ethdev: remove forcing stopped state upon close
[dpdk.git] / drivers / net / hns3 / hns3_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4
5 #include <errno.h>
6 #include <stdarg.h>
7 #include <stdbool.h>
8 #include <stdio.h>
9 #include <stdint.h>
10 #include <inttypes.h>
11 #include <unistd.h>
12 #include <rte_atomic.h>
13 #include <rte_bus_pci.h>
14 #include <rte_common.h>
15 #include <rte_cycles.h>
16 #include <rte_dev.h>
17 #include <rte_eal.h>
18 #include <rte_ether.h>
19 #include <rte_ethdev_driver.h>
20 #include <rte_ethdev_pci.h>
21 #include <rte_interrupts.h>
22 #include <rte_io.h>
23 #include <rte_log.h>
24 #include <rte_pci.h>
25
26 #include "hns3_ethdev.h"
27 #include "hns3_logs.h"
28 #include "hns3_rxtx.h"
29 #include "hns3_intr.h"
30 #include "hns3_regs.h"
31 #include "hns3_dcb.h"
32 #include "hns3_mp.h"
33
34 #define HNS3_DEFAULT_PORT_CONF_BURST_SIZE       32
35 #define HNS3_DEFAULT_PORT_CONF_QUEUES_NUM       1
36
37 #define HNS3_SERVICE_INTERVAL           1000000 /* us */
38 #define HNS3_INVALID_PVID               0xFFFF
39
40 #define HNS3_FILTER_TYPE_VF             0
41 #define HNS3_FILTER_TYPE_PORT           1
42 #define HNS3_FILTER_FE_EGRESS_V1_B      BIT(0)
43 #define HNS3_FILTER_FE_NIC_INGRESS_B    BIT(0)
44 #define HNS3_FILTER_FE_NIC_EGRESS_B     BIT(1)
45 #define HNS3_FILTER_FE_ROCE_INGRESS_B   BIT(2)
46 #define HNS3_FILTER_FE_ROCE_EGRESS_B    BIT(3)
47 #define HNS3_FILTER_FE_EGRESS           (HNS3_FILTER_FE_NIC_EGRESS_B \
48                                         | HNS3_FILTER_FE_ROCE_EGRESS_B)
49 #define HNS3_FILTER_FE_INGRESS          (HNS3_FILTER_FE_NIC_INGRESS_B \
50                                         | HNS3_FILTER_FE_ROCE_INGRESS_B)
51
52 /* Reset related Registers */
53 #define HNS3_GLOBAL_RESET_BIT           0
54 #define HNS3_CORE_RESET_BIT             1
55 #define HNS3_IMP_RESET_BIT              2
56 #define HNS3_FUN_RST_ING_B              0
57
58 #define HNS3_VECTOR0_IMP_RESET_INT_B    1
59 #define HNS3_VECTOR0_IMP_CMDQ_ERR_B     4U
60 #define HNS3_VECTOR0_IMP_RD_POISON_B    5U
61 #define HNS3_VECTOR0_ALL_MSIX_ERR_B     6U
62
63 #define HNS3_RESET_WAIT_MS      100
64 #define HNS3_RESET_WAIT_CNT     200
65
66 /* FEC mode order defined in HNS3 hardware */
67 #define HNS3_HW_FEC_MODE_NOFEC  0
68 #define HNS3_HW_FEC_MODE_BASER  1
69 #define HNS3_HW_FEC_MODE_RS     2
70
71 enum hns3_evt_cause {
72         HNS3_VECTOR0_EVENT_RST,
73         HNS3_VECTOR0_EVENT_MBX,
74         HNS3_VECTOR0_EVENT_ERR,
75         HNS3_VECTOR0_EVENT_OTHER,
76 };
77
78 static const struct rte_eth_fec_capa speed_fec_capa_tbl[] = {
79         { ETH_SPEED_NUM_10G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
80                              RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
81                              RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
82
83         { ETH_SPEED_NUM_25G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
84                              RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
85                              RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
86                              RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
87
88         { ETH_SPEED_NUM_40G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
89                              RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
90                              RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
91
92         { ETH_SPEED_NUM_50G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
93                              RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
94                              RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
95                              RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
96
97         { ETH_SPEED_NUM_100G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
98                               RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
99                               RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
100
101         { ETH_SPEED_NUM_200G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
102                               RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
103                               RTE_ETH_FEC_MODE_CAPA_MASK(RS) }
104 };
105
106 static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns,
107                                                  uint64_t *levels);
108 static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
109 static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid,
110                                     int on);
111 static int hns3_update_speed_duplex(struct rte_eth_dev *eth_dev);
112
113 static int hns3_add_mc_addr(struct hns3_hw *hw,
114                             struct rte_ether_addr *mac_addr);
115 static int hns3_remove_mc_addr(struct hns3_hw *hw,
116                             struct rte_ether_addr *mac_addr);
117 static int hns3_restore_fec(struct hns3_hw *hw);
118 static int hns3_query_dev_fec_info(struct rte_eth_dev *dev);
119
120 static void
121 hns3_pf_disable_irq0(struct hns3_hw *hw)
122 {
123         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
124 }
125
126 static void
127 hns3_pf_enable_irq0(struct hns3_hw *hw)
128 {
129         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
130 }
131
132 static enum hns3_evt_cause
133 hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
134 {
135         struct hns3_hw *hw = &hns->hw;
136         uint32_t vector0_int_stats;
137         uint32_t cmdq_src_val;
138         uint32_t hw_err_src_reg;
139         uint32_t val;
140         enum hns3_evt_cause ret;
141
142         /* fetch the events from their corresponding regs */
143         vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
144         cmdq_src_val = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
145         hw_err_src_reg = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
146
147         /*
148          * Assumption: If by any chance reset and mailbox events are reported
149          * together then we will only process reset event and defer the
150          * processing of the mailbox events. Since, we would have not cleared
151          * RX CMDQ event this time we would receive again another interrupt
152          * from H/W just for the mailbox.
153          */
154         if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) { /* IMP */
155                 rte_atomic16_set(&hw->reset.disable_cmd, 1);
156                 hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
157                 val = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
158                 if (clearval) {
159                         hw->reset.stats.imp_cnt++;
160                         hns3_warn(hw, "IMP reset detected, clear reset status");
161                 } else {
162                         hns3_schedule_delayed_reset(hns);
163                         hns3_warn(hw, "IMP reset detected, don't clear reset status");
164                 }
165
166                 ret = HNS3_VECTOR0_EVENT_RST;
167                 goto out;
168         }
169
170         /* Global reset */
171         if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) {
172                 rte_atomic16_set(&hw->reset.disable_cmd, 1);
173                 hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending);
174                 val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
175                 if (clearval) {
176                         hw->reset.stats.global_cnt++;
177                         hns3_warn(hw, "Global reset detected, clear reset status");
178                 } else {
179                         hns3_schedule_delayed_reset(hns);
180                         hns3_warn(hw, "Global reset detected, don't clear reset status");
181                 }
182
183                 ret = HNS3_VECTOR0_EVENT_RST;
184                 goto out;
185         }
186
187         /* check for vector0 msix event source */
188         if (vector0_int_stats & HNS3_VECTOR0_REG_MSIX_MASK ||
189             hw_err_src_reg & HNS3_RAS_REG_NFE_MASK) {
190                 val = vector0_int_stats | hw_err_src_reg;
191                 ret = HNS3_VECTOR0_EVENT_ERR;
192                 goto out;
193         }
194
195         /* check for vector0 mailbox(=CMDQ RX) event source */
196         if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_val) {
197                 cmdq_src_val &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
198                 val = cmdq_src_val;
199                 ret = HNS3_VECTOR0_EVENT_MBX;
200                 goto out;
201         }
202
203         if (clearval && (vector0_int_stats || cmdq_src_val || hw_err_src_reg))
204                 hns3_warn(hw, "vector0_int_stats:0x%x cmdq_src_val:0x%x hw_err_src_reg:0x%x",
205                           vector0_int_stats, cmdq_src_val, hw_err_src_reg);
206         val = vector0_int_stats;
207         ret = HNS3_VECTOR0_EVENT_OTHER;
208 out:
209
210         if (clearval)
211                 *clearval = val;
212         return ret;
213 }
214
215 static void
216 hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
217 {
218         if (event_type == HNS3_VECTOR0_EVENT_RST)
219                 hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr);
220         else if (event_type == HNS3_VECTOR0_EVENT_MBX)
221                 hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
222 }
223
224 static void
225 hns3_clear_all_event_cause(struct hns3_hw *hw)
226 {
227         uint32_t vector0_int_stats;
228         vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
229
230         if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats)
231                 hns3_warn(hw, "Probe during IMP reset interrupt");
232
233         if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats)
234                 hns3_warn(hw, "Probe during Global reset interrupt");
235
236         hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST,
237                                BIT(HNS3_VECTOR0_IMPRESET_INT_B) |
238                                BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) |
239                                BIT(HNS3_VECTOR0_CORERESET_INT_B));
240         hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0);
241 }
242
243 static void
244 hns3_interrupt_handler(void *param)
245 {
246         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
247         struct hns3_adapter *hns = dev->data->dev_private;
248         struct hns3_hw *hw = &hns->hw;
249         enum hns3_evt_cause event_cause;
250         uint32_t clearval = 0;
251
252         /* Disable interrupt */
253         hns3_pf_disable_irq0(hw);
254
255         event_cause = hns3_check_event_cause(hns, &clearval);
256
257         /* vector 0 interrupt is shared with reset and mailbox source events. */
258         if (event_cause == HNS3_VECTOR0_EVENT_ERR) {
259                 hns3_warn(hw, "Received err interrupt");
260                 hns3_handle_msix_error(hns, &hw->reset.request);
261                 hns3_handle_ras_error(hns, &hw->reset.request);
262                 hns3_schedule_reset(hns);
263         } else if (event_cause == HNS3_VECTOR0_EVENT_RST) {
264                 hns3_warn(hw, "Received reset interrupt");
265                 hns3_schedule_reset(hns);
266         } else if (event_cause == HNS3_VECTOR0_EVENT_MBX)
267                 hns3_dev_handle_mbx_msg(hw);
268         else
269                 hns3_err(hw, "Received unknown event");
270
271         hns3_clear_event_cause(hw, event_cause, clearval);
272         /* Enable interrupt if it is not cause by reset */
273         hns3_pf_enable_irq0(hw);
274 }
275
276 static int
277 hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on)
278 {
279 #define HNS3_VLAN_ID_OFFSET_STEP        160
280 #define HNS3_VLAN_BYTE_SIZE             8
281         struct hns3_vlan_filter_pf_cfg_cmd *req;
282         struct hns3_hw *hw = &hns->hw;
283         uint8_t vlan_offset_byte_val;
284         struct hns3_cmd_desc desc;
285         uint8_t vlan_offset_byte;
286         uint8_t vlan_offset_base;
287         int ret;
288
289         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false);
290
291         vlan_offset_base = vlan_id / HNS3_VLAN_ID_OFFSET_STEP;
292         vlan_offset_byte = (vlan_id % HNS3_VLAN_ID_OFFSET_STEP) /
293                            HNS3_VLAN_BYTE_SIZE;
294         vlan_offset_byte_val = 1 << (vlan_id % HNS3_VLAN_BYTE_SIZE);
295
296         req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data;
297         req->vlan_offset = vlan_offset_base;
298         req->vlan_cfg = on ? 0 : 1;
299         req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
300
301         ret = hns3_cmd_send(hw, &desc, 1);
302         if (ret)
303                 hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d",
304                          vlan_id, ret);
305
306         return ret;
307 }
308
309 static void
310 hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id)
311 {
312         struct hns3_user_vlan_table *vlan_entry;
313         struct hns3_pf *pf = &hns->pf;
314
315         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
316                 if (vlan_entry->vlan_id == vlan_id) {
317                         if (vlan_entry->hd_tbl_status)
318                                 hns3_set_port_vlan_filter(hns, vlan_id, 0);
319                         LIST_REMOVE(vlan_entry, next);
320                         rte_free(vlan_entry);
321                         break;
322                 }
323         }
324 }
325
326 static void
327 hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id,
328                         bool writen_to_tbl)
329 {
330         struct hns3_user_vlan_table *vlan_entry;
331         struct hns3_hw *hw = &hns->hw;
332         struct hns3_pf *pf = &hns->pf;
333
334         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
335                 if (vlan_entry->vlan_id == vlan_id)
336                         return;
337         }
338
339         vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0);
340         if (vlan_entry == NULL) {
341                 hns3_err(hw, "Failed to malloc hns3 vlan table");
342                 return;
343         }
344
345         vlan_entry->hd_tbl_status = writen_to_tbl;
346         vlan_entry->vlan_id = vlan_id;
347
348         LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next);
349 }
350
351 static int
352 hns3_restore_vlan_table(struct hns3_adapter *hns)
353 {
354         struct hns3_user_vlan_table *vlan_entry;
355         struct hns3_hw *hw = &hns->hw;
356         struct hns3_pf *pf = &hns->pf;
357         uint16_t vlan_id;
358         int ret = 0;
359
360         if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE)
361                 return hns3_vlan_pvid_configure(hns,
362                                                 hw->port_base_vlan_cfg.pvid, 1);
363
364         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
365                 if (vlan_entry->hd_tbl_status) {
366                         vlan_id = vlan_entry->vlan_id;
367                         ret = hns3_set_port_vlan_filter(hns, vlan_id, 1);
368                         if (ret)
369                                 break;
370                 }
371         }
372
373         return ret;
374 }
375
376 static int
377 hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
378 {
379         struct hns3_hw *hw = &hns->hw;
380         bool writen_to_tbl = false;
381         int ret = 0;
382
383         /*
384          * When vlan filter is enabled, hardware regards packets without vlan
385          * as packets with vlan 0. So, to receive packets without vlan, vlan id
386          * 0 is not allowed to be removed by rte_eth_dev_vlan_filter.
387          */
388         if (on == 0 && vlan_id == 0)
389                 return 0;
390
391         /*
392          * When port base vlan enabled, we use port base vlan as the vlan
393          * filter condition. In this case, we don't update vlan filter table
394          * when user add new vlan or remove exist vlan, just update the
395          * vlan list. The vlan id in vlan list will be writen in vlan filter
396          * table until port base vlan disabled
397          */
398         if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
399                 ret = hns3_set_port_vlan_filter(hns, vlan_id, on);
400                 writen_to_tbl = true;
401         }
402
403         if (ret == 0) {
404                 if (on)
405                         hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl);
406                 else
407                         hns3_rm_dev_vlan_table(hns, vlan_id);
408         }
409         return ret;
410 }
411
412 static int
413 hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
414 {
415         struct hns3_adapter *hns = dev->data->dev_private;
416         struct hns3_hw *hw = &hns->hw;
417         int ret;
418
419         rte_spinlock_lock(&hw->lock);
420         ret = hns3_vlan_filter_configure(hns, vlan_id, on);
421         rte_spinlock_unlock(&hw->lock);
422         return ret;
423 }
424
425 static int
426 hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type,
427                          uint16_t tpid)
428 {
429         struct hns3_rx_vlan_type_cfg_cmd *rx_req;
430         struct hns3_tx_vlan_type_cfg_cmd *tx_req;
431         struct hns3_hw *hw = &hns->hw;
432         struct hns3_cmd_desc desc;
433         int ret;
434
435         if ((vlan_type != ETH_VLAN_TYPE_INNER &&
436              vlan_type != ETH_VLAN_TYPE_OUTER)) {
437                 hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type);
438                 return -EINVAL;
439         }
440
441         if (tpid != RTE_ETHER_TYPE_VLAN) {
442                 hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type);
443                 return -EINVAL;
444         }
445
446         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false);
447         rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data;
448
449         if (vlan_type == ETH_VLAN_TYPE_OUTER) {
450                 rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
451                 rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
452         } else if (vlan_type == ETH_VLAN_TYPE_INNER) {
453                 rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
454                 rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
455                 rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid);
456                 rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid);
457         }
458
459         ret = hns3_cmd_send(hw, &desc, 1);
460         if (ret) {
461                 hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d",
462                          ret);
463                 return ret;
464         }
465
466         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false);
467
468         tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data;
469         tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid);
470         tx_req->in_vlan_type = rte_cpu_to_le_16(tpid);
471
472         ret = hns3_cmd_send(hw, &desc, 1);
473         if (ret)
474                 hns3_err(hw, "Send txvlan protocol type command fail, ret =%d",
475                          ret);
476         return ret;
477 }
478
479 static int
480 hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
481                    uint16_t tpid)
482 {
483         struct hns3_adapter *hns = dev->data->dev_private;
484         struct hns3_hw *hw = &hns->hw;
485         int ret;
486
487         rte_spinlock_lock(&hw->lock);
488         ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid);
489         rte_spinlock_unlock(&hw->lock);
490         return ret;
491 }
492
493 static int
494 hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns,
495                              struct hns3_rx_vtag_cfg *vcfg)
496 {
497         struct hns3_vport_vtag_rx_cfg_cmd *req;
498         struct hns3_hw *hw = &hns->hw;
499         struct hns3_cmd_desc desc;
500         uint16_t vport_id;
501         uint8_t bitmap;
502         int ret;
503
504         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false);
505
506         req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data;
507         hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B,
508                      vcfg->strip_tag1_en ? 1 : 0);
509         hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B,
510                      vcfg->strip_tag2_en ? 1 : 0);
511         hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B,
512                      vcfg->vlan1_vlan_prionly ? 1 : 0);
513         hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B,
514                      vcfg->vlan2_vlan_prionly ? 1 : 0);
515
516         /* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
517         hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG1_EN_B,
518                      vcfg->strip_tag1_discard_en ? 1 : 0);
519         hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG2_EN_B,
520                      vcfg->strip_tag2_discard_en ? 1 : 0);
521         /*
522          * In current version VF is not supported when PF is driven by DPDK
523          * driver, just need to configure parameters for PF vport.
524          */
525         vport_id = HNS3_PF_FUNC_ID;
526         req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
527         bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
528         req->vf_bitmap[req->vf_offset] = bitmap;
529
530         ret = hns3_cmd_send(hw, &desc, 1);
531         if (ret)
532                 hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret);
533         return ret;
534 }
535
536 static void
537 hns3_update_rx_offload_cfg(struct hns3_adapter *hns,
538                            struct hns3_rx_vtag_cfg *vcfg)
539 {
540         struct hns3_pf *pf = &hns->pf;
541         memcpy(&pf->vtag_config.rx_vcfg, vcfg, sizeof(pf->vtag_config.rx_vcfg));
542 }
543
544 static void
545 hns3_update_tx_offload_cfg(struct hns3_adapter *hns,
546                            struct hns3_tx_vtag_cfg *vcfg)
547 {
548         struct hns3_pf *pf = &hns->pf;
549         memcpy(&pf->vtag_config.tx_vcfg, vcfg, sizeof(pf->vtag_config.tx_vcfg));
550 }
551
552 static int
553 hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable)
554 {
555         struct hns3_rx_vtag_cfg rxvlan_cfg;
556         struct hns3_hw *hw = &hns->hw;
557         int ret;
558
559         if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
560                 rxvlan_cfg.strip_tag1_en = false;
561                 rxvlan_cfg.strip_tag2_en = enable;
562                 rxvlan_cfg.strip_tag2_discard_en = false;
563         } else {
564                 rxvlan_cfg.strip_tag1_en = enable;
565                 rxvlan_cfg.strip_tag2_en = true;
566                 rxvlan_cfg.strip_tag2_discard_en = true;
567         }
568
569         rxvlan_cfg.strip_tag1_discard_en = false;
570         rxvlan_cfg.vlan1_vlan_prionly = false;
571         rxvlan_cfg.vlan2_vlan_prionly = false;
572         rxvlan_cfg.rx_vlan_offload_en = enable;
573
574         ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg);
575         if (ret) {
576                 hns3_err(hw, "enable strip rx vtag failed, ret =%d", ret);
577                 return ret;
578         }
579
580         hns3_update_rx_offload_cfg(hns, &rxvlan_cfg);
581
582         return ret;
583 }
584
585 static int
586 hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type,
587                           uint8_t fe_type, bool filter_en, uint8_t vf_id)
588 {
589         struct hns3_vlan_filter_ctrl_cmd *req;
590         struct hns3_cmd_desc desc;
591         int ret;
592
593         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false);
594
595         req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data;
596         req->vlan_type = vlan_type;
597         req->vlan_fe = filter_en ? fe_type : 0;
598         req->vf_id = vf_id;
599
600         ret = hns3_cmd_send(hw, &desc, 1);
601         if (ret)
602                 hns3_err(hw, "set vlan filter fail, ret =%d", ret);
603
604         return ret;
605 }
606
607 static int
608 hns3_vlan_filter_init(struct hns3_adapter *hns)
609 {
610         struct hns3_hw *hw = &hns->hw;
611         int ret;
612
613         ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF,
614                                         HNS3_FILTER_FE_EGRESS, false,
615                                         HNS3_PF_FUNC_ID);
616         if (ret) {
617                 hns3_err(hw, "failed to init vf vlan filter, ret = %d", ret);
618                 return ret;
619         }
620
621         ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
622                                         HNS3_FILTER_FE_INGRESS, false,
623                                         HNS3_PF_FUNC_ID);
624         if (ret)
625                 hns3_err(hw, "failed to init port vlan filter, ret = %d", ret);
626
627         return ret;
628 }
629
630 static int
631 hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable)
632 {
633         struct hns3_hw *hw = &hns->hw;
634         int ret;
635
636         ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
637                                         HNS3_FILTER_FE_INGRESS, enable,
638                                         HNS3_PF_FUNC_ID);
639         if (ret)
640                 hns3_err(hw, "failed to %s port vlan filter, ret = %d",
641                          enable ? "enable" : "disable", ret);
642
643         return ret;
644 }
645
646 static int
647 hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask)
648 {
649         struct hns3_adapter *hns = dev->data->dev_private;
650         struct hns3_hw *hw = &hns->hw;
651         struct rte_eth_rxmode *rxmode;
652         unsigned int tmp_mask;
653         bool enable;
654         int ret = 0;
655
656         rte_spinlock_lock(&hw->lock);
657         rxmode = &dev->data->dev_conf.rxmode;
658         tmp_mask = (unsigned int)mask;
659         if (tmp_mask & ETH_VLAN_FILTER_MASK) {
660                 /* ignore vlan filter configuration during promiscuous mode */
661                 if (!dev->data->promiscuous) {
662                         /* Enable or disable VLAN filter */
663                         enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER ?
664                                  true : false;
665
666                         ret = hns3_enable_vlan_filter(hns, enable);
667                         if (ret) {
668                                 rte_spinlock_unlock(&hw->lock);
669                                 hns3_err(hw, "failed to %s rx filter, ret = %d",
670                                          enable ? "enable" : "disable", ret);
671                                 return ret;
672                         }
673                 }
674         }
675
676         if (tmp_mask & ETH_VLAN_STRIP_MASK) {
677                 /* Enable or disable VLAN stripping */
678                 enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP ?
679                     true : false;
680
681                 ret = hns3_en_hw_strip_rxvtag(hns, enable);
682                 if (ret) {
683                         rte_spinlock_unlock(&hw->lock);
684                         hns3_err(hw, "failed to %s rx strip, ret = %d",
685                                  enable ? "enable" : "disable", ret);
686                         return ret;
687                 }
688         }
689
690         rte_spinlock_unlock(&hw->lock);
691
692         return ret;
693 }
694
695 static int
696 hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns,
697                              struct hns3_tx_vtag_cfg *vcfg)
698 {
699         struct hns3_vport_vtag_tx_cfg_cmd *req;
700         struct hns3_cmd_desc desc;
701         struct hns3_hw *hw = &hns->hw;
702         uint16_t vport_id;
703         uint8_t bitmap;
704         int ret;
705
706         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false);
707
708         req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data;
709         req->def_vlan_tag1 = vcfg->default_tag1;
710         req->def_vlan_tag2 = vcfg->default_tag2;
711         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B,
712                      vcfg->accept_tag1 ? 1 : 0);
713         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B,
714                      vcfg->accept_untag1 ? 1 : 0);
715         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B,
716                      vcfg->accept_tag2 ? 1 : 0);
717         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B,
718                      vcfg->accept_untag2 ? 1 : 0);
719         hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B,
720                      vcfg->insert_tag1_en ? 1 : 0);
721         hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B,
722                      vcfg->insert_tag2_en ? 1 : 0);
723         hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0);
724
725         /* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
726         hns3_set_bit(req->vport_vlan_cfg, HNS3_TAG_SHIFT_MODE_EN_B,
727                      vcfg->tag_shift_mode_en ? 1 : 0);
728
729         /*
730          * In current version VF is not supported when PF is driven by DPDK
731          * driver, just need to configure parameters for PF vport.
732          */
733         vport_id = HNS3_PF_FUNC_ID;
734         req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
735         bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
736         req->vf_bitmap[req->vf_offset] = bitmap;
737
738         ret = hns3_cmd_send(hw, &desc, 1);
739         if (ret)
740                 hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret);
741
742         return ret;
743 }
744
745 static int
746 hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state,
747                      uint16_t pvid)
748 {
749         struct hns3_hw *hw = &hns->hw;
750         struct hns3_tx_vtag_cfg txvlan_cfg;
751         int ret;
752
753         if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) {
754                 txvlan_cfg.accept_tag1 = true;
755                 txvlan_cfg.insert_tag1_en = false;
756                 txvlan_cfg.default_tag1 = 0;
757         } else {
758                 txvlan_cfg.accept_tag1 =
759                         hw->vlan_mode == HNS3_HW_SHIFT_AND_DISCARD_MODE;
760                 txvlan_cfg.insert_tag1_en = true;
761                 txvlan_cfg.default_tag1 = pvid;
762         }
763
764         txvlan_cfg.accept_untag1 = true;
765         txvlan_cfg.accept_tag2 = true;
766         txvlan_cfg.accept_untag2 = true;
767         txvlan_cfg.insert_tag2_en = false;
768         txvlan_cfg.default_tag2 = 0;
769         txvlan_cfg.tag_shift_mode_en = true;
770
771         ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg);
772         if (ret) {
773                 hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid,
774                          ret);
775                 return ret;
776         }
777
778         hns3_update_tx_offload_cfg(hns, &txvlan_cfg);
779         return ret;
780 }
781
782
783 static void
784 hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list)
785 {
786         struct hns3_user_vlan_table *vlan_entry;
787         struct hns3_pf *pf = &hns->pf;
788
789         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
790                 if (vlan_entry->hd_tbl_status) {
791                         hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0);
792                         vlan_entry->hd_tbl_status = false;
793                 }
794         }
795
796         if (is_del_list) {
797                 vlan_entry = LIST_FIRST(&pf->vlan_list);
798                 while (vlan_entry) {
799                         LIST_REMOVE(vlan_entry, next);
800                         rte_free(vlan_entry);
801                         vlan_entry = LIST_FIRST(&pf->vlan_list);
802                 }
803         }
804 }
805
806 static void
807 hns3_add_all_vlan_table(struct hns3_adapter *hns)
808 {
809         struct hns3_user_vlan_table *vlan_entry;
810         struct hns3_pf *pf = &hns->pf;
811
812         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
813                 if (!vlan_entry->hd_tbl_status) {
814                         hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1);
815                         vlan_entry->hd_tbl_status = true;
816                 }
817         }
818 }
819
820 static void
821 hns3_remove_all_vlan_table(struct hns3_adapter *hns)
822 {
823         struct hns3_hw *hw = &hns->hw;
824         int ret;
825
826         hns3_rm_all_vlan_table(hns, true);
827         if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID) {
828                 ret = hns3_set_port_vlan_filter(hns,
829                                                 hw->port_base_vlan_cfg.pvid, 0);
830                 if (ret) {
831                         hns3_err(hw, "Failed to remove all vlan table, ret =%d",
832                                  ret);
833                         return;
834                 }
835         }
836 }
837
838 static int
839 hns3_update_vlan_filter_entries(struct hns3_adapter *hns,
840                         uint16_t port_base_vlan_state, uint16_t new_pvid)
841 {
842         struct hns3_hw *hw = &hns->hw;
843         uint16_t old_pvid;
844         int ret;
845
846         if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) {
847                 old_pvid = hw->port_base_vlan_cfg.pvid;
848                 if (old_pvid != HNS3_INVALID_PVID) {
849                         ret = hns3_set_port_vlan_filter(hns, old_pvid, 0);
850                         if (ret) {
851                                 hns3_err(hw, "failed to remove old pvid %u, "
852                                                 "ret = %d", old_pvid, ret);
853                                 return ret;
854                         }
855                 }
856
857                 hns3_rm_all_vlan_table(hns, false);
858                 ret = hns3_set_port_vlan_filter(hns, new_pvid, 1);
859                 if (ret) {
860                         hns3_err(hw, "failed to add new pvid %u, ret = %d",
861                                         new_pvid, ret);
862                         return ret;
863                 }
864         } else {
865                 ret = hns3_set_port_vlan_filter(hns, new_pvid, 0);
866                 if (ret) {
867                         hns3_err(hw, "failed to remove pvid %u, ret = %d",
868                                         new_pvid, ret);
869                         return ret;
870                 }
871
872                 hns3_add_all_vlan_table(hns);
873         }
874         return 0;
875 }
876
877 static int
878 hns3_en_pvid_strip(struct hns3_adapter *hns, int on)
879 {
880         struct hns3_rx_vtag_cfg *old_cfg = &hns->pf.vtag_config.rx_vcfg;
881         struct hns3_rx_vtag_cfg rx_vlan_cfg;
882         bool rx_strip_en;
883         int ret;
884
885         rx_strip_en = old_cfg->rx_vlan_offload_en;
886         if (on) {
887                 rx_vlan_cfg.strip_tag1_en = rx_strip_en;
888                 rx_vlan_cfg.strip_tag2_en = true;
889                 rx_vlan_cfg.strip_tag2_discard_en = true;
890         } else {
891                 rx_vlan_cfg.strip_tag1_en = false;
892                 rx_vlan_cfg.strip_tag2_en = rx_strip_en;
893                 rx_vlan_cfg.strip_tag2_discard_en = false;
894         }
895         rx_vlan_cfg.strip_tag1_discard_en = false;
896         rx_vlan_cfg.vlan1_vlan_prionly = false;
897         rx_vlan_cfg.vlan2_vlan_prionly = false;
898         rx_vlan_cfg.rx_vlan_offload_en = old_cfg->rx_vlan_offload_en;
899
900         ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg);
901         if (ret)
902                 return ret;
903
904         hns3_update_rx_offload_cfg(hns, &rx_vlan_cfg);
905         return ret;
906 }
907
908 static int
909 hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on)
910 {
911         struct hns3_hw *hw = &hns->hw;
912         uint16_t port_base_vlan_state;
913         int ret;
914
915         if (on == 0 && pvid != hw->port_base_vlan_cfg.pvid) {
916                 if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID)
917                         hns3_warn(hw, "Invalid operation! As current pvid set "
918                                   "is %u, disable pvid %u is invalid",
919                                   hw->port_base_vlan_cfg.pvid, pvid);
920                 return 0;
921         }
922
923         port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE :
924                                     HNS3_PORT_BASE_VLAN_DISABLE;
925         ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid);
926         if (ret) {
927                 hns3_err(hw, "failed to config tx vlan for pvid, ret = %d",
928                          ret);
929                 return ret;
930         }
931
932         ret = hns3_en_pvid_strip(hns, on);
933         if (ret) {
934                 hns3_err(hw, "failed to config rx vlan strip for pvid, "
935                          "ret = %d", ret);
936                 return ret;
937         }
938
939         if (pvid == HNS3_INVALID_PVID)
940                 goto out;
941         ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid);
942         if (ret) {
943                 hns3_err(hw, "failed to update vlan filter entries, ret = %d",
944                          ret);
945                 return ret;
946         }
947
948 out:
949         hw->port_base_vlan_cfg.state = port_base_vlan_state;
950         hw->port_base_vlan_cfg.pvid = on ? pvid : HNS3_INVALID_PVID;
951         return ret;
952 }
953
954 static int
955 hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
956 {
957         struct hns3_adapter *hns = dev->data->dev_private;
958         struct hns3_hw *hw = &hns->hw;
959         bool pvid_en_state_change;
960         uint16_t pvid_state;
961         int ret;
962
963         if (pvid > RTE_ETHER_MAX_VLAN_ID) {
964                 hns3_err(hw, "Invalid vlan_id = %u > %d", pvid,
965                          RTE_ETHER_MAX_VLAN_ID);
966                 return -EINVAL;
967         }
968
969         /*
970          * If PVID configuration state change, should refresh the PVID
971          * configuration state in struct hns3_tx_queue/hns3_rx_queue.
972          */
973         pvid_state = hw->port_base_vlan_cfg.state;
974         if ((on && pvid_state == HNS3_PORT_BASE_VLAN_ENABLE) ||
975             (!on && pvid_state == HNS3_PORT_BASE_VLAN_DISABLE))
976                 pvid_en_state_change = false;
977         else
978                 pvid_en_state_change = true;
979
980         rte_spinlock_lock(&hw->lock);
981         ret = hns3_vlan_pvid_configure(hns, pvid, on);
982         rte_spinlock_unlock(&hw->lock);
983         if (ret)
984                 return ret;
985         /*
986          * Only in HNS3_SW_SHIFT_AND_MODE the PVID related operation in Tx/Rx
987          * need be processed by PMD driver.
988          */
989         if (pvid_en_state_change &&
990             hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
991                 hns3_update_all_queues_pvid_proc_en(hw);
992
993         return 0;
994 }
995
996 static int
997 hns3_default_vlan_config(struct hns3_adapter *hns)
998 {
999         struct hns3_hw *hw = &hns->hw;
1000         int ret;
1001
1002         /*
1003          * When vlan filter is enabled, hardware regards packets without vlan
1004          * as packets with vlan 0. Therefore, if vlan 0 is not in the vlan
1005          * table, packets without vlan won't be received. So, add vlan 0 as
1006          * the default vlan.
1007          */
1008         ret = hns3_vlan_filter_configure(hns, 0, 1);
1009         if (ret)
1010                 hns3_err(hw, "default vlan 0 config failed, ret =%d", ret);
1011         return ret;
1012 }
1013
1014 static int
1015 hns3_init_vlan_config(struct hns3_adapter *hns)
1016 {
1017         struct hns3_hw *hw = &hns->hw;
1018         int ret;
1019
1020         /*
1021          * This function can be called in the initialization and reset process,
1022          * when in reset process, it means that hardware had been reseted
1023          * successfully and we need to restore the hardware configuration to
1024          * ensure that the hardware configuration remains unchanged before and
1025          * after reset.
1026          */
1027         if (rte_atomic16_read(&hw->reset.resetting) == 0) {
1028                 hw->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE;
1029                 hw->port_base_vlan_cfg.pvid = HNS3_INVALID_PVID;
1030         }
1031
1032         ret = hns3_vlan_filter_init(hns);
1033         if (ret) {
1034                 hns3_err(hw, "vlan init fail in pf, ret =%d", ret);
1035                 return ret;
1036         }
1037
1038         ret = hns3_vlan_tpid_configure(hns, ETH_VLAN_TYPE_INNER,
1039                                        RTE_ETHER_TYPE_VLAN);
1040         if (ret) {
1041                 hns3_err(hw, "tpid set fail in pf, ret =%d", ret);
1042                 return ret;
1043         }
1044
1045         /*
1046          * When in the reinit dev stage of the reset process, the following
1047          * vlan-related configurations may differ from those at initialization,
1048          * we will restore configurations to hardware in hns3_restore_vlan_table
1049          * and hns3_restore_vlan_conf later.
1050          */
1051         if (rte_atomic16_read(&hw->reset.resetting) == 0) {
1052                 ret = hns3_vlan_pvid_configure(hns, HNS3_INVALID_PVID, 0);
1053                 if (ret) {
1054                         hns3_err(hw, "pvid set fail in pf, ret =%d", ret);
1055                         return ret;
1056                 }
1057
1058                 ret = hns3_en_hw_strip_rxvtag(hns, false);
1059                 if (ret) {
1060                         hns3_err(hw, "rx strip configure fail in pf, ret =%d",
1061                                  ret);
1062                         return ret;
1063                 }
1064         }
1065
1066         return hns3_default_vlan_config(hns);
1067 }
1068
1069 static int
1070 hns3_restore_vlan_conf(struct hns3_adapter *hns)
1071 {
1072         struct hns3_pf *pf = &hns->pf;
1073         struct hns3_hw *hw = &hns->hw;
1074         uint64_t offloads;
1075         bool enable;
1076         int ret;
1077
1078         if (!hw->data->promiscuous) {
1079                 /* restore vlan filter states */
1080                 offloads = hw->data->dev_conf.rxmode.offloads;
1081                 enable = offloads & DEV_RX_OFFLOAD_VLAN_FILTER ? true : false;
1082                 ret = hns3_enable_vlan_filter(hns, enable);
1083                 if (ret) {
1084                         hns3_err(hw, "failed to restore vlan rx filter conf, "
1085                                  "ret = %d", ret);
1086                         return ret;
1087                 }
1088         }
1089
1090         ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg);
1091         if (ret) {
1092                 hns3_err(hw, "failed to restore vlan rx conf, ret = %d", ret);
1093                 return ret;
1094         }
1095
1096         ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg);
1097         if (ret)
1098                 hns3_err(hw, "failed to restore vlan tx conf, ret = %d", ret);
1099
1100         return ret;
1101 }
1102
1103 static int
1104 hns3_dev_configure_vlan(struct rte_eth_dev *dev)
1105 {
1106         struct hns3_adapter *hns = dev->data->dev_private;
1107         struct rte_eth_dev_data *data = dev->data;
1108         struct rte_eth_txmode *txmode;
1109         struct hns3_hw *hw = &hns->hw;
1110         int mask;
1111         int ret;
1112
1113         txmode = &data->dev_conf.txmode;
1114         if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged)
1115                 hns3_warn(hw,
1116                           "hw_vlan_reject_tagged or hw_vlan_reject_untagged "
1117                           "configuration is not supported! Ignore these two "
1118                           "parameters: hw_vlan_reject_tagged(%d), "
1119                           "hw_vlan_reject_untagged(%d)",
1120                           txmode->hw_vlan_reject_tagged,
1121                           txmode->hw_vlan_reject_untagged);
1122
1123         /* Apply vlan offload setting */
1124         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK;
1125         ret = hns3_vlan_offload_set(dev, mask);
1126         if (ret) {
1127                 hns3_err(hw, "dev config rx vlan offload failed, ret = %d",
1128                          ret);
1129                 return ret;
1130         }
1131
1132         /*
1133          * If pvid config is not set in rte_eth_conf, driver needn't to set
1134          * VLAN pvid related configuration to hardware.
1135          */
1136         if (txmode->pvid == 0 && txmode->hw_vlan_insert_pvid == 0)
1137                 return 0;
1138
1139         /* Apply pvid setting */
1140         ret = hns3_vlan_pvid_set(dev, txmode->pvid,
1141                                  txmode->hw_vlan_insert_pvid);
1142         if (ret)
1143                 hns3_err(hw, "dev config vlan pvid(%d) failed, ret = %d",
1144                          txmode->pvid, ret);
1145
1146         return ret;
1147 }
1148
1149 static int
1150 hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min,
1151                 unsigned int tso_mss_max)
1152 {
1153         struct hns3_cfg_tso_status_cmd *req;
1154         struct hns3_cmd_desc desc;
1155         uint16_t tso_mss;
1156
1157         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false);
1158
1159         req = (struct hns3_cfg_tso_status_cmd *)desc.data;
1160
1161         tso_mss = 0;
1162         hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1163                        tso_mss_min);
1164         req->tso_mss_min = rte_cpu_to_le_16(tso_mss);
1165
1166         tso_mss = 0;
1167         hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1168                        tso_mss_max);
1169         req->tso_mss_max = rte_cpu_to_le_16(tso_mss);
1170
1171         return hns3_cmd_send(hw, &desc, 1);
1172 }
1173
1174 static int
1175 hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size,
1176                    uint16_t *allocated_size, bool is_alloc)
1177 {
1178         struct hns3_umv_spc_alc_cmd *req;
1179         struct hns3_cmd_desc desc;
1180         int ret;
1181
1182         req = (struct hns3_umv_spc_alc_cmd *)desc.data;
1183         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false);
1184         hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1);
1185         req->space_size = rte_cpu_to_le_32(space_size);
1186
1187         ret = hns3_cmd_send(hw, &desc, 1);
1188         if (ret) {
1189                 PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d",
1190                              is_alloc ? "allocate" : "free", ret);
1191                 return ret;
1192         }
1193
1194         if (is_alloc && allocated_size)
1195                 *allocated_size = rte_le_to_cpu_32(desc.data[1]);
1196
1197         return 0;
1198 }
1199
1200 static int
1201 hns3_init_umv_space(struct hns3_hw *hw)
1202 {
1203         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1204         struct hns3_pf *pf = &hns->pf;
1205         uint16_t allocated_size = 0;
1206         int ret;
1207
1208         ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size,
1209                                  true);
1210         if (ret)
1211                 return ret;
1212
1213         if (allocated_size < pf->wanted_umv_size)
1214                 PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u",
1215                              pf->wanted_umv_size, allocated_size);
1216
1217         pf->max_umv_size = (!!allocated_size) ? allocated_size :
1218                                                 pf->wanted_umv_size;
1219         pf->used_umv_size = 0;
1220         return 0;
1221 }
1222
1223 static int
1224 hns3_uninit_umv_space(struct hns3_hw *hw)
1225 {
1226         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1227         struct hns3_pf *pf = &hns->pf;
1228         int ret;
1229
1230         if (pf->max_umv_size == 0)
1231                 return 0;
1232
1233         ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false);
1234         if (ret)
1235                 return ret;
1236
1237         pf->max_umv_size = 0;
1238
1239         return 0;
1240 }
1241
1242 static bool
1243 hns3_is_umv_space_full(struct hns3_hw *hw)
1244 {
1245         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1246         struct hns3_pf *pf = &hns->pf;
1247         bool is_full;
1248
1249         is_full = (pf->used_umv_size >= pf->max_umv_size);
1250
1251         return is_full;
1252 }
1253
1254 static void
1255 hns3_update_umv_space(struct hns3_hw *hw, bool is_free)
1256 {
1257         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1258         struct hns3_pf *pf = &hns->pf;
1259
1260         if (is_free) {
1261                 if (pf->used_umv_size > 0)
1262                         pf->used_umv_size--;
1263         } else
1264                 pf->used_umv_size++;
1265 }
1266
1267 static void
1268 hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req,
1269                       const uint8_t *addr, bool is_mc)
1270 {
1271         const unsigned char *mac_addr = addr;
1272         uint32_t high_val = ((uint32_t)mac_addr[3] << 24) |
1273                             ((uint32_t)mac_addr[2] << 16) |
1274                             ((uint32_t)mac_addr[1] << 8) |
1275                             (uint32_t)mac_addr[0];
1276         uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4];
1277
1278         hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1279         if (is_mc) {
1280                 hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1281                 hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1);
1282                 hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1283         }
1284
1285         new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val);
1286         new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff);
1287 }
1288
1289 static int
1290 hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp,
1291                              uint8_t resp_code,
1292                              enum hns3_mac_vlan_tbl_opcode op)
1293 {
1294         if (cmdq_resp) {
1295                 hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u",
1296                          cmdq_resp);
1297                 return -EIO;
1298         }
1299
1300         if (op == HNS3_MAC_VLAN_ADD) {
1301                 if (resp_code == 0 || resp_code == 1) {
1302                         return 0;
1303                 } else if (resp_code == HNS3_ADD_UC_OVERFLOW) {
1304                         hns3_err(hw, "add mac addr failed for uc_overflow");
1305                         return -ENOSPC;
1306                 } else if (resp_code == HNS3_ADD_MC_OVERFLOW) {
1307                         hns3_err(hw, "add mac addr failed for mc_overflow");
1308                         return -ENOSPC;
1309                 }
1310
1311                 hns3_err(hw, "add mac addr failed for undefined, code=%u",
1312                          resp_code);
1313                 return -EIO;
1314         } else if (op == HNS3_MAC_VLAN_REMOVE) {
1315                 if (resp_code == 0) {
1316                         return 0;
1317                 } else if (resp_code == 1) {
1318                         hns3_dbg(hw, "remove mac addr failed for miss");
1319                         return -ENOENT;
1320                 }
1321
1322                 hns3_err(hw, "remove mac addr failed for undefined, code=%u",
1323                          resp_code);
1324                 return -EIO;
1325         } else if (op == HNS3_MAC_VLAN_LKUP) {
1326                 if (resp_code == 0) {
1327                         return 0;
1328                 } else if (resp_code == 1) {
1329                         hns3_dbg(hw, "lookup mac addr failed for miss");
1330                         return -ENOENT;
1331                 }
1332
1333                 hns3_err(hw, "lookup mac addr failed for undefined, code=%u",
1334                          resp_code);
1335                 return -EIO;
1336         }
1337
1338         hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u",
1339                  op);
1340
1341         return -EINVAL;
1342 }
1343
1344 static int
1345 hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw,
1346                          struct hns3_mac_vlan_tbl_entry_cmd *req,
1347                          struct hns3_cmd_desc *desc, bool is_mc)
1348 {
1349         uint8_t resp_code;
1350         uint16_t retval;
1351         int ret;
1352
1353         hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD, true);
1354         if (is_mc) {
1355                 desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1356                 memcpy(desc[0].data, req,
1357                            sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1358                 hns3_cmd_setup_basic_desc(&desc[1], HNS3_OPC_MAC_VLAN_ADD,
1359                                           true);
1360                 desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1361                 hns3_cmd_setup_basic_desc(&desc[2], HNS3_OPC_MAC_VLAN_ADD,
1362                                           true);
1363                 ret = hns3_cmd_send(hw, desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1364         } else {
1365                 memcpy(desc[0].data, req,
1366                        sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1367                 ret = hns3_cmd_send(hw, desc, 1);
1368         }
1369         if (ret) {
1370                 hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.",
1371                          ret);
1372                 return ret;
1373         }
1374         resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1375         retval = rte_le_to_cpu_16(desc[0].retval);
1376
1377         return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1378                                             HNS3_MAC_VLAN_LKUP);
1379 }
1380
1381 static int
1382 hns3_add_mac_vlan_tbl(struct hns3_hw *hw,
1383                       struct hns3_mac_vlan_tbl_entry_cmd *req,
1384                       struct hns3_cmd_desc *mc_desc)
1385 {
1386         uint8_t resp_code;
1387         uint16_t retval;
1388         int cfg_status;
1389         int ret;
1390
1391         if (mc_desc == NULL) {
1392                 struct hns3_cmd_desc desc;
1393
1394                 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ADD, false);
1395                 memcpy(desc.data, req,
1396                        sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1397                 ret = hns3_cmd_send(hw, &desc, 1);
1398                 resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1399                 retval = rte_le_to_cpu_16(desc.retval);
1400
1401                 cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1402                                                           HNS3_MAC_VLAN_ADD);
1403         } else {
1404                 hns3_cmd_reuse_desc(&mc_desc[0], false);
1405                 mc_desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1406                 hns3_cmd_reuse_desc(&mc_desc[1], false);
1407                 mc_desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1408                 hns3_cmd_reuse_desc(&mc_desc[2], false);
1409                 mc_desc[2].flag &= rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT);
1410                 memcpy(mc_desc[0].data, req,
1411                        sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1412                 mc_desc[0].retval = 0;
1413                 ret = hns3_cmd_send(hw, mc_desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1414                 resp_code = (rte_le_to_cpu_32(mc_desc[0].data[0]) >> 8) & 0xff;
1415                 retval = rte_le_to_cpu_16(mc_desc[0].retval);
1416
1417                 cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1418                                                           HNS3_MAC_VLAN_ADD);
1419         }
1420
1421         if (ret) {
1422                 hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret);
1423                 return ret;
1424         }
1425
1426         return cfg_status;
1427 }
1428
1429 static int
1430 hns3_remove_mac_vlan_tbl(struct hns3_hw *hw,
1431                          struct hns3_mac_vlan_tbl_entry_cmd *req)
1432 {
1433         struct hns3_cmd_desc desc;
1434         uint8_t resp_code;
1435         uint16_t retval;
1436         int ret;
1437
1438         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false);
1439
1440         memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1441
1442         ret = hns3_cmd_send(hw, &desc, 1);
1443         if (ret) {
1444                 hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret);
1445                 return ret;
1446         }
1447         resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1448         retval = rte_le_to_cpu_16(desc.retval);
1449
1450         return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1451                                             HNS3_MAC_VLAN_REMOVE);
1452 }
1453
1454 static int
1455 hns3_add_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1456 {
1457         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1458         struct hns3_mac_vlan_tbl_entry_cmd req;
1459         struct hns3_pf *pf = &hns->pf;
1460         struct hns3_cmd_desc desc[3];
1461         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1462         uint16_t egress_port = 0;
1463         uint8_t vf_id;
1464         int ret;
1465
1466         /* check if mac addr is valid */
1467         if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1468                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1469                                       mac_addr);
1470                 hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid",
1471                          mac_str);
1472                 return -EINVAL;
1473         }
1474
1475         memset(&req, 0, sizeof(req));
1476
1477         /*
1478          * In current version VF is not supported when PF is driven by DPDK
1479          * driver, just need to configure parameters for PF vport.
1480          */
1481         vf_id = HNS3_PF_FUNC_ID;
1482         hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M,
1483                        HNS3_MAC_EPORT_VFID_S, vf_id);
1484
1485         req.egress_port = rte_cpu_to_le_16(egress_port);
1486
1487         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1488
1489         /*
1490          * Lookup the mac address in the mac_vlan table, and add
1491          * it if the entry is inexistent. Repeated unicast entry
1492          * is not allowed in the mac vlan table.
1493          */
1494         ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, false);
1495         if (ret == -ENOENT) {
1496                 if (!hns3_is_umv_space_full(hw)) {
1497                         ret = hns3_add_mac_vlan_tbl(hw, &req, NULL);
1498                         if (!ret)
1499                                 hns3_update_umv_space(hw, false);
1500                         return ret;
1501                 }
1502
1503                 hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size);
1504
1505                 return -ENOSPC;
1506         }
1507
1508         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr);
1509
1510         /* check if we just hit the duplicate */
1511         if (ret == 0) {
1512                 hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str);
1513                 return 0;
1514         }
1515
1516         hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table",
1517                  mac_str);
1518
1519         return ret;
1520 }
1521
1522 static int
1523 hns3_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1524 {
1525         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1526         struct rte_ether_addr *addr;
1527         int ret;
1528         int i;
1529
1530         for (i = 0; i < hw->mc_addrs_num; i++) {
1531                 addr = &hw->mc_addrs[i];
1532                 /* Check if there are duplicate addresses */
1533                 if (rte_is_same_ether_addr(addr, mac_addr)) {
1534                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1535                                               addr);
1536                         hns3_err(hw, "failed to add mc mac addr, same addrs"
1537                                  "(%s) is added by the set_mc_mac_addr_list "
1538                                  "API", mac_str);
1539                         return -EINVAL;
1540                 }
1541         }
1542
1543         ret = hns3_add_mc_addr(hw, mac_addr);
1544         if (ret) {
1545                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1546                                       mac_addr);
1547                 hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
1548                          mac_str, ret);
1549         }
1550         return ret;
1551 }
1552
1553 static int
1554 hns3_remove_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1555 {
1556         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1557         int ret;
1558
1559         ret = hns3_remove_mc_addr(hw, mac_addr);
1560         if (ret) {
1561                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1562                                       mac_addr);
1563                 hns3_err(hw, "failed to remove mc mac addr(%s), ret = %d",
1564                          mac_str, ret);
1565         }
1566         return ret;
1567 }
1568
1569 static int
1570 hns3_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
1571                   uint32_t idx, __rte_unused uint32_t pool)
1572 {
1573         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1574         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1575         int ret;
1576
1577         rte_spinlock_lock(&hw->lock);
1578
1579         /*
1580          * In hns3 network engine adding UC and MC mac address with different
1581          * commands with firmware. We need to determine whether the input
1582          * address is a UC or a MC address to call different commands.
1583          * By the way, it is recommended calling the API function named
1584          * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
1585          * using the rte_eth_dev_mac_addr_add API function to set MC mac address
1586          * may affect the specifications of UC mac addresses.
1587          */
1588         if (rte_is_multicast_ether_addr(mac_addr))
1589                 ret = hns3_add_mc_addr_common(hw, mac_addr);
1590         else
1591                 ret = hns3_add_uc_addr_common(hw, mac_addr);
1592
1593         if (ret) {
1594                 rte_spinlock_unlock(&hw->lock);
1595                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1596                                       mac_addr);
1597                 hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
1598                          ret);
1599                 return ret;
1600         }
1601
1602         if (idx == 0)
1603                 hw->mac.default_addr_setted = true;
1604         rte_spinlock_unlock(&hw->lock);
1605
1606         return ret;
1607 }
1608
1609 static int
1610 hns3_remove_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1611 {
1612         struct hns3_mac_vlan_tbl_entry_cmd req;
1613         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1614         int ret;
1615
1616         /* check if mac addr is valid */
1617         if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1618                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1619                                       mac_addr);
1620                 hns3_err(hw, "remove unicast mac addr err! addr(%s) invalid",
1621                          mac_str);
1622                 return -EINVAL;
1623         }
1624
1625         memset(&req, 0, sizeof(req));
1626         hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1627         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1628         ret = hns3_remove_mac_vlan_tbl(hw, &req);
1629         if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */
1630                 return 0;
1631         else if (ret == 0)
1632                 hns3_update_umv_space(hw, true);
1633
1634         return ret;
1635 }
1636
1637 static void
1638 hns3_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
1639 {
1640         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1641         /* index will be checked by upper level rte interface */
1642         struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
1643         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1644         int ret;
1645
1646         rte_spinlock_lock(&hw->lock);
1647
1648         if (rte_is_multicast_ether_addr(mac_addr))
1649                 ret = hns3_remove_mc_addr_common(hw, mac_addr);
1650         else
1651                 ret = hns3_remove_uc_addr_common(hw, mac_addr);
1652         rte_spinlock_unlock(&hw->lock);
1653         if (ret) {
1654                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1655                                       mac_addr);
1656                 hns3_err(hw, "failed to remove mac addr(%s), ret = %d", mac_str,
1657                          ret);
1658         }
1659 }
1660
1661 static int
1662 hns3_set_default_mac_addr(struct rte_eth_dev *dev,
1663                           struct rte_ether_addr *mac_addr)
1664 {
1665         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1666         struct rte_ether_addr *oaddr;
1667         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1668         bool default_addr_setted;
1669         bool rm_succes = false;
1670         int ret, ret_val;
1671
1672         /*
1673          * It has been guaranteed that input parameter named mac_addr is valid
1674          * address in the rte layer of DPDK framework.
1675          */
1676         oaddr = (struct rte_ether_addr *)hw->mac.mac_addr;
1677         default_addr_setted = hw->mac.default_addr_setted;
1678         if (default_addr_setted && !!rte_is_same_ether_addr(mac_addr, oaddr))
1679                 return 0;
1680
1681         rte_spinlock_lock(&hw->lock);
1682         if (default_addr_setted) {
1683                 ret = hns3_remove_uc_addr_common(hw, oaddr);
1684                 if (ret) {
1685                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1686                                               oaddr);
1687                         hns3_warn(hw, "Remove old uc mac address(%s) fail: %d",
1688                                   mac_str, ret);
1689                         rm_succes = false;
1690                 } else
1691                         rm_succes = true;
1692         }
1693
1694         ret = hns3_add_uc_addr_common(hw, mac_addr);
1695         if (ret) {
1696                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1697                                       mac_addr);
1698                 hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret);
1699                 goto err_add_uc_addr;
1700         }
1701
1702         ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes);
1703         if (ret) {
1704                 hns3_err(hw, "Failed to configure mac pause address: %d", ret);
1705                 goto err_pause_addr_cfg;
1706         }
1707
1708         rte_ether_addr_copy(mac_addr,
1709                             (struct rte_ether_addr *)hw->mac.mac_addr);
1710         hw->mac.default_addr_setted = true;
1711         rte_spinlock_unlock(&hw->lock);
1712
1713         return 0;
1714
1715 err_pause_addr_cfg:
1716         ret_val = hns3_remove_uc_addr_common(hw, mac_addr);
1717         if (ret_val) {
1718                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1719                                       mac_addr);
1720                 hns3_warn(hw,
1721                           "Failed to roll back to del setted mac addr(%s): %d",
1722                           mac_str, ret_val);
1723         }
1724
1725 err_add_uc_addr:
1726         if (rm_succes) {
1727                 ret_val = hns3_add_uc_addr_common(hw, oaddr);
1728                 if (ret_val) {
1729                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1730                                               oaddr);
1731                         hns3_warn(hw,
1732                                   "Failed to restore old uc mac addr(%s): %d",
1733                                   mac_str, ret_val);
1734                         hw->mac.default_addr_setted = false;
1735                 }
1736         }
1737         rte_spinlock_unlock(&hw->lock);
1738
1739         return ret;
1740 }
1741
1742 static int
1743 hns3_configure_all_mac_addr(struct hns3_adapter *hns, bool del)
1744 {
1745         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1746         struct hns3_hw *hw = &hns->hw;
1747         struct rte_ether_addr *addr;
1748         int err = 0;
1749         int ret;
1750         int i;
1751
1752         for (i = 0; i < HNS3_UC_MACADDR_NUM; i++) {
1753                 addr = &hw->data->mac_addrs[i];
1754                 if (rte_is_zero_ether_addr(addr))
1755                         continue;
1756                 if (rte_is_multicast_ether_addr(addr))
1757                         ret = del ? hns3_remove_mc_addr(hw, addr) :
1758                               hns3_add_mc_addr(hw, addr);
1759                 else
1760                         ret = del ? hns3_remove_uc_addr_common(hw, addr) :
1761                               hns3_add_uc_addr_common(hw, addr);
1762
1763                 if (ret) {
1764                         err = ret;
1765                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1766                                               addr);
1767                         hns3_err(hw, "failed to %s mac addr(%s) index:%d "
1768                                  "ret = %d.", del ? "remove" : "restore",
1769                                  mac_str, i, ret);
1770                 }
1771         }
1772         return err;
1773 }
1774
1775 static void
1776 hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr)
1777 {
1778 #define HNS3_VF_NUM_IN_FIRST_DESC 192
1779         uint8_t word_num;
1780         uint8_t bit_num;
1781
1782         if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) {
1783                 word_num = vfid / 32;
1784                 bit_num = vfid % 32;
1785                 if (clr)
1786                         desc[1].data[word_num] &=
1787                             rte_cpu_to_le_32(~(1UL << bit_num));
1788                 else
1789                         desc[1].data[word_num] |=
1790                             rte_cpu_to_le_32(1UL << bit_num);
1791         } else {
1792                 word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32;
1793                 bit_num = vfid % 32;
1794                 if (clr)
1795                         desc[2].data[word_num] &=
1796                             rte_cpu_to_le_32(~(1UL << bit_num));
1797                 else
1798                         desc[2].data[word_num] |=
1799                             rte_cpu_to_le_32(1UL << bit_num);
1800         }
1801 }
1802
1803 static int
1804 hns3_add_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1805 {
1806         struct hns3_mac_vlan_tbl_entry_cmd req;
1807         struct hns3_cmd_desc desc[3];
1808         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1809         uint8_t vf_id;
1810         int ret;
1811
1812         /* Check if mac addr is valid */
1813         if (!rte_is_multicast_ether_addr(mac_addr)) {
1814                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1815                                       mac_addr);
1816                 hns3_err(hw, "failed to add mc mac addr, addr(%s) invalid",
1817                          mac_str);
1818                 return -EINVAL;
1819         }
1820
1821         memset(&req, 0, sizeof(req));
1822         hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1823         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1824         ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1825         if (ret) {
1826                 /* This mac addr do not exist, add new entry for it */
1827                 memset(desc[0].data, 0, sizeof(desc[0].data));
1828                 memset(desc[1].data, 0, sizeof(desc[0].data));
1829                 memset(desc[2].data, 0, sizeof(desc[0].data));
1830         }
1831
1832         /*
1833          * In current version VF is not supported when PF is driven by DPDK
1834          * driver, just need to configure parameters for PF vport.
1835          */
1836         vf_id = HNS3_PF_FUNC_ID;
1837         hns3_update_desc_vfid(desc, vf_id, false);
1838         ret = hns3_add_mac_vlan_tbl(hw, &req, desc);
1839         if (ret) {
1840                 if (ret == -ENOSPC)
1841                         hns3_err(hw, "mc mac vlan table is full");
1842                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1843                                       mac_addr);
1844                 hns3_err(hw, "failed to add mc mac addr(%s): %d", mac_str, ret);
1845         }
1846
1847         return ret;
1848 }
1849
1850 static int
1851 hns3_remove_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1852 {
1853         struct hns3_mac_vlan_tbl_entry_cmd req;
1854         struct hns3_cmd_desc desc[3];
1855         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1856         uint8_t vf_id;
1857         int ret;
1858
1859         /* Check if mac addr is valid */
1860         if (!rte_is_multicast_ether_addr(mac_addr)) {
1861                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1862                                       mac_addr);
1863                 hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid",
1864                          mac_str);
1865                 return -EINVAL;
1866         }
1867
1868         memset(&req, 0, sizeof(req));
1869         hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1870         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1871         ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1872         if (ret == 0) {
1873                 /*
1874                  * This mac addr exist, remove this handle's VFID for it.
1875                  * In current version VF is not supported when PF is driven by
1876                  * DPDK driver, just need to configure parameters for PF vport.
1877                  */
1878                 vf_id = HNS3_PF_FUNC_ID;
1879                 hns3_update_desc_vfid(desc, vf_id, true);
1880
1881                 /* All the vfid is zero, so need to delete this entry */
1882                 ret = hns3_remove_mac_vlan_tbl(hw, &req);
1883         } else if (ret == -ENOENT) {
1884                 /* This mac addr doesn't exist. */
1885                 return 0;
1886         }
1887
1888         if (ret) {
1889                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1890                                       mac_addr);
1891                 hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret);
1892         }
1893
1894         return ret;
1895 }
1896
1897 static int
1898 hns3_set_mc_addr_chk_param(struct hns3_hw *hw,
1899                            struct rte_ether_addr *mc_addr_set,
1900                            uint32_t nb_mc_addr)
1901 {
1902         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1903         struct rte_ether_addr *addr;
1904         uint32_t i;
1905         uint32_t j;
1906
1907         if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
1908                 hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%d) "
1909                          "invalid. valid range: 0~%d",
1910                          nb_mc_addr, HNS3_MC_MACADDR_NUM);
1911                 return -EINVAL;
1912         }
1913
1914         /* Check if input mac addresses are valid */
1915         for (i = 0; i < nb_mc_addr; i++) {
1916                 addr = &mc_addr_set[i];
1917                 if (!rte_is_multicast_ether_addr(addr)) {
1918                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1919                                               addr);
1920                         hns3_err(hw,
1921                                  "failed to set mc mac addr, addr(%s) invalid.",
1922                                  mac_str);
1923                         return -EINVAL;
1924                 }
1925
1926                 /* Check if there are duplicate addresses */
1927                 for (j = i + 1; j < nb_mc_addr; j++) {
1928                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
1929                                 rte_ether_format_addr(mac_str,
1930                                                       RTE_ETHER_ADDR_FMT_SIZE,
1931                                                       addr);
1932                                 hns3_err(hw, "failed to set mc mac addr, "
1933                                          "addrs invalid. two same addrs(%s).",
1934                                          mac_str);
1935                                 return -EINVAL;
1936                         }
1937                 }
1938
1939                 /*
1940                  * Check if there are duplicate addresses between mac_addrs
1941                  * and mc_addr_set
1942                  */
1943                 for (j = 0; j < HNS3_UC_MACADDR_NUM; j++) {
1944                         if (rte_is_same_ether_addr(addr,
1945                                                    &hw->data->mac_addrs[j])) {
1946                                 rte_ether_format_addr(mac_str,
1947                                                       RTE_ETHER_ADDR_FMT_SIZE,
1948                                                       addr);
1949                                 hns3_err(hw, "failed to set mc mac addr, "
1950                                          "addrs invalid. addrs(%s) has already "
1951                                          "configured in mac_addr add API",
1952                                          mac_str);
1953                                 return -EINVAL;
1954                         }
1955                 }
1956         }
1957
1958         return 0;
1959 }
1960
1961 static void
1962 hns3_set_mc_addr_calc_addr(struct hns3_hw *hw,
1963                            struct rte_ether_addr *mc_addr_set,
1964                            int mc_addr_num,
1965                            struct rte_ether_addr *reserved_addr_list,
1966                            int *reserved_addr_num,
1967                            struct rte_ether_addr *add_addr_list,
1968                            int *add_addr_num,
1969                            struct rte_ether_addr *rm_addr_list,
1970                            int *rm_addr_num)
1971 {
1972         struct rte_ether_addr *addr;
1973         int current_addr_num;
1974         int reserved_num = 0;
1975         int add_num = 0;
1976         int rm_num = 0;
1977         int num;
1978         int i;
1979         int j;
1980         bool same_addr;
1981
1982         /* Calculate the mc mac address list that should be removed */
1983         current_addr_num = hw->mc_addrs_num;
1984         for (i = 0; i < current_addr_num; i++) {
1985                 addr = &hw->mc_addrs[i];
1986                 same_addr = false;
1987                 for (j = 0; j < mc_addr_num; j++) {
1988                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
1989                                 same_addr = true;
1990                                 break;
1991                         }
1992                 }
1993
1994                 if (!same_addr) {
1995                         rte_ether_addr_copy(addr, &rm_addr_list[rm_num]);
1996                         rm_num++;
1997                 } else {
1998                         rte_ether_addr_copy(addr,
1999                                             &reserved_addr_list[reserved_num]);
2000                         reserved_num++;
2001                 }
2002         }
2003
2004         /* Calculate the mc mac address list that should be added */
2005         for (i = 0; i < mc_addr_num; i++) {
2006                 addr = &mc_addr_set[i];
2007                 same_addr = false;
2008                 for (j = 0; j < current_addr_num; j++) {
2009                         if (rte_is_same_ether_addr(addr, &hw->mc_addrs[j])) {
2010                                 same_addr = true;
2011                                 break;
2012                         }
2013                 }
2014
2015                 if (!same_addr) {
2016                         rte_ether_addr_copy(addr, &add_addr_list[add_num]);
2017                         add_num++;
2018                 }
2019         }
2020
2021         /* Reorder the mc mac address list maintained by driver */
2022         for (i = 0; i < reserved_num; i++)
2023                 rte_ether_addr_copy(&reserved_addr_list[i], &hw->mc_addrs[i]);
2024
2025         for (i = 0; i < rm_num; i++) {
2026                 num = reserved_num + i;
2027                 rte_ether_addr_copy(&rm_addr_list[i], &hw->mc_addrs[num]);
2028         }
2029
2030         *reserved_addr_num = reserved_num;
2031         *add_addr_num = add_num;
2032         *rm_addr_num = rm_num;
2033 }
2034
2035 static int
2036 hns3_set_mc_mac_addr_list(struct rte_eth_dev *dev,
2037                           struct rte_ether_addr *mc_addr_set,
2038                           uint32_t nb_mc_addr)
2039 {
2040         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2041         struct rte_ether_addr reserved_addr_list[HNS3_MC_MACADDR_NUM];
2042         struct rte_ether_addr add_addr_list[HNS3_MC_MACADDR_NUM];
2043         struct rte_ether_addr rm_addr_list[HNS3_MC_MACADDR_NUM];
2044         struct rte_ether_addr *addr;
2045         int reserved_addr_num;
2046         int add_addr_num;
2047         int rm_addr_num;
2048         int mc_addr_num;
2049         int num;
2050         int ret;
2051         int i;
2052
2053         /* Check if input parameters are valid */
2054         ret = hns3_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
2055         if (ret)
2056                 return ret;
2057
2058         rte_spinlock_lock(&hw->lock);
2059
2060         /*
2061          * Calculate the mc mac address lists those should be removed and be
2062          * added, Reorder the mc mac address list maintained by driver.
2063          */
2064         mc_addr_num = (int)nb_mc_addr;
2065         hns3_set_mc_addr_calc_addr(hw, mc_addr_set, mc_addr_num,
2066                                    reserved_addr_list, &reserved_addr_num,
2067                                    add_addr_list, &add_addr_num,
2068                                    rm_addr_list, &rm_addr_num);
2069
2070         /* Remove mc mac addresses */
2071         for (i = 0; i < rm_addr_num; i++) {
2072                 num = rm_addr_num - i - 1;
2073                 addr = &rm_addr_list[num];
2074                 ret = hns3_remove_mc_addr(hw, addr);
2075                 if (ret) {
2076                         rte_spinlock_unlock(&hw->lock);
2077                         return ret;
2078                 }
2079                 hw->mc_addrs_num--;
2080         }
2081
2082         /* Add mc mac addresses */
2083         for (i = 0; i < add_addr_num; i++) {
2084                 addr = &add_addr_list[i];
2085                 ret = hns3_add_mc_addr(hw, addr);
2086                 if (ret) {
2087                         rte_spinlock_unlock(&hw->lock);
2088                         return ret;
2089                 }
2090
2091                 num = reserved_addr_num + i;
2092                 rte_ether_addr_copy(addr, &hw->mc_addrs[num]);
2093                 hw->mc_addrs_num++;
2094         }
2095         rte_spinlock_unlock(&hw->lock);
2096
2097         return 0;
2098 }
2099
2100 static int
2101 hns3_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
2102 {
2103         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2104         struct hns3_hw *hw = &hns->hw;
2105         struct rte_ether_addr *addr;
2106         int err = 0;
2107         int ret;
2108         int i;
2109
2110         for (i = 0; i < hw->mc_addrs_num; i++) {
2111                 addr = &hw->mc_addrs[i];
2112                 if (!rte_is_multicast_ether_addr(addr))
2113                         continue;
2114                 if (del)
2115                         ret = hns3_remove_mc_addr(hw, addr);
2116                 else
2117                         ret = hns3_add_mc_addr(hw, addr);
2118                 if (ret) {
2119                         err = ret;
2120                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2121                                               addr);
2122                         hns3_dbg(hw, "%s mc mac addr: %s failed for pf: ret = %d",
2123                                  del ? "Remove" : "Restore", mac_str, ret);
2124                 }
2125         }
2126         return err;
2127 }
2128
2129 static int
2130 hns3_check_mq_mode(struct rte_eth_dev *dev)
2131 {
2132         enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
2133         enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
2134         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2135         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2136         struct rte_eth_dcb_rx_conf *dcb_rx_conf;
2137         struct rte_eth_dcb_tx_conf *dcb_tx_conf;
2138         uint8_t num_tc;
2139         int max_tc = 0;
2140         int i;
2141
2142         dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
2143         dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
2144
2145         if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB_RSS) {
2146                 hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB_RSS is not supported. "
2147                          "rx_mq_mode = %d", rx_mq_mode);
2148                 return -EINVAL;
2149         }
2150
2151         if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB ||
2152             tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
2153                 hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB and ETH_MQ_TX_VMDQ_DCB "
2154                          "is not supported. rx_mq_mode = %d, tx_mq_mode = %d",
2155                          rx_mq_mode, tx_mq_mode);
2156                 return -EINVAL;
2157         }
2158
2159         if (rx_mq_mode == ETH_MQ_RX_DCB_RSS) {
2160                 if (dcb_rx_conf->nb_tcs > pf->tc_max) {
2161                         hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.",
2162                                  dcb_rx_conf->nb_tcs, pf->tc_max);
2163                         return -EINVAL;
2164                 }
2165
2166                 if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS ||
2167                       dcb_rx_conf->nb_tcs == HNS3_8_TCS)) {
2168                         hns3_err(hw, "on ETH_MQ_RX_DCB_RSS mode, "
2169                                  "nb_tcs(%d) != %d or %d in rx direction.",
2170                                  dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS);
2171                         return -EINVAL;
2172                 }
2173
2174                 if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) {
2175                         hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)",
2176                                  dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs);
2177                         return -EINVAL;
2178                 }
2179
2180                 for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
2181                         if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) {
2182                                 hns3_err(hw, "dcb_tc[%d] = %d in rx direction, "
2183                                          "is not equal to one in tx direction.",
2184                                          i, dcb_rx_conf->dcb_tc[i]);
2185                                 return -EINVAL;
2186                         }
2187                         if (dcb_rx_conf->dcb_tc[i] > max_tc)
2188                                 max_tc = dcb_rx_conf->dcb_tc[i];
2189                 }
2190
2191                 num_tc = max_tc + 1;
2192                 if (num_tc > dcb_rx_conf->nb_tcs) {
2193                         hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)",
2194                                  num_tc, dcb_rx_conf->nb_tcs);
2195                         return -EINVAL;
2196                 }
2197         }
2198
2199         return 0;
2200 }
2201
2202 static int
2203 hns3_check_dcb_cfg(struct rte_eth_dev *dev)
2204 {
2205         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2206
2207         if (!hns3_dev_dcb_supported(hw)) {
2208                 hns3_err(hw, "this port does not support dcb configurations.");
2209                 return -EOPNOTSUPP;
2210         }
2211
2212         if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) {
2213                 hns3_err(hw, "MAC pause enabled, cannot config dcb info.");
2214                 return -EOPNOTSUPP;
2215         }
2216
2217         /* Check multiple queue mode */
2218         return hns3_check_mq_mode(dev);
2219 }
2220
2221 static int
2222 hns3_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id, bool mmap,
2223                            enum hns3_ring_type queue_type, uint16_t queue_id)
2224 {
2225         struct hns3_cmd_desc desc;
2226         struct hns3_ctrl_vector_chain_cmd *req =
2227                 (struct hns3_ctrl_vector_chain_cmd *)desc.data;
2228         enum hns3_cmd_status status;
2229         enum hns3_opcode_type op;
2230         uint16_t tqp_type_and_id = 0;
2231         const char *op_str;
2232         uint16_t type;
2233         uint16_t gl;
2234
2235         op = mmap ? HNS3_OPC_ADD_RING_TO_VECTOR : HNS3_OPC_DEL_RING_TO_VECTOR;
2236         hns3_cmd_setup_basic_desc(&desc, op, false);
2237         req->int_vector_id = vector_id;
2238
2239         if (queue_type == HNS3_RING_TYPE_RX)
2240                 gl = HNS3_RING_GL_RX;
2241         else
2242                 gl = HNS3_RING_GL_TX;
2243
2244         type = queue_type;
2245
2246         hns3_set_field(tqp_type_and_id, HNS3_INT_TYPE_M, HNS3_INT_TYPE_S,
2247                        type);
2248         hns3_set_field(tqp_type_and_id, HNS3_TQP_ID_M, HNS3_TQP_ID_S, queue_id);
2249         hns3_set_field(tqp_type_and_id, HNS3_INT_GL_IDX_M, HNS3_INT_GL_IDX_S,
2250                        gl);
2251         req->tqp_type_and_id[0] = rte_cpu_to_le_16(tqp_type_and_id);
2252         req->int_cause_num = 1;
2253         op_str = mmap ? "Map" : "Unmap";
2254         status = hns3_cmd_send(hw, &desc, 1);
2255         if (status) {
2256                 hns3_err(hw, "%s TQP %d fail, vector_id is %d, status is %d.",
2257                          op_str, queue_id, req->int_vector_id, status);
2258                 return status;
2259         }
2260
2261         return 0;
2262 }
2263
2264 static int
2265 hns3_init_ring_with_vector(struct hns3_hw *hw)
2266 {
2267         uint16_t vec;
2268         int ret;
2269         int i;
2270
2271         /*
2272          * In hns3 network engine, vector 0 is always the misc interrupt of this
2273          * function, vector 1~N can be used respectively for the queues of the
2274          * function. Tx and Rx queues with the same number share the interrupt
2275          * vector. In the initialization clearing the all hardware mapping
2276          * relationship configurations between queues and interrupt vectors is
2277          * needed, so some error caused by the residual configurations, such as
2278          * the unexpected Tx interrupt, can be avoid.
2279          */
2280         vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
2281         if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
2282                 vec = vec - 1; /* the last interrupt is reserved */
2283         hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
2284         for (i = 0; i < hw->intr_tqps_num; i++) {
2285                 /*
2286                  * Set gap limiter/rate limiter/quanity limiter algorithm
2287                  * configuration for interrupt coalesce of queue's interrupt.
2288                  */
2289                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
2290                                        HNS3_TQP_INTR_GL_DEFAULT);
2291                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
2292                                        HNS3_TQP_INTR_GL_DEFAULT);
2293                 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
2294                 hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
2295
2296                 ret = hns3_bind_ring_with_vector(hw, vec, false,
2297                                                  HNS3_RING_TYPE_TX, i);
2298                 if (ret) {
2299                         PMD_INIT_LOG(ERR, "PF fail to unbind TX ring(%d) with "
2300                                           "vector: %d, ret=%d", i, vec, ret);
2301                         return ret;
2302                 }
2303
2304                 ret = hns3_bind_ring_with_vector(hw, vec, false,
2305                                                  HNS3_RING_TYPE_RX, i);
2306                 if (ret) {
2307                         PMD_INIT_LOG(ERR, "PF fail to unbind RX ring(%d) with "
2308                                           "vector: %d, ret=%d", i, vec, ret);
2309                         return ret;
2310                 }
2311         }
2312
2313         return 0;
2314 }
2315
2316 static int
2317 hns3_dev_configure(struct rte_eth_dev *dev)
2318 {
2319         struct hns3_adapter *hns = dev->data->dev_private;
2320         struct rte_eth_conf *conf = &dev->data->dev_conf;
2321         enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
2322         struct hns3_hw *hw = &hns->hw;
2323         struct hns3_rss_conf *rss_cfg = &hw->rss_info;
2324         uint16_t nb_rx_q = dev->data->nb_rx_queues;
2325         uint16_t nb_tx_q = dev->data->nb_tx_queues;
2326         struct rte_eth_rss_conf rss_conf;
2327         uint16_t mtu;
2328         bool gro_en;
2329         int ret;
2330
2331         hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
2332
2333         /*
2334          * Some versions of hardware network engine does not support
2335          * individually enable/disable/reset the Tx or Rx queue. These devices
2336          * must enable/disable/reset Tx and Rx queues at the same time. When the
2337          * numbers of Tx queues allocated by upper applications are not equal to
2338          * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
2339          * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
2340          * work as usual. But these fake queues are imperceptible, and can not
2341          * be used by upper applications.
2342          */
2343         if (!hns3_dev_indep_txrx_supported(hw)) {
2344                 ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
2345                 if (ret) {
2346                         hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.",
2347                                  ret);
2348                         return ret;
2349                 }
2350         }
2351
2352         hw->adapter_state = HNS3_NIC_CONFIGURING;
2353         if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
2354                 hns3_err(hw, "setting link speed/duplex not supported");
2355                 ret = -EINVAL;
2356                 goto cfg_err;
2357         }
2358
2359         if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG) {
2360                 ret = hns3_check_dcb_cfg(dev);
2361                 if (ret)
2362                         goto cfg_err;
2363         }
2364
2365         /* When RSS is not configured, redirect the packet queue 0 */
2366         if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
2367                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
2368                 rss_conf = conf->rx_adv_conf.rss_conf;
2369                 hw->rss_dis_flag = false;
2370                 if (rss_conf.rss_key == NULL) {
2371                         rss_conf.rss_key = rss_cfg->key;
2372                         rss_conf.rss_key_len = HNS3_RSS_KEY_SIZE;
2373                 }
2374
2375                 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
2376                 if (ret)
2377                         goto cfg_err;
2378         }
2379
2380         /*
2381          * If jumbo frames are enabled, MTU needs to be refreshed
2382          * according to the maximum RX packet length.
2383          */
2384         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
2385                 /*
2386                  * Security of max_rx_pkt_len is guaranteed in dpdk frame.
2387                  * Maximum value of max_rx_pkt_len is HNS3_MAX_FRAME_LEN, so it
2388                  * can safely assign to "uint16_t" type variable.
2389                  */
2390                 mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(conf->rxmode.max_rx_pkt_len);
2391                 ret = hns3_dev_mtu_set(dev, mtu);
2392                 if (ret)
2393                         goto cfg_err;
2394                 dev->data->mtu = mtu;
2395         }
2396
2397         ret = hns3_dev_configure_vlan(dev);
2398         if (ret)
2399                 goto cfg_err;
2400
2401         /* config hardware GRO */
2402         gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
2403         ret = hns3_config_gro(hw, gro_en);
2404         if (ret)
2405                 goto cfg_err;
2406
2407         hns->rx_simple_allowed = true;
2408         hns->rx_vec_allowed = true;
2409         hns->tx_simple_allowed = true;
2410         hns->tx_vec_allowed = true;
2411
2412         hns3_init_rx_ptype_tble(dev);
2413         hw->adapter_state = HNS3_NIC_CONFIGURED;
2414
2415         return 0;
2416
2417 cfg_err:
2418         (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
2419         hw->adapter_state = HNS3_NIC_INITIALIZED;
2420
2421         return ret;
2422 }
2423
2424 static int
2425 hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps)
2426 {
2427         struct hns3_config_max_frm_size_cmd *req;
2428         struct hns3_cmd_desc desc;
2429
2430         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false);
2431
2432         req = (struct hns3_config_max_frm_size_cmd *)desc.data;
2433         req->max_frm_size = rte_cpu_to_le_16(new_mps);
2434         req->min_frm_size = RTE_ETHER_MIN_LEN;
2435
2436         return hns3_cmd_send(hw, &desc, 1);
2437 }
2438
2439 static int
2440 hns3_config_mtu(struct hns3_hw *hw, uint16_t mps)
2441 {
2442         int ret;
2443
2444         ret = hns3_set_mac_mtu(hw, mps);
2445         if (ret) {
2446                 hns3_err(hw, "Failed to set mtu, ret = %d", ret);
2447                 return ret;
2448         }
2449
2450         ret = hns3_buffer_alloc(hw);
2451         if (ret)
2452                 hns3_err(hw, "Failed to allocate buffer, ret = %d", ret);
2453
2454         return ret;
2455 }
2456
2457 static int
2458 hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
2459 {
2460         struct hns3_adapter *hns = dev->data->dev_private;
2461         uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
2462         struct hns3_hw *hw = &hns->hw;
2463         bool is_jumbo_frame;
2464         int ret;
2465
2466         if (dev->data->dev_started) {
2467                 hns3_err(hw, "Failed to set mtu, port %u must be stopped "
2468                          "before configuration", dev->data->port_id);
2469                 return -EBUSY;
2470         }
2471
2472         rte_spinlock_lock(&hw->lock);
2473         is_jumbo_frame = frame_size > RTE_ETHER_MAX_LEN ? true : false;
2474         frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN);
2475
2476         /*
2477          * Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely
2478          * assign to "uint16_t" type variable.
2479          */
2480         ret = hns3_config_mtu(hw, (uint16_t)frame_size);
2481         if (ret) {
2482                 rte_spinlock_unlock(&hw->lock);
2483                 hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d",
2484                          dev->data->port_id, mtu, ret);
2485                 return ret;
2486         }
2487         hns->pf.mps = (uint16_t)frame_size;
2488         if (is_jumbo_frame)
2489                 dev->data->dev_conf.rxmode.offloads |=
2490                                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
2491         else
2492                 dev->data->dev_conf.rxmode.offloads &=
2493                                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
2494         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
2495         rte_spinlock_unlock(&hw->lock);
2496
2497         return 0;
2498 }
2499
2500 static int
2501 hns3_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
2502 {
2503         struct hns3_adapter *hns = eth_dev->data->dev_private;
2504         struct hns3_hw *hw = &hns->hw;
2505         uint16_t queue_num = hw->tqps_num;
2506
2507         /*
2508          * In interrupt mode, 'max_rx_queues' is set based on the number of
2509          * MSI-X interrupt resources of the hardware.
2510          */
2511         if (hw->data->dev_conf.intr_conf.rxq == 1)
2512                 queue_num = hw->intr_tqps_num;
2513
2514         info->max_rx_queues = queue_num;
2515         info->max_tx_queues = hw->tqps_num;
2516         info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
2517         info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
2518         info->max_mac_addrs = HNS3_UC_MACADDR_NUM;
2519         info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
2520         info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
2521         info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
2522                                  DEV_RX_OFFLOAD_TCP_CKSUM |
2523                                  DEV_RX_OFFLOAD_UDP_CKSUM |
2524                                  DEV_RX_OFFLOAD_SCTP_CKSUM |
2525                                  DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
2526                                  DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
2527                                  DEV_RX_OFFLOAD_KEEP_CRC |
2528                                  DEV_RX_OFFLOAD_SCATTER |
2529                                  DEV_RX_OFFLOAD_VLAN_STRIP |
2530                                  DEV_RX_OFFLOAD_VLAN_FILTER |
2531                                  DEV_RX_OFFLOAD_JUMBO_FRAME |
2532                                  DEV_RX_OFFLOAD_RSS_HASH |
2533                                  DEV_RX_OFFLOAD_TCP_LRO);
2534         info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
2535                                  DEV_TX_OFFLOAD_IPV4_CKSUM |
2536                                  DEV_TX_OFFLOAD_TCP_CKSUM |
2537                                  DEV_TX_OFFLOAD_UDP_CKSUM |
2538                                  DEV_TX_OFFLOAD_SCTP_CKSUM |
2539                                  DEV_TX_OFFLOAD_MULTI_SEGS |
2540                                  DEV_TX_OFFLOAD_TCP_TSO |
2541                                  DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
2542                                  DEV_TX_OFFLOAD_GRE_TNL_TSO |
2543                                  DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
2544                                  DEV_TX_OFFLOAD_MBUF_FAST_FREE |
2545                                  hns3_txvlan_cap_get(hw));
2546
2547         if (hns3_dev_indep_txrx_supported(hw))
2548                 info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
2549                                  RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
2550
2551         info->rx_desc_lim = (struct rte_eth_desc_lim) {
2552                 .nb_max = HNS3_MAX_RING_DESC,
2553                 .nb_min = HNS3_MIN_RING_DESC,
2554                 .nb_align = HNS3_ALIGN_RING_DESC,
2555         };
2556
2557         info->tx_desc_lim = (struct rte_eth_desc_lim) {
2558                 .nb_max = HNS3_MAX_RING_DESC,
2559                 .nb_min = HNS3_MIN_RING_DESC,
2560                 .nb_align = HNS3_ALIGN_RING_DESC,
2561                 .nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
2562                 .nb_mtu_seg_max = hw->max_non_tso_bd_num,
2563         };
2564
2565         info->default_rxconf = (struct rte_eth_rxconf) {
2566                 .rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
2567                 /*
2568                  * If there are no available Rx buffer descriptors, incoming
2569                  * packets are always dropped by hardware based on hns3 network
2570                  * engine.
2571                  */
2572                 .rx_drop_en = 1,
2573                 .offloads = 0,
2574         };
2575         info->default_txconf = (struct rte_eth_txconf) {
2576                 .tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
2577                 .offloads = 0,
2578         };
2579
2580         info->vmdq_queue_num = 0;
2581
2582         info->reta_size = HNS3_RSS_IND_TBL_SIZE;
2583         info->hash_key_size = HNS3_RSS_KEY_SIZE;
2584         info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
2585
2586         info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2587         info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2588         info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2589         info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2590         info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2591         info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2592
2593         return 0;
2594 }
2595
2596 static int
2597 hns3_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2598                     size_t fw_size)
2599 {
2600         struct hns3_adapter *hns = eth_dev->data->dev_private;
2601         struct hns3_hw *hw = &hns->hw;
2602         uint32_t version = hw->fw_version;
2603         int ret;
2604
2605         ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2606                        hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2607                                       HNS3_FW_VERSION_BYTE3_S),
2608                        hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2609                                       HNS3_FW_VERSION_BYTE2_S),
2610                        hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2611                                       HNS3_FW_VERSION_BYTE1_S),
2612                        hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2613                                       HNS3_FW_VERSION_BYTE0_S));
2614         ret += 1; /* add the size of '\0' */
2615         if (fw_size < (uint32_t)ret)
2616                 return ret;
2617         else
2618                 return 0;
2619 }
2620
2621 static int
2622 hns3_dev_link_update(struct rte_eth_dev *eth_dev,
2623                      __rte_unused int wait_to_complete)
2624 {
2625         struct hns3_adapter *hns = eth_dev->data->dev_private;
2626         struct hns3_hw *hw = &hns->hw;
2627         struct hns3_mac *mac = &hw->mac;
2628         struct rte_eth_link new_link;
2629
2630         if (!hns3_is_reset_pending(hns)) {
2631                 hns3_update_speed_duplex(eth_dev);
2632                 hns3_update_link_status(hw);
2633         }
2634
2635         memset(&new_link, 0, sizeof(new_link));
2636         switch (mac->link_speed) {
2637         case ETH_SPEED_NUM_10M:
2638         case ETH_SPEED_NUM_100M:
2639         case ETH_SPEED_NUM_1G:
2640         case ETH_SPEED_NUM_10G:
2641         case ETH_SPEED_NUM_25G:
2642         case ETH_SPEED_NUM_40G:
2643         case ETH_SPEED_NUM_50G:
2644         case ETH_SPEED_NUM_100G:
2645         case ETH_SPEED_NUM_200G:
2646                 new_link.link_speed = mac->link_speed;
2647                 break;
2648         default:
2649                 new_link.link_speed = ETH_SPEED_NUM_100M;
2650                 break;
2651         }
2652
2653         new_link.link_duplex = mac->link_duplex;
2654         new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2655         new_link.link_autoneg =
2656             !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2657
2658         return rte_eth_linkstatus_set(eth_dev, &new_link);
2659 }
2660
2661 static int
2662 hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status)
2663 {
2664         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2665         struct hns3_pf *pf = &hns->pf;
2666
2667         if (!(status->pf_state & HNS3_PF_STATE_DONE))
2668                 return -EINVAL;
2669
2670         pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false;
2671
2672         return 0;
2673 }
2674
2675 static int
2676 hns3_query_function_status(struct hns3_hw *hw)
2677 {
2678 #define HNS3_QUERY_MAX_CNT              10
2679 #define HNS3_QUERY_SLEEP_MSCOEND        1
2680         struct hns3_func_status_cmd *req;
2681         struct hns3_cmd_desc desc;
2682         int timeout = 0;
2683         int ret;
2684
2685         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true);
2686         req = (struct hns3_func_status_cmd *)desc.data;
2687
2688         do {
2689                 ret = hns3_cmd_send(hw, &desc, 1);
2690                 if (ret) {
2691                         PMD_INIT_LOG(ERR, "query function status failed %d",
2692                                      ret);
2693                         return ret;
2694                 }
2695
2696                 /* Check pf reset is done */
2697                 if (req->pf_state)
2698                         break;
2699
2700                 rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND);
2701         } while (timeout++ < HNS3_QUERY_MAX_CNT);
2702
2703         return hns3_parse_func_status(hw, req);
2704 }
2705
2706 static int
2707 hns3_get_pf_max_tqp_num(struct hns3_hw *hw)
2708 {
2709         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2710         struct hns3_pf *pf = &hns->pf;
2711
2712         if (pf->tqp_config_mode == HNS3_FLEX_MAX_TQP_NUM_MODE) {
2713                 /*
2714                  * The total_tqps_num obtained from firmware is maximum tqp
2715                  * numbers of this port, which should be used for PF and VFs.
2716                  * There is no need for pf to have so many tqp numbers in
2717                  * most cases. RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2718                  * coming from config file, is assigned to maximum queue number
2719                  * for the PF of this port by user. So users can modify the
2720                  * maximum queue number of PF according to their own application
2721                  * scenarios, which is more flexible to use. In addition, many
2722                  * memories can be saved due to allocating queue statistics
2723                  * room according to the actual number of queues required. The
2724                  * maximum queue number of PF for network engine with
2725                  * revision_id greater than 0x30 is assigned by config file.
2726                  */
2727                 if (RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF <= 0) {
2728                         hns3_err(hw, "RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF(%d) "
2729                                  "must be greater than 0.",
2730                                  RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF);
2731                         return -EINVAL;
2732                 }
2733
2734                 hw->tqps_num = RTE_MIN(RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2735                                        hw->total_tqps_num);
2736         } else {
2737                 /*
2738                  * Due to the limitation on the number of PF interrupts
2739                  * available, the maximum queue number assigned to PF on
2740                  * the network engine with revision_id 0x21 is 64.
2741                  */
2742                 hw->tqps_num = RTE_MIN(hw->total_tqps_num,
2743                                        HNS3_MAX_TQP_NUM_HIP08_PF);
2744         }
2745
2746         return 0;
2747 }
2748
2749 static int
2750 hns3_query_pf_resource(struct hns3_hw *hw)
2751 {
2752         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2753         struct hns3_pf *pf = &hns->pf;
2754         struct hns3_pf_res_cmd *req;
2755         struct hns3_cmd_desc desc;
2756         int ret;
2757
2758         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true);
2759         ret = hns3_cmd_send(hw, &desc, 1);
2760         if (ret) {
2761                 PMD_INIT_LOG(ERR, "query pf resource failed %d", ret);
2762                 return ret;
2763         }
2764
2765         req = (struct hns3_pf_res_cmd *)desc.data;
2766         hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num) +
2767                              rte_le_to_cpu_16(req->ext_tqp_num);
2768         ret = hns3_get_pf_max_tqp_num(hw);
2769         if (ret)
2770                 return ret;
2771
2772         pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S;
2773         pf->func_num = rte_le_to_cpu_16(req->pf_own_fun_number);
2774
2775         if (req->tx_buf_size)
2776                 pf->tx_buf_size =
2777                     rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S;
2778         else
2779                 pf->tx_buf_size = HNS3_DEFAULT_TX_BUF;
2780
2781         pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT);
2782
2783         if (req->dv_buf_size)
2784                 pf->dv_buf_size =
2785                     rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S;
2786         else
2787                 pf->dv_buf_size = HNS3_DEFAULT_DV;
2788
2789         pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT);
2790
2791         hw->num_msi =
2792                 hns3_get_field(rte_le_to_cpu_16(req->nic_pf_intr_vector_number),
2793                                HNS3_PF_VEC_NUM_M, HNS3_PF_VEC_NUM_S);
2794
2795         return 0;
2796 }
2797
2798 static void
2799 hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc)
2800 {
2801         struct hns3_cfg_param_cmd *req;
2802         uint64_t mac_addr_tmp_high;
2803         uint8_t ext_rss_size_max;
2804         uint64_t mac_addr_tmp;
2805         uint32_t i;
2806
2807         req = (struct hns3_cfg_param_cmd *)desc[0].data;
2808
2809         /* get the configuration */
2810         cfg->vmdq_vport_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2811                                              HNS3_CFG_VMDQ_M, HNS3_CFG_VMDQ_S);
2812         cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2813                                      HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S);
2814         cfg->tqp_desc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2815                                            HNS3_CFG_TQP_DESC_N_M,
2816                                            HNS3_CFG_TQP_DESC_N_S);
2817
2818         cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2819                                        HNS3_CFG_PHY_ADDR_M,
2820                                        HNS3_CFG_PHY_ADDR_S);
2821         cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2822                                          HNS3_CFG_MEDIA_TP_M,
2823                                          HNS3_CFG_MEDIA_TP_S);
2824         cfg->rx_buf_len = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2825                                          HNS3_CFG_RX_BUF_LEN_M,
2826                                          HNS3_CFG_RX_BUF_LEN_S);
2827         /* get mac address */
2828         mac_addr_tmp = rte_le_to_cpu_32(req->param[2]);
2829         mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2830                                            HNS3_CFG_MAC_ADDR_H_M,
2831                                            HNS3_CFG_MAC_ADDR_H_S);
2832
2833         mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
2834
2835         cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2836                                             HNS3_CFG_DEFAULT_SPEED_M,
2837                                             HNS3_CFG_DEFAULT_SPEED_S);
2838         cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2839                                            HNS3_CFG_RSS_SIZE_M,
2840                                            HNS3_CFG_RSS_SIZE_S);
2841
2842         for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
2843                 cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
2844
2845         req = (struct hns3_cfg_param_cmd *)desc[1].data;
2846         cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]);
2847
2848         cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2849                                             HNS3_CFG_SPEED_ABILITY_M,
2850                                             HNS3_CFG_SPEED_ABILITY_S);
2851         cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2852                                         HNS3_CFG_UMV_TBL_SPACE_M,
2853                                         HNS3_CFG_UMV_TBL_SPACE_S);
2854         if (!cfg->umv_space)
2855                 cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF;
2856
2857         ext_rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[2]),
2858                                                HNS3_CFG_EXT_RSS_SIZE_M,
2859                                                HNS3_CFG_EXT_RSS_SIZE_S);
2860
2861         /*
2862          * Field ext_rss_size_max obtained from firmware will be more flexible
2863          * for future changes and expansions, which is an exponent of 2, instead
2864          * of reading out directly. If this field is not zero, hns3 PF PMD
2865          * driver uses it as rss_size_max under one TC. Device, whose revision
2866          * id is greater than or equal to PCI_REVISION_ID_HIP09_A, obtains the
2867          * maximum number of queues supported under a TC through this field.
2868          */
2869         if (ext_rss_size_max)
2870                 cfg->rss_size_max = 1U << ext_rss_size_max;
2871 }
2872
2873 /* hns3_get_board_cfg: query the static parameter from NCL_config file in flash
2874  * @hw: pointer to struct hns3_hw
2875  * @hcfg: the config structure to be getted
2876  */
2877 static int
2878 hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg)
2879 {
2880         struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM];
2881         struct hns3_cfg_param_cmd *req;
2882         uint32_t offset;
2883         uint32_t i;
2884         int ret;
2885
2886         for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) {
2887                 offset = 0;
2888                 req = (struct hns3_cfg_param_cmd *)desc[i].data;
2889                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM,
2890                                           true);
2891                 hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S,
2892                                i * HNS3_CFG_RD_LEN_BYTES);
2893                 /* Len should be divided by 4 when send to hardware */
2894                 hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S,
2895                                HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT);
2896                 req->offset = rte_cpu_to_le_32(offset);
2897         }
2898
2899         ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM);
2900         if (ret) {
2901                 PMD_INIT_LOG(ERR, "get config failed %d.", ret);
2902                 return ret;
2903         }
2904
2905         hns3_parse_cfg(hcfg, desc);
2906
2907         return 0;
2908 }
2909
2910 static int
2911 hns3_parse_speed(int speed_cmd, uint32_t *speed)
2912 {
2913         switch (speed_cmd) {
2914         case HNS3_CFG_SPEED_10M:
2915                 *speed = ETH_SPEED_NUM_10M;
2916                 break;
2917         case HNS3_CFG_SPEED_100M:
2918                 *speed = ETH_SPEED_NUM_100M;
2919                 break;
2920         case HNS3_CFG_SPEED_1G:
2921                 *speed = ETH_SPEED_NUM_1G;
2922                 break;
2923         case HNS3_CFG_SPEED_10G:
2924                 *speed = ETH_SPEED_NUM_10G;
2925                 break;
2926         case HNS3_CFG_SPEED_25G:
2927                 *speed = ETH_SPEED_NUM_25G;
2928                 break;
2929         case HNS3_CFG_SPEED_40G:
2930                 *speed = ETH_SPEED_NUM_40G;
2931                 break;
2932         case HNS3_CFG_SPEED_50G:
2933                 *speed = ETH_SPEED_NUM_50G;
2934                 break;
2935         case HNS3_CFG_SPEED_100G:
2936                 *speed = ETH_SPEED_NUM_100G;
2937                 break;
2938         case HNS3_CFG_SPEED_200G:
2939                 *speed = ETH_SPEED_NUM_200G;
2940                 break;
2941         default:
2942                 return -EINVAL;
2943         }
2944
2945         return 0;
2946 }
2947
2948 static void
2949 hns3_set_default_dev_specifications(struct hns3_hw *hw)
2950 {
2951         hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
2952         hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
2953         hw->rss_key_size = HNS3_RSS_KEY_SIZE;
2954         hw->max_tm_rate = HNS3_ETHER_MAX_RATE;
2955 }
2956
2957 static void
2958 hns3_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
2959 {
2960         struct hns3_dev_specs_0_cmd *req0;
2961
2962         req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
2963
2964         hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
2965         hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
2966         hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
2967         hw->max_tm_rate = rte_le_to_cpu_32(req0->max_tm_rate);
2968 }
2969
2970 static int
2971 hns3_query_dev_specifications(struct hns3_hw *hw)
2972 {
2973         struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
2974         int ret;
2975         int i;
2976
2977         for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
2978                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
2979                                           true);
2980                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
2981         }
2982         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
2983
2984         ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
2985         if (ret)
2986                 return ret;
2987
2988         hns3_parse_dev_specifications(hw, desc);
2989
2990         return 0;
2991 }
2992
2993 static int
2994 hns3_get_capability(struct hns3_hw *hw)
2995 {
2996         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2997         struct rte_pci_device *pci_dev;
2998         struct hns3_pf *pf = &hns->pf;
2999         struct rte_eth_dev *eth_dev;
3000         uint16_t device_id;
3001         uint8_t revision;
3002         int ret;
3003
3004         eth_dev = &rte_eth_devices[hw->data->port_id];
3005         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3006         device_id = pci_dev->id.device_id;
3007
3008         if (device_id == HNS3_DEV_ID_25GE_RDMA ||
3009             device_id == HNS3_DEV_ID_50GE_RDMA ||
3010             device_id == HNS3_DEV_ID_100G_RDMA_MACSEC ||
3011             device_id == HNS3_DEV_ID_200G_RDMA)
3012                 hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_DCB_B, 1);
3013
3014         ret = hns3_query_dev_fec_info(eth_dev);
3015         if (ret) {
3016                 PMD_INIT_LOG(ERR,
3017                              "failed to query FEC information, ret = %d", ret);
3018                 return ret;
3019         }
3020
3021         /* Get PCI revision id */
3022         ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
3023                                   HNS3_PCI_REVISION_ID);
3024         if (ret != HNS3_PCI_REVISION_ID_LEN) {
3025                 PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
3026                              ret);
3027                 return -EIO;
3028         }
3029         hw->revision = revision;
3030
3031         if (revision < PCI_REVISION_ID_HIP09_A) {
3032                 hns3_set_default_dev_specifications(hw);
3033                 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
3034                 hw->intr.coalesce_mode = HNS3_INTR_COALESCE_NON_QL;
3035                 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
3036                 hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
3037                 hw->vlan_mode = HNS3_SW_SHIFT_AND_DISCARD_MODE;
3038                 hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
3039                 pf->tqp_config_mode = HNS3_FIXED_MAX_TQP_NUM_MODE;
3040                 return 0;
3041         }
3042
3043         ret = hns3_query_dev_specifications(hw);
3044         if (ret) {
3045                 PMD_INIT_LOG(ERR,
3046                              "failed to query dev specifications, ret = %d",
3047                              ret);
3048                 return ret;
3049         }
3050
3051         hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
3052         hw->intr.coalesce_mode = HNS3_INTR_COALESCE_QL;
3053         hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
3054         hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
3055         hw->vlan_mode = HNS3_HW_SHIFT_AND_DISCARD_MODE;
3056         hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
3057         pf->tqp_config_mode = HNS3_FLEX_MAX_TQP_NUM_MODE;
3058
3059         return 0;
3060 }
3061
3062 static int
3063 hns3_get_board_configuration(struct hns3_hw *hw)
3064 {
3065         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3066         struct hns3_pf *pf = &hns->pf;
3067         struct hns3_cfg cfg;
3068         int ret;
3069
3070         ret = hns3_get_board_cfg(hw, &cfg);
3071         if (ret) {
3072                 PMD_INIT_LOG(ERR, "get board config failed %d", ret);
3073                 return ret;
3074         }
3075
3076         if (cfg.media_type == HNS3_MEDIA_TYPE_COPPER &&
3077             !hns3_dev_copper_supported(hw)) {
3078                 PMD_INIT_LOG(ERR, "media type is copper, not supported.");
3079                 return -EOPNOTSUPP;
3080         }
3081
3082         hw->mac.media_type = cfg.media_type;
3083         hw->rss_size_max = cfg.rss_size_max;
3084         hw->rss_dis_flag = false;
3085         memcpy(hw->mac.mac_addr, cfg.mac_addr, RTE_ETHER_ADDR_LEN);
3086         hw->mac.phy_addr = cfg.phy_addr;
3087         hw->mac.default_addr_setted = false;
3088         hw->num_tx_desc = cfg.tqp_desc_num;
3089         hw->num_rx_desc = cfg.tqp_desc_num;
3090         hw->dcb_info.num_pg = 1;
3091         hw->dcb_info.hw_pfc_map = 0;
3092
3093         ret = hns3_parse_speed(cfg.default_speed, &hw->mac.link_speed);
3094         if (ret) {
3095                 PMD_INIT_LOG(ERR, "Get wrong speed %d, ret = %d",
3096                              cfg.default_speed, ret);
3097                 return ret;
3098         }
3099
3100         pf->tc_max = cfg.tc_num;
3101         if (pf->tc_max > HNS3_MAX_TC_NUM || pf->tc_max < 1) {
3102                 PMD_INIT_LOG(WARNING,
3103                              "Get TC num(%u) from flash, set TC num to 1",
3104                              pf->tc_max);
3105                 pf->tc_max = 1;
3106         }
3107
3108         /* Dev does not support DCB */
3109         if (!hns3_dev_dcb_supported(hw)) {
3110                 pf->tc_max = 1;
3111                 pf->pfc_max = 0;
3112         } else
3113                 pf->pfc_max = pf->tc_max;
3114
3115         hw->dcb_info.num_tc = 1;
3116         hw->alloc_rss_size = RTE_MIN(hw->rss_size_max,
3117                                      hw->tqps_num / hw->dcb_info.num_tc);
3118         hns3_set_bit(hw->hw_tc_map, 0, 1);
3119         pf->tx_sch_mode = HNS3_FLAG_TC_BASE_SCH_MODE;
3120
3121         pf->wanted_umv_size = cfg.umv_space;
3122
3123         return ret;
3124 }
3125
3126 static int
3127 hns3_get_configuration(struct hns3_hw *hw)
3128 {
3129         int ret;
3130
3131         ret = hns3_query_function_status(hw);
3132         if (ret) {
3133                 PMD_INIT_LOG(ERR, "Failed to query function status: %d.", ret);
3134                 return ret;
3135         }
3136
3137         /* Get device capability */
3138         ret = hns3_get_capability(hw);
3139         if (ret) {
3140                 PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
3141                 return ret;
3142         }
3143
3144         /* Get pf resource */
3145         ret = hns3_query_pf_resource(hw);
3146         if (ret) {
3147                 PMD_INIT_LOG(ERR, "Failed to query pf resource: %d", ret);
3148                 return ret;
3149         }
3150
3151         ret = hns3_get_board_configuration(hw);
3152         if (ret)
3153                 PMD_INIT_LOG(ERR, "failed to get board configuration: %d", ret);
3154
3155         return ret;
3156 }
3157
3158 static int
3159 hns3_map_tqps_to_func(struct hns3_hw *hw, uint16_t func_id, uint16_t tqp_pid,
3160                       uint16_t tqp_vid, bool is_pf)
3161 {
3162         struct hns3_tqp_map_cmd *req;
3163         struct hns3_cmd_desc desc;
3164         int ret;
3165
3166         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SET_TQP_MAP, false);
3167
3168         req = (struct hns3_tqp_map_cmd *)desc.data;
3169         req->tqp_id = rte_cpu_to_le_16(tqp_pid);
3170         req->tqp_vf = func_id;
3171         req->tqp_flag = 1 << HNS3_TQP_MAP_EN_B;
3172         if (!is_pf)
3173                 req->tqp_flag |= (1 << HNS3_TQP_MAP_TYPE_B);
3174         req->tqp_vid = rte_cpu_to_le_16(tqp_vid);
3175
3176         ret = hns3_cmd_send(hw, &desc, 1);
3177         if (ret)
3178                 PMD_INIT_LOG(ERR, "TQP map failed %d", ret);
3179
3180         return ret;
3181 }
3182
3183 static int
3184 hns3_map_tqp(struct hns3_hw *hw)
3185 {
3186         int ret;
3187         int i;
3188
3189         /*
3190          * In current version, VF is not supported when PF is driven by DPDK
3191          * driver, so we assign total tqps_num tqps allocated to this port
3192          * to PF.
3193          */
3194         for (i = 0; i < hw->total_tqps_num; i++) {
3195                 ret = hns3_map_tqps_to_func(hw, HNS3_PF_FUNC_ID, i, i, true);
3196                 if (ret)
3197                         return ret;
3198         }
3199
3200         return 0;
3201 }
3202
3203 static int
3204 hns3_cfg_mac_speed_dup_hw(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
3205 {
3206         struct hns3_config_mac_speed_dup_cmd *req;
3207         struct hns3_cmd_desc desc;
3208         int ret;
3209
3210         req = (struct hns3_config_mac_speed_dup_cmd *)desc.data;
3211
3212         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_SPEED_DUP, false);
3213
3214         hns3_set_bit(req->speed_dup, HNS3_CFG_DUPLEX_B, !!duplex ? 1 : 0);
3215
3216         switch (speed) {
3217         case ETH_SPEED_NUM_10M:
3218                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3219                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10M);
3220                 break;
3221         case ETH_SPEED_NUM_100M:
3222                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3223                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100M);
3224                 break;
3225         case ETH_SPEED_NUM_1G:
3226                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3227                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_1G);
3228                 break;
3229         case ETH_SPEED_NUM_10G:
3230                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3231                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10G);
3232                 break;
3233         case ETH_SPEED_NUM_25G:
3234                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3235                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_25G);
3236                 break;
3237         case ETH_SPEED_NUM_40G:
3238                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3239                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_40G);
3240                 break;
3241         case ETH_SPEED_NUM_50G:
3242                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3243                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_50G);
3244                 break;
3245         case ETH_SPEED_NUM_100G:
3246                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3247                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100G);
3248                 break;
3249         case ETH_SPEED_NUM_200G:
3250                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3251                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_200G);
3252                 break;
3253         default:
3254                 PMD_INIT_LOG(ERR, "invalid speed (%u)", speed);
3255                 return -EINVAL;
3256         }
3257
3258         hns3_set_bit(req->mac_change_fec_en, HNS3_CFG_MAC_SPEED_CHANGE_EN_B, 1);
3259
3260         ret = hns3_cmd_send(hw, &desc, 1);
3261         if (ret)
3262                 PMD_INIT_LOG(ERR, "mac speed/duplex config cmd failed %d", ret);
3263
3264         return ret;
3265 }
3266
3267 static int
3268 hns3_tx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3269 {
3270         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3271         struct hns3_pf *pf = &hns->pf;
3272         struct hns3_priv_buf *priv;
3273         uint32_t i, total_size;
3274
3275         total_size = pf->pkt_buf_size;
3276
3277         /* alloc tx buffer for all enabled tc */
3278         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3279                 priv = &buf_alloc->priv_buf[i];
3280
3281                 if (hw->hw_tc_map & BIT(i)) {
3282                         if (total_size < pf->tx_buf_size)
3283                                 return -ENOMEM;
3284
3285                         priv->tx_buf_size = pf->tx_buf_size;
3286                 } else
3287                         priv->tx_buf_size = 0;
3288
3289                 total_size -= priv->tx_buf_size;
3290         }
3291
3292         return 0;
3293 }
3294
3295 static int
3296 hns3_tx_buffer_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3297 {
3298 /* TX buffer size is unit by 128 byte */
3299 #define HNS3_BUF_SIZE_UNIT_SHIFT        7
3300 #define HNS3_BUF_SIZE_UPDATE_EN_MSK     BIT(15)
3301         struct hns3_tx_buff_alloc_cmd *req;
3302         struct hns3_cmd_desc desc;
3303         uint32_t buf_size;
3304         uint32_t i;
3305         int ret;
3306
3307         req = (struct hns3_tx_buff_alloc_cmd *)desc.data;
3308
3309         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TX_BUFF_ALLOC, 0);
3310         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3311                 buf_size = buf_alloc->priv_buf[i].tx_buf_size;
3312
3313                 buf_size = buf_size >> HNS3_BUF_SIZE_UNIT_SHIFT;
3314                 req->tx_pkt_buff[i] = rte_cpu_to_le_16(buf_size |
3315                                                 HNS3_BUF_SIZE_UPDATE_EN_MSK);
3316         }
3317
3318         ret = hns3_cmd_send(hw, &desc, 1);
3319         if (ret)
3320                 PMD_INIT_LOG(ERR, "tx buffer alloc cmd failed %d", ret);
3321
3322         return ret;
3323 }
3324
3325 static int
3326 hns3_get_tc_num(struct hns3_hw *hw)
3327 {
3328         int cnt = 0;
3329         uint8_t i;
3330
3331         for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3332                 if (hw->hw_tc_map & BIT(i))
3333                         cnt++;
3334         return cnt;
3335 }
3336
3337 static uint32_t
3338 hns3_get_rx_priv_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3339 {
3340         struct hns3_priv_buf *priv;
3341         uint32_t rx_priv = 0;
3342         int i;
3343
3344         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3345                 priv = &buf_alloc->priv_buf[i];
3346                 if (priv->enable)
3347                         rx_priv += priv->buf_size;
3348         }
3349         return rx_priv;
3350 }
3351
3352 static uint32_t
3353 hns3_get_tx_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3354 {
3355         uint32_t total_tx_size = 0;
3356         uint32_t i;
3357
3358         for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3359                 total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
3360
3361         return total_tx_size;
3362 }
3363
3364 /* Get the number of pfc enabled TCs, which have private buffer */
3365 static int
3366 hns3_get_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3367 {
3368         struct hns3_priv_buf *priv;
3369         int cnt = 0;
3370         uint8_t i;
3371
3372         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3373                 priv = &buf_alloc->priv_buf[i];
3374                 if ((hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3375                         cnt++;
3376         }
3377
3378         return cnt;
3379 }
3380
3381 /* Get the number of pfc disabled TCs, which have private buffer */
3382 static int
3383 hns3_get_no_pfc_priv_num(struct hns3_hw *hw,
3384                          struct hns3_pkt_buf_alloc *buf_alloc)
3385 {
3386         struct hns3_priv_buf *priv;
3387         int cnt = 0;
3388         uint8_t i;
3389
3390         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3391                 priv = &buf_alloc->priv_buf[i];
3392                 if (hw->hw_tc_map & BIT(i) &&
3393                     !(hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3394                         cnt++;
3395         }
3396
3397         return cnt;
3398 }
3399
3400 static bool
3401 hns3_is_rx_buf_ok(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc,
3402                   uint32_t rx_all)
3403 {
3404         uint32_t shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
3405         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3406         struct hns3_pf *pf = &hns->pf;
3407         uint32_t shared_buf, aligned_mps;
3408         uint32_t rx_priv;
3409         uint8_t tc_num;
3410         uint8_t i;
3411
3412         tc_num = hns3_get_tc_num(hw);
3413         aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3414
3415         if (hns3_dev_dcb_supported(hw))
3416                 shared_buf_min = HNS3_BUF_MUL_BY * aligned_mps +
3417                                         pf->dv_buf_size;
3418         else
3419                 shared_buf_min = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF
3420                                         + pf->dv_buf_size;
3421
3422         shared_buf_tc = tc_num * aligned_mps + aligned_mps;
3423         shared_std = roundup(RTE_MAX(shared_buf_min, shared_buf_tc),
3424                              HNS3_BUF_SIZE_UNIT);
3425
3426         rx_priv = hns3_get_rx_priv_buff_alloced(buf_alloc);
3427         if (rx_all < rx_priv + shared_std)
3428                 return false;
3429
3430         shared_buf = rounddown(rx_all - rx_priv, HNS3_BUF_SIZE_UNIT);
3431         buf_alloc->s_buf.buf_size = shared_buf;
3432         if (hns3_dev_dcb_supported(hw)) {
3433                 buf_alloc->s_buf.self.high = shared_buf - pf->dv_buf_size;
3434                 buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
3435                         - roundup(aligned_mps / HNS3_BUF_DIV_BY,
3436                                   HNS3_BUF_SIZE_UNIT);
3437         } else {
3438                 buf_alloc->s_buf.self.high =
3439                         aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3440                 buf_alloc->s_buf.self.low = aligned_mps;
3441         }
3442
3443         if (hns3_dev_dcb_supported(hw)) {
3444                 hi_thrd = shared_buf - pf->dv_buf_size;
3445
3446                 if (tc_num <= NEED_RESERVE_TC_NUM)
3447                         hi_thrd = hi_thrd * BUF_RESERVE_PERCENT
3448                                         / BUF_MAX_PERCENT;
3449
3450                 if (tc_num)
3451                         hi_thrd = hi_thrd / tc_num;
3452
3453                 hi_thrd = RTE_MAX(hi_thrd, HNS3_BUF_MUL_BY * aligned_mps);
3454                 hi_thrd = rounddown(hi_thrd, HNS3_BUF_SIZE_UNIT);
3455                 lo_thrd = hi_thrd - aligned_mps / HNS3_BUF_DIV_BY;
3456         } else {
3457                 hi_thrd = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3458                 lo_thrd = aligned_mps;
3459         }
3460
3461         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3462                 buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
3463                 buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
3464         }
3465
3466         return true;
3467 }
3468
3469 static bool
3470 hns3_rx_buf_calc_all(struct hns3_hw *hw, bool max,
3471                      struct hns3_pkt_buf_alloc *buf_alloc)
3472 {
3473         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3474         struct hns3_pf *pf = &hns->pf;
3475         struct hns3_priv_buf *priv;
3476         uint32_t aligned_mps;
3477         uint32_t rx_all;
3478         uint8_t i;
3479
3480         rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3481         aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3482
3483         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3484                 priv = &buf_alloc->priv_buf[i];
3485
3486                 priv->enable = 0;
3487                 priv->wl.low = 0;
3488                 priv->wl.high = 0;
3489                 priv->buf_size = 0;
3490
3491                 if (!(hw->hw_tc_map & BIT(i)))
3492                         continue;
3493
3494                 priv->enable = 1;
3495                 if (hw->dcb_info.hw_pfc_map & BIT(i)) {
3496                         priv->wl.low = max ? aligned_mps : HNS3_BUF_SIZE_UNIT;
3497                         priv->wl.high = roundup(priv->wl.low + aligned_mps,
3498                                                 HNS3_BUF_SIZE_UNIT);
3499                 } else {
3500                         priv->wl.low = 0;
3501                         priv->wl.high = max ? (aligned_mps * HNS3_BUF_MUL_BY) :
3502                                         aligned_mps;
3503                 }
3504
3505                 priv->buf_size = priv->wl.high + pf->dv_buf_size;
3506         }
3507
3508         return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3509 }
3510
3511 static bool
3512 hns3_drop_nopfc_buf_till_fit(struct hns3_hw *hw,
3513                              struct hns3_pkt_buf_alloc *buf_alloc)
3514 {
3515         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3516         struct hns3_pf *pf = &hns->pf;
3517         struct hns3_priv_buf *priv;
3518         int no_pfc_priv_num;
3519         uint32_t rx_all;
3520         uint8_t mask;
3521         int i;
3522
3523         rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3524         no_pfc_priv_num = hns3_get_no_pfc_priv_num(hw, buf_alloc);
3525
3526         /* let the last to be cleared first */
3527         for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3528                 priv = &buf_alloc->priv_buf[i];
3529                 mask = BIT((uint8_t)i);
3530
3531                 if (hw->hw_tc_map & mask &&
3532                     !(hw->dcb_info.hw_pfc_map & mask)) {
3533                         /* Clear the no pfc TC private buffer */
3534                         priv->wl.low = 0;
3535                         priv->wl.high = 0;
3536                         priv->buf_size = 0;
3537                         priv->enable = 0;
3538                         no_pfc_priv_num--;
3539                 }
3540
3541                 if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3542                     no_pfc_priv_num == 0)
3543                         break;
3544         }
3545
3546         return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3547 }
3548
3549 static bool
3550 hns3_drop_pfc_buf_till_fit(struct hns3_hw *hw,
3551                            struct hns3_pkt_buf_alloc *buf_alloc)
3552 {
3553         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3554         struct hns3_pf *pf = &hns->pf;
3555         struct hns3_priv_buf *priv;
3556         uint32_t rx_all;
3557         int pfc_priv_num;
3558         uint8_t mask;
3559         int i;
3560
3561         rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3562         pfc_priv_num = hns3_get_pfc_priv_num(hw, buf_alloc);
3563
3564         /* let the last to be cleared first */
3565         for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3566                 priv = &buf_alloc->priv_buf[i];
3567                 mask = BIT((uint8_t)i);
3568
3569                 if (hw->hw_tc_map & mask &&
3570                     hw->dcb_info.hw_pfc_map & mask) {
3571                         /* Reduce the number of pfc TC with private buffer */
3572                         priv->wl.low = 0;
3573                         priv->enable = 0;
3574                         priv->wl.high = 0;
3575                         priv->buf_size = 0;
3576                         pfc_priv_num--;
3577                 }
3578                 if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3579                     pfc_priv_num == 0)
3580                         break;
3581         }
3582
3583         return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3584 }
3585
3586 static bool
3587 hns3_only_alloc_priv_buff(struct hns3_hw *hw,
3588                           struct hns3_pkt_buf_alloc *buf_alloc)
3589 {
3590 #define COMPENSATE_BUFFER       0x3C00
3591 #define COMPENSATE_HALF_MPS_NUM 5
3592 #define PRIV_WL_GAP             0x1800
3593         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3594         struct hns3_pf *pf = &hns->pf;
3595         uint32_t tc_num = hns3_get_tc_num(hw);
3596         uint32_t half_mps = pf->mps >> 1;
3597         struct hns3_priv_buf *priv;
3598         uint32_t min_rx_priv;
3599         uint32_t rx_priv;
3600         uint8_t i;
3601
3602         rx_priv = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3603         if (tc_num)
3604                 rx_priv = rx_priv / tc_num;
3605
3606         if (tc_num <= NEED_RESERVE_TC_NUM)
3607                 rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
3608
3609         /*
3610          * Minimum value of private buffer in rx direction (min_rx_priv) is
3611          * equal to "DV + 2.5 * MPS + 15KB". Driver only allocates rx private
3612          * buffer if rx_priv is greater than min_rx_priv.
3613          */
3614         min_rx_priv = pf->dv_buf_size + COMPENSATE_BUFFER +
3615                         COMPENSATE_HALF_MPS_NUM * half_mps;
3616         min_rx_priv = roundup(min_rx_priv, HNS3_BUF_SIZE_UNIT);
3617         rx_priv = rounddown(rx_priv, HNS3_BUF_SIZE_UNIT);
3618
3619         if (rx_priv < min_rx_priv)
3620                 return false;
3621
3622         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3623                 priv = &buf_alloc->priv_buf[i];
3624
3625                 priv->enable = 0;
3626                 priv->wl.low = 0;
3627                 priv->wl.high = 0;
3628                 priv->buf_size = 0;
3629
3630                 if (!(hw->hw_tc_map & BIT(i)))
3631                         continue;
3632
3633                 priv->enable = 1;
3634                 priv->buf_size = rx_priv;
3635                 priv->wl.high = rx_priv - pf->dv_buf_size;
3636                 priv->wl.low = priv->wl.high - PRIV_WL_GAP;
3637         }
3638
3639         buf_alloc->s_buf.buf_size = 0;
3640
3641         return true;
3642 }
3643
3644 /*
3645  * hns3_rx_buffer_calc: calculate the rx private buffer size for all TCs
3646  * @hw: pointer to struct hns3_hw
3647  * @buf_alloc: pointer to buffer calculation data
3648  * @return: 0: calculate sucessful, negative: fail
3649  */
3650 static int
3651 hns3_rx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3652 {
3653         /* When DCB is not supported, rx private buffer is not allocated. */
3654         if (!hns3_dev_dcb_supported(hw)) {
3655                 struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3656                 struct hns3_pf *pf = &hns->pf;
3657                 uint32_t rx_all = pf->pkt_buf_size;
3658
3659                 rx_all -= hns3_get_tx_buff_alloced(buf_alloc);
3660                 if (!hns3_is_rx_buf_ok(hw, buf_alloc, rx_all))
3661                         return -ENOMEM;
3662
3663                 return 0;
3664         }
3665
3666         /*
3667          * Try to allocate privated packet buffer for all TCs without share
3668          * buffer.
3669          */
3670         if (hns3_only_alloc_priv_buff(hw, buf_alloc))
3671                 return 0;
3672
3673         /*
3674          * Try to allocate privated packet buffer for all TCs with share
3675          * buffer.
3676          */
3677         if (hns3_rx_buf_calc_all(hw, true, buf_alloc))
3678                 return 0;
3679
3680         /*
3681          * For different application scenes, the enabled port number, TC number
3682          * and no_drop TC number are different. In order to obtain the better
3683          * performance, software could allocate the buffer size and configure
3684          * the waterline by tring to decrease the private buffer size according
3685          * to the order, namely, waterline of valided tc, pfc disabled tc, pfc
3686          * enabled tc.
3687          */
3688         if (hns3_rx_buf_calc_all(hw, false, buf_alloc))
3689                 return 0;
3690
3691         if (hns3_drop_nopfc_buf_till_fit(hw, buf_alloc))
3692                 return 0;
3693
3694         if (hns3_drop_pfc_buf_till_fit(hw, buf_alloc))
3695                 return 0;
3696
3697         return -ENOMEM;
3698 }
3699
3700 static int
3701 hns3_rx_priv_buf_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3702 {
3703         struct hns3_rx_priv_buff_cmd *req;
3704         struct hns3_cmd_desc desc;
3705         uint32_t buf_size;
3706         int ret;
3707         int i;
3708
3709         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_PRIV_BUFF_ALLOC, false);
3710         req = (struct hns3_rx_priv_buff_cmd *)desc.data;
3711
3712         /* Alloc private buffer TCs */
3713         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3714                 struct hns3_priv_buf *priv = &buf_alloc->priv_buf[i];
3715
3716                 req->buf_num[i] =
3717                         rte_cpu_to_le_16(priv->buf_size >> HNS3_BUF_UNIT_S);
3718                 req->buf_num[i] |= rte_cpu_to_le_16(1 << HNS3_TC0_PRI_BUF_EN_B);
3719         }
3720
3721         buf_size = buf_alloc->s_buf.buf_size;
3722         req->shared_buf = rte_cpu_to_le_16((buf_size >> HNS3_BUF_UNIT_S) |
3723                                            (1 << HNS3_TC0_PRI_BUF_EN_B));
3724
3725         ret = hns3_cmd_send(hw, &desc, 1);
3726         if (ret)
3727                 PMD_INIT_LOG(ERR, "rx private buffer alloc cmd failed %d", ret);
3728
3729         return ret;
3730 }
3731
3732 static int
3733 hns3_rx_priv_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3734 {
3735 #define HNS3_RX_PRIV_WL_ALLOC_DESC_NUM 2
3736         struct hns3_rx_priv_wl_buf *req;
3737         struct hns3_priv_buf *priv;
3738         struct hns3_cmd_desc desc[HNS3_RX_PRIV_WL_ALLOC_DESC_NUM];
3739         int i, j;
3740         int ret;
3741
3742         for (i = 0; i < HNS3_RX_PRIV_WL_ALLOC_DESC_NUM; i++) {
3743                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_PRIV_WL_ALLOC,
3744                                           false);
3745                 req = (struct hns3_rx_priv_wl_buf *)desc[i].data;
3746
3747                 /* The first descriptor set the NEXT bit to 1 */
3748                 if (i == 0)
3749                         desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3750                 else
3751                         desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3752
3753                 for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3754                         uint32_t idx = i * HNS3_TC_NUM_ONE_DESC + j;
3755
3756                         priv = &buf_alloc->priv_buf[idx];
3757                         req->tc_wl[j].high = rte_cpu_to_le_16(priv->wl.high >>
3758                                                         HNS3_BUF_UNIT_S);
3759                         req->tc_wl[j].high |=
3760                                 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3761                         req->tc_wl[j].low = rte_cpu_to_le_16(priv->wl.low >>
3762                                                         HNS3_BUF_UNIT_S);
3763                         req->tc_wl[j].low |=
3764                                 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3765                 }
3766         }
3767
3768         /* Send 2 descriptor at one time */
3769         ret = hns3_cmd_send(hw, desc, HNS3_RX_PRIV_WL_ALLOC_DESC_NUM);
3770         if (ret)
3771                 PMD_INIT_LOG(ERR, "rx private waterline config cmd failed %d",
3772                              ret);
3773         return ret;
3774 }
3775
3776 static int
3777 hns3_common_thrd_config(struct hns3_hw *hw,
3778                         struct hns3_pkt_buf_alloc *buf_alloc)
3779 {
3780 #define HNS3_RX_COM_THRD_ALLOC_DESC_NUM 2
3781         struct hns3_shared_buf *s_buf = &buf_alloc->s_buf;
3782         struct hns3_rx_com_thrd *req;
3783         struct hns3_cmd_desc desc[HNS3_RX_COM_THRD_ALLOC_DESC_NUM];
3784         struct hns3_tc_thrd *tc;
3785         int tc_idx;
3786         int i, j;
3787         int ret;
3788
3789         for (i = 0; i < HNS3_RX_COM_THRD_ALLOC_DESC_NUM; i++) {
3790                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_COM_THRD_ALLOC,
3791                                           false);
3792                 req = (struct hns3_rx_com_thrd *)&desc[i].data;
3793
3794                 /* The first descriptor set the NEXT bit to 1 */
3795                 if (i == 0)
3796                         desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3797                 else
3798                         desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3799
3800                 for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3801                         tc_idx = i * HNS3_TC_NUM_ONE_DESC + j;
3802                         tc = &s_buf->tc_thrd[tc_idx];
3803
3804                         req->com_thrd[j].high =
3805                                 rte_cpu_to_le_16(tc->high >> HNS3_BUF_UNIT_S);
3806                         req->com_thrd[j].high |=
3807                                  rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3808                         req->com_thrd[j].low =
3809                                 rte_cpu_to_le_16(tc->low >> HNS3_BUF_UNIT_S);
3810                         req->com_thrd[j].low |=
3811                                  rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3812                 }
3813         }
3814
3815         /* Send 2 descriptors at one time */
3816         ret = hns3_cmd_send(hw, desc, HNS3_RX_COM_THRD_ALLOC_DESC_NUM);
3817         if (ret)
3818                 PMD_INIT_LOG(ERR, "common threshold config cmd failed %d", ret);
3819
3820         return ret;
3821 }
3822
3823 static int
3824 hns3_common_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3825 {
3826         struct hns3_shared_buf *buf = &buf_alloc->s_buf;
3827         struct hns3_rx_com_wl *req;
3828         struct hns3_cmd_desc desc;
3829         int ret;
3830
3831         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_COM_WL_ALLOC, false);
3832
3833         req = (struct hns3_rx_com_wl *)desc.data;
3834         req->com_wl.high = rte_cpu_to_le_16(buf->self.high >> HNS3_BUF_UNIT_S);
3835         req->com_wl.high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3836
3837         req->com_wl.low = rte_cpu_to_le_16(buf->self.low >> HNS3_BUF_UNIT_S);
3838         req->com_wl.low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3839
3840         ret = hns3_cmd_send(hw, &desc, 1);
3841         if (ret)
3842                 PMD_INIT_LOG(ERR, "common waterline config cmd failed %d", ret);
3843
3844         return ret;
3845 }
3846
3847 int
3848 hns3_buffer_alloc(struct hns3_hw *hw)
3849 {
3850         struct hns3_pkt_buf_alloc pkt_buf;
3851         int ret;
3852
3853         memset(&pkt_buf, 0, sizeof(pkt_buf));
3854         ret = hns3_tx_buffer_calc(hw, &pkt_buf);
3855         if (ret) {
3856                 PMD_INIT_LOG(ERR,
3857                              "could not calc tx buffer size for all TCs %d",
3858                              ret);
3859                 return ret;
3860         }
3861
3862         ret = hns3_tx_buffer_alloc(hw, &pkt_buf);
3863         if (ret) {
3864                 PMD_INIT_LOG(ERR, "could not alloc tx buffers %d", ret);
3865                 return ret;
3866         }
3867
3868         ret = hns3_rx_buffer_calc(hw, &pkt_buf);
3869         if (ret) {
3870                 PMD_INIT_LOG(ERR,
3871                              "could not calc rx priv buffer size for all TCs %d",
3872                              ret);
3873                 return ret;
3874         }
3875
3876         ret = hns3_rx_priv_buf_alloc(hw, &pkt_buf);
3877         if (ret) {
3878                 PMD_INIT_LOG(ERR, "could not alloc rx priv buffer %d", ret);
3879                 return ret;
3880         }
3881
3882         if (hns3_dev_dcb_supported(hw)) {
3883                 ret = hns3_rx_priv_wl_config(hw, &pkt_buf);
3884                 if (ret) {
3885                         PMD_INIT_LOG(ERR,
3886                                      "could not configure rx private waterline %d",
3887                                      ret);
3888                         return ret;
3889                 }
3890
3891                 ret = hns3_common_thrd_config(hw, &pkt_buf);
3892                 if (ret) {
3893                         PMD_INIT_LOG(ERR,
3894                                      "could not configure common threshold %d",
3895                                      ret);
3896                         return ret;
3897                 }
3898         }
3899
3900         ret = hns3_common_wl_config(hw, &pkt_buf);
3901         if (ret)
3902                 PMD_INIT_LOG(ERR, "could not configure common waterline %d",
3903                              ret);
3904
3905         return ret;
3906 }
3907
3908 static int
3909 hns3_mac_init(struct hns3_hw *hw)
3910 {
3911         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3912         struct hns3_mac *mac = &hw->mac;
3913         struct hns3_pf *pf = &hns->pf;
3914         int ret;
3915
3916         pf->support_sfp_query = true;
3917         mac->link_duplex = ETH_LINK_FULL_DUPLEX;
3918         ret = hns3_cfg_mac_speed_dup_hw(hw, mac->link_speed, mac->link_duplex);
3919         if (ret) {
3920                 PMD_INIT_LOG(ERR, "Config mac speed dup fail ret = %d", ret);
3921                 return ret;
3922         }
3923
3924         mac->link_status = ETH_LINK_DOWN;
3925
3926         return hns3_config_mtu(hw, pf->mps);
3927 }
3928
3929 static int
3930 hns3_get_mac_ethertype_cmd_status(uint16_t cmdq_resp, uint8_t resp_code)
3931 {
3932 #define HNS3_ETHERTYPE_SUCCESS_ADD              0
3933 #define HNS3_ETHERTYPE_ALREADY_ADD              1
3934 #define HNS3_ETHERTYPE_MGR_TBL_OVERFLOW         2
3935 #define HNS3_ETHERTYPE_KEY_CONFLICT             3
3936         int return_status;
3937
3938         if (cmdq_resp) {
3939                 PMD_INIT_LOG(ERR,
3940                              "cmdq execute failed for get_mac_ethertype_cmd_status, status=%d.\n",
3941                              cmdq_resp);
3942                 return -EIO;
3943         }
3944
3945         switch (resp_code) {
3946         case HNS3_ETHERTYPE_SUCCESS_ADD:
3947         case HNS3_ETHERTYPE_ALREADY_ADD:
3948                 return_status = 0;
3949                 break;
3950         case HNS3_ETHERTYPE_MGR_TBL_OVERFLOW:
3951                 PMD_INIT_LOG(ERR,
3952                              "add mac ethertype failed for manager table overflow.");
3953                 return_status = -EIO;
3954                 break;
3955         case HNS3_ETHERTYPE_KEY_CONFLICT:
3956                 PMD_INIT_LOG(ERR, "add mac ethertype failed for key conflict.");
3957                 return_status = -EIO;
3958                 break;
3959         default:
3960                 PMD_INIT_LOG(ERR,
3961                              "add mac ethertype failed for undefined, code=%d.",
3962                              resp_code);
3963                 return_status = -EIO;
3964                 break;
3965         }
3966
3967         return return_status;
3968 }
3969
3970 static int
3971 hns3_add_mgr_tbl(struct hns3_hw *hw,
3972                  const struct hns3_mac_mgr_tbl_entry_cmd *req)
3973 {
3974         struct hns3_cmd_desc desc;
3975         uint8_t resp_code;
3976         uint16_t retval;
3977         int ret;
3978
3979         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_ETHTYPE_ADD, false);
3980         memcpy(desc.data, req, sizeof(struct hns3_mac_mgr_tbl_entry_cmd));
3981
3982         ret = hns3_cmd_send(hw, &desc, 1);
3983         if (ret) {
3984                 PMD_INIT_LOG(ERR,
3985                              "add mac ethertype failed for cmd_send, ret =%d.",
3986                              ret);
3987                 return ret;
3988         }
3989
3990         resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
3991         retval = rte_le_to_cpu_16(desc.retval);
3992
3993         return hns3_get_mac_ethertype_cmd_status(retval, resp_code);
3994 }
3995
3996 static void
3997 hns3_prepare_mgr_tbl(struct hns3_mac_mgr_tbl_entry_cmd *mgr_table,
3998                      int *table_item_num)
3999 {
4000         struct hns3_mac_mgr_tbl_entry_cmd *tbl;
4001
4002         /*
4003          * In current version, we add one item in management table as below:
4004          * 0x0180C200000E -- LLDP MC address
4005          */
4006         tbl = mgr_table;
4007         tbl->flags = HNS3_MAC_MGR_MASK_VLAN_B;
4008         tbl->ethter_type = rte_cpu_to_le_16(HNS3_MAC_ETHERTYPE_LLDP);
4009         tbl->mac_addr_hi32 = rte_cpu_to_le_32(htonl(0x0180C200));
4010         tbl->mac_addr_lo16 = rte_cpu_to_le_16(htons(0x000E));
4011         tbl->i_port_bitmap = 0x1;
4012         *table_item_num = 1;
4013 }
4014
4015 static int
4016 hns3_init_mgr_tbl(struct hns3_hw *hw)
4017 {
4018 #define HNS_MAC_MGR_TBL_MAX_SIZE        16
4019         struct hns3_mac_mgr_tbl_entry_cmd mgr_table[HNS_MAC_MGR_TBL_MAX_SIZE];
4020         int table_item_num;
4021         int ret;
4022         int i;
4023
4024         memset(mgr_table, 0, sizeof(mgr_table));
4025         hns3_prepare_mgr_tbl(mgr_table, &table_item_num);
4026         for (i = 0; i < table_item_num; i++) {
4027                 ret = hns3_add_mgr_tbl(hw, &mgr_table[i]);
4028                 if (ret) {
4029                         PMD_INIT_LOG(ERR, "add mac ethertype failed, ret =%d",
4030                                      ret);
4031                         return ret;
4032                 }
4033         }
4034
4035         return 0;
4036 }
4037
4038 static void
4039 hns3_promisc_param_init(struct hns3_promisc_param *param, bool en_uc,
4040                         bool en_mc, bool en_bc, int vport_id)
4041 {
4042         if (!param)
4043                 return;
4044
4045         memset(param, 0, sizeof(struct hns3_promisc_param));
4046         if (en_uc)
4047                 param->enable = HNS3_PROMISC_EN_UC;
4048         if (en_mc)
4049                 param->enable |= HNS3_PROMISC_EN_MC;
4050         if (en_bc)
4051                 param->enable |= HNS3_PROMISC_EN_BC;
4052         param->vf_id = vport_id;
4053 }
4054
4055 static int
4056 hns3_cmd_set_promisc_mode(struct hns3_hw *hw, struct hns3_promisc_param *param)
4057 {
4058         struct hns3_promisc_cfg_cmd *req;
4059         struct hns3_cmd_desc desc;
4060         int ret;
4061
4062         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PROMISC_MODE, false);
4063
4064         req = (struct hns3_promisc_cfg_cmd *)desc.data;
4065         req->vf_id = param->vf_id;
4066         req->flag = (param->enable << HNS3_PROMISC_EN_B) |
4067             HNS3_PROMISC_TX_EN_B | HNS3_PROMISC_RX_EN_B;
4068
4069         ret = hns3_cmd_send(hw, &desc, 1);
4070         if (ret)
4071                 PMD_INIT_LOG(ERR, "Set promisc mode fail, ret = %d", ret);
4072
4073         return ret;
4074 }
4075
4076 static int
4077 hns3_set_promisc_mode(struct hns3_hw *hw, bool en_uc_pmc, bool en_mc_pmc)
4078 {
4079         struct hns3_promisc_param param;
4080         bool en_bc_pmc = true;
4081         uint8_t vf_id;
4082
4083         /*
4084          * In current version VF is not supported when PF is driven by DPDK
4085          * driver, just need to configure parameters for PF vport.
4086          */
4087         vf_id = HNS3_PF_FUNC_ID;
4088
4089         hns3_promisc_param_init(&param, en_uc_pmc, en_mc_pmc, en_bc_pmc, vf_id);
4090         return hns3_cmd_set_promisc_mode(hw, &param);
4091 }
4092
4093 static int
4094 hns3_promisc_init(struct hns3_hw *hw)
4095 {
4096         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4097         struct hns3_pf *pf = &hns->pf;
4098         struct hns3_promisc_param param;
4099         uint16_t func_id;
4100         int ret;
4101
4102         ret = hns3_set_promisc_mode(hw, false, false);
4103         if (ret) {
4104                 PMD_INIT_LOG(ERR, "failed to set promisc mode, ret = %d", ret);
4105                 return ret;
4106         }
4107
4108         /*
4109          * In current version VFs are not supported when PF is driven by DPDK
4110          * driver. After PF has been taken over by DPDK, the original VF will
4111          * be invalid. So, there is a possibility of entry residues. It should
4112          * clear VFs's promisc mode to avoid unnecessary bandwidth usage
4113          * during init.
4114          */
4115         for (func_id = HNS3_1ST_VF_FUNC_ID; func_id < pf->func_num; func_id++) {
4116                 hns3_promisc_param_init(&param, false, false, false, func_id);
4117                 ret = hns3_cmd_set_promisc_mode(hw, &param);
4118                 if (ret) {
4119                         PMD_INIT_LOG(ERR, "failed to clear vf:%d promisc mode,"
4120                                         " ret = %d", func_id, ret);
4121                         return ret;
4122                 }
4123         }
4124
4125         return 0;
4126 }
4127
4128 static void
4129 hns3_promisc_uninit(struct hns3_hw *hw)
4130 {
4131         struct hns3_promisc_param param;
4132         uint16_t func_id;
4133         int ret;
4134
4135         func_id = HNS3_PF_FUNC_ID;
4136
4137         /*
4138          * In current version VFs are not supported when PF is driven by
4139          * DPDK driver, and VFs' promisc mode status has been cleared during
4140          * init and their status will not change. So just clear PF's promisc
4141          * mode status during uninit.
4142          */
4143         hns3_promisc_param_init(&param, false, false, false, func_id);
4144         ret = hns3_cmd_set_promisc_mode(hw, &param);
4145         if (ret)
4146                 PMD_INIT_LOG(ERR, "failed to clear promisc status during"
4147                                 " uninit, ret = %d", ret);
4148 }
4149
4150 static int
4151 hns3_dev_promiscuous_enable(struct rte_eth_dev *dev)
4152 {
4153         bool allmulti = dev->data->all_multicast ? true : false;
4154         struct hns3_adapter *hns = dev->data->dev_private;
4155         struct hns3_hw *hw = &hns->hw;
4156         uint64_t offloads;
4157         int err;
4158         int ret;
4159
4160         rte_spinlock_lock(&hw->lock);
4161         ret = hns3_set_promisc_mode(hw, true, true);
4162         if (ret) {
4163                 rte_spinlock_unlock(&hw->lock);
4164                 hns3_err(hw, "failed to enable promiscuous mode, ret = %d",
4165                          ret);
4166                 return ret;
4167         }
4168
4169         /*
4170          * When promiscuous mode was enabled, disable the vlan filter to let
4171          * all packets coming in in the receiving direction.
4172          */
4173         offloads = dev->data->dev_conf.rxmode.offloads;
4174         if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4175                 ret = hns3_enable_vlan_filter(hns, false);
4176                 if (ret) {
4177                         hns3_err(hw, "failed to enable promiscuous mode due to "
4178                                      "failure to disable vlan filter, ret = %d",
4179                                  ret);
4180                         err = hns3_set_promisc_mode(hw, false, allmulti);
4181                         if (err)
4182                                 hns3_err(hw, "failed to restore promiscuous "
4183                                          "status after disable vlan filter "
4184                                          "failed during enabling promiscuous "
4185                                          "mode, ret = %d", ret);
4186                 }
4187         }
4188
4189         rte_spinlock_unlock(&hw->lock);
4190
4191         return ret;
4192 }
4193
4194 static int
4195 hns3_dev_promiscuous_disable(struct rte_eth_dev *dev)
4196 {
4197         bool allmulti = dev->data->all_multicast ? true : false;
4198         struct hns3_adapter *hns = dev->data->dev_private;
4199         struct hns3_hw *hw = &hns->hw;
4200         uint64_t offloads;
4201         int err;
4202         int ret;
4203
4204         /* If now in all_multicast mode, must remain in all_multicast mode. */
4205         rte_spinlock_lock(&hw->lock);
4206         ret = hns3_set_promisc_mode(hw, false, allmulti);
4207         if (ret) {
4208                 rte_spinlock_unlock(&hw->lock);
4209                 hns3_err(hw, "failed to disable promiscuous mode, ret = %d",
4210                          ret);
4211                 return ret;
4212         }
4213         /* when promiscuous mode was disabled, restore the vlan filter status */
4214         offloads = dev->data->dev_conf.rxmode.offloads;
4215         if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4216                 ret = hns3_enable_vlan_filter(hns, true);
4217                 if (ret) {
4218                         hns3_err(hw, "failed to disable promiscuous mode due to"
4219                                  " failure to restore vlan filter, ret = %d",
4220                                  ret);
4221                         err = hns3_set_promisc_mode(hw, true, true);
4222                         if (err)
4223                                 hns3_err(hw, "failed to restore promiscuous "
4224                                          "status after enabling vlan filter "
4225                                          "failed during disabling promiscuous "
4226                                          "mode, ret = %d", ret);
4227                 }
4228         }
4229         rte_spinlock_unlock(&hw->lock);
4230
4231         return ret;
4232 }
4233
4234 static int
4235 hns3_dev_allmulticast_enable(struct rte_eth_dev *dev)
4236 {
4237         struct hns3_adapter *hns = dev->data->dev_private;
4238         struct hns3_hw *hw = &hns->hw;
4239         int ret;
4240
4241         if (dev->data->promiscuous)
4242                 return 0;
4243
4244         rte_spinlock_lock(&hw->lock);
4245         ret = hns3_set_promisc_mode(hw, false, true);
4246         rte_spinlock_unlock(&hw->lock);
4247         if (ret)
4248                 hns3_err(hw, "failed to enable allmulticast mode, ret = %d",
4249                          ret);
4250
4251         return ret;
4252 }
4253
4254 static int
4255 hns3_dev_allmulticast_disable(struct rte_eth_dev *dev)
4256 {
4257         struct hns3_adapter *hns = dev->data->dev_private;
4258         struct hns3_hw *hw = &hns->hw;
4259         int ret;
4260
4261         /* If now in promiscuous mode, must remain in all_multicast mode. */
4262         if (dev->data->promiscuous)
4263                 return 0;
4264
4265         rte_spinlock_lock(&hw->lock);
4266         ret = hns3_set_promisc_mode(hw, false, false);
4267         rte_spinlock_unlock(&hw->lock);
4268         if (ret)
4269                 hns3_err(hw, "failed to disable allmulticast mode, ret = %d",
4270                          ret);
4271
4272         return ret;
4273 }
4274
4275 static int
4276 hns3_dev_promisc_restore(struct hns3_adapter *hns)
4277 {
4278         struct hns3_hw *hw = &hns->hw;
4279         bool allmulti = hw->data->all_multicast ? true : false;
4280         int ret;
4281
4282         if (hw->data->promiscuous) {
4283                 ret = hns3_set_promisc_mode(hw, true, true);
4284                 if (ret)
4285                         hns3_err(hw, "failed to restore promiscuous mode, "
4286                                  "ret = %d", ret);
4287                 return ret;
4288         }
4289
4290         ret = hns3_set_promisc_mode(hw, false, allmulti);
4291         if (ret)
4292                 hns3_err(hw, "failed to restore allmulticast mode, ret = %d",
4293                          ret);
4294         return ret;
4295 }
4296
4297 static int
4298 hns3_get_sfp_speed(struct hns3_hw *hw, uint32_t *speed)
4299 {
4300         struct hns3_sfp_speed_cmd *resp;
4301         struct hns3_cmd_desc desc;
4302         int ret;
4303
4304         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SFP_GET_SPEED, true);
4305         resp = (struct hns3_sfp_speed_cmd *)desc.data;
4306         ret = hns3_cmd_send(hw, &desc, 1);
4307         if (ret == -EOPNOTSUPP) {
4308                 hns3_err(hw, "IMP do not support get SFP speed %d", ret);
4309                 return ret;
4310         } else if (ret) {
4311                 hns3_err(hw, "get sfp speed failed %d", ret);
4312                 return ret;
4313         }
4314
4315         *speed = resp->sfp_speed;
4316
4317         return 0;
4318 }
4319
4320 static uint8_t
4321 hns3_check_speed_dup(uint8_t duplex, uint32_t speed)
4322 {
4323         if (!(speed == ETH_SPEED_NUM_10M || speed == ETH_SPEED_NUM_100M))
4324                 duplex = ETH_LINK_FULL_DUPLEX;
4325
4326         return duplex;
4327 }
4328
4329 static int
4330 hns3_cfg_mac_speed_dup(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
4331 {
4332         struct hns3_mac *mac = &hw->mac;
4333         int ret;
4334
4335         duplex = hns3_check_speed_dup(duplex, speed);
4336         if (mac->link_speed == speed && mac->link_duplex == duplex)
4337                 return 0;
4338
4339         ret = hns3_cfg_mac_speed_dup_hw(hw, speed, duplex);
4340         if (ret)
4341                 return ret;
4342
4343         mac->link_speed = speed;
4344         mac->link_duplex = duplex;
4345
4346         return 0;
4347 }
4348
4349 static int
4350 hns3_update_speed_duplex(struct rte_eth_dev *eth_dev)
4351 {
4352         struct hns3_adapter *hns = eth_dev->data->dev_private;
4353         struct hns3_hw *hw = &hns->hw;
4354         struct hns3_pf *pf = &hns->pf;
4355         uint32_t speed;
4356         int ret;
4357
4358         /* If IMP do not support get SFP/qSFP speed, return directly */
4359         if (!pf->support_sfp_query)
4360                 return 0;
4361
4362         ret = hns3_get_sfp_speed(hw, &speed);
4363         if (ret == -EOPNOTSUPP) {
4364                 pf->support_sfp_query = false;
4365                 return ret;
4366         } else if (ret)
4367                 return ret;
4368
4369         if (speed == ETH_SPEED_NUM_NONE)
4370                 return 0; /* do nothing if no SFP */
4371
4372         /* Config full duplex for SFP */
4373         return hns3_cfg_mac_speed_dup(hw, speed, ETH_LINK_FULL_DUPLEX);
4374 }
4375
4376 static int
4377 hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable)
4378 {
4379         struct hns3_config_mac_mode_cmd *req;
4380         struct hns3_cmd_desc desc;
4381         uint32_t loop_en = 0;
4382         uint8_t val = 0;
4383         int ret;
4384
4385         req = (struct hns3_config_mac_mode_cmd *)desc.data;
4386
4387         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAC_MODE, false);
4388         if (enable)
4389                 val = 1;
4390         hns3_set_bit(loop_en, HNS3_MAC_TX_EN_B, val);
4391         hns3_set_bit(loop_en, HNS3_MAC_RX_EN_B, val);
4392         hns3_set_bit(loop_en, HNS3_MAC_PAD_TX_B, val);
4393         hns3_set_bit(loop_en, HNS3_MAC_PAD_RX_B, val);
4394         hns3_set_bit(loop_en, HNS3_MAC_1588_TX_B, 0);
4395         hns3_set_bit(loop_en, HNS3_MAC_1588_RX_B, 0);
4396         hns3_set_bit(loop_en, HNS3_MAC_APP_LP_B, 0);
4397         hns3_set_bit(loop_en, HNS3_MAC_LINE_LP_B, 0);
4398         hns3_set_bit(loop_en, HNS3_MAC_FCS_TX_B, val);
4399         hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_B, val);
4400
4401         /*
4402          * If DEV_RX_OFFLOAD_KEEP_CRC offload is set, MAC will not strip CRC
4403          * when receiving frames. Otherwise, CRC will be stripped.
4404          */
4405         if (hw->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
4406                 hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, 0);
4407         else
4408                 hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, val);
4409         hns3_set_bit(loop_en, HNS3_MAC_TX_OVERSIZE_TRUNCATE_B, val);
4410         hns3_set_bit(loop_en, HNS3_MAC_RX_OVERSIZE_TRUNCATE_B, val);
4411         hns3_set_bit(loop_en, HNS3_MAC_TX_UNDER_MIN_ERR_B, val);
4412         req->txrx_pad_fcs_loop_en = rte_cpu_to_le_32(loop_en);
4413
4414         ret = hns3_cmd_send(hw, &desc, 1);
4415         if (ret)
4416                 PMD_INIT_LOG(ERR, "mac enable fail, ret =%d.", ret);
4417
4418         return ret;
4419 }
4420
4421 static int
4422 hns3_get_mac_link_status(struct hns3_hw *hw)
4423 {
4424         struct hns3_link_status_cmd *req;
4425         struct hns3_cmd_desc desc;
4426         int link_status;
4427         int ret;
4428
4429         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_LINK_STATUS, true);
4430         ret = hns3_cmd_send(hw, &desc, 1);
4431         if (ret) {
4432                 hns3_err(hw, "get link status cmd failed %d", ret);
4433                 return ETH_LINK_DOWN;
4434         }
4435
4436         req = (struct hns3_link_status_cmd *)desc.data;
4437         link_status = req->status & HNS3_LINK_STATUS_UP_M;
4438
4439         return !!link_status;
4440 }
4441
4442 void
4443 hns3_update_link_status(struct hns3_hw *hw)
4444 {
4445         int state;
4446
4447         state = hns3_get_mac_link_status(hw);
4448         if (state != hw->mac.link_status) {
4449                 hw->mac.link_status = state;
4450                 hns3_warn(hw, "Link status change to %s!", state ? "up" : "down");
4451         }
4452 }
4453
4454 static void
4455 hns3_service_handler(void *param)
4456 {
4457         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
4458         struct hns3_adapter *hns = eth_dev->data->dev_private;
4459         struct hns3_hw *hw = &hns->hw;
4460
4461         if (!hns3_is_reset_pending(hns)) {
4462                 hns3_update_speed_duplex(eth_dev);
4463                 hns3_update_link_status(hw);
4464         } else
4465                 hns3_warn(hw, "Cancel the query when reset is pending");
4466
4467         rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev);
4468 }
4469
4470 static int
4471 hns3_init_hardware(struct hns3_adapter *hns)
4472 {
4473         struct hns3_hw *hw = &hns->hw;
4474         int ret;
4475
4476         ret = hns3_map_tqp(hw);
4477         if (ret) {
4478                 PMD_INIT_LOG(ERR, "Failed to map tqp: %d", ret);
4479                 return ret;
4480         }
4481
4482         ret = hns3_init_umv_space(hw);
4483         if (ret) {
4484                 PMD_INIT_LOG(ERR, "Failed to init umv space: %d", ret);
4485                 return ret;
4486         }
4487
4488         ret = hns3_mac_init(hw);
4489         if (ret) {
4490                 PMD_INIT_LOG(ERR, "Failed to init MAC: %d", ret);
4491                 goto err_mac_init;
4492         }
4493
4494         ret = hns3_init_mgr_tbl(hw);
4495         if (ret) {
4496                 PMD_INIT_LOG(ERR, "Failed to init manager table: %d", ret);
4497                 goto err_mac_init;
4498         }
4499
4500         ret = hns3_promisc_init(hw);
4501         if (ret) {
4502                 PMD_INIT_LOG(ERR, "Failed to init promisc: %d",
4503                              ret);
4504                 goto err_mac_init;
4505         }
4506
4507         ret = hns3_init_vlan_config(hns);
4508         if (ret) {
4509                 PMD_INIT_LOG(ERR, "Failed to init vlan: %d", ret);
4510                 goto err_mac_init;
4511         }
4512
4513         ret = hns3_dcb_init(hw);
4514         if (ret) {
4515                 PMD_INIT_LOG(ERR, "Failed to init dcb: %d", ret);
4516                 goto err_mac_init;
4517         }
4518
4519         ret = hns3_init_fd_config(hns);
4520         if (ret) {
4521                 PMD_INIT_LOG(ERR, "Failed to init flow director: %d", ret);
4522                 goto err_mac_init;
4523         }
4524
4525         ret = hns3_config_tso(hw, HNS3_TSO_MSS_MIN, HNS3_TSO_MSS_MAX);
4526         if (ret) {
4527                 PMD_INIT_LOG(ERR, "Failed to config tso: %d", ret);
4528                 goto err_mac_init;
4529         }
4530
4531         ret = hns3_config_gro(hw, false);
4532         if (ret) {
4533                 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
4534                 goto err_mac_init;
4535         }
4536
4537         /*
4538          * In the initialization clearing the all hardware mapping relationship
4539          * configurations between queues and interrupt vectors is needed, so
4540          * some error caused by the residual configurations, such as the
4541          * unexpected interrupt, can be avoid.
4542          */
4543         ret = hns3_init_ring_with_vector(hw);
4544         if (ret) {
4545                 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
4546                 goto err_mac_init;
4547         }
4548
4549         return 0;
4550
4551 err_mac_init:
4552         hns3_uninit_umv_space(hw);
4553         return ret;
4554 }
4555
4556 static int
4557 hns3_clear_hw(struct hns3_hw *hw)
4558 {
4559         struct hns3_cmd_desc desc;
4560         int ret;
4561
4562         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_HW_STATE, false);
4563
4564         ret = hns3_cmd_send(hw, &desc, 1);
4565         if (ret && ret != -EOPNOTSUPP)
4566                 return ret;
4567
4568         return 0;
4569 }
4570
4571 static void
4572 hns3_config_all_msix_error(struct hns3_hw *hw, bool enable)
4573 {
4574         uint32_t val;
4575
4576         /*
4577          * The new firmware support report more hardware error types by
4578          * msix mode. These errors are defined as RAS errors in hardware
4579          * and belong to a different type from the MSI-x errors processed
4580          * by the network driver.
4581          *
4582          * Network driver should open the new error report on initialition
4583          */
4584         val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
4585         hns3_set_bit(val, HNS3_VECTOR0_ALL_MSIX_ERR_B, enable ? 1 : 0);
4586         hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, val);
4587 }
4588
4589 static int
4590 hns3_init_pf(struct rte_eth_dev *eth_dev)
4591 {
4592         struct rte_device *dev = eth_dev->device;
4593         struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4594         struct hns3_adapter *hns = eth_dev->data->dev_private;
4595         struct hns3_hw *hw = &hns->hw;
4596         int ret;
4597
4598         PMD_INIT_FUNC_TRACE();
4599
4600         /* Get hardware io base address from pcie BAR2 IO space */
4601         hw->io_base = pci_dev->mem_resource[2].addr;
4602
4603         /* Firmware command queue initialize */
4604         ret = hns3_cmd_init_queue(hw);
4605         if (ret) {
4606                 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
4607                 goto err_cmd_init_queue;
4608         }
4609
4610         hns3_clear_all_event_cause(hw);
4611
4612         /* Firmware command initialize */
4613         ret = hns3_cmd_init(hw);
4614         if (ret) {
4615                 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
4616                 goto err_cmd_init;
4617         }
4618
4619         /*
4620          * To ensure that the hardware environment is clean during
4621          * initialization, the driver actively clear the hardware environment
4622          * during initialization, including PF and corresponding VFs' vlan, mac,
4623          * flow table configurations, etc.
4624          */
4625         ret = hns3_clear_hw(hw);
4626         if (ret) {
4627                 PMD_INIT_LOG(ERR, "failed to clear hardware: %d", ret);
4628                 goto err_cmd_init;
4629         }
4630
4631         hns3_config_all_msix_error(hw, true);
4632
4633         ret = rte_intr_callback_register(&pci_dev->intr_handle,
4634                                          hns3_interrupt_handler,
4635                                          eth_dev);
4636         if (ret) {
4637                 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
4638                 goto err_intr_callback_register;
4639         }
4640
4641         /* Enable interrupt */
4642         rte_intr_enable(&pci_dev->intr_handle);
4643         hns3_pf_enable_irq0(hw);
4644
4645         /* Get configuration */
4646         ret = hns3_get_configuration(hw);
4647         if (ret) {
4648                 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
4649                 goto err_get_config;
4650         }
4651
4652         ret = hns3_tqp_stats_init(hw);
4653         if (ret)
4654                 goto err_get_config;
4655
4656         ret = hns3_init_hardware(hns);
4657         if (ret) {
4658                 PMD_INIT_LOG(ERR, "Failed to init hardware: %d", ret);
4659                 goto err_init_hw;
4660         }
4661
4662         /* Initialize flow director filter list & hash */
4663         ret = hns3_fdir_filter_init(hns);
4664         if (ret) {
4665                 PMD_INIT_LOG(ERR, "Failed to alloc hashmap for fdir: %d", ret);
4666                 goto err_fdir;
4667         }
4668
4669         hns3_set_default_rss_args(hw);
4670
4671         ret = hns3_enable_hw_error_intr(hns, true);
4672         if (ret) {
4673                 PMD_INIT_LOG(ERR, "fail to enable hw error interrupts: %d",
4674                              ret);
4675                 goto err_enable_intr;
4676         }
4677
4678         return 0;
4679
4680 err_enable_intr:
4681         hns3_fdir_filter_uninit(hns);
4682 err_fdir:
4683         hns3_uninit_umv_space(hw);
4684 err_init_hw:
4685         hns3_tqp_stats_uninit(hw);
4686 err_get_config:
4687         hns3_pf_disable_irq0(hw);
4688         rte_intr_disable(&pci_dev->intr_handle);
4689         hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
4690                              eth_dev);
4691 err_intr_callback_register:
4692 err_cmd_init:
4693         hns3_cmd_uninit(hw);
4694         hns3_cmd_destroy_queue(hw);
4695 err_cmd_init_queue:
4696         hw->io_base = NULL;
4697
4698         return ret;
4699 }
4700
4701 static void
4702 hns3_uninit_pf(struct rte_eth_dev *eth_dev)
4703 {
4704         struct hns3_adapter *hns = eth_dev->data->dev_private;
4705         struct rte_device *dev = eth_dev->device;
4706         struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4707         struct hns3_hw *hw = &hns->hw;
4708
4709         PMD_INIT_FUNC_TRACE();
4710
4711         hns3_enable_hw_error_intr(hns, false);
4712         hns3_rss_uninit(hns);
4713         (void)hns3_config_gro(hw, false);
4714         hns3_promisc_uninit(hw);
4715         hns3_fdir_filter_uninit(hns);
4716         hns3_uninit_umv_space(hw);
4717         hns3_tqp_stats_uninit(hw);
4718         hns3_pf_disable_irq0(hw);
4719         rte_intr_disable(&pci_dev->intr_handle);
4720         hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
4721                              eth_dev);
4722         hns3_config_all_msix_error(hw, false);
4723         hns3_cmd_uninit(hw);
4724         hns3_cmd_destroy_queue(hw);
4725         hw->io_base = NULL;
4726 }
4727
4728 static int
4729 hns3_do_start(struct hns3_adapter *hns, bool reset_queue)
4730 {
4731         struct hns3_hw *hw = &hns->hw;
4732         int ret;
4733
4734         ret = hns3_dcb_cfg_update(hns);
4735         if (ret)
4736                 return ret;
4737
4738         ret = hns3_init_queues(hns, reset_queue);
4739         if (ret) {
4740                 PMD_INIT_LOG(ERR, "failed to init queues, ret = %d.", ret);
4741                 return ret;
4742         }
4743
4744         ret = hns3_cfg_mac_mode(hw, true);
4745         if (ret) {
4746                 PMD_INIT_LOG(ERR, "failed to enable MAC, ret = %d", ret);
4747                 goto err_config_mac_mode;
4748         }
4749         return 0;
4750
4751 err_config_mac_mode:
4752         hns3_dev_release_mbufs(hns);
4753         hns3_reset_all_tqps(hns);
4754         return ret;
4755 }
4756
4757 static int
4758 hns3_map_rx_interrupt(struct rte_eth_dev *dev)
4759 {
4760         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
4761         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
4762         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4763         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
4764         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
4765         uint32_t intr_vector;
4766         uint16_t q_id;
4767         int ret;
4768
4769         if (dev->data->dev_conf.intr_conf.rxq == 0)
4770                 return 0;
4771
4772         /* disable uio/vfio intr/eventfd mapping */
4773         rte_intr_disable(intr_handle);
4774
4775         /* check and configure queue intr-vector mapping */
4776         if (rte_intr_cap_multiple(intr_handle) ||
4777             !RTE_ETH_DEV_SRIOV(dev).active) {
4778                 intr_vector = hw->used_rx_queues;
4779                 /* creates event fd for each intr vector when MSIX is used */
4780                 if (rte_intr_efd_enable(intr_handle, intr_vector))
4781                         return -EINVAL;
4782         }
4783         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
4784                 intr_handle->intr_vec =
4785                         rte_zmalloc("intr_vec",
4786                                     hw->used_rx_queues * sizeof(int), 0);
4787                 if (intr_handle->intr_vec == NULL) {
4788                         hns3_err(hw, "Failed to allocate %d rx_queues"
4789                                      " intr_vec", hw->used_rx_queues);
4790                         ret = -ENOMEM;
4791                         goto alloc_intr_vec_error;
4792                 }
4793         }
4794
4795         if (rte_intr_allow_others(intr_handle)) {
4796                 vec = RTE_INTR_VEC_RXTX_OFFSET;
4797                 base = RTE_INTR_VEC_RXTX_OFFSET;
4798         }
4799         if (rte_intr_dp_is_en(intr_handle)) {
4800                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
4801                         ret = hns3_bind_ring_with_vector(hw, vec, true,
4802                                                          HNS3_RING_TYPE_RX,
4803                                                          q_id);
4804                         if (ret)
4805                                 goto bind_vector_error;
4806                         intr_handle->intr_vec[q_id] = vec;
4807                         if (vec < base + intr_handle->nb_efd - 1)
4808                                 vec++;
4809                 }
4810         }
4811         rte_intr_enable(intr_handle);
4812         return 0;
4813
4814 bind_vector_error:
4815         rte_intr_efd_disable(intr_handle);
4816         if (intr_handle->intr_vec) {
4817                 free(intr_handle->intr_vec);
4818                 intr_handle->intr_vec = NULL;
4819         }
4820         return ret;
4821 alloc_intr_vec_error:
4822         rte_intr_efd_disable(intr_handle);
4823         return ret;
4824 }
4825
4826 static int
4827 hns3_restore_rx_interrupt(struct hns3_hw *hw)
4828 {
4829         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
4830         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
4831         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
4832         uint16_t q_id;
4833         int ret;
4834
4835         if (dev->data->dev_conf.intr_conf.rxq == 0)
4836                 return 0;
4837
4838         if (rte_intr_dp_is_en(intr_handle)) {
4839                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
4840                         ret = hns3_bind_ring_with_vector(hw,
4841                                         intr_handle->intr_vec[q_id], true,
4842                                         HNS3_RING_TYPE_RX, q_id);
4843                         if (ret)
4844                                 return ret;
4845                 }
4846         }
4847
4848         return 0;
4849 }
4850
4851 static void
4852 hns3_restore_filter(struct rte_eth_dev *dev)
4853 {
4854         hns3_restore_rss_filter(dev);
4855 }
4856
4857 static int
4858 hns3_dev_start(struct rte_eth_dev *dev)
4859 {
4860         struct hns3_adapter *hns = dev->data->dev_private;
4861         struct hns3_hw *hw = &hns->hw;
4862         int ret;
4863
4864         PMD_INIT_FUNC_TRACE();
4865         if (rte_atomic16_read(&hw->reset.resetting))
4866                 return -EBUSY;
4867
4868         rte_spinlock_lock(&hw->lock);
4869         hw->adapter_state = HNS3_NIC_STARTING;
4870
4871         ret = hns3_do_start(hns, true);
4872         if (ret) {
4873                 hw->adapter_state = HNS3_NIC_CONFIGURED;
4874                 rte_spinlock_unlock(&hw->lock);
4875                 return ret;
4876         }
4877         ret = hns3_map_rx_interrupt(dev);
4878         if (ret) {
4879                 hw->adapter_state = HNS3_NIC_CONFIGURED;
4880                 rte_spinlock_unlock(&hw->lock);
4881                 return ret;
4882         }
4883
4884         /*
4885          * There are three register used to control the status of a TQP
4886          * (contains a pair of Tx queue and Rx queue) in the new version network
4887          * engine. One is used to control the enabling of Tx queue, the other is
4888          * used to control the enabling of Rx queue, and the last is the master
4889          * switch used to control the enabling of the tqp. The Tx register and
4890          * TQP register must be enabled at the same time to enable a Tx queue.
4891          * The same applies to the Rx queue. For the older network engine, this
4892          * function only refresh the enabled flag, and it is used to update the
4893          * status of queue in the dpdk framework.
4894          */
4895         ret = hns3_start_all_txqs(dev);
4896         if (ret) {
4897                 hw->adapter_state = HNS3_NIC_CONFIGURED;
4898                 rte_spinlock_unlock(&hw->lock);
4899                 return ret;
4900         }
4901
4902         ret = hns3_start_all_rxqs(dev);
4903         if (ret) {
4904                 hns3_stop_all_txqs(dev);
4905                 hw->adapter_state = HNS3_NIC_CONFIGURED;
4906                 rte_spinlock_unlock(&hw->lock);
4907                 return ret;
4908         }
4909
4910         hw->adapter_state = HNS3_NIC_STARTED;
4911         rte_spinlock_unlock(&hw->lock);
4912
4913         hns3_rx_scattered_calc(dev);
4914         hns3_set_rxtx_function(dev);
4915         hns3_mp_req_start_rxtx(dev);
4916         rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, dev);
4917
4918         hns3_restore_filter(dev);
4919
4920         /* Enable interrupt of all rx queues before enabling queues */
4921         hns3_dev_all_rx_queue_intr_enable(hw, true);
4922
4923         /*
4924          * After finished the initialization, enable tqps to receive/transmit
4925          * packets and refresh all queue status.
4926          */
4927         hns3_start_tqps(hw);
4928
4929         hns3_info(hw, "hns3 dev start successful!");
4930         return 0;
4931 }
4932
4933 static int
4934 hns3_do_stop(struct hns3_adapter *hns)
4935 {
4936         struct hns3_hw *hw = &hns->hw;
4937         int ret;
4938
4939         ret = hns3_cfg_mac_mode(hw, false);
4940         if (ret)
4941                 return ret;
4942         hw->mac.link_status = ETH_LINK_DOWN;
4943
4944         if (rte_atomic16_read(&hw->reset.disable_cmd) == 0) {
4945                 hns3_configure_all_mac_addr(hns, true);
4946                 ret = hns3_reset_all_tqps(hns);
4947                 if (ret) {
4948                         hns3_err(hw, "failed to reset all queues ret = %d.",
4949                                  ret);
4950                         return ret;
4951                 }
4952         }
4953         hw->mac.default_addr_setted = false;
4954         return 0;
4955 }
4956
4957 static void
4958 hns3_unmap_rx_interrupt(struct rte_eth_dev *dev)
4959 {
4960         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
4961         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
4962         struct hns3_adapter *hns = dev->data->dev_private;
4963         struct hns3_hw *hw = &hns->hw;
4964         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
4965         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
4966         uint16_t q_id;
4967
4968         if (dev->data->dev_conf.intr_conf.rxq == 0)
4969                 return;
4970
4971         /* unmap the ring with vector */
4972         if (rte_intr_allow_others(intr_handle)) {
4973                 vec = RTE_INTR_VEC_RXTX_OFFSET;
4974                 base = RTE_INTR_VEC_RXTX_OFFSET;
4975         }
4976         if (rte_intr_dp_is_en(intr_handle)) {
4977                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
4978                         (void)hns3_bind_ring_with_vector(hw, vec, false,
4979                                                          HNS3_RING_TYPE_RX,
4980                                                          q_id);
4981                         if (vec < base + intr_handle->nb_efd - 1)
4982                                 vec++;
4983                 }
4984         }
4985         /* Clean datapath event and queue/vec mapping */
4986         rte_intr_efd_disable(intr_handle);
4987         if (intr_handle->intr_vec) {
4988                 rte_free(intr_handle->intr_vec);
4989                 intr_handle->intr_vec = NULL;
4990         }
4991 }
4992
4993 static void
4994 hns3_dev_stop(struct rte_eth_dev *dev)
4995 {
4996         struct hns3_adapter *hns = dev->data->dev_private;
4997         struct hns3_hw *hw = &hns->hw;
4998
4999         PMD_INIT_FUNC_TRACE();
5000         dev->data->dev_started = 0;
5001
5002         hw->adapter_state = HNS3_NIC_STOPPING;
5003         hns3_set_rxtx_function(dev);
5004         rte_wmb();
5005         /* Disable datapath on secondary process. */
5006         hns3_mp_req_stop_rxtx(dev);
5007         /* Prevent crashes when queues are still in use. */
5008         rte_delay_ms(hw->tqps_num);
5009
5010         rte_spinlock_lock(&hw->lock);
5011         if (rte_atomic16_read(&hw->reset.resetting) == 0) {
5012                 hns3_stop_tqps(hw);
5013                 hns3_do_stop(hns);
5014                 hns3_unmap_rx_interrupt(dev);
5015                 hns3_dev_release_mbufs(hns);
5016                 hw->adapter_state = HNS3_NIC_CONFIGURED;
5017         }
5018         hns3_rx_scattered_reset(dev);
5019         rte_eal_alarm_cancel(hns3_service_handler, dev);
5020         rte_spinlock_unlock(&hw->lock);
5021 }
5022
5023 static int
5024 hns3_dev_close(struct rte_eth_dev *eth_dev)
5025 {
5026         struct hns3_adapter *hns = eth_dev->data->dev_private;
5027         struct hns3_hw *hw = &hns->hw;
5028
5029         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
5030                 rte_free(eth_dev->process_private);
5031                 eth_dev->process_private = NULL;
5032                 return 0;
5033         }
5034
5035         if (hw->adapter_state == HNS3_NIC_STARTED)
5036                 hns3_dev_stop(eth_dev);
5037
5038         hw->adapter_state = HNS3_NIC_CLOSING;
5039         hns3_reset_abort(hns);
5040         hw->adapter_state = HNS3_NIC_CLOSED;
5041
5042         hns3_configure_all_mc_mac_addr(hns, true);
5043         hns3_remove_all_vlan_table(hns);
5044         hns3_vlan_txvlan_cfg(hns, HNS3_PORT_BASE_VLAN_DISABLE, 0);
5045         hns3_uninit_pf(eth_dev);
5046         hns3_free_all_queues(eth_dev);
5047         rte_free(hw->reset.wait_data);
5048         rte_free(eth_dev->process_private);
5049         eth_dev->process_private = NULL;
5050         hns3_mp_uninit_primary();
5051         hns3_warn(hw, "Close port %d finished", hw->data->port_id);
5052
5053         return 0;
5054 }
5055
5056 static int
5057 hns3_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5058 {
5059         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5060         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5061
5062         fc_conf->pause_time = pf->pause_time;
5063
5064         /* return fc current mode */
5065         switch (hw->current_mode) {
5066         case HNS3_FC_FULL:
5067                 fc_conf->mode = RTE_FC_FULL;
5068                 break;
5069         case HNS3_FC_TX_PAUSE:
5070                 fc_conf->mode = RTE_FC_TX_PAUSE;
5071                 break;
5072         case HNS3_FC_RX_PAUSE:
5073                 fc_conf->mode = RTE_FC_RX_PAUSE;
5074                 break;
5075         case HNS3_FC_NONE:
5076         default:
5077                 fc_conf->mode = RTE_FC_NONE;
5078                 break;
5079         }
5080
5081         return 0;
5082 }
5083
5084 static void
5085 hns3_get_fc_mode(struct hns3_hw *hw, enum rte_eth_fc_mode mode)
5086 {
5087         switch (mode) {
5088         case RTE_FC_NONE:
5089                 hw->requested_mode = HNS3_FC_NONE;
5090                 break;
5091         case RTE_FC_RX_PAUSE:
5092                 hw->requested_mode = HNS3_FC_RX_PAUSE;
5093                 break;
5094         case RTE_FC_TX_PAUSE:
5095                 hw->requested_mode = HNS3_FC_TX_PAUSE;
5096                 break;
5097         case RTE_FC_FULL:
5098                 hw->requested_mode = HNS3_FC_FULL;
5099                 break;
5100         default:
5101                 hw->requested_mode = HNS3_FC_NONE;
5102                 hns3_warn(hw, "fc_mode(%u) exceeds member scope and is "
5103                           "configured to RTE_FC_NONE", mode);
5104                 break;
5105         }
5106 }
5107
5108 static int
5109 hns3_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5110 {
5111         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5112         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5113         int ret;
5114
5115         if (fc_conf->high_water || fc_conf->low_water ||
5116             fc_conf->send_xon || fc_conf->mac_ctrl_frame_fwd) {
5117                 hns3_err(hw, "Unsupported flow control settings specified, "
5118                          "high_water(%u), low_water(%u), send_xon(%u) and "
5119                          "mac_ctrl_frame_fwd(%u) must be set to '0'",
5120                          fc_conf->high_water, fc_conf->low_water,
5121                          fc_conf->send_xon, fc_conf->mac_ctrl_frame_fwd);
5122                 return -EINVAL;
5123         }
5124         if (fc_conf->autoneg) {
5125                 hns3_err(hw, "Unsupported fc auto-negotiation setting.");
5126                 return -EINVAL;
5127         }
5128         if (!fc_conf->pause_time) {
5129                 hns3_err(hw, "Invalid pause time %d setting.",
5130                          fc_conf->pause_time);
5131                 return -EINVAL;
5132         }
5133
5134         if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5135             hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)) {
5136                 hns3_err(hw, "PFC is enabled. Cannot set MAC pause. "
5137                          "current_fc_status = %d", hw->current_fc_status);
5138                 return -EOPNOTSUPP;
5139         }
5140
5141         hns3_get_fc_mode(hw, fc_conf->mode);
5142         if (hw->requested_mode == hw->current_mode &&
5143             pf->pause_time == fc_conf->pause_time)
5144                 return 0;
5145
5146         rte_spinlock_lock(&hw->lock);
5147         ret = hns3_fc_enable(dev, fc_conf);
5148         rte_spinlock_unlock(&hw->lock);
5149
5150         return ret;
5151 }
5152
5153 static int
5154 hns3_priority_flow_ctrl_set(struct rte_eth_dev *dev,
5155                             struct rte_eth_pfc_conf *pfc_conf)
5156 {
5157         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5158         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5159         uint8_t priority;
5160         int ret;
5161
5162         if (!hns3_dev_dcb_supported(hw)) {
5163                 hns3_err(hw, "This port does not support dcb configurations.");
5164                 return -EOPNOTSUPP;
5165         }
5166
5167         if (pfc_conf->fc.high_water || pfc_conf->fc.low_water ||
5168             pfc_conf->fc.send_xon || pfc_conf->fc.mac_ctrl_frame_fwd) {
5169                 hns3_err(hw, "Unsupported flow control settings specified, "
5170                          "high_water(%u), low_water(%u), send_xon(%u) and "
5171                          "mac_ctrl_frame_fwd(%u) must be set to '0'",
5172                          pfc_conf->fc.high_water, pfc_conf->fc.low_water,
5173                          pfc_conf->fc.send_xon,
5174                          pfc_conf->fc.mac_ctrl_frame_fwd);
5175                 return -EINVAL;
5176         }
5177         if (pfc_conf->fc.autoneg) {
5178                 hns3_err(hw, "Unsupported fc auto-negotiation setting.");
5179                 return -EINVAL;
5180         }
5181         if (pfc_conf->fc.pause_time == 0) {
5182                 hns3_err(hw, "Invalid pause time %d setting.",
5183                          pfc_conf->fc.pause_time);
5184                 return -EINVAL;
5185         }
5186
5187         if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5188             hw->current_fc_status == HNS3_FC_STATUS_PFC)) {
5189                 hns3_err(hw, "MAC pause is enabled. Cannot set PFC."
5190                              "current_fc_status = %d", hw->current_fc_status);
5191                 return -EOPNOTSUPP;
5192         }
5193
5194         priority = pfc_conf->priority;
5195         hns3_get_fc_mode(hw, pfc_conf->fc.mode);
5196         if (hw->dcb_info.pfc_en & BIT(priority) &&
5197             hw->requested_mode == hw->current_mode &&
5198             pfc_conf->fc.pause_time == pf->pause_time)
5199                 return 0;
5200
5201         rte_spinlock_lock(&hw->lock);
5202         ret = hns3_dcb_pfc_enable(dev, pfc_conf);
5203         rte_spinlock_unlock(&hw->lock);
5204
5205         return ret;
5206 }
5207
5208 static int
5209 hns3_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info)
5210 {
5211         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5212         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5213         enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
5214         int i;
5215
5216         rte_spinlock_lock(&hw->lock);
5217         if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG)
5218                 dcb_info->nb_tcs = pf->local_max_tc;
5219         else
5220                 dcb_info->nb_tcs = 1;
5221
5222         for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
5223                 dcb_info->prio_tc[i] = hw->dcb_info.prio_tc[i];
5224         for (i = 0; i < dcb_info->nb_tcs; i++)
5225                 dcb_info->tc_bws[i] = hw->dcb_info.pg_info[0].tc_dwrr[i];
5226
5227         for (i = 0; i < hw->num_tc; i++) {
5228                 dcb_info->tc_queue.tc_rxq[0][i].base = hw->alloc_rss_size * i;
5229                 dcb_info->tc_queue.tc_txq[0][i].base =
5230                                                 hw->tc_queue[i].tqp_offset;
5231                 dcb_info->tc_queue.tc_rxq[0][i].nb_queue = hw->alloc_rss_size;
5232                 dcb_info->tc_queue.tc_txq[0][i].nb_queue =
5233                                                 hw->tc_queue[i].tqp_count;
5234         }
5235         rte_spinlock_unlock(&hw->lock);
5236
5237         return 0;
5238 }
5239
5240 static int
5241 hns3_reinit_dev(struct hns3_adapter *hns)
5242 {
5243         struct hns3_hw *hw = &hns->hw;
5244         int ret;
5245
5246         ret = hns3_cmd_init(hw);
5247         if (ret) {
5248                 hns3_err(hw, "Failed to init cmd: %d", ret);
5249                 return ret;
5250         }
5251
5252         ret = hns3_reset_all_tqps(hns);
5253         if (ret) {
5254                 hns3_err(hw, "Failed to reset all queues: %d", ret);
5255                 return ret;
5256         }
5257
5258         ret = hns3_init_hardware(hns);
5259         if (ret) {
5260                 hns3_err(hw, "Failed to init hardware: %d", ret);
5261                 return ret;
5262         }
5263
5264         ret = hns3_enable_hw_error_intr(hns, true);
5265         if (ret) {
5266                 hns3_err(hw, "fail to enable hw error interrupts: %d",
5267                              ret);
5268                 return ret;
5269         }
5270         hns3_info(hw, "Reset done, driver initialization finished.");
5271
5272         return 0;
5273 }
5274
5275 static bool
5276 is_pf_reset_done(struct hns3_hw *hw)
5277 {
5278         uint32_t val, reg, reg_bit;
5279
5280         switch (hw->reset.level) {
5281         case HNS3_IMP_RESET:
5282                 reg = HNS3_GLOBAL_RESET_REG;
5283                 reg_bit = HNS3_IMP_RESET_BIT;
5284                 break;
5285         case HNS3_GLOBAL_RESET:
5286                 reg = HNS3_GLOBAL_RESET_REG;
5287                 reg_bit = HNS3_GLOBAL_RESET_BIT;
5288                 break;
5289         case HNS3_FUNC_RESET:
5290                 reg = HNS3_FUN_RST_ING;
5291                 reg_bit = HNS3_FUN_RST_ING_B;
5292                 break;
5293         case HNS3_FLR_RESET:
5294         default:
5295                 hns3_err(hw, "Wait for unsupported reset level: %d",
5296                          hw->reset.level);
5297                 return true;
5298         }
5299         val = hns3_read_dev(hw, reg);
5300         if (hns3_get_bit(val, reg_bit))
5301                 return false;
5302         else
5303                 return true;
5304 }
5305
5306 bool
5307 hns3_is_reset_pending(struct hns3_adapter *hns)
5308 {
5309         struct hns3_hw *hw = &hns->hw;
5310         enum hns3_reset_level reset;
5311
5312         hns3_check_event_cause(hns, NULL);
5313         reset = hns3_get_reset_level(hns, &hw->reset.pending);
5314         if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
5315                 hns3_warn(hw, "High level reset %d is pending", reset);
5316                 return true;
5317         }
5318         reset = hns3_get_reset_level(hns, &hw->reset.request);
5319         if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
5320                 hns3_warn(hw, "High level reset %d is request", reset);
5321                 return true;
5322         }
5323         return false;
5324 }
5325
5326 static int
5327 hns3_wait_hardware_ready(struct hns3_adapter *hns)
5328 {
5329         struct hns3_hw *hw = &hns->hw;
5330         struct hns3_wait_data *wait_data = hw->reset.wait_data;
5331         struct timeval tv;
5332
5333         if (wait_data->result == HNS3_WAIT_SUCCESS)
5334                 return 0;
5335         else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
5336                 gettimeofday(&tv, NULL);
5337                 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
5338                           tv.tv_sec, tv.tv_usec);
5339                 return -ETIME;
5340         } else if (wait_data->result == HNS3_WAIT_REQUEST)
5341                 return -EAGAIN;
5342
5343         wait_data->hns = hns;
5344         wait_data->check_completion = is_pf_reset_done;
5345         wait_data->end_ms = (uint64_t)HNS3_RESET_WAIT_CNT *
5346                                       HNS3_RESET_WAIT_MS + get_timeofday_ms();
5347         wait_data->interval = HNS3_RESET_WAIT_MS * USEC_PER_MSEC;
5348         wait_data->count = HNS3_RESET_WAIT_CNT;
5349         wait_data->result = HNS3_WAIT_REQUEST;
5350         rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
5351         return -EAGAIN;
5352 }
5353
5354 static int
5355 hns3_func_reset_cmd(struct hns3_hw *hw, int func_id)
5356 {
5357         struct hns3_cmd_desc desc;
5358         struct hns3_reset_cmd *req = (struct hns3_reset_cmd *)desc.data;
5359
5360         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
5361         hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_FUNC_B, 1);
5362         req->fun_reset_vfid = func_id;
5363
5364         return hns3_cmd_send(hw, &desc, 1);
5365 }
5366
5367 static int
5368 hns3_imp_reset_cmd(struct hns3_hw *hw)
5369 {
5370         struct hns3_cmd_desc desc;
5371
5372         hns3_cmd_setup_basic_desc(&desc, 0xFFFE, false);
5373         desc.data[0] = 0xeedd;
5374
5375         return hns3_cmd_send(hw, &desc, 1);
5376 }
5377
5378 static void
5379 hns3_msix_process(struct hns3_adapter *hns, enum hns3_reset_level reset_level)
5380 {
5381         struct hns3_hw *hw = &hns->hw;
5382         struct timeval tv;
5383         uint32_t val;
5384
5385         gettimeofday(&tv, NULL);
5386         if (hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG) ||
5387             hns3_read_dev(hw, HNS3_FUN_RST_ING)) {
5388                 hns3_warn(hw, "Don't process msix during resetting time=%ld.%.6ld",
5389                           tv.tv_sec, tv.tv_usec);
5390                 return;
5391         }
5392
5393         switch (reset_level) {
5394         case HNS3_IMP_RESET:
5395                 hns3_imp_reset_cmd(hw);
5396                 hns3_warn(hw, "IMP Reset requested time=%ld.%.6ld",
5397                           tv.tv_sec, tv.tv_usec);
5398                 break;
5399         case HNS3_GLOBAL_RESET:
5400                 val = hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG);
5401                 hns3_set_bit(val, HNS3_GLOBAL_RESET_BIT, 1);
5402                 hns3_write_dev(hw, HNS3_GLOBAL_RESET_REG, val);
5403                 hns3_warn(hw, "Global Reset requested time=%ld.%.6ld",
5404                           tv.tv_sec, tv.tv_usec);
5405                 break;
5406         case HNS3_FUNC_RESET:
5407                 hns3_warn(hw, "PF Reset requested time=%ld.%.6ld",
5408                           tv.tv_sec, tv.tv_usec);
5409                 /* schedule again to check later */
5410                 hns3_atomic_set_bit(HNS3_FUNC_RESET, &hw->reset.pending);
5411                 hns3_schedule_reset(hns);
5412                 break;
5413         default:
5414                 hns3_warn(hw, "Unsupported reset level: %d", reset_level);
5415                 return;
5416         }
5417         hns3_atomic_clear_bit(reset_level, &hw->reset.request);
5418 }
5419
5420 static enum hns3_reset_level
5421 hns3_get_reset_level(struct hns3_adapter *hns, uint64_t *levels)
5422 {
5423         struct hns3_hw *hw = &hns->hw;
5424         enum hns3_reset_level reset_level = HNS3_NONE_RESET;
5425
5426         /* Return the highest priority reset level amongst all */
5427         if (hns3_atomic_test_bit(HNS3_IMP_RESET, levels))
5428                 reset_level = HNS3_IMP_RESET;
5429         else if (hns3_atomic_test_bit(HNS3_GLOBAL_RESET, levels))
5430                 reset_level = HNS3_GLOBAL_RESET;
5431         else if (hns3_atomic_test_bit(HNS3_FUNC_RESET, levels))
5432                 reset_level = HNS3_FUNC_RESET;
5433         else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
5434                 reset_level = HNS3_FLR_RESET;
5435
5436         if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
5437                 return HNS3_NONE_RESET;
5438
5439         return reset_level;
5440 }
5441
5442 static void
5443 hns3_record_imp_error(struct hns3_adapter *hns)
5444 {
5445         struct hns3_hw *hw = &hns->hw;
5446         uint32_t reg_val;
5447
5448         reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5449         if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B)) {
5450                 hns3_warn(hw, "Detected IMP RD poison!");
5451                 hns3_error_int_stats_add(hns, "IMP_RD_POISON_INT_STS");
5452                 hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B, 0);
5453                 hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5454         }
5455
5456         if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B)) {
5457                 hns3_warn(hw, "Detected IMP CMDQ error!");
5458                 hns3_error_int_stats_add(hns, "CMDQ_MEM_ECC_INT_STS");
5459                 hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B, 0);
5460                 hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5461         }
5462 }
5463
5464 static int
5465 hns3_prepare_reset(struct hns3_adapter *hns)
5466 {
5467         struct hns3_hw *hw = &hns->hw;
5468         uint32_t reg_val;
5469         int ret;
5470
5471         switch (hw->reset.level) {
5472         case HNS3_FUNC_RESET:
5473                 ret = hns3_func_reset_cmd(hw, HNS3_PF_FUNC_ID);
5474                 if (ret)
5475                         return ret;
5476
5477                 /*
5478                  * After performaning pf reset, it is not necessary to do the
5479                  * mailbox handling or send any command to firmware, because
5480                  * any mailbox handling or command to firmware is only valid
5481                  * after hns3_cmd_init is called.
5482                  */
5483                 rte_atomic16_set(&hw->reset.disable_cmd, 1);
5484                 hw->reset.stats.request_cnt++;
5485                 break;
5486         case HNS3_IMP_RESET:
5487                 hns3_record_imp_error(hns);
5488                 reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5489                 hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val |
5490                                BIT(HNS3_VECTOR0_IMP_RESET_INT_B));
5491                 break;
5492         default:
5493                 break;
5494         }
5495         return 0;
5496 }
5497
5498 static int
5499 hns3_set_rst_done(struct hns3_hw *hw)
5500 {
5501         struct hns3_pf_rst_done_cmd *req;
5502         struct hns3_cmd_desc desc;
5503
5504         req = (struct hns3_pf_rst_done_cmd *)desc.data;
5505         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PF_RST_DONE, false);
5506         req->pf_rst_done |= HNS3_PF_RESET_DONE_BIT;
5507         return hns3_cmd_send(hw, &desc, 1);
5508 }
5509
5510 static int
5511 hns3_stop_service(struct hns3_adapter *hns)
5512 {
5513         struct hns3_hw *hw = &hns->hw;
5514         struct rte_eth_dev *eth_dev;
5515
5516         eth_dev = &rte_eth_devices[hw->data->port_id];
5517         if (hw->adapter_state == HNS3_NIC_STARTED)
5518                 rte_eal_alarm_cancel(hns3_service_handler, eth_dev);
5519         hw->mac.link_status = ETH_LINK_DOWN;
5520
5521         hns3_set_rxtx_function(eth_dev);
5522         rte_wmb();
5523         /* Disable datapath on secondary process. */
5524         hns3_mp_req_stop_rxtx(eth_dev);
5525         rte_delay_ms(hw->tqps_num);
5526
5527         rte_spinlock_lock(&hw->lock);
5528         if (hns->hw.adapter_state == HNS3_NIC_STARTED ||
5529             hw->adapter_state == HNS3_NIC_STOPPING) {
5530                 hns3_enable_all_queues(hw, false);
5531                 hns3_do_stop(hns);
5532                 hw->reset.mbuf_deferred_free = true;
5533         } else
5534                 hw->reset.mbuf_deferred_free = false;
5535
5536         /*
5537          * It is cumbersome for hardware to pick-and-choose entries for deletion
5538          * from table space. Hence, for function reset software intervention is
5539          * required to delete the entries
5540          */
5541         if (rte_atomic16_read(&hw->reset.disable_cmd) == 0)
5542                 hns3_configure_all_mc_mac_addr(hns, true);
5543         rte_spinlock_unlock(&hw->lock);
5544
5545         return 0;
5546 }
5547
5548 static int
5549 hns3_start_service(struct hns3_adapter *hns)
5550 {
5551         struct hns3_hw *hw = &hns->hw;
5552         struct rte_eth_dev *eth_dev;
5553
5554         if (hw->reset.level == HNS3_IMP_RESET ||
5555             hw->reset.level == HNS3_GLOBAL_RESET)
5556                 hns3_set_rst_done(hw);
5557         eth_dev = &rte_eth_devices[hw->data->port_id];
5558         hns3_set_rxtx_function(eth_dev);
5559         hns3_mp_req_start_rxtx(eth_dev);
5560         if (hw->adapter_state == HNS3_NIC_STARTED) {
5561                 hns3_service_handler(eth_dev);
5562
5563                 /* Enable interrupt of all rx queues before enabling queues */
5564                 hns3_dev_all_rx_queue_intr_enable(hw, true);
5565                 /*
5566                  * When finished the initialization, enable queues to receive
5567                  * and transmit packets.
5568                  */
5569                 hns3_enable_all_queues(hw, true);
5570         }
5571
5572         return 0;
5573 }
5574
5575 static int
5576 hns3_restore_conf(struct hns3_adapter *hns)
5577 {
5578         struct hns3_hw *hw = &hns->hw;
5579         int ret;
5580
5581         ret = hns3_configure_all_mac_addr(hns, false);
5582         if (ret)
5583                 return ret;
5584
5585         ret = hns3_configure_all_mc_mac_addr(hns, false);
5586         if (ret)
5587                 goto err_mc_mac;
5588
5589         ret = hns3_dev_promisc_restore(hns);
5590         if (ret)
5591                 goto err_promisc;
5592
5593         ret = hns3_restore_vlan_table(hns);
5594         if (ret)
5595                 goto err_promisc;
5596
5597         ret = hns3_restore_vlan_conf(hns);
5598         if (ret)
5599                 goto err_promisc;
5600
5601         ret = hns3_restore_all_fdir_filter(hns);
5602         if (ret)
5603                 goto err_promisc;
5604
5605         ret = hns3_restore_rx_interrupt(hw);
5606         if (ret)
5607                 goto err_promisc;
5608
5609         ret = hns3_restore_gro_conf(hw);
5610         if (ret)
5611                 goto err_promisc;
5612
5613         ret = hns3_restore_fec(hw);
5614         if (ret)
5615                 goto err_promisc;
5616
5617         if (hns->hw.adapter_state == HNS3_NIC_STARTED) {
5618                 ret = hns3_do_start(hns, false);
5619                 if (ret)
5620                         goto err_promisc;
5621                 hns3_info(hw, "hns3 dev restart successful!");
5622         } else if (hw->adapter_state == HNS3_NIC_STOPPING)
5623                 hw->adapter_state = HNS3_NIC_CONFIGURED;
5624         return 0;
5625
5626 err_promisc:
5627         hns3_configure_all_mc_mac_addr(hns, true);
5628 err_mc_mac:
5629         hns3_configure_all_mac_addr(hns, true);
5630         return ret;
5631 }
5632
5633 static void
5634 hns3_reset_service(void *param)
5635 {
5636         struct hns3_adapter *hns = (struct hns3_adapter *)param;
5637         struct hns3_hw *hw = &hns->hw;
5638         enum hns3_reset_level reset_level;
5639         struct timeval tv_delta;
5640         struct timeval tv_start;
5641         struct timeval tv;
5642         uint64_t msec;
5643         int ret;
5644
5645         /*
5646          * The interrupt is not triggered within the delay time.
5647          * The interrupt may have been lost. It is necessary to handle
5648          * the interrupt to recover from the error.
5649          */
5650         if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_DEFERRED) {
5651                 rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_REQUESTED);
5652                 hns3_err(hw, "Handling interrupts in delayed tasks");
5653                 hns3_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
5654                 reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
5655                 if (reset_level == HNS3_NONE_RESET) {
5656                         hns3_err(hw, "No reset level is set, try IMP reset");
5657                         hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
5658                 }
5659         }
5660         rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_NONE);
5661
5662         /*
5663          * Check if there is any ongoing reset in the hardware. This status can
5664          * be checked from reset_pending. If there is then, we need to wait for
5665          * hardware to complete reset.
5666          *    a. If we are able to figure out in reasonable time that hardware
5667          *       has fully resetted then, we can proceed with driver, client
5668          *       reset.
5669          *    b. else, we can come back later to check this status so re-sched
5670          *       now.
5671          */
5672         reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
5673         if (reset_level != HNS3_NONE_RESET) {
5674                 gettimeofday(&tv_start, NULL);
5675                 ret = hns3_reset_process(hns, reset_level);
5676                 gettimeofday(&tv, NULL);
5677                 timersub(&tv, &tv_start, &tv_delta);
5678                 msec = tv_delta.tv_sec * MSEC_PER_SEC +
5679                        tv_delta.tv_usec / USEC_PER_MSEC;
5680                 if (msec > HNS3_RESET_PROCESS_MS)
5681                         hns3_err(hw, "%d handle long time delta %" PRIx64
5682                                      " ms time=%ld.%.6ld",
5683                                  hw->reset.level, msec,
5684                                  tv.tv_sec, tv.tv_usec);
5685                 if (ret == -EAGAIN)
5686                         return;
5687         }
5688
5689         /* Check if we got any *new* reset requests to be honored */
5690         reset_level = hns3_get_reset_level(hns, &hw->reset.request);
5691         if (reset_level != HNS3_NONE_RESET)
5692                 hns3_msix_process(hns, reset_level);
5693 }
5694
5695 static unsigned int
5696 hns3_get_speed_capa_num(uint16_t device_id)
5697 {
5698         unsigned int num;
5699
5700         switch (device_id) {
5701         case HNS3_DEV_ID_25GE:
5702         case HNS3_DEV_ID_25GE_RDMA:
5703                 num = 2;
5704                 break;
5705         case HNS3_DEV_ID_100G_RDMA_MACSEC:
5706         case HNS3_DEV_ID_200G_RDMA:
5707                 num = 1;
5708                 break;
5709         default:
5710                 num = 0;
5711                 break;
5712         }
5713
5714         return num;
5715 }
5716
5717 static int
5718 hns3_get_speed_fec_capa(struct rte_eth_fec_capa *speed_fec_capa,
5719                         uint16_t device_id)
5720 {
5721         switch (device_id) {
5722         case HNS3_DEV_ID_25GE:
5723         /* fallthrough */
5724         case HNS3_DEV_ID_25GE_RDMA:
5725                 speed_fec_capa[0].speed = speed_fec_capa_tbl[1].speed;
5726                 speed_fec_capa[0].capa = speed_fec_capa_tbl[1].capa;
5727
5728                 /* In HNS3 device, the 25G NIC is compatible with 10G rate */
5729                 speed_fec_capa[1].speed = speed_fec_capa_tbl[0].speed;
5730                 speed_fec_capa[1].capa = speed_fec_capa_tbl[0].capa;
5731                 break;
5732         case HNS3_DEV_ID_100G_RDMA_MACSEC:
5733                 speed_fec_capa[0].speed = speed_fec_capa_tbl[4].speed;
5734                 speed_fec_capa[0].capa = speed_fec_capa_tbl[4].capa;
5735                 break;
5736         case HNS3_DEV_ID_200G_RDMA:
5737                 speed_fec_capa[0].speed = speed_fec_capa_tbl[5].speed;
5738                 speed_fec_capa[0].capa = speed_fec_capa_tbl[5].capa;
5739                 break;
5740         default:
5741                 return -ENOTSUP;
5742         }
5743
5744         return 0;
5745 }
5746
5747 static int
5748 hns3_fec_get_capability(struct rte_eth_dev *dev,
5749                         struct rte_eth_fec_capa *speed_fec_capa,
5750                         unsigned int num)
5751 {
5752         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5753         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5754         uint16_t device_id = pci_dev->id.device_id;
5755         unsigned int capa_num;
5756         int ret;
5757
5758         capa_num = hns3_get_speed_capa_num(device_id);
5759         if (capa_num == 0) {
5760                 hns3_err(hw, "device(0x%x) is not supported by hns3 PMD",
5761                          device_id);
5762                 return -ENOTSUP;
5763         }
5764
5765         if (speed_fec_capa == NULL || num < capa_num)
5766                 return capa_num;
5767
5768         ret = hns3_get_speed_fec_capa(speed_fec_capa, device_id);
5769         if (ret)
5770                 return -ENOTSUP;
5771
5772         return capa_num;
5773 }
5774
5775 static int
5776 get_current_fec_auto_state(struct hns3_hw *hw, uint8_t *state)
5777 {
5778         struct hns3_config_fec_cmd *req;
5779         struct hns3_cmd_desc desc;
5780         int ret;
5781
5782         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, true);
5783         req = (struct hns3_config_fec_cmd *)desc.data;
5784         ret = hns3_cmd_send(hw, &desc, 1);
5785         if (ret) {
5786                 hns3_err(hw, "get current fec auto state failed, ret = %d",
5787                          ret);
5788                 return ret;
5789         }
5790
5791         *state = req->fec_mode & (1U << HNS3_MAC_CFG_FEC_AUTO_EN_B);
5792         return 0;
5793 }
5794
5795 static int
5796 hns3_fec_get(struct rte_eth_dev *dev, uint32_t *fec_capa)
5797 {
5798 #define QUERY_ACTIVE_SPEED      1
5799         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5800         struct hns3_sfp_speed_cmd *resp;
5801         uint32_t tmp_fec_capa;
5802         uint8_t auto_state;
5803         struct hns3_cmd_desc desc;
5804         int ret;
5805
5806         /*
5807          * If link is down and AUTO is enabled, AUTO is returned, otherwise,
5808          * configured FEC mode is returned.
5809          * If link is up, current FEC mode is returned.
5810          */
5811         if (hw->mac.link_status == ETH_LINK_DOWN) {
5812                 ret = get_current_fec_auto_state(hw, &auto_state);
5813                 if (ret)
5814                         return ret;
5815
5816                 if (auto_state == 0x1) {
5817                         *fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(AUTO);
5818                         return 0;
5819                 }
5820         }
5821
5822         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SFP_GET_SPEED, true);
5823         resp = (struct hns3_sfp_speed_cmd *)desc.data;
5824         resp->query_type = QUERY_ACTIVE_SPEED;
5825
5826         ret = hns3_cmd_send(hw, &desc, 1);
5827         if (ret == -EOPNOTSUPP) {
5828                 hns3_err(hw, "IMP do not support get FEC, ret = %d", ret);
5829                 return ret;
5830         } else if (ret) {
5831                 hns3_err(hw, "get FEC failed, ret = %d", ret);
5832                 return ret;
5833         }
5834
5835         /*
5836          * FEC mode order defined in hns3 hardware is inconsistend with
5837          * that defined in the ethdev library. So the sequence needs
5838          * to be converted.
5839          */
5840         switch (resp->active_fec) {
5841         case HNS3_HW_FEC_MODE_NOFEC:
5842                 tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
5843                 break;
5844         case HNS3_HW_FEC_MODE_BASER:
5845                 tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(BASER);
5846                 break;
5847         case HNS3_HW_FEC_MODE_RS:
5848                 tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(RS);
5849                 break;
5850         default:
5851                 tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
5852                 break;
5853         }
5854
5855         *fec_capa = tmp_fec_capa;
5856         return 0;
5857 }
5858
5859 static int
5860 hns3_set_fec_hw(struct hns3_hw *hw, uint32_t mode)
5861 {
5862         struct hns3_config_fec_cmd *req;
5863         struct hns3_cmd_desc desc;
5864         int ret;
5865
5866         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, false);
5867
5868         req = (struct hns3_config_fec_cmd *)desc.data;
5869         switch (mode) {
5870         case RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC):
5871                 hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
5872                                 HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_OFF);
5873                 break;
5874         case RTE_ETH_FEC_MODE_CAPA_MASK(BASER):
5875                 hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
5876                                 HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_BASER);
5877                 break;
5878         case RTE_ETH_FEC_MODE_CAPA_MASK(RS):
5879                 hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
5880                                 HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_RS);
5881                 break;
5882         case RTE_ETH_FEC_MODE_CAPA_MASK(AUTO):
5883                 hns3_set_bit(req->fec_mode, HNS3_MAC_CFG_FEC_AUTO_EN_B, 1);
5884                 break;
5885         default:
5886                 return 0;
5887         }
5888         ret = hns3_cmd_send(hw, &desc, 1);
5889         if (ret)
5890                 hns3_err(hw, "set fec mode failed, ret = %d", ret);
5891
5892         return ret;
5893 }
5894
5895 static uint32_t
5896 get_current_speed_fec_cap(struct hns3_hw *hw, struct rte_eth_fec_capa *fec_capa)
5897 {
5898         struct hns3_mac *mac = &hw->mac;
5899         uint32_t cur_capa;
5900
5901         switch (mac->link_speed) {
5902         case ETH_SPEED_NUM_10G:
5903                 cur_capa = fec_capa[1].capa;
5904                 break;
5905         case ETH_SPEED_NUM_25G:
5906         case ETH_SPEED_NUM_100G:
5907         case ETH_SPEED_NUM_200G:
5908                 cur_capa = fec_capa[0].capa;
5909                 break;
5910         default:
5911                 cur_capa = 0;
5912                 break;
5913         }
5914
5915         return cur_capa;
5916 }
5917
5918 static bool
5919 is_fec_mode_one_bit_set(uint32_t mode)
5920 {
5921         int cnt = 0;
5922         uint8_t i;
5923
5924         for (i = 0; i < sizeof(mode); i++)
5925                 if (mode >> i & 0x1)
5926                         cnt++;
5927
5928         return cnt == 1 ? true : false;
5929 }
5930
5931 static int
5932 hns3_fec_set(struct rte_eth_dev *dev, uint32_t mode)
5933 {
5934 #define FEC_CAPA_NUM 2
5935         struct hns3_adapter *hns = dev->data->dev_private;
5936         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
5937         struct hns3_pf *pf = &hns->pf;
5938
5939         struct rte_eth_fec_capa fec_capa[FEC_CAPA_NUM];
5940         uint32_t cur_capa;
5941         uint32_t num = FEC_CAPA_NUM;
5942         int ret;
5943
5944         ret = hns3_fec_get_capability(dev, fec_capa, num);
5945         if (ret < 0)
5946                 return ret;
5947
5948         /* HNS3 PMD driver only support one bit set mode, e.g. 0x1, 0x4 */
5949         if (!is_fec_mode_one_bit_set(mode))
5950                 hns3_err(hw, "FEC mode(0x%x) not supported in HNS3 PMD,"
5951                              "FEC mode should be only one bit set", mode);
5952
5953         /*
5954          * Check whether the configured mode is within the FEC capability.
5955          * If not, the configured mode will not be supported.
5956          */
5957         cur_capa = get_current_speed_fec_cap(hw, fec_capa);
5958         if (!(cur_capa & mode)) {
5959                 hns3_err(hw, "unsupported FEC mode = 0x%x", mode);
5960                 return -EINVAL;
5961         }
5962
5963         ret = hns3_set_fec_hw(hw, mode);
5964         if (ret)
5965                 return ret;
5966
5967         pf->fec_mode = mode;
5968         return 0;
5969 }
5970
5971 static int
5972 hns3_restore_fec(struct hns3_hw *hw)
5973 {
5974         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
5975         struct hns3_pf *pf = &hns->pf;
5976         uint32_t mode = pf->fec_mode;
5977         int ret;
5978
5979         ret = hns3_set_fec_hw(hw, mode);
5980         if (ret)
5981                 hns3_err(hw, "restore fec mode(0x%x) failed, ret = %d",
5982                          mode, ret);
5983
5984         return ret;
5985 }
5986
5987 static int
5988 hns3_query_dev_fec_info(struct rte_eth_dev *dev)
5989 {
5990         struct hns3_adapter *hns = dev->data->dev_private;
5991         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
5992         struct hns3_pf *pf = &hns->pf;
5993         int ret;
5994
5995         ret = hns3_fec_get(dev, &pf->fec_mode);
5996         if (ret)
5997                 hns3_err(hw, "query device FEC info failed, ret = %d", ret);
5998
5999         return ret;
6000 }
6001
6002 static const struct eth_dev_ops hns3_eth_dev_ops = {
6003         .dev_configure      = hns3_dev_configure,
6004         .dev_start          = hns3_dev_start,
6005         .dev_stop           = hns3_dev_stop,
6006         .dev_close          = hns3_dev_close,
6007         .promiscuous_enable = hns3_dev_promiscuous_enable,
6008         .promiscuous_disable = hns3_dev_promiscuous_disable,
6009         .allmulticast_enable  = hns3_dev_allmulticast_enable,
6010         .allmulticast_disable = hns3_dev_allmulticast_disable,
6011         .mtu_set            = hns3_dev_mtu_set,
6012         .stats_get          = hns3_stats_get,
6013         .stats_reset        = hns3_stats_reset,
6014         .xstats_get         = hns3_dev_xstats_get,
6015         .xstats_get_names   = hns3_dev_xstats_get_names,
6016         .xstats_reset       = hns3_dev_xstats_reset,
6017         .xstats_get_by_id   = hns3_dev_xstats_get_by_id,
6018         .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
6019         .dev_infos_get          = hns3_dev_infos_get,
6020         .fw_version_get         = hns3_fw_version_get,
6021         .rx_queue_setup         = hns3_rx_queue_setup,
6022         .tx_queue_setup         = hns3_tx_queue_setup,
6023         .rx_queue_release       = hns3_dev_rx_queue_release,
6024         .tx_queue_release       = hns3_dev_tx_queue_release,
6025         .rx_queue_start         = hns3_dev_rx_queue_start,
6026         .rx_queue_stop          = hns3_dev_rx_queue_stop,
6027         .tx_queue_start         = hns3_dev_tx_queue_start,
6028         .tx_queue_stop          = hns3_dev_tx_queue_stop,
6029         .rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
6030         .rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
6031         .rxq_info_get           = hns3_rxq_info_get,
6032         .txq_info_get           = hns3_txq_info_get,
6033         .rx_burst_mode_get      = hns3_rx_burst_mode_get,
6034         .tx_burst_mode_get      = hns3_tx_burst_mode_get,
6035         .flow_ctrl_get          = hns3_flow_ctrl_get,
6036         .flow_ctrl_set          = hns3_flow_ctrl_set,
6037         .priority_flow_ctrl_set = hns3_priority_flow_ctrl_set,
6038         .mac_addr_add           = hns3_add_mac_addr,
6039         .mac_addr_remove        = hns3_remove_mac_addr,
6040         .mac_addr_set           = hns3_set_default_mac_addr,
6041         .set_mc_addr_list       = hns3_set_mc_mac_addr_list,
6042         .link_update            = hns3_dev_link_update,
6043         .rss_hash_update        = hns3_dev_rss_hash_update,
6044         .rss_hash_conf_get      = hns3_dev_rss_hash_conf_get,
6045         .reta_update            = hns3_dev_rss_reta_update,
6046         .reta_query             = hns3_dev_rss_reta_query,
6047         .filter_ctrl            = hns3_dev_filter_ctrl,
6048         .vlan_filter_set        = hns3_vlan_filter_set,
6049         .vlan_tpid_set          = hns3_vlan_tpid_set,
6050         .vlan_offload_set       = hns3_vlan_offload_set,
6051         .vlan_pvid_set          = hns3_vlan_pvid_set,
6052         .get_reg                = hns3_get_regs,
6053         .get_dcb_info           = hns3_get_dcb_info,
6054         .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
6055         .fec_get_capability     = hns3_fec_get_capability,
6056         .fec_get                = hns3_fec_get,
6057         .fec_set                = hns3_fec_set,
6058 };
6059
6060 static const struct hns3_reset_ops hns3_reset_ops = {
6061         .reset_service       = hns3_reset_service,
6062         .stop_service        = hns3_stop_service,
6063         .prepare_reset       = hns3_prepare_reset,
6064         .wait_hardware_ready = hns3_wait_hardware_ready,
6065         .reinit_dev          = hns3_reinit_dev,
6066         .restore_conf        = hns3_restore_conf,
6067         .start_service       = hns3_start_service,
6068 };
6069
6070 static int
6071 hns3_dev_init(struct rte_eth_dev *eth_dev)
6072 {
6073         struct hns3_adapter *hns = eth_dev->data->dev_private;
6074         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
6075         struct rte_ether_addr *eth_addr;
6076         struct hns3_hw *hw = &hns->hw;
6077         int ret;
6078
6079         PMD_INIT_FUNC_TRACE();
6080
6081         eth_dev->process_private = (struct hns3_process_private *)
6082             rte_zmalloc_socket("hns3_filter_list",
6083                                sizeof(struct hns3_process_private),
6084                                RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
6085         if (eth_dev->process_private == NULL) {
6086                 PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
6087                 return -ENOMEM;
6088         }
6089         /* initialize flow filter lists */
6090         hns3_filterlist_init(eth_dev);
6091
6092         hns3_set_rxtx_function(eth_dev);
6093         eth_dev->dev_ops = &hns3_eth_dev_ops;
6094         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
6095                 ret = hns3_mp_init_secondary();
6096                 if (ret) {
6097                         PMD_INIT_LOG(ERR, "Failed to init for secondary "
6098                                      "process, ret = %d", ret);
6099                         goto err_mp_init_secondary;
6100                 }
6101
6102                 hw->secondary_cnt++;
6103                 return 0;
6104         }
6105
6106         ret = hns3_mp_init_primary();
6107         if (ret) {
6108                 PMD_INIT_LOG(ERR,
6109                              "Failed to init for primary process, ret = %d",
6110                              ret);
6111                 goto err_mp_init_primary;
6112         }
6113
6114         hw->adapter_state = HNS3_NIC_UNINITIALIZED;
6115         hns->is_vf = false;
6116         hw->data = eth_dev->data;
6117
6118         /*
6119          * Set default max packet size according to the mtu
6120          * default vale in DPDK frame.
6121          */
6122         hns->pf.mps = hw->data->mtu + HNS3_ETH_OVERHEAD;
6123
6124         ret = hns3_reset_init(hw);
6125         if (ret)
6126                 goto err_init_reset;
6127         hw->reset.ops = &hns3_reset_ops;
6128
6129         ret = hns3_init_pf(eth_dev);
6130         if (ret) {
6131                 PMD_INIT_LOG(ERR, "Failed to init pf: %d", ret);
6132                 goto err_init_pf;
6133         }
6134
6135         /* Allocate memory for storing MAC addresses */
6136         eth_dev->data->mac_addrs = rte_zmalloc("hns3-mac",
6137                                                sizeof(struct rte_ether_addr) *
6138                                                HNS3_UC_MACADDR_NUM, 0);
6139         if (eth_dev->data->mac_addrs == NULL) {
6140                 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
6141                              "to store MAC addresses",
6142                              sizeof(struct rte_ether_addr) *
6143                              HNS3_UC_MACADDR_NUM);
6144                 ret = -ENOMEM;
6145                 goto err_rte_zmalloc;
6146         }
6147
6148         eth_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
6149         if (!rte_is_valid_assigned_ether_addr(eth_addr)) {
6150                 rte_eth_random_addr(hw->mac.mac_addr);
6151                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
6152                                 (struct rte_ether_addr *)hw->mac.mac_addr);
6153                 hns3_warn(hw, "default mac_addr from firmware is an invalid "
6154                           "unicast address, using random MAC address %s",
6155                           mac_str);
6156         }
6157         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
6158                             &eth_dev->data->mac_addrs[0]);
6159
6160         hw->adapter_state = HNS3_NIC_INITIALIZED;
6161
6162         if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_PENDING) {
6163                 hns3_err(hw, "Reschedule reset service after dev_init");
6164                 hns3_schedule_reset(hns);
6165         } else {
6166                 /* IMP will wait ready flag before reset */
6167                 hns3_notify_reset_ready(hw, false);
6168         }
6169
6170         hns3_info(hw, "hns3 dev initialization successful!");
6171         return 0;
6172
6173 err_rte_zmalloc:
6174         hns3_uninit_pf(eth_dev);
6175
6176 err_init_pf:
6177         rte_free(hw->reset.wait_data);
6178
6179 err_init_reset:
6180         hns3_mp_uninit_primary();
6181
6182 err_mp_init_primary:
6183 err_mp_init_secondary:
6184         eth_dev->dev_ops = NULL;
6185         eth_dev->rx_pkt_burst = NULL;
6186         eth_dev->tx_pkt_burst = NULL;
6187         eth_dev->tx_pkt_prepare = NULL;
6188         rte_free(eth_dev->process_private);
6189         eth_dev->process_private = NULL;
6190         return ret;
6191 }
6192
6193 static int
6194 hns3_dev_uninit(struct rte_eth_dev *eth_dev)
6195 {
6196         struct hns3_adapter *hns = eth_dev->data->dev_private;
6197         struct hns3_hw *hw = &hns->hw;
6198
6199         PMD_INIT_FUNC_TRACE();
6200
6201         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
6202                 return -EPERM;
6203
6204         eth_dev->dev_ops = NULL;
6205         eth_dev->rx_pkt_burst = NULL;
6206         eth_dev->tx_pkt_burst = NULL;
6207         eth_dev->tx_pkt_prepare = NULL;
6208         if (hw->adapter_state < HNS3_NIC_CLOSING)
6209                 hns3_dev_close(eth_dev);
6210
6211         hw->adapter_state = HNS3_NIC_REMOVED;
6212         return 0;
6213 }
6214
6215 static int
6216 eth_hns3_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
6217                    struct rte_pci_device *pci_dev)
6218 {
6219         return rte_eth_dev_pci_generic_probe(pci_dev,
6220                                              sizeof(struct hns3_adapter),
6221                                              hns3_dev_init);
6222 }
6223
6224 static int
6225 eth_hns3_pci_remove(struct rte_pci_device *pci_dev)
6226 {
6227         return rte_eth_dev_pci_generic_remove(pci_dev, hns3_dev_uninit);
6228 }
6229
6230 static const struct rte_pci_id pci_id_hns3_map[] = {
6231         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_GE) },
6232         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE) },
6233         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE_RDMA) },
6234         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_50GE_RDMA) },
6235         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_MACSEC) },
6236         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_200G_RDMA) },
6237         { .vendor_id = 0, /* sentinel */ },
6238 };
6239
6240 static struct rte_pci_driver rte_hns3_pmd = {
6241         .id_table = pci_id_hns3_map,
6242         .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
6243         .probe = eth_hns3_pci_probe,
6244         .remove = eth_hns3_pci_remove,
6245 };
6246
6247 RTE_PMD_REGISTER_PCI(net_hns3, rte_hns3_pmd);
6248 RTE_PMD_REGISTER_PCI_TABLE(net_hns3, pci_id_hns3_map);
6249 RTE_PMD_REGISTER_KMOD_DEP(net_hns3, "* igb_uio | vfio-pci");
6250 RTE_LOG_REGISTER(hns3_logtype_init, pmd.net.hns3.init, NOTICE);
6251 RTE_LOG_REGISTER(hns3_logtype_driver, pmd.net.hns3.driver, NOTICE);