net/hns3: fix flow control exception
[dpdk.git] / drivers / net / hns3 / hns3_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2021 HiSilicon Limited.
3  */
4
5 #include <rte_alarm.h>
6 #include <rte_bus_pci.h>
7 #include <ethdev_pci.h>
8 #include <rte_pci.h>
9 #include <rte_kvargs.h>
10
11 #include "hns3_ethdev.h"
12 #include "hns3_logs.h"
13 #include "hns3_rxtx.h"
14 #include "hns3_intr.h"
15 #include "hns3_regs.h"
16 #include "hns3_dcb.h"
17 #include "hns3_mp.h"
18
19 #define HNS3_DEFAULT_PORT_CONF_BURST_SIZE       32
20 #define HNS3_DEFAULT_PORT_CONF_QUEUES_NUM       1
21
22 #define HNS3_SERVICE_INTERVAL           1000000 /* us */
23 #define HNS3_SERVICE_QUICK_INTERVAL     10
24 #define HNS3_INVALID_PVID               0xFFFF
25
26 #define HNS3_FILTER_TYPE_VF             0
27 #define HNS3_FILTER_TYPE_PORT           1
28 #define HNS3_FILTER_FE_EGRESS_V1_B      BIT(0)
29 #define HNS3_FILTER_FE_NIC_INGRESS_B    BIT(0)
30 #define HNS3_FILTER_FE_NIC_EGRESS_B     BIT(1)
31 #define HNS3_FILTER_FE_ROCE_INGRESS_B   BIT(2)
32 #define HNS3_FILTER_FE_ROCE_EGRESS_B    BIT(3)
33 #define HNS3_FILTER_FE_EGRESS           (HNS3_FILTER_FE_NIC_EGRESS_B \
34                                         | HNS3_FILTER_FE_ROCE_EGRESS_B)
35 #define HNS3_FILTER_FE_INGRESS          (HNS3_FILTER_FE_NIC_INGRESS_B \
36                                         | HNS3_FILTER_FE_ROCE_INGRESS_B)
37
38 /* Reset related Registers */
39 #define HNS3_GLOBAL_RESET_BIT           0
40 #define HNS3_CORE_RESET_BIT             1
41 #define HNS3_IMP_RESET_BIT              2
42 #define HNS3_FUN_RST_ING_B              0
43
44 #define HNS3_VECTOR0_IMP_RESET_INT_B    1
45 #define HNS3_VECTOR0_IMP_CMDQ_ERR_B     4U
46 #define HNS3_VECTOR0_IMP_RD_POISON_B    5U
47 #define HNS3_VECTOR0_ALL_MSIX_ERR_B     6U
48
49 #define HNS3_RESET_WAIT_MS      100
50 #define HNS3_RESET_WAIT_CNT     200
51
52 /* FEC mode order defined in HNS3 hardware */
53 #define HNS3_HW_FEC_MODE_NOFEC  0
54 #define HNS3_HW_FEC_MODE_BASER  1
55 #define HNS3_HW_FEC_MODE_RS     2
56
57 enum hns3_evt_cause {
58         HNS3_VECTOR0_EVENT_RST,
59         HNS3_VECTOR0_EVENT_MBX,
60         HNS3_VECTOR0_EVENT_ERR,
61         HNS3_VECTOR0_EVENT_PTP,
62         HNS3_VECTOR0_EVENT_OTHER,
63 };
64
65 static const struct rte_eth_fec_capa speed_fec_capa_tbl[] = {
66         { ETH_SPEED_NUM_10G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
67                              RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
68                              RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
69
70         { ETH_SPEED_NUM_25G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
71                              RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
72                              RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
73                              RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
74
75         { ETH_SPEED_NUM_40G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
76                              RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
77                              RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
78
79         { ETH_SPEED_NUM_50G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
80                              RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
81                              RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
82                              RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
83
84         { ETH_SPEED_NUM_100G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
85                               RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
86                               RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
87
88         { ETH_SPEED_NUM_200G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
89                               RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
90                               RTE_ETH_FEC_MODE_CAPA_MASK(RS) }
91 };
92
93 static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns,
94                                                  uint64_t *levels);
95 static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
96 static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid,
97                                     int on);
98 static int hns3_update_link_info(struct rte_eth_dev *eth_dev);
99 static bool hns3_update_link_status(struct hns3_hw *hw);
100
101 static int hns3_add_mc_addr(struct hns3_hw *hw,
102                             struct rte_ether_addr *mac_addr);
103 static int hns3_remove_mc_addr(struct hns3_hw *hw,
104                             struct rte_ether_addr *mac_addr);
105 static int hns3_restore_fec(struct hns3_hw *hw);
106 static int hns3_query_dev_fec_info(struct hns3_hw *hw);
107 static int hns3_do_stop(struct hns3_adapter *hns);
108
109 void hns3_ether_format_addr(char *buf, uint16_t size,
110                             const struct rte_ether_addr *ether_addr)
111 {
112         snprintf(buf, size, "%02X:**:**:**:%02X:%02X",
113                 ether_addr->addr_bytes[0],
114                 ether_addr->addr_bytes[4],
115                 ether_addr->addr_bytes[5]);
116 }
117
118 static void
119 hns3_pf_disable_irq0(struct hns3_hw *hw)
120 {
121         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
122 }
123
124 static void
125 hns3_pf_enable_irq0(struct hns3_hw *hw)
126 {
127         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
128 }
129
130 static enum hns3_evt_cause
131 hns3_proc_imp_reset_event(struct hns3_adapter *hns, bool is_delay,
132                           uint32_t *vec_val)
133 {
134         struct hns3_hw *hw = &hns->hw;
135
136         __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
137         hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
138         *vec_val = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
139         if (!is_delay) {
140                 hw->reset.stats.imp_cnt++;
141                 hns3_warn(hw, "IMP reset detected, clear reset status");
142         } else {
143                 hns3_schedule_delayed_reset(hns);
144                 hns3_warn(hw, "IMP reset detected, don't clear reset status");
145         }
146
147         return HNS3_VECTOR0_EVENT_RST;
148 }
149
150 static enum hns3_evt_cause
151 hns3_proc_global_reset_event(struct hns3_adapter *hns, bool is_delay,
152                              uint32_t *vec_val)
153 {
154         struct hns3_hw *hw = &hns->hw;
155
156         __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
157         hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending);
158         *vec_val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
159         if (!is_delay) {
160                 hw->reset.stats.global_cnt++;
161                 hns3_warn(hw, "Global reset detected, clear reset status");
162         } else {
163                 hns3_schedule_delayed_reset(hns);
164                 hns3_warn(hw,
165                           "Global reset detected, don't clear reset status");
166         }
167
168         return HNS3_VECTOR0_EVENT_RST;
169 }
170
171 static enum hns3_evt_cause
172 hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
173 {
174         struct hns3_hw *hw = &hns->hw;
175         uint32_t vector0_int_stats;
176         uint32_t cmdq_src_val;
177         uint32_t hw_err_src_reg;
178         uint32_t val;
179         enum hns3_evt_cause ret;
180         bool is_delay;
181
182         /* fetch the events from their corresponding regs */
183         vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
184         cmdq_src_val = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
185         hw_err_src_reg = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
186
187         is_delay = clearval == NULL ? true : false;
188         /*
189          * Assumption: If by any chance reset and mailbox events are reported
190          * together then we will only process reset event and defer the
191          * processing of the mailbox events. Since, we would have not cleared
192          * RX CMDQ event this time we would receive again another interrupt
193          * from H/W just for the mailbox.
194          */
195         if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) { /* IMP */
196                 ret = hns3_proc_imp_reset_event(hns, is_delay, &val);
197                 goto out;
198         }
199
200         /* Global reset */
201         if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) {
202                 ret = hns3_proc_global_reset_event(hns, is_delay, &val);
203                 goto out;
204         }
205
206         /* Check for vector0 1588 event source */
207         if (BIT(HNS3_VECTOR0_1588_INT_B) & vector0_int_stats) {
208                 val = BIT(HNS3_VECTOR0_1588_INT_B);
209                 ret = HNS3_VECTOR0_EVENT_PTP;
210                 goto out;
211         }
212
213         /* check for vector0 msix event source */
214         if (vector0_int_stats & HNS3_VECTOR0_REG_MSIX_MASK ||
215             hw_err_src_reg & HNS3_RAS_REG_NFE_MASK) {
216                 val = vector0_int_stats | hw_err_src_reg;
217                 ret = HNS3_VECTOR0_EVENT_ERR;
218                 goto out;
219         }
220
221         /* check for vector0 mailbox(=CMDQ RX) event source */
222         if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_val) {
223                 cmdq_src_val &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
224                 val = cmdq_src_val;
225                 ret = HNS3_VECTOR0_EVENT_MBX;
226                 goto out;
227         }
228
229         val = vector0_int_stats;
230         ret = HNS3_VECTOR0_EVENT_OTHER;
231 out:
232
233         if (clearval)
234                 *clearval = val;
235         return ret;
236 }
237
238 static bool
239 hns3_is_1588_event_type(uint32_t event_type)
240 {
241         return (event_type == HNS3_VECTOR0_EVENT_PTP);
242 }
243
244 static void
245 hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
246 {
247         if (event_type == HNS3_VECTOR0_EVENT_RST ||
248             hns3_is_1588_event_type(event_type))
249                 hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr);
250         else if (event_type == HNS3_VECTOR0_EVENT_MBX)
251                 hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
252 }
253
254 static void
255 hns3_clear_all_event_cause(struct hns3_hw *hw)
256 {
257         uint32_t vector0_int_stats;
258         vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
259
260         if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats)
261                 hns3_warn(hw, "Probe during IMP reset interrupt");
262
263         if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats)
264                 hns3_warn(hw, "Probe during Global reset interrupt");
265
266         hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST,
267                                BIT(HNS3_VECTOR0_IMPRESET_INT_B) |
268                                BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) |
269                                BIT(HNS3_VECTOR0_CORERESET_INT_B));
270         hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0);
271         hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_PTP,
272                                 BIT(HNS3_VECTOR0_1588_INT_B));
273 }
274
275 static void
276 hns3_handle_mac_tnl(struct hns3_hw *hw)
277 {
278         struct hns3_cmd_desc desc;
279         uint32_t status;
280         int ret;
281
282         /* query and clear mac tnl interruptions */
283         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_MAC_TNL_INT, true);
284         ret = hns3_cmd_send(hw, &desc, 1);
285         if (ret) {
286                 hns3_err(hw, "failed to query mac tnl int, ret = %d.", ret);
287                 return;
288         }
289
290         status = rte_le_to_cpu_32(desc.data[0]);
291         if (status) {
292                 hns3_warn(hw, "mac tnl int occurs, status = 0x%x.", status);
293                 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_MAC_TNL_INT,
294                                           false);
295                 desc.data[0] = rte_cpu_to_le_32(HNS3_MAC_TNL_INT_CLR);
296                 ret = hns3_cmd_send(hw, &desc, 1);
297                 if (ret)
298                         hns3_err(hw, "failed to clear mac tnl int, ret = %d.",
299                                  ret);
300         }
301 }
302
303 static void
304 hns3_interrupt_handler(void *param)
305 {
306         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
307         struct hns3_adapter *hns = dev->data->dev_private;
308         struct hns3_hw *hw = &hns->hw;
309         enum hns3_evt_cause event_cause;
310         uint32_t clearval = 0;
311         uint32_t vector0_int;
312         uint32_t ras_int;
313         uint32_t cmdq_int;
314
315         /* Disable interrupt */
316         hns3_pf_disable_irq0(hw);
317
318         event_cause = hns3_check_event_cause(hns, &clearval);
319         vector0_int = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
320         ras_int = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
321         cmdq_int = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
322         /* vector 0 interrupt is shared with reset and mailbox source events. */
323         if (event_cause == HNS3_VECTOR0_EVENT_ERR) {
324                 hns3_warn(hw, "received interrupt: vector0_int_stat:0x%x "
325                           "ras_int_stat:0x%x cmdq_int_stat:0x%x",
326                           vector0_int, ras_int, cmdq_int);
327                 hns3_handle_msix_error(hns, &hw->reset.request);
328                 hns3_handle_ras_error(hns, &hw->reset.request);
329                 hns3_handle_mac_tnl(hw);
330                 hns3_schedule_reset(hns);
331         } else if (event_cause == HNS3_VECTOR0_EVENT_RST) {
332                 hns3_warn(hw, "received reset interrupt");
333                 hns3_schedule_reset(hns);
334         } else if (event_cause == HNS3_VECTOR0_EVENT_MBX) {
335                 hns3_dev_handle_mbx_msg(hw);
336         } else {
337                 hns3_warn(hw, "received unknown event: vector0_int_stat:0x%x "
338                           "ras_int_stat:0x%x cmdq_int_stat:0x%x",
339                           vector0_int, ras_int, cmdq_int);
340         }
341
342         hns3_clear_event_cause(hw, event_cause, clearval);
343         /* Enable interrupt if it is not cause by reset */
344         hns3_pf_enable_irq0(hw);
345 }
346
347 static int
348 hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on)
349 {
350 #define HNS3_VLAN_ID_OFFSET_STEP        160
351 #define HNS3_VLAN_BYTE_SIZE             8
352         struct hns3_vlan_filter_pf_cfg_cmd *req;
353         struct hns3_hw *hw = &hns->hw;
354         uint8_t vlan_offset_byte_val;
355         struct hns3_cmd_desc desc;
356         uint8_t vlan_offset_byte;
357         uint8_t vlan_offset_base;
358         int ret;
359
360         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false);
361
362         vlan_offset_base = vlan_id / HNS3_VLAN_ID_OFFSET_STEP;
363         vlan_offset_byte = (vlan_id % HNS3_VLAN_ID_OFFSET_STEP) /
364                            HNS3_VLAN_BYTE_SIZE;
365         vlan_offset_byte_val = 1 << (vlan_id % HNS3_VLAN_BYTE_SIZE);
366
367         req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data;
368         req->vlan_offset = vlan_offset_base;
369         req->vlan_cfg = on ? 0 : 1;
370         req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
371
372         ret = hns3_cmd_send(hw, &desc, 1);
373         if (ret)
374                 hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d",
375                          vlan_id, ret);
376
377         return ret;
378 }
379
380 static void
381 hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id)
382 {
383         struct hns3_user_vlan_table *vlan_entry;
384         struct hns3_pf *pf = &hns->pf;
385
386         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
387                 if (vlan_entry->vlan_id == vlan_id) {
388                         if (vlan_entry->hd_tbl_status)
389                                 hns3_set_port_vlan_filter(hns, vlan_id, 0);
390                         LIST_REMOVE(vlan_entry, next);
391                         rte_free(vlan_entry);
392                         break;
393                 }
394         }
395 }
396
397 static void
398 hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id,
399                         bool writen_to_tbl)
400 {
401         struct hns3_user_vlan_table *vlan_entry;
402         struct hns3_hw *hw = &hns->hw;
403         struct hns3_pf *pf = &hns->pf;
404
405         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
406                 if (vlan_entry->vlan_id == vlan_id)
407                         return;
408         }
409
410         vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0);
411         if (vlan_entry == NULL) {
412                 hns3_err(hw, "Failed to malloc hns3 vlan table");
413                 return;
414         }
415
416         vlan_entry->hd_tbl_status = writen_to_tbl;
417         vlan_entry->vlan_id = vlan_id;
418
419         LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next);
420 }
421
422 static int
423 hns3_restore_vlan_table(struct hns3_adapter *hns)
424 {
425         struct hns3_user_vlan_table *vlan_entry;
426         struct hns3_hw *hw = &hns->hw;
427         struct hns3_pf *pf = &hns->pf;
428         uint16_t vlan_id;
429         int ret = 0;
430
431         if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE)
432                 return hns3_vlan_pvid_configure(hns,
433                                                 hw->port_base_vlan_cfg.pvid, 1);
434
435         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
436                 if (vlan_entry->hd_tbl_status) {
437                         vlan_id = vlan_entry->vlan_id;
438                         ret = hns3_set_port_vlan_filter(hns, vlan_id, 1);
439                         if (ret)
440                                 break;
441                 }
442         }
443
444         return ret;
445 }
446
447 static int
448 hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
449 {
450         struct hns3_hw *hw = &hns->hw;
451         bool writen_to_tbl = false;
452         int ret = 0;
453
454         /*
455          * When vlan filter is enabled, hardware regards packets without vlan
456          * as packets with vlan 0. So, to receive packets without vlan, vlan id
457          * 0 is not allowed to be removed by rte_eth_dev_vlan_filter.
458          */
459         if (on == 0 && vlan_id == 0)
460                 return 0;
461
462         /*
463          * When port base vlan enabled, we use port base vlan as the vlan
464          * filter condition. In this case, we don't update vlan filter table
465          * when user add new vlan or remove exist vlan, just update the
466          * vlan list. The vlan id in vlan list will be writen in vlan filter
467          * table until port base vlan disabled
468          */
469         if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
470                 ret = hns3_set_port_vlan_filter(hns, vlan_id, on);
471                 writen_to_tbl = true;
472         }
473
474         if (ret == 0) {
475                 if (on)
476                         hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl);
477                 else
478                         hns3_rm_dev_vlan_table(hns, vlan_id);
479         }
480         return ret;
481 }
482
483 static int
484 hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
485 {
486         struct hns3_adapter *hns = dev->data->dev_private;
487         struct hns3_hw *hw = &hns->hw;
488         int ret;
489
490         rte_spinlock_lock(&hw->lock);
491         ret = hns3_vlan_filter_configure(hns, vlan_id, on);
492         rte_spinlock_unlock(&hw->lock);
493         return ret;
494 }
495
496 static int
497 hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type,
498                          uint16_t tpid)
499 {
500         struct hns3_rx_vlan_type_cfg_cmd *rx_req;
501         struct hns3_tx_vlan_type_cfg_cmd *tx_req;
502         struct hns3_hw *hw = &hns->hw;
503         struct hns3_cmd_desc desc;
504         int ret;
505
506         if ((vlan_type != ETH_VLAN_TYPE_INNER &&
507              vlan_type != ETH_VLAN_TYPE_OUTER)) {
508                 hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type);
509                 return -EINVAL;
510         }
511
512         if (tpid != RTE_ETHER_TYPE_VLAN) {
513                 hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type);
514                 return -EINVAL;
515         }
516
517         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false);
518         rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data;
519
520         if (vlan_type == ETH_VLAN_TYPE_OUTER) {
521                 rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
522                 rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
523         } else if (vlan_type == ETH_VLAN_TYPE_INNER) {
524                 rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
525                 rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
526                 rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid);
527                 rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid);
528         }
529
530         ret = hns3_cmd_send(hw, &desc, 1);
531         if (ret) {
532                 hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d",
533                          ret);
534                 return ret;
535         }
536
537         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false);
538
539         tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data;
540         tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid);
541         tx_req->in_vlan_type = rte_cpu_to_le_16(tpid);
542
543         ret = hns3_cmd_send(hw, &desc, 1);
544         if (ret)
545                 hns3_err(hw, "Send txvlan protocol type command fail, ret =%d",
546                          ret);
547         return ret;
548 }
549
550 static int
551 hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
552                    uint16_t tpid)
553 {
554         struct hns3_adapter *hns = dev->data->dev_private;
555         struct hns3_hw *hw = &hns->hw;
556         int ret;
557
558         rte_spinlock_lock(&hw->lock);
559         ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid);
560         rte_spinlock_unlock(&hw->lock);
561         return ret;
562 }
563
564 static int
565 hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns,
566                              struct hns3_rx_vtag_cfg *vcfg)
567 {
568         struct hns3_vport_vtag_rx_cfg_cmd *req;
569         struct hns3_hw *hw = &hns->hw;
570         struct hns3_cmd_desc desc;
571         uint16_t vport_id;
572         uint8_t bitmap;
573         int ret;
574
575         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false);
576
577         req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data;
578         hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B,
579                      vcfg->strip_tag1_en ? 1 : 0);
580         hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B,
581                      vcfg->strip_tag2_en ? 1 : 0);
582         hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B,
583                      vcfg->vlan1_vlan_prionly ? 1 : 0);
584         hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B,
585                      vcfg->vlan2_vlan_prionly ? 1 : 0);
586
587         /* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
588         hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG1_EN_B,
589                      vcfg->strip_tag1_discard_en ? 1 : 0);
590         hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG2_EN_B,
591                      vcfg->strip_tag2_discard_en ? 1 : 0);
592         /*
593          * In current version VF is not supported when PF is driven by DPDK
594          * driver, just need to configure parameters for PF vport.
595          */
596         vport_id = HNS3_PF_FUNC_ID;
597         req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
598         bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
599         req->vf_bitmap[req->vf_offset] = bitmap;
600
601         ret = hns3_cmd_send(hw, &desc, 1);
602         if (ret)
603                 hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret);
604         return ret;
605 }
606
607 static void
608 hns3_update_rx_offload_cfg(struct hns3_adapter *hns,
609                            struct hns3_rx_vtag_cfg *vcfg)
610 {
611         struct hns3_pf *pf = &hns->pf;
612         memcpy(&pf->vtag_config.rx_vcfg, vcfg, sizeof(pf->vtag_config.rx_vcfg));
613 }
614
615 static void
616 hns3_update_tx_offload_cfg(struct hns3_adapter *hns,
617                            struct hns3_tx_vtag_cfg *vcfg)
618 {
619         struct hns3_pf *pf = &hns->pf;
620         memcpy(&pf->vtag_config.tx_vcfg, vcfg, sizeof(pf->vtag_config.tx_vcfg));
621 }
622
623 static int
624 hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable)
625 {
626         struct hns3_rx_vtag_cfg rxvlan_cfg;
627         struct hns3_hw *hw = &hns->hw;
628         int ret;
629
630         if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
631                 rxvlan_cfg.strip_tag1_en = false;
632                 rxvlan_cfg.strip_tag2_en = enable;
633                 rxvlan_cfg.strip_tag2_discard_en = false;
634         } else {
635                 rxvlan_cfg.strip_tag1_en = enable;
636                 rxvlan_cfg.strip_tag2_en = true;
637                 rxvlan_cfg.strip_tag2_discard_en = true;
638         }
639
640         rxvlan_cfg.strip_tag1_discard_en = false;
641         rxvlan_cfg.vlan1_vlan_prionly = false;
642         rxvlan_cfg.vlan2_vlan_prionly = false;
643         rxvlan_cfg.rx_vlan_offload_en = enable;
644
645         ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg);
646         if (ret) {
647                 hns3_err(hw, "enable strip rx vtag failed, ret =%d", ret);
648                 return ret;
649         }
650
651         hns3_update_rx_offload_cfg(hns, &rxvlan_cfg);
652
653         return ret;
654 }
655
656 static int
657 hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type,
658                           uint8_t fe_type, bool filter_en, uint8_t vf_id)
659 {
660         struct hns3_vlan_filter_ctrl_cmd *req;
661         struct hns3_cmd_desc desc;
662         int ret;
663
664         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false);
665
666         req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data;
667         req->vlan_type = vlan_type;
668         req->vlan_fe = filter_en ? fe_type : 0;
669         req->vf_id = vf_id;
670
671         ret = hns3_cmd_send(hw, &desc, 1);
672         if (ret)
673                 hns3_err(hw, "set vlan filter fail, ret =%d", ret);
674
675         return ret;
676 }
677
678 static int
679 hns3_vlan_filter_init(struct hns3_adapter *hns)
680 {
681         struct hns3_hw *hw = &hns->hw;
682         int ret;
683
684         ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF,
685                                         HNS3_FILTER_FE_EGRESS, false,
686                                         HNS3_PF_FUNC_ID);
687         if (ret) {
688                 hns3_err(hw, "failed to init vf vlan filter, ret = %d", ret);
689                 return ret;
690         }
691
692         ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
693                                         HNS3_FILTER_FE_INGRESS, false,
694                                         HNS3_PF_FUNC_ID);
695         if (ret)
696                 hns3_err(hw, "failed to init port vlan filter, ret = %d", ret);
697
698         return ret;
699 }
700
701 static int
702 hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable)
703 {
704         struct hns3_hw *hw = &hns->hw;
705         int ret;
706
707         ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
708                                         HNS3_FILTER_FE_INGRESS, enable,
709                                         HNS3_PF_FUNC_ID);
710         if (ret)
711                 hns3_err(hw, "failed to %s port vlan filter, ret = %d",
712                          enable ? "enable" : "disable", ret);
713
714         return ret;
715 }
716
717 static int
718 hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask)
719 {
720         struct hns3_adapter *hns = dev->data->dev_private;
721         struct hns3_hw *hw = &hns->hw;
722         struct rte_eth_rxmode *rxmode;
723         unsigned int tmp_mask;
724         bool enable;
725         int ret = 0;
726
727         rte_spinlock_lock(&hw->lock);
728         rxmode = &dev->data->dev_conf.rxmode;
729         tmp_mask = (unsigned int)mask;
730         if (tmp_mask & ETH_VLAN_FILTER_MASK) {
731                 /* ignore vlan filter configuration during promiscuous mode */
732                 if (!dev->data->promiscuous) {
733                         /* Enable or disable VLAN filter */
734                         enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER ?
735                                  true : false;
736
737                         ret = hns3_enable_vlan_filter(hns, enable);
738                         if (ret) {
739                                 rte_spinlock_unlock(&hw->lock);
740                                 hns3_err(hw, "failed to %s rx filter, ret = %d",
741                                          enable ? "enable" : "disable", ret);
742                                 return ret;
743                         }
744                 }
745         }
746
747         if (tmp_mask & ETH_VLAN_STRIP_MASK) {
748                 /* Enable or disable VLAN stripping */
749                 enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP ?
750                     true : false;
751
752                 ret = hns3_en_hw_strip_rxvtag(hns, enable);
753                 if (ret) {
754                         rte_spinlock_unlock(&hw->lock);
755                         hns3_err(hw, "failed to %s rx strip, ret = %d",
756                                  enable ? "enable" : "disable", ret);
757                         return ret;
758                 }
759         }
760
761         rte_spinlock_unlock(&hw->lock);
762
763         return ret;
764 }
765
766 static int
767 hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns,
768                              struct hns3_tx_vtag_cfg *vcfg)
769 {
770         struct hns3_vport_vtag_tx_cfg_cmd *req;
771         struct hns3_cmd_desc desc;
772         struct hns3_hw *hw = &hns->hw;
773         uint16_t vport_id;
774         uint8_t bitmap;
775         int ret;
776
777         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false);
778
779         req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data;
780         req->def_vlan_tag1 = vcfg->default_tag1;
781         req->def_vlan_tag2 = vcfg->default_tag2;
782         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B,
783                      vcfg->accept_tag1 ? 1 : 0);
784         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B,
785                      vcfg->accept_untag1 ? 1 : 0);
786         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B,
787                      vcfg->accept_tag2 ? 1 : 0);
788         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B,
789                      vcfg->accept_untag2 ? 1 : 0);
790         hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B,
791                      vcfg->insert_tag1_en ? 1 : 0);
792         hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B,
793                      vcfg->insert_tag2_en ? 1 : 0);
794         hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0);
795
796         /* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
797         hns3_set_bit(req->vport_vlan_cfg, HNS3_TAG_SHIFT_MODE_EN_B,
798                      vcfg->tag_shift_mode_en ? 1 : 0);
799
800         /*
801          * In current version VF is not supported when PF is driven by DPDK
802          * driver, just need to configure parameters for PF vport.
803          */
804         vport_id = HNS3_PF_FUNC_ID;
805         req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
806         bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
807         req->vf_bitmap[req->vf_offset] = bitmap;
808
809         ret = hns3_cmd_send(hw, &desc, 1);
810         if (ret)
811                 hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret);
812
813         return ret;
814 }
815
816 static int
817 hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state,
818                      uint16_t pvid)
819 {
820         struct hns3_hw *hw = &hns->hw;
821         struct hns3_tx_vtag_cfg txvlan_cfg;
822         int ret;
823
824         if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) {
825                 txvlan_cfg.accept_tag1 = true;
826                 txvlan_cfg.insert_tag1_en = false;
827                 txvlan_cfg.default_tag1 = 0;
828         } else {
829                 txvlan_cfg.accept_tag1 =
830                         hw->vlan_mode == HNS3_HW_SHIFT_AND_DISCARD_MODE;
831                 txvlan_cfg.insert_tag1_en = true;
832                 txvlan_cfg.default_tag1 = pvid;
833         }
834
835         txvlan_cfg.accept_untag1 = true;
836         txvlan_cfg.accept_tag2 = true;
837         txvlan_cfg.accept_untag2 = true;
838         txvlan_cfg.insert_tag2_en = false;
839         txvlan_cfg.default_tag2 = 0;
840         txvlan_cfg.tag_shift_mode_en = true;
841
842         ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg);
843         if (ret) {
844                 hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid,
845                          ret);
846                 return ret;
847         }
848
849         hns3_update_tx_offload_cfg(hns, &txvlan_cfg);
850         return ret;
851 }
852
853
854 static void
855 hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list)
856 {
857         struct hns3_user_vlan_table *vlan_entry;
858         struct hns3_pf *pf = &hns->pf;
859
860         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
861                 if (vlan_entry->hd_tbl_status) {
862                         hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0);
863                         vlan_entry->hd_tbl_status = false;
864                 }
865         }
866
867         if (is_del_list) {
868                 vlan_entry = LIST_FIRST(&pf->vlan_list);
869                 while (vlan_entry) {
870                         LIST_REMOVE(vlan_entry, next);
871                         rte_free(vlan_entry);
872                         vlan_entry = LIST_FIRST(&pf->vlan_list);
873                 }
874         }
875 }
876
877 static void
878 hns3_add_all_vlan_table(struct hns3_adapter *hns)
879 {
880         struct hns3_user_vlan_table *vlan_entry;
881         struct hns3_pf *pf = &hns->pf;
882
883         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
884                 if (!vlan_entry->hd_tbl_status) {
885                         hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1);
886                         vlan_entry->hd_tbl_status = true;
887                 }
888         }
889 }
890
891 static void
892 hns3_remove_all_vlan_table(struct hns3_adapter *hns)
893 {
894         struct hns3_hw *hw = &hns->hw;
895         int ret;
896
897         hns3_rm_all_vlan_table(hns, true);
898         if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID) {
899                 ret = hns3_set_port_vlan_filter(hns,
900                                                 hw->port_base_vlan_cfg.pvid, 0);
901                 if (ret) {
902                         hns3_err(hw, "Failed to remove all vlan table, ret =%d",
903                                  ret);
904                         return;
905                 }
906         }
907 }
908
909 static int
910 hns3_update_vlan_filter_entries(struct hns3_adapter *hns,
911                         uint16_t port_base_vlan_state, uint16_t new_pvid)
912 {
913         struct hns3_hw *hw = &hns->hw;
914         uint16_t old_pvid;
915         int ret;
916
917         if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) {
918                 old_pvid = hw->port_base_vlan_cfg.pvid;
919                 if (old_pvid != HNS3_INVALID_PVID) {
920                         ret = hns3_set_port_vlan_filter(hns, old_pvid, 0);
921                         if (ret) {
922                                 hns3_err(hw, "failed to remove old pvid %u, "
923                                                 "ret = %d", old_pvid, ret);
924                                 return ret;
925                         }
926                 }
927
928                 hns3_rm_all_vlan_table(hns, false);
929                 ret = hns3_set_port_vlan_filter(hns, new_pvid, 1);
930                 if (ret) {
931                         hns3_err(hw, "failed to add new pvid %u, ret = %d",
932                                         new_pvid, ret);
933                         return ret;
934                 }
935         } else {
936                 ret = hns3_set_port_vlan_filter(hns, new_pvid, 0);
937                 if (ret) {
938                         hns3_err(hw, "failed to remove pvid %u, ret = %d",
939                                         new_pvid, ret);
940                         return ret;
941                 }
942
943                 hns3_add_all_vlan_table(hns);
944         }
945         return 0;
946 }
947
948 static int
949 hns3_en_pvid_strip(struct hns3_adapter *hns, int on)
950 {
951         struct hns3_rx_vtag_cfg *old_cfg = &hns->pf.vtag_config.rx_vcfg;
952         struct hns3_rx_vtag_cfg rx_vlan_cfg;
953         bool rx_strip_en;
954         int ret;
955
956         rx_strip_en = old_cfg->rx_vlan_offload_en;
957         if (on) {
958                 rx_vlan_cfg.strip_tag1_en = rx_strip_en;
959                 rx_vlan_cfg.strip_tag2_en = true;
960                 rx_vlan_cfg.strip_tag2_discard_en = true;
961         } else {
962                 rx_vlan_cfg.strip_tag1_en = false;
963                 rx_vlan_cfg.strip_tag2_en = rx_strip_en;
964                 rx_vlan_cfg.strip_tag2_discard_en = false;
965         }
966         rx_vlan_cfg.strip_tag1_discard_en = false;
967         rx_vlan_cfg.vlan1_vlan_prionly = false;
968         rx_vlan_cfg.vlan2_vlan_prionly = false;
969         rx_vlan_cfg.rx_vlan_offload_en = old_cfg->rx_vlan_offload_en;
970
971         ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg);
972         if (ret)
973                 return ret;
974
975         hns3_update_rx_offload_cfg(hns, &rx_vlan_cfg);
976         return ret;
977 }
978
979 static int
980 hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on)
981 {
982         struct hns3_hw *hw = &hns->hw;
983         uint16_t port_base_vlan_state;
984         int ret, err;
985
986         if (on == 0 && pvid != hw->port_base_vlan_cfg.pvid) {
987                 if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID)
988                         hns3_warn(hw, "Invalid operation! As current pvid set "
989                                   "is %u, disable pvid %u is invalid",
990                                   hw->port_base_vlan_cfg.pvid, pvid);
991                 return 0;
992         }
993
994         port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE :
995                                     HNS3_PORT_BASE_VLAN_DISABLE;
996         ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid);
997         if (ret) {
998                 hns3_err(hw, "failed to config tx vlan for pvid, ret = %d",
999                          ret);
1000                 return ret;
1001         }
1002
1003         ret = hns3_en_pvid_strip(hns, on);
1004         if (ret) {
1005                 hns3_err(hw, "failed to config rx vlan strip for pvid, "
1006                          "ret = %d", ret);
1007                 goto pvid_vlan_strip_fail;
1008         }
1009
1010         if (pvid == HNS3_INVALID_PVID)
1011                 goto out;
1012         ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid);
1013         if (ret) {
1014                 hns3_err(hw, "failed to update vlan filter entries, ret = %d",
1015                          ret);
1016                 goto vlan_filter_set_fail;
1017         }
1018
1019 out:
1020         hw->port_base_vlan_cfg.state = port_base_vlan_state;
1021         hw->port_base_vlan_cfg.pvid = on ? pvid : HNS3_INVALID_PVID;
1022         return ret;
1023
1024 vlan_filter_set_fail:
1025         err = hns3_en_pvid_strip(hns, hw->port_base_vlan_cfg.state ==
1026                                         HNS3_PORT_BASE_VLAN_ENABLE);
1027         if (err)
1028                 hns3_err(hw, "fail to rollback pvid strip, ret = %d", err);
1029
1030 pvid_vlan_strip_fail:
1031         err = hns3_vlan_txvlan_cfg(hns, hw->port_base_vlan_cfg.state,
1032                                         hw->port_base_vlan_cfg.pvid);
1033         if (err)
1034                 hns3_err(hw, "fail to rollback txvlan status, ret = %d", err);
1035
1036         return ret;
1037 }
1038
1039 static int
1040 hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
1041 {
1042         struct hns3_adapter *hns = dev->data->dev_private;
1043         struct hns3_hw *hw = &hns->hw;
1044         bool pvid_en_state_change;
1045         uint16_t pvid_state;
1046         int ret;
1047
1048         if (pvid > RTE_ETHER_MAX_VLAN_ID) {
1049                 hns3_err(hw, "Invalid vlan_id = %u > %d", pvid,
1050                          RTE_ETHER_MAX_VLAN_ID);
1051                 return -EINVAL;
1052         }
1053
1054         /*
1055          * If PVID configuration state change, should refresh the PVID
1056          * configuration state in struct hns3_tx_queue/hns3_rx_queue.
1057          */
1058         pvid_state = hw->port_base_vlan_cfg.state;
1059         if ((on && pvid_state == HNS3_PORT_BASE_VLAN_ENABLE) ||
1060             (!on && pvid_state == HNS3_PORT_BASE_VLAN_DISABLE))
1061                 pvid_en_state_change = false;
1062         else
1063                 pvid_en_state_change = true;
1064
1065         rte_spinlock_lock(&hw->lock);
1066         ret = hns3_vlan_pvid_configure(hns, pvid, on);
1067         rte_spinlock_unlock(&hw->lock);
1068         if (ret)
1069                 return ret;
1070         /*
1071          * Only in HNS3_SW_SHIFT_AND_MODE the PVID related operation in Tx/Rx
1072          * need be processed by PMD driver.
1073          */
1074         if (pvid_en_state_change &&
1075             hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
1076                 hns3_update_all_queues_pvid_proc_en(hw);
1077
1078         return 0;
1079 }
1080
1081 static int
1082 hns3_default_vlan_config(struct hns3_adapter *hns)
1083 {
1084         struct hns3_hw *hw = &hns->hw;
1085         int ret;
1086
1087         /*
1088          * When vlan filter is enabled, hardware regards packets without vlan
1089          * as packets with vlan 0. Therefore, if vlan 0 is not in the vlan
1090          * table, packets without vlan won't be received. So, add vlan 0 as
1091          * the default vlan.
1092          */
1093         ret = hns3_vlan_filter_configure(hns, 0, 1);
1094         if (ret)
1095                 hns3_err(hw, "default vlan 0 config failed, ret =%d", ret);
1096         return ret;
1097 }
1098
1099 static int
1100 hns3_init_vlan_config(struct hns3_adapter *hns)
1101 {
1102         struct hns3_hw *hw = &hns->hw;
1103         int ret;
1104
1105         /*
1106          * This function can be called in the initialization and reset process,
1107          * when in reset process, it means that hardware had been reseted
1108          * successfully and we need to restore the hardware configuration to
1109          * ensure that the hardware configuration remains unchanged before and
1110          * after reset.
1111          */
1112         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1113                 hw->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE;
1114                 hw->port_base_vlan_cfg.pvid = HNS3_INVALID_PVID;
1115         }
1116
1117         ret = hns3_vlan_filter_init(hns);
1118         if (ret) {
1119                 hns3_err(hw, "vlan init fail in pf, ret =%d", ret);
1120                 return ret;
1121         }
1122
1123         ret = hns3_vlan_tpid_configure(hns, ETH_VLAN_TYPE_INNER,
1124                                        RTE_ETHER_TYPE_VLAN);
1125         if (ret) {
1126                 hns3_err(hw, "tpid set fail in pf, ret =%d", ret);
1127                 return ret;
1128         }
1129
1130         /*
1131          * When in the reinit dev stage of the reset process, the following
1132          * vlan-related configurations may differ from those at initialization,
1133          * we will restore configurations to hardware in hns3_restore_vlan_table
1134          * and hns3_restore_vlan_conf later.
1135          */
1136         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1137                 ret = hns3_vlan_pvid_configure(hns, HNS3_INVALID_PVID, 0);
1138                 if (ret) {
1139                         hns3_err(hw, "pvid set fail in pf, ret =%d", ret);
1140                         return ret;
1141                 }
1142
1143                 ret = hns3_en_hw_strip_rxvtag(hns, false);
1144                 if (ret) {
1145                         hns3_err(hw, "rx strip configure fail in pf, ret =%d",
1146                                  ret);
1147                         return ret;
1148                 }
1149         }
1150
1151         return hns3_default_vlan_config(hns);
1152 }
1153
1154 static int
1155 hns3_restore_vlan_conf(struct hns3_adapter *hns)
1156 {
1157         struct hns3_pf *pf = &hns->pf;
1158         struct hns3_hw *hw = &hns->hw;
1159         uint64_t offloads;
1160         bool enable;
1161         int ret;
1162
1163         if (!hw->data->promiscuous) {
1164                 /* restore vlan filter states */
1165                 offloads = hw->data->dev_conf.rxmode.offloads;
1166                 enable = offloads & DEV_RX_OFFLOAD_VLAN_FILTER ? true : false;
1167                 ret = hns3_enable_vlan_filter(hns, enable);
1168                 if (ret) {
1169                         hns3_err(hw, "failed to restore vlan rx filter conf, "
1170                                  "ret = %d", ret);
1171                         return ret;
1172                 }
1173         }
1174
1175         ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg);
1176         if (ret) {
1177                 hns3_err(hw, "failed to restore vlan rx conf, ret = %d", ret);
1178                 return ret;
1179         }
1180
1181         ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg);
1182         if (ret)
1183                 hns3_err(hw, "failed to restore vlan tx conf, ret = %d", ret);
1184
1185         return ret;
1186 }
1187
1188 static int
1189 hns3_dev_configure_vlan(struct rte_eth_dev *dev)
1190 {
1191         struct hns3_adapter *hns = dev->data->dev_private;
1192         struct rte_eth_dev_data *data = dev->data;
1193         struct rte_eth_txmode *txmode;
1194         struct hns3_hw *hw = &hns->hw;
1195         int mask;
1196         int ret;
1197
1198         txmode = &data->dev_conf.txmode;
1199         if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged)
1200                 hns3_warn(hw,
1201                           "hw_vlan_reject_tagged or hw_vlan_reject_untagged "
1202                           "configuration is not supported! Ignore these two "
1203                           "parameters: hw_vlan_reject_tagged(%u), "
1204                           "hw_vlan_reject_untagged(%u)",
1205                           txmode->hw_vlan_reject_tagged,
1206                           txmode->hw_vlan_reject_untagged);
1207
1208         /* Apply vlan offload setting */
1209         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK;
1210         ret = hns3_vlan_offload_set(dev, mask);
1211         if (ret) {
1212                 hns3_err(hw, "dev config rx vlan offload failed, ret = %d",
1213                          ret);
1214                 return ret;
1215         }
1216
1217         /*
1218          * If pvid config is not set in rte_eth_conf, driver needn't to set
1219          * VLAN pvid related configuration to hardware.
1220          */
1221         if (txmode->pvid == 0 && txmode->hw_vlan_insert_pvid == 0)
1222                 return 0;
1223
1224         /* Apply pvid setting */
1225         ret = hns3_vlan_pvid_set(dev, txmode->pvid,
1226                                  txmode->hw_vlan_insert_pvid);
1227         if (ret)
1228                 hns3_err(hw, "dev config vlan pvid(%u) failed, ret = %d",
1229                          txmode->pvid, ret);
1230
1231         return ret;
1232 }
1233
1234 static int
1235 hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min,
1236                 unsigned int tso_mss_max)
1237 {
1238         struct hns3_cfg_tso_status_cmd *req;
1239         struct hns3_cmd_desc desc;
1240         uint16_t tso_mss;
1241
1242         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false);
1243
1244         req = (struct hns3_cfg_tso_status_cmd *)desc.data;
1245
1246         tso_mss = 0;
1247         hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1248                        tso_mss_min);
1249         req->tso_mss_min = rte_cpu_to_le_16(tso_mss);
1250
1251         tso_mss = 0;
1252         hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1253                        tso_mss_max);
1254         req->tso_mss_max = rte_cpu_to_le_16(tso_mss);
1255
1256         return hns3_cmd_send(hw, &desc, 1);
1257 }
1258
1259 static int
1260 hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size,
1261                    uint16_t *allocated_size, bool is_alloc)
1262 {
1263         struct hns3_umv_spc_alc_cmd *req;
1264         struct hns3_cmd_desc desc;
1265         int ret;
1266
1267         req = (struct hns3_umv_spc_alc_cmd *)desc.data;
1268         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false);
1269         hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1);
1270         req->space_size = rte_cpu_to_le_32(space_size);
1271
1272         ret = hns3_cmd_send(hw, &desc, 1);
1273         if (ret) {
1274                 PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d",
1275                              is_alloc ? "allocate" : "free", ret);
1276                 return ret;
1277         }
1278
1279         if (is_alloc && allocated_size)
1280                 *allocated_size = rte_le_to_cpu_32(desc.data[1]);
1281
1282         return 0;
1283 }
1284
1285 static int
1286 hns3_init_umv_space(struct hns3_hw *hw)
1287 {
1288         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1289         struct hns3_pf *pf = &hns->pf;
1290         uint16_t allocated_size = 0;
1291         int ret;
1292
1293         ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size,
1294                                  true);
1295         if (ret)
1296                 return ret;
1297
1298         if (allocated_size < pf->wanted_umv_size)
1299                 PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u",
1300                              pf->wanted_umv_size, allocated_size);
1301
1302         pf->max_umv_size = (!!allocated_size) ? allocated_size :
1303                                                 pf->wanted_umv_size;
1304         pf->used_umv_size = 0;
1305         return 0;
1306 }
1307
1308 static int
1309 hns3_uninit_umv_space(struct hns3_hw *hw)
1310 {
1311         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1312         struct hns3_pf *pf = &hns->pf;
1313         int ret;
1314
1315         if (pf->max_umv_size == 0)
1316                 return 0;
1317
1318         ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false);
1319         if (ret)
1320                 return ret;
1321
1322         pf->max_umv_size = 0;
1323
1324         return 0;
1325 }
1326
1327 static bool
1328 hns3_is_umv_space_full(struct hns3_hw *hw)
1329 {
1330         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1331         struct hns3_pf *pf = &hns->pf;
1332         bool is_full;
1333
1334         is_full = (pf->used_umv_size >= pf->max_umv_size);
1335
1336         return is_full;
1337 }
1338
1339 static void
1340 hns3_update_umv_space(struct hns3_hw *hw, bool is_free)
1341 {
1342         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1343         struct hns3_pf *pf = &hns->pf;
1344
1345         if (is_free) {
1346                 if (pf->used_umv_size > 0)
1347                         pf->used_umv_size--;
1348         } else
1349                 pf->used_umv_size++;
1350 }
1351
1352 static void
1353 hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req,
1354                       const uint8_t *addr, bool is_mc)
1355 {
1356         const unsigned char *mac_addr = addr;
1357         uint32_t high_val = ((uint32_t)mac_addr[3] << 24) |
1358                             ((uint32_t)mac_addr[2] << 16) |
1359                             ((uint32_t)mac_addr[1] << 8) |
1360                             (uint32_t)mac_addr[0];
1361         uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4];
1362
1363         hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1364         if (is_mc) {
1365                 hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1366                 hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1);
1367                 hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1368         }
1369
1370         new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val);
1371         new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff);
1372 }
1373
1374 static int
1375 hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp,
1376                              uint8_t resp_code,
1377                              enum hns3_mac_vlan_tbl_opcode op)
1378 {
1379         if (cmdq_resp) {
1380                 hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u",
1381                          cmdq_resp);
1382                 return -EIO;
1383         }
1384
1385         if (op == HNS3_MAC_VLAN_ADD) {
1386                 if (resp_code == 0 || resp_code == 1) {
1387                         return 0;
1388                 } else if (resp_code == HNS3_ADD_UC_OVERFLOW) {
1389                         hns3_err(hw, "add mac addr failed for uc_overflow");
1390                         return -ENOSPC;
1391                 } else if (resp_code == HNS3_ADD_MC_OVERFLOW) {
1392                         hns3_err(hw, "add mac addr failed for mc_overflow");
1393                         return -ENOSPC;
1394                 }
1395
1396                 hns3_err(hw, "add mac addr failed for undefined, code=%u",
1397                          resp_code);
1398                 return -EIO;
1399         } else if (op == HNS3_MAC_VLAN_REMOVE) {
1400                 if (resp_code == 0) {
1401                         return 0;
1402                 } else if (resp_code == 1) {
1403                         hns3_dbg(hw, "remove mac addr failed for miss");
1404                         return -ENOENT;
1405                 }
1406
1407                 hns3_err(hw, "remove mac addr failed for undefined, code=%u",
1408                          resp_code);
1409                 return -EIO;
1410         } else if (op == HNS3_MAC_VLAN_LKUP) {
1411                 if (resp_code == 0) {
1412                         return 0;
1413                 } else if (resp_code == 1) {
1414                         hns3_dbg(hw, "lookup mac addr failed for miss");
1415                         return -ENOENT;
1416                 }
1417
1418                 hns3_err(hw, "lookup mac addr failed for undefined, code=%u",
1419                          resp_code);
1420                 return -EIO;
1421         }
1422
1423         hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u",
1424                  op);
1425
1426         return -EINVAL;
1427 }
1428
1429 static int
1430 hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw,
1431                          struct hns3_mac_vlan_tbl_entry_cmd *req,
1432                          struct hns3_cmd_desc *desc, bool is_mc)
1433 {
1434         uint8_t resp_code;
1435         uint16_t retval;
1436         int ret;
1437
1438         hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD, true);
1439         if (is_mc) {
1440                 desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1441                 memcpy(desc[0].data, req,
1442                            sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1443                 hns3_cmd_setup_basic_desc(&desc[1], HNS3_OPC_MAC_VLAN_ADD,
1444                                           true);
1445                 desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1446                 hns3_cmd_setup_basic_desc(&desc[2], HNS3_OPC_MAC_VLAN_ADD,
1447                                           true);
1448                 ret = hns3_cmd_send(hw, desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1449         } else {
1450                 memcpy(desc[0].data, req,
1451                        sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1452                 ret = hns3_cmd_send(hw, desc, 1);
1453         }
1454         if (ret) {
1455                 hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.",
1456                          ret);
1457                 return ret;
1458         }
1459         resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1460         retval = rte_le_to_cpu_16(desc[0].retval);
1461
1462         return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1463                                             HNS3_MAC_VLAN_LKUP);
1464 }
1465
1466 static int
1467 hns3_add_mac_vlan_tbl(struct hns3_hw *hw,
1468                       struct hns3_mac_vlan_tbl_entry_cmd *req,
1469                       struct hns3_cmd_desc *mc_desc)
1470 {
1471         uint8_t resp_code;
1472         uint16_t retval;
1473         int cfg_status;
1474         int ret;
1475
1476         if (mc_desc == NULL) {
1477                 struct hns3_cmd_desc desc;
1478
1479                 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ADD, false);
1480                 memcpy(desc.data, req,
1481                        sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1482                 ret = hns3_cmd_send(hw, &desc, 1);
1483                 resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1484                 retval = rte_le_to_cpu_16(desc.retval);
1485
1486                 cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1487                                                           HNS3_MAC_VLAN_ADD);
1488         } else {
1489                 hns3_cmd_reuse_desc(&mc_desc[0], false);
1490                 mc_desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1491                 hns3_cmd_reuse_desc(&mc_desc[1], false);
1492                 mc_desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1493                 hns3_cmd_reuse_desc(&mc_desc[2], false);
1494                 mc_desc[2].flag &= rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT);
1495                 memcpy(mc_desc[0].data, req,
1496                        sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1497                 mc_desc[0].retval = 0;
1498                 ret = hns3_cmd_send(hw, mc_desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1499                 resp_code = (rte_le_to_cpu_32(mc_desc[0].data[0]) >> 8) & 0xff;
1500                 retval = rte_le_to_cpu_16(mc_desc[0].retval);
1501
1502                 cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1503                                                           HNS3_MAC_VLAN_ADD);
1504         }
1505
1506         if (ret) {
1507                 hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret);
1508                 return ret;
1509         }
1510
1511         return cfg_status;
1512 }
1513
1514 static int
1515 hns3_remove_mac_vlan_tbl(struct hns3_hw *hw,
1516                          struct hns3_mac_vlan_tbl_entry_cmd *req)
1517 {
1518         struct hns3_cmd_desc desc;
1519         uint8_t resp_code;
1520         uint16_t retval;
1521         int ret;
1522
1523         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false);
1524
1525         memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1526
1527         ret = hns3_cmd_send(hw, &desc, 1);
1528         if (ret) {
1529                 hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret);
1530                 return ret;
1531         }
1532         resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1533         retval = rte_le_to_cpu_16(desc.retval);
1534
1535         return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1536                                             HNS3_MAC_VLAN_REMOVE);
1537 }
1538
1539 static int
1540 hns3_add_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1541 {
1542         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1543         struct hns3_mac_vlan_tbl_entry_cmd req;
1544         struct hns3_pf *pf = &hns->pf;
1545         struct hns3_cmd_desc desc[3];
1546         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1547         uint16_t egress_port = 0;
1548         uint8_t vf_id;
1549         int ret;
1550
1551         /* check if mac addr is valid */
1552         if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1553                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1554                                       mac_addr);
1555                 hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid",
1556                          mac_str);
1557                 return -EINVAL;
1558         }
1559
1560         memset(&req, 0, sizeof(req));
1561
1562         /*
1563          * In current version VF is not supported when PF is driven by DPDK
1564          * driver, just need to configure parameters for PF vport.
1565          */
1566         vf_id = HNS3_PF_FUNC_ID;
1567         hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M,
1568                        HNS3_MAC_EPORT_VFID_S, vf_id);
1569
1570         req.egress_port = rte_cpu_to_le_16(egress_port);
1571
1572         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1573
1574         /*
1575          * Lookup the mac address in the mac_vlan table, and add
1576          * it if the entry is inexistent. Repeated unicast entry
1577          * is not allowed in the mac vlan table.
1578          */
1579         ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, false);
1580         if (ret == -ENOENT) {
1581                 if (!hns3_is_umv_space_full(hw)) {
1582                         ret = hns3_add_mac_vlan_tbl(hw, &req, NULL);
1583                         if (!ret)
1584                                 hns3_update_umv_space(hw, false);
1585                         return ret;
1586                 }
1587
1588                 hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size);
1589
1590                 return -ENOSPC;
1591         }
1592
1593         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr);
1594
1595         /* check if we just hit the duplicate */
1596         if (ret == 0) {
1597                 hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str);
1598                 return 0;
1599         }
1600
1601         hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table",
1602                  mac_str);
1603
1604         return ret;
1605 }
1606
1607 static int
1608 hns3_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1609 {
1610         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1611         struct rte_ether_addr *addr;
1612         int ret;
1613         int i;
1614
1615         for (i = 0; i < hw->mc_addrs_num; i++) {
1616                 addr = &hw->mc_addrs[i];
1617                 /* Check if there are duplicate addresses */
1618                 if (rte_is_same_ether_addr(addr, mac_addr)) {
1619                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1620                                               addr);
1621                         hns3_err(hw, "failed to add mc mac addr, same addrs"
1622                                  "(%s) is added by the set_mc_mac_addr_list "
1623                                  "API", mac_str);
1624                         return -EINVAL;
1625                 }
1626         }
1627
1628         ret = hns3_add_mc_addr(hw, mac_addr);
1629         if (ret) {
1630                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1631                                       mac_addr);
1632                 hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
1633                          mac_str, ret);
1634         }
1635         return ret;
1636 }
1637
1638 static int
1639 hns3_remove_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1640 {
1641         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1642         int ret;
1643
1644         ret = hns3_remove_mc_addr(hw, mac_addr);
1645         if (ret) {
1646                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1647                                       mac_addr);
1648                 hns3_err(hw, "failed to remove mc mac addr(%s), ret = %d",
1649                          mac_str, ret);
1650         }
1651         return ret;
1652 }
1653
1654 static int
1655 hns3_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
1656                   uint32_t idx, __rte_unused uint32_t pool)
1657 {
1658         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1659         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1660         int ret;
1661
1662         rte_spinlock_lock(&hw->lock);
1663
1664         /*
1665          * In hns3 network engine adding UC and MC mac address with different
1666          * commands with firmware. We need to determine whether the input
1667          * address is a UC or a MC address to call different commands.
1668          * By the way, it is recommended calling the API function named
1669          * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
1670          * using the rte_eth_dev_mac_addr_add API function to set MC mac address
1671          * may affect the specifications of UC mac addresses.
1672          */
1673         if (rte_is_multicast_ether_addr(mac_addr))
1674                 ret = hns3_add_mc_addr_common(hw, mac_addr);
1675         else
1676                 ret = hns3_add_uc_addr_common(hw, mac_addr);
1677
1678         if (ret) {
1679                 rte_spinlock_unlock(&hw->lock);
1680                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1681                                       mac_addr);
1682                 hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
1683                          ret);
1684                 return ret;
1685         }
1686
1687         if (idx == 0)
1688                 hw->mac.default_addr_setted = true;
1689         rte_spinlock_unlock(&hw->lock);
1690
1691         return ret;
1692 }
1693
1694 static int
1695 hns3_remove_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1696 {
1697         struct hns3_mac_vlan_tbl_entry_cmd req;
1698         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1699         int ret;
1700
1701         /* check if mac addr is valid */
1702         if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1703                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1704                                       mac_addr);
1705                 hns3_err(hw, "remove unicast mac addr err! addr(%s) invalid",
1706                          mac_str);
1707                 return -EINVAL;
1708         }
1709
1710         memset(&req, 0, sizeof(req));
1711         hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1712         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1713         ret = hns3_remove_mac_vlan_tbl(hw, &req);
1714         if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */
1715                 return 0;
1716         else if (ret == 0)
1717                 hns3_update_umv_space(hw, true);
1718
1719         return ret;
1720 }
1721
1722 static void
1723 hns3_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
1724 {
1725         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1726         /* index will be checked by upper level rte interface */
1727         struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
1728         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1729         int ret;
1730
1731         rte_spinlock_lock(&hw->lock);
1732
1733         if (rte_is_multicast_ether_addr(mac_addr))
1734                 ret = hns3_remove_mc_addr_common(hw, mac_addr);
1735         else
1736                 ret = hns3_remove_uc_addr_common(hw, mac_addr);
1737         rte_spinlock_unlock(&hw->lock);
1738         if (ret) {
1739                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1740                                       mac_addr);
1741                 hns3_err(hw, "failed to remove mac addr(%s), ret = %d", mac_str,
1742                          ret);
1743         }
1744 }
1745
1746 static int
1747 hns3_set_default_mac_addr(struct rte_eth_dev *dev,
1748                           struct rte_ether_addr *mac_addr)
1749 {
1750         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1751         struct rte_ether_addr *oaddr;
1752         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1753         bool default_addr_setted;
1754         bool rm_succes = false;
1755         int ret, ret_val;
1756
1757         /*
1758          * It has been guaranteed that input parameter named mac_addr is valid
1759          * address in the rte layer of DPDK framework.
1760          */
1761         oaddr = (struct rte_ether_addr *)hw->mac.mac_addr;
1762         default_addr_setted = hw->mac.default_addr_setted;
1763         if (default_addr_setted && !!rte_is_same_ether_addr(mac_addr, oaddr))
1764                 return 0;
1765
1766         rte_spinlock_lock(&hw->lock);
1767         if (default_addr_setted) {
1768                 ret = hns3_remove_uc_addr_common(hw, oaddr);
1769                 if (ret) {
1770                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1771                                               oaddr);
1772                         hns3_warn(hw, "Remove old uc mac address(%s) fail: %d",
1773                                   mac_str, ret);
1774                         rm_succes = false;
1775                 } else
1776                         rm_succes = true;
1777         }
1778
1779         ret = hns3_add_uc_addr_common(hw, mac_addr);
1780         if (ret) {
1781                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1782                                       mac_addr);
1783                 hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret);
1784                 goto err_add_uc_addr;
1785         }
1786
1787         ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes);
1788         if (ret) {
1789                 hns3_err(hw, "Failed to configure mac pause address: %d", ret);
1790                 goto err_pause_addr_cfg;
1791         }
1792
1793         rte_ether_addr_copy(mac_addr,
1794                             (struct rte_ether_addr *)hw->mac.mac_addr);
1795         hw->mac.default_addr_setted = true;
1796         rte_spinlock_unlock(&hw->lock);
1797
1798         return 0;
1799
1800 err_pause_addr_cfg:
1801         ret_val = hns3_remove_uc_addr_common(hw, mac_addr);
1802         if (ret_val) {
1803                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1804                                       mac_addr);
1805                 hns3_warn(hw,
1806                           "Failed to roll back to del setted mac addr(%s): %d",
1807                           mac_str, ret_val);
1808         }
1809
1810 err_add_uc_addr:
1811         if (rm_succes) {
1812                 ret_val = hns3_add_uc_addr_common(hw, oaddr);
1813                 if (ret_val) {
1814                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1815                                               oaddr);
1816                         hns3_warn(hw,
1817                                   "Failed to restore old uc mac addr(%s): %d",
1818                                   mac_str, ret_val);
1819                         hw->mac.default_addr_setted = false;
1820                 }
1821         }
1822         rte_spinlock_unlock(&hw->lock);
1823
1824         return ret;
1825 }
1826
1827 static int
1828 hns3_configure_all_mac_addr(struct hns3_adapter *hns, bool del)
1829 {
1830         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1831         struct hns3_hw *hw = &hns->hw;
1832         struct rte_ether_addr *addr;
1833         int err = 0;
1834         int ret;
1835         int i;
1836
1837         for (i = 0; i < HNS3_UC_MACADDR_NUM; i++) {
1838                 addr = &hw->data->mac_addrs[i];
1839                 if (rte_is_zero_ether_addr(addr))
1840                         continue;
1841                 if (rte_is_multicast_ether_addr(addr))
1842                         ret = del ? hns3_remove_mc_addr(hw, addr) :
1843                               hns3_add_mc_addr(hw, addr);
1844                 else
1845                         ret = del ? hns3_remove_uc_addr_common(hw, addr) :
1846                               hns3_add_uc_addr_common(hw, addr);
1847
1848                 if (ret) {
1849                         err = ret;
1850                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1851                                               addr);
1852                         hns3_err(hw, "failed to %s mac addr(%s) index:%d "
1853                                  "ret = %d.", del ? "remove" : "restore",
1854                                  mac_str, i, ret);
1855                 }
1856         }
1857         return err;
1858 }
1859
1860 static void
1861 hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr)
1862 {
1863 #define HNS3_VF_NUM_IN_FIRST_DESC 192
1864         uint8_t word_num;
1865         uint8_t bit_num;
1866
1867         if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) {
1868                 word_num = vfid / 32;
1869                 bit_num = vfid % 32;
1870                 if (clr)
1871                         desc[1].data[word_num] &=
1872                             rte_cpu_to_le_32(~(1UL << bit_num));
1873                 else
1874                         desc[1].data[word_num] |=
1875                             rte_cpu_to_le_32(1UL << bit_num);
1876         } else {
1877                 word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32;
1878                 bit_num = vfid % 32;
1879                 if (clr)
1880                         desc[2].data[word_num] &=
1881                             rte_cpu_to_le_32(~(1UL << bit_num));
1882                 else
1883                         desc[2].data[word_num] |=
1884                             rte_cpu_to_le_32(1UL << bit_num);
1885         }
1886 }
1887
1888 static int
1889 hns3_add_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1890 {
1891         struct hns3_mac_vlan_tbl_entry_cmd req;
1892         struct hns3_cmd_desc desc[3];
1893         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1894         uint8_t vf_id;
1895         int ret;
1896
1897         /* Check if mac addr is valid */
1898         if (!rte_is_multicast_ether_addr(mac_addr)) {
1899                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1900                                       mac_addr);
1901                 hns3_err(hw, "failed to add mc mac addr, addr(%s) invalid",
1902                          mac_str);
1903                 return -EINVAL;
1904         }
1905
1906         memset(&req, 0, sizeof(req));
1907         hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1908         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1909         ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1910         if (ret) {
1911                 /* This mac addr do not exist, add new entry for it */
1912                 memset(desc[0].data, 0, sizeof(desc[0].data));
1913                 memset(desc[1].data, 0, sizeof(desc[0].data));
1914                 memset(desc[2].data, 0, sizeof(desc[0].data));
1915         }
1916
1917         /*
1918          * In current version VF is not supported when PF is driven by DPDK
1919          * driver, just need to configure parameters for PF vport.
1920          */
1921         vf_id = HNS3_PF_FUNC_ID;
1922         hns3_update_desc_vfid(desc, vf_id, false);
1923         ret = hns3_add_mac_vlan_tbl(hw, &req, desc);
1924         if (ret) {
1925                 if (ret == -ENOSPC)
1926                         hns3_err(hw, "mc mac vlan table is full");
1927                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1928                                       mac_addr);
1929                 hns3_err(hw, "failed to add mc mac addr(%s): %d", mac_str, ret);
1930         }
1931
1932         return ret;
1933 }
1934
1935 static int
1936 hns3_remove_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1937 {
1938         struct hns3_mac_vlan_tbl_entry_cmd req;
1939         struct hns3_cmd_desc desc[3];
1940         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1941         uint8_t vf_id;
1942         int ret;
1943
1944         /* Check if mac addr is valid */
1945         if (!rte_is_multicast_ether_addr(mac_addr)) {
1946                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1947                                       mac_addr);
1948                 hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid",
1949                          mac_str);
1950                 return -EINVAL;
1951         }
1952
1953         memset(&req, 0, sizeof(req));
1954         hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1955         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1956         ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1957         if (ret == 0) {
1958                 /*
1959                  * This mac addr exist, remove this handle's VFID for it.
1960                  * In current version VF is not supported when PF is driven by
1961                  * DPDK driver, just need to configure parameters for PF vport.
1962                  */
1963                 vf_id = HNS3_PF_FUNC_ID;
1964                 hns3_update_desc_vfid(desc, vf_id, true);
1965
1966                 /* All the vfid is zero, so need to delete this entry */
1967                 ret = hns3_remove_mac_vlan_tbl(hw, &req);
1968         } else if (ret == -ENOENT) {
1969                 /* This mac addr doesn't exist. */
1970                 return 0;
1971         }
1972
1973         if (ret) {
1974                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1975                                       mac_addr);
1976                 hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret);
1977         }
1978
1979         return ret;
1980 }
1981
1982 static int
1983 hns3_set_mc_addr_chk_param(struct hns3_hw *hw,
1984                            struct rte_ether_addr *mc_addr_set,
1985                            uint32_t nb_mc_addr)
1986 {
1987         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1988         struct rte_ether_addr *addr;
1989         uint32_t i;
1990         uint32_t j;
1991
1992         if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
1993                 hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%u) "
1994                          "invalid. valid range: 0~%d",
1995                          nb_mc_addr, HNS3_MC_MACADDR_NUM);
1996                 return -EINVAL;
1997         }
1998
1999         /* Check if input mac addresses are valid */
2000         for (i = 0; i < nb_mc_addr; i++) {
2001                 addr = &mc_addr_set[i];
2002                 if (!rte_is_multicast_ether_addr(addr)) {
2003                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2004                                               addr);
2005                         hns3_err(hw,
2006                                  "failed to set mc mac addr, addr(%s) invalid.",
2007                                  mac_str);
2008                         return -EINVAL;
2009                 }
2010
2011                 /* Check if there are duplicate addresses */
2012                 for (j = i + 1; j < nb_mc_addr; j++) {
2013                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
2014                                 hns3_ether_format_addr(mac_str,
2015                                                       RTE_ETHER_ADDR_FMT_SIZE,
2016                                                       addr);
2017                                 hns3_err(hw, "failed to set mc mac addr, "
2018                                          "addrs invalid. two same addrs(%s).",
2019                                          mac_str);
2020                                 return -EINVAL;
2021                         }
2022                 }
2023
2024                 /*
2025                  * Check if there are duplicate addresses between mac_addrs
2026                  * and mc_addr_set
2027                  */
2028                 for (j = 0; j < HNS3_UC_MACADDR_NUM; j++) {
2029                         if (rte_is_same_ether_addr(addr,
2030                                                    &hw->data->mac_addrs[j])) {
2031                                 hns3_ether_format_addr(mac_str,
2032                                                       RTE_ETHER_ADDR_FMT_SIZE,
2033                                                       addr);
2034                                 hns3_err(hw, "failed to set mc mac addr, "
2035                                          "addrs invalid. addrs(%s) has already "
2036                                          "configured in mac_addr add API",
2037                                          mac_str);
2038                                 return -EINVAL;
2039                         }
2040                 }
2041         }
2042
2043         return 0;
2044 }
2045
2046 static void
2047 hns3_set_mc_addr_calc_addr(struct hns3_hw *hw,
2048                            struct rte_ether_addr *mc_addr_set,
2049                            int mc_addr_num,
2050                            struct rte_ether_addr *reserved_addr_list,
2051                            int *reserved_addr_num,
2052                            struct rte_ether_addr *add_addr_list,
2053                            int *add_addr_num,
2054                            struct rte_ether_addr *rm_addr_list,
2055                            int *rm_addr_num)
2056 {
2057         struct rte_ether_addr *addr;
2058         int current_addr_num;
2059         int reserved_num = 0;
2060         int add_num = 0;
2061         int rm_num = 0;
2062         int num;
2063         int i;
2064         int j;
2065         bool same_addr;
2066
2067         /* Calculate the mc mac address list that should be removed */
2068         current_addr_num = hw->mc_addrs_num;
2069         for (i = 0; i < current_addr_num; i++) {
2070                 addr = &hw->mc_addrs[i];
2071                 same_addr = false;
2072                 for (j = 0; j < mc_addr_num; j++) {
2073                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
2074                                 same_addr = true;
2075                                 break;
2076                         }
2077                 }
2078
2079                 if (!same_addr) {
2080                         rte_ether_addr_copy(addr, &rm_addr_list[rm_num]);
2081                         rm_num++;
2082                 } else {
2083                         rte_ether_addr_copy(addr,
2084                                             &reserved_addr_list[reserved_num]);
2085                         reserved_num++;
2086                 }
2087         }
2088
2089         /* Calculate the mc mac address list that should be added */
2090         for (i = 0; i < mc_addr_num; i++) {
2091                 addr = &mc_addr_set[i];
2092                 same_addr = false;
2093                 for (j = 0; j < current_addr_num; j++) {
2094                         if (rte_is_same_ether_addr(addr, &hw->mc_addrs[j])) {
2095                                 same_addr = true;
2096                                 break;
2097                         }
2098                 }
2099
2100                 if (!same_addr) {
2101                         rte_ether_addr_copy(addr, &add_addr_list[add_num]);
2102                         add_num++;
2103                 }
2104         }
2105
2106         /* Reorder the mc mac address list maintained by driver */
2107         for (i = 0; i < reserved_num; i++)
2108                 rte_ether_addr_copy(&reserved_addr_list[i], &hw->mc_addrs[i]);
2109
2110         for (i = 0; i < rm_num; i++) {
2111                 num = reserved_num + i;
2112                 rte_ether_addr_copy(&rm_addr_list[i], &hw->mc_addrs[num]);
2113         }
2114
2115         *reserved_addr_num = reserved_num;
2116         *add_addr_num = add_num;
2117         *rm_addr_num = rm_num;
2118 }
2119
2120 static int
2121 hns3_set_mc_mac_addr_list(struct rte_eth_dev *dev,
2122                           struct rte_ether_addr *mc_addr_set,
2123                           uint32_t nb_mc_addr)
2124 {
2125         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2126         struct rte_ether_addr reserved_addr_list[HNS3_MC_MACADDR_NUM];
2127         struct rte_ether_addr add_addr_list[HNS3_MC_MACADDR_NUM];
2128         struct rte_ether_addr rm_addr_list[HNS3_MC_MACADDR_NUM];
2129         struct rte_ether_addr *addr;
2130         int reserved_addr_num;
2131         int add_addr_num;
2132         int rm_addr_num;
2133         int mc_addr_num;
2134         int num;
2135         int ret;
2136         int i;
2137
2138         /* Check if input parameters are valid */
2139         ret = hns3_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
2140         if (ret)
2141                 return ret;
2142
2143         rte_spinlock_lock(&hw->lock);
2144
2145         /*
2146          * Calculate the mc mac address lists those should be removed and be
2147          * added, Reorder the mc mac address list maintained by driver.
2148          */
2149         mc_addr_num = (int)nb_mc_addr;
2150         hns3_set_mc_addr_calc_addr(hw, mc_addr_set, mc_addr_num,
2151                                    reserved_addr_list, &reserved_addr_num,
2152                                    add_addr_list, &add_addr_num,
2153                                    rm_addr_list, &rm_addr_num);
2154
2155         /* Remove mc mac addresses */
2156         for (i = 0; i < rm_addr_num; i++) {
2157                 num = rm_addr_num - i - 1;
2158                 addr = &rm_addr_list[num];
2159                 ret = hns3_remove_mc_addr(hw, addr);
2160                 if (ret) {
2161                         rte_spinlock_unlock(&hw->lock);
2162                         return ret;
2163                 }
2164                 hw->mc_addrs_num--;
2165         }
2166
2167         /* Add mc mac addresses */
2168         for (i = 0; i < add_addr_num; i++) {
2169                 addr = &add_addr_list[i];
2170                 ret = hns3_add_mc_addr(hw, addr);
2171                 if (ret) {
2172                         rte_spinlock_unlock(&hw->lock);
2173                         return ret;
2174                 }
2175
2176                 num = reserved_addr_num + i;
2177                 rte_ether_addr_copy(addr, &hw->mc_addrs[num]);
2178                 hw->mc_addrs_num++;
2179         }
2180         rte_spinlock_unlock(&hw->lock);
2181
2182         return 0;
2183 }
2184
2185 static int
2186 hns3_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
2187 {
2188         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2189         struct hns3_hw *hw = &hns->hw;
2190         struct rte_ether_addr *addr;
2191         int err = 0;
2192         int ret;
2193         int i;
2194
2195         for (i = 0; i < hw->mc_addrs_num; i++) {
2196                 addr = &hw->mc_addrs[i];
2197                 if (!rte_is_multicast_ether_addr(addr))
2198                         continue;
2199                 if (del)
2200                         ret = hns3_remove_mc_addr(hw, addr);
2201                 else
2202                         ret = hns3_add_mc_addr(hw, addr);
2203                 if (ret) {
2204                         err = ret;
2205                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2206                                               addr);
2207                         hns3_dbg(hw, "%s mc mac addr: %s failed for pf: ret = %d",
2208                                  del ? "Remove" : "Restore", mac_str, ret);
2209                 }
2210         }
2211         return err;
2212 }
2213
2214 static int
2215 hns3_check_mq_mode(struct rte_eth_dev *dev)
2216 {
2217         enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
2218         enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
2219         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2220         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2221         struct rte_eth_dcb_rx_conf *dcb_rx_conf;
2222         struct rte_eth_dcb_tx_conf *dcb_tx_conf;
2223         uint8_t num_tc;
2224         int max_tc = 0;
2225         int i;
2226
2227         dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
2228         dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
2229
2230         if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB_RSS) {
2231                 hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB_RSS is not supported. "
2232                          "rx_mq_mode = %d", rx_mq_mode);
2233                 return -EINVAL;
2234         }
2235
2236         if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB ||
2237             tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
2238                 hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB and ETH_MQ_TX_VMDQ_DCB "
2239                          "is not supported. rx_mq_mode = %d, tx_mq_mode = %d",
2240                          rx_mq_mode, tx_mq_mode);
2241                 return -EINVAL;
2242         }
2243
2244         if (rx_mq_mode == ETH_MQ_RX_DCB_RSS) {
2245                 if (dcb_rx_conf->nb_tcs > pf->tc_max) {
2246                         hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.",
2247                                  dcb_rx_conf->nb_tcs, pf->tc_max);
2248                         return -EINVAL;
2249                 }
2250
2251                 if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS ||
2252                       dcb_rx_conf->nb_tcs == HNS3_8_TCS)) {
2253                         hns3_err(hw, "on ETH_MQ_RX_DCB_RSS mode, "
2254                                  "nb_tcs(%d) != %d or %d in rx direction.",
2255                                  dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS);
2256                         return -EINVAL;
2257                 }
2258
2259                 if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) {
2260                         hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)",
2261                                  dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs);
2262                         return -EINVAL;
2263                 }
2264
2265                 for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
2266                         if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) {
2267                                 hns3_err(hw, "dcb_tc[%d] = %u in rx direction, "
2268                                          "is not equal to one in tx direction.",
2269                                          i, dcb_rx_conf->dcb_tc[i]);
2270                                 return -EINVAL;
2271                         }
2272                         if (dcb_rx_conf->dcb_tc[i] > max_tc)
2273                                 max_tc = dcb_rx_conf->dcb_tc[i];
2274                 }
2275
2276                 num_tc = max_tc + 1;
2277                 if (num_tc > dcb_rx_conf->nb_tcs) {
2278                         hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)",
2279                                  num_tc, dcb_rx_conf->nb_tcs);
2280                         return -EINVAL;
2281                 }
2282         }
2283
2284         return 0;
2285 }
2286
2287 static int
2288 hns3_check_dcb_cfg(struct rte_eth_dev *dev)
2289 {
2290         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2291
2292         if (!hns3_dev_dcb_supported(hw)) {
2293                 hns3_err(hw, "this port does not support dcb configurations.");
2294                 return -EOPNOTSUPP;
2295         }
2296
2297         if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) {
2298                 hns3_err(hw, "MAC pause enabled, cannot config dcb info.");
2299                 return -EOPNOTSUPP;
2300         }
2301
2302         /* Check multiple queue mode */
2303         return hns3_check_mq_mode(dev);
2304 }
2305
2306 static int
2307 hns3_bind_ring_with_vector(struct hns3_hw *hw, uint16_t vector_id, bool en,
2308                            enum hns3_ring_type queue_type, uint16_t queue_id)
2309 {
2310         struct hns3_cmd_desc desc;
2311         struct hns3_ctrl_vector_chain_cmd *req =
2312                 (struct hns3_ctrl_vector_chain_cmd *)desc.data;
2313         enum hns3_cmd_status status;
2314         enum hns3_opcode_type op;
2315         uint16_t tqp_type_and_id = 0;
2316         uint16_t type;
2317         uint16_t gl;
2318
2319         op = en ? HNS3_OPC_ADD_RING_TO_VECTOR : HNS3_OPC_DEL_RING_TO_VECTOR;
2320         hns3_cmd_setup_basic_desc(&desc, op, false);
2321         req->int_vector_id = hns3_get_field(vector_id, HNS3_TQP_INT_ID_L_M,
2322                                               HNS3_TQP_INT_ID_L_S);
2323         req->int_vector_id_h = hns3_get_field(vector_id, HNS3_TQP_INT_ID_H_M,
2324                                               HNS3_TQP_INT_ID_H_S);
2325
2326         if (queue_type == HNS3_RING_TYPE_RX)
2327                 gl = HNS3_RING_GL_RX;
2328         else
2329                 gl = HNS3_RING_GL_TX;
2330
2331         type = queue_type;
2332
2333         hns3_set_field(tqp_type_and_id, HNS3_INT_TYPE_M, HNS3_INT_TYPE_S,
2334                        type);
2335         hns3_set_field(tqp_type_and_id, HNS3_TQP_ID_M, HNS3_TQP_ID_S, queue_id);
2336         hns3_set_field(tqp_type_and_id, HNS3_INT_GL_IDX_M, HNS3_INT_GL_IDX_S,
2337                        gl);
2338         req->tqp_type_and_id[0] = rte_cpu_to_le_16(tqp_type_and_id);
2339         req->int_cause_num = 1;
2340         status = hns3_cmd_send(hw, &desc, 1);
2341         if (status) {
2342                 hns3_err(hw, "%s TQP %u fail, vector_id is %u, status is %d.",
2343                          en ? "Map" : "Unmap", queue_id, vector_id, status);
2344                 return status;
2345         }
2346
2347         return 0;
2348 }
2349
2350 static int
2351 hns3_init_ring_with_vector(struct hns3_hw *hw)
2352 {
2353         uint16_t vec;
2354         int ret;
2355         int i;
2356
2357         /*
2358          * In hns3 network engine, vector 0 is always the misc interrupt of this
2359          * function, vector 1~N can be used respectively for the queues of the
2360          * function. Tx and Rx queues with the same number share the interrupt
2361          * vector. In the initialization clearing the all hardware mapping
2362          * relationship configurations between queues and interrupt vectors is
2363          * needed, so some error caused by the residual configurations, such as
2364          * the unexpected Tx interrupt, can be avoid.
2365          */
2366         vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
2367         if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
2368                 vec = vec - 1; /* the last interrupt is reserved */
2369         hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
2370         for (i = 0; i < hw->intr_tqps_num; i++) {
2371                 /*
2372                  * Set gap limiter/rate limiter/quanity limiter algorithm
2373                  * configuration for interrupt coalesce of queue's interrupt.
2374                  */
2375                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
2376                                        HNS3_TQP_INTR_GL_DEFAULT);
2377                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
2378                                        HNS3_TQP_INTR_GL_DEFAULT);
2379                 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
2380                 /*
2381                  * QL(quantity limiter) is not used currently, just set 0 to
2382                  * close it.
2383                  */
2384                 hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
2385
2386                 ret = hns3_bind_ring_with_vector(hw, vec, false,
2387                                                  HNS3_RING_TYPE_TX, i);
2388                 if (ret) {
2389                         PMD_INIT_LOG(ERR, "PF fail to unbind TX ring(%d) with "
2390                                           "vector: %u, ret=%d", i, vec, ret);
2391                         return ret;
2392                 }
2393
2394                 ret = hns3_bind_ring_with_vector(hw, vec, false,
2395                                                  HNS3_RING_TYPE_RX, i);
2396                 if (ret) {
2397                         PMD_INIT_LOG(ERR, "PF fail to unbind RX ring(%d) with "
2398                                           "vector: %u, ret=%d", i, vec, ret);
2399                         return ret;
2400                 }
2401         }
2402
2403         return 0;
2404 }
2405
2406 static int
2407 hns3_refresh_mtu(struct rte_eth_dev *dev, struct rte_eth_conf *conf)
2408 {
2409         struct hns3_adapter *hns = dev->data->dev_private;
2410         struct hns3_hw *hw = &hns->hw;
2411         uint32_t max_rx_pkt_len;
2412         uint16_t mtu;
2413         int ret;
2414
2415         if (!(conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME))
2416                 return 0;
2417
2418         /*
2419          * If jumbo frames are enabled, MTU needs to be refreshed
2420          * according to the maximum RX packet length.
2421          */
2422         max_rx_pkt_len = conf->rxmode.max_rx_pkt_len;
2423         if (max_rx_pkt_len > HNS3_MAX_FRAME_LEN ||
2424             max_rx_pkt_len <= HNS3_DEFAULT_FRAME_LEN) {
2425                 hns3_err(hw, "maximum Rx packet length must be greater than %u "
2426                          "and no more than %u when jumbo frame enabled.",
2427                          (uint16_t)HNS3_DEFAULT_FRAME_LEN,
2428                          (uint16_t)HNS3_MAX_FRAME_LEN);
2429                 return -EINVAL;
2430         }
2431
2432         mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(max_rx_pkt_len);
2433         ret = hns3_dev_mtu_set(dev, mtu);
2434         if (ret)
2435                 return ret;
2436         dev->data->mtu = mtu;
2437
2438         return 0;
2439 }
2440
2441 static int
2442 hns3_dev_configure(struct rte_eth_dev *dev)
2443 {
2444         struct hns3_adapter *hns = dev->data->dev_private;
2445         struct rte_eth_conf *conf = &dev->data->dev_conf;
2446         enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
2447         struct hns3_hw *hw = &hns->hw;
2448         uint16_t nb_rx_q = dev->data->nb_rx_queues;
2449         uint16_t nb_tx_q = dev->data->nb_tx_queues;
2450         struct rte_eth_rss_conf rss_conf;
2451         bool gro_en;
2452         int ret;
2453
2454         hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
2455
2456         /*
2457          * Some versions of hardware network engine does not support
2458          * individually enable/disable/reset the Tx or Rx queue. These devices
2459          * must enable/disable/reset Tx and Rx queues at the same time. When the
2460          * numbers of Tx queues allocated by upper applications are not equal to
2461          * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
2462          * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
2463          * work as usual. But these fake queues are imperceptible, and can not
2464          * be used by upper applications.
2465          */
2466         if (!hns3_dev_indep_txrx_supported(hw)) {
2467                 ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
2468                 if (ret) {
2469                         hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.",
2470                                  ret);
2471                         return ret;
2472                 }
2473         }
2474
2475         hw->adapter_state = HNS3_NIC_CONFIGURING;
2476         if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
2477                 hns3_err(hw, "setting link speed/duplex not supported");
2478                 ret = -EINVAL;
2479                 goto cfg_err;
2480         }
2481
2482         if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG) {
2483                 ret = hns3_check_dcb_cfg(dev);
2484                 if (ret)
2485                         goto cfg_err;
2486         }
2487
2488         /* When RSS is not configured, redirect the packet queue 0 */
2489         if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
2490                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
2491                 rss_conf = conf->rx_adv_conf.rss_conf;
2492                 hw->rss_dis_flag = false;
2493                 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
2494                 if (ret)
2495                         goto cfg_err;
2496         }
2497
2498         ret = hns3_refresh_mtu(dev, conf);
2499         if (ret)
2500                 goto cfg_err;
2501
2502         ret = hns3_mbuf_dyn_rx_timestamp_register(dev, conf);
2503         if (ret)
2504                 goto cfg_err;
2505
2506         ret = hns3_dev_configure_vlan(dev);
2507         if (ret)
2508                 goto cfg_err;
2509
2510         /* config hardware GRO */
2511         gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
2512         ret = hns3_config_gro(hw, gro_en);
2513         if (ret)
2514                 goto cfg_err;
2515
2516         hns->rx_simple_allowed = true;
2517         hns->rx_vec_allowed = true;
2518         hns->tx_simple_allowed = true;
2519         hns->tx_vec_allowed = true;
2520
2521         hns3_init_rx_ptype_tble(dev);
2522         hw->adapter_state = HNS3_NIC_CONFIGURED;
2523
2524         return 0;
2525
2526 cfg_err:
2527         (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
2528         hw->adapter_state = HNS3_NIC_INITIALIZED;
2529
2530         return ret;
2531 }
2532
2533 static int
2534 hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps)
2535 {
2536         struct hns3_config_max_frm_size_cmd *req;
2537         struct hns3_cmd_desc desc;
2538
2539         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false);
2540
2541         req = (struct hns3_config_max_frm_size_cmd *)desc.data;
2542         req->max_frm_size = rte_cpu_to_le_16(new_mps);
2543         req->min_frm_size = RTE_ETHER_MIN_LEN;
2544
2545         return hns3_cmd_send(hw, &desc, 1);
2546 }
2547
2548 static int
2549 hns3_config_mtu(struct hns3_hw *hw, uint16_t mps)
2550 {
2551         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2552         uint16_t original_mps = hns->pf.mps;
2553         int err;
2554         int ret;
2555
2556         ret = hns3_set_mac_mtu(hw, mps);
2557         if (ret) {
2558                 hns3_err(hw, "failed to set mtu, ret = %d", ret);
2559                 return ret;
2560         }
2561
2562         hns->pf.mps = mps;
2563         ret = hns3_buffer_alloc(hw);
2564         if (ret) {
2565                 hns3_err(hw, "failed to allocate buffer, ret = %d", ret);
2566                 goto rollback;
2567         }
2568
2569         return 0;
2570
2571 rollback:
2572         err = hns3_set_mac_mtu(hw, original_mps);
2573         if (err) {
2574                 hns3_err(hw, "fail to rollback MTU, err = %d", err);
2575                 return ret;
2576         }
2577         hns->pf.mps = original_mps;
2578
2579         return ret;
2580 }
2581
2582 static int
2583 hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
2584 {
2585         struct hns3_adapter *hns = dev->data->dev_private;
2586         uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
2587         struct hns3_hw *hw = &hns->hw;
2588         bool is_jumbo_frame;
2589         int ret;
2590
2591         if (dev->data->dev_started) {
2592                 hns3_err(hw, "Failed to set mtu, port %u must be stopped "
2593                          "before configuration", dev->data->port_id);
2594                 return -EBUSY;
2595         }
2596
2597         rte_spinlock_lock(&hw->lock);
2598         is_jumbo_frame = frame_size > HNS3_DEFAULT_FRAME_LEN ? true : false;
2599         frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN);
2600
2601         /*
2602          * Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely
2603          * assign to "uint16_t" type variable.
2604          */
2605         ret = hns3_config_mtu(hw, (uint16_t)frame_size);
2606         if (ret) {
2607                 rte_spinlock_unlock(&hw->lock);
2608                 hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d",
2609                          dev->data->port_id, mtu, ret);
2610                 return ret;
2611         }
2612
2613         if (is_jumbo_frame)
2614                 dev->data->dev_conf.rxmode.offloads |=
2615                                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
2616         else
2617                 dev->data->dev_conf.rxmode.offloads &=
2618                                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
2619         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
2620         rte_spinlock_unlock(&hw->lock);
2621
2622         return 0;
2623 }
2624
2625 int
2626 hns3_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
2627 {
2628         struct hns3_adapter *hns = eth_dev->data->dev_private;
2629         struct hns3_hw *hw = &hns->hw;
2630         uint16_t queue_num = hw->tqps_num;
2631
2632         /*
2633          * In interrupt mode, 'max_rx_queues' is set based on the number of
2634          * MSI-X interrupt resources of the hardware.
2635          */
2636         if (hw->data->dev_conf.intr_conf.rxq == 1)
2637                 queue_num = hw->intr_tqps_num;
2638
2639         info->max_rx_queues = queue_num;
2640         info->max_tx_queues = hw->tqps_num;
2641         info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
2642         info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
2643         info->max_mac_addrs = HNS3_UC_MACADDR_NUM;
2644         info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
2645         info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
2646         info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
2647                                  DEV_RX_OFFLOAD_TCP_CKSUM |
2648                                  DEV_RX_OFFLOAD_UDP_CKSUM |
2649                                  DEV_RX_OFFLOAD_SCTP_CKSUM |
2650                                  DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
2651                                  DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
2652                                  DEV_RX_OFFLOAD_KEEP_CRC |
2653                                  DEV_RX_OFFLOAD_SCATTER |
2654                                  DEV_RX_OFFLOAD_VLAN_STRIP |
2655                                  DEV_RX_OFFLOAD_VLAN_FILTER |
2656                                  DEV_RX_OFFLOAD_JUMBO_FRAME |
2657                                  DEV_RX_OFFLOAD_RSS_HASH |
2658                                  DEV_RX_OFFLOAD_TCP_LRO);
2659         info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
2660                                  DEV_TX_OFFLOAD_IPV4_CKSUM |
2661                                  DEV_TX_OFFLOAD_TCP_CKSUM |
2662                                  DEV_TX_OFFLOAD_UDP_CKSUM |
2663                                  DEV_TX_OFFLOAD_SCTP_CKSUM |
2664                                  DEV_TX_OFFLOAD_MULTI_SEGS |
2665                                  DEV_TX_OFFLOAD_TCP_TSO |
2666                                  DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
2667                                  DEV_TX_OFFLOAD_GRE_TNL_TSO |
2668                                  DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
2669                                  DEV_TX_OFFLOAD_MBUF_FAST_FREE |
2670                                  hns3_txvlan_cap_get(hw));
2671
2672         if (hns3_dev_outer_udp_cksum_supported(hw))
2673                 info->tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_UDP_CKSUM;
2674
2675         if (hns3_dev_indep_txrx_supported(hw))
2676                 info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
2677                                  RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
2678
2679         if (hns3_dev_ptp_supported(hw))
2680                 info->rx_offload_capa |= DEV_RX_OFFLOAD_TIMESTAMP;
2681
2682         info->rx_desc_lim = (struct rte_eth_desc_lim) {
2683                 .nb_max = HNS3_MAX_RING_DESC,
2684                 .nb_min = HNS3_MIN_RING_DESC,
2685                 .nb_align = HNS3_ALIGN_RING_DESC,
2686         };
2687
2688         info->tx_desc_lim = (struct rte_eth_desc_lim) {
2689                 .nb_max = HNS3_MAX_RING_DESC,
2690                 .nb_min = HNS3_MIN_RING_DESC,
2691                 .nb_align = HNS3_ALIGN_RING_DESC,
2692                 .nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
2693                 .nb_mtu_seg_max = hw->max_non_tso_bd_num,
2694         };
2695
2696         info->default_rxconf = (struct rte_eth_rxconf) {
2697                 .rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
2698                 /*
2699                  * If there are no available Rx buffer descriptors, incoming
2700                  * packets are always dropped by hardware based on hns3 network
2701                  * engine.
2702                  */
2703                 .rx_drop_en = 1,
2704                 .offloads = 0,
2705         };
2706         info->default_txconf = (struct rte_eth_txconf) {
2707                 .tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
2708                 .offloads = 0,
2709         };
2710
2711         info->vmdq_queue_num = 0;
2712
2713         info->reta_size = hw->rss_ind_tbl_size;
2714         info->hash_key_size = HNS3_RSS_KEY_SIZE;
2715         info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
2716
2717         info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2718         info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2719         info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2720         info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2721         info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2722         info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2723
2724         return 0;
2725 }
2726
2727 static int
2728 hns3_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2729                     size_t fw_size)
2730 {
2731         struct hns3_adapter *hns = eth_dev->data->dev_private;
2732         struct hns3_hw *hw = &hns->hw;
2733         uint32_t version = hw->fw_version;
2734         int ret;
2735
2736         ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2737                        hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2738                                       HNS3_FW_VERSION_BYTE3_S),
2739                        hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2740                                       HNS3_FW_VERSION_BYTE2_S),
2741                        hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2742                                       HNS3_FW_VERSION_BYTE1_S),
2743                        hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2744                                       HNS3_FW_VERSION_BYTE0_S));
2745         ret += 1; /* add the size of '\0' */
2746         if (fw_size < (uint32_t)ret)
2747                 return ret;
2748         else
2749                 return 0;
2750 }
2751
2752 static int
2753 hns3_update_port_link_info(struct rte_eth_dev *eth_dev)
2754 {
2755         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2756
2757         (void)hns3_update_link_status(hw);
2758
2759         return hns3_update_link_info(eth_dev);
2760 }
2761
2762 static void
2763 hns3_setup_linkstatus(struct rte_eth_dev *eth_dev,
2764                       struct rte_eth_link *new_link)
2765 {
2766         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2767         struct hns3_mac *mac = &hw->mac;
2768
2769         switch (mac->link_speed) {
2770         case ETH_SPEED_NUM_10M:
2771         case ETH_SPEED_NUM_100M:
2772         case ETH_SPEED_NUM_1G:
2773         case ETH_SPEED_NUM_10G:
2774         case ETH_SPEED_NUM_25G:
2775         case ETH_SPEED_NUM_40G:
2776         case ETH_SPEED_NUM_50G:
2777         case ETH_SPEED_NUM_100G:
2778         case ETH_SPEED_NUM_200G:
2779                 new_link->link_speed = mac->link_speed;
2780                 break;
2781         default:
2782                 if (mac->link_status)
2783                         new_link->link_speed = ETH_SPEED_NUM_UNKNOWN;
2784                 else
2785                         new_link->link_speed = ETH_SPEED_NUM_NONE;
2786                 break;
2787         }
2788
2789         new_link->link_duplex = mac->link_duplex;
2790         new_link->link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2791         new_link->link_autoneg =
2792             !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2793 }
2794
2795 static int
2796 hns3_dev_link_update(struct rte_eth_dev *eth_dev, int wait_to_complete)
2797 {
2798 #define HNS3_LINK_CHECK_INTERVAL 100  /* 100ms */
2799 #define HNS3_MAX_LINK_CHECK_TIMES 20  /* 2s (100 * 20ms) in total */
2800
2801         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2802         uint32_t retry_cnt = HNS3_MAX_LINK_CHECK_TIMES;
2803         struct hns3_mac *mac = &hw->mac;
2804         struct rte_eth_link new_link;
2805         int ret;
2806
2807         do {
2808                 ret = hns3_update_port_link_info(eth_dev);
2809                 if (ret) {
2810                         mac->link_status = ETH_LINK_DOWN;
2811                         hns3_err(hw, "failed to get port link info, ret = %d.",
2812                                  ret);
2813                         break;
2814                 }
2815
2816                 if (!wait_to_complete || mac->link_status == ETH_LINK_UP)
2817                         break;
2818
2819                 rte_delay_ms(HNS3_LINK_CHECK_INTERVAL);
2820         } while (retry_cnt--);
2821
2822         memset(&new_link, 0, sizeof(new_link));
2823         hns3_setup_linkstatus(eth_dev, &new_link);
2824
2825         return rte_eth_linkstatus_set(eth_dev, &new_link);
2826 }
2827
2828 static int
2829 hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status)
2830 {
2831         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2832         struct hns3_pf *pf = &hns->pf;
2833
2834         if (!(status->pf_state & HNS3_PF_STATE_DONE))
2835                 return -EINVAL;
2836
2837         pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false;
2838
2839         return 0;
2840 }
2841
2842 static int
2843 hns3_query_function_status(struct hns3_hw *hw)
2844 {
2845 #define HNS3_QUERY_MAX_CNT              10
2846 #define HNS3_QUERY_SLEEP_MSCOEND        1
2847         struct hns3_func_status_cmd *req;
2848         struct hns3_cmd_desc desc;
2849         int timeout = 0;
2850         int ret;
2851
2852         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true);
2853         req = (struct hns3_func_status_cmd *)desc.data;
2854
2855         do {
2856                 ret = hns3_cmd_send(hw, &desc, 1);
2857                 if (ret) {
2858                         PMD_INIT_LOG(ERR, "query function status failed %d",
2859                                      ret);
2860                         return ret;
2861                 }
2862
2863                 /* Check pf reset is done */
2864                 if (req->pf_state)
2865                         break;
2866
2867                 rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND);
2868         } while (timeout++ < HNS3_QUERY_MAX_CNT);
2869
2870         return hns3_parse_func_status(hw, req);
2871 }
2872
2873 static int
2874 hns3_get_pf_max_tqp_num(struct hns3_hw *hw)
2875 {
2876         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2877         struct hns3_pf *pf = &hns->pf;
2878
2879         if (pf->tqp_config_mode == HNS3_FLEX_MAX_TQP_NUM_MODE) {
2880                 /*
2881                  * The total_tqps_num obtained from firmware is maximum tqp
2882                  * numbers of this port, which should be used for PF and VFs.
2883                  * There is no need for pf to have so many tqp numbers in
2884                  * most cases. RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2885                  * coming from config file, is assigned to maximum queue number
2886                  * for the PF of this port by user. So users can modify the
2887                  * maximum queue number of PF according to their own application
2888                  * scenarios, which is more flexible to use. In addition, many
2889                  * memories can be saved due to allocating queue statistics
2890                  * room according to the actual number of queues required. The
2891                  * maximum queue number of PF for network engine with
2892                  * revision_id greater than 0x30 is assigned by config file.
2893                  */
2894                 if (RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF <= 0) {
2895                         hns3_err(hw, "RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF(%d) "
2896                                  "must be greater than 0.",
2897                                  RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF);
2898                         return -EINVAL;
2899                 }
2900
2901                 hw->tqps_num = RTE_MIN(RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2902                                        hw->total_tqps_num);
2903         } else {
2904                 /*
2905                  * Due to the limitation on the number of PF interrupts
2906                  * available, the maximum queue number assigned to PF on
2907                  * the network engine with revision_id 0x21 is 64.
2908                  */
2909                 hw->tqps_num = RTE_MIN(hw->total_tqps_num,
2910                                        HNS3_MAX_TQP_NUM_HIP08_PF);
2911         }
2912
2913         return 0;
2914 }
2915
2916 static int
2917 hns3_query_pf_resource(struct hns3_hw *hw)
2918 {
2919         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2920         struct hns3_pf *pf = &hns->pf;
2921         struct hns3_pf_res_cmd *req;
2922         struct hns3_cmd_desc desc;
2923         int ret;
2924
2925         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true);
2926         ret = hns3_cmd_send(hw, &desc, 1);
2927         if (ret) {
2928                 PMD_INIT_LOG(ERR, "query pf resource failed %d", ret);
2929                 return ret;
2930         }
2931
2932         req = (struct hns3_pf_res_cmd *)desc.data;
2933         hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num) +
2934                              rte_le_to_cpu_16(req->ext_tqp_num);
2935         ret = hns3_get_pf_max_tqp_num(hw);
2936         if (ret)
2937                 return ret;
2938
2939         pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S;
2940         pf->func_num = rte_le_to_cpu_16(req->pf_own_fun_number);
2941
2942         if (req->tx_buf_size)
2943                 pf->tx_buf_size =
2944                     rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S;
2945         else
2946                 pf->tx_buf_size = HNS3_DEFAULT_TX_BUF;
2947
2948         pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT);
2949
2950         if (req->dv_buf_size)
2951                 pf->dv_buf_size =
2952                     rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S;
2953         else
2954                 pf->dv_buf_size = HNS3_DEFAULT_DV;
2955
2956         pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT);
2957
2958         hw->num_msi =
2959                 hns3_get_field(rte_le_to_cpu_16(req->nic_pf_intr_vector_number),
2960                                HNS3_PF_VEC_NUM_M, HNS3_PF_VEC_NUM_S);
2961
2962         return 0;
2963 }
2964
2965 static void
2966 hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc)
2967 {
2968         struct hns3_cfg_param_cmd *req;
2969         uint64_t mac_addr_tmp_high;
2970         uint8_t ext_rss_size_max;
2971         uint64_t mac_addr_tmp;
2972         uint32_t i;
2973
2974         req = (struct hns3_cfg_param_cmd *)desc[0].data;
2975
2976         /* get the configuration */
2977         cfg->vmdq_vport_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2978                                              HNS3_CFG_VMDQ_M, HNS3_CFG_VMDQ_S);
2979         cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2980                                      HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S);
2981         cfg->tqp_desc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2982                                            HNS3_CFG_TQP_DESC_N_M,
2983                                            HNS3_CFG_TQP_DESC_N_S);
2984
2985         cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2986                                        HNS3_CFG_PHY_ADDR_M,
2987                                        HNS3_CFG_PHY_ADDR_S);
2988         cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2989                                          HNS3_CFG_MEDIA_TP_M,
2990                                          HNS3_CFG_MEDIA_TP_S);
2991         cfg->rx_buf_len = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2992                                          HNS3_CFG_RX_BUF_LEN_M,
2993                                          HNS3_CFG_RX_BUF_LEN_S);
2994         /* get mac address */
2995         mac_addr_tmp = rte_le_to_cpu_32(req->param[2]);
2996         mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2997                                            HNS3_CFG_MAC_ADDR_H_M,
2998                                            HNS3_CFG_MAC_ADDR_H_S);
2999
3000         mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
3001
3002         cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
3003                                             HNS3_CFG_DEFAULT_SPEED_M,
3004                                             HNS3_CFG_DEFAULT_SPEED_S);
3005         cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
3006                                            HNS3_CFG_RSS_SIZE_M,
3007                                            HNS3_CFG_RSS_SIZE_S);
3008
3009         for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
3010                 cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
3011
3012         req = (struct hns3_cfg_param_cmd *)desc[1].data;
3013         cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]);
3014
3015         cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
3016                                             HNS3_CFG_SPEED_ABILITY_M,
3017                                             HNS3_CFG_SPEED_ABILITY_S);
3018         cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
3019                                         HNS3_CFG_UMV_TBL_SPACE_M,
3020                                         HNS3_CFG_UMV_TBL_SPACE_S);
3021         if (!cfg->umv_space)
3022                 cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF;
3023
3024         ext_rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[2]),
3025                                                HNS3_CFG_EXT_RSS_SIZE_M,
3026                                                HNS3_CFG_EXT_RSS_SIZE_S);
3027
3028         /*
3029          * Field ext_rss_size_max obtained from firmware will be more flexible
3030          * for future changes and expansions, which is an exponent of 2, instead
3031          * of reading out directly. If this field is not zero, hns3 PF PMD
3032          * driver uses it as rss_size_max under one TC. Device, whose revision
3033          * id is greater than or equal to PCI_REVISION_ID_HIP09_A, obtains the
3034          * maximum number of queues supported under a TC through this field.
3035          */
3036         if (ext_rss_size_max)
3037                 cfg->rss_size_max = 1U << ext_rss_size_max;
3038 }
3039
3040 /* hns3_get_board_cfg: query the static parameter from NCL_config file in flash
3041  * @hw: pointer to struct hns3_hw
3042  * @hcfg: the config structure to be getted
3043  */
3044 static int
3045 hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg)
3046 {
3047         struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM];
3048         struct hns3_cfg_param_cmd *req;
3049         uint32_t offset;
3050         uint32_t i;
3051         int ret;
3052
3053         for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) {
3054                 offset = 0;
3055                 req = (struct hns3_cfg_param_cmd *)desc[i].data;
3056                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM,
3057                                           true);
3058                 hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S,
3059                                i * HNS3_CFG_RD_LEN_BYTES);
3060                 /* Len should be divided by 4 when send to hardware */
3061                 hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S,
3062                                HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT);
3063                 req->offset = rte_cpu_to_le_32(offset);
3064         }
3065
3066         ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM);
3067         if (ret) {
3068                 PMD_INIT_LOG(ERR, "get config failed %d.", ret);
3069                 return ret;
3070         }
3071
3072         hns3_parse_cfg(hcfg, desc);
3073
3074         return 0;
3075 }
3076
3077 static int
3078 hns3_parse_speed(int speed_cmd, uint32_t *speed)
3079 {
3080         switch (speed_cmd) {
3081         case HNS3_CFG_SPEED_10M:
3082                 *speed = ETH_SPEED_NUM_10M;
3083                 break;
3084         case HNS3_CFG_SPEED_100M:
3085                 *speed = ETH_SPEED_NUM_100M;
3086                 break;
3087         case HNS3_CFG_SPEED_1G:
3088                 *speed = ETH_SPEED_NUM_1G;
3089                 break;
3090         case HNS3_CFG_SPEED_10G:
3091                 *speed = ETH_SPEED_NUM_10G;
3092                 break;
3093         case HNS3_CFG_SPEED_25G:
3094                 *speed = ETH_SPEED_NUM_25G;
3095                 break;
3096         case HNS3_CFG_SPEED_40G:
3097                 *speed = ETH_SPEED_NUM_40G;
3098                 break;
3099         case HNS3_CFG_SPEED_50G:
3100                 *speed = ETH_SPEED_NUM_50G;
3101                 break;
3102         case HNS3_CFG_SPEED_100G:
3103                 *speed = ETH_SPEED_NUM_100G;
3104                 break;
3105         case HNS3_CFG_SPEED_200G:
3106                 *speed = ETH_SPEED_NUM_200G;
3107                 break;
3108         default:
3109                 return -EINVAL;
3110         }
3111
3112         return 0;
3113 }
3114
3115 static void
3116 hns3_set_default_dev_specifications(struct hns3_hw *hw)
3117 {
3118         hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
3119         hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
3120         hw->rss_key_size = HNS3_RSS_KEY_SIZE;
3121         hw->max_tm_rate = HNS3_ETHER_MAX_RATE;
3122         hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
3123 }
3124
3125 static void
3126 hns3_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
3127 {
3128         struct hns3_dev_specs_0_cmd *req0;
3129
3130         req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
3131
3132         hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
3133         hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
3134         hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
3135         hw->max_tm_rate = rte_le_to_cpu_32(req0->max_tm_rate);
3136         hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
3137 }
3138
3139 static int
3140 hns3_check_dev_specifications(struct hns3_hw *hw)
3141 {
3142         if (hw->rss_ind_tbl_size == 0 ||
3143             hw->rss_ind_tbl_size > HNS3_RSS_IND_TBL_SIZE_MAX) {
3144                 hns3_err(hw, "the size of hash lookup table configured (%u)"
3145                               " exceeds the maximum(%u)", hw->rss_ind_tbl_size,
3146                               HNS3_RSS_IND_TBL_SIZE_MAX);
3147                 return -EINVAL;
3148         }
3149
3150         return 0;
3151 }
3152
3153 static int
3154 hns3_query_dev_specifications(struct hns3_hw *hw)
3155 {
3156         struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
3157         int ret;
3158         int i;
3159
3160         for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3161                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
3162                                           true);
3163                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3164         }
3165         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
3166
3167         ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
3168         if (ret)
3169                 return ret;
3170
3171         hns3_parse_dev_specifications(hw, desc);
3172
3173         return hns3_check_dev_specifications(hw);
3174 }
3175
3176 static int
3177 hns3_get_capability(struct hns3_hw *hw)
3178 {
3179         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3180         struct rte_pci_device *pci_dev;
3181         struct hns3_pf *pf = &hns->pf;
3182         struct rte_eth_dev *eth_dev;
3183         uint16_t device_id;
3184         uint8_t revision;
3185         int ret;
3186
3187         eth_dev = &rte_eth_devices[hw->data->port_id];
3188         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3189         device_id = pci_dev->id.device_id;
3190
3191         if (device_id == HNS3_DEV_ID_25GE_RDMA ||
3192             device_id == HNS3_DEV_ID_50GE_RDMA ||
3193             device_id == HNS3_DEV_ID_100G_RDMA_MACSEC ||
3194             device_id == HNS3_DEV_ID_200G_RDMA)
3195                 hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_DCB_B, 1);
3196
3197         /* Get PCI revision id */
3198         ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
3199                                   HNS3_PCI_REVISION_ID);
3200         if (ret != HNS3_PCI_REVISION_ID_LEN) {
3201                 PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
3202                              ret);
3203                 return -EIO;
3204         }
3205         hw->revision = revision;
3206
3207         if (revision < PCI_REVISION_ID_HIP09_A) {
3208                 hns3_set_default_dev_specifications(hw);
3209                 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
3210                 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
3211                 hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
3212                 hw->vlan_mode = HNS3_SW_SHIFT_AND_DISCARD_MODE;
3213                 hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE1;
3214                 hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
3215                 pf->tqp_config_mode = HNS3_FIXED_MAX_TQP_NUM_MODE;
3216                 hw->rss_info.ipv6_sctp_offload_supported = false;
3217                 hw->udp_cksum_mode = HNS3_SPECIAL_PORT_SW_CKSUM_MODE;
3218                 return 0;
3219         }
3220
3221         ret = hns3_query_dev_specifications(hw);
3222         if (ret) {
3223                 PMD_INIT_LOG(ERR,
3224                              "failed to query dev specifications, ret = %d",
3225                              ret);
3226                 return ret;
3227         }
3228
3229         hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
3230         hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
3231         hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
3232         hw->vlan_mode = HNS3_HW_SHIFT_AND_DISCARD_MODE;
3233         hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE2;
3234         hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
3235         pf->tqp_config_mode = HNS3_FLEX_MAX_TQP_NUM_MODE;
3236         hw->rss_info.ipv6_sctp_offload_supported = true;
3237         hw->udp_cksum_mode = HNS3_SPECIAL_PORT_HW_CKSUM_MODE;
3238
3239         return 0;
3240 }
3241
3242 static int
3243 hns3_check_media_type(struct hns3_hw *hw, uint8_t media_type)
3244 {
3245         int ret;
3246
3247         switch (media_type) {
3248         case HNS3_MEDIA_TYPE_COPPER:
3249                 if (!hns3_dev_copper_supported(hw)) {
3250                         PMD_INIT_LOG(ERR,
3251                                      "Media type is copper, not supported.");
3252                         ret = -EOPNOTSUPP;
3253                 } else {
3254                         ret = 0;
3255                 }
3256                 break;
3257         case HNS3_MEDIA_TYPE_FIBER:
3258                 ret = 0;
3259                 break;
3260         case HNS3_MEDIA_TYPE_BACKPLANE:
3261                 PMD_INIT_LOG(ERR, "Media type is Backplane, not supported.");
3262                 ret = -EOPNOTSUPP;
3263                 break;
3264         default:
3265                 PMD_INIT_LOG(ERR, "Unknown media type = %u!", media_type);
3266                 ret = -EINVAL;
3267                 break;
3268         }
3269
3270         return ret;
3271 }
3272
3273 static int
3274 hns3_get_board_configuration(struct hns3_hw *hw)
3275 {
3276         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3277         struct hns3_pf *pf = &hns->pf;
3278         struct hns3_cfg cfg;
3279         int ret;
3280
3281         ret = hns3_get_board_cfg(hw, &cfg);
3282         if (ret) {
3283                 PMD_INIT_LOG(ERR, "get board config failed %d", ret);
3284                 return ret;
3285         }
3286
3287         ret = hns3_check_media_type(hw, cfg.media_type);
3288         if (ret)
3289                 return ret;
3290
3291         hw->mac.media_type = cfg.media_type;
3292         hw->rss_size_max = cfg.rss_size_max;
3293         hw->rss_dis_flag = false;
3294         memcpy(hw->mac.mac_addr, cfg.mac_addr, RTE_ETHER_ADDR_LEN);
3295         hw->mac.phy_addr = cfg.phy_addr;
3296         hw->mac.default_addr_setted = false;
3297         hw->num_tx_desc = cfg.tqp_desc_num;
3298         hw->num_rx_desc = cfg.tqp_desc_num;
3299         hw->dcb_info.num_pg = 1;
3300         hw->dcb_info.hw_pfc_map = 0;
3301
3302         ret = hns3_parse_speed(cfg.default_speed, &hw->mac.link_speed);
3303         if (ret) {
3304                 PMD_INIT_LOG(ERR, "Get wrong speed %u, ret = %d",
3305                              cfg.default_speed, ret);
3306                 return ret;
3307         }
3308
3309         pf->tc_max = cfg.tc_num;
3310         if (pf->tc_max > HNS3_MAX_TC_NUM || pf->tc_max < 1) {
3311                 PMD_INIT_LOG(WARNING,
3312                              "Get TC num(%u) from flash, set TC num to 1",
3313                              pf->tc_max);
3314                 pf->tc_max = 1;
3315         }
3316
3317         /* Dev does not support DCB */
3318         if (!hns3_dev_dcb_supported(hw)) {
3319                 pf->tc_max = 1;
3320                 pf->pfc_max = 0;
3321         } else
3322                 pf->pfc_max = pf->tc_max;
3323
3324         hw->dcb_info.num_tc = 1;
3325         hw->alloc_rss_size = RTE_MIN(hw->rss_size_max,
3326                                      hw->tqps_num / hw->dcb_info.num_tc);
3327         hns3_set_bit(hw->hw_tc_map, 0, 1);
3328         pf->tx_sch_mode = HNS3_FLAG_TC_BASE_SCH_MODE;
3329
3330         pf->wanted_umv_size = cfg.umv_space;
3331
3332         return ret;
3333 }
3334
3335 static int
3336 hns3_get_configuration(struct hns3_hw *hw)
3337 {
3338         int ret;
3339
3340         ret = hns3_query_function_status(hw);
3341         if (ret) {
3342                 PMD_INIT_LOG(ERR, "Failed to query function status: %d.", ret);
3343                 return ret;
3344         }
3345
3346         /* Get device capability */
3347         ret = hns3_get_capability(hw);
3348         if (ret) {
3349                 PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
3350                 return ret;
3351         }
3352
3353         /* Get pf resource */
3354         ret = hns3_query_pf_resource(hw);
3355         if (ret) {
3356                 PMD_INIT_LOG(ERR, "Failed to query pf resource: %d", ret);
3357                 return ret;
3358         }
3359
3360         ret = hns3_get_board_configuration(hw);
3361         if (ret) {
3362                 PMD_INIT_LOG(ERR, "failed to get board configuration: %d", ret);
3363                 return ret;
3364         }
3365
3366         ret = hns3_query_dev_fec_info(hw);
3367         if (ret)
3368                 PMD_INIT_LOG(ERR,
3369                              "failed to query FEC information, ret = %d", ret);
3370
3371         return ret;
3372 }
3373
3374 static int
3375 hns3_map_tqps_to_func(struct hns3_hw *hw, uint16_t func_id, uint16_t tqp_pid,
3376                       uint16_t tqp_vid, bool is_pf)
3377 {
3378         struct hns3_tqp_map_cmd *req;
3379         struct hns3_cmd_desc desc;
3380         int ret;
3381
3382         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SET_TQP_MAP, false);
3383
3384         req = (struct hns3_tqp_map_cmd *)desc.data;
3385         req->tqp_id = rte_cpu_to_le_16(tqp_pid);
3386         req->tqp_vf = func_id;
3387         req->tqp_flag = 1 << HNS3_TQP_MAP_EN_B;
3388         if (!is_pf)
3389                 req->tqp_flag |= (1 << HNS3_TQP_MAP_TYPE_B);
3390         req->tqp_vid = rte_cpu_to_le_16(tqp_vid);
3391
3392         ret = hns3_cmd_send(hw, &desc, 1);
3393         if (ret)
3394                 PMD_INIT_LOG(ERR, "TQP map failed %d", ret);
3395
3396         return ret;
3397 }
3398
3399 static int
3400 hns3_map_tqp(struct hns3_hw *hw)
3401 {
3402         int ret;
3403         int i;
3404
3405         /*
3406          * In current version, VF is not supported when PF is driven by DPDK
3407          * driver, so we assign total tqps_num tqps allocated to this port
3408          * to PF.
3409          */
3410         for (i = 0; i < hw->total_tqps_num; i++) {
3411                 ret = hns3_map_tqps_to_func(hw, HNS3_PF_FUNC_ID, i, i, true);
3412                 if (ret)
3413                         return ret;
3414         }
3415
3416         return 0;
3417 }
3418
3419 static int
3420 hns3_cfg_mac_speed_dup_hw(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
3421 {
3422         struct hns3_config_mac_speed_dup_cmd *req;
3423         struct hns3_cmd_desc desc;
3424         int ret;
3425
3426         req = (struct hns3_config_mac_speed_dup_cmd *)desc.data;
3427
3428         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_SPEED_DUP, false);
3429
3430         hns3_set_bit(req->speed_dup, HNS3_CFG_DUPLEX_B, !!duplex ? 1 : 0);
3431
3432         switch (speed) {
3433         case ETH_SPEED_NUM_10M:
3434                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3435                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10M);
3436                 break;
3437         case ETH_SPEED_NUM_100M:
3438                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3439                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100M);
3440                 break;
3441         case ETH_SPEED_NUM_1G:
3442                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3443                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_1G);
3444                 break;
3445         case ETH_SPEED_NUM_10G:
3446                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3447                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10G);
3448                 break;
3449         case ETH_SPEED_NUM_25G:
3450                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3451                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_25G);
3452                 break;
3453         case ETH_SPEED_NUM_40G:
3454                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3455                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_40G);
3456                 break;
3457         case ETH_SPEED_NUM_50G:
3458                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3459                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_50G);
3460                 break;
3461         case ETH_SPEED_NUM_100G:
3462                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3463                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100G);
3464                 break;
3465         case ETH_SPEED_NUM_200G:
3466                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3467                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_200G);
3468                 break;
3469         default:
3470                 PMD_INIT_LOG(ERR, "invalid speed (%u)", speed);
3471                 return -EINVAL;
3472         }
3473
3474         hns3_set_bit(req->mac_change_fec_en, HNS3_CFG_MAC_SPEED_CHANGE_EN_B, 1);
3475
3476         ret = hns3_cmd_send(hw, &desc, 1);
3477         if (ret)
3478                 PMD_INIT_LOG(ERR, "mac speed/duplex config cmd failed %d", ret);
3479
3480         return ret;
3481 }
3482
3483 static int
3484 hns3_tx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3485 {
3486         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3487         struct hns3_pf *pf = &hns->pf;
3488         struct hns3_priv_buf *priv;
3489         uint32_t i, total_size;
3490
3491         total_size = pf->pkt_buf_size;
3492
3493         /* alloc tx buffer for all enabled tc */
3494         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3495                 priv = &buf_alloc->priv_buf[i];
3496
3497                 if (hw->hw_tc_map & BIT(i)) {
3498                         if (total_size < pf->tx_buf_size)
3499                                 return -ENOMEM;
3500
3501                         priv->tx_buf_size = pf->tx_buf_size;
3502                 } else
3503                         priv->tx_buf_size = 0;
3504
3505                 total_size -= priv->tx_buf_size;
3506         }
3507
3508         return 0;
3509 }
3510
3511 static int
3512 hns3_tx_buffer_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3513 {
3514 /* TX buffer size is unit by 128 byte */
3515 #define HNS3_BUF_SIZE_UNIT_SHIFT        7
3516 #define HNS3_BUF_SIZE_UPDATE_EN_MSK     BIT(15)
3517         struct hns3_tx_buff_alloc_cmd *req;
3518         struct hns3_cmd_desc desc;
3519         uint32_t buf_size;
3520         uint32_t i;
3521         int ret;
3522
3523         req = (struct hns3_tx_buff_alloc_cmd *)desc.data;
3524
3525         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TX_BUFF_ALLOC, 0);
3526         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3527                 buf_size = buf_alloc->priv_buf[i].tx_buf_size;
3528
3529                 buf_size = buf_size >> HNS3_BUF_SIZE_UNIT_SHIFT;
3530                 req->tx_pkt_buff[i] = rte_cpu_to_le_16(buf_size |
3531                                                 HNS3_BUF_SIZE_UPDATE_EN_MSK);
3532         }
3533
3534         ret = hns3_cmd_send(hw, &desc, 1);
3535         if (ret)
3536                 PMD_INIT_LOG(ERR, "tx buffer alloc cmd failed %d", ret);
3537
3538         return ret;
3539 }
3540
3541 static int
3542 hns3_get_tc_num(struct hns3_hw *hw)
3543 {
3544         int cnt = 0;
3545         uint8_t i;
3546
3547         for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3548                 if (hw->hw_tc_map & BIT(i))
3549                         cnt++;
3550         return cnt;
3551 }
3552
3553 static uint32_t
3554 hns3_get_rx_priv_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3555 {
3556         struct hns3_priv_buf *priv;
3557         uint32_t rx_priv = 0;
3558         int i;
3559
3560         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3561                 priv = &buf_alloc->priv_buf[i];
3562                 if (priv->enable)
3563                         rx_priv += priv->buf_size;
3564         }
3565         return rx_priv;
3566 }
3567
3568 static uint32_t
3569 hns3_get_tx_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3570 {
3571         uint32_t total_tx_size = 0;
3572         uint32_t i;
3573
3574         for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3575                 total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
3576
3577         return total_tx_size;
3578 }
3579
3580 /* Get the number of pfc enabled TCs, which have private buffer */
3581 static int
3582 hns3_get_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3583 {
3584         struct hns3_priv_buf *priv;
3585         int cnt = 0;
3586         uint8_t i;
3587
3588         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3589                 priv = &buf_alloc->priv_buf[i];
3590                 if ((hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3591                         cnt++;
3592         }
3593
3594         return cnt;
3595 }
3596
3597 /* Get the number of pfc disabled TCs, which have private buffer */
3598 static int
3599 hns3_get_no_pfc_priv_num(struct hns3_hw *hw,
3600                          struct hns3_pkt_buf_alloc *buf_alloc)
3601 {
3602         struct hns3_priv_buf *priv;
3603         int cnt = 0;
3604         uint8_t i;
3605
3606         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3607                 priv = &buf_alloc->priv_buf[i];
3608                 if (hw->hw_tc_map & BIT(i) &&
3609                     !(hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3610                         cnt++;
3611         }
3612
3613         return cnt;
3614 }
3615
3616 static bool
3617 hns3_is_rx_buf_ok(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc,
3618                   uint32_t rx_all)
3619 {
3620         uint32_t shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
3621         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3622         struct hns3_pf *pf = &hns->pf;
3623         uint32_t shared_buf, aligned_mps;
3624         uint32_t rx_priv;
3625         uint8_t tc_num;
3626         uint8_t i;
3627
3628         tc_num = hns3_get_tc_num(hw);
3629         aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3630
3631         if (hns3_dev_dcb_supported(hw))
3632                 shared_buf_min = HNS3_BUF_MUL_BY * aligned_mps +
3633                                         pf->dv_buf_size;
3634         else
3635                 shared_buf_min = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF
3636                                         + pf->dv_buf_size;
3637
3638         shared_buf_tc = tc_num * aligned_mps + aligned_mps;
3639         shared_std = roundup(RTE_MAX(shared_buf_min, shared_buf_tc),
3640                              HNS3_BUF_SIZE_UNIT);
3641
3642         rx_priv = hns3_get_rx_priv_buff_alloced(buf_alloc);
3643         if (rx_all < rx_priv + shared_std)
3644                 return false;
3645
3646         shared_buf = rounddown(rx_all - rx_priv, HNS3_BUF_SIZE_UNIT);
3647         buf_alloc->s_buf.buf_size = shared_buf;
3648         if (hns3_dev_dcb_supported(hw)) {
3649                 buf_alloc->s_buf.self.high = shared_buf - pf->dv_buf_size;
3650                 buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
3651                         - roundup(aligned_mps / HNS3_BUF_DIV_BY,
3652                                   HNS3_BUF_SIZE_UNIT);
3653         } else {
3654                 buf_alloc->s_buf.self.high =
3655                         aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3656                 buf_alloc->s_buf.self.low = aligned_mps;
3657         }
3658
3659         if (hns3_dev_dcb_supported(hw)) {
3660                 hi_thrd = shared_buf - pf->dv_buf_size;
3661
3662                 if (tc_num <= NEED_RESERVE_TC_NUM)
3663                         hi_thrd = hi_thrd * BUF_RESERVE_PERCENT /
3664                                   BUF_MAX_PERCENT;
3665
3666                 if (tc_num)
3667                         hi_thrd = hi_thrd / tc_num;
3668
3669                 hi_thrd = RTE_MAX(hi_thrd, HNS3_BUF_MUL_BY * aligned_mps);
3670                 hi_thrd = rounddown(hi_thrd, HNS3_BUF_SIZE_UNIT);
3671                 lo_thrd = hi_thrd - aligned_mps / HNS3_BUF_DIV_BY;
3672         } else {
3673                 hi_thrd = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3674                 lo_thrd = aligned_mps;
3675         }
3676
3677         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3678                 buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
3679                 buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
3680         }
3681
3682         return true;
3683 }
3684
3685 static bool
3686 hns3_rx_buf_calc_all(struct hns3_hw *hw, bool max,
3687                      struct hns3_pkt_buf_alloc *buf_alloc)
3688 {
3689         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3690         struct hns3_pf *pf = &hns->pf;
3691         struct hns3_priv_buf *priv;
3692         uint32_t aligned_mps;
3693         uint32_t rx_all;
3694         uint8_t i;
3695
3696         rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3697         aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3698
3699         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3700                 priv = &buf_alloc->priv_buf[i];
3701
3702                 priv->enable = 0;
3703                 priv->wl.low = 0;
3704                 priv->wl.high = 0;
3705                 priv->buf_size = 0;
3706
3707                 if (!(hw->hw_tc_map & BIT(i)))
3708                         continue;
3709
3710                 priv->enable = 1;
3711                 if (hw->dcb_info.hw_pfc_map & BIT(i)) {
3712                         priv->wl.low = max ? aligned_mps : HNS3_BUF_SIZE_UNIT;
3713                         priv->wl.high = roundup(priv->wl.low + aligned_mps,
3714                                                 HNS3_BUF_SIZE_UNIT);
3715                 } else {
3716                         priv->wl.low = 0;
3717                         priv->wl.high = max ? (aligned_mps * HNS3_BUF_MUL_BY) :
3718                                         aligned_mps;
3719                 }
3720
3721                 priv->buf_size = priv->wl.high + pf->dv_buf_size;
3722         }
3723
3724         return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3725 }
3726
3727 static bool
3728 hns3_drop_nopfc_buf_till_fit(struct hns3_hw *hw,
3729                              struct hns3_pkt_buf_alloc *buf_alloc)
3730 {
3731         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3732         struct hns3_pf *pf = &hns->pf;
3733         struct hns3_priv_buf *priv;
3734         int no_pfc_priv_num;
3735         uint32_t rx_all;
3736         uint8_t mask;
3737         int i;
3738
3739         rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3740         no_pfc_priv_num = hns3_get_no_pfc_priv_num(hw, buf_alloc);
3741
3742         /* let the last to be cleared first */
3743         for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3744                 priv = &buf_alloc->priv_buf[i];
3745                 mask = BIT((uint8_t)i);
3746
3747                 if (hw->hw_tc_map & mask &&
3748                     !(hw->dcb_info.hw_pfc_map & mask)) {
3749                         /* Clear the no pfc TC private buffer */
3750                         priv->wl.low = 0;
3751                         priv->wl.high = 0;
3752                         priv->buf_size = 0;
3753                         priv->enable = 0;
3754                         no_pfc_priv_num--;
3755                 }
3756
3757                 if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3758                     no_pfc_priv_num == 0)
3759                         break;
3760         }
3761
3762         return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3763 }
3764
3765 static bool
3766 hns3_drop_pfc_buf_till_fit(struct hns3_hw *hw,
3767                            struct hns3_pkt_buf_alloc *buf_alloc)
3768 {
3769         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3770         struct hns3_pf *pf = &hns->pf;
3771         struct hns3_priv_buf *priv;
3772         uint32_t rx_all;
3773         int pfc_priv_num;
3774         uint8_t mask;
3775         int i;
3776
3777         rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3778         pfc_priv_num = hns3_get_pfc_priv_num(hw, buf_alloc);
3779
3780         /* let the last to be cleared first */
3781         for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3782                 priv = &buf_alloc->priv_buf[i];
3783                 mask = BIT((uint8_t)i);
3784                 if (hw->hw_tc_map & mask && hw->dcb_info.hw_pfc_map & mask) {
3785                         /* Reduce the number of pfc TC with private buffer */
3786                         priv->wl.low = 0;
3787                         priv->enable = 0;
3788                         priv->wl.high = 0;
3789                         priv->buf_size = 0;
3790                         pfc_priv_num--;
3791                 }
3792                 if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3793                     pfc_priv_num == 0)
3794                         break;
3795         }
3796
3797         return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3798 }
3799
3800 static bool
3801 hns3_only_alloc_priv_buff(struct hns3_hw *hw,
3802                           struct hns3_pkt_buf_alloc *buf_alloc)
3803 {
3804 #define COMPENSATE_BUFFER       0x3C00
3805 #define COMPENSATE_HALF_MPS_NUM 5
3806 #define PRIV_WL_GAP             0x1800
3807         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3808         struct hns3_pf *pf = &hns->pf;
3809         uint32_t tc_num = hns3_get_tc_num(hw);
3810         uint32_t half_mps = pf->mps >> 1;
3811         struct hns3_priv_buf *priv;
3812         uint32_t min_rx_priv;
3813         uint32_t rx_priv;
3814         uint8_t i;
3815
3816         rx_priv = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3817         if (tc_num)
3818                 rx_priv = rx_priv / tc_num;
3819
3820         if (tc_num <= NEED_RESERVE_TC_NUM)
3821                 rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
3822
3823         /*
3824          * Minimum value of private buffer in rx direction (min_rx_priv) is
3825          * equal to "DV + 2.5 * MPS + 15KB". Driver only allocates rx private
3826          * buffer if rx_priv is greater than min_rx_priv.
3827          */
3828         min_rx_priv = pf->dv_buf_size + COMPENSATE_BUFFER +
3829                         COMPENSATE_HALF_MPS_NUM * half_mps;
3830         min_rx_priv = roundup(min_rx_priv, HNS3_BUF_SIZE_UNIT);
3831         rx_priv = rounddown(rx_priv, HNS3_BUF_SIZE_UNIT);
3832
3833         if (rx_priv < min_rx_priv)
3834                 return false;
3835
3836         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3837                 priv = &buf_alloc->priv_buf[i];
3838                 priv->enable = 0;
3839                 priv->wl.low = 0;
3840                 priv->wl.high = 0;
3841                 priv->buf_size = 0;
3842
3843                 if (!(hw->hw_tc_map & BIT(i)))
3844                         continue;
3845
3846                 priv->enable = 1;
3847                 priv->buf_size = rx_priv;
3848                 priv->wl.high = rx_priv - pf->dv_buf_size;
3849                 priv->wl.low = priv->wl.high - PRIV_WL_GAP;
3850         }
3851
3852         buf_alloc->s_buf.buf_size = 0;
3853
3854         return true;
3855 }
3856
3857 /*
3858  * hns3_rx_buffer_calc: calculate the rx private buffer size for all TCs
3859  * @hw: pointer to struct hns3_hw
3860  * @buf_alloc: pointer to buffer calculation data
3861  * @return: 0: calculate sucessful, negative: fail
3862  */
3863 static int
3864 hns3_rx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3865 {
3866         /* When DCB is not supported, rx private buffer is not allocated. */
3867         if (!hns3_dev_dcb_supported(hw)) {
3868                 struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3869                 struct hns3_pf *pf = &hns->pf;
3870                 uint32_t rx_all = pf->pkt_buf_size;
3871
3872                 rx_all -= hns3_get_tx_buff_alloced(buf_alloc);
3873                 if (!hns3_is_rx_buf_ok(hw, buf_alloc, rx_all))
3874                         return -ENOMEM;
3875
3876                 return 0;
3877         }
3878
3879         /*
3880          * Try to allocate privated packet buffer for all TCs without share
3881          * buffer.
3882          */
3883         if (hns3_only_alloc_priv_buff(hw, buf_alloc))
3884                 return 0;
3885
3886         /*
3887          * Try to allocate privated packet buffer for all TCs with share
3888          * buffer.
3889          */
3890         if (hns3_rx_buf_calc_all(hw, true, buf_alloc))
3891                 return 0;
3892
3893         /*
3894          * For different application scenes, the enabled port number, TC number
3895          * and no_drop TC number are different. In order to obtain the better
3896          * performance, software could allocate the buffer size and configure
3897          * the waterline by tring to decrease the private buffer size according
3898          * to the order, namely, waterline of valided tc, pfc disabled tc, pfc
3899          * enabled tc.
3900          */
3901         if (hns3_rx_buf_calc_all(hw, false, buf_alloc))
3902                 return 0;
3903
3904         if (hns3_drop_nopfc_buf_till_fit(hw, buf_alloc))
3905                 return 0;
3906
3907         if (hns3_drop_pfc_buf_till_fit(hw, buf_alloc))
3908                 return 0;
3909
3910         return -ENOMEM;
3911 }
3912
3913 static int
3914 hns3_rx_priv_buf_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3915 {
3916         struct hns3_rx_priv_buff_cmd *req;
3917         struct hns3_cmd_desc desc;
3918         uint32_t buf_size;
3919         int ret;
3920         int i;
3921
3922         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_PRIV_BUFF_ALLOC, false);
3923         req = (struct hns3_rx_priv_buff_cmd *)desc.data;
3924
3925         /* Alloc private buffer TCs */
3926         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3927                 struct hns3_priv_buf *priv = &buf_alloc->priv_buf[i];
3928
3929                 req->buf_num[i] =
3930                         rte_cpu_to_le_16(priv->buf_size >> HNS3_BUF_UNIT_S);
3931                 req->buf_num[i] |= rte_cpu_to_le_16(1 << HNS3_TC0_PRI_BUF_EN_B);
3932         }
3933
3934         buf_size = buf_alloc->s_buf.buf_size;
3935         req->shared_buf = rte_cpu_to_le_16((buf_size >> HNS3_BUF_UNIT_S) |
3936                                            (1 << HNS3_TC0_PRI_BUF_EN_B));
3937
3938         ret = hns3_cmd_send(hw, &desc, 1);
3939         if (ret)
3940                 PMD_INIT_LOG(ERR, "rx private buffer alloc cmd failed %d", ret);
3941
3942         return ret;
3943 }
3944
3945 static int
3946 hns3_rx_priv_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3947 {
3948 #define HNS3_RX_PRIV_WL_ALLOC_DESC_NUM 2
3949         struct hns3_rx_priv_wl_buf *req;
3950         struct hns3_priv_buf *priv;
3951         struct hns3_cmd_desc desc[HNS3_RX_PRIV_WL_ALLOC_DESC_NUM];
3952         int i, j;
3953         int ret;
3954
3955         for (i = 0; i < HNS3_RX_PRIV_WL_ALLOC_DESC_NUM; i++) {
3956                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_PRIV_WL_ALLOC,
3957                                           false);
3958                 req = (struct hns3_rx_priv_wl_buf *)desc[i].data;
3959
3960                 /* The first descriptor set the NEXT bit to 1 */
3961                 if (i == 0)
3962                         desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3963                 else
3964                         desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3965
3966                 for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3967                         uint32_t idx = i * HNS3_TC_NUM_ONE_DESC + j;
3968
3969                         priv = &buf_alloc->priv_buf[idx];
3970                         req->tc_wl[j].high = rte_cpu_to_le_16(priv->wl.high >>
3971                                                         HNS3_BUF_UNIT_S);
3972                         req->tc_wl[j].high |=
3973                                 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3974                         req->tc_wl[j].low = rte_cpu_to_le_16(priv->wl.low >>
3975                                                         HNS3_BUF_UNIT_S);
3976                         req->tc_wl[j].low |=
3977                                 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3978                 }
3979         }
3980
3981         /* Send 2 descriptor at one time */
3982         ret = hns3_cmd_send(hw, desc, HNS3_RX_PRIV_WL_ALLOC_DESC_NUM);
3983         if (ret)
3984                 PMD_INIT_LOG(ERR, "rx private waterline config cmd failed %d",
3985                              ret);
3986         return ret;
3987 }
3988
3989 static int
3990 hns3_common_thrd_config(struct hns3_hw *hw,
3991                         struct hns3_pkt_buf_alloc *buf_alloc)
3992 {
3993 #define HNS3_RX_COM_THRD_ALLOC_DESC_NUM 2
3994         struct hns3_shared_buf *s_buf = &buf_alloc->s_buf;
3995         struct hns3_rx_com_thrd *req;
3996         struct hns3_cmd_desc desc[HNS3_RX_COM_THRD_ALLOC_DESC_NUM];
3997         struct hns3_tc_thrd *tc;
3998         int tc_idx;
3999         int i, j;
4000         int ret;
4001
4002         for (i = 0; i < HNS3_RX_COM_THRD_ALLOC_DESC_NUM; i++) {
4003                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_COM_THRD_ALLOC,
4004                                           false);
4005                 req = (struct hns3_rx_com_thrd *)&desc[i].data;
4006
4007                 /* The first descriptor set the NEXT bit to 1 */
4008                 if (i == 0)
4009                         desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4010                 else
4011                         desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4012
4013                 for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
4014                         tc_idx = i * HNS3_TC_NUM_ONE_DESC + j;
4015                         tc = &s_buf->tc_thrd[tc_idx];
4016
4017                         req->com_thrd[j].high =
4018                                 rte_cpu_to_le_16(tc->high >> HNS3_BUF_UNIT_S);
4019                         req->com_thrd[j].high |=
4020                                  rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4021                         req->com_thrd[j].low =
4022                                 rte_cpu_to_le_16(tc->low >> HNS3_BUF_UNIT_S);
4023                         req->com_thrd[j].low |=
4024                                  rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4025                 }
4026         }
4027
4028         /* Send 2 descriptors at one time */
4029         ret = hns3_cmd_send(hw, desc, HNS3_RX_COM_THRD_ALLOC_DESC_NUM);
4030         if (ret)
4031                 PMD_INIT_LOG(ERR, "common threshold config cmd failed %d", ret);
4032
4033         return ret;
4034 }
4035
4036 static int
4037 hns3_common_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
4038 {
4039         struct hns3_shared_buf *buf = &buf_alloc->s_buf;
4040         struct hns3_rx_com_wl *req;
4041         struct hns3_cmd_desc desc;
4042         int ret;
4043
4044         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_COM_WL_ALLOC, false);
4045
4046         req = (struct hns3_rx_com_wl *)desc.data;
4047         req->com_wl.high = rte_cpu_to_le_16(buf->self.high >> HNS3_BUF_UNIT_S);
4048         req->com_wl.high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4049
4050         req->com_wl.low = rte_cpu_to_le_16(buf->self.low >> HNS3_BUF_UNIT_S);
4051         req->com_wl.low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4052
4053         ret = hns3_cmd_send(hw, &desc, 1);
4054         if (ret)
4055                 PMD_INIT_LOG(ERR, "common waterline config cmd failed %d", ret);
4056
4057         return ret;
4058 }
4059
4060 int
4061 hns3_buffer_alloc(struct hns3_hw *hw)
4062 {
4063         struct hns3_pkt_buf_alloc pkt_buf;
4064         int ret;
4065
4066         memset(&pkt_buf, 0, sizeof(pkt_buf));
4067         ret = hns3_tx_buffer_calc(hw, &pkt_buf);
4068         if (ret) {
4069                 PMD_INIT_LOG(ERR,
4070                              "could not calc tx buffer size for all TCs %d",
4071                              ret);
4072                 return ret;
4073         }
4074
4075         ret = hns3_tx_buffer_alloc(hw, &pkt_buf);
4076         if (ret) {
4077                 PMD_INIT_LOG(ERR, "could not alloc tx buffers %d", ret);
4078                 return ret;
4079         }
4080
4081         ret = hns3_rx_buffer_calc(hw, &pkt_buf);
4082         if (ret) {
4083                 PMD_INIT_LOG(ERR,
4084                              "could not calc rx priv buffer size for all TCs %d",
4085                              ret);
4086                 return ret;
4087         }
4088
4089         ret = hns3_rx_priv_buf_alloc(hw, &pkt_buf);
4090         if (ret) {
4091                 PMD_INIT_LOG(ERR, "could not alloc rx priv buffer %d", ret);
4092                 return ret;
4093         }
4094
4095         if (hns3_dev_dcb_supported(hw)) {
4096                 ret = hns3_rx_priv_wl_config(hw, &pkt_buf);
4097                 if (ret) {
4098                         PMD_INIT_LOG(ERR,
4099                                      "could not configure rx private waterline %d",
4100                                      ret);
4101                         return ret;
4102                 }
4103
4104                 ret = hns3_common_thrd_config(hw, &pkt_buf);
4105                 if (ret) {
4106                         PMD_INIT_LOG(ERR,
4107                                      "could not configure common threshold %d",
4108                                      ret);
4109                         return ret;
4110                 }
4111         }
4112
4113         ret = hns3_common_wl_config(hw, &pkt_buf);
4114         if (ret)
4115                 PMD_INIT_LOG(ERR, "could not configure common waterline %d",
4116                              ret);
4117
4118         return ret;
4119 }
4120
4121 static int
4122 hns3_firmware_compat_config(struct hns3_hw *hw, bool is_init)
4123 {
4124         struct hns3_firmware_compat_cmd *req;
4125         struct hns3_cmd_desc desc;
4126         uint32_t compat = 0;
4127
4128         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_FIRMWARE_COMPAT_CFG, false);
4129         req = (struct hns3_firmware_compat_cmd *)desc.data;
4130
4131         if (is_init) {
4132                 hns3_set_bit(compat, HNS3_LINK_EVENT_REPORT_EN_B, 1);
4133                 hns3_set_bit(compat, HNS3_NCSI_ERROR_REPORT_EN_B, 0);
4134                 if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER)
4135                         hns3_set_bit(compat, HNS3_FIRMWARE_PHY_DRIVER_EN_B, 1);
4136         }
4137
4138         req->compat = rte_cpu_to_le_32(compat);
4139
4140         return hns3_cmd_send(hw, &desc, 1);
4141 }
4142
4143 static int
4144 hns3_mac_init(struct hns3_hw *hw)
4145 {
4146         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4147         struct hns3_mac *mac = &hw->mac;
4148         struct hns3_pf *pf = &hns->pf;
4149         int ret;
4150
4151         pf->support_sfp_query = true;
4152         mac->link_duplex = ETH_LINK_FULL_DUPLEX;
4153         ret = hns3_cfg_mac_speed_dup_hw(hw, mac->link_speed, mac->link_duplex);
4154         if (ret) {
4155                 PMD_INIT_LOG(ERR, "Config mac speed dup fail ret = %d", ret);
4156                 return ret;
4157         }
4158
4159         mac->link_status = ETH_LINK_DOWN;
4160
4161         return hns3_config_mtu(hw, pf->mps);
4162 }
4163
4164 static int
4165 hns3_get_mac_ethertype_cmd_status(uint16_t cmdq_resp, uint8_t resp_code)
4166 {
4167 #define HNS3_ETHERTYPE_SUCCESS_ADD              0
4168 #define HNS3_ETHERTYPE_ALREADY_ADD              1
4169 #define HNS3_ETHERTYPE_MGR_TBL_OVERFLOW         2
4170 #define HNS3_ETHERTYPE_KEY_CONFLICT             3
4171         int return_status;
4172
4173         if (cmdq_resp) {
4174                 PMD_INIT_LOG(ERR,
4175                              "cmdq execute failed for get_mac_ethertype_cmd_status, status=%u.\n",
4176                              cmdq_resp);
4177                 return -EIO;
4178         }
4179
4180         switch (resp_code) {
4181         case HNS3_ETHERTYPE_SUCCESS_ADD:
4182         case HNS3_ETHERTYPE_ALREADY_ADD:
4183                 return_status = 0;
4184                 break;
4185         case HNS3_ETHERTYPE_MGR_TBL_OVERFLOW:
4186                 PMD_INIT_LOG(ERR,
4187                              "add mac ethertype failed for manager table overflow.");
4188                 return_status = -EIO;
4189                 break;
4190         case HNS3_ETHERTYPE_KEY_CONFLICT:
4191                 PMD_INIT_LOG(ERR, "add mac ethertype failed for key conflict.");
4192                 return_status = -EIO;
4193                 break;
4194         default:
4195                 PMD_INIT_LOG(ERR,
4196                              "add mac ethertype failed for undefined, code=%u.",
4197                              resp_code);
4198                 return_status = -EIO;
4199                 break;
4200         }
4201
4202         return return_status;
4203 }
4204
4205 static int
4206 hns3_add_mgr_tbl(struct hns3_hw *hw,
4207                  const struct hns3_mac_mgr_tbl_entry_cmd *req)
4208 {
4209         struct hns3_cmd_desc desc;
4210         uint8_t resp_code;
4211         uint16_t retval;
4212         int ret;
4213
4214         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_ETHTYPE_ADD, false);
4215         memcpy(desc.data, req, sizeof(struct hns3_mac_mgr_tbl_entry_cmd));
4216
4217         ret = hns3_cmd_send(hw, &desc, 1);
4218         if (ret) {
4219                 PMD_INIT_LOG(ERR,
4220                              "add mac ethertype failed for cmd_send, ret =%d.",
4221                              ret);
4222                 return ret;
4223         }
4224
4225         resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
4226         retval = rte_le_to_cpu_16(desc.retval);
4227
4228         return hns3_get_mac_ethertype_cmd_status(retval, resp_code);
4229 }
4230
4231 static void
4232 hns3_prepare_mgr_tbl(struct hns3_mac_mgr_tbl_entry_cmd *mgr_table,
4233                      int *table_item_num)
4234 {
4235         struct hns3_mac_mgr_tbl_entry_cmd *tbl;
4236
4237         /*
4238          * In current version, we add one item in management table as below:
4239          * 0x0180C200000E -- LLDP MC address
4240          */
4241         tbl = mgr_table;
4242         tbl->flags = HNS3_MAC_MGR_MASK_VLAN_B;
4243         tbl->ethter_type = rte_cpu_to_le_16(HNS3_MAC_ETHERTYPE_LLDP);
4244         tbl->mac_addr_hi32 = rte_cpu_to_le_32(htonl(0x0180C200));
4245         tbl->mac_addr_lo16 = rte_cpu_to_le_16(htons(0x000E));
4246         tbl->i_port_bitmap = 0x1;
4247         *table_item_num = 1;
4248 }
4249
4250 static int
4251 hns3_init_mgr_tbl(struct hns3_hw *hw)
4252 {
4253 #define HNS_MAC_MGR_TBL_MAX_SIZE        16
4254         struct hns3_mac_mgr_tbl_entry_cmd mgr_table[HNS_MAC_MGR_TBL_MAX_SIZE];
4255         int table_item_num;
4256         int ret;
4257         int i;
4258
4259         memset(mgr_table, 0, sizeof(mgr_table));
4260         hns3_prepare_mgr_tbl(mgr_table, &table_item_num);
4261         for (i = 0; i < table_item_num; i++) {
4262                 ret = hns3_add_mgr_tbl(hw, &mgr_table[i]);
4263                 if (ret) {
4264                         PMD_INIT_LOG(ERR, "add mac ethertype failed, ret =%d",
4265                                      ret);
4266                         return ret;
4267                 }
4268         }
4269
4270         return 0;
4271 }
4272
4273 static void
4274 hns3_promisc_param_init(struct hns3_promisc_param *param, bool en_uc,
4275                         bool en_mc, bool en_bc, int vport_id)
4276 {
4277         if (!param)
4278                 return;
4279
4280         memset(param, 0, sizeof(struct hns3_promisc_param));
4281         if (en_uc)
4282                 param->enable = HNS3_PROMISC_EN_UC;
4283         if (en_mc)
4284                 param->enable |= HNS3_PROMISC_EN_MC;
4285         if (en_bc)
4286                 param->enable |= HNS3_PROMISC_EN_BC;
4287         param->vf_id = vport_id;
4288 }
4289
4290 static int
4291 hns3_cmd_set_promisc_mode(struct hns3_hw *hw, struct hns3_promisc_param *param)
4292 {
4293         struct hns3_promisc_cfg_cmd *req;
4294         struct hns3_cmd_desc desc;
4295         int ret;
4296
4297         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PROMISC_MODE, false);
4298
4299         req = (struct hns3_promisc_cfg_cmd *)desc.data;
4300         req->vf_id = param->vf_id;
4301         req->flag = (param->enable << HNS3_PROMISC_EN_B) |
4302             HNS3_PROMISC_TX_EN_B | HNS3_PROMISC_RX_EN_B;
4303
4304         ret = hns3_cmd_send(hw, &desc, 1);
4305         if (ret)
4306                 PMD_INIT_LOG(ERR, "Set promisc mode fail, ret = %d", ret);
4307
4308         return ret;
4309 }
4310
4311 static int
4312 hns3_set_promisc_mode(struct hns3_hw *hw, bool en_uc_pmc, bool en_mc_pmc)
4313 {
4314         struct hns3_promisc_param param;
4315         bool en_bc_pmc = true;
4316         uint8_t vf_id;
4317
4318         /*
4319          * In current version VF is not supported when PF is driven by DPDK
4320          * driver, just need to configure parameters for PF vport.
4321          */
4322         vf_id = HNS3_PF_FUNC_ID;
4323
4324         hns3_promisc_param_init(&param, en_uc_pmc, en_mc_pmc, en_bc_pmc, vf_id);
4325         return hns3_cmd_set_promisc_mode(hw, &param);
4326 }
4327
4328 static int
4329 hns3_promisc_init(struct hns3_hw *hw)
4330 {
4331         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4332         struct hns3_pf *pf = &hns->pf;
4333         struct hns3_promisc_param param;
4334         uint16_t func_id;
4335         int ret;
4336
4337         ret = hns3_set_promisc_mode(hw, false, false);
4338         if (ret) {
4339                 PMD_INIT_LOG(ERR, "failed to set promisc mode, ret = %d", ret);
4340                 return ret;
4341         }
4342
4343         /*
4344          * In current version VFs are not supported when PF is driven by DPDK
4345          * driver. After PF has been taken over by DPDK, the original VF will
4346          * be invalid. So, there is a possibility of entry residues. It should
4347          * clear VFs's promisc mode to avoid unnecessary bandwidth usage
4348          * during init.
4349          */
4350         for (func_id = HNS3_1ST_VF_FUNC_ID; func_id < pf->func_num; func_id++) {
4351                 hns3_promisc_param_init(&param, false, false, false, func_id);
4352                 ret = hns3_cmd_set_promisc_mode(hw, &param);
4353                 if (ret) {
4354                         PMD_INIT_LOG(ERR, "failed to clear vf:%u promisc mode,"
4355                                         " ret = %d", func_id, ret);
4356                         return ret;
4357                 }
4358         }
4359
4360         return 0;
4361 }
4362
4363 static void
4364 hns3_promisc_uninit(struct hns3_hw *hw)
4365 {
4366         struct hns3_promisc_param param;
4367         uint16_t func_id;
4368         int ret;
4369
4370         func_id = HNS3_PF_FUNC_ID;
4371
4372         /*
4373          * In current version VFs are not supported when PF is driven by
4374          * DPDK driver, and VFs' promisc mode status has been cleared during
4375          * init and their status will not change. So just clear PF's promisc
4376          * mode status during uninit.
4377          */
4378         hns3_promisc_param_init(&param, false, false, false, func_id);
4379         ret = hns3_cmd_set_promisc_mode(hw, &param);
4380         if (ret)
4381                 PMD_INIT_LOG(ERR, "failed to clear promisc status during"
4382                                 " uninit, ret = %d", ret);
4383 }
4384
4385 static int
4386 hns3_dev_promiscuous_enable(struct rte_eth_dev *dev)
4387 {
4388         bool allmulti = dev->data->all_multicast ? true : false;
4389         struct hns3_adapter *hns = dev->data->dev_private;
4390         struct hns3_hw *hw = &hns->hw;
4391         uint64_t offloads;
4392         int err;
4393         int ret;
4394
4395         rte_spinlock_lock(&hw->lock);
4396         ret = hns3_set_promisc_mode(hw, true, true);
4397         if (ret) {
4398                 rte_spinlock_unlock(&hw->lock);
4399                 hns3_err(hw, "failed to enable promiscuous mode, ret = %d",
4400                          ret);
4401                 return ret;
4402         }
4403
4404         /*
4405          * When promiscuous mode was enabled, disable the vlan filter to let
4406          * all packets coming in in the receiving direction.
4407          */
4408         offloads = dev->data->dev_conf.rxmode.offloads;
4409         if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4410                 ret = hns3_enable_vlan_filter(hns, false);
4411                 if (ret) {
4412                         hns3_err(hw, "failed to enable promiscuous mode due to "
4413                                      "failure to disable vlan filter, ret = %d",
4414                                  ret);
4415                         err = hns3_set_promisc_mode(hw, false, allmulti);
4416                         if (err)
4417                                 hns3_err(hw, "failed to restore promiscuous "
4418                                          "status after disable vlan filter "
4419                                          "failed during enabling promiscuous "
4420                                          "mode, ret = %d", ret);
4421                 }
4422         }
4423
4424         rte_spinlock_unlock(&hw->lock);
4425
4426         return ret;
4427 }
4428
4429 static int
4430 hns3_dev_promiscuous_disable(struct rte_eth_dev *dev)
4431 {
4432         bool allmulti = dev->data->all_multicast ? true : false;
4433         struct hns3_adapter *hns = dev->data->dev_private;
4434         struct hns3_hw *hw = &hns->hw;
4435         uint64_t offloads;
4436         int err;
4437         int ret;
4438
4439         /* If now in all_multicast mode, must remain in all_multicast mode. */
4440         rte_spinlock_lock(&hw->lock);
4441         ret = hns3_set_promisc_mode(hw, false, allmulti);
4442         if (ret) {
4443                 rte_spinlock_unlock(&hw->lock);
4444                 hns3_err(hw, "failed to disable promiscuous mode, ret = %d",
4445                          ret);
4446                 return ret;
4447         }
4448         /* when promiscuous mode was disabled, restore the vlan filter status */
4449         offloads = dev->data->dev_conf.rxmode.offloads;
4450         if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4451                 ret = hns3_enable_vlan_filter(hns, true);
4452                 if (ret) {
4453                         hns3_err(hw, "failed to disable promiscuous mode due to"
4454                                  " failure to restore vlan filter, ret = %d",
4455                                  ret);
4456                         err = hns3_set_promisc_mode(hw, true, true);
4457                         if (err)
4458                                 hns3_err(hw, "failed to restore promiscuous "
4459                                          "status after enabling vlan filter "
4460                                          "failed during disabling promiscuous "
4461                                          "mode, ret = %d", ret);
4462                 }
4463         }
4464         rte_spinlock_unlock(&hw->lock);
4465
4466         return ret;
4467 }
4468
4469 static int
4470 hns3_dev_allmulticast_enable(struct rte_eth_dev *dev)
4471 {
4472         struct hns3_adapter *hns = dev->data->dev_private;
4473         struct hns3_hw *hw = &hns->hw;
4474         int ret;
4475
4476         if (dev->data->promiscuous)
4477                 return 0;
4478
4479         rte_spinlock_lock(&hw->lock);
4480         ret = hns3_set_promisc_mode(hw, false, true);
4481         rte_spinlock_unlock(&hw->lock);
4482         if (ret)
4483                 hns3_err(hw, "failed to enable allmulticast mode, ret = %d",
4484                          ret);
4485
4486         return ret;
4487 }
4488
4489 static int
4490 hns3_dev_allmulticast_disable(struct rte_eth_dev *dev)
4491 {
4492         struct hns3_adapter *hns = dev->data->dev_private;
4493         struct hns3_hw *hw = &hns->hw;
4494         int ret;
4495
4496         /* If now in promiscuous mode, must remain in all_multicast mode. */
4497         if (dev->data->promiscuous)
4498                 return 0;
4499
4500         rte_spinlock_lock(&hw->lock);
4501         ret = hns3_set_promisc_mode(hw, false, false);
4502         rte_spinlock_unlock(&hw->lock);
4503         if (ret)
4504                 hns3_err(hw, "failed to disable allmulticast mode, ret = %d",
4505                          ret);
4506
4507         return ret;
4508 }
4509
4510 static int
4511 hns3_dev_promisc_restore(struct hns3_adapter *hns)
4512 {
4513         struct hns3_hw *hw = &hns->hw;
4514         bool allmulti = hw->data->all_multicast ? true : false;
4515         int ret;
4516
4517         if (hw->data->promiscuous) {
4518                 ret = hns3_set_promisc_mode(hw, true, true);
4519                 if (ret)
4520                         hns3_err(hw, "failed to restore promiscuous mode, "
4521                                  "ret = %d", ret);
4522                 return ret;
4523         }
4524
4525         ret = hns3_set_promisc_mode(hw, false, allmulti);
4526         if (ret)
4527                 hns3_err(hw, "failed to restore allmulticast mode, ret = %d",
4528                          ret);
4529         return ret;
4530 }
4531
4532 static int
4533 hns3_get_sfp_speed(struct hns3_hw *hw, uint32_t *speed)
4534 {
4535         struct hns3_sfp_speed_cmd *resp;
4536         struct hns3_cmd_desc desc;
4537         int ret;
4538
4539         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SFP_GET_SPEED, true);
4540         resp = (struct hns3_sfp_speed_cmd *)desc.data;
4541         ret = hns3_cmd_send(hw, &desc, 1);
4542         if (ret == -EOPNOTSUPP) {
4543                 hns3_err(hw, "IMP do not support get SFP speed %d", ret);
4544                 return ret;
4545         } else if (ret) {
4546                 hns3_err(hw, "get sfp speed failed %d", ret);
4547                 return ret;
4548         }
4549
4550         *speed = resp->sfp_speed;
4551
4552         return 0;
4553 }
4554
4555 static uint8_t
4556 hns3_check_speed_dup(uint8_t duplex, uint32_t speed)
4557 {
4558         if (!(speed == ETH_SPEED_NUM_10M || speed == ETH_SPEED_NUM_100M))
4559                 duplex = ETH_LINK_FULL_DUPLEX;
4560
4561         return duplex;
4562 }
4563
4564 static int
4565 hns3_cfg_mac_speed_dup(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
4566 {
4567         struct hns3_mac *mac = &hw->mac;
4568         int ret;
4569
4570         duplex = hns3_check_speed_dup(duplex, speed);
4571         if (mac->link_speed == speed && mac->link_duplex == duplex)
4572                 return 0;
4573
4574         ret = hns3_cfg_mac_speed_dup_hw(hw, speed, duplex);
4575         if (ret)
4576                 return ret;
4577
4578         ret = hns3_port_shaper_update(hw, speed);
4579         if (ret)
4580                 return ret;
4581
4582         mac->link_speed = speed;
4583         mac->link_duplex = duplex;
4584
4585         return 0;
4586 }
4587
4588 static int
4589 hns3_update_fiber_link_info(struct hns3_hw *hw)
4590 {
4591         struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
4592         uint32_t speed;
4593         int ret;
4594
4595         /* If IMP do not support get SFP/qSFP speed, return directly */
4596         if (!pf->support_sfp_query)
4597                 return 0;
4598
4599         ret = hns3_get_sfp_speed(hw, &speed);
4600         if (ret == -EOPNOTSUPP) {
4601                 pf->support_sfp_query = false;
4602                 return ret;
4603         } else if (ret)
4604                 return ret;
4605
4606         if (speed == ETH_SPEED_NUM_NONE)
4607                 return 0; /* do nothing if no SFP */
4608
4609         /* Config full duplex for SFP */
4610         return hns3_cfg_mac_speed_dup(hw, speed, ETH_LINK_FULL_DUPLEX);
4611 }
4612
4613 static void
4614 hns3_parse_copper_phy_params(struct hns3_cmd_desc *desc, struct hns3_mac *mac)
4615 {
4616         struct hns3_phy_params_bd0_cmd *req;
4617
4618         req = (struct hns3_phy_params_bd0_cmd *)desc[0].data;
4619         mac->link_speed = rte_le_to_cpu_32(req->speed);
4620         mac->link_duplex = hns3_get_bit(req->duplex,
4621                                            HNS3_PHY_DUPLEX_CFG_B);
4622         mac->link_autoneg = hns3_get_bit(req->autoneg,
4623                                            HNS3_PHY_AUTONEG_CFG_B);
4624         mac->supported_capa = rte_le_to_cpu_32(req->supported);
4625         mac->advertising = rte_le_to_cpu_32(req->advertising);
4626         mac->lp_advertising = rte_le_to_cpu_32(req->lp_advertising);
4627         mac->support_autoneg = !!(mac->supported_capa &
4628                                 HNS3_PHY_LINK_MODE_AUTONEG_BIT);
4629 }
4630
4631 static int
4632 hns3_get_copper_phy_params(struct hns3_hw *hw, struct hns3_mac *mac)
4633 {
4634         struct hns3_cmd_desc desc[HNS3_PHY_PARAM_CFG_BD_NUM];
4635         uint16_t i;
4636         int ret;
4637
4638         for (i = 0; i < HNS3_PHY_PARAM_CFG_BD_NUM - 1; i++) {
4639                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG,
4640                                           true);
4641                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4642         }
4643         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, true);
4644
4645         ret = hns3_cmd_send(hw, desc, HNS3_PHY_PARAM_CFG_BD_NUM);
4646         if (ret) {
4647                 hns3_err(hw, "get phy parameters failed, ret = %d.", ret);
4648                 return ret;
4649         }
4650
4651         hns3_parse_copper_phy_params(desc, mac);
4652
4653         return 0;
4654 }
4655
4656 static int
4657 hns3_update_copper_link_info(struct hns3_hw *hw)
4658 {
4659         struct hns3_mac *mac = &hw->mac;
4660         struct hns3_mac mac_info;
4661         int ret;
4662
4663         memset(&mac_info, 0, sizeof(struct hns3_mac));
4664         ret = hns3_get_copper_phy_params(hw, &mac_info);
4665         if (ret)
4666                 return ret;
4667
4668         if (mac_info.link_speed != mac->link_speed) {
4669                 ret = hns3_port_shaper_update(hw, mac_info.link_speed);
4670                 if (ret)
4671                         return ret;
4672         }
4673
4674         mac->link_speed = mac_info.link_speed;
4675         mac->link_duplex = mac_info.link_duplex;
4676         mac->link_autoneg = mac_info.link_autoneg;
4677         mac->supported_capa = mac_info.supported_capa;
4678         mac->advertising = mac_info.advertising;
4679         mac->lp_advertising = mac_info.lp_advertising;
4680         mac->support_autoneg = mac_info.support_autoneg;
4681
4682         return 0;
4683 }
4684
4685 static int
4686 hns3_update_link_info(struct rte_eth_dev *eth_dev)
4687 {
4688         struct hns3_adapter *hns = eth_dev->data->dev_private;
4689         struct hns3_hw *hw = &hns->hw;
4690         int ret = 0;
4691
4692         if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER)
4693                 ret = hns3_update_copper_link_info(hw);
4694         else if (hw->mac.media_type == HNS3_MEDIA_TYPE_FIBER)
4695                 ret = hns3_update_fiber_link_info(hw);
4696
4697         return ret;
4698 }
4699
4700 static int
4701 hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable)
4702 {
4703         struct hns3_config_mac_mode_cmd *req;
4704         struct hns3_cmd_desc desc;
4705         uint32_t loop_en = 0;
4706         uint8_t val = 0;
4707         int ret;
4708
4709         req = (struct hns3_config_mac_mode_cmd *)desc.data;
4710
4711         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAC_MODE, false);
4712         if (enable)
4713                 val = 1;
4714         hns3_set_bit(loop_en, HNS3_MAC_TX_EN_B, val);
4715         hns3_set_bit(loop_en, HNS3_MAC_RX_EN_B, val);
4716         hns3_set_bit(loop_en, HNS3_MAC_PAD_TX_B, val);
4717         hns3_set_bit(loop_en, HNS3_MAC_PAD_RX_B, val);
4718         hns3_set_bit(loop_en, HNS3_MAC_1588_TX_B, 0);
4719         hns3_set_bit(loop_en, HNS3_MAC_1588_RX_B, 0);
4720         hns3_set_bit(loop_en, HNS3_MAC_APP_LP_B, 0);
4721         hns3_set_bit(loop_en, HNS3_MAC_LINE_LP_B, 0);
4722         hns3_set_bit(loop_en, HNS3_MAC_FCS_TX_B, val);
4723         hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_B, val);
4724
4725         /*
4726          * If DEV_RX_OFFLOAD_KEEP_CRC offload is set, MAC will not strip CRC
4727          * when receiving frames. Otherwise, CRC will be stripped.
4728          */
4729         if (hw->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
4730                 hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, 0);
4731         else
4732                 hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, val);
4733         hns3_set_bit(loop_en, HNS3_MAC_TX_OVERSIZE_TRUNCATE_B, val);
4734         hns3_set_bit(loop_en, HNS3_MAC_RX_OVERSIZE_TRUNCATE_B, val);
4735         hns3_set_bit(loop_en, HNS3_MAC_TX_UNDER_MIN_ERR_B, val);
4736         req->txrx_pad_fcs_loop_en = rte_cpu_to_le_32(loop_en);
4737
4738         ret = hns3_cmd_send(hw, &desc, 1);
4739         if (ret)
4740                 PMD_INIT_LOG(ERR, "mac enable fail, ret =%d.", ret);
4741
4742         return ret;
4743 }
4744
4745 static int
4746 hns3_get_mac_link_status(struct hns3_hw *hw)
4747 {
4748         struct hns3_link_status_cmd *req;
4749         struct hns3_cmd_desc desc;
4750         int link_status;
4751         int ret;
4752
4753         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_LINK_STATUS, true);
4754         ret = hns3_cmd_send(hw, &desc, 1);
4755         if (ret) {
4756                 hns3_err(hw, "get link status cmd failed %d", ret);
4757                 return ETH_LINK_DOWN;
4758         }
4759
4760         req = (struct hns3_link_status_cmd *)desc.data;
4761         link_status = req->status & HNS3_LINK_STATUS_UP_M;
4762
4763         return !!link_status;
4764 }
4765
4766 static bool
4767 hns3_update_link_status(struct hns3_hw *hw)
4768 {
4769         int state;
4770
4771         state = hns3_get_mac_link_status(hw);
4772         if (state != hw->mac.link_status) {
4773                 hw->mac.link_status = state;
4774                 hns3_warn(hw, "Link status change to %s!", state ? "up" : "down");
4775                 hns3_config_mac_tnl_int(hw,
4776                                         state == ETH_LINK_UP ? true : false);
4777                 return true;
4778         }
4779
4780         return false;
4781 }
4782
4783 /*
4784  * Current, the PF driver get link status by two ways:
4785  * 1) Periodic polling in the intr thread context, driver call
4786  *    hns3_update_link_status to update link status.
4787  * 2) Firmware report async interrupt, driver process the event in the intr
4788  *    thread context, and call hns3_update_link_status to update link status.
4789  *
4790  * If detect link status changed, driver need report LSE. One method is add the
4791  * report LSE logic in hns3_update_link_status.
4792  *
4793  * But the PF driver ops(link_update) also call hns3_update_link_status to
4794  * update link status.
4795  * If we report LSE in hns3_update_link_status, it may lead to deadlock in the
4796  * bonding application.
4797  *
4798  * So add the one new API which used only in intr thread context.
4799  */
4800 void
4801 hns3_update_link_status_and_event(struct hns3_hw *hw)
4802 {
4803         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
4804         bool changed = hns3_update_link_status(hw);
4805         if (changed)
4806                 rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
4807 }
4808
4809 static void
4810 hns3_service_handler(void *param)
4811 {
4812         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
4813         struct hns3_adapter *hns = eth_dev->data->dev_private;
4814         struct hns3_hw *hw = &hns->hw;
4815
4816         if (!hns3_is_reset_pending(hns)) {
4817                 hns3_update_link_status_and_event(hw);
4818                 hns3_update_link_info(eth_dev);
4819         } else {
4820                 hns3_warn(hw, "Cancel the query when reset is pending");
4821         }
4822
4823         rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev);
4824 }
4825
4826 static int
4827 hns3_init_hardware(struct hns3_adapter *hns)
4828 {
4829         struct hns3_hw *hw = &hns->hw;
4830         int ret;
4831
4832         ret = hns3_map_tqp(hw);
4833         if (ret) {
4834                 PMD_INIT_LOG(ERR, "Failed to map tqp: %d", ret);
4835                 return ret;
4836         }
4837
4838         ret = hns3_init_umv_space(hw);
4839         if (ret) {
4840                 PMD_INIT_LOG(ERR, "Failed to init umv space: %d", ret);
4841                 return ret;
4842         }
4843
4844         ret = hns3_mac_init(hw);
4845         if (ret) {
4846                 PMD_INIT_LOG(ERR, "Failed to init MAC: %d", ret);
4847                 goto err_mac_init;
4848         }
4849
4850         ret = hns3_init_mgr_tbl(hw);
4851         if (ret) {
4852                 PMD_INIT_LOG(ERR, "Failed to init manager table: %d", ret);
4853                 goto err_mac_init;
4854         }
4855
4856         ret = hns3_promisc_init(hw);
4857         if (ret) {
4858                 PMD_INIT_LOG(ERR, "Failed to init promisc: %d",
4859                              ret);
4860                 goto err_mac_init;
4861         }
4862
4863         ret = hns3_init_vlan_config(hns);
4864         if (ret) {
4865                 PMD_INIT_LOG(ERR, "Failed to init vlan: %d", ret);
4866                 goto err_mac_init;
4867         }
4868
4869         ret = hns3_dcb_init(hw);
4870         if (ret) {
4871                 PMD_INIT_LOG(ERR, "Failed to init dcb: %d", ret);
4872                 goto err_mac_init;
4873         }
4874
4875         ret = hns3_init_fd_config(hns);
4876         if (ret) {
4877                 PMD_INIT_LOG(ERR, "Failed to init flow director: %d", ret);
4878                 goto err_mac_init;
4879         }
4880
4881         ret = hns3_config_tso(hw, HNS3_TSO_MSS_MIN, HNS3_TSO_MSS_MAX);
4882         if (ret) {
4883                 PMD_INIT_LOG(ERR, "Failed to config tso: %d", ret);
4884                 goto err_mac_init;
4885         }
4886
4887         ret = hns3_config_gro(hw, false);
4888         if (ret) {
4889                 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
4890                 goto err_mac_init;
4891         }
4892
4893         /*
4894          * In the initialization clearing the all hardware mapping relationship
4895          * configurations between queues and interrupt vectors is needed, so
4896          * some error caused by the residual configurations, such as the
4897          * unexpected interrupt, can be avoid.
4898          */
4899         ret = hns3_init_ring_with_vector(hw);
4900         if (ret) {
4901                 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
4902                 goto err_mac_init;
4903         }
4904
4905         /*
4906          * Requiring firmware to enable some features, driver can
4907          * still work without it.
4908          */
4909         ret = hns3_firmware_compat_config(hw, true);
4910         if (ret)
4911                 PMD_INIT_LOG(WARNING, "firmware compatible features not "
4912                              "supported, ret = %d.", ret);
4913
4914         return 0;
4915
4916 err_mac_init:
4917         hns3_uninit_umv_space(hw);
4918         return ret;
4919 }
4920
4921 static int
4922 hns3_clear_hw(struct hns3_hw *hw)
4923 {
4924         struct hns3_cmd_desc desc;
4925         int ret;
4926
4927         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_HW_STATE, false);
4928
4929         ret = hns3_cmd_send(hw, &desc, 1);
4930         if (ret && ret != -EOPNOTSUPP)
4931                 return ret;
4932
4933         return 0;
4934 }
4935
4936 static void
4937 hns3_config_all_msix_error(struct hns3_hw *hw, bool enable)
4938 {
4939         uint32_t val;
4940
4941         /*
4942          * The new firmware support report more hardware error types by
4943          * msix mode. These errors are defined as RAS errors in hardware
4944          * and belong to a different type from the MSI-x errors processed
4945          * by the network driver.
4946          *
4947          * Network driver should open the new error report on initialition
4948          */
4949         val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
4950         hns3_set_bit(val, HNS3_VECTOR0_ALL_MSIX_ERR_B, enable ? 1 : 0);
4951         hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, val);
4952 }
4953
4954 static int
4955 hns3_init_pf(struct rte_eth_dev *eth_dev)
4956 {
4957         struct rte_device *dev = eth_dev->device;
4958         struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4959         struct hns3_adapter *hns = eth_dev->data->dev_private;
4960         struct hns3_hw *hw = &hns->hw;
4961         int ret;
4962
4963         PMD_INIT_FUNC_TRACE();
4964
4965         /* Get hardware io base address from pcie BAR2 IO space */
4966         hw->io_base = pci_dev->mem_resource[2].addr;
4967
4968         /* Firmware command queue initialize */
4969         ret = hns3_cmd_init_queue(hw);
4970         if (ret) {
4971                 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
4972                 goto err_cmd_init_queue;
4973         }
4974
4975         hns3_clear_all_event_cause(hw);
4976
4977         /* Firmware command initialize */
4978         ret = hns3_cmd_init(hw);
4979         if (ret) {
4980                 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
4981                 goto err_cmd_init;
4982         }
4983
4984         /*
4985          * To ensure that the hardware environment is clean during
4986          * initialization, the driver actively clear the hardware environment
4987          * during initialization, including PF and corresponding VFs' vlan, mac,
4988          * flow table configurations, etc.
4989          */
4990         ret = hns3_clear_hw(hw);
4991         if (ret) {
4992                 PMD_INIT_LOG(ERR, "failed to clear hardware: %d", ret);
4993                 goto err_cmd_init;
4994         }
4995
4996         /* Hardware statistics of imissed registers cleared. */
4997         ret = hns3_update_imissed_stats(hw, true);
4998         if (ret) {
4999                 hns3_err(hw, "clear imissed stats failed, ret = %d", ret);
5000                 return ret;
5001         }
5002
5003         hns3_config_all_msix_error(hw, true);
5004
5005         ret = rte_intr_callback_register(&pci_dev->intr_handle,
5006                                          hns3_interrupt_handler,
5007                                          eth_dev);
5008         if (ret) {
5009                 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
5010                 goto err_intr_callback_register;
5011         }
5012
5013         ret = hns3_ptp_init(hw);
5014         if (ret)
5015                 goto err_get_config;
5016
5017         /* Enable interrupt */
5018         rte_intr_enable(&pci_dev->intr_handle);
5019         hns3_pf_enable_irq0(hw);
5020
5021         /* Get configuration */
5022         ret = hns3_get_configuration(hw);
5023         if (ret) {
5024                 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
5025                 goto err_get_config;
5026         }
5027
5028         ret = hns3_tqp_stats_init(hw);
5029         if (ret)
5030                 goto err_get_config;
5031
5032         ret = hns3_init_hardware(hns);
5033         if (ret) {
5034                 PMD_INIT_LOG(ERR, "Failed to init hardware: %d", ret);
5035                 goto err_init_hw;
5036         }
5037
5038         /* Initialize flow director filter list & hash */
5039         ret = hns3_fdir_filter_init(hns);
5040         if (ret) {
5041                 PMD_INIT_LOG(ERR, "Failed to alloc hashmap for fdir: %d", ret);
5042                 goto err_fdir;
5043         }
5044
5045         hns3_rss_set_default_args(hw);
5046
5047         ret = hns3_enable_hw_error_intr(hns, true);
5048         if (ret) {
5049                 PMD_INIT_LOG(ERR, "fail to enable hw error interrupts: %d",
5050                              ret);
5051                 goto err_enable_intr;
5052         }
5053
5054         hns3_tm_conf_init(eth_dev);
5055
5056         return 0;
5057
5058 err_enable_intr:
5059         hns3_fdir_filter_uninit(hns);
5060 err_fdir:
5061         (void)hns3_firmware_compat_config(hw, false);
5062         hns3_uninit_umv_space(hw);
5063 err_init_hw:
5064         hns3_tqp_stats_uninit(hw);
5065 err_get_config:
5066         hns3_pf_disable_irq0(hw);
5067         rte_intr_disable(&pci_dev->intr_handle);
5068         hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
5069                              eth_dev);
5070 err_intr_callback_register:
5071 err_cmd_init:
5072         hns3_cmd_uninit(hw);
5073         hns3_cmd_destroy_queue(hw);
5074 err_cmd_init_queue:
5075         hw->io_base = NULL;
5076
5077         return ret;
5078 }
5079
5080 static void
5081 hns3_uninit_pf(struct rte_eth_dev *eth_dev)
5082 {
5083         struct hns3_adapter *hns = eth_dev->data->dev_private;
5084         struct rte_device *dev = eth_dev->device;
5085         struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
5086         struct hns3_hw *hw = &hns->hw;
5087
5088         PMD_INIT_FUNC_TRACE();
5089
5090         hns3_tm_conf_uninit(eth_dev);
5091         hns3_enable_hw_error_intr(hns, false);
5092         hns3_rss_uninit(hns);
5093         (void)hns3_config_gro(hw, false);
5094         hns3_promisc_uninit(hw);
5095         hns3_fdir_filter_uninit(hns);
5096         (void)hns3_firmware_compat_config(hw, false);
5097         hns3_uninit_umv_space(hw);
5098         hns3_tqp_stats_uninit(hw);
5099         hns3_config_mac_tnl_int(hw, false);
5100         hns3_pf_disable_irq0(hw);
5101         rte_intr_disable(&pci_dev->intr_handle);
5102         hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
5103                              eth_dev);
5104         hns3_config_all_msix_error(hw, false);
5105         hns3_cmd_uninit(hw);
5106         hns3_cmd_destroy_queue(hw);
5107         hw->io_base = NULL;
5108 }
5109
5110 static int
5111 hns3_do_start(struct hns3_adapter *hns, bool reset_queue)
5112 {
5113         struct hns3_hw *hw = &hns->hw;
5114         int ret;
5115
5116         ret = hns3_dcb_cfg_update(hns);
5117         if (ret)
5118                 return ret;
5119
5120         /*
5121          * The hns3_dcb_cfg_update may configure TM module, so
5122          * hns3_tm_conf_update must called later.
5123          */
5124         ret = hns3_tm_conf_update(hw);
5125         if (ret) {
5126                 PMD_INIT_LOG(ERR, "failed to update tm conf, ret = %d.", ret);
5127                 return ret;
5128         }
5129
5130         hns3_enable_rxd_adv_layout(hw);
5131
5132         ret = hns3_init_queues(hns, reset_queue);
5133         if (ret) {
5134                 PMD_INIT_LOG(ERR, "failed to init queues, ret = %d.", ret);
5135                 return ret;
5136         }
5137
5138         ret = hns3_cfg_mac_mode(hw, true);
5139         if (ret) {
5140                 PMD_INIT_LOG(ERR, "failed to enable MAC, ret = %d", ret);
5141                 goto err_config_mac_mode;
5142         }
5143         return 0;
5144
5145 err_config_mac_mode:
5146         hns3_dev_release_mbufs(hns);
5147         /*
5148          * Here is exception handling, hns3_reset_all_tqps will have the
5149          * corresponding error message if it is handled incorrectly, so it is
5150          * not necessary to check hns3_reset_all_tqps return value, here keep
5151          * ret as the error code causing the exception.
5152          */
5153         (void)hns3_reset_all_tqps(hns);
5154         return ret;
5155 }
5156
5157 static int
5158 hns3_map_rx_interrupt(struct rte_eth_dev *dev)
5159 {
5160         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5161         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5162         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5163         uint16_t base = RTE_INTR_VEC_ZERO_OFFSET;
5164         uint16_t vec = RTE_INTR_VEC_ZERO_OFFSET;
5165         uint32_t intr_vector;
5166         uint16_t q_id;
5167         int ret;
5168
5169         /*
5170          * hns3 needs a separate interrupt to be used as event interrupt which
5171          * could not be shared with task queue pair, so KERNEL drivers need
5172          * support multiple interrupt vectors.
5173          */
5174         if (dev->data->dev_conf.intr_conf.rxq == 0 ||
5175             !rte_intr_cap_multiple(intr_handle))
5176                 return 0;
5177
5178         rte_intr_disable(intr_handle);
5179         intr_vector = hw->used_rx_queues;
5180         /* creates event fd for each intr vector when MSIX is used */
5181         if (rte_intr_efd_enable(intr_handle, intr_vector))
5182                 return -EINVAL;
5183
5184         if (intr_handle->intr_vec == NULL) {
5185                 intr_handle->intr_vec =
5186                         rte_zmalloc("intr_vec",
5187                                     hw->used_rx_queues * sizeof(int), 0);
5188                 if (intr_handle->intr_vec == NULL) {
5189                         hns3_err(hw, "failed to allocate %u rx_queues intr_vec",
5190                                         hw->used_rx_queues);
5191                         ret = -ENOMEM;
5192                         goto alloc_intr_vec_error;
5193                 }
5194         }
5195
5196         if (rte_intr_allow_others(intr_handle)) {
5197                 vec = RTE_INTR_VEC_RXTX_OFFSET;
5198                 base = RTE_INTR_VEC_RXTX_OFFSET;
5199         }
5200
5201         for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5202                 ret = hns3_bind_ring_with_vector(hw, vec, true,
5203                                                  HNS3_RING_TYPE_RX, q_id);
5204                 if (ret)
5205                         goto bind_vector_error;
5206                 intr_handle->intr_vec[q_id] = vec;
5207                 /*
5208                  * If there are not enough efds (e.g. not enough interrupt),
5209                  * remaining queues will be bond to the last interrupt.
5210                  */
5211                 if (vec < base + intr_handle->nb_efd - 1)
5212                         vec++;
5213         }
5214         rte_intr_enable(intr_handle);
5215         return 0;
5216
5217 bind_vector_error:
5218         rte_free(intr_handle->intr_vec);
5219         intr_handle->intr_vec = NULL;
5220 alloc_intr_vec_error:
5221         rte_intr_efd_disable(intr_handle);
5222         return ret;
5223 }
5224
5225 static int
5226 hns3_restore_rx_interrupt(struct hns3_hw *hw)
5227 {
5228         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
5229         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5230         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5231         uint16_t q_id;
5232         int ret;
5233
5234         if (dev->data->dev_conf.intr_conf.rxq == 0)
5235                 return 0;
5236
5237         if (rte_intr_dp_is_en(intr_handle)) {
5238                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5239                         ret = hns3_bind_ring_with_vector(hw,
5240                                         intr_handle->intr_vec[q_id], true,
5241                                         HNS3_RING_TYPE_RX, q_id);
5242                         if (ret)
5243                                 return ret;
5244                 }
5245         }
5246
5247         return 0;
5248 }
5249
5250 static void
5251 hns3_restore_filter(struct rte_eth_dev *dev)
5252 {
5253         hns3_restore_rss_filter(dev);
5254 }
5255
5256 static int
5257 hns3_dev_start(struct rte_eth_dev *dev)
5258 {
5259         struct hns3_adapter *hns = dev->data->dev_private;
5260         struct hns3_hw *hw = &hns->hw;
5261         int ret;
5262
5263         PMD_INIT_FUNC_TRACE();
5264         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
5265                 return -EBUSY;
5266
5267         rte_spinlock_lock(&hw->lock);
5268         hw->adapter_state = HNS3_NIC_STARTING;
5269
5270         ret = hns3_do_start(hns, true);
5271         if (ret) {
5272                 hw->adapter_state = HNS3_NIC_CONFIGURED;
5273                 rte_spinlock_unlock(&hw->lock);
5274                 return ret;
5275         }
5276         ret = hns3_map_rx_interrupt(dev);
5277         if (ret)
5278                 goto map_rx_inter_err;
5279
5280         /*
5281          * There are three register used to control the status of a TQP
5282          * (contains a pair of Tx queue and Rx queue) in the new version network
5283          * engine. One is used to control the enabling of Tx queue, the other is
5284          * used to control the enabling of Rx queue, and the last is the master
5285          * switch used to control the enabling of the tqp. The Tx register and
5286          * TQP register must be enabled at the same time to enable a Tx queue.
5287          * The same applies to the Rx queue. For the older network engine, this
5288          * function only refresh the enabled flag, and it is used to update the
5289          * status of queue in the dpdk framework.
5290          */
5291         ret = hns3_start_all_txqs(dev);
5292         if (ret)
5293                 goto map_rx_inter_err;
5294
5295         ret = hns3_start_all_rxqs(dev);
5296         if (ret)
5297                 goto start_all_rxqs_fail;
5298
5299         hw->adapter_state = HNS3_NIC_STARTED;
5300         rte_spinlock_unlock(&hw->lock);
5301
5302         hns3_rx_scattered_calc(dev);
5303         hns3_set_rxtx_function(dev);
5304         hns3_mp_req_start_rxtx(dev);
5305         rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, dev);
5306
5307         hns3_restore_filter(dev);
5308
5309         /* Enable interrupt of all rx queues before enabling queues */
5310         hns3_dev_all_rx_queue_intr_enable(hw, true);
5311
5312         /*
5313          * After finished the initialization, enable tqps to receive/transmit
5314          * packets and refresh all queue status.
5315          */
5316         hns3_start_tqps(hw);
5317
5318         hns3_tm_dev_start_proc(hw);
5319
5320         hns3_info(hw, "hns3 dev start successful!");
5321
5322         return 0;
5323
5324 start_all_rxqs_fail:
5325         hns3_stop_all_txqs(dev);
5326 map_rx_inter_err:
5327         (void)hns3_do_stop(hns);
5328         hw->adapter_state = HNS3_NIC_CONFIGURED;
5329         rte_spinlock_unlock(&hw->lock);
5330
5331         return ret;
5332 }
5333
5334 static int
5335 hns3_do_stop(struct hns3_adapter *hns)
5336 {
5337         struct hns3_hw *hw = &hns->hw;
5338         int ret;
5339
5340         /*
5341          * The "hns3_do_stop" function will also be called by .stop_service to
5342          * prepare reset. At the time of global or IMP reset, the command cannot
5343          * be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be
5344          * accessed during the reset process. So the mbuf can not be released
5345          * during reset and is required to be released after the reset is
5346          * completed.
5347          */
5348         if (__atomic_load_n(&hw->reset.resetting,  __ATOMIC_RELAXED) == 0)
5349                 hns3_dev_release_mbufs(hns);
5350
5351         ret = hns3_cfg_mac_mode(hw, false);
5352         if (ret)
5353                 return ret;
5354         hw->mac.link_status = ETH_LINK_DOWN;
5355
5356         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) {
5357                 hns3_configure_all_mac_addr(hns, true);
5358                 ret = hns3_reset_all_tqps(hns);
5359                 if (ret) {
5360                         hns3_err(hw, "failed to reset all queues ret = %d.",
5361                                  ret);
5362                         return ret;
5363                 }
5364         }
5365         hw->mac.default_addr_setted = false;
5366         return 0;
5367 }
5368
5369 static void
5370 hns3_unmap_rx_interrupt(struct rte_eth_dev *dev)
5371 {
5372         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5373         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5374         struct hns3_adapter *hns = dev->data->dev_private;
5375         struct hns3_hw *hw = &hns->hw;
5376         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
5377         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
5378         uint16_t q_id;
5379
5380         if (dev->data->dev_conf.intr_conf.rxq == 0)
5381                 return;
5382
5383         /* unmap the ring with vector */
5384         if (rte_intr_allow_others(intr_handle)) {
5385                 vec = RTE_INTR_VEC_RXTX_OFFSET;
5386                 base = RTE_INTR_VEC_RXTX_OFFSET;
5387         }
5388         if (rte_intr_dp_is_en(intr_handle)) {
5389                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5390                         (void)hns3_bind_ring_with_vector(hw, vec, false,
5391                                                          HNS3_RING_TYPE_RX,
5392                                                          q_id);
5393                         if (vec < base + intr_handle->nb_efd - 1)
5394                                 vec++;
5395                 }
5396         }
5397         /* Clean datapath event and queue/vec mapping */
5398         rte_intr_efd_disable(intr_handle);
5399         if (intr_handle->intr_vec) {
5400                 rte_free(intr_handle->intr_vec);
5401                 intr_handle->intr_vec = NULL;
5402         }
5403 }
5404
5405 static int
5406 hns3_dev_stop(struct rte_eth_dev *dev)
5407 {
5408         struct hns3_adapter *hns = dev->data->dev_private;
5409         struct hns3_hw *hw = &hns->hw;
5410
5411         PMD_INIT_FUNC_TRACE();
5412         dev->data->dev_started = 0;
5413
5414         hw->adapter_state = HNS3_NIC_STOPPING;
5415         hns3_set_rxtx_function(dev);
5416         rte_wmb();
5417         /* Disable datapath on secondary process. */
5418         hns3_mp_req_stop_rxtx(dev);
5419         /* Prevent crashes when queues are still in use. */
5420         rte_delay_ms(hw->tqps_num);
5421
5422         rte_spinlock_lock(&hw->lock);
5423         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
5424                 hns3_tm_dev_stop_proc(hw);
5425                 hns3_config_mac_tnl_int(hw, false);
5426                 hns3_stop_tqps(hw);
5427                 hns3_do_stop(hns);
5428                 hns3_unmap_rx_interrupt(dev);
5429                 hw->adapter_state = HNS3_NIC_CONFIGURED;
5430         }
5431         hns3_rx_scattered_reset(dev);
5432         rte_eal_alarm_cancel(hns3_service_handler, dev);
5433         rte_spinlock_unlock(&hw->lock);
5434
5435         return 0;
5436 }
5437
5438 static int
5439 hns3_dev_close(struct rte_eth_dev *eth_dev)
5440 {
5441         struct hns3_adapter *hns = eth_dev->data->dev_private;
5442         struct hns3_hw *hw = &hns->hw;
5443         int ret = 0;
5444
5445         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
5446                 rte_free(eth_dev->process_private);
5447                 eth_dev->process_private = NULL;
5448                 return 0;
5449         }
5450
5451         if (hw->adapter_state == HNS3_NIC_STARTED)
5452                 ret = hns3_dev_stop(eth_dev);
5453
5454         hw->adapter_state = HNS3_NIC_CLOSING;
5455         hns3_reset_abort(hns);
5456         hw->adapter_state = HNS3_NIC_CLOSED;
5457
5458         hns3_configure_all_mc_mac_addr(hns, true);
5459         hns3_remove_all_vlan_table(hns);
5460         hns3_vlan_txvlan_cfg(hns, HNS3_PORT_BASE_VLAN_DISABLE, 0);
5461         hns3_uninit_pf(eth_dev);
5462         hns3_free_all_queues(eth_dev);
5463         rte_free(hw->reset.wait_data);
5464         rte_free(eth_dev->process_private);
5465         eth_dev->process_private = NULL;
5466         hns3_mp_uninit_primary();
5467         hns3_warn(hw, "Close port %u finished", hw->data->port_id);
5468
5469         return ret;
5470 }
5471
5472 static int
5473 hns3_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5474 {
5475         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5476         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5477
5478         fc_conf->pause_time = pf->pause_time;
5479
5480         /* return fc current mode */
5481         switch (hw->current_mode) {
5482         case HNS3_FC_FULL:
5483                 fc_conf->mode = RTE_FC_FULL;
5484                 break;
5485         case HNS3_FC_TX_PAUSE:
5486                 fc_conf->mode = RTE_FC_TX_PAUSE;
5487                 break;
5488         case HNS3_FC_RX_PAUSE:
5489                 fc_conf->mode = RTE_FC_RX_PAUSE;
5490                 break;
5491         case HNS3_FC_NONE:
5492         default:
5493                 fc_conf->mode = RTE_FC_NONE;
5494                 break;
5495         }
5496
5497         return 0;
5498 }
5499
5500 static void
5501 hns3_get_fc_mode(struct hns3_hw *hw, enum rte_eth_fc_mode mode)
5502 {
5503         switch (mode) {
5504         case RTE_FC_NONE:
5505                 hw->requested_mode = HNS3_FC_NONE;
5506                 break;
5507         case RTE_FC_RX_PAUSE:
5508                 hw->requested_mode = HNS3_FC_RX_PAUSE;
5509                 break;
5510         case RTE_FC_TX_PAUSE:
5511                 hw->requested_mode = HNS3_FC_TX_PAUSE;
5512                 break;
5513         case RTE_FC_FULL:
5514                 hw->requested_mode = HNS3_FC_FULL;
5515                 break;
5516         default:
5517                 hw->requested_mode = HNS3_FC_NONE;
5518                 hns3_warn(hw, "fc_mode(%u) exceeds member scope and is "
5519                           "configured to RTE_FC_NONE", mode);
5520                 break;
5521         }
5522 }
5523
5524 static int
5525 hns3_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5526 {
5527         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5528         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5529         int ret;
5530
5531         if (fc_conf->high_water || fc_conf->low_water ||
5532             fc_conf->send_xon || fc_conf->mac_ctrl_frame_fwd) {
5533                 hns3_err(hw, "Unsupported flow control settings specified, "
5534                          "high_water(%u), low_water(%u), send_xon(%u) and "
5535                          "mac_ctrl_frame_fwd(%u) must be set to '0'",
5536                          fc_conf->high_water, fc_conf->low_water,
5537                          fc_conf->send_xon, fc_conf->mac_ctrl_frame_fwd);
5538                 return -EINVAL;
5539         }
5540         if (fc_conf->autoneg) {
5541                 hns3_err(hw, "Unsupported fc auto-negotiation setting.");
5542                 return -EINVAL;
5543         }
5544         if (!fc_conf->pause_time) {
5545                 hns3_err(hw, "Invalid pause time %u setting.",
5546                          fc_conf->pause_time);
5547                 return -EINVAL;
5548         }
5549
5550         if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5551             hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)) {
5552                 hns3_err(hw, "PFC is enabled. Cannot set MAC pause. "
5553                          "current_fc_status = %d", hw->current_fc_status);
5554                 return -EOPNOTSUPP;
5555         }
5556
5557         if (hw->num_tc > 1) {
5558                 hns3_err(hw, "in multi-TC scenarios, MAC pause is not supported.");
5559                 return -EOPNOTSUPP;
5560         }
5561
5562         hns3_get_fc_mode(hw, fc_conf->mode);
5563         if (hw->requested_mode == hw->current_mode &&
5564             pf->pause_time == fc_conf->pause_time)
5565                 return 0;
5566
5567         rte_spinlock_lock(&hw->lock);
5568         ret = hns3_fc_enable(dev, fc_conf);
5569         rte_spinlock_unlock(&hw->lock);
5570
5571         return ret;
5572 }
5573
5574 static int
5575 hns3_priority_flow_ctrl_set(struct rte_eth_dev *dev,
5576                             struct rte_eth_pfc_conf *pfc_conf)
5577 {
5578         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5579         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5580         uint8_t priority;
5581         int ret;
5582
5583         if (!hns3_dev_dcb_supported(hw)) {
5584                 hns3_err(hw, "This port does not support dcb configurations.");
5585                 return -EOPNOTSUPP;
5586         }
5587
5588         if (pfc_conf->fc.high_water || pfc_conf->fc.low_water ||
5589             pfc_conf->fc.send_xon || pfc_conf->fc.mac_ctrl_frame_fwd) {
5590                 hns3_err(hw, "Unsupported flow control settings specified, "
5591                          "high_water(%u), low_water(%u), send_xon(%u) and "
5592                          "mac_ctrl_frame_fwd(%u) must be set to '0'",
5593                          pfc_conf->fc.high_water, pfc_conf->fc.low_water,
5594                          pfc_conf->fc.send_xon,
5595                          pfc_conf->fc.mac_ctrl_frame_fwd);
5596                 return -EINVAL;
5597         }
5598         if (pfc_conf->fc.autoneg) {
5599                 hns3_err(hw, "Unsupported fc auto-negotiation setting.");
5600                 return -EINVAL;
5601         }
5602         if (pfc_conf->fc.pause_time == 0) {
5603                 hns3_err(hw, "Invalid pause time %u setting.",
5604                          pfc_conf->fc.pause_time);
5605                 return -EINVAL;
5606         }
5607
5608         if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5609             hw->current_fc_status == HNS3_FC_STATUS_PFC)) {
5610                 hns3_err(hw, "MAC pause is enabled. Cannot set PFC."
5611                              "current_fc_status = %d", hw->current_fc_status);
5612                 return -EOPNOTSUPP;
5613         }
5614
5615         priority = pfc_conf->priority;
5616         hns3_get_fc_mode(hw, pfc_conf->fc.mode);
5617         if (hw->dcb_info.pfc_en & BIT(priority) &&
5618             hw->requested_mode == hw->current_mode &&
5619             pfc_conf->fc.pause_time == pf->pause_time)
5620                 return 0;
5621
5622         rte_spinlock_lock(&hw->lock);
5623         ret = hns3_dcb_pfc_enable(dev, pfc_conf);
5624         rte_spinlock_unlock(&hw->lock);
5625
5626         return ret;
5627 }
5628
5629 static int
5630 hns3_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info)
5631 {
5632         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5633         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5634         enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
5635         int i;
5636
5637         rte_spinlock_lock(&hw->lock);
5638         if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG)
5639                 dcb_info->nb_tcs = pf->local_max_tc;
5640         else
5641                 dcb_info->nb_tcs = 1;
5642
5643         for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
5644                 dcb_info->prio_tc[i] = hw->dcb_info.prio_tc[i];
5645         for (i = 0; i < dcb_info->nb_tcs; i++)
5646                 dcb_info->tc_bws[i] = hw->dcb_info.pg_info[0].tc_dwrr[i];
5647
5648         for (i = 0; i < hw->num_tc; i++) {
5649                 dcb_info->tc_queue.tc_rxq[0][i].base = hw->alloc_rss_size * i;
5650                 dcb_info->tc_queue.tc_txq[0][i].base =
5651                                                 hw->tc_queue[i].tqp_offset;
5652                 dcb_info->tc_queue.tc_rxq[0][i].nb_queue = hw->alloc_rss_size;
5653                 dcb_info->tc_queue.tc_txq[0][i].nb_queue =
5654                                                 hw->tc_queue[i].tqp_count;
5655         }
5656         rte_spinlock_unlock(&hw->lock);
5657
5658         return 0;
5659 }
5660
5661 static int
5662 hns3_reinit_dev(struct hns3_adapter *hns)
5663 {
5664         struct hns3_hw *hw = &hns->hw;
5665         int ret;
5666
5667         ret = hns3_cmd_init(hw);
5668         if (ret) {
5669                 hns3_err(hw, "Failed to init cmd: %d", ret);
5670                 return ret;
5671         }
5672
5673         ret = hns3_reset_all_tqps(hns);
5674         if (ret) {
5675                 hns3_err(hw, "Failed to reset all queues: %d", ret);
5676                 return ret;
5677         }
5678
5679         ret = hns3_init_hardware(hns);
5680         if (ret) {
5681                 hns3_err(hw, "Failed to init hardware: %d", ret);
5682                 return ret;
5683         }
5684
5685         ret = hns3_enable_hw_error_intr(hns, true);
5686         if (ret) {
5687                 hns3_err(hw, "fail to enable hw error interrupts: %d",
5688                              ret);
5689                 return ret;
5690         }
5691         hns3_info(hw, "Reset done, driver initialization finished.");
5692
5693         return 0;
5694 }
5695
5696 static bool
5697 is_pf_reset_done(struct hns3_hw *hw)
5698 {
5699         uint32_t val, reg, reg_bit;
5700
5701         switch (hw->reset.level) {
5702         case HNS3_IMP_RESET:
5703                 reg = HNS3_GLOBAL_RESET_REG;
5704                 reg_bit = HNS3_IMP_RESET_BIT;
5705                 break;
5706         case HNS3_GLOBAL_RESET:
5707                 reg = HNS3_GLOBAL_RESET_REG;
5708                 reg_bit = HNS3_GLOBAL_RESET_BIT;
5709                 break;
5710         case HNS3_FUNC_RESET:
5711                 reg = HNS3_FUN_RST_ING;
5712                 reg_bit = HNS3_FUN_RST_ING_B;
5713                 break;
5714         case HNS3_FLR_RESET:
5715         default:
5716                 hns3_err(hw, "Wait for unsupported reset level: %d",
5717                          hw->reset.level);
5718                 return true;
5719         }
5720         val = hns3_read_dev(hw, reg);
5721         if (hns3_get_bit(val, reg_bit))
5722                 return false;
5723         else
5724                 return true;
5725 }
5726
5727 bool
5728 hns3_is_reset_pending(struct hns3_adapter *hns)
5729 {
5730         struct hns3_hw *hw = &hns->hw;
5731         enum hns3_reset_level reset;
5732
5733         hns3_check_event_cause(hns, NULL);
5734         reset = hns3_get_reset_level(hns, &hw->reset.pending);
5735         if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
5736                 hns3_warn(hw, "High level reset %d is pending", reset);
5737                 return true;
5738         }
5739         reset = hns3_get_reset_level(hns, &hw->reset.request);
5740         if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
5741                 hns3_warn(hw, "High level reset %d is request", reset);
5742                 return true;
5743         }
5744         return false;
5745 }
5746
5747 static int
5748 hns3_wait_hardware_ready(struct hns3_adapter *hns)
5749 {
5750         struct hns3_hw *hw = &hns->hw;
5751         struct hns3_wait_data *wait_data = hw->reset.wait_data;
5752         struct timeval tv;
5753
5754         if (wait_data->result == HNS3_WAIT_SUCCESS)
5755                 return 0;
5756         else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
5757                 gettimeofday(&tv, NULL);
5758                 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
5759                           tv.tv_sec, tv.tv_usec);
5760                 return -ETIME;
5761         } else if (wait_data->result == HNS3_WAIT_REQUEST)
5762                 return -EAGAIN;
5763
5764         wait_data->hns = hns;
5765         wait_data->check_completion = is_pf_reset_done;
5766         wait_data->end_ms = (uint64_t)HNS3_RESET_WAIT_CNT *
5767                                       HNS3_RESET_WAIT_MS + get_timeofday_ms();
5768         wait_data->interval = HNS3_RESET_WAIT_MS * USEC_PER_MSEC;
5769         wait_data->count = HNS3_RESET_WAIT_CNT;
5770         wait_data->result = HNS3_WAIT_REQUEST;
5771         rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
5772         return -EAGAIN;
5773 }
5774
5775 static int
5776 hns3_func_reset_cmd(struct hns3_hw *hw, int func_id)
5777 {
5778         struct hns3_cmd_desc desc;
5779         struct hns3_reset_cmd *req = (struct hns3_reset_cmd *)desc.data;
5780
5781         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
5782         hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_FUNC_B, 1);
5783         req->fun_reset_vfid = func_id;
5784
5785         return hns3_cmd_send(hw, &desc, 1);
5786 }
5787
5788 static int
5789 hns3_imp_reset_cmd(struct hns3_hw *hw)
5790 {
5791         struct hns3_cmd_desc desc;
5792
5793         hns3_cmd_setup_basic_desc(&desc, 0xFFFE, false);
5794         desc.data[0] = 0xeedd;
5795
5796         return hns3_cmd_send(hw, &desc, 1);
5797 }
5798
5799 static void
5800 hns3_msix_process(struct hns3_adapter *hns, enum hns3_reset_level reset_level)
5801 {
5802         struct hns3_hw *hw = &hns->hw;
5803         struct timeval tv;
5804         uint32_t val;
5805
5806         gettimeofday(&tv, NULL);
5807         if (hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG) ||
5808             hns3_read_dev(hw, HNS3_FUN_RST_ING)) {
5809                 hns3_warn(hw, "Don't process msix during resetting time=%ld.%.6ld",
5810                           tv.tv_sec, tv.tv_usec);
5811                 return;
5812         }
5813
5814         switch (reset_level) {
5815         case HNS3_IMP_RESET:
5816                 hns3_imp_reset_cmd(hw);
5817                 hns3_warn(hw, "IMP Reset requested time=%ld.%.6ld",
5818                           tv.tv_sec, tv.tv_usec);
5819                 break;
5820         case HNS3_GLOBAL_RESET:
5821                 val = hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG);
5822                 hns3_set_bit(val, HNS3_GLOBAL_RESET_BIT, 1);
5823                 hns3_write_dev(hw, HNS3_GLOBAL_RESET_REG, val);
5824                 hns3_warn(hw, "Global Reset requested time=%ld.%.6ld",
5825                           tv.tv_sec, tv.tv_usec);
5826                 break;
5827         case HNS3_FUNC_RESET:
5828                 hns3_warn(hw, "PF Reset requested time=%ld.%.6ld",
5829                           tv.tv_sec, tv.tv_usec);
5830                 /* schedule again to check later */
5831                 hns3_atomic_set_bit(HNS3_FUNC_RESET, &hw->reset.pending);
5832                 hns3_schedule_reset(hns);
5833                 break;
5834         default:
5835                 hns3_warn(hw, "Unsupported reset level: %d", reset_level);
5836                 return;
5837         }
5838         hns3_atomic_clear_bit(reset_level, &hw->reset.request);
5839 }
5840
5841 static enum hns3_reset_level
5842 hns3_get_reset_level(struct hns3_adapter *hns, uint64_t *levels)
5843 {
5844         struct hns3_hw *hw = &hns->hw;
5845         enum hns3_reset_level reset_level = HNS3_NONE_RESET;
5846
5847         /* Return the highest priority reset level amongst all */
5848         if (hns3_atomic_test_bit(HNS3_IMP_RESET, levels))
5849                 reset_level = HNS3_IMP_RESET;
5850         else if (hns3_atomic_test_bit(HNS3_GLOBAL_RESET, levels))
5851                 reset_level = HNS3_GLOBAL_RESET;
5852         else if (hns3_atomic_test_bit(HNS3_FUNC_RESET, levels))
5853                 reset_level = HNS3_FUNC_RESET;
5854         else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
5855                 reset_level = HNS3_FLR_RESET;
5856
5857         if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
5858                 return HNS3_NONE_RESET;
5859
5860         return reset_level;
5861 }
5862
5863 static void
5864 hns3_record_imp_error(struct hns3_adapter *hns)
5865 {
5866         struct hns3_hw *hw = &hns->hw;
5867         uint32_t reg_val;
5868
5869         reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5870         if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B)) {
5871                 hns3_warn(hw, "Detected IMP RD poison!");
5872                 hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B, 0);
5873                 hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5874         }
5875
5876         if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B)) {
5877                 hns3_warn(hw, "Detected IMP CMDQ error!");
5878                 hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B, 0);
5879                 hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5880         }
5881 }
5882
5883 static int
5884 hns3_prepare_reset(struct hns3_adapter *hns)
5885 {
5886         struct hns3_hw *hw = &hns->hw;
5887         uint32_t reg_val;
5888         int ret;
5889
5890         switch (hw->reset.level) {
5891         case HNS3_FUNC_RESET:
5892                 ret = hns3_func_reset_cmd(hw, HNS3_PF_FUNC_ID);
5893                 if (ret)
5894                         return ret;
5895
5896                 /*
5897                  * After performaning pf reset, it is not necessary to do the
5898                  * mailbox handling or send any command to firmware, because
5899                  * any mailbox handling or command to firmware is only valid
5900                  * after hns3_cmd_init is called.
5901                  */
5902                 __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
5903                 hw->reset.stats.request_cnt++;
5904                 break;
5905         case HNS3_IMP_RESET:
5906                 hns3_record_imp_error(hns);
5907                 reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5908                 hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val |
5909                                BIT(HNS3_VECTOR0_IMP_RESET_INT_B));
5910                 break;
5911         default:
5912                 break;
5913         }
5914         return 0;
5915 }
5916
5917 static int
5918 hns3_set_rst_done(struct hns3_hw *hw)
5919 {
5920         struct hns3_pf_rst_done_cmd *req;
5921         struct hns3_cmd_desc desc;
5922
5923         req = (struct hns3_pf_rst_done_cmd *)desc.data;
5924         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PF_RST_DONE, false);
5925         req->pf_rst_done |= HNS3_PF_RESET_DONE_BIT;
5926         return hns3_cmd_send(hw, &desc, 1);
5927 }
5928
5929 static int
5930 hns3_stop_service(struct hns3_adapter *hns)
5931 {
5932         struct hns3_hw *hw = &hns->hw;
5933         struct rte_eth_dev *eth_dev;
5934
5935         eth_dev = &rte_eth_devices[hw->data->port_id];
5936         if (hw->adapter_state == HNS3_NIC_STARTED) {
5937                 rte_eal_alarm_cancel(hns3_service_handler, eth_dev);
5938                 hns3_update_link_status_and_event(hw);
5939         }
5940         hw->mac.link_status = ETH_LINK_DOWN;
5941
5942         hns3_set_rxtx_function(eth_dev);
5943         rte_wmb();
5944         /* Disable datapath on secondary process. */
5945         hns3_mp_req_stop_rxtx(eth_dev);
5946         rte_delay_ms(hw->tqps_num);
5947
5948         rte_spinlock_lock(&hw->lock);
5949         if (hns->hw.adapter_state == HNS3_NIC_STARTED ||
5950             hw->adapter_state == HNS3_NIC_STOPPING) {
5951                 hns3_enable_all_queues(hw, false);
5952                 hns3_do_stop(hns);
5953                 hw->reset.mbuf_deferred_free = true;
5954         } else
5955                 hw->reset.mbuf_deferred_free = false;
5956
5957         /*
5958          * It is cumbersome for hardware to pick-and-choose entries for deletion
5959          * from table space. Hence, for function reset software intervention is
5960          * required to delete the entries
5961          */
5962         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0)
5963                 hns3_configure_all_mc_mac_addr(hns, true);
5964         rte_spinlock_unlock(&hw->lock);
5965
5966         return 0;
5967 }
5968
5969 static int
5970 hns3_start_service(struct hns3_adapter *hns)
5971 {
5972         struct hns3_hw *hw = &hns->hw;
5973         struct rte_eth_dev *eth_dev;
5974
5975         if (hw->reset.level == HNS3_IMP_RESET ||
5976             hw->reset.level == HNS3_GLOBAL_RESET)
5977                 hns3_set_rst_done(hw);
5978         eth_dev = &rte_eth_devices[hw->data->port_id];
5979         hns3_set_rxtx_function(eth_dev);
5980         hns3_mp_req_start_rxtx(eth_dev);
5981         if (hw->adapter_state == HNS3_NIC_STARTED) {
5982                 /*
5983                  * This API parent function already hold the hns3_hw.lock, the
5984                  * hns3_service_handler may report lse, in bonding application
5985                  * it will call driver's ops which may acquire the hns3_hw.lock
5986                  * again, thus lead to deadlock.
5987                  * We defer calls hns3_service_handler to avoid the deadlock.
5988                  */
5989                 rte_eal_alarm_set(HNS3_SERVICE_QUICK_INTERVAL,
5990                                   hns3_service_handler, eth_dev);
5991
5992                 /* Enable interrupt of all rx queues before enabling queues */
5993                 hns3_dev_all_rx_queue_intr_enable(hw, true);
5994                 /*
5995                  * Enable state of each rxq and txq will be recovered after
5996                  * reset, so we need to restore them before enable all tqps;
5997                  */
5998                 hns3_restore_tqp_enable_state(hw);
5999                 /*
6000                  * When finished the initialization, enable queues to receive
6001                  * and transmit packets.
6002                  */
6003                 hns3_enable_all_queues(hw, true);
6004         }
6005
6006         return 0;
6007 }
6008
6009 static int
6010 hns3_restore_conf(struct hns3_adapter *hns)
6011 {
6012         struct hns3_hw *hw = &hns->hw;
6013         int ret;
6014
6015         ret = hns3_configure_all_mac_addr(hns, false);
6016         if (ret)
6017                 return ret;
6018
6019         ret = hns3_configure_all_mc_mac_addr(hns, false);
6020         if (ret)
6021                 goto err_mc_mac;
6022
6023         ret = hns3_dev_promisc_restore(hns);
6024         if (ret)
6025                 goto err_promisc;
6026
6027         ret = hns3_restore_vlan_table(hns);
6028         if (ret)
6029                 goto err_promisc;
6030
6031         ret = hns3_restore_vlan_conf(hns);
6032         if (ret)
6033                 goto err_promisc;
6034
6035         ret = hns3_restore_all_fdir_filter(hns);
6036         if (ret)
6037                 goto err_promisc;
6038
6039         ret = hns3_restore_ptp(hns);
6040         if (ret)
6041                 goto err_promisc;
6042
6043         ret = hns3_restore_rx_interrupt(hw);
6044         if (ret)
6045                 goto err_promisc;
6046
6047         ret = hns3_restore_gro_conf(hw);
6048         if (ret)
6049                 goto err_promisc;
6050
6051         ret = hns3_restore_fec(hw);
6052         if (ret)
6053                 goto err_promisc;
6054
6055         if (hns->hw.adapter_state == HNS3_NIC_STARTED) {
6056                 ret = hns3_do_start(hns, false);
6057                 if (ret)
6058                         goto err_promisc;
6059                 hns3_info(hw, "hns3 dev restart successful!");
6060         } else if (hw->adapter_state == HNS3_NIC_STOPPING)
6061                 hw->adapter_state = HNS3_NIC_CONFIGURED;
6062         return 0;
6063
6064 err_promisc:
6065         hns3_configure_all_mc_mac_addr(hns, true);
6066 err_mc_mac:
6067         hns3_configure_all_mac_addr(hns, true);
6068         return ret;
6069 }
6070
6071 static void
6072 hns3_reset_service(void *param)
6073 {
6074         struct hns3_adapter *hns = (struct hns3_adapter *)param;
6075         struct hns3_hw *hw = &hns->hw;
6076         enum hns3_reset_level reset_level;
6077         struct timeval tv_delta;
6078         struct timeval tv_start;
6079         struct timeval tv;
6080         uint64_t msec;
6081         int ret;
6082
6083         /*
6084          * The interrupt is not triggered within the delay time.
6085          * The interrupt may have been lost. It is necessary to handle
6086          * the interrupt to recover from the error.
6087          */
6088         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
6089                             SCHEDULE_DEFERRED) {
6090                 __atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED,
6091                                   __ATOMIC_RELAXED);
6092                 hns3_err(hw, "Handling interrupts in delayed tasks");
6093                 hns3_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
6094                 reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
6095                 if (reset_level == HNS3_NONE_RESET) {
6096                         hns3_err(hw, "No reset level is set, try IMP reset");
6097                         hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
6098                 }
6099         }
6100         __atomic_store_n(&hw->reset.schedule, SCHEDULE_NONE, __ATOMIC_RELAXED);
6101
6102         /*
6103          * Check if there is any ongoing reset in the hardware. This status can
6104          * be checked from reset_pending. If there is then, we need to wait for
6105          * hardware to complete reset.
6106          *    a. If we are able to figure out in reasonable time that hardware
6107          *       has fully resetted then, we can proceed with driver, client
6108          *       reset.
6109          *    b. else, we can come back later to check this status so re-sched
6110          *       now.
6111          */
6112         reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
6113         if (reset_level != HNS3_NONE_RESET) {
6114                 gettimeofday(&tv_start, NULL);
6115                 ret = hns3_reset_process(hns, reset_level);
6116                 gettimeofday(&tv, NULL);
6117                 timersub(&tv, &tv_start, &tv_delta);
6118                 msec = tv_delta.tv_sec * MSEC_PER_SEC +
6119                        tv_delta.tv_usec / USEC_PER_MSEC;
6120                 if (msec > HNS3_RESET_PROCESS_MS)
6121                         hns3_err(hw, "%d handle long time delta %" PRIx64
6122                                      " ms time=%ld.%.6ld",
6123                                  hw->reset.level, msec,
6124                                  tv.tv_sec, tv.tv_usec);
6125                 if (ret == -EAGAIN)
6126                         return;
6127         }
6128
6129         /* Check if we got any *new* reset requests to be honored */
6130         reset_level = hns3_get_reset_level(hns, &hw->reset.request);
6131         if (reset_level != HNS3_NONE_RESET)
6132                 hns3_msix_process(hns, reset_level);
6133 }
6134
6135 static unsigned int
6136 hns3_get_speed_capa_num(uint16_t device_id)
6137 {
6138         unsigned int num;
6139
6140         switch (device_id) {
6141         case HNS3_DEV_ID_25GE:
6142         case HNS3_DEV_ID_25GE_RDMA:
6143                 num = 2;
6144                 break;
6145         case HNS3_DEV_ID_100G_RDMA_MACSEC:
6146         case HNS3_DEV_ID_200G_RDMA:
6147                 num = 1;
6148                 break;
6149         default:
6150                 num = 0;
6151                 break;
6152         }
6153
6154         return num;
6155 }
6156
6157 static int
6158 hns3_get_speed_fec_capa(struct rte_eth_fec_capa *speed_fec_capa,
6159                         uint16_t device_id)
6160 {
6161         switch (device_id) {
6162         case HNS3_DEV_ID_25GE:
6163         /* fallthrough */
6164         case HNS3_DEV_ID_25GE_RDMA:
6165                 speed_fec_capa[0].speed = speed_fec_capa_tbl[1].speed;
6166                 speed_fec_capa[0].capa = speed_fec_capa_tbl[1].capa;
6167
6168                 /* In HNS3 device, the 25G NIC is compatible with 10G rate */
6169                 speed_fec_capa[1].speed = speed_fec_capa_tbl[0].speed;
6170                 speed_fec_capa[1].capa = speed_fec_capa_tbl[0].capa;
6171                 break;
6172         case HNS3_DEV_ID_100G_RDMA_MACSEC:
6173                 speed_fec_capa[0].speed = speed_fec_capa_tbl[4].speed;
6174                 speed_fec_capa[0].capa = speed_fec_capa_tbl[4].capa;
6175                 break;
6176         case HNS3_DEV_ID_200G_RDMA:
6177                 speed_fec_capa[0].speed = speed_fec_capa_tbl[5].speed;
6178                 speed_fec_capa[0].capa = speed_fec_capa_tbl[5].capa;
6179                 break;
6180         default:
6181                 return -ENOTSUP;
6182         }
6183
6184         return 0;
6185 }
6186
6187 static int
6188 hns3_fec_get_capability(struct rte_eth_dev *dev,
6189                         struct rte_eth_fec_capa *speed_fec_capa,
6190                         unsigned int num)
6191 {
6192         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6193         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
6194         uint16_t device_id = pci_dev->id.device_id;
6195         unsigned int capa_num;
6196         int ret;
6197
6198         capa_num = hns3_get_speed_capa_num(device_id);
6199         if (capa_num == 0) {
6200                 hns3_err(hw, "device(0x%x) is not supported by hns3 PMD",
6201                          device_id);
6202                 return -ENOTSUP;
6203         }
6204
6205         if (speed_fec_capa == NULL || num < capa_num)
6206                 return capa_num;
6207
6208         ret = hns3_get_speed_fec_capa(speed_fec_capa, device_id);
6209         if (ret)
6210                 return -ENOTSUP;
6211
6212         return capa_num;
6213 }
6214
6215 static int
6216 get_current_fec_auto_state(struct hns3_hw *hw, uint8_t *state)
6217 {
6218         struct hns3_config_fec_cmd *req;
6219         struct hns3_cmd_desc desc;
6220         int ret;
6221
6222         /*
6223          * CMD(HNS3_OPC_CONFIG_FEC_MODE) read is not supported
6224          * in device of link speed
6225          * below 10 Gbps.
6226          */
6227         if (hw->mac.link_speed < ETH_SPEED_NUM_10G) {
6228                 *state = 0;
6229                 return 0;
6230         }
6231
6232         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, true);
6233         req = (struct hns3_config_fec_cmd *)desc.data;
6234         ret = hns3_cmd_send(hw, &desc, 1);
6235         if (ret) {
6236                 hns3_err(hw, "get current fec auto state failed, ret = %d",
6237                          ret);
6238                 return ret;
6239         }
6240
6241         *state = req->fec_mode & (1U << HNS3_MAC_CFG_FEC_AUTO_EN_B);
6242         return 0;
6243 }
6244
6245 static int
6246 hns3_fec_get_internal(struct hns3_hw *hw, uint32_t *fec_capa)
6247 {
6248 #define QUERY_ACTIVE_SPEED      1
6249         struct hns3_sfp_speed_cmd *resp;
6250         uint32_t tmp_fec_capa;
6251         uint8_t auto_state;
6252         struct hns3_cmd_desc desc;
6253         int ret;
6254
6255         /*
6256          * If link is down and AUTO is enabled, AUTO is returned, otherwise,
6257          * configured FEC mode is returned.
6258          * If link is up, current FEC mode is returned.
6259          */
6260         if (hw->mac.link_status == ETH_LINK_DOWN) {
6261                 ret = get_current_fec_auto_state(hw, &auto_state);
6262                 if (ret)
6263                         return ret;
6264
6265                 if (auto_state == 0x1) {
6266                         *fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(AUTO);
6267                         return 0;
6268                 }
6269         }
6270
6271         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SFP_GET_SPEED, true);
6272         resp = (struct hns3_sfp_speed_cmd *)desc.data;
6273         resp->query_type = QUERY_ACTIVE_SPEED;
6274
6275         ret = hns3_cmd_send(hw, &desc, 1);
6276         if (ret == -EOPNOTSUPP) {
6277                 hns3_err(hw, "IMP do not support get FEC, ret = %d", ret);
6278                 return ret;
6279         } else if (ret) {
6280                 hns3_err(hw, "get FEC failed, ret = %d", ret);
6281                 return ret;
6282         }
6283
6284         /*
6285          * FEC mode order defined in hns3 hardware is inconsistend with
6286          * that defined in the ethdev library. So the sequence needs
6287          * to be converted.
6288          */
6289         switch (resp->active_fec) {
6290         case HNS3_HW_FEC_MODE_NOFEC:
6291                 tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6292                 break;
6293         case HNS3_HW_FEC_MODE_BASER:
6294                 tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(BASER);
6295                 break;
6296         case HNS3_HW_FEC_MODE_RS:
6297                 tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(RS);
6298                 break;
6299         default:
6300                 tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6301                 break;
6302         }
6303
6304         *fec_capa = tmp_fec_capa;
6305         return 0;
6306 }
6307
6308 static int
6309 hns3_fec_get(struct rte_eth_dev *dev, uint32_t *fec_capa)
6310 {
6311         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6312
6313         return hns3_fec_get_internal(hw, fec_capa);
6314 }
6315
6316 static int
6317 hns3_set_fec_hw(struct hns3_hw *hw, uint32_t mode)
6318 {
6319         struct hns3_config_fec_cmd *req;
6320         struct hns3_cmd_desc desc;
6321         int ret;
6322
6323         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, false);
6324
6325         req = (struct hns3_config_fec_cmd *)desc.data;
6326         switch (mode) {
6327         case RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC):
6328                 hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6329                                 HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_OFF);
6330                 break;
6331         case RTE_ETH_FEC_MODE_CAPA_MASK(BASER):
6332                 hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6333                                 HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_BASER);
6334                 break;
6335         case RTE_ETH_FEC_MODE_CAPA_MASK(RS):
6336                 hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6337                                 HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_RS);
6338                 break;
6339         case RTE_ETH_FEC_MODE_CAPA_MASK(AUTO):
6340                 hns3_set_bit(req->fec_mode, HNS3_MAC_CFG_FEC_AUTO_EN_B, 1);
6341                 break;
6342         default:
6343                 return 0;
6344         }
6345         ret = hns3_cmd_send(hw, &desc, 1);
6346         if (ret)
6347                 hns3_err(hw, "set fec mode failed, ret = %d", ret);
6348
6349         return ret;
6350 }
6351
6352 static uint32_t
6353 get_current_speed_fec_cap(struct hns3_hw *hw, struct rte_eth_fec_capa *fec_capa)
6354 {
6355         struct hns3_mac *mac = &hw->mac;
6356         uint32_t cur_capa;
6357
6358         switch (mac->link_speed) {
6359         case ETH_SPEED_NUM_10G:
6360                 cur_capa = fec_capa[1].capa;
6361                 break;
6362         case ETH_SPEED_NUM_25G:
6363         case ETH_SPEED_NUM_100G:
6364         case ETH_SPEED_NUM_200G:
6365                 cur_capa = fec_capa[0].capa;
6366                 break;
6367         default:
6368                 cur_capa = 0;
6369                 break;
6370         }
6371
6372         return cur_capa;
6373 }
6374
6375 static bool
6376 is_fec_mode_one_bit_set(uint32_t mode)
6377 {
6378         int cnt = 0;
6379         uint8_t i;
6380
6381         for (i = 0; i < sizeof(mode); i++)
6382                 if (mode >> i & 0x1)
6383                         cnt++;
6384
6385         return cnt == 1 ? true : false;
6386 }
6387
6388 static int
6389 hns3_fec_set(struct rte_eth_dev *dev, uint32_t mode)
6390 {
6391 #define FEC_CAPA_NUM 2
6392         struct hns3_adapter *hns = dev->data->dev_private;
6393         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6394         struct hns3_pf *pf = &hns->pf;
6395
6396         struct rte_eth_fec_capa fec_capa[FEC_CAPA_NUM];
6397         uint32_t cur_capa;
6398         uint32_t num = FEC_CAPA_NUM;
6399         int ret;
6400
6401         ret = hns3_fec_get_capability(dev, fec_capa, num);
6402         if (ret < 0)
6403                 return ret;
6404
6405         /* HNS3 PMD driver only support one bit set mode, e.g. 0x1, 0x4 */
6406         if (!is_fec_mode_one_bit_set(mode))
6407                 hns3_err(hw, "FEC mode(0x%x) not supported in HNS3 PMD,"
6408                              "FEC mode should be only one bit set", mode);
6409
6410         /*
6411          * Check whether the configured mode is within the FEC capability.
6412          * If not, the configured mode will not be supported.
6413          */
6414         cur_capa = get_current_speed_fec_cap(hw, fec_capa);
6415         if (!(cur_capa & mode)) {
6416                 hns3_err(hw, "unsupported FEC mode = 0x%x", mode);
6417                 return -EINVAL;
6418         }
6419
6420         ret = hns3_set_fec_hw(hw, mode);
6421         if (ret)
6422                 return ret;
6423
6424         pf->fec_mode = mode;
6425         return 0;
6426 }
6427
6428 static int
6429 hns3_restore_fec(struct hns3_hw *hw)
6430 {
6431         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
6432         struct hns3_pf *pf = &hns->pf;
6433         uint32_t mode = pf->fec_mode;
6434         int ret;
6435
6436         ret = hns3_set_fec_hw(hw, mode);
6437         if (ret)
6438                 hns3_err(hw, "restore fec mode(0x%x) failed, ret = %d",
6439                          mode, ret);
6440
6441         return ret;
6442 }
6443
6444 static int
6445 hns3_query_dev_fec_info(struct hns3_hw *hw)
6446 {
6447         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
6448         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(hns);
6449         int ret;
6450
6451         ret = hns3_fec_get_internal(hw, &pf->fec_mode);
6452         if (ret)
6453                 hns3_err(hw, "query device FEC info failed, ret = %d", ret);
6454
6455         return ret;
6456 }
6457
6458 static bool
6459 hns3_optical_module_existed(struct hns3_hw *hw)
6460 {
6461         struct hns3_cmd_desc desc;
6462         bool existed;
6463         int ret;
6464
6465         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_EXIST, true);
6466         ret = hns3_cmd_send(hw, &desc, 1);
6467         if (ret) {
6468                 hns3_err(hw,
6469                          "fail to get optical module exist state, ret = %d.\n",
6470                          ret);
6471                 return false;
6472         }
6473         existed = !!desc.data[0];
6474
6475         return existed;
6476 }
6477
6478 static int
6479 hns3_get_module_eeprom_data(struct hns3_hw *hw, uint32_t offset,
6480                                 uint32_t len, uint8_t *data)
6481 {
6482 #define HNS3_SFP_INFO_CMD_NUM 6
6483 #define HNS3_SFP_INFO_MAX_LEN \
6484         (HNS3_SFP_INFO_BD0_LEN + \
6485         (HNS3_SFP_INFO_CMD_NUM - 1) * HNS3_SFP_INFO_BDX_LEN)
6486         struct hns3_cmd_desc desc[HNS3_SFP_INFO_CMD_NUM];
6487         struct hns3_sfp_info_bd0_cmd *sfp_info_bd0;
6488         uint16_t read_len;
6489         uint16_t copy_len;
6490         int ret;
6491         int i;
6492
6493         for (i = 0; i < HNS3_SFP_INFO_CMD_NUM; i++) {
6494                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_SFP_EEPROM,
6495                                           true);
6496                 if (i < HNS3_SFP_INFO_CMD_NUM - 1)
6497                         desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
6498         }
6499
6500         sfp_info_bd0 = (struct hns3_sfp_info_bd0_cmd *)desc[0].data;
6501         sfp_info_bd0->offset = rte_cpu_to_le_16((uint16_t)offset);
6502         read_len = RTE_MIN(len, HNS3_SFP_INFO_MAX_LEN);
6503         sfp_info_bd0->read_len = rte_cpu_to_le_16((uint16_t)read_len);
6504
6505         ret = hns3_cmd_send(hw, desc, HNS3_SFP_INFO_CMD_NUM);
6506         if (ret) {
6507                 hns3_err(hw, "fail to get module EEPROM info, ret = %d.\n",
6508                                 ret);
6509                 return ret;
6510         }
6511
6512         /* The data format in BD0 is different with the others. */
6513         copy_len = RTE_MIN(len, HNS3_SFP_INFO_BD0_LEN);
6514         memcpy(data, sfp_info_bd0->data, copy_len);
6515         read_len = copy_len;
6516
6517         for (i = 1; i < HNS3_SFP_INFO_CMD_NUM; i++) {
6518                 if (read_len >= len)
6519                         break;
6520
6521                 copy_len = RTE_MIN(len - read_len, HNS3_SFP_INFO_BDX_LEN);
6522                 memcpy(data + read_len, desc[i].data, copy_len);
6523                 read_len += copy_len;
6524         }
6525
6526         return (int)read_len;
6527 }
6528
6529 static int
6530 hns3_get_module_eeprom(struct rte_eth_dev *dev,
6531                        struct rte_dev_eeprom_info *info)
6532 {
6533         struct hns3_adapter *hns = dev->data->dev_private;
6534         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6535         uint32_t offset = info->offset;
6536         uint32_t len = info->length;
6537         uint8_t *data = info->data;
6538         uint32_t read_len = 0;
6539
6540         if (hw->mac.media_type != HNS3_MEDIA_TYPE_FIBER)
6541                 return -ENOTSUP;
6542
6543         if (!hns3_optical_module_existed(hw)) {
6544                 hns3_err(hw, "fail to read module EEPROM: no module is connected.\n");
6545                 return -EIO;
6546         }
6547
6548         while (read_len < len) {
6549                 int ret;
6550                 ret = hns3_get_module_eeprom_data(hw, offset + read_len,
6551                                                   len - read_len,
6552                                                   data + read_len);
6553                 if (ret < 0)
6554                         return -EIO;
6555                 read_len += ret;
6556         }
6557
6558         return 0;
6559 }
6560
6561 static int
6562 hns3_get_module_info(struct rte_eth_dev *dev,
6563                      struct rte_eth_dev_module_info *modinfo)
6564 {
6565 #define HNS3_SFF8024_ID_SFP             0x03
6566 #define HNS3_SFF8024_ID_QSFP_8438       0x0c
6567 #define HNS3_SFF8024_ID_QSFP_8436_8636  0x0d
6568 #define HNS3_SFF8024_ID_QSFP28_8636     0x11
6569 #define HNS3_SFF_8636_V1_3              0x03
6570         struct hns3_adapter *hns = dev->data->dev_private;
6571         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6572         struct rte_dev_eeprom_info info;
6573         struct hns3_sfp_type sfp_type;
6574         int ret;
6575
6576         memset(&sfp_type, 0, sizeof(sfp_type));
6577         memset(&info, 0, sizeof(info));
6578         info.data = (uint8_t *)&sfp_type;
6579         info.length = sizeof(sfp_type);
6580         ret = hns3_get_module_eeprom(dev, &info);
6581         if (ret)
6582                 return ret;
6583
6584         switch (sfp_type.type) {
6585         case HNS3_SFF8024_ID_SFP:
6586                 modinfo->type = RTE_ETH_MODULE_SFF_8472;
6587                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
6588                 break;
6589         case HNS3_SFF8024_ID_QSFP_8438:
6590                 modinfo->type = RTE_ETH_MODULE_SFF_8436;
6591                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
6592                 break;
6593         case HNS3_SFF8024_ID_QSFP_8436_8636:
6594                 if (sfp_type.ext_type < HNS3_SFF_8636_V1_3) {
6595                         modinfo->type = RTE_ETH_MODULE_SFF_8436;
6596                         modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
6597                 } else {
6598                         modinfo->type = RTE_ETH_MODULE_SFF_8636;
6599                         modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
6600                 }
6601                 break;
6602         case HNS3_SFF8024_ID_QSFP28_8636:
6603                 modinfo->type = RTE_ETH_MODULE_SFF_8636;
6604                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
6605                 break;
6606         default:
6607                 hns3_err(hw, "unknown module, type = %u, extra_type = %u.\n",
6608                          sfp_type.type, sfp_type.ext_type);
6609                 return -EINVAL;
6610         }
6611
6612         return 0;
6613 }
6614
6615 static int
6616 hns3_parse_io_hint_func(const char *key, const char *value, void *extra_args)
6617 {
6618         uint32_t hint = HNS3_IO_FUNC_HINT_NONE;
6619
6620         RTE_SET_USED(key);
6621
6622         if (strcmp(value, "vec") == 0)
6623                 hint = HNS3_IO_FUNC_HINT_VEC;
6624         else if (strcmp(value, "sve") == 0)
6625                 hint = HNS3_IO_FUNC_HINT_SVE;
6626         else if (strcmp(value, "simple") == 0)
6627                 hint = HNS3_IO_FUNC_HINT_SIMPLE;
6628         else if (strcmp(value, "common") == 0)
6629                 hint = HNS3_IO_FUNC_HINT_COMMON;
6630
6631         /* If the hint is valid then update output parameters */
6632         if (hint != HNS3_IO_FUNC_HINT_NONE)
6633                 *(uint32_t *)extra_args = hint;
6634
6635         return 0;
6636 }
6637
6638 static const char *
6639 hns3_get_io_hint_func_name(uint32_t hint)
6640 {
6641         switch (hint) {
6642         case HNS3_IO_FUNC_HINT_VEC:
6643                 return "vec";
6644         case HNS3_IO_FUNC_HINT_SVE:
6645                 return "sve";
6646         case HNS3_IO_FUNC_HINT_SIMPLE:
6647                 return "simple";
6648         case HNS3_IO_FUNC_HINT_COMMON:
6649                 return "common";
6650         default:
6651                 return "none";
6652         }
6653 }
6654
6655 void
6656 hns3_parse_devargs(struct rte_eth_dev *dev)
6657 {
6658         struct hns3_adapter *hns = dev->data->dev_private;
6659         uint32_t rx_func_hint = HNS3_IO_FUNC_HINT_NONE;
6660         uint32_t tx_func_hint = HNS3_IO_FUNC_HINT_NONE;
6661         struct hns3_hw *hw = &hns->hw;
6662         struct rte_kvargs *kvlist;
6663
6664         if (dev->device->devargs == NULL)
6665                 return;
6666
6667         kvlist = rte_kvargs_parse(dev->device->devargs->args, NULL);
6668         if (!kvlist)
6669                 return;
6670
6671         rte_kvargs_process(kvlist, HNS3_DEVARG_RX_FUNC_HINT,
6672                            &hns3_parse_io_hint_func, &rx_func_hint);
6673         rte_kvargs_process(kvlist, HNS3_DEVARG_TX_FUNC_HINT,
6674                            &hns3_parse_io_hint_func, &tx_func_hint);
6675         rte_kvargs_free(kvlist);
6676
6677         if (rx_func_hint != HNS3_IO_FUNC_HINT_NONE)
6678                 hns3_warn(hw, "parsed %s = %s.", HNS3_DEVARG_RX_FUNC_HINT,
6679                           hns3_get_io_hint_func_name(rx_func_hint));
6680         hns->rx_func_hint = rx_func_hint;
6681         if (tx_func_hint != HNS3_IO_FUNC_HINT_NONE)
6682                 hns3_warn(hw, "parsed %s = %s.", HNS3_DEVARG_TX_FUNC_HINT,
6683                           hns3_get_io_hint_func_name(tx_func_hint));
6684         hns->tx_func_hint = tx_func_hint;
6685 }
6686
6687 static const struct eth_dev_ops hns3_eth_dev_ops = {
6688         .dev_configure      = hns3_dev_configure,
6689         .dev_start          = hns3_dev_start,
6690         .dev_stop           = hns3_dev_stop,
6691         .dev_close          = hns3_dev_close,
6692         .promiscuous_enable = hns3_dev_promiscuous_enable,
6693         .promiscuous_disable = hns3_dev_promiscuous_disable,
6694         .allmulticast_enable  = hns3_dev_allmulticast_enable,
6695         .allmulticast_disable = hns3_dev_allmulticast_disable,
6696         .mtu_set            = hns3_dev_mtu_set,
6697         .stats_get          = hns3_stats_get,
6698         .stats_reset        = hns3_stats_reset,
6699         .xstats_get         = hns3_dev_xstats_get,
6700         .xstats_get_names   = hns3_dev_xstats_get_names,
6701         .xstats_reset       = hns3_dev_xstats_reset,
6702         .xstats_get_by_id   = hns3_dev_xstats_get_by_id,
6703         .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
6704         .dev_infos_get          = hns3_dev_infos_get,
6705         .fw_version_get         = hns3_fw_version_get,
6706         .rx_queue_setup         = hns3_rx_queue_setup,
6707         .tx_queue_setup         = hns3_tx_queue_setup,
6708         .rx_queue_release       = hns3_dev_rx_queue_release,
6709         .tx_queue_release       = hns3_dev_tx_queue_release,
6710         .rx_queue_start         = hns3_dev_rx_queue_start,
6711         .rx_queue_stop          = hns3_dev_rx_queue_stop,
6712         .tx_queue_start         = hns3_dev_tx_queue_start,
6713         .tx_queue_stop          = hns3_dev_tx_queue_stop,
6714         .rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
6715         .rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
6716         .rxq_info_get           = hns3_rxq_info_get,
6717         .txq_info_get           = hns3_txq_info_get,
6718         .rx_burst_mode_get      = hns3_rx_burst_mode_get,
6719         .tx_burst_mode_get      = hns3_tx_burst_mode_get,
6720         .flow_ctrl_get          = hns3_flow_ctrl_get,
6721         .flow_ctrl_set          = hns3_flow_ctrl_set,
6722         .priority_flow_ctrl_set = hns3_priority_flow_ctrl_set,
6723         .mac_addr_add           = hns3_add_mac_addr,
6724         .mac_addr_remove        = hns3_remove_mac_addr,
6725         .mac_addr_set           = hns3_set_default_mac_addr,
6726         .set_mc_addr_list       = hns3_set_mc_mac_addr_list,
6727         .link_update            = hns3_dev_link_update,
6728         .rss_hash_update        = hns3_dev_rss_hash_update,
6729         .rss_hash_conf_get      = hns3_dev_rss_hash_conf_get,
6730         .reta_update            = hns3_dev_rss_reta_update,
6731         .reta_query             = hns3_dev_rss_reta_query,
6732         .flow_ops_get           = hns3_dev_flow_ops_get,
6733         .vlan_filter_set        = hns3_vlan_filter_set,
6734         .vlan_tpid_set          = hns3_vlan_tpid_set,
6735         .vlan_offload_set       = hns3_vlan_offload_set,
6736         .vlan_pvid_set          = hns3_vlan_pvid_set,
6737         .get_reg                = hns3_get_regs,
6738         .get_module_info        = hns3_get_module_info,
6739         .get_module_eeprom      = hns3_get_module_eeprom,
6740         .get_dcb_info           = hns3_get_dcb_info,
6741         .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
6742         .fec_get_capability     = hns3_fec_get_capability,
6743         .fec_get                = hns3_fec_get,
6744         .fec_set                = hns3_fec_set,
6745         .tm_ops_get             = hns3_tm_ops_get,
6746         .tx_done_cleanup        = hns3_tx_done_cleanup,
6747         .timesync_enable            = hns3_timesync_enable,
6748         .timesync_disable           = hns3_timesync_disable,
6749         .timesync_read_rx_timestamp = hns3_timesync_read_rx_timestamp,
6750         .timesync_read_tx_timestamp = hns3_timesync_read_tx_timestamp,
6751         .timesync_adjust_time       = hns3_timesync_adjust_time,
6752         .timesync_read_time         = hns3_timesync_read_time,
6753         .timesync_write_time        = hns3_timesync_write_time,
6754 };
6755
6756 static const struct hns3_reset_ops hns3_reset_ops = {
6757         .reset_service       = hns3_reset_service,
6758         .stop_service        = hns3_stop_service,
6759         .prepare_reset       = hns3_prepare_reset,
6760         .wait_hardware_ready = hns3_wait_hardware_ready,
6761         .reinit_dev          = hns3_reinit_dev,
6762         .restore_conf        = hns3_restore_conf,
6763         .start_service       = hns3_start_service,
6764 };
6765
6766 static int
6767 hns3_dev_init(struct rte_eth_dev *eth_dev)
6768 {
6769         struct hns3_adapter *hns = eth_dev->data->dev_private;
6770         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
6771         struct rte_ether_addr *eth_addr;
6772         struct hns3_hw *hw = &hns->hw;
6773         int ret;
6774
6775         PMD_INIT_FUNC_TRACE();
6776
6777         eth_dev->process_private = (struct hns3_process_private *)
6778             rte_zmalloc_socket("hns3_filter_list",
6779                                sizeof(struct hns3_process_private),
6780                                RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
6781         if (eth_dev->process_private == NULL) {
6782                 PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
6783                 return -ENOMEM;
6784         }
6785         /* initialize flow filter lists */
6786         hns3_filterlist_init(eth_dev);
6787
6788         hns3_set_rxtx_function(eth_dev);
6789         eth_dev->dev_ops = &hns3_eth_dev_ops;
6790         eth_dev->rx_queue_count = hns3_rx_queue_count;
6791         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
6792                 ret = hns3_mp_init_secondary();
6793                 if (ret) {
6794                         PMD_INIT_LOG(ERR, "Failed to init for secondary "
6795                                      "process, ret = %d", ret);
6796                         goto err_mp_init_secondary;
6797                 }
6798
6799                 hw->secondary_cnt++;
6800                 return 0;
6801         }
6802
6803         ret = hns3_mp_init_primary();
6804         if (ret) {
6805                 PMD_INIT_LOG(ERR,
6806                              "Failed to init for primary process, ret = %d",
6807                              ret);
6808                 goto err_mp_init_primary;
6809         }
6810
6811         hw->adapter_state = HNS3_NIC_UNINITIALIZED;
6812         hns->is_vf = false;
6813         hw->data = eth_dev->data;
6814         hns3_parse_devargs(eth_dev);
6815
6816         /*
6817          * Set default max packet size according to the mtu
6818          * default vale in DPDK frame.
6819          */
6820         hns->pf.mps = hw->data->mtu + HNS3_ETH_OVERHEAD;
6821
6822         ret = hns3_reset_init(hw);
6823         if (ret)
6824                 goto err_init_reset;
6825         hw->reset.ops = &hns3_reset_ops;
6826
6827         ret = hns3_init_pf(eth_dev);
6828         if (ret) {
6829                 PMD_INIT_LOG(ERR, "Failed to init pf: %d", ret);
6830                 goto err_init_pf;
6831         }
6832
6833         /* Allocate memory for storing MAC addresses */
6834         eth_dev->data->mac_addrs = rte_zmalloc("hns3-mac",
6835                                                sizeof(struct rte_ether_addr) *
6836                                                HNS3_UC_MACADDR_NUM, 0);
6837         if (eth_dev->data->mac_addrs == NULL) {
6838                 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
6839                              "to store MAC addresses",
6840                              sizeof(struct rte_ether_addr) *
6841                              HNS3_UC_MACADDR_NUM);
6842                 ret = -ENOMEM;
6843                 goto err_rte_zmalloc;
6844         }
6845
6846         eth_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
6847         if (!rte_is_valid_assigned_ether_addr(eth_addr)) {
6848                 rte_eth_random_addr(hw->mac.mac_addr);
6849                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
6850                                 (struct rte_ether_addr *)hw->mac.mac_addr);
6851                 hns3_warn(hw, "default mac_addr from firmware is an invalid "
6852                           "unicast address, using random MAC address %s",
6853                           mac_str);
6854         }
6855         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
6856                             &eth_dev->data->mac_addrs[0]);
6857
6858         hw->adapter_state = HNS3_NIC_INITIALIZED;
6859
6860         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
6861                             SCHEDULE_PENDING) {
6862                 hns3_err(hw, "Reschedule reset service after dev_init");
6863                 hns3_schedule_reset(hns);
6864         } else {
6865                 /* IMP will wait ready flag before reset */
6866                 hns3_notify_reset_ready(hw, false);
6867         }
6868
6869         hns3_info(hw, "hns3 dev initialization successful!");
6870         return 0;
6871
6872 err_rte_zmalloc:
6873         hns3_uninit_pf(eth_dev);
6874
6875 err_init_pf:
6876         rte_free(hw->reset.wait_data);
6877
6878 err_init_reset:
6879         hns3_mp_uninit_primary();
6880
6881 err_mp_init_primary:
6882 err_mp_init_secondary:
6883         eth_dev->dev_ops = NULL;
6884         eth_dev->rx_pkt_burst = NULL;
6885         eth_dev->rx_descriptor_status = NULL;
6886         eth_dev->tx_pkt_burst = NULL;
6887         eth_dev->tx_pkt_prepare = NULL;
6888         eth_dev->tx_descriptor_status = NULL;
6889         rte_free(eth_dev->process_private);
6890         eth_dev->process_private = NULL;
6891         return ret;
6892 }
6893
6894 static int
6895 hns3_dev_uninit(struct rte_eth_dev *eth_dev)
6896 {
6897         struct hns3_adapter *hns = eth_dev->data->dev_private;
6898         struct hns3_hw *hw = &hns->hw;
6899
6900         PMD_INIT_FUNC_TRACE();
6901
6902         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
6903                 rte_free(eth_dev->process_private);
6904                 eth_dev->process_private = NULL;
6905                 return 0;
6906         }
6907
6908         if (hw->adapter_state < HNS3_NIC_CLOSING)
6909                 hns3_dev_close(eth_dev);
6910
6911         hw->adapter_state = HNS3_NIC_REMOVED;
6912         return 0;
6913 }
6914
6915 static int
6916 eth_hns3_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
6917                    struct rte_pci_device *pci_dev)
6918 {
6919         return rte_eth_dev_pci_generic_probe(pci_dev,
6920                                              sizeof(struct hns3_adapter),
6921                                              hns3_dev_init);
6922 }
6923
6924 static int
6925 eth_hns3_pci_remove(struct rte_pci_device *pci_dev)
6926 {
6927         return rte_eth_dev_pci_generic_remove(pci_dev, hns3_dev_uninit);
6928 }
6929
6930 static const struct rte_pci_id pci_id_hns3_map[] = {
6931         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_GE) },
6932         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE) },
6933         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE_RDMA) },
6934         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_50GE_RDMA) },
6935         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_MACSEC) },
6936         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_200G_RDMA) },
6937         { .vendor_id = 0, }, /* sentinel */
6938 };
6939
6940 static struct rte_pci_driver rte_hns3_pmd = {
6941         .id_table = pci_id_hns3_map,
6942         .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
6943         .probe = eth_hns3_pci_probe,
6944         .remove = eth_hns3_pci_remove,
6945 };
6946
6947 RTE_PMD_REGISTER_PCI(net_hns3, rte_hns3_pmd);
6948 RTE_PMD_REGISTER_PCI_TABLE(net_hns3, pci_id_hns3_map);
6949 RTE_PMD_REGISTER_KMOD_DEP(net_hns3, "* igb_uio | vfio-pci");
6950 RTE_PMD_REGISTER_PARAM_STRING(net_hns3,
6951                 HNS3_DEVARG_RX_FUNC_HINT "=vec|sve|simple|common "
6952                 HNS3_DEVARG_TX_FUNC_HINT "=vec|sve|simple|common ");
6953 RTE_LOG_REGISTER(hns3_logtype_init, pmd.net.hns3.init, NOTICE);
6954 RTE_LOG_REGISTER(hns3_logtype_driver, pmd.net.hns3.driver, NOTICE);