         if (rte_intr_dp_is_en(intr_handle)) {
5142                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5143                         ret = hns3_bind_ring_with_vector(hw,
5144                                         intr_handle->intr_vec[q_id], true,
5145                                         HNS3_RING_TYPE_RX, q_id);
5146                         if (ret)
5147                                 return ret;
5148                 }
5149         }
5150
5151         return 0;
5152 }
5153
5154 static void
5155 hns3_restore_filter(struct rte_eth_dev *dev)
5156 {
5157         hns3_restore_rss_filter(dev);
5158 }
5159
5160 static int
5161 hns3_dev_start(struct rte_eth_dev *dev)
5162 {
5163         struct hns3_adapter *hns = dev->data->dev_private;
5164         struct hns3_hw *hw = &hns->hw;
5165         int ret;
5166
5167         PMD_INIT_FUNC_TRACE();
5168         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
5169                 return -EBUSY;
5170
5171         rte_spinlock_lock(&hw->lock);
5172         hw->adapter_state = HNS3_NIC_STARTING;
5173
5174         ret = hns3_do_start(hns, true);
5175         if (ret) {
5176                 hw->adapter_state = HNS3_NIC_CONFIGURED;
5177                 rte_spinlock_unlock(&hw->lock);
5178                 return ret;
5179         }
5180         ret = hns3_map_rx_interrupt(dev);
5181         if (ret)
5182                 goto map_rx_inter_err;
5183
5184         /*
5185          * There are three register used to control the status of a TQP
5186          * (contains a pair of Tx queue and Rx queue) in the new version network
5187          * engine. One is used to control the enabling of Tx queue, the other is
5188          * used to control the enabling of Rx queue, and the last is the master
5189          * switch used to control the enabling of the tqp. The Tx register and
5190          * TQP register must be enabled at the same time to enable a Tx queue.
5191          * The same applies to the Rx queue. For the older network engine, this
5192          * function only refresh the enabled flag, and it is used to update the
5193          * status of queue in the dpdk framework.
5194          */
5195         ret = hns3_start_all_txqs(dev);
5196         if (ret)
5197                 goto map_rx_inter_err;
5198
5199         ret = hns3_start_all_rxqs(dev);
5200         if (ret)
5201                 goto start_all_rxqs_fail;
5202
5203         hw->adapter_state = HNS3_NIC_STARTED;
5204         rte_spinlock_unlock(&hw->lock);
5205
5206         hns3_rx_scattered_calc(dev);
5207         hns3_set_rxtx_function(dev);
5208         hns3_mp_req_start_rxtx(dev);
5209         rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, dev);
5210
5211         hns3_restore_filter(dev);
5212
5213         /* Enable interrupt of all rx queues before enabling queues */
5214         hns3_dev_all_rx_queue_intr_enable(hw, true);
5215
5216         /*
5217          * After finished the initialization, enable tqps to receive/transmit
5218          * packets and refresh all queue status.
5219          */
5220         hns3_start_tqps(hw);
5221
5222         hns3_tm_dev_start_proc(hw);
5223
5224         hns3_info(hw, "hns3 dev start successful!");
5225
5226         return 0;
5227
5228 start_all_rxqs_fail:
5229         hns3_stop_all_txqs(dev);
5230 map_rx_inter_err:
5231         (void)hns3_do_stop(hns);
5232         hw->adapter_state = HNS3_NIC_CONFIGURED;
5233         rte_spinlock_unlock(&hw->lock);
5234
5235         return ret;
5236 }
5237
5238 static int
5239 hns3_do_stop(struct hns3_adapter *hns)
5240 {
5241         struct hns3_hw *hw = &hns->hw;
5242         int ret;
5243
5244         /*
5245          * The "hns3_do_stop" function will also be called by .stop_service to
5246          * prepare reset. At the time of global or IMP reset, the command cannot
5247          * be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be
5248          * accessed during the reset process. So the mbuf can not be released
5249          * during reset and is required to be released after the reset is
5250          * completed.
5251          */
5252         if (__atomic_load_n(&hw->reset.resetting,  __ATOMIC_RELAXED) == 0)
5253                 hns3_dev_release_mbufs(hns);
5254
5255         ret = hns3_cfg_mac_mode(hw, false);
5256         if (ret)
5257                 return ret;
5258         hw->mac.link_status = ETH_LINK_DOWN;
5259
5260         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) {
5261                 hns3_configure_all_mac_addr(hns, true);
5262                 ret = hns3_reset_all_tqps(hns);
5263                 if (ret) {
5264                         hns3_err(hw, "failed to reset all queues ret = %d.",
5265                                  ret);
5266                         return ret;
5267                 }
5268         }
5269         hw->mac.default_addr_setted = false;
5270         return 0;
5271 }
5272
5273 static void
5274 hns3_unmap_rx_interrupt(struct rte_eth_dev *dev)
5275 {
5276         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5277         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5278         struct hns3_adapter *hns = dev->data->dev_private;
5279         struct hns3_hw *hw = &hns->hw;
5280         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
5281         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
5282         uint16_t q_id;
5283
5284         if (dev->data->dev_conf.intr_conf.rxq == 0)
5285                 return;
5286
5287         /* unmap the ring with vector */
5288         if (rte_intr_allow_others(intr_handle)) {
5289                 vec = RTE_INTR_VEC_RXTX_OFFSET;
5290                 base = RTE_INTR_VEC_RXTX_OFFSET;
5291         }
5292         if (rte_intr_dp_is_en(intr_handle)) {
5293                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5294                         (void)hns3_bind_ring_with_vector(hw, vec, false,
5295                                                          HNS3_RING_TYPE_RX,
5296                                                          q_id);
5297                         if (vec < base + intr_handle->nb_efd - 1)
5298                                 vec++;
5299                 }
5300         }
5301         /* Clean datapath event and queue/vec mapping */
5302         rte_intr_efd_disable(intr_handle);
5303         if (intr_handle->intr_vec) {
5304                 rte_free(intr_handle->intr_vec);
5305                 intr_handle->intr_vec = NULL;
5306         }
5307 }
5308
5309 static int
5310 hns3_dev_stop(struct rte_eth_dev *dev)
5311 {
5312         struct hns3_adapter *hns = dev->data->dev_private;
5313         struct hns3_hw *hw = &hns->hw;
5314
5315         PMD_INIT_FUNC_TRACE();
5316         dev->data->dev_started = 0;
5317
5318         hw->adapter_state = HNS3_NIC_STOPPING;
5319         hns3_set_rxtx_function(dev);
5320         rte_wmb();
5321         /* Disable datapath on secondary process. */
5322         hns3_mp_req_stop_rxtx(dev);
5323         /* Prevent crashes when queues are still in use. */
5324         rte_delay_ms(hw->tqps_num);
5325
5326         rte_spinlock_lock(&hw->lock);
5327         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
5328                 hns3_tm_dev_stop_proc(hw);
5329                 hns3_config_mac_tnl_int(hw, false);
5330                 hns3_stop_tqps(hw);
5331                 hns3_do_stop(hns);
5332                 hns3_unmap_rx_interrupt(dev);
5333                 hw->adapter_state = HNS3_NIC_CONFIGURED;
5334         }
5335         hns3_rx_scattered_reset(dev);
5336         rte_eal_alarm_cancel(hns3_service_handler, dev);
5337         rte_spinlock_unlock(&hw->lock);
5338
5339         return 0;
5340 }
5341
5342 static int
5343 hns3_dev_close(struct rte_eth_dev *eth_dev)
5344 {
5345         struct hns3_adapter *hns = eth_dev->data->dev_private;
5346         struct hns3_hw *hw = &hns->hw;
5347         int ret = 0;
5348
5349         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
5350                 rte_free(eth_dev->process_private);
5351                 eth_dev->process_private = NULL;
5352                 return 0;
5353         }
5354
5355         if (hw->adapter_state == HNS3_NIC_STARTED)
5356                 ret = hns3_dev_stop(eth_dev);
5357
5358         hw->adapter_state = HNS3_NIC_CLOSING;
5359         hns3_reset_abort(hns);
5360         hw->adapter_state = HNS3_NIC_CLOSED;
5361
5362         hns3_configure_all_mc_mac_addr(hns, true);
5363         hns3_remove_all_vlan_table(hns);
5364         hns3_vlan_txvlan_cfg(hns, HNS3_PORT_BASE_VLAN_DISABLE, 0);
5365         hns3_uninit_pf(eth_dev);
5366         hns3_free_all_queues(eth_dev);
5367         rte_free(hw->reset.wait_data);
5368         rte_free(eth_dev->process_private);
5369         eth_dev->process_private = NULL;
5370         hns3_mp_uninit_primary();
5371         hns3_warn(hw, "Close port %u finished", hw->data->port_id);
5372
5373         return ret;
5374 }
5375
5376 static int
5377 hns3_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5378 {
5379         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5380         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5381
5382         fc_conf->pause_time = pf->pause_time;
5383
5384         /* return fc current mode */
5385         switch (hw->current_mode) {
5386         case HNS3_FC_FULL:
5387                 fc_conf->mode = RTE_FC_FULL;
5388                 break;
5389         case HNS3_FC_TX_PAUSE:
5390                 fc_conf->mode = RTE_FC_TX_PAUSE;
5391                 break;
5392         case HNS3_FC_RX_PAUSE:
5393                 fc_conf->mode = RTE_FC_RX_PAUSE;
5394                 break;
5395         case HNS3_FC_NONE:
5396         default:
5397                 fc_conf->mode = RTE_FC_NONE;
5398                 break;
5399         }
5400
5401         return 0;
5402 }
5403
5404 static void
5405 hns3_get_fc_mode(struct hns3_hw *hw, enum rte_eth_fc_mode mode)
5406 {
5407         switch (mode) {
5408         case RTE_FC_NONE:
5409                 hw->requested_mode = HNS3_FC_NONE;
5410                 break;
5411         case RTE_FC_RX_PAUSE:
5412                 hw->requested_mode = HNS3_FC_RX_PAUSE;
5413                 break;
5414         case RTE_FC_TX_PAUSE:
5415                 hw->requested_mode = HNS3_FC_TX_PAUSE;
5416                 break;
5417         case RTE_FC_FULL:
5418                 hw->requested_mode = HNS3_FC_FULL;
5419                 break;
5420         default:
5421                 hw->requested_mode = HNS3_FC_NONE;
5422                 hns3_warn(hw, "fc_mode(%u) exceeds member scope and is "
5423                           "configured to RTE_FC_NONE", mode);
5424                 break;
5425         }
5426 }
5427
5428 static int
5429 hns3_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5430 {
5431         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5432         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5433         int ret;
5434
5435         if (fc_conf->high_water || fc_conf->low_water ||
5436             fc_conf->send_xon || fc_conf->mac_ctrl_frame_fwd) {
5437                 hns3_err(hw, "Unsupported flow control settings specified, "
5438                          "high_water(%u), low_water(%u), send_xon(%u) and "
5439                          "mac_ctrl_frame_fwd(%u) must be set to '0'",
5440                          fc_conf->high_water, fc_conf->low_water,
5441                          fc_conf->send_xon, fc_conf->mac_ctrl_frame_fwd);
5442                 return -EINVAL;
5443         }
5444         if (fc_conf->autoneg) {
5445                 hns3_err(hw, "Unsupported fc auto-negotiation setting.");
5446                 return -EINVAL;
5447         }
5448         if (!fc_conf->pause_time) {
5449                 hns3_err(hw, "Invalid pause time %u setting.",
5450                          fc_conf->pause_time);
5451                 return -EINVAL;
5452         }
5453
5454         if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5455             hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)) {
5456                 hns3_err(hw, "PFC is enabled. Cannot set MAC pause. "
5457                          "current_fc_status = %d", hw->current_fc_status);
5458                 return -EOPNOTSUPP;
5459         }
5460
5461         hns3_get_fc_mode(hw, fc_conf->mode);
5462         if (hw->requested_mode == hw->current_mode &&
5463             pf->pause_time == fc_conf->pause_time)
5464                 return 0;
5465
5466         rte_spinlock_lock(&hw->lock);
5467         ret = hns3_fc_enable(dev, fc_conf);
5468         rte_spinlock_unlock(&hw->lock);
5469
5470         return ret;
5471 }
5472
5473 static int
5474 hns3_priority_flow_ctrl_set(struct rte_eth_dev *dev,
5475                             struct rte_eth_pfc_conf *pfc_conf)
5476 {
5477         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5478         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5479         uint8_t priority;
5480         int ret;
5481
5482         if (!hns3_dev_dcb_supported(hw)) {
5483                 hns3_err(hw, "This port does not support dcb configurations.");
5484                 return -EOPNOTSUPP;
5485         }
5486
5487         if (pfc_conf->fc.high_water || pfc_conf->fc.low_water ||
5488             pfc_conf->fc.send_xon || pfc_conf->fc.mac_ctrl_frame_fwd) {
5489                 hns3_err(hw, "Unsupported flow control settings specified, "
5490                          "high_water(%u), low_water(%u), send_xon(%u) and "
5491                          "mac_ctrl_frame_fwd(%u) must be set to '0'",
5492                          pfc_conf->fc.high_water, pfc_conf->fc.low_water,
5493                          pfc_conf->fc.send_xon,
5494                          pfc_conf->fc.mac_ctrl_frame_fwd);
5495                 return -EINVAL;
5496         }
5497         if (pfc_conf->fc.autoneg) {
5498                 hns3_err(hw, "Unsupported fc auto-negotiation setting.");
5499                 return -EINVAL;
5500         }
5501         if (pfc_conf->fc.pause_time == 0) {
5502                 hns3_err(hw, "Invalid pause time %u setting.",
5503                          pfc_conf->fc.pause_time);
5504                 return -EINVAL;
5505         }
5506
5507         if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5508             hw->current_fc_status == HNS3_FC_STATUS_PFC)) {
5509                 hns3_err(hw, "MAC pause is enabled. Cannot set PFC."
5510                              "current_fc_status = %d", hw->current_fc_status);
5511                 return -EOPNOTSUPP;
5512         }
5513
5514         priority = pfc_conf->priority;
5515         hns3_get_fc_mode(hw, pfc_conf->fc.mode);
5516         if (hw->dcb_info.pfc_en & BIT(priority) &&
5517             hw->requested_mode == hw->current_mode &&
5518             pfc_conf->fc.pause_time == pf->pause_time)
5519                 return 0;
5520
5521         rte_spinlock_lock(&hw->lock);
5522         ret = hns3_dcb_pfc_enable(dev, pfc_conf);
5523         rte_spinlock_unlock(&hw->lock);
5524
5525         return ret;
5526 }
5527
5528 static int
5529 hns3_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info)
5530 {
5531         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5532         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5533         enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
5534         int i;
5535
5536         rte_spinlock_lock(&hw->lock);
5537         if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG)
5538                 dcb_info->nb_tcs = pf->local_max_tc;
5539         else
5540                 dcb_info->nb_tcs = 1;
5541
5542         for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
5543                 dcb_info->prio_tc[i] = hw->dcb_info.prio_tc[i];
5544         for (i = 0; i < dcb_info->nb_tcs; i++)
5545                 dcb_info->tc_bws[i] = hw->dcb_info.pg_info[0].tc_dwrr[i];
5546
5547         for (i = 0; i < hw->num_tc; i++) {
5548                 dcb_info->tc_queue.tc_rxq[0][i].base = hw->alloc_rss_size * i;
5549                 dcb_info->tc_queue.tc_txq[0][i].base =
5550                                                 hw->tc_queue[i].tqp_offset;
5551                 dcb_info->tc_queue.tc_rxq[0][i].nb_queue = hw->alloc_rss_size;
5552                 dcb_info->tc_queue.tc_txq[0][i].nb_queue =
5553                                                 hw->tc_queue[i].tqp_count;
5554         }
5555         rte_spinlock_unlock(&hw->lock);
5556
5557         return 0;
5558 }
5559
5560 static int
5561 hns3_reinit_dev(struct hns3_adapter *hns)
5562 {
5563         struct hns3_hw *hw = &hns->hw;
5564         int ret;
5565
5566         ret = hns3_cmd_init(hw);
5567         if (ret) {
5568                 hns3_err(hw, "Failed to init cmd: %d", ret);
5569                 return ret;
5570         }
5571
5572         ret = hns3_reset_all_tqps(hns);
5573         if (ret) {
5574                 hns3_err(hw, "Failed to reset all queues: %d", ret);
5575                 return ret;
5576         }
5577
5578         ret = hns3_init_hardware(hns);
5579         if (ret) {
5580                 hns3_err(hw, "Failed to init hardware: %d", ret);
5581                 return ret;
5582         }
5583
5584         ret = hns3_enable_hw_error_intr(hns, true);
5585         if (ret) {
5586                 hns3_err(hw, "fail to enable hw error interrupts: %d",
5587                              ret);
5588                 return ret;
5589         }
5590         hns3_info(hw, "Reset done, driver initialization finished.");
5591
5592         return 0;
5593 }
5594
5595 static bool
5596 is_pf_reset_done(struct hns3_hw *hw)
5597 {
5598         uint32_t val, reg, reg_bit;
5599
5600         switch (hw->reset.level) {
5601         case HNS3_IMP_RESET:
5602                 reg = HNS3_GLOBAL_RESET_REG;
5603                 reg_bit = HNS3_IMP_RESET_BIT;
5604                 break;
5605         case HNS3_GLOBAL_RESET:
5606                 reg = HNS3_GLOBAL_RESET_REG;
5607                 reg_bit = HNS3_GLOBAL_RESET_BIT;
5608                 break;
5609         case HNS3_FUNC_RESET:
5610                 reg = HNS3_FUN_RST_ING;
5611                 reg_bit = HNS3_FUN_RST_ING_B;
5612                 break;
5613         case HNS3_FLR_RESET:
5614         default:
5615                 hns3_err(hw, "Wait for unsupported reset level: %d",
5616                          hw->reset.level);
5617                 return true;
5618         }
5619         val = hns3_read_dev(hw, reg);
5620         if (hns3_get_bit(val, reg_bit))
5621                 return false;
5622         else
5623                 return true;
5624 }
5625
5626 bool
5627 hns3_is_reset_pending(struct hns3_adapter *hns)
5628 {
5629         struct hns3_hw *hw = &hns->hw;
5630         enum hns3_reset_level reset;
5631
5632         hns3_check_event_cause(hns, NULL);
5633         reset = hns3_get_reset_level(hns, &hw->reset.pending);
5634         if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
5635                 hns3_warn(hw, "High level reset %d is pending", reset);
5636                 return true;
5637         }
5638         reset = hns3_get_reset_level(hns, &hw->reset.request);
5639         if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
5640                 hns3_warn(hw, "High level reset %d is request", reset);
5641                 return true;
5642         }
5643         return false;
5644 }
5645
5646 static int
5647 hns3_wait_hardware_ready(struct hns3_adapter *hns)
5648 {
5649         struct hns3_hw *hw = &hns->hw;
5650         struct hns3_wait_data *wait_data = hw->reset.wait_data;
5651         struct timeval tv;
5652
5653         if (wait_data->result == HNS3_WAIT_SUCCESS)
5654                 return 0;
5655         else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
5656                 gettimeofday(&tv, NULL);
5657                 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
5658                           tv.tv_sec, tv.tv_usec);
5659                 return -ETIME;
5660         } else if (wait_data->result == HNS3_WAIT_REQUEST)
5661                 return -EAGAIN;
5662
5663         wait_data->hns = hns;
5664         wait_data->check_completion = is_pf_reset_done;
5665         wait_data->end_ms = (uint64_t)HNS3_RESET_WAIT_CNT *
5666                                       HNS3_RESET_WAIT_MS + get_timeofday_ms();
5667         wait_data->interval = HNS3_RESET_WAIT_MS * USEC_PER_MSEC;
5668         wait_data->count = HNS3_RESET_WAIT_CNT;
5669         wait_data->result = HNS3_WAIT_REQUEST;
5670         rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
5671         return -EAGAIN;
5672 }
5673
5674 static int
5675 hns3_func_reset_cmd(struct hns3_hw *hw, int func_id)
5676 {
5677         struct hns3_cmd_desc desc;
5678         struct hns3_reset_cmd *req = (struct hns3_reset_cmd *)desc.data;
5679
5680         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
5681         hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_FUNC_B, 1);
5682         req->fun_reset_vfid = func_id;
5683
5684         return hns3_cmd_send(hw, &desc, 1);
5685 }
5686
5687 static int
5688 hns3_imp_reset_cmd(struct hns3_hw *hw)
5689 {
5690         struct hns3_cmd_desc desc;
5691
5692         hns3_cmd_setup_basic_desc(&desc, 0xFFFE, false);
5693         desc.data[0] = 0xeedd;
5694
5695         return hns3_cmd_send(hw, &desc, 1);
5696 }
5697
5698 static void
5699 hns3_msix_process(struct hns3_adapter *hns, enum hns3_reset_level reset_level)
5700 {
5701         struct hns3_hw *hw = &hns->hw;
5702         struct timeval tv;
5703         uint32_t val;
5704
5705         gettimeofday(&tv, NULL);
5706         if (hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG) ||
5707             hns3_read_dev(hw, HNS3_FUN_RST_ING)) {
5708                 hns3_warn(hw, "Don't process msix during resetting time=%ld.%.6ld",
5709                           tv.tv_sec, tv.tv_usec);
5710                 return;
5711         }
5712
5713         switch (reset_level) {
5714         case HNS3_IMP_RESET:
5715                 hns3_imp_reset_cmd(hw);
5716                 hns3_warn(hw, "IMP Reset requested time=%ld.%.6ld",
5717                           tv.tv_sec, tv.tv_usec);
5718                 break;
5719         case HNS3_GLOBAL_RESET:
5720                 val = hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG);
5721                 hns3_set_bit(val, HNS3_GLOBAL_RESET_BIT, 1);
5722                 hns3_write_dev(hw, HNS3_GLOBAL_RESET_REG, val);
5723                 hns3_warn(hw, "Global Reset requested time=%ld.%.6ld",
5724                           tv.tv_sec, tv.tv_usec);
5725                 break;
5726         case HNS3_FUNC_RESET:
5727                 hns3_warn(hw, "PF Reset requested time=%ld.%.6ld",
5728                           tv.tv_sec, tv.tv_usec);
5729                 /* schedule again to check later */
5730                 hns3_atomic_set_bit(HNS3_FUNC_RESET, &hw->reset.pending);
5731                 hns3_schedule_reset(hns);
5732                 break;
5733         default:
5734                 hns3_warn(hw, "Unsupported reset level: %d", reset_level);
5735                 return;
5736         }
5737         hns3_atomic_clear_bit(reset_level, &hw->reset.request);
5738 }
5739
5740 static enum hns3_reset_level
5741 hns3_get_reset_level(struct hns3_adapter *hns, uint64_t *levels)
5742 {
5743         struct hns3_hw *hw = &hns->hw;
5744         enum hns3_reset_level reset_level = HNS3_NONE_RESET;
5745
5746         /* Return the highest priority reset level amongst all */
5747         if (hns3_atomic_test_bit(HNS3_IMP_RESET, levels))
5748                 reset_level = HNS3_IMP_RESET;
5749         else if (hns3_atomic_test_bit(HNS3_GLOBAL_RESET, levels))
5750                 reset_level = HNS3_GLOBAL_RESET;
5751         else if (hns3_atomic_test_bit(HNS3_FUNC_RESET, levels))
5752                 reset_level = HNS3_FUNC_RESET;
5753         else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
5754                 reset_level = HNS3_FLR_RESET;
5755
5756         if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
5757                 return HNS3_NONE_RESET;
5758
5759         return reset_level;
5760 }
5761
5762 static void
5763 hns3_record_imp_error(struct hns3_adapter *hns)
5764 {
5765         struct hns3_hw *hw = &hns->hw;
5766         uint32_t reg_val;
5767
5768         reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5769         if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B)) {
5770                 hns3_warn(hw, "Detected IMP RD poison!");
5771                 hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B, 0);
5772                 hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5773         }
5774
5775         if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B)) {
5776                 hns3_warn(hw, "Detected IMP CMDQ error!");
5777                 hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B, 0);
5778                 hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5779         }
5780 }
5781
5782 static int
5783 hns3_prepare_reset(struct hns3_adapter *hns)
5784 {
5785         struct hns3_hw *hw = &hns->hw;
5786         uint32_t reg_val;
5787         int ret;
5788
5789         switch (hw->reset.level) {
5790         case HNS3_FUNC_RESET:
5791                 ret = hns3_func_reset_cmd(hw, HNS3_PF_FUNC_ID);
5792                 if (ret)
5793                         return ret;
5794
5795                 /*
5796                  * After performaning pf reset, it is not necessary to do the
5797                  * mailbox handling or send any command to firmware, because
5798                  * any mailbox handling or command to firmware is only valid
5799                  * after hns3_cmd_init is called.
5800                  */
5801                 __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
5802                 hw->reset.stats.request_cnt++;
5803                 break;
5804         case HNS3_IMP_RESET:
5805                 hns3_record_imp_error(hns);
5806                 reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5807                 hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val |
5808                                BIT(HNS3_VECTOR0_IMP_RESET_INT_B));
5809                 break;
5810         default:
5811                 break;
5812         }
5813         return 0;
5814 }
5815
5816 static int
5817 hns3_set_rst_done(struct hns3_hw *hw)
5818 {
5819         struct hns3_pf_rst_done_cmd *req;
5820         struct hns3_cmd_desc desc;
5821
5822         req = (struct hns3_pf_rst_done_cmd *)desc.data;
5823         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PF_RST_DONE, false);
5824         req->pf_rst_done |= HNS3_PF_RESET_DONE_BIT;
5825         return hns3_cmd_send(hw, &desc, 1);
5826 }
5827
5828 static int
5829 hns3_stop_service(struct hns3_adapter *hns)
5830 {
5831         struct hns3_hw *hw = &hns->hw;
5832         struct rte_eth_dev *eth_dev;
5833
5834         eth_dev = &rte_eth_devices[hw->data->port_id];
5835         if (hw->adapter_state == HNS3_NIC_STARTED) {
5836                 rte_eal_alarm_cancel(hns3_service_handler, eth_dev);
5837                 hns3_update_link_status_and_event(hw);
5838         }
5839         hw->mac.link_status = ETH_LINK_DOWN;
5840
5841         hns3_set_rxtx_function(eth_dev);
5842         rte_wmb();
5843         /* Disable datapath on secondary process. */
5844         hns3_mp_req_stop_rxtx(eth_dev);
5845         rte_delay_ms(hw->tqps_num);
5846
5847         rte_spinlock_lock(&hw->lock);
5848         if (hns->hw.adapter_state == HNS3_NIC_STARTED ||
5849             hw->adapter_state == HNS3_NIC_STOPPING) {
5850                 hns3_enable_all_queues(hw, false);
5851                 hns3_do_stop(hns);
5852                 hw->reset.mbuf_deferred_free = true;
5853         } else
5854                 hw->reset.mbuf_deferred_free = false;
5855
5856         /*
5857          * It is cumbersome for hardware to pick-and-choose entries for deletion
5858          * from table space. Hence, for function reset software intervention is
5859          * required to delete the entries
5860          */
5861         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0)
5862                 hns3_configure_all_mc_mac_addr(hns, true);
5863         rte_spinlock_unlock(&hw->lock);
5864
5865         return 0;
5866 }
5867
5868 static int
5869 hns3_start_service(struct hns3_adapter *hns)
5870 {
5871         struct hns3_hw *hw = &hns->hw;
5872         struct rte_eth_dev *eth_dev;
5873
5874         if (hw->reset.level == HNS3_IMP_RESET ||
5875             hw->reset.level == HNS3_GLOBAL_RESET)
5876                 hns3_set_rst_done(hw);
5877         eth_dev = &rte_eth_devices[hw->data->port_id];
5878         hns3_set_rxtx_function(eth_dev);
5879         hns3_mp_req_start_rxtx(eth_dev);
5880         if (hw->adapter_state == HNS3_NIC_STARTED) {
5881                 /*
5882                  * This API parent function already hold the hns3_hw.lock, the
5883                  * hns3_service_handler may report lse, in bonding application
5884                  * it will call driver's ops which may acquire the hns3_hw.lock
5885                  * again, thus lead to deadlock.
5886                  * We defer calls hns3_service_handler to avoid the deadlock.
5887                  */
5888                 rte_eal_alarm_set(HNS3_SERVICE_QUICK_INTERVAL,
5889                                   hns3_service_handler, eth_dev);
5890
5891                 /* Enable interrupt of all rx queues before enabling queues */
5892                 hns3_dev_all_rx_queue_intr_enable(hw, true);
5893                 /*
5894                  * Enable state of each rxq and txq will be recovered after
5895                  * reset, so we need to restore them before enable all tqps;
5896                  */
5897                 hns3_restore_tqp_enable_state(hw);
5898                 /*
5899                  * When finished the initialization, enable queues to receive
5900                  * and transmit packets.
5901                  */
5902                 hns3_enable_all_queues(hw, true);
5903         }
5904
5905         return 0;
5906 }
5907
5908 static int
5909 hns3_restore_conf(struct hns3_adapter *hns)
5910 {
5911         struct hns3_hw *hw = &hns->hw;
5912         int ret;
5913
5914         ret = hns3_configure_all_mac_addr(hns, false);
5915         if (ret)
5916                 return ret;
5917
5918         ret = hns3_configure_all_mc_mac_addr(hns, false);
5919         if (ret)
5920                 goto err_mc_mac;
5921
5922         ret = hns3_dev_promisc_restore(hns);
5923         if (ret)
5924                 goto err_promisc;
5925
5926         ret = hns3_restore_vlan_table(hns);
5927         if (ret)
5928                 goto err_promisc;
5929
5930         ret = hns3_restore_vlan_conf(hns);
5931         if (ret)
5932                 goto err_promisc;
5933
5934         ret = hns3_restore_all_fdir_filter(hns);
5935         if (ret)
5936                 goto err_promisc;
5937
5938         ret = hns3_restore_rx_interrupt(hw);
5939         if (ret)
5940                 goto err_promisc;
5941
5942         ret = hns3_restore_gro_conf(hw);
5943         if (ret)
5944                 goto err_promisc;
5945
5946         ret = hns3_restore_fec(hw);
5947         if (ret)
5948                 goto err_promisc;
5949
5950         if (hns->hw.adapter_state == HNS3_NIC_STARTED) {
5951                 ret = hns3_do_start(hns, false);
5952                 if (ret)
5953                         goto err_promisc;
5954                 hns3_info(hw, "hns3 dev restart successful!");
5955         } else if (hw->adapter_state == HNS3_NIC_STOPPING)
5956                 hw->adapter_state = HNS3_NIC_CONFIGURED;
5957         return 0;
5958
5959 err_promisc:
5960         hns3_configure_all_mc_mac_addr(hns, true);
5961 err_mc_mac:
5962         hns3_configure_all_mac_addr(hns, true);
5963         return ret;
5964 }
5965
5966 static void
5967 hns3_reset_service(void *param)
5968 {
5969         struct hns3_adapter *hns = (struct hns3_adapter *)param;
5970         struct hns3_hw *hw = &hns->hw;
5971         enum hns3_reset_level reset_level;
5972         struct timeval tv_delta;
5973         struct timeval tv_start;
5974         struct timeval tv;
5975         uint64_t msec;
5976         int ret;
5977
5978         /*
5979          * The interrupt is not triggered within the delay time.
5980          * The interrupt may have been lost. It is necessary to handle
5981          * the interrupt to recover from the error.
5982          */
5983         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
5984                             SCHEDULE_DEFERRED) {
5985                 __atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED,
5986                                   __ATOMIC_RELAXED);
5987                 hns3_err(hw, "Handling interrupts in delayed tasks");
5988                 hns3_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
5989                 reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
5990                 if (reset_level == HNS3_NONE_RESET) {
5991                         hns3_err(hw, "No reset level is set, try IMP reset");
5992                         hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
5993                 }
5994         }
5995         __atomic_store_n(&hw->reset.schedule, SCHEDULE_NONE, __ATOMIC_RELAXED);
5996
5997         /*
5998          * Check if there is any ongoing reset in the hardware. This status can
5999          * be checked from reset_pending. If there is then, we need to wait for
6000          * hardware to complete reset.
6001          *    a. If we are able to figure out in reasonable time that hardware
6002          *       has fully resetted then, we can proceed with driver, client
6003          *       reset.
6004          *    b. else, we can come back later to check this status so re-sched
6005          *       now.
6006          */
6007         reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
6008         if (reset_level != HNS3_NONE_RESET) {
6009                 gettimeofday(&tv_start, NULL);
6010                 ret = hns3_reset_process(hns, reset_level);
6011                 gettimeofday(&tv, NULL);
6012                 timersub(&tv, &tv_start, &tv_delta);
6013                 msec = tv_delta.tv_sec * MSEC_PER_SEC +
6014                        tv_delta.tv_usec / USEC_PER_MSEC;
6015                 if (msec > HNS3_RESET_PROCESS_MS)
6016                         hns3_err(hw, "%d handle long time delta %" PRIx64
6017                                      " ms time=%ld.%.6ld",
6018                                  hw->reset.level, msec,
6019                                  tv.tv_sec, tv.tv_usec);
6020                 if (ret == -EAGAIN)
6021                         return;
6022         }
6023
6024         /* Check if we got any *new* reset requests to be honored */
6025         reset_level = hns3_get_reset_level(hns, &hw->reset.request);
6026         if (reset_level != HNS3_NONE_RESET)
6027                 hns3_msix_process(hns, reset_level);
6028 }
6029
6030 static unsigned int
6031 hns3_get_speed_capa_num(uint16_t device_id)
6032 {
6033         unsigned int num;
6034
6035         switch (device_id) {
6036         case HNS3_DEV_ID_25GE:
6037         case HNS3_DEV_ID_25GE_RDMA:
6038                 num = 2;
6039                 break;
6040         case HNS3_DEV_ID_100G_RDMA_MACSEC:
6041         case HNS3_DEV_ID_200G_RDMA:
6042                 num = 1;
6043                 break;
6044         default:
6045                 num = 0;
6046                 break;
6047         }
6048
6049         return num;
6050 }
6051
6052 static int
6053 hns3_get_speed_fec_capa(struct rte_eth_fec_capa *speed_fec_capa,
6054                         uint16_t device_id)
6055 {
6056         switch (device_id) {
6057         case HNS3_DEV_ID_25GE:
6058         /* fallthrough */
6059         case HNS3_DEV_ID_25GE_RDMA:
6060                 speed_fec_capa[0].speed = speed_fec_capa_tbl[1].speed;
6061                 speed_fec_capa[0].capa = speed_fec_capa_tbl[1].capa;
6062
6063                 /* In HNS3 device, the 25G NIC is compatible with 10G rate */
6064                 speed_fec_capa[1].speed = speed_fec_capa_tbl[0].speed;
6065                 speed_fec_capa[1].capa = speed_fec_capa_tbl[0].capa;
6066                 break;
6067         case HNS3_DEV_ID_100G_RDMA_MACSEC:
6068                 speed_fec_capa[0].speed = speed_fec_capa_tbl[4].speed;
6069                 speed_fec_capa[0].capa = speed_fec_capa_tbl[4].capa;
6070                 break;
6071         case HNS3_DEV_ID_200G_RDMA:
6072                 speed_fec_capa[0].speed = speed_fec_capa_tbl[5].speed;
6073                 speed_fec_capa[0].capa = speed_fec_capa_tbl[5].capa;
6074                 break;
6075         default:
6076                 return -ENOTSUP;
6077         }
6078
6079         return 0;
6080 }
6081
6082 static int
6083 hns3_fec_get_capability(struct rte_eth_dev *dev,
6084                         struct rte_eth_fec_capa *speed_fec_capa,
6085                         unsigned int num)
6086 {
6087         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6088         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
6089         uint16_t device_id = pci_dev->id.device_id;
6090         unsigned int capa_num;
6091         int ret;
6092
6093         capa_num = hns3_get_speed_capa_num(device_id);
6094         if (capa_num == 0) {
6095                 hns3_err(hw, "device(0x%x) is not supported by hns3 PMD",
6096                          device_id);
6097                 return -ENOTSUP;
6098         }
6099
6100         if (speed_fec_capa == NULL || num < capa_num)
6101                 return capa_num;
6102
6103         ret = hns3_get_speed_fec_capa(speed_fec_capa, device_id);
6104         if (ret)
6105                 return -ENOTSUP;
6106
6107         return capa_num;
6108 }
6109
6110 static int
6111 get_current_fec_auto_state(struct hns3_hw *hw, uint8_t *state)
6112 {
6113         struct hns3_config_fec_cmd *req;
6114         struct hns3_cmd_desc desc;
6115         int ret;
6116
6117         /*
6118          * CMD(HNS3_OPC_CONFIG_FEC_MODE) read is not supported
6119          * in device of link speed
6120          * below 10 Gbps.
6121          */
6122         if (hw->mac.link_speed < ETH_SPEED_NUM_10G) {
6123                 *state = 0;
6124                 return 0;
6125         }
6126
6127         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, true);
6128         req = (struct hns3_config_fec_cmd *)desc.data;
6129         ret = hns3_cmd_send(hw, &desc, 1);
6130         if (ret) {
6131                 hns3_err(hw, "get current fec auto state failed, ret = %d",
6132                          ret);
6133                 return ret;
6134         }
6135
6136         *state = req->fec_mode & (1U << HNS3_MAC_CFG_FEC_AUTO_EN_B);
6137         return 0;
6138 }
6139
6140 static int
6141 hns3_fec_get_internal(struct hns3_hw *hw, uint32_t *fec_capa)
6142 {
6143 #define QUERY_ACTIVE_SPEED      1
6144         struct hns3_sfp_speed_cmd *resp;
6145         uint32_t tmp_fec_capa;
6146         uint8_t auto_state;
6147         struct hns3_cmd_desc desc;
6148         int ret;
6149
6150         /*
6151          * If link is down and AUTO is enabled, AUTO is returned, otherwise,
6152          * configured FEC mode is returned.
6153          * If link is up, current FEC mode is returned.
6154          */
6155         if (hw->mac.link_status == ETH_LINK_DOWN) {
6156                 ret = get_current_fec_auto_state(hw, &auto_state);
6157                 if (ret)
6158                         return ret;
6159
6160                 if (auto_state == 0x1) {
6161                         *fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(AUTO);
6162                         return 0;
6163                 }
6164         }
6165
6166         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SFP_GET_SPEED, true);
6167         resp = (struct hns3_sfp_speed_cmd *)desc.data;
6168         resp->query_type = QUERY_ACTIVE_SPEED;
6169
6170         ret = hns3_cmd_send(hw, &desc, 1);
6171         if (ret == -EOPNOTSUPP) {
6172                 hns3_err(hw, "IMP do not support get FEC, ret = %d", ret);
6173                 return ret;
6174         } else if (ret) {
6175                 hns3_err(hw, "get FEC failed, ret = %d", ret);
6176                 return ret;
6177         }
6178
6179         /*
6180          * FEC mode order defined in hns3 hardware is inconsistend with
6181          * that defined in the ethdev library. So the sequence needs
6182          * to be converted.
6183          */
6184         switch (resp->active_fec) {
6185         case HNS3_HW_FEC_MODE_NOFEC:
6186                 tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6187                 break;
6188         case HNS3_HW_FEC_MODE_BASER:
6189                 tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(BASER);
6190                 break;
6191         case HNS3_HW_FEC_MODE_RS:
6192                 tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(RS);
6193                 break;
6194         default:
6195                 tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6196                 break;
6197         }
6198
6199         *fec_capa = tmp_fec_capa;
6200         return 0;
6201 }
6202
6203 static int
6204 hns3_fec_get(struct rte_eth_dev *dev, uint32_t *fec_capa)
6205 {
6206         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6207
6208         return hns3_fec_get_internal(hw, fec_capa);
6209 }
6210
6211 static int
6212 hns3_set_fec_hw(struct hns3_hw *hw, uint32_t mode)
6213 {
6214         struct hns3_config_fec_cmd *req;
6215         struct hns3_cmd_desc desc;
6216         int ret;
6217
6218         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, false);
6219
6220         req = (struct hns3_config_fec_cmd *)desc.data;
6221         switch (mode) {
6222         case RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC):
6223                 hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6224                                 HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_OFF);
6225                 break;
6226         case RTE_ETH_FEC_MODE_CAPA_MASK(BASER):
6227                 hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6228                                 HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_BASER);
6229                 break;
6230         case RTE_ETH_FEC_MODE_CAPA_MASK(RS):
6231                 hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6232                                 HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_RS);
6233                 break;
6234         case RTE_ETH_FEC_MODE_CAPA_MASK(AUTO):
6235                 hns3_set_bit(req->fec_mode, HNS3_MAC_CFG_FEC_AUTO_EN_B, 1);
6236                 break;
6237         default:
6238                 return 0;
6239         }
6240         ret = hns3_cmd_send(hw, &desc, 1);
6241         if (ret)
6242                 hns3_err(hw, "set fec mode failed, ret = %d", ret);
6243
6244         return ret;
6245 }
6246
6247 static uint32_t
6248 get_current_speed_fec_cap(struct hns3_hw *hw, struct rte_eth_fec_capa *fec_capa)
6249 {
6250         struct hns3_mac *mac = &hw->mac;
6251         uint32_t cur_capa;
6252
6253         switch (mac->link_speed) {
6254         case ETH_SPEED_NUM_10G:
6255                 cur_capa = fec_capa[1].capa;
6256                 break;
6257         case ETH_SPEED_NUM_25G:
6258         case ETH_SPEED_NUM_100G:
6259         case ETH_SPEED_NUM_200G:
6260                 cur_capa = fec_capa[0].capa;
6261                 break;
6262         default:
6263                 cur_capa = 0;
6264                 break;
6265         }
6266
6267         return cur_capa;
6268 }
6269
6270 static bool
6271 is_fec_mode_one_bit_set(uint32_t mode)
6272 {
6273         int cnt = 0;
6274         uint8_t i;
6275
6276         for (i = 0; i < sizeof(mode); i++)
6277                 if (mode >> i & 0x1)
6278                         cnt++;
6279
6280         return cnt == 1 ? true : false;
6281 }
6282
6283 static int
6284 hns3_fec_set(struct rte_eth_dev *dev, uint32_t mode)
6285 {
6286 #define FEC_CAPA_NUM 2
6287         struct hns3_adapter *hns = dev->data->dev_private;
6288         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6289         struct hns3_pf *pf = &hns->pf;
6290
6291         struct rte_eth_fec_capa fec_capa[FEC_CAPA_NUM];
6292         uint32_t cur_capa;
6293         uint32_t num = FEC_CAPA_NUM;
6294         int ret;
6295
6296         ret = hns3_fec_get_capability(dev, fec_capa, num);
6297         if (ret < 0)
6298                 return ret;
6299
6300         /* HNS3 PMD driver only support one bit set mode, e.g. 0x1, 0x4 */
6301         if (!is_fec_mode_one_bit_set(mode))
6302                 hns3_err(hw, "FEC mode(0x%x) not supported in HNS3 PMD,"
6303                              "FEC mode should be only one bit set", mode);
6304
6305         /*
6306          * Check whether the configured mode is within the FEC capability.
6307          * If not, the configured mode will not be supported.
6308          */
6309         cur_capa = get_current_speed_fec_cap(hw, fec_capa);
6310         if (!(cur_capa & mode)) {
6311                 hns3_err(hw, "unsupported FEC mode = 0x%x", mode);
6312                 return -EINVAL;
6313         }
6314
6315         ret = hns3_set_fec_hw(hw, mode);
6316         if (ret)
6317                 return ret;
6318
6319         pf->fec_mode = mode;
6320         return 0;
6321 }
6322
6323 static int
6324 hns3_restore_fec(struct hns3_hw *hw)
6325 {
6326         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
6327         struct hns3_pf *pf = &hns->pf;
6328         uint32_t mode = pf->fec_mode;
6329         int ret;
6330
6331         ret = hns3_set_fec_hw(hw, mode);
6332         if (ret)
6333                 hns3_err(hw, "restore fec mode(0x%x) failed, ret = %d",
6334                          mode, ret);
6335
6336         return ret;
6337 }
6338
6339 static int
6340 hns3_query_dev_fec_info(struct hns3_hw *hw)
6341 {
6342         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
6343         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(hns);
6344         int ret;
6345
6346         ret = hns3_fec_get_internal(hw, &pf->fec_mode);
6347         if (ret)
6348                 hns3_err(hw, "query device FEC info failed, ret = %d", ret);
6349
6350         return ret;
6351 }
6352
6353 static bool
6354 hns3_optical_module_existed(struct hns3_hw *hw)
6355 {
6356         struct hns3_cmd_desc desc;
6357         bool existed;
6358         int ret;
6359
6360         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_EXIST, true);
6361         ret = hns3_cmd_send(hw, &desc, 1);
6362         if (ret) {
6363                 hns3_err(hw,
6364                          "fail to get optical module exist state, ret = %d.\n",
6365                          ret);
6366                 return false;
6367         }
6368         existed = !!desc.data[0];
6369
6370         return existed;
6371 }
6372
6373 static int
6374 hns3_get_module_eeprom_data(struct hns3_hw *hw, uint32_t offset,
6375                                 uint32_t len, uint8_t *data)
6376 {
6377 #define HNS3_SFP_INFO_CMD_NUM 6
6378 #define HNS3_SFP_INFO_MAX_LEN \
6379         (HNS3_SFP_INFO_BD0_LEN + \
6380         (HNS3_SFP_INFO_CMD_NUM - 1) * HNS3_SFP_INFO_BDX_LEN)
6381         struct hns3_cmd_desc desc[HNS3_SFP_INFO_CMD_NUM];
6382         struct hns3_sfp_info_bd0_cmd *sfp_info_bd0;
6383         uint16_t read_len;
6384         uint16_t copy_len;
6385         int ret;
6386         int i;
6387
6388         for (i = 0; i < HNS3_SFP_INFO_CMD_NUM; i++) {
6389                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_SFP_EEPROM,
6390                                           true);
6391                 if (i < HNS3_SFP_INFO_CMD_NUM - 1)
6392                         desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
6393         }
6394
6395         sfp_info_bd0 = (struct hns3_sfp_info_bd0_cmd *)desc[0].data;
6396         sfp_info_bd0->offset = rte_cpu_to_le_16((uint16_t)offset);
6397         read_len = RTE_MIN(len, HNS3_SFP_INFO_MAX_LEN);
6398         sfp_info_bd0->read_len = rte_cpu_to_le_16((uint16_t)read_len);
6399
6400         ret = hns3_cmd_send(hw, desc, HNS3_SFP_INFO_CMD_NUM);
6401         if (ret) {
6402                 hns3_err(hw, "fail to get module EEPROM info, ret = %d.\n",
6403                                 ret);
6404                 return ret;
6405         }
6406
6407         /* The data format in BD0 is different with the others. */
6408         copy_len = RTE_MIN(len, HNS3_SFP_INFO_BD0_LEN);
6409         memcpy(data, sfp_info_bd0->data, copy_len);
6410         read_len = copy_len;
6411
6412         for (i = 1; i < HNS3_SFP_INFO_CMD_NUM; i++) {
6413                 if (read_len >= len)
6414                         break;
6415
6416                 copy_len = RTE_MIN(len - read_len, HNS3_SFP_INFO_BDX_LEN);
6417                 memcpy(data + read_len, desc[i].data, copy_len);
6418                 read_len += copy_len;
6419         }
6420
6421         return (int)read_len;
6422 }
6423
6424 static int
6425 hns3_get_module_eeprom(struct rte_eth_dev *dev,
6426                        struct rte_dev_eeprom_info *info)
6427 {
6428         struct hns3_adapter *hns = dev->data->dev_private;
6429         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6430         uint32_t offset = info->offset;
6431         uint32_t len = info->length;
6432         uint8_t *data = info->data;
6433         uint32_t read_len = 0;
6434
6435         if (hw->mac.media_type != HNS3_MEDIA_TYPE_FIBER)
6436                 return -ENOTSUP;
6437
6438         if (!hns3_optical_module_existed(hw)) {
6439                 hns3_err(hw, "fail to read module EEPROM: no module is connected.\n");
6440                 return -EIO;
6441         }
6442
6443         while (read_len < len) {
6444                 int ret;
6445                 ret = hns3_get_module_eeprom_data(hw, offset + read_len,
6446                                                   len - read_len,
6447                                                   data + read_len);
6448                 if (ret < 0)
6449                         return -EIO;
6450                 read_len += ret;
6451         }
6452
6453         return 0;
6454 }
6455
6456 static int
6457 hns3_get_module_info(struct rte_eth_dev *dev,
6458                      struct rte_eth_dev_module_info *modinfo)
6459 {
6460 #define HNS3_SFF8024_ID_SFP             0x03
6461 #define HNS3_SFF8024_ID_QSFP_8438       0x0c
6462 #define HNS3_SFF8024_ID_QSFP_8436_8636  0x0d
6463 #define HNS3_SFF8024_ID_QSFP28_8636     0x11
6464 #define HNS3_SFF_8636_V1_3              0x03
6465         struct hns3_adapter *hns = dev->data->dev_private;
6466         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6467         struct rte_dev_eeprom_info info;
6468         struct hns3_sfp_type sfp_type;
6469         int ret;
6470
6471         memset(&sfp_type, 0, sizeof(sfp_type));
6472         memset(&info, 0, sizeof(info));
6473         info.data = (uint8_t *)&sfp_type;
6474         info.length = sizeof(sfp_type);
6475         ret = hns3_get_module_eeprom(dev, &info);
6476         if (ret)
6477                 return ret;
6478
6479         switch (sfp_type.type) {
6480         case HNS3_SFF8024_ID_SFP:
6481                 modinfo->type = RTE_ETH_MODULE_SFF_8472;
6482                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
6483                 break;
6484         case HNS3_SFF8024_ID_QSFP_8438:
6485                 modinfo->type = RTE_ETH_MODULE_SFF_8436;
6486                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
6487                 break;
6488         case HNS3_SFF8024_ID_QSFP_8436_8636:
6489                 if (sfp_type.ext_type < HNS3_SFF_8636_V1_3) {
6490                         modinfo->type = RTE_ETH_MODULE_SFF_8436;
6491                         modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
6492                 } else {
6493                         modinfo->type = RTE_ETH_MODULE_SFF_8636;
6494                         modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
6495                 }
6496                 break;
6497         case HNS3_SFF8024_ID_QSFP28_8636:
6498                 modinfo->type = RTE_ETH_MODULE_SFF_8636;
6499                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
6500                 break;
6501         default:
6502                 hns3_err(hw, "unknown module, type = %u, extra_type = %u.\n",
6503                          sfp_type.type, sfp_type.ext_type);
6504                 return -EINVAL;
6505         }
6506
6507         return 0;
6508 }
6509
6510 static int
6511 hns3_parse_io_hint_func(const char *key, const char *value, void *extra_args)
6512 {
6513         uint32_t hint = HNS3_IO_FUNC_HINT_NONE;
6514
6515         RTE_SET_USED(key);
6516
6517         if (strcmp(value, "vec") == 0)
6518                 hint = HNS3_IO_FUNC_HINT_VEC;
6519         else if (strcmp(value, "sve") == 0)
6520                 hint = HNS3_IO_FUNC_HINT_SVE;
6521         else if (strcmp(value, "simple") == 0)
6522                 hint = HNS3_IO_FUNC_HINT_SIMPLE;
6523         else if (strcmp(value, "common") == 0)
6524                 hint = HNS3_IO_FUNC_HINT_COMMON;
6525
6526         /* If the hint is valid then update output parameters */
6527         if (hint != HNS3_IO_FUNC_HINT_NONE)
6528                 *(uint32_t *)extra_args = hint;
6529
6530         return 0;
6531 }
6532
6533 static const char *
6534 hns3_get_io_hint_func_name(uint32_t hint)
6535 {
6536         switch (hint) {
6537         case HNS3_IO_FUNC_HINT_VEC:
6538                 return "vec";
6539         case HNS3_IO_FUNC_HINT_SVE:
6540                 return "sve";
6541         case HNS3_IO_FUNC_HINT_SIMPLE:
6542                 return "simple";
6543         case HNS3_IO_FUNC_HINT_COMMON:
6544                 return "common";
6545         default:
6546                 return "none";
6547         }
6548 }
6549
6550 void
6551 hns3_parse_devargs(struct rte_eth_dev *dev)
6552 {
6553         struct hns3_adapter *hns = dev->data->dev_private;
6554         uint32_t rx_func_hint = HNS3_IO_FUNC_HINT_NONE;
6555         uint32_t tx_func_hint = HNS3_IO_FUNC_HINT_NONE;
6556         struct hns3_hw *hw = &hns->hw;
6557         struct rte_kvargs *kvlist;
6558
6559         if (dev->device->devargs == NULL)
6560                 return;
6561
6562         kvlist = rte_kvargs_parse(dev->device->devargs->args, NULL);
6563         if (!kvlist)
6564                 return;
6565
6566         rte_kvargs_process(kvlist, HNS3_DEVARG_RX_FUNC_HINT,
6567                            &hns3_parse_io_hint_func, &rx_func_hint);
6568         rte_kvargs_process(kvlist, HNS3_DEVARG_TX_FUNC_HINT,
6569                            &hns3_parse_io_hint_func, &tx_func_hint);
6570         rte_kvargs_free(kvlist);
6571
6572         if (rx_func_hint != HNS3_IO_FUNC_HINT_NONE)
6573                 hns3_warn(hw, "parsed %s = %s.", HNS3_DEVARG_RX_FUNC_HINT,
6574                           hns3_get_io_hint_func_name(rx_func_hint));
6575         hns->rx_func_hint = rx_func_hint;
6576         if (tx_func_hint != HNS3_IO_FUNC_HINT_NONE)
6577                 hns3_warn(hw, "parsed %s = %s.", HNS3_DEVARG_TX_FUNC_HINT,
6578                           hns3_get_io_hint_func_name(tx_func_hint));
6579         hns->tx_func_hint = tx_func_hint;
6580 }
6581
6582 static const struct eth_dev_ops hns3_eth_dev_ops = {
6583         .dev_configure      = hns3_dev_configure,
6584         .dev_start          = hns3_dev_start,
6585         .dev_stop           = hns3_dev_stop,
6586         .dev_close          = hns3_dev_close,
6587         .promiscuous_enable = hns3_dev_promiscuous_enable,
6588         .promiscuous_disable = hns3_dev_promiscuous_disable,
6589         .allmulticast_enable  = hns3_dev_allmulticast_enable,
6590         .allmulticast_disable = hns3_dev_allmulticast_disable,
6591         .mtu_set            = hns3_dev_mtu_set,
6592         .stats_get          = hns3_stats_get,
6593         .stats_reset        = hns3_stats_reset,
6594         .xstats_get         = hns3_dev_xstats_get,
6595         .xstats_get_names   = hns3_dev_xstats_get_names,
6596         .xstats_reset       = hns3_dev_xstats_reset,
6597         .xstats_get_by_id   = hns3_dev_xstats_get_by_id,
6598         .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
6599         .dev_infos_get          = hns3_dev_infos_get,
6600         .fw_version_get         = hns3_fw_version_get,
6601         .rx_queue_setup         = hns3_rx_queue_setup,
6602         .tx_queue_setup         = hns3_tx_queue_setup,
6603         .rx_queue_release       = hns3_dev_rx_queue_release,
6604         .tx_queue_release       = hns3_dev_tx_queue_release,
6605         .rx_queue_start         = hns3_dev_rx_queue_start,
6606         .rx_queue_stop          = hns3_dev_rx_queue_stop,
6607         .tx_queue_start         = hns3_dev_tx_queue_start,
6608         .tx_queue_stop          = hns3_dev_tx_queue_stop,
6609         .rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
6610         .rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
6611         .rxq_info_get           = hns3_rxq_info_get,
6612         .txq_info_get           = hns3_txq_info_get,
6613         .rx_burst_mode_get      = hns3_rx_burst_mode_get,
6614         .tx_burst_mode_get      = hns3_tx_burst_mode_get,
6615         .flow_ctrl_get          = hns3_flow_ctrl_get,
6616         .flow_ctrl_set          = hns3_flow_ctrl_set,
6617         .priority_flow_ctrl_set = hns3_priority_flow_ctrl_set,
6618         .mac_addr_add           = hns3_add_mac_addr,
6619         .mac_addr_remove        = hns3_remove_mac_addr,
6620         .mac_addr_set           = hns3_set_default_mac_addr,
6621         .set_mc_addr_list       = hns3_set_mc_mac_addr_list,
6622         .link_update            = hns3_dev_link_update,
6623         .rss_hash_update        = hns3_dev_rss_hash_update,
6624         .rss_hash_conf_get      = hns3_dev_rss_hash_conf_get,
6625         .reta_update            = hns3_dev_rss_reta_update,
6626         .reta_query             = hns3_dev_rss_reta_query,
6627         .filter_ctrl            = hns3_dev_filter_ctrl,
6628         .vlan_filter_set        = hns3_vlan_filter_set,
6629         .vlan_tpid_set          = hns3_vlan_tpid_set,
6630         .vlan_offload_set       = hns3_vlan_offload_set,
6631         .vlan_pvid_set          = hns3_vlan_pvid_set,
6632         .get_reg                = hns3_get_regs,
6633         .get_module_info        = hns3_get_module_info,
6634         .get_module_eeprom      = hns3_get_module_eeprom,
6635         .get_dcb_info           = hns3_get_dcb_info,
6636         .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
6637         .fec_get_capability     = hns3_fec_get_capability,
6638         .fec_get                = hns3_fec_get,
6639         .fec_set                = hns3_fec_set,
6640         .tm_ops_get             = hns3_tm_ops_get,
6641         .tx_done_cleanup        = hns3_tx_done_cleanup,
6642 };
6643
6644 static const struct hns3_reset_ops hns3_reset_ops = {
6645         .reset_service       = hns3_reset_service,
6646         .stop_service        = hns3_stop_service,
6647         .prepare_reset       = hns3_prepare_reset,
6648         .wait_hardware_ready = hns3_wait_hardware_ready,
6649         .reinit_dev          = hns3_reinit_dev,
6650         .restore_conf        = hns3_restore_conf,
6651         .start_service       = hns3_start_service,
6652 };
6653
6654 static int
6655 hns3_dev_init(struct rte_eth_dev *eth_dev)
6656 {
6657         struct hns3_adapter *hns = eth_dev->data->dev_private;
6658         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
6659         struct rte_ether_addr *eth_addr;
6660         struct hns3_hw *hw = &hns->hw;
6661         int ret;
6662
6663         PMD_INIT_FUNC_TRACE();
6664
6665         eth_dev->process_private = (struct hns3_process_private *)
6666             rte_zmalloc_socket("hns3_filter_list",
6667                                sizeof(struct hns3_process_private),
6668                                RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
6669         if (eth_dev->process_private == NULL) {
6670                 PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
6671                 return -ENOMEM;
6672         }
6673         /* initialize flow filter lists */
6674         hns3_filterlist_init(eth_dev);
6675
6676         hns3_set_rxtx_function(eth_dev);
6677         eth_dev->dev_ops = &hns3_eth_dev_ops;
6678         eth_dev->rx_queue_count = hns3_rx_queue_count;
6679         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
6680                 ret = hns3_mp_init_secondary();
6681                 if (ret) {
6682                         PMD_INIT_LOG(ERR, "Failed to init for secondary "
6683                                      "process, ret = %d", ret);
6684                         goto err_mp_init_secondary;
6685                 }
6686
6687                 hw->secondary_cnt++;
6688                 return 0;
6689         }
6690
6691         ret = hns3_mp_init_primary();
6692         if (ret) {
6693                 PMD_INIT_LOG(ERR,
6694                              "Failed to init for primary process, ret = %d",
6695                              ret);
6696                 goto err_mp_init_primary;
6697         }
6698
6699         hw->adapter_state = HNS3_NIC_UNINITIALIZED;
6700         hns->is_vf = false;
6701         hw->data = eth_dev->data;
6702         hns3_parse_devargs(eth_dev);
6703
6704         /*
6705          * Set default max packet size according to the mtu
6706          * default vale in DPDK frame.
6707          */
6708         hns->pf.mps = hw->data->mtu + HNS3_ETH_OVERHEAD;
6709
6710         ret = hns3_reset_init(hw);
6711         if (ret)
6712                 goto err_init_reset;
6713         hw->reset.ops = &hns3_reset_ops;
6714
6715         ret = hns3_init_pf(eth_dev);
6716         if (ret) {
6717                 PMD_INIT_LOG(ERR, "Failed to init pf: %d", ret);
6718                 goto err_init_pf;
6719         }
6720
6721         /* Allocate memory for storing MAC addresses */
6722         eth_dev->data->mac_addrs = rte_zmalloc("hns3-mac",
6723                                                sizeof(struct rte_ether_addr) *
6724                                                HNS3_UC_MACADDR_NUM, 0);
6725         if (eth_dev->data->mac_addrs == NULL) {
6726                 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
6727                              "to store MAC addresses",
6728                              sizeof(struct rte_ether_addr) *
6729                              HNS3_UC_MACADDR_NUM);
6730                 ret = -ENOMEM;
6731                 goto err_rte_zmalloc;
6732         }
6733
6734         eth_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
6735         if (!rte_is_valid_assigned_ether_addr(eth_addr)) {
6736                 rte_eth_random_addr(hw->mac.mac_addr);
6737                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
6738                                 (struct rte_ether_addr *)hw->mac.mac_addr);
6739                 hns3_warn(hw, "default mac_addr from firmware is an invalid "
6740                           "unicast address, using random MAC address %s",
6741                           mac_str);
6742         }
6743         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
6744                             &eth_dev->data->mac_addrs[0]);
6745
6746         hw->adapter_state = HNS3_NIC_INITIALIZED;
6747
6748         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
6749                             SCHEDULE_PENDING) {
6750                 hns3_err(hw, "Reschedule reset service after dev_init");
6751                 hns3_schedule_reset(hns);
6752         } else {
6753                 /* IMP will wait ready flag before reset */
6754                 hns3_notify_reset_ready(hw, false);
6755         }
6756
6757         hns3_info(hw, "hns3 dev initialization successful!");
6758         return 0;
6759
6760 err_rte_zmalloc:
6761         hns3_uninit_pf(eth_dev);
6762
6763 err_init_pf:
6764         rte_free(hw->reset.wait_data);
6765
6766 err_init_reset:
6767         hns3_mp_uninit_primary();
6768
6769 err_mp_init_primary:
6770 err_mp_init_secondary:
6771         eth_dev->dev_ops = NULL;
6772         eth_dev->rx_pkt_burst = NULL;
6773         eth_dev->tx_pkt_burst = NULL;
6774         eth_dev->tx_pkt_prepare = NULL;
6775         rte_free(eth_dev->process_private);
6776         eth_dev->process_private = NULL;
6777         return ret;
6778 }
6779
6780 static int
6781 hns3_dev_uninit(struct rte_eth_dev *eth_dev)
6782 {
6783         struct hns3_adapter *hns = eth_dev->data->dev_private;
6784         struct hns3_hw *hw = &hns->hw;
6785
6786         PMD_INIT_FUNC_TRACE();
6787
6788         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
6789                 rte_free(eth_dev->process_private);
6790                 eth_dev->process_private = NULL;
6791                 return 0;
6792         }
6793
6794         if (hw->adapter_state < HNS3_NIC_CLOSING)
6795                 hns3_dev_close(eth_dev);
6796
6797         hw->adapter_state = HNS3_NIC_REMOVED;
6798         return 0;
6799 }
6800
6801 static int
6802 eth_hns3_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
6803                    struct rte_pci_device *pci_dev)
6804 {
6805         return rte_eth_dev_pci_generic_probe(pci_dev,
6806                                              sizeof(struct hns3_adapter),
6807                                              hns3_dev_init);
6808 }
6809
6810 static int
6811 eth_hns3_pci_remove(struct rte_pci_device *pci_dev)
6812 {
6813         return rte_eth_dev_pci_generic_remove(pci_dev, hns3_dev_uninit);
6814 }
6815
6816 static const struct rte_pci_id pci_id_hns3_map[] = {
6817         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_GE) },
6818         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE) },
6819         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE_RDMA) },
6820         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_50GE_RDMA) },
6821         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_MACSEC) },
6822         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_200G_RDMA) },
6823         { .vendor_id = 0, }, /* sentinel */
6824 };
6825
6826 static struct rte_pci_driver rte_hns3_pmd = {
6827         .id_table = pci_id_hns3_map,
6828         .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
6829         .probe = eth_hns3_pci_probe,
6830         .remove = eth_hns3_pci_remove,
6831 };
6832
6833 RTE_PMD_REGISTER_PCI(net_hns3, rte_hns3_pmd);
6834 RTE_PMD_REGISTER_PCI_TABLE(net_hns3, pci_id_hns3_map);
6835 RTE_PMD_REGISTER_KMOD_DEP(net_hns3, "* igb_uio | vfio-pci");
6836 RTE_PMD_REGISTER_PARAM_STRING(net_hns3,
6837                 HNS3_DEVARG_RX_FUNC_HINT "=vec|sve|simple|common "
6838                 HNS3_DEVARG_TX_FUNC_HINT "=vec|sve|simple|common ");
6839 RTE_LOG_REGISTER(hns3_logtype_init, pmd.net.hns3.init, NOTICE);
6840 RTE_LOG_REGISTER(hns3_logtype_driver, pmd.net.hns3.driver, NOTICE);