net/hns3: fix link update when failed to get link info
[dpdk.git] / drivers / net / hns3 / hns3_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4
5 #include <rte_alarm.h>
6 #include <rte_bus_pci.h>
7 #include <ethdev_pci.h>
8 #include <rte_pci.h>
9 #include <rte_kvargs.h>
10
11 #include "hns3_ethdev.h"
12 #include "hns3_logs.h"
13 #include "hns3_rxtx.h"
14 #include "hns3_intr.h"
15 #include "hns3_regs.h"
16 #include "hns3_dcb.h"
17 #include "hns3_mp.h"
18
19 #define HNS3_DEFAULT_PORT_CONF_BURST_SIZE       32
20 #define HNS3_DEFAULT_PORT_CONF_QUEUES_NUM       1
21
22 #define HNS3_SERVICE_INTERVAL           1000000 /* us */
23 #define HNS3_SERVICE_QUICK_INTERVAL     10
24 #define HNS3_INVALID_PVID               0xFFFF
25
26 #define HNS3_FILTER_TYPE_VF             0
27 #define HNS3_FILTER_TYPE_PORT           1
28 #define HNS3_FILTER_FE_EGRESS_V1_B      BIT(0)
29 #define HNS3_FILTER_FE_NIC_INGRESS_B    BIT(0)
30 #define HNS3_FILTER_FE_NIC_EGRESS_B     BIT(1)
31 #define HNS3_FILTER_FE_ROCE_INGRESS_B   BIT(2)
32 #define HNS3_FILTER_FE_ROCE_EGRESS_B    BIT(3)
33 #define HNS3_FILTER_FE_EGRESS           (HNS3_FILTER_FE_NIC_EGRESS_B \
34                                         | HNS3_FILTER_FE_ROCE_EGRESS_B)
35 #define HNS3_FILTER_FE_INGRESS          (HNS3_FILTER_FE_NIC_INGRESS_B \
36                                         | HNS3_FILTER_FE_ROCE_INGRESS_B)
37
38 /* Reset related Registers */
39 #define HNS3_GLOBAL_RESET_BIT           0
40 #define HNS3_CORE_RESET_BIT             1
41 #define HNS3_IMP_RESET_BIT              2
42 #define HNS3_FUN_RST_ING_B              0
43
44 #define HNS3_VECTOR0_IMP_RESET_INT_B    1
45 #define HNS3_VECTOR0_IMP_CMDQ_ERR_B     4U
46 #define HNS3_VECTOR0_IMP_RD_POISON_B    5U
47 #define HNS3_VECTOR0_ALL_MSIX_ERR_B     6U
48
49 #define HNS3_RESET_WAIT_MS      100
50 #define HNS3_RESET_WAIT_CNT     200
51
52 /* FEC mode order defined in HNS3 hardware */
53 #define HNS3_HW_FEC_MODE_NOFEC  0
54 #define HNS3_HW_FEC_MODE_BASER  1
55 #define HNS3_HW_FEC_MODE_RS     2
56
57 enum hns3_evt_cause {
58         HNS3_VECTOR0_EVENT_RST,
59         HNS3_VECTOR0_EVENT_MBX,
60         HNS3_VECTOR0_EVENT_ERR,
61         HNS3_VECTOR0_EVENT_OTHER,
62 };
63
64 static const struct rte_eth_fec_capa speed_fec_capa_tbl[] = {
65         { ETH_SPEED_NUM_10G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
66                              RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
67                              RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
68
69         { ETH_SPEED_NUM_25G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
70                              RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
71                              RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
72                              RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
73
74         { ETH_SPEED_NUM_40G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
75                              RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
76                              RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
77
78         { ETH_SPEED_NUM_50G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
79                              RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
80                              RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
81                              RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
82
83         { ETH_SPEED_NUM_100G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
84                               RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
85                               RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
86
87         { ETH_SPEED_NUM_200G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
88                               RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
89                               RTE_ETH_FEC_MODE_CAPA_MASK(RS) }
90 };
91
92 static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns,
93                                                  uint64_t *levels);
94 static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
95 static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid,
96                                     int on);
97 static int hns3_update_link_info(struct rte_eth_dev *eth_dev);
98 static bool hns3_update_link_status(struct hns3_hw *hw);
99
100 static int hns3_add_mc_addr(struct hns3_hw *hw,
101                             struct rte_ether_addr *mac_addr);
102 static int hns3_remove_mc_addr(struct hns3_hw *hw,
103                             struct rte_ether_addr *mac_addr);
104 static int hns3_restore_fec(struct hns3_hw *hw);
105 static int hns3_query_dev_fec_info(struct hns3_hw *hw);
106 static int hns3_do_stop(struct hns3_adapter *hns);
107
108 void hns3_ether_format_addr(char *buf, uint16_t size,
109                             const struct rte_ether_addr *ether_addr)
110 {
111         snprintf(buf, size, "%02X:**:**:**:%02X:%02X",
112                 ether_addr->addr_bytes[0],
113                 ether_addr->addr_bytes[4],
114                 ether_addr->addr_bytes[5]);
115 }
116
117 static void
118 hns3_pf_disable_irq0(struct hns3_hw *hw)
119 {
120         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
121 }
122
123 static void
124 hns3_pf_enable_irq0(struct hns3_hw *hw)
125 {
126         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
127 }
128
129 static enum hns3_evt_cause
130 hns3_proc_imp_reset_event(struct hns3_adapter *hns, bool is_delay,
131                           uint32_t *vec_val)
132 {
133         struct hns3_hw *hw = &hns->hw;
134
135         __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
136         hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
137         *vec_val = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
138         if (!is_delay) {
139                 hw->reset.stats.imp_cnt++;
140                 hns3_warn(hw, "IMP reset detected, clear reset status");
141         } else {
142                 hns3_schedule_delayed_reset(hns);
143                 hns3_warn(hw, "IMP reset detected, don't clear reset status");
144         }
145
146         return HNS3_VECTOR0_EVENT_RST;
147 }
148
149 static enum hns3_evt_cause
150 hns3_proc_global_reset_event(struct hns3_adapter *hns, bool is_delay,
151                              uint32_t *vec_val)
152 {
153         struct hns3_hw *hw = &hns->hw;
154
155         __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
156         hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending);
157         *vec_val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
158         if (!is_delay) {
159                 hw->reset.stats.global_cnt++;
160                 hns3_warn(hw, "Global reset detected, clear reset status");
161         } else {
162                 hns3_schedule_delayed_reset(hns);
163                 hns3_warn(hw,
164                           "Global reset detected, don't clear reset status");
165         }
166
167         return HNS3_VECTOR0_EVENT_RST;
168 }
169
170 static enum hns3_evt_cause
171 hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
172 {
173         struct hns3_hw *hw = &hns->hw;
174         uint32_t vector0_int_stats;
175         uint32_t cmdq_src_val;
176         uint32_t hw_err_src_reg;
177         uint32_t val;
178         enum hns3_evt_cause ret;
179         bool is_delay;
180
181         /* fetch the events from their corresponding regs */
182         vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
183         cmdq_src_val = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
184         hw_err_src_reg = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
185
186         is_delay = clearval == NULL ? true : false;
187         /*
188          * Assumption: If by any chance reset and mailbox events are reported
189          * together then we will only process reset event and defer the
190          * processing of the mailbox events. Since, we would have not cleared
191          * RX CMDQ event this time we would receive again another interrupt
192          * from H/W just for the mailbox.
193          */
194         if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) { /* IMP */
195                 ret = hns3_proc_imp_reset_event(hns, is_delay, &val);
196                 goto out;
197         }
198
199         /* Global reset */
200         if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) {
201                 ret = hns3_proc_global_reset_event(hns, is_delay, &val);
202                 goto out;
203         }
204
205         /* check for vector0 msix event source */
206         if (vector0_int_stats & HNS3_VECTOR0_REG_MSIX_MASK ||
207             hw_err_src_reg & HNS3_RAS_REG_NFE_MASK) {
208                 val = vector0_int_stats | hw_err_src_reg;
209                 ret = HNS3_VECTOR0_EVENT_ERR;
210                 goto out;
211         }
212
213         /* check for vector0 mailbox(=CMDQ RX) event source */
214         if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_val) {
215                 cmdq_src_val &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
216                 val = cmdq_src_val;
217                 ret = HNS3_VECTOR0_EVENT_MBX;
218                 goto out;
219         }
220
221         val = vector0_int_stats;
222         ret = HNS3_VECTOR0_EVENT_OTHER;
223 out:
224
225         if (clearval)
226                 *clearval = val;
227         return ret;
228 }
229
230 static void
231 hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
232 {
233         if (event_type == HNS3_VECTOR0_EVENT_RST)
234                 hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr);
235         else if (event_type == HNS3_VECTOR0_EVENT_MBX)
236                 hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
237 }
238
239 static void
240 hns3_clear_all_event_cause(struct hns3_hw *hw)
241 {
242         uint32_t vector0_int_stats;
243         vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
244
245         if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats)
246                 hns3_warn(hw, "Probe during IMP reset interrupt");
247
248         if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats)
249                 hns3_warn(hw, "Probe during Global reset interrupt");
250
251         hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST,
252                                BIT(HNS3_VECTOR0_IMPRESET_INT_B) |
253                                BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) |
254                                BIT(HNS3_VECTOR0_CORERESET_INT_B));
255         hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0);
256 }
257
258 static void
259 hns3_handle_mac_tnl(struct hns3_hw *hw)
260 {
261         struct hns3_cmd_desc desc;
262         uint32_t status;
263         int ret;
264
265         /* query and clear mac tnl interruptions */
266         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_MAC_TNL_INT, true);
267         ret = hns3_cmd_send(hw, &desc, 1);
268         if (ret) {
269                 hns3_err(hw, "failed to query mac tnl int, ret = %d.", ret);
270                 return;
271         }
272
273         status = rte_le_to_cpu_32(desc.data[0]);
274         if (status) {
275                 hns3_warn(hw, "mac tnl int occurs, status = 0x%x.", status);
276                 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_MAC_TNL_INT,
277                                           false);
278                 desc.data[0] = rte_cpu_to_le_32(HNS3_MAC_TNL_INT_CLR);
279                 ret = hns3_cmd_send(hw, &desc, 1);
280                 if (ret)
281                         hns3_err(hw, "failed to clear mac tnl int, ret = %d.",
282                                  ret);
283         }
284 }
285
286 static void
287 hns3_interrupt_handler(void *param)
288 {
289         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
290         struct hns3_adapter *hns = dev->data->dev_private;
291         struct hns3_hw *hw = &hns->hw;
292         enum hns3_evt_cause event_cause;
293         uint32_t clearval = 0;
294         uint32_t vector0_int;
295         uint32_t ras_int;
296         uint32_t cmdq_int;
297
298         /* Disable interrupt */
299         hns3_pf_disable_irq0(hw);
300
301         event_cause = hns3_check_event_cause(hns, &clearval);
302         vector0_int = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
303         ras_int = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
304         cmdq_int = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
305         /* vector 0 interrupt is shared with reset and mailbox source events. */
306         if (event_cause == HNS3_VECTOR0_EVENT_ERR) {
307                 hns3_warn(hw, "received interrupt: vector0_int_stat:0x%x "
308                           "ras_int_stat:0x%x cmdq_int_stat:0x%x",
309                           vector0_int, ras_int, cmdq_int);
310                 hns3_handle_msix_error(hns, &hw->reset.request);
311                 hns3_handle_ras_error(hns, &hw->reset.request);
312                 hns3_handle_mac_tnl(hw);
313                 hns3_schedule_reset(hns);
314         } else if (event_cause == HNS3_VECTOR0_EVENT_RST) {
315                 hns3_warn(hw, "received reset interrupt");
316                 hns3_schedule_reset(hns);
317         } else if (event_cause == HNS3_VECTOR0_EVENT_MBX) {
318                 hns3_dev_handle_mbx_msg(hw);
319         } else {
320                 hns3_warn(hw, "received unknown event: vector0_int_stat:0x%x "
321                           "ras_int_stat:0x%x cmdq_int_stat:0x%x",
322                           vector0_int, ras_int, cmdq_int);
323         }
324
325         hns3_clear_event_cause(hw, event_cause, clearval);
326         /* Enable interrupt if it is not cause by reset */
327         hns3_pf_enable_irq0(hw);
328 }
329
330 static int
331 hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on)
332 {
333 #define HNS3_VLAN_ID_OFFSET_STEP        160
334 #define HNS3_VLAN_BYTE_SIZE             8
335         struct hns3_vlan_filter_pf_cfg_cmd *req;
336         struct hns3_hw *hw = &hns->hw;
337         uint8_t vlan_offset_byte_val;
338         struct hns3_cmd_desc desc;
339         uint8_t vlan_offset_byte;
340         uint8_t vlan_offset_base;
341         int ret;
342
343         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false);
344
345         vlan_offset_base = vlan_id / HNS3_VLAN_ID_OFFSET_STEP;
346         vlan_offset_byte = (vlan_id % HNS3_VLAN_ID_OFFSET_STEP) /
347                            HNS3_VLAN_BYTE_SIZE;
348         vlan_offset_byte_val = 1 << (vlan_id % HNS3_VLAN_BYTE_SIZE);
349
350         req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data;
351         req->vlan_offset = vlan_offset_base;
352         req->vlan_cfg = on ? 0 : 1;
353         req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
354
355         ret = hns3_cmd_send(hw, &desc, 1);
356         if (ret)
357                 hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d",
358                          vlan_id, ret);
359
360         return ret;
361 }
362
363 static void
364 hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id)
365 {
366         struct hns3_user_vlan_table *vlan_entry;
367         struct hns3_pf *pf = &hns->pf;
368
369         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
370                 if (vlan_entry->vlan_id == vlan_id) {
371                         if (vlan_entry->hd_tbl_status)
372                                 hns3_set_port_vlan_filter(hns, vlan_id, 0);
373                         LIST_REMOVE(vlan_entry, next);
374                         rte_free(vlan_entry);
375                         break;
376                 }
377         }
378 }
379
380 static void
381 hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id,
382                         bool writen_to_tbl)
383 {
384         struct hns3_user_vlan_table *vlan_entry;
385         struct hns3_hw *hw = &hns->hw;
386         struct hns3_pf *pf = &hns->pf;
387
388         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
389                 if (vlan_entry->vlan_id == vlan_id)
390                         return;
391         }
392
393         vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0);
394         if (vlan_entry == NULL) {
395                 hns3_err(hw, "Failed to malloc hns3 vlan table");
396                 return;
397         }
398
399         vlan_entry->hd_tbl_status = writen_to_tbl;
400         vlan_entry->vlan_id = vlan_id;
401
402         LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next);
403 }
404
405 static int
406 hns3_restore_vlan_table(struct hns3_adapter *hns)
407 {
408         struct hns3_user_vlan_table *vlan_entry;
409         struct hns3_hw *hw = &hns->hw;
410         struct hns3_pf *pf = &hns->pf;
411         uint16_t vlan_id;
412         int ret = 0;
413
414         if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE)
415                 return hns3_vlan_pvid_configure(hns,
416                                                 hw->port_base_vlan_cfg.pvid, 1);
417
418         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
419                 if (vlan_entry->hd_tbl_status) {
420                         vlan_id = vlan_entry->vlan_id;
421                         ret = hns3_set_port_vlan_filter(hns, vlan_id, 1);
422                         if (ret)
423                                 break;
424                 }
425         }
426
427         return ret;
428 }
429
430 static int
431 hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
432 {
433         struct hns3_hw *hw = &hns->hw;
434         bool writen_to_tbl = false;
435         int ret = 0;
436
437         /*
438          * When vlan filter is enabled, hardware regards packets without vlan
439          * as packets with vlan 0. So, to receive packets without vlan, vlan id
440          * 0 is not allowed to be removed by rte_eth_dev_vlan_filter.
441          */
442         if (on == 0 && vlan_id == 0)
443                 return 0;
444
445         /*
446          * When port base vlan enabled, we use port base vlan as the vlan
447          * filter condition. In this case, we don't update vlan filter table
448          * when user add new vlan or remove exist vlan, just update the
449          * vlan list. The vlan id in vlan list will be writen in vlan filter
450          * table until port base vlan disabled
451          */
452         if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
453                 ret = hns3_set_port_vlan_filter(hns, vlan_id, on);
454                 writen_to_tbl = true;
455         }
456
457         if (ret == 0) {
458                 if (on)
459                         hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl);
460                 else
461                         hns3_rm_dev_vlan_table(hns, vlan_id);
462         }
463         return ret;
464 }
465
466 static int
467 hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
468 {
469         struct hns3_adapter *hns = dev->data->dev_private;
470         struct hns3_hw *hw = &hns->hw;
471         int ret;
472
473         rte_spinlock_lock(&hw->lock);
474         ret = hns3_vlan_filter_configure(hns, vlan_id, on);
475         rte_spinlock_unlock(&hw->lock);
476         return ret;
477 }
478
479 static int
480 hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type,
481                          uint16_t tpid)
482 {
483         struct hns3_rx_vlan_type_cfg_cmd *rx_req;
484         struct hns3_tx_vlan_type_cfg_cmd *tx_req;
485         struct hns3_hw *hw = &hns->hw;
486         struct hns3_cmd_desc desc;
487         int ret;
488
489         if ((vlan_type != ETH_VLAN_TYPE_INNER &&
490              vlan_type != ETH_VLAN_TYPE_OUTER)) {
491                 hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type);
492                 return -EINVAL;
493         }
494
495         if (tpid != RTE_ETHER_TYPE_VLAN) {
496                 hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type);
497                 return -EINVAL;
498         }
499
500         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false);
501         rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data;
502
503         if (vlan_type == ETH_VLAN_TYPE_OUTER) {
504                 rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
505                 rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
506         } else if (vlan_type == ETH_VLAN_TYPE_INNER) {
507                 rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
508                 rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
509                 rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid);
510                 rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid);
511         }
512
513         ret = hns3_cmd_send(hw, &desc, 1);
514         if (ret) {
515                 hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d",
516                          ret);
517                 return ret;
518         }
519
520         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false);
521
522         tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data;
523         tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid);
524         tx_req->in_vlan_type = rte_cpu_to_le_16(tpid);
525
526         ret = hns3_cmd_send(hw, &desc, 1);
527         if (ret)
528                 hns3_err(hw, "Send txvlan protocol type command fail, ret =%d",
529                          ret);
530         return ret;
531 }
532
533 static int
534 hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
535                    uint16_t tpid)
536 {
537         struct hns3_adapter *hns = dev->data->dev_private;
538         struct hns3_hw *hw = &hns->hw;
539         int ret;
540
541         rte_spinlock_lock(&hw->lock);
542         ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid);
543         rte_spinlock_unlock(&hw->lock);
544         return ret;
545 }
546
547 static int
548 hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns,
549                              struct hns3_rx_vtag_cfg *vcfg)
550 {
551         struct hns3_vport_vtag_rx_cfg_cmd *req;
552         struct hns3_hw *hw = &hns->hw;
553         struct hns3_cmd_desc desc;
554         uint16_t vport_id;
555         uint8_t bitmap;
556         int ret;
557
558         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false);
559
560         req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data;
561         hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B,
562                      vcfg->strip_tag1_en ? 1 : 0);
563         hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B,
564                      vcfg->strip_tag2_en ? 1 : 0);
565         hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B,
566                      vcfg->vlan1_vlan_prionly ? 1 : 0);
567         hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B,
568                      vcfg->vlan2_vlan_prionly ? 1 : 0);
569
570         /* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
571         hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG1_EN_B,
572                      vcfg->strip_tag1_discard_en ? 1 : 0);
573         hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG2_EN_B,
574                      vcfg->strip_tag2_discard_en ? 1 : 0);
575         /*
576          * In current version VF is not supported when PF is driven by DPDK
577          * driver, just need to configure parameters for PF vport.
578          */
579         vport_id = HNS3_PF_FUNC_ID;
580         req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
581         bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
582         req->vf_bitmap[req->vf_offset] = bitmap;
583
584         ret = hns3_cmd_send(hw, &desc, 1);
585         if (ret)
586                 hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret);
587         return ret;
588 }
589
590 static void
591 hns3_update_rx_offload_cfg(struct hns3_adapter *hns,
592                            struct hns3_rx_vtag_cfg *vcfg)
593 {
594         struct hns3_pf *pf = &hns->pf;
595         memcpy(&pf->vtag_config.rx_vcfg, vcfg, sizeof(pf->vtag_config.rx_vcfg));
596 }
597
598 static void
599 hns3_update_tx_offload_cfg(struct hns3_adapter *hns,
600                            struct hns3_tx_vtag_cfg *vcfg)
601 {
602         struct hns3_pf *pf = &hns->pf;
603         memcpy(&pf->vtag_config.tx_vcfg, vcfg, sizeof(pf->vtag_config.tx_vcfg));
604 }
605
606 static int
607 hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable)
608 {
609         struct hns3_rx_vtag_cfg rxvlan_cfg;
610         struct hns3_hw *hw = &hns->hw;
611         int ret;
612
613         if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
614                 rxvlan_cfg.strip_tag1_en = false;
615                 rxvlan_cfg.strip_tag2_en = enable;
616                 rxvlan_cfg.strip_tag2_discard_en = false;
617         } else {
618                 rxvlan_cfg.strip_tag1_en = enable;
619                 rxvlan_cfg.strip_tag2_en = true;
620                 rxvlan_cfg.strip_tag2_discard_en = true;
621         }
622
623         rxvlan_cfg.strip_tag1_discard_en = false;
624         rxvlan_cfg.vlan1_vlan_prionly = false;
625         rxvlan_cfg.vlan2_vlan_prionly = false;
626         rxvlan_cfg.rx_vlan_offload_en = enable;
627
628         ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg);
629         if (ret) {
630                 hns3_err(hw, "enable strip rx vtag failed, ret =%d", ret);
631                 return ret;
632         }
633
634         hns3_update_rx_offload_cfg(hns, &rxvlan_cfg);
635
636         return ret;
637 }
638
639 static int
640 hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type,
641                           uint8_t fe_type, bool filter_en, uint8_t vf_id)
642 {
643         struct hns3_vlan_filter_ctrl_cmd *req;
644         struct hns3_cmd_desc desc;
645         int ret;
646
647         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false);
648
649         req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data;
650         req->vlan_type = vlan_type;
651         req->vlan_fe = filter_en ? fe_type : 0;
652         req->vf_id = vf_id;
653
654         ret = hns3_cmd_send(hw, &desc, 1);
655         if (ret)
656                 hns3_err(hw, "set vlan filter fail, ret =%d", ret);
657
658         return ret;
659 }
660
661 static int
662 hns3_vlan_filter_init(struct hns3_adapter *hns)
663 {
664         struct hns3_hw *hw = &hns->hw;
665         int ret;
666
667         ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF,
668                                         HNS3_FILTER_FE_EGRESS, false,
669                                         HNS3_PF_FUNC_ID);
670         if (ret) {
671                 hns3_err(hw, "failed to init vf vlan filter, ret = %d", ret);
672                 return ret;
673         }
674
675         ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
676                                         HNS3_FILTER_FE_INGRESS, false,
677                                         HNS3_PF_FUNC_ID);
678         if (ret)
679                 hns3_err(hw, "failed to init port vlan filter, ret = %d", ret);
680
681         return ret;
682 }
683
684 static int
685 hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable)
686 {
687         struct hns3_hw *hw = &hns->hw;
688         int ret;
689
690         ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
691                                         HNS3_FILTER_FE_INGRESS, enable,
692                                         HNS3_PF_FUNC_ID);
693         if (ret)
694                 hns3_err(hw, "failed to %s port vlan filter, ret = %d",
695                          enable ? "enable" : "disable", ret);
696
697         return ret;
698 }
699
700 static int
701 hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask)
702 {
703         struct hns3_adapter *hns = dev->data->dev_private;
704         struct hns3_hw *hw = &hns->hw;
705         struct rte_eth_rxmode *rxmode;
706         unsigned int tmp_mask;
707         bool enable;
708         int ret = 0;
709
710         rte_spinlock_lock(&hw->lock);
711         rxmode = &dev->data->dev_conf.rxmode;
712         tmp_mask = (unsigned int)mask;
713         if (tmp_mask & ETH_VLAN_FILTER_MASK) {
714                 /* ignore vlan filter configuration during promiscuous mode */
715                 if (!dev->data->promiscuous) {
716                         /* Enable or disable VLAN filter */
717                         enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER ?
718                                  true : false;
719
720                         ret = hns3_enable_vlan_filter(hns, enable);
721                         if (ret) {
722                                 rte_spinlock_unlock(&hw->lock);
723                                 hns3_err(hw, "failed to %s rx filter, ret = %d",
724                                          enable ? "enable" : "disable", ret);
725                                 return ret;
726                         }
727                 }
728         }
729
730         if (tmp_mask & ETH_VLAN_STRIP_MASK) {
731                 /* Enable or disable VLAN stripping */
732                 enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP ?
733                     true : false;
734
735                 ret = hns3_en_hw_strip_rxvtag(hns, enable);
736                 if (ret) {
737                         rte_spinlock_unlock(&hw->lock);
738                         hns3_err(hw, "failed to %s rx strip, ret = %d",
739                                  enable ? "enable" : "disable", ret);
740                         return ret;
741                 }
742         }
743
744         rte_spinlock_unlock(&hw->lock);
745
746         return ret;
747 }
748
749 static int
750 hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns,
751                              struct hns3_tx_vtag_cfg *vcfg)
752 {
753         struct hns3_vport_vtag_tx_cfg_cmd *req;
754         struct hns3_cmd_desc desc;
755         struct hns3_hw *hw = &hns->hw;
756         uint16_t vport_id;
757         uint8_t bitmap;
758         int ret;
759
760         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false);
761
762         req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data;
763         req->def_vlan_tag1 = vcfg->default_tag1;
764         req->def_vlan_tag2 = vcfg->default_tag2;
765         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B,
766                      vcfg->accept_tag1 ? 1 : 0);
767         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B,
768                      vcfg->accept_untag1 ? 1 : 0);
769         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B,
770                      vcfg->accept_tag2 ? 1 : 0);
771         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B,
772                      vcfg->accept_untag2 ? 1 : 0);
773         hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B,
774                      vcfg->insert_tag1_en ? 1 : 0);
775         hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B,
776                      vcfg->insert_tag2_en ? 1 : 0);
777         hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0);
778
779         /* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
780         hns3_set_bit(req->vport_vlan_cfg, HNS3_TAG_SHIFT_MODE_EN_B,
781                      vcfg->tag_shift_mode_en ? 1 : 0);
782
783         /*
784          * In current version VF is not supported when PF is driven by DPDK
785          * driver, just need to configure parameters for PF vport.
786          */
787         vport_id = HNS3_PF_FUNC_ID;
788         req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
789         bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
790         req->vf_bitmap[req->vf_offset] = bitmap;
791
792         ret = hns3_cmd_send(hw, &desc, 1);
793         if (ret)
794                 hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret);
795
796         return ret;
797 }
798
799 static int
800 hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state,
801                      uint16_t pvid)
802 {
803         struct hns3_hw *hw = &hns->hw;
804         struct hns3_tx_vtag_cfg txvlan_cfg;
805         int ret;
806
807         if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) {
808                 txvlan_cfg.accept_tag1 = true;
809                 txvlan_cfg.insert_tag1_en = false;
810                 txvlan_cfg.default_tag1 = 0;
811         } else {
812                 txvlan_cfg.accept_tag1 =
813                         hw->vlan_mode == HNS3_HW_SHIFT_AND_DISCARD_MODE;
814                 txvlan_cfg.insert_tag1_en = true;
815                 txvlan_cfg.default_tag1 = pvid;
816         }
817
818         txvlan_cfg.accept_untag1 = true;
819         txvlan_cfg.accept_tag2 = true;
820         txvlan_cfg.accept_untag2 = true;
821         txvlan_cfg.insert_tag2_en = false;
822         txvlan_cfg.default_tag2 = 0;
823         txvlan_cfg.tag_shift_mode_en = true;
824
825         ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg);
826         if (ret) {
827                 hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid,
828                          ret);
829                 return ret;
830         }
831
832         hns3_update_tx_offload_cfg(hns, &txvlan_cfg);
833         return ret;
834 }
835
836
837 static void
838 hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list)
839 {
840         struct hns3_user_vlan_table *vlan_entry;
841         struct hns3_pf *pf = &hns->pf;
842
843         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
844                 if (vlan_entry->hd_tbl_status) {
845                         hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0);
846                         vlan_entry->hd_tbl_status = false;
847                 }
848         }
849
850         if (is_del_list) {
851                 vlan_entry = LIST_FIRST(&pf->vlan_list);
852                 while (vlan_entry) {
853                         LIST_REMOVE(vlan_entry, next);
854                         rte_free(vlan_entry);
855                         vlan_entry = LIST_FIRST(&pf->vlan_list);
856                 }
857         }
858 }
859
860 static void
861 hns3_add_all_vlan_table(struct hns3_adapter *hns)
862 {
863         struct hns3_user_vlan_table *vlan_entry;
864         struct hns3_pf *pf = &hns->pf;
865
866         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
867                 if (!vlan_entry->hd_tbl_status) {
868                         hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1);
869                         vlan_entry->hd_tbl_status = true;
870                 }
871         }
872 }
873
874 static void
875 hns3_remove_all_vlan_table(struct hns3_adapter *hns)
876 {
877         struct hns3_hw *hw = &hns->hw;
878         int ret;
879
880         hns3_rm_all_vlan_table(hns, true);
881         if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID) {
882                 ret = hns3_set_port_vlan_filter(hns,
883                                                 hw->port_base_vlan_cfg.pvid, 0);
884                 if (ret) {
885                         hns3_err(hw, "Failed to remove all vlan table, ret =%d",
886                                  ret);
887                         return;
888                 }
889         }
890 }
891
892 static int
893 hns3_update_vlan_filter_entries(struct hns3_adapter *hns,
894                         uint16_t port_base_vlan_state, uint16_t new_pvid)
895 {
896         struct hns3_hw *hw = &hns->hw;
897         uint16_t old_pvid;
898         int ret;
899
900         if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) {
901                 old_pvid = hw->port_base_vlan_cfg.pvid;
902                 if (old_pvid != HNS3_INVALID_PVID) {
903                         ret = hns3_set_port_vlan_filter(hns, old_pvid, 0);
904                         if (ret) {
905                                 hns3_err(hw, "failed to remove old pvid %u, "
906                                                 "ret = %d", old_pvid, ret);
907                                 return ret;
908                         }
909                 }
910
911                 hns3_rm_all_vlan_table(hns, false);
912                 ret = hns3_set_port_vlan_filter(hns, new_pvid, 1);
913                 if (ret) {
914                         hns3_err(hw, "failed to add new pvid %u, ret = %d",
915                                         new_pvid, ret);
916                         return ret;
917                 }
918         } else {
919                 ret = hns3_set_port_vlan_filter(hns, new_pvid, 0);
920                 if (ret) {
921                         hns3_err(hw, "failed to remove pvid %u, ret = %d",
922                                         new_pvid, ret);
923                         return ret;
924                 }
925
926                 hns3_add_all_vlan_table(hns);
927         }
928         return 0;
929 }
930
931 static int
932 hns3_en_pvid_strip(struct hns3_adapter *hns, int on)
933 {
934         struct hns3_rx_vtag_cfg *old_cfg = &hns->pf.vtag_config.rx_vcfg;
935         struct hns3_rx_vtag_cfg rx_vlan_cfg;
936         bool rx_strip_en;
937         int ret;
938
939         rx_strip_en = old_cfg->rx_vlan_offload_en;
940         if (on) {
941                 rx_vlan_cfg.strip_tag1_en = rx_strip_en;
942                 rx_vlan_cfg.strip_tag2_en = true;
943                 rx_vlan_cfg.strip_tag2_discard_en = true;
944         } else {
945                 rx_vlan_cfg.strip_tag1_en = false;
946                 rx_vlan_cfg.strip_tag2_en = rx_strip_en;
947                 rx_vlan_cfg.strip_tag2_discard_en = false;
948         }
949         rx_vlan_cfg.strip_tag1_discard_en = false;
950         rx_vlan_cfg.vlan1_vlan_prionly = false;
951         rx_vlan_cfg.vlan2_vlan_prionly = false;
952         rx_vlan_cfg.rx_vlan_offload_en = old_cfg->rx_vlan_offload_en;
953
954         ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg);
955         if (ret)
956                 return ret;
957
958         hns3_update_rx_offload_cfg(hns, &rx_vlan_cfg);
959         return ret;
960 }
961
962 static int
963 hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on)
964 {
965         struct hns3_hw *hw = &hns->hw;
966         uint16_t port_base_vlan_state;
967         int ret;
968
969         if (on == 0 && pvid != hw->port_base_vlan_cfg.pvid) {
970                 if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID)
971                         hns3_warn(hw, "Invalid operation! As current pvid set "
972                                   "is %u, disable pvid %u is invalid",
973                                   hw->port_base_vlan_cfg.pvid, pvid);
974                 return 0;
975         }
976
977         port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE :
978                                     HNS3_PORT_BASE_VLAN_DISABLE;
979         ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid);
980         if (ret) {
981                 hns3_err(hw, "failed to config tx vlan for pvid, ret = %d",
982                          ret);
983                 return ret;
984         }
985
986         ret = hns3_en_pvid_strip(hns, on);
987         if (ret) {
988                 hns3_err(hw, "failed to config rx vlan strip for pvid, "
989                          "ret = %d", ret);
990                 return ret;
991         }
992
993         if (pvid == HNS3_INVALID_PVID)
994                 goto out;
995         ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid);
996         if (ret) {
997                 hns3_err(hw, "failed to update vlan filter entries, ret = %d",
998                          ret);
999                 return ret;
1000         }
1001
1002 out:
1003         hw->port_base_vlan_cfg.state = port_base_vlan_state;
1004         hw->port_base_vlan_cfg.pvid = on ? pvid : HNS3_INVALID_PVID;
1005         return ret;
1006 }
1007
1008 static int
1009 hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
1010 {
1011         struct hns3_adapter *hns = dev->data->dev_private;
1012         struct hns3_hw *hw = &hns->hw;
1013         bool pvid_en_state_change;
1014         uint16_t pvid_state;
1015         int ret;
1016
1017         if (pvid > RTE_ETHER_MAX_VLAN_ID) {
1018                 hns3_err(hw, "Invalid vlan_id = %u > %d", pvid,
1019                          RTE_ETHER_MAX_VLAN_ID);
1020                 return -EINVAL;
1021         }
1022
1023         /*
1024          * If PVID configuration state change, should refresh the PVID
1025          * configuration state in struct hns3_tx_queue/hns3_rx_queue.
1026          */
1027         pvid_state = hw->port_base_vlan_cfg.state;
1028         if ((on && pvid_state == HNS3_PORT_BASE_VLAN_ENABLE) ||
1029             (!on && pvid_state == HNS3_PORT_BASE_VLAN_DISABLE))
1030                 pvid_en_state_change = false;
1031         else
1032                 pvid_en_state_change = true;
1033
1034         rte_spinlock_lock(&hw->lock);
1035         ret = hns3_vlan_pvid_configure(hns, pvid, on);
1036         rte_spinlock_unlock(&hw->lock);
1037         if (ret)
1038                 return ret;
1039         /*
1040          * Only in HNS3_SW_SHIFT_AND_MODE the PVID related operation in Tx/Rx
1041          * need be processed by PMD driver.
1042          */
1043         if (pvid_en_state_change &&
1044             hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
1045                 hns3_update_all_queues_pvid_proc_en(hw);
1046
1047         return 0;
1048 }
1049
1050 static int
1051 hns3_default_vlan_config(struct hns3_adapter *hns)
1052 {
1053         struct hns3_hw *hw = &hns->hw;
1054         int ret;
1055
1056         /*
1057          * When vlan filter is enabled, hardware regards packets without vlan
1058          * as packets with vlan 0. Therefore, if vlan 0 is not in the vlan
1059          * table, packets without vlan won't be received. So, add vlan 0 as
1060          * the default vlan.
1061          */
1062         ret = hns3_vlan_filter_configure(hns, 0, 1);
1063         if (ret)
1064                 hns3_err(hw, "default vlan 0 config failed, ret =%d", ret);
1065         return ret;
1066 }
1067
1068 static int
1069 hns3_init_vlan_config(struct hns3_adapter *hns)
1070 {
1071         struct hns3_hw *hw = &hns->hw;
1072         int ret;
1073
1074         /*
1075          * This function can be called in the initialization and reset process,
1076          * when in reset process, it means that hardware had been reseted
1077          * successfully and we need to restore the hardware configuration to
1078          * ensure that the hardware configuration remains unchanged before and
1079          * after reset.
1080          */
1081         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1082                 hw->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE;
1083                 hw->port_base_vlan_cfg.pvid = HNS3_INVALID_PVID;
1084         }
1085
1086         ret = hns3_vlan_filter_init(hns);
1087         if (ret) {
1088                 hns3_err(hw, "vlan init fail in pf, ret =%d", ret);
1089                 return ret;
1090         }
1091
1092         ret = hns3_vlan_tpid_configure(hns, ETH_VLAN_TYPE_INNER,
1093                                        RTE_ETHER_TYPE_VLAN);
1094         if (ret) {
1095                 hns3_err(hw, "tpid set fail in pf, ret =%d", ret);
1096                 return ret;
1097         }
1098
1099         /*
1100          * When in the reinit dev stage of the reset process, the following
1101          * vlan-related configurations may differ from those at initialization,
1102          * we will restore configurations to hardware in hns3_restore_vlan_table
1103          * and hns3_restore_vlan_conf later.
1104          */
1105         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1106                 ret = hns3_vlan_pvid_configure(hns, HNS3_INVALID_PVID, 0);
1107                 if (ret) {
1108                         hns3_err(hw, "pvid set fail in pf, ret =%d", ret);
1109                         return ret;
1110                 }
1111
1112                 ret = hns3_en_hw_strip_rxvtag(hns, false);
1113                 if (ret) {
1114                         hns3_err(hw, "rx strip configure fail in pf, ret =%d",
1115                                  ret);
1116                         return ret;
1117                 }
1118         }
1119
1120         return hns3_default_vlan_config(hns);
1121 }
1122
1123 static int
1124 hns3_restore_vlan_conf(struct hns3_adapter *hns)
1125 {
1126         struct hns3_pf *pf = &hns->pf;
1127         struct hns3_hw *hw = &hns->hw;
1128         uint64_t offloads;
1129         bool enable;
1130         int ret;
1131
1132         if (!hw->data->promiscuous) {
1133                 /* restore vlan filter states */
1134                 offloads = hw->data->dev_conf.rxmode.offloads;
1135                 enable = offloads & DEV_RX_OFFLOAD_VLAN_FILTER ? true : false;
1136                 ret = hns3_enable_vlan_filter(hns, enable);
1137                 if (ret) {
1138                         hns3_err(hw, "failed to restore vlan rx filter conf, "
1139                                  "ret = %d", ret);
1140                         return ret;
1141                 }
1142         }
1143
1144         ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg);
1145         if (ret) {
1146                 hns3_err(hw, "failed to restore vlan rx conf, ret = %d", ret);
1147                 return ret;
1148         }
1149
1150         ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg);
1151         if (ret)
1152                 hns3_err(hw, "failed to restore vlan tx conf, ret = %d", ret);
1153
1154         return ret;
1155 }
1156
1157 static int
1158 hns3_dev_configure_vlan(struct rte_eth_dev *dev)
1159 {
1160         struct hns3_adapter *hns = dev->data->dev_private;
1161         struct rte_eth_dev_data *data = dev->data;
1162         struct rte_eth_txmode *txmode;
1163         struct hns3_hw *hw = &hns->hw;
1164         int mask;
1165         int ret;
1166
1167         txmode = &data->dev_conf.txmode;
1168         if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged)
1169                 hns3_warn(hw,
1170                           "hw_vlan_reject_tagged or hw_vlan_reject_untagged "
1171                           "configuration is not supported! Ignore these two "
1172                           "parameters: hw_vlan_reject_tagged(%u), "
1173                           "hw_vlan_reject_untagged(%u)",
1174                           txmode->hw_vlan_reject_tagged,
1175                           txmode->hw_vlan_reject_untagged);
1176
1177         /* Apply vlan offload setting */
1178         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK;
1179         ret = hns3_vlan_offload_set(dev, mask);
1180         if (ret) {
1181                 hns3_err(hw, "dev config rx vlan offload failed, ret = %d",
1182                          ret);
1183                 return ret;
1184         }
1185
1186         /*
1187          * If pvid config is not set in rte_eth_conf, driver needn't to set
1188          * VLAN pvid related configuration to hardware.
1189          */
1190         if (txmode->pvid == 0 && txmode->hw_vlan_insert_pvid == 0)
1191                 return 0;
1192
1193         /* Apply pvid setting */
1194         ret = hns3_vlan_pvid_set(dev, txmode->pvid,
1195                                  txmode->hw_vlan_insert_pvid);
1196         if (ret)
1197                 hns3_err(hw, "dev config vlan pvid(%u) failed, ret = %d",
1198                          txmode->pvid, ret);
1199
1200         return ret;
1201 }
1202
1203 static int
1204 hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min,
1205                 unsigned int tso_mss_max)
1206 {
1207         struct hns3_cfg_tso_status_cmd *req;
1208         struct hns3_cmd_desc desc;
1209         uint16_t tso_mss;
1210
1211         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false);
1212
1213         req = (struct hns3_cfg_tso_status_cmd *)desc.data;
1214
1215         tso_mss = 0;
1216         hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1217                        tso_mss_min);
1218         req->tso_mss_min = rte_cpu_to_le_16(tso_mss);
1219
1220         tso_mss = 0;
1221         hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1222                        tso_mss_max);
1223         req->tso_mss_max = rte_cpu_to_le_16(tso_mss);
1224
1225         return hns3_cmd_send(hw, &desc, 1);
1226 }
1227
1228 static int
1229 hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size,
1230                    uint16_t *allocated_size, bool is_alloc)
1231 {
1232         struct hns3_umv_spc_alc_cmd *req;
1233         struct hns3_cmd_desc desc;
1234         int ret;
1235
1236         req = (struct hns3_umv_spc_alc_cmd *)desc.data;
1237         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false);
1238         hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1);
1239         req->space_size = rte_cpu_to_le_32(space_size);
1240
1241         ret = hns3_cmd_send(hw, &desc, 1);
1242         if (ret) {
1243                 PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d",
1244                              is_alloc ? "allocate" : "free", ret);
1245                 return ret;
1246         }
1247
1248         if (is_alloc && allocated_size)
1249                 *allocated_size = rte_le_to_cpu_32(desc.data[1]);
1250
1251         return 0;
1252 }
1253
1254 static int
1255 hns3_init_umv_space(struct hns3_hw *hw)
1256 {
1257         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1258         struct hns3_pf *pf = &hns->pf;
1259         uint16_t allocated_size = 0;
1260         int ret;
1261
1262         ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size,
1263                                  true);
1264         if (ret)
1265                 return ret;
1266
1267         if (allocated_size < pf->wanted_umv_size)
1268                 PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u",
1269                              pf->wanted_umv_size, allocated_size);
1270
1271         pf->max_umv_size = (!!allocated_size) ? allocated_size :
1272                                                 pf->wanted_umv_size;
1273         pf->used_umv_size = 0;
1274         return 0;
1275 }
1276
1277 static int
1278 hns3_uninit_umv_space(struct hns3_hw *hw)
1279 {
1280         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1281         struct hns3_pf *pf = &hns->pf;
1282         int ret;
1283
1284         if (pf->max_umv_size == 0)
1285                 return 0;
1286
1287         ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false);
1288         if (ret)
1289                 return ret;
1290
1291         pf->max_umv_size = 0;
1292
1293         return 0;
1294 }
1295
1296 static bool
1297 hns3_is_umv_space_full(struct hns3_hw *hw)
1298 {
1299         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1300         struct hns3_pf *pf = &hns->pf;
1301         bool is_full;
1302
1303         is_full = (pf->used_umv_size >= pf->max_umv_size);
1304
1305         return is_full;
1306 }
1307
1308 static void
1309 hns3_update_umv_space(struct hns3_hw *hw, bool is_free)
1310 {
1311         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1312         struct hns3_pf *pf = &hns->pf;
1313
1314         if (is_free) {
1315                 if (pf->used_umv_size > 0)
1316                         pf->used_umv_size--;
1317         } else
1318                 pf->used_umv_size++;
1319 }
1320
1321 static void
1322 hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req,
1323                       const uint8_t *addr, bool is_mc)
1324 {
1325         const unsigned char *mac_addr = addr;
1326         uint32_t high_val = ((uint32_t)mac_addr[3] << 24) |
1327                             ((uint32_t)mac_addr[2] << 16) |
1328                             ((uint32_t)mac_addr[1] << 8) |
1329                             (uint32_t)mac_addr[0];
1330         uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4];
1331
1332         hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1333         if (is_mc) {
1334                 hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1335                 hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1);
1336                 hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1337         }
1338
1339         new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val);
1340         new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff);
1341 }
1342
1343 static int
1344 hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp,
1345                              uint8_t resp_code,
1346                              enum hns3_mac_vlan_tbl_opcode op)
1347 {
1348         if (cmdq_resp) {
1349                 hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u",
1350                          cmdq_resp);
1351                 return -EIO;
1352         }
1353
1354         if (op == HNS3_MAC_VLAN_ADD) {
1355                 if (resp_code == 0 || resp_code == 1) {
1356                         return 0;
1357                 } else if (resp_code == HNS3_ADD_UC_OVERFLOW) {
1358                         hns3_err(hw, "add mac addr failed for uc_overflow");
1359                         return -ENOSPC;
1360                 } else if (resp_code == HNS3_ADD_MC_OVERFLOW) {
1361                         hns3_err(hw, "add mac addr failed for mc_overflow");
1362                         return -ENOSPC;
1363                 }
1364
1365                 hns3_err(hw, "add mac addr failed for undefined, code=%u",
1366                          resp_code);
1367                 return -EIO;
1368         } else if (op == HNS3_MAC_VLAN_REMOVE) {
1369                 if (resp_code == 0) {
1370                         return 0;
1371                 } else if (resp_code == 1) {
1372                         hns3_dbg(hw, "remove mac addr failed for miss");
1373                         return -ENOENT;
1374                 }
1375
1376                 hns3_err(hw, "remove mac addr failed for undefined, code=%u",
1377                          resp_code);
1378                 return -EIO;
1379         } else if (op == HNS3_MAC_VLAN_LKUP) {
1380                 if (resp_code == 0) {
1381                         return 0;
1382                 } else if (resp_code == 1) {
1383                         hns3_dbg(hw, "lookup mac addr failed for miss");
1384                         return -ENOENT;
1385                 }
1386
1387                 hns3_err(hw, "lookup mac addr failed for undefined, code=%u",
1388                          resp_code);
1389                 return -EIO;
1390         }
1391
1392         hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u",
1393                  op);
1394
1395         return -EINVAL;
1396 }
1397
1398 static int
1399 hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw,
1400                          struct hns3_mac_vlan_tbl_entry_cmd *req,
1401                          struct hns3_cmd_desc *desc, bool is_mc)
1402 {
1403         uint8_t resp_code;
1404         uint16_t retval;
1405         int ret;
1406
1407         hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD, true);
1408         if (is_mc) {
1409                 desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1410                 memcpy(desc[0].data, req,
1411                            sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1412                 hns3_cmd_setup_basic_desc(&desc[1], HNS3_OPC_MAC_VLAN_ADD,
1413                                           true);
1414                 desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1415                 hns3_cmd_setup_basic_desc(&desc[2], HNS3_OPC_MAC_VLAN_ADD,
1416                                           true);
1417                 ret = hns3_cmd_send(hw, desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1418         } else {
1419                 memcpy(desc[0].data, req,
1420                        sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1421                 ret = hns3_cmd_send(hw, desc, 1);
1422         }
1423         if (ret) {
1424                 hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.",
1425                          ret);
1426                 return ret;
1427         }
1428         resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1429         retval = rte_le_to_cpu_16(desc[0].retval);
1430
1431         return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1432                                             HNS3_MAC_VLAN_LKUP);
1433 }
1434
1435 static int
1436 hns3_add_mac_vlan_tbl(struct hns3_hw *hw,
1437                       struct hns3_mac_vlan_tbl_entry_cmd *req,
1438                       struct hns3_cmd_desc *mc_desc)
1439 {
1440         uint8_t resp_code;
1441         uint16_t retval;
1442         int cfg_status;
1443         int ret;
1444
1445         if (mc_desc == NULL) {
1446                 struct hns3_cmd_desc desc;
1447
1448                 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ADD, false);
1449                 memcpy(desc.data, req,
1450                        sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1451                 ret = hns3_cmd_send(hw, &desc, 1);
1452                 resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1453                 retval = rte_le_to_cpu_16(desc.retval);
1454
1455                 cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1456                                                           HNS3_MAC_VLAN_ADD);
1457         } else {
1458                 hns3_cmd_reuse_desc(&mc_desc[0], false);
1459                 mc_desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1460                 hns3_cmd_reuse_desc(&mc_desc[1], false);
1461                 mc_desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1462                 hns3_cmd_reuse_desc(&mc_desc[2], false);
1463                 mc_desc[2].flag &= rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT);
1464                 memcpy(mc_desc[0].data, req,
1465                        sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1466                 mc_desc[0].retval = 0;
1467                 ret = hns3_cmd_send(hw, mc_desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1468                 resp_code = (rte_le_to_cpu_32(mc_desc[0].data[0]) >> 8) & 0xff;
1469                 retval = rte_le_to_cpu_16(mc_desc[0].retval);
1470
1471                 cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1472                                                           HNS3_MAC_VLAN_ADD);
1473         }
1474
1475         if (ret) {
1476                 hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret);
1477                 return ret;
1478         }
1479
1480         return cfg_status;
1481 }
1482
1483 static int
1484 hns3_remove_mac_vlan_tbl(struct hns3_hw *hw,
1485                          struct hns3_mac_vlan_tbl_entry_cmd *req)
1486 {
1487         struct hns3_cmd_desc desc;
1488         uint8_t resp_code;
1489         uint16_t retval;
1490         int ret;
1491
1492         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false);
1493
1494         memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1495
1496         ret = hns3_cmd_send(hw, &desc, 1);
1497         if (ret) {
1498                 hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret);
1499                 return ret;
1500         }
1501         resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1502         retval = rte_le_to_cpu_16(desc.retval);
1503
1504         return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1505                                             HNS3_MAC_VLAN_REMOVE);
1506 }
1507
1508 static int
1509 hns3_add_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1510 {
1511         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1512         struct hns3_mac_vlan_tbl_entry_cmd req;
1513         struct hns3_pf *pf = &hns->pf;
1514         struct hns3_cmd_desc desc[3];
1515         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1516         uint16_t egress_port = 0;
1517         uint8_t vf_id;
1518         int ret;
1519
1520         /* check if mac addr is valid */
1521         if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1522                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1523                                       mac_addr);
1524                 hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid",
1525                          mac_str);
1526                 return -EINVAL;
1527         }
1528
1529         memset(&req, 0, sizeof(req));
1530
1531         /*
1532          * In current version VF is not supported when PF is driven by DPDK
1533          * driver, just need to configure parameters for PF vport.
1534          */
1535         vf_id = HNS3_PF_FUNC_ID;
1536         hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M,
1537                        HNS3_MAC_EPORT_VFID_S, vf_id);
1538
1539         req.egress_port = rte_cpu_to_le_16(egress_port);
1540
1541         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1542
1543         /*
1544          * Lookup the mac address in the mac_vlan table, and add
1545          * it if the entry is inexistent. Repeated unicast entry
1546          * is not allowed in the mac vlan table.
1547          */
1548         ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, false);
1549         if (ret == -ENOENT) {
1550                 if (!hns3_is_umv_space_full(hw)) {
1551                         ret = hns3_add_mac_vlan_tbl(hw, &req, NULL);
1552                         if (!ret)
1553                                 hns3_update_umv_space(hw, false);
1554                         return ret;
1555                 }
1556
1557                 hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size);
1558
1559                 return -ENOSPC;
1560         }
1561
1562         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr);
1563
1564         /* check if we just hit the duplicate */
1565         if (ret == 0) {
1566                 hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str);
1567                 return 0;
1568         }
1569
1570         hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table",
1571                  mac_str);
1572
1573         return ret;
1574 }
1575
1576 static int
1577 hns3_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1578 {
1579         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1580         struct rte_ether_addr *addr;
1581         int ret;
1582         int i;
1583
1584         for (i = 0; i < hw->mc_addrs_num; i++) {
1585                 addr = &hw->mc_addrs[i];
1586                 /* Check if there are duplicate addresses */
1587                 if (rte_is_same_ether_addr(addr, mac_addr)) {
1588                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1589                                               addr);
1590                         hns3_err(hw, "failed to add mc mac addr, same addrs"
1591                                  "(%s) is added by the set_mc_mac_addr_list "
1592                                  "API", mac_str);
1593                         return -EINVAL;
1594                 }
1595         }
1596
1597         ret = hns3_add_mc_addr(hw, mac_addr);
1598         if (ret) {
1599                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1600                                       mac_addr);
1601                 hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
1602                          mac_str, ret);
1603         }
1604         return ret;
1605 }
1606
1607 static int
1608 hns3_remove_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1609 {
1610         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1611         int ret;
1612
1613         ret = hns3_remove_mc_addr(hw, mac_addr);
1614         if (ret) {
1615                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1616                                       mac_addr);
1617                 hns3_err(hw, "failed to remove mc mac addr(%s), ret = %d",
1618                          mac_str, ret);
1619         }
1620         return ret;
1621 }
1622
1623 static int
1624 hns3_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
1625                   uint32_t idx, __rte_unused uint32_t pool)
1626 {
1627         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1628         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1629         int ret;
1630
1631         rte_spinlock_lock(&hw->lock);
1632
1633         /*
1634          * In hns3 network engine adding UC and MC mac address with different
1635          * commands with firmware. We need to determine whether the input
1636          * address is a UC or a MC address to call different commands.
1637          * By the way, it is recommended calling the API function named
1638          * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
1639          * using the rte_eth_dev_mac_addr_add API function to set MC mac address
1640          * may affect the specifications of UC mac addresses.
1641          */
1642         if (rte_is_multicast_ether_addr(mac_addr))
1643                 ret = hns3_add_mc_addr_common(hw, mac_addr);
1644         else
1645                 ret = hns3_add_uc_addr_common(hw, mac_addr);
1646
1647         if (ret) {
1648                 rte_spinlock_unlock(&hw->lock);
1649                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1650                                       mac_addr);
1651                 hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
1652                          ret);
1653                 return ret;
1654         }
1655
1656         if (idx == 0)
1657                 hw->mac.default_addr_setted = true;
1658         rte_spinlock_unlock(&hw->lock);
1659
1660         return ret;
1661 }
1662
1663 static int
1664 hns3_remove_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1665 {
1666         struct hns3_mac_vlan_tbl_entry_cmd req;
1667         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1668         int ret;
1669
1670         /* check if mac addr is valid */
1671         if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1672                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1673                                       mac_addr);
1674                 hns3_err(hw, "remove unicast mac addr err! addr(%s) invalid",
1675                          mac_str);
1676                 return -EINVAL;
1677         }
1678
1679         memset(&req, 0, sizeof(req));
1680         hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1681         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1682         ret = hns3_remove_mac_vlan_tbl(hw, &req);
1683         if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */
1684                 return 0;
1685         else if (ret == 0)
1686                 hns3_update_umv_space(hw, true);
1687
1688         return ret;
1689 }
1690
1691 static void
1692 hns3_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
1693 {
1694         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1695         /* index will be checked by upper level rte interface */
1696         struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
1697         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1698         int ret;
1699
1700         rte_spinlock_lock(&hw->lock);
1701
1702         if (rte_is_multicast_ether_addr(mac_addr))
1703                 ret = hns3_remove_mc_addr_common(hw, mac_addr);
1704         else
1705                 ret = hns3_remove_uc_addr_common(hw, mac_addr);
1706         rte_spinlock_unlock(&hw->lock);
1707         if (ret) {
1708                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1709                                       mac_addr);
1710                 hns3_err(hw, "failed to remove mac addr(%s), ret = %d", mac_str,
1711                          ret);
1712         }
1713 }
1714
1715 static int
1716 hns3_set_default_mac_addr(struct rte_eth_dev *dev,
1717                           struct rte_ether_addr *mac_addr)
1718 {
1719         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1720         struct rte_ether_addr *oaddr;
1721         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1722         bool default_addr_setted;
1723         bool rm_succes = false;
1724         int ret, ret_val;
1725
1726         /*
1727          * It has been guaranteed that input parameter named mac_addr is valid
1728          * address in the rte layer of DPDK framework.
1729          */
1730         oaddr = (struct rte_ether_addr *)hw->mac.mac_addr;
1731         default_addr_setted = hw->mac.default_addr_setted;
1732         if (default_addr_setted && !!rte_is_same_ether_addr(mac_addr, oaddr))
1733                 return 0;
1734
1735         rte_spinlock_lock(&hw->lock);
1736         if (default_addr_setted) {
1737                 ret = hns3_remove_uc_addr_common(hw, oaddr);
1738                 if (ret) {
1739                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1740                                               oaddr);
1741                         hns3_warn(hw, "Remove old uc mac address(%s) fail: %d",
1742                                   mac_str, ret);
1743                         rm_succes = false;
1744                 } else
1745                         rm_succes = true;
1746         }
1747
1748         ret = hns3_add_uc_addr_common(hw, mac_addr);
1749         if (ret) {
1750                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1751                                       mac_addr);
1752                 hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret);
1753                 goto err_add_uc_addr;
1754         }
1755
1756         ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes);
1757         if (ret) {
1758                 hns3_err(hw, "Failed to configure mac pause address: %d", ret);
1759                 goto err_pause_addr_cfg;
1760         }
1761
1762         rte_ether_addr_copy(mac_addr,
1763                             (struct rte_ether_addr *)hw->mac.mac_addr);
1764         hw->mac.default_addr_setted = true;
1765         rte_spinlock_unlock(&hw->lock);
1766
1767         return 0;
1768
1769 err_pause_addr_cfg:
1770         ret_val = hns3_remove_uc_addr_common(hw, mac_addr);
1771         if (ret_val) {
1772                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1773                                       mac_addr);
1774                 hns3_warn(hw,
1775                           "Failed to roll back to del setted mac addr(%s): %d",
1776                           mac_str, ret_val);
1777         }
1778
1779 err_add_uc_addr:
1780         if (rm_succes) {
1781                 ret_val = hns3_add_uc_addr_common(hw, oaddr);
1782                 if (ret_val) {
1783                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1784                                               oaddr);
1785                         hns3_warn(hw,
1786                                   "Failed to restore old uc mac addr(%s): %d",
1787                                   mac_str, ret_val);
1788                         hw->mac.default_addr_setted = false;
1789                 }
1790         }
1791         rte_spinlock_unlock(&hw->lock);
1792
1793         return ret;
1794 }
1795
1796 static int
1797 hns3_configure_all_mac_addr(struct hns3_adapter *hns, bool del)
1798 {
1799         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1800         struct hns3_hw *hw = &hns->hw;
1801         struct rte_ether_addr *addr;
1802         int err = 0;
1803         int ret;
1804         int i;
1805
1806         for (i = 0; i < HNS3_UC_MACADDR_NUM; i++) {
1807                 addr = &hw->data->mac_addrs[i];
1808                 if (rte_is_zero_ether_addr(addr))
1809                         continue;
1810                 if (rte_is_multicast_ether_addr(addr))
1811                         ret = del ? hns3_remove_mc_addr(hw, addr) :
1812                               hns3_add_mc_addr(hw, addr);
1813                 else
1814                         ret = del ? hns3_remove_uc_addr_common(hw, addr) :
1815                               hns3_add_uc_addr_common(hw, addr);
1816
1817                 if (ret) {
1818                         err = ret;
1819                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1820                                               addr);
1821                         hns3_err(hw, "failed to %s mac addr(%s) index:%d "
1822                                  "ret = %d.", del ? "remove" : "restore",
1823                                  mac_str, i, ret);
1824                 }
1825         }
1826         return err;
1827 }
1828
1829 static void
1830 hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr)
1831 {
1832 #define HNS3_VF_NUM_IN_FIRST_DESC 192
1833         uint8_t word_num;
1834         uint8_t bit_num;
1835
1836         if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) {
1837                 word_num = vfid / 32;
1838                 bit_num = vfid % 32;
1839                 if (clr)
1840                         desc[1].data[word_num] &=
1841                             rte_cpu_to_le_32(~(1UL << bit_num));
1842                 else
1843                         desc[1].data[word_num] |=
1844                             rte_cpu_to_le_32(1UL << bit_num);
1845         } else {
1846                 word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32;
1847                 bit_num = vfid % 32;
1848                 if (clr)
1849                         desc[2].data[word_num] &=
1850                             rte_cpu_to_le_32(~(1UL << bit_num));
1851                 else
1852                         desc[2].data[word_num] |=
1853                             rte_cpu_to_le_32(1UL << bit_num);
1854         }
1855 }
1856
1857 static int
1858 hns3_add_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1859 {
1860         struct hns3_mac_vlan_tbl_entry_cmd req;
1861         struct hns3_cmd_desc desc[3];
1862         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1863         uint8_t vf_id;
1864         int ret;
1865
1866         /* Check if mac addr is valid */
1867         if (!rte_is_multicast_ether_addr(mac_addr)) {
1868                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1869                                       mac_addr);
1870                 hns3_err(hw, "failed to add mc mac addr, addr(%s) invalid",
1871                          mac_str);
1872                 return -EINVAL;
1873         }
1874
1875         memset(&req, 0, sizeof(req));
1876         hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1877         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1878         ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1879         if (ret) {
1880                 /* This mac addr do not exist, add new entry for it */
1881                 memset(desc[0].data, 0, sizeof(desc[0].data));
1882                 memset(desc[1].data, 0, sizeof(desc[0].data));
1883                 memset(desc[2].data, 0, sizeof(desc[0].data));
1884         }
1885
1886         /*
1887          * In current version VF is not supported when PF is driven by DPDK
1888          * driver, just need to configure parameters for PF vport.
1889          */
1890         vf_id = HNS3_PF_FUNC_ID;
1891         hns3_update_desc_vfid(desc, vf_id, false);
1892         ret = hns3_add_mac_vlan_tbl(hw, &req, desc);
1893         if (ret) {
1894                 if (ret == -ENOSPC)
1895                         hns3_err(hw, "mc mac vlan table is full");
1896                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1897                                       mac_addr);
1898                 hns3_err(hw, "failed to add mc mac addr(%s): %d", mac_str, ret);
1899         }
1900
1901         return ret;
1902 }
1903
1904 static int
1905 hns3_remove_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1906 {
1907         struct hns3_mac_vlan_tbl_entry_cmd req;
1908         struct hns3_cmd_desc desc[3];
1909         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1910         uint8_t vf_id;
1911         int ret;
1912
1913         /* Check if mac addr is valid */
1914         if (!rte_is_multicast_ether_addr(mac_addr)) {
1915                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1916                                       mac_addr);
1917                 hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid",
1918                          mac_str);
1919                 return -EINVAL;
1920         }
1921
1922         memset(&req, 0, sizeof(req));
1923         hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1924         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1925         ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1926         if (ret == 0) {
1927                 /*
1928                  * This mac addr exist, remove this handle's VFID for it.
1929                  * In current version VF is not supported when PF is driven by
1930                  * DPDK driver, just need to configure parameters for PF vport.
1931                  */
1932                 vf_id = HNS3_PF_FUNC_ID;
1933                 hns3_update_desc_vfid(desc, vf_id, true);
1934
1935                 /* All the vfid is zero, so need to delete this entry */
1936                 ret = hns3_remove_mac_vlan_tbl(hw, &req);
1937         } else if (ret == -ENOENT) {
1938                 /* This mac addr doesn't exist. */
1939                 return 0;
1940         }
1941
1942         if (ret) {
1943                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1944                                       mac_addr);
1945                 hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret);
1946         }
1947
1948         return ret;
1949 }
1950
1951 static int
1952 hns3_set_mc_addr_chk_param(struct hns3_hw *hw,
1953                            struct rte_ether_addr *mc_addr_set,
1954                            uint32_t nb_mc_addr)
1955 {
1956         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1957         struct rte_ether_addr *addr;
1958         uint32_t i;
1959         uint32_t j;
1960
1961         if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
1962                 hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%u) "
1963                          "invalid. valid range: 0~%d",
1964                          nb_mc_addr, HNS3_MC_MACADDR_NUM);
1965                 return -EINVAL;
1966         }
1967
1968         /* Check if input mac addresses are valid */
1969         for (i = 0; i < nb_mc_addr; i++) {
1970                 addr = &mc_addr_set[i];
1971                 if (!rte_is_multicast_ether_addr(addr)) {
1972                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1973                                               addr);
1974                         hns3_err(hw,
1975                                  "failed to set mc mac addr, addr(%s) invalid.",
1976                                  mac_str);
1977                         return -EINVAL;
1978                 }
1979
1980                 /* Check if there are duplicate addresses */
1981                 for (j = i + 1; j < nb_mc_addr; j++) {
1982                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
1983                                 hns3_ether_format_addr(mac_str,
1984                                                       RTE_ETHER_ADDR_FMT_SIZE,
1985                                                       addr);
1986                                 hns3_err(hw, "failed to set mc mac addr, "
1987                                          "addrs invalid. two same addrs(%s).",
1988                                          mac_str);
1989                                 return -EINVAL;
1990                         }
1991                 }
1992
1993                 /*
1994                  * Check if there are duplicate addresses between mac_addrs
1995                  * and mc_addr_set
1996                  */
1997                 for (j = 0; j < HNS3_UC_MACADDR_NUM; j++) {
1998                         if (rte_is_same_ether_addr(addr,
1999                                                    &hw->data->mac_addrs[j])) {
2000                                 hns3_ether_format_addr(mac_str,
2001                                                       RTE_ETHER_ADDR_FMT_SIZE,
2002                                                       addr);
2003                                 hns3_err(hw, "failed to set mc mac addr, "
2004                                          "addrs invalid. addrs(%s) has already "
2005                                          "configured in mac_addr add API",
2006                                          mac_str);
2007                                 return -EINVAL;
2008                         }
2009                 }
2010         }
2011
2012         return 0;
2013 }
2014
2015 static void
2016 hns3_set_mc_addr_calc_addr(struct hns3_hw *hw,
2017                            struct rte_ether_addr *mc_addr_set,
2018                            int mc_addr_num,
2019                            struct rte_ether_addr *reserved_addr_list,
2020                            int *reserved_addr_num,
2021                            struct rte_ether_addr *add_addr_list,
2022                            int *add_addr_num,
2023                            struct rte_ether_addr *rm_addr_list,
2024                            int *rm_addr_num)
2025 {
2026         struct rte_ether_addr *addr;
2027         int current_addr_num;
2028         int reserved_num = 0;
2029         int add_num = 0;
2030         int rm_num = 0;
2031         int num;
2032         int i;
2033         int j;
2034         bool same_addr;
2035
2036         /* Calculate the mc mac address list that should be removed */
2037         current_addr_num = hw->mc_addrs_num;
2038         for (i = 0; i < current_addr_num; i++) {
2039                 addr = &hw->mc_addrs[i];
2040                 same_addr = false;
2041                 for (j = 0; j < mc_addr_num; j++) {
2042                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
2043                                 same_addr = true;
2044                                 break;
2045                         }
2046                 }
2047
2048                 if (!same_addr) {
2049                         rte_ether_addr_copy(addr, &rm_addr_list[rm_num]);
2050                         rm_num++;
2051                 } else {
2052                         rte_ether_addr_copy(addr,
2053                                             &reserved_addr_list[reserved_num]);
2054                         reserved_num++;
2055                 }
2056         }
2057
2058         /* Calculate the mc mac address list that should be added */
2059         for (i = 0; i < mc_addr_num; i++) {
2060                 addr = &mc_addr_set[i];
2061                 same_addr = false;
2062                 for (j = 0; j < current_addr_num; j++) {
2063                         if (rte_is_same_ether_addr(addr, &hw->mc_addrs[j])) {
2064                                 same_addr = true;
2065                                 break;
2066                         }
2067                 }
2068
2069                 if (!same_addr) {
2070                         rte_ether_addr_copy(addr, &add_addr_list[add_num]);
2071                         add_num++;
2072                 }
2073         }
2074
2075         /* Reorder the mc mac address list maintained by driver */
2076         for (i = 0; i < reserved_num; i++)
2077                 rte_ether_addr_copy(&reserved_addr_list[i], &hw->mc_addrs[i]);
2078
2079         for (i = 0; i < rm_num; i++) {
2080                 num = reserved_num + i;
2081                 rte_ether_addr_copy(&rm_addr_list[i], &hw->mc_addrs[num]);
2082         }
2083
2084         *reserved_addr_num = reserved_num;
2085         *add_addr_num = add_num;
2086         *rm_addr_num = rm_num;
2087 }
2088
2089 static int
2090 hns3_set_mc_mac_addr_list(struct rte_eth_dev *dev,
2091                           struct rte_ether_addr *mc_addr_set,
2092                           uint32_t nb_mc_addr)
2093 {
2094         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2095         struct rte_ether_addr reserved_addr_list[HNS3_MC_MACADDR_NUM];
2096         struct rte_ether_addr add_addr_list[HNS3_MC_MACADDR_NUM];
2097         struct rte_ether_addr rm_addr_list[HNS3_MC_MACADDR_NUM];
2098         struct rte_ether_addr *addr;
2099         int reserved_addr_num;
2100         int add_addr_num;
2101         int rm_addr_num;
2102         int mc_addr_num;
2103         int num;
2104         int ret;
2105         int i;
2106
2107         /* Check if input parameters are valid */
2108         ret = hns3_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
2109         if (ret)
2110                 return ret;
2111
2112         rte_spinlock_lock(&hw->lock);
2113
2114         /*
2115          * Calculate the mc mac address lists those should be removed and be
2116          * added, Reorder the mc mac address list maintained by driver.
2117          */
2118         mc_addr_num = (int)nb_mc_addr;
2119         hns3_set_mc_addr_calc_addr(hw, mc_addr_set, mc_addr_num,
2120                                    reserved_addr_list, &reserved_addr_num,
2121                                    add_addr_list, &add_addr_num,
2122                                    rm_addr_list, &rm_addr_num);
2123
2124         /* Remove mc mac addresses */
2125         for (i = 0; i < rm_addr_num; i++) {
2126                 num = rm_addr_num - i - 1;
2127                 addr = &rm_addr_list[num];
2128                 ret = hns3_remove_mc_addr(hw, addr);
2129                 if (ret) {
2130                         rte_spinlock_unlock(&hw->lock);
2131                         return ret;
2132                 }
2133                 hw->mc_addrs_num--;
2134         }
2135
2136         /* Add mc mac addresses */
2137         for (i = 0; i < add_addr_num; i++) {
2138                 addr = &add_addr_list[i];
2139                 ret = hns3_add_mc_addr(hw, addr);
2140                 if (ret) {
2141                         rte_spinlock_unlock(&hw->lock);
2142                         return ret;
2143                 }
2144
2145                 num = reserved_addr_num + i;
2146                 rte_ether_addr_copy(addr, &hw->mc_addrs[num]);
2147                 hw->mc_addrs_num++;
2148         }
2149         rte_spinlock_unlock(&hw->lock);
2150
2151         return 0;
2152 }
2153
2154 static int
2155 hns3_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
2156 {
2157         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2158         struct hns3_hw *hw = &hns->hw;
2159         struct rte_ether_addr *addr;
2160         int err = 0;
2161         int ret;
2162         int i;
2163
2164         for (i = 0; i < hw->mc_addrs_num; i++) {
2165                 addr = &hw->mc_addrs[i];
2166                 if (!rte_is_multicast_ether_addr(addr))
2167                         continue;
2168                 if (del)
2169                         ret = hns3_remove_mc_addr(hw, addr);
2170                 else
2171                         ret = hns3_add_mc_addr(hw, addr);
2172                 if (ret) {
2173                         err = ret;
2174                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2175                                               addr);
2176                         hns3_dbg(hw, "%s mc mac addr: %s failed for pf: ret = %d",
2177                                  del ? "Remove" : "Restore", mac_str, ret);
2178                 }
2179         }
2180         return err;
2181 }
2182
2183 static int
2184 hns3_check_mq_mode(struct rte_eth_dev *dev)
2185 {
2186         enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
2187         enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
2188         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2189         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2190         struct rte_eth_dcb_rx_conf *dcb_rx_conf;
2191         struct rte_eth_dcb_tx_conf *dcb_tx_conf;
2192         uint8_t num_tc;
2193         int max_tc = 0;
2194         int i;
2195
2196         dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
2197         dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
2198
2199         if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB_RSS) {
2200                 hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB_RSS is not supported. "
2201                          "rx_mq_mode = %d", rx_mq_mode);
2202                 return -EINVAL;
2203         }
2204
2205         if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB ||
2206             tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
2207                 hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB and ETH_MQ_TX_VMDQ_DCB "
2208                          "is not supported. rx_mq_mode = %d, tx_mq_mode = %d",
2209                          rx_mq_mode, tx_mq_mode);
2210                 return -EINVAL;
2211         }
2212
2213         if (rx_mq_mode == ETH_MQ_RX_DCB_RSS) {
2214                 if (dcb_rx_conf->nb_tcs > pf->tc_max) {
2215                         hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.",
2216                                  dcb_rx_conf->nb_tcs, pf->tc_max);
2217                         return -EINVAL;
2218                 }
2219
2220                 if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS ||
2221                       dcb_rx_conf->nb_tcs == HNS3_8_TCS)) {
2222                         hns3_err(hw, "on ETH_MQ_RX_DCB_RSS mode, "
2223                                  "nb_tcs(%d) != %d or %d in rx direction.",
2224                                  dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS);
2225                         return -EINVAL;
2226                 }
2227
2228                 if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) {
2229                         hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)",
2230                                  dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs);
2231                         return -EINVAL;
2232                 }
2233
2234                 for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
2235                         if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) {
2236                                 hns3_err(hw, "dcb_tc[%d] = %u in rx direction, "
2237                                          "is not equal to one in tx direction.",
2238                                          i, dcb_rx_conf->dcb_tc[i]);
2239                                 return -EINVAL;
2240                         }
2241                         if (dcb_rx_conf->dcb_tc[i] > max_tc)
2242                                 max_tc = dcb_rx_conf->dcb_tc[i];
2243                 }
2244
2245                 num_tc = max_tc + 1;
2246                 if (num_tc > dcb_rx_conf->nb_tcs) {
2247                         hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)",
2248                                  num_tc, dcb_rx_conf->nb_tcs);
2249                         return -EINVAL;
2250                 }
2251         }
2252
2253         return 0;
2254 }
2255
2256 static int
2257 hns3_check_dcb_cfg(struct rte_eth_dev *dev)
2258 {
2259         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2260
2261         if (!hns3_dev_dcb_supported(hw)) {
2262                 hns3_err(hw, "this port does not support dcb configurations.");
2263                 return -EOPNOTSUPP;
2264         }
2265
2266         if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) {
2267                 hns3_err(hw, "MAC pause enabled, cannot config dcb info.");
2268                 return -EOPNOTSUPP;
2269         }
2270
2271         /* Check multiple queue mode */
2272         return hns3_check_mq_mode(dev);
2273 }
2274
2275 static int
2276 hns3_bind_ring_with_vector(struct hns3_hw *hw, uint16_t vector_id, bool en,
2277                            enum hns3_ring_type queue_type, uint16_t queue_id)
2278 {
2279         struct hns3_cmd_desc desc;
2280         struct hns3_ctrl_vector_chain_cmd *req =
2281                 (struct hns3_ctrl_vector_chain_cmd *)desc.data;
2282         enum hns3_cmd_status status;
2283         enum hns3_opcode_type op;
2284         uint16_t tqp_type_and_id = 0;
2285         uint16_t type;
2286         uint16_t gl;
2287
2288         op = en ? HNS3_OPC_ADD_RING_TO_VECTOR : HNS3_OPC_DEL_RING_TO_VECTOR;
2289         hns3_cmd_setup_basic_desc(&desc, op, false);
2290         req->int_vector_id = hns3_get_field(vector_id, HNS3_TQP_INT_ID_L_M,
2291                                               HNS3_TQP_INT_ID_L_S);
2292         req->int_vector_id_h = hns3_get_field(vector_id, HNS3_TQP_INT_ID_H_M,
2293                                               HNS3_TQP_INT_ID_H_S);
2294
2295         if (queue_type == HNS3_RING_TYPE_RX)
2296                 gl = HNS3_RING_GL_RX;
2297         else
2298                 gl = HNS3_RING_GL_TX;
2299
2300         type = queue_type;
2301
2302         hns3_set_field(tqp_type_and_id, HNS3_INT_TYPE_M, HNS3_INT_TYPE_S,
2303                        type);
2304         hns3_set_field(tqp_type_and_id, HNS3_TQP_ID_M, HNS3_TQP_ID_S, queue_id);
2305         hns3_set_field(tqp_type_and_id, HNS3_INT_GL_IDX_M, HNS3_INT_GL_IDX_S,
2306                        gl);
2307         req->tqp_type_and_id[0] = rte_cpu_to_le_16(tqp_type_and_id);
2308         req->int_cause_num = 1;
2309         status = hns3_cmd_send(hw, &desc, 1);
2310         if (status) {
2311                 hns3_err(hw, "%s TQP %u fail, vector_id is %u, status is %d.",
2312                          en ? "Map" : "Unmap", queue_id, vector_id, status);
2313                 return status;
2314         }
2315
2316         return 0;
2317 }
2318
2319 static int
2320 hns3_init_ring_with_vector(struct hns3_hw *hw)
2321 {
2322         uint16_t vec;
2323         int ret;
2324         int i;
2325
2326         /*
2327          * In hns3 network engine, vector 0 is always the misc interrupt of this
2328          * function, vector 1~N can be used respectively for the queues of the
2329          * function. Tx and Rx queues with the same number share the interrupt
2330          * vector. In the initialization clearing the all hardware mapping
2331          * relationship configurations between queues and interrupt vectors is
2332          * needed, so some error caused by the residual configurations, such as
2333          * the unexpected Tx interrupt, can be avoid.
2334          */
2335         vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
2336         if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
2337                 vec = vec - 1; /* the last interrupt is reserved */
2338         hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
2339         for (i = 0; i < hw->intr_tqps_num; i++) {
2340                 /*
2341                  * Set gap limiter/rate limiter/quanity limiter algorithm
2342                  * configuration for interrupt coalesce of queue's interrupt.
2343                  */
2344                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
2345                                        HNS3_TQP_INTR_GL_DEFAULT);
2346                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
2347                                        HNS3_TQP_INTR_GL_DEFAULT);
2348                 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
2349                 /*
2350                  * QL(quantity limiter) is not used currently, just set 0 to
2351                  * close it.
2352                  */
2353                 hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
2354
2355                 ret = hns3_bind_ring_with_vector(hw, vec, false,
2356                                                  HNS3_RING_TYPE_TX, i);
2357                 if (ret) {
2358                         PMD_INIT_LOG(ERR, "PF fail to unbind TX ring(%d) with "
2359                                           "vector: %u, ret=%d", i, vec, ret);
2360                         return ret;
2361                 }
2362
2363                 ret = hns3_bind_ring_with_vector(hw, vec, false,
2364                                                  HNS3_RING_TYPE_RX, i);
2365                 if (ret) {
2366                         PMD_INIT_LOG(ERR, "PF fail to unbind RX ring(%d) with "
2367                                           "vector: %u, ret=%d", i, vec, ret);
2368                         return ret;
2369                 }
2370         }
2371
2372         return 0;
2373 }
2374
2375 static int
2376 hns3_dev_configure(struct rte_eth_dev *dev)
2377 {
2378         struct hns3_adapter *hns = dev->data->dev_private;
2379         struct rte_eth_conf *conf = &dev->data->dev_conf;
2380         enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
2381         struct hns3_hw *hw = &hns->hw;
2382         uint16_t nb_rx_q = dev->data->nb_rx_queues;
2383         uint16_t nb_tx_q = dev->data->nb_tx_queues;
2384         struct rte_eth_rss_conf rss_conf;
2385         uint32_t max_rx_pkt_len;
2386         uint16_t mtu;
2387         bool gro_en;
2388         int ret;
2389
2390         hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
2391
2392         /*
2393          * Some versions of hardware network engine does not support
2394          * individually enable/disable/reset the Tx or Rx queue. These devices
2395          * must enable/disable/reset Tx and Rx queues at the same time. When the
2396          * numbers of Tx queues allocated by upper applications are not equal to
2397          * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
2398          * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
2399          * work as usual. But these fake queues are imperceptible, and can not
2400          * be used by upper applications.
2401          */
2402         if (!hns3_dev_indep_txrx_supported(hw)) {
2403                 ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
2404                 if (ret) {
2405                         hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.",
2406                                  ret);
2407                         return ret;
2408                 }
2409         }
2410
2411         hw->adapter_state = HNS3_NIC_CONFIGURING;
2412         if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
2413                 hns3_err(hw, "setting link speed/duplex not supported");
2414                 ret = -EINVAL;
2415                 goto cfg_err;
2416         }
2417
2418         if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG) {
2419                 ret = hns3_check_dcb_cfg(dev);
2420                 if (ret)
2421                         goto cfg_err;
2422         }
2423
2424         /* When RSS is not configured, redirect the packet queue 0 */
2425         if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
2426                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
2427                 rss_conf = conf->rx_adv_conf.rss_conf;
2428                 hw->rss_dis_flag = false;
2429                 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
2430                 if (ret)
2431                         goto cfg_err;
2432         }
2433
2434         /*
2435          * If jumbo frames are enabled, MTU needs to be refreshed
2436          * according to the maximum RX packet length.
2437          */
2438         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
2439                 max_rx_pkt_len = conf->rxmode.max_rx_pkt_len;
2440                 if (max_rx_pkt_len > HNS3_MAX_FRAME_LEN ||
2441                     max_rx_pkt_len <= HNS3_DEFAULT_FRAME_LEN) {
2442                         hns3_err(hw, "maximum Rx packet length must be greater "
2443                                  "than %u and less than %u when jumbo frame enabled.",
2444                                  (uint16_t)HNS3_DEFAULT_FRAME_LEN,
2445                                  (uint16_t)HNS3_MAX_FRAME_LEN);
2446                         ret = -EINVAL;
2447                         goto cfg_err;
2448                 }
2449
2450                 mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(max_rx_pkt_len);
2451                 ret = hns3_dev_mtu_set(dev, mtu);
2452                 if (ret)
2453                         goto cfg_err;
2454                 dev->data->mtu = mtu;
2455         }
2456
2457         ret = hns3_dev_configure_vlan(dev);
2458         if (ret)
2459                 goto cfg_err;
2460
2461         /* config hardware GRO */
2462         gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
2463         ret = hns3_config_gro(hw, gro_en);
2464         if (ret)
2465                 goto cfg_err;
2466
2467         hns->rx_simple_allowed = true;
2468         hns->rx_vec_allowed = true;
2469         hns->tx_simple_allowed = true;
2470         hns->tx_vec_allowed = true;
2471
2472         hns3_init_rx_ptype_tble(dev);
2473         hw->adapter_state = HNS3_NIC_CONFIGURED;
2474
2475         return 0;
2476
2477 cfg_err:
2478         (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
2479         hw->adapter_state = HNS3_NIC_INITIALIZED;
2480
2481         return ret;
2482 }
2483
2484 static int
2485 hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps)
2486 {
2487         struct hns3_config_max_frm_size_cmd *req;
2488         struct hns3_cmd_desc desc;
2489
2490         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false);
2491
2492         req = (struct hns3_config_max_frm_size_cmd *)desc.data;
2493         req->max_frm_size = rte_cpu_to_le_16(new_mps);
2494         req->min_frm_size = RTE_ETHER_MIN_LEN;
2495
2496         return hns3_cmd_send(hw, &desc, 1);
2497 }
2498
2499 static int
2500 hns3_config_mtu(struct hns3_hw *hw, uint16_t mps)
2501 {
2502         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2503         uint16_t original_mps = hns->pf.mps;
2504         int err;
2505         int ret;
2506
2507         ret = hns3_set_mac_mtu(hw, mps);
2508         if (ret) {
2509                 hns3_err(hw, "failed to set mtu, ret = %d", ret);
2510                 return ret;
2511         }
2512
2513         hns->pf.mps = mps;
2514         ret = hns3_buffer_alloc(hw);
2515         if (ret) {
2516                 hns3_err(hw, "failed to allocate buffer, ret = %d", ret);
2517                 goto rollback;
2518         }
2519
2520         return 0;
2521
2522 rollback:
2523         err = hns3_set_mac_mtu(hw, original_mps);
2524         if (err) {
2525                 hns3_err(hw, "fail to rollback MTU, err = %d", err);
2526                 return ret;
2527         }
2528         hns->pf.mps = original_mps;
2529
2530         return ret;
2531 }
2532
2533 static int
2534 hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
2535 {
2536         struct hns3_adapter *hns = dev->data->dev_private;
2537         uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
2538         struct hns3_hw *hw = &hns->hw;
2539         bool is_jumbo_frame;
2540         int ret;
2541
2542         if (dev->data->dev_started) {
2543                 hns3_err(hw, "Failed to set mtu, port %u must be stopped "
2544                          "before configuration", dev->data->port_id);
2545                 return -EBUSY;
2546         }
2547
2548         rte_spinlock_lock(&hw->lock);
2549         is_jumbo_frame = frame_size > HNS3_DEFAULT_FRAME_LEN ? true : false;
2550         frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN);
2551
2552         /*
2553          * Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely
2554          * assign to "uint16_t" type variable.
2555          */
2556         ret = hns3_config_mtu(hw, (uint16_t)frame_size);
2557         if (ret) {
2558                 rte_spinlock_unlock(&hw->lock);
2559                 hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d",
2560                          dev->data->port_id, mtu, ret);
2561                 return ret;
2562         }
2563
2564         if (is_jumbo_frame)
2565                 dev->data->dev_conf.rxmode.offloads |=
2566                                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
2567         else
2568                 dev->data->dev_conf.rxmode.offloads &=
2569                                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
2570         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
2571         rte_spinlock_unlock(&hw->lock);
2572
2573         return 0;
2574 }
2575
2576 int
2577 hns3_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
2578 {
2579         struct hns3_adapter *hns = eth_dev->data->dev_private;
2580         struct hns3_hw *hw = &hns->hw;
2581         uint16_t queue_num = hw->tqps_num;
2582
2583         /*
2584          * In interrupt mode, 'max_rx_queues' is set based on the number of
2585          * MSI-X interrupt resources of the hardware.
2586          */
2587         if (hw->data->dev_conf.intr_conf.rxq == 1)
2588                 queue_num = hw->intr_tqps_num;
2589
2590         info->max_rx_queues = queue_num;
2591         info->max_tx_queues = hw->tqps_num;
2592         info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
2593         info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
2594         info->max_mac_addrs = HNS3_UC_MACADDR_NUM;
2595         info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
2596         info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
2597         info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
2598                                  DEV_RX_OFFLOAD_TCP_CKSUM |
2599                                  DEV_RX_OFFLOAD_UDP_CKSUM |
2600                                  DEV_RX_OFFLOAD_SCTP_CKSUM |
2601                                  DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
2602                                  DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
2603                                  DEV_RX_OFFLOAD_KEEP_CRC |
2604                                  DEV_RX_OFFLOAD_SCATTER |
2605                                  DEV_RX_OFFLOAD_VLAN_STRIP |
2606                                  DEV_RX_OFFLOAD_VLAN_FILTER |
2607                                  DEV_RX_OFFLOAD_JUMBO_FRAME |
2608                                  DEV_RX_OFFLOAD_RSS_HASH |
2609                                  DEV_RX_OFFLOAD_TCP_LRO);
2610         info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
2611                                  DEV_TX_OFFLOAD_IPV4_CKSUM |
2612                                  DEV_TX_OFFLOAD_TCP_CKSUM |
2613                                  DEV_TX_OFFLOAD_UDP_CKSUM |
2614                                  DEV_TX_OFFLOAD_SCTP_CKSUM |
2615                                  DEV_TX_OFFLOAD_MULTI_SEGS |
2616                                  DEV_TX_OFFLOAD_TCP_TSO |
2617                                  DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
2618                                  DEV_TX_OFFLOAD_GRE_TNL_TSO |
2619                                  DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
2620                                  DEV_TX_OFFLOAD_MBUF_FAST_FREE |
2621                                  hns3_txvlan_cap_get(hw));
2622
2623         if (hns3_dev_outer_udp_cksum_supported(hw))
2624                 info->tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_UDP_CKSUM;
2625
2626         if (hns3_dev_indep_txrx_supported(hw))
2627                 info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
2628                                  RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
2629
2630         info->rx_desc_lim = (struct rte_eth_desc_lim) {
2631                 .nb_max = HNS3_MAX_RING_DESC,
2632                 .nb_min = HNS3_MIN_RING_DESC,
2633                 .nb_align = HNS3_ALIGN_RING_DESC,
2634         };
2635
2636         info->tx_desc_lim = (struct rte_eth_desc_lim) {
2637                 .nb_max = HNS3_MAX_RING_DESC,
2638                 .nb_min = HNS3_MIN_RING_DESC,
2639                 .nb_align = HNS3_ALIGN_RING_DESC,
2640                 .nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
2641                 .nb_mtu_seg_max = hw->max_non_tso_bd_num,
2642         };
2643
2644         info->default_rxconf = (struct rte_eth_rxconf) {
2645                 .rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
2646                 /*
2647                  * If there are no available Rx buffer descriptors, incoming
2648                  * packets are always dropped by hardware based on hns3 network
2649                  * engine.
2650                  */
2651                 .rx_drop_en = 1,
2652                 .offloads = 0,
2653         };
2654         info->default_txconf = (struct rte_eth_txconf) {
2655                 .tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
2656                 .offloads = 0,
2657         };
2658
2659         info->vmdq_queue_num = 0;
2660
2661         info->reta_size = hw->rss_ind_tbl_size;
2662         info->hash_key_size = HNS3_RSS_KEY_SIZE;
2663         info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
2664
2665         info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2666         info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2667         info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2668         info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2669         info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2670         info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2671
2672         return 0;
2673 }
2674
2675 static int
2676 hns3_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2677                     size_t fw_size)
2678 {
2679         struct hns3_adapter *hns = eth_dev->data->dev_private;
2680         struct hns3_hw *hw = &hns->hw;
2681         uint32_t version = hw->fw_version;
2682         int ret;
2683
2684         ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2685                        hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2686                                       HNS3_FW_VERSION_BYTE3_S),
2687                        hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2688                                       HNS3_FW_VERSION_BYTE2_S),
2689                        hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2690                                       HNS3_FW_VERSION_BYTE1_S),
2691                        hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2692                                       HNS3_FW_VERSION_BYTE0_S));
2693         ret += 1; /* add the size of '\0' */
2694         if (fw_size < (uint32_t)ret)
2695                 return ret;
2696         else
2697                 return 0;
2698 }
2699
2700 static int
2701 hns3_update_port_link_info(struct rte_eth_dev *eth_dev)
2702 {
2703         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2704
2705         (void)hns3_update_link_status(hw);
2706
2707         return hns3_update_link_info(eth_dev);
2708 }
2709
2710 static void
2711 hns3_setup_linkstatus(struct rte_eth_dev *eth_dev,
2712                       struct rte_eth_link *new_link)
2713 {
2714         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2715         struct hns3_mac *mac = &hw->mac;
2716
2717         switch (mac->link_speed) {
2718         case ETH_SPEED_NUM_10M:
2719         case ETH_SPEED_NUM_100M:
2720         case ETH_SPEED_NUM_1G:
2721         case ETH_SPEED_NUM_10G:
2722         case ETH_SPEED_NUM_25G:
2723         case ETH_SPEED_NUM_40G:
2724         case ETH_SPEED_NUM_50G:
2725         case ETH_SPEED_NUM_100G:
2726         case ETH_SPEED_NUM_200G:
2727                 new_link->link_speed = mac->link_speed;
2728                 break;
2729         default:
2730                 if (mac->link_status)
2731                         new_link->link_speed = ETH_SPEED_NUM_UNKNOWN;
2732                 else
2733                         new_link->link_speed = ETH_SPEED_NUM_NONE;
2734                 break;
2735         }
2736
2737         new_link->link_duplex = mac->link_duplex;
2738         new_link->link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2739         new_link->link_autoneg =
2740             !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2741 }
2742
2743 static int
2744 hns3_dev_link_update(struct rte_eth_dev *eth_dev,
2745                      __rte_unused int wait_to_complete)
2746 {
2747         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2748         struct hns3_mac *mac = &hw->mac;
2749         struct rte_eth_link new_link;
2750         int ret;
2751
2752         ret = hns3_update_port_link_info(eth_dev);
2753         if (ret) {
2754                 mac->link_status = ETH_LINK_DOWN;
2755                 hns3_err(hw, "failed to get port link info, ret = %d.", ret);
2756         }
2757
2758         memset(&new_link, 0, sizeof(new_link));
2759         hns3_setup_linkstatus(eth_dev, &new_link);
2760
2761         return rte_eth_linkstatus_set(eth_dev, &new_link);
2762 }
2763
2764 static int
2765 hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status)
2766 {
2767         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2768         struct hns3_pf *pf = &hns->pf;
2769
2770         if (!(status->pf_state & HNS3_PF_STATE_DONE))
2771                 return -EINVAL;
2772
2773         pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false;
2774
2775         return 0;
2776 }
2777
2778 static int
2779 hns3_query_function_status(struct hns3_hw *hw)
2780 {
2781 #define HNS3_QUERY_MAX_CNT              10
2782 #define HNS3_QUERY_SLEEP_MSCOEND        1
2783         struct hns3_func_status_cmd *req;
2784         struct hns3_cmd_desc desc;
2785         int timeout = 0;
2786         int ret;
2787
2788         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true);
2789         req = (struct hns3_func_status_cmd *)desc.data;
2790
2791         do {
2792                 ret = hns3_cmd_send(hw, &desc, 1);
2793                 if (ret) {
2794                         PMD_INIT_LOG(ERR, "query function status failed %d",
2795                                      ret);
2796                         return ret;
2797                 }
2798
2799                 /* Check pf reset is done */
2800                 if (req->pf_state)
2801                         break;
2802
2803                 rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND);
2804         } while (timeout++ < HNS3_QUERY_MAX_CNT);
2805
2806         return hns3_parse_func_status(hw, req);
2807 }
2808
2809 static int
2810 hns3_get_pf_max_tqp_num(struct hns3_hw *hw)
2811 {
2812         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2813         struct hns3_pf *pf = &hns->pf;
2814
2815         if (pf->tqp_config_mode == HNS3_FLEX_MAX_TQP_NUM_MODE) {
2816                 /*
2817                  * The total_tqps_num obtained from firmware is maximum tqp
2818                  * numbers of this port, which should be used for PF and VFs.
2819                  * There is no need for pf to have so many tqp numbers in
2820                  * most cases. RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2821                  * coming from config file, is assigned to maximum queue number
2822                  * for the PF of this port by user. So users can modify the
2823                  * maximum queue number of PF according to their own application
2824                  * scenarios, which is more flexible to use. In addition, many
2825                  * memories can be saved due to allocating queue statistics
2826                  * room according to the actual number of queues required. The
2827                  * maximum queue number of PF for network engine with
2828                  * revision_id greater than 0x30 is assigned by config file.
2829                  */
2830                 if (RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF <= 0) {
2831                         hns3_err(hw, "RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF(%d) "
2832                                  "must be greater than 0.",
2833                                  RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF);
2834                         return -EINVAL;
2835                 }
2836
2837                 hw->tqps_num = RTE_MIN(RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2838                                        hw->total_tqps_num);
2839         } else {
2840                 /*
2841                  * Due to the limitation on the number of PF interrupts
2842                  * available, the maximum queue number assigned to PF on
2843                  * the network engine with revision_id 0x21 is 64.
2844                  */
2845                 hw->tqps_num = RTE_MIN(hw->total_tqps_num,
2846                                        HNS3_MAX_TQP_NUM_HIP08_PF);
2847         }
2848
2849         return 0;
2850 }
2851
2852 static int
2853 hns3_query_pf_resource(struct hns3_hw *hw)
2854 {
2855         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2856         struct hns3_pf *pf = &hns->pf;
2857         struct hns3_pf_res_cmd *req;
2858         struct hns3_cmd_desc desc;
2859         int ret;
2860
2861         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true);
2862         ret = hns3_cmd_send(hw, &desc, 1);
2863         if (ret) {
2864                 PMD_INIT_LOG(ERR, "query pf resource failed %d", ret);
2865                 return ret;
2866         }
2867
2868         req = (struct hns3_pf_res_cmd *)desc.data;
2869         hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num) +
2870                              rte_le_to_cpu_16(req->ext_tqp_num);
2871         ret = hns3_get_pf_max_tqp_num(hw);
2872         if (ret)
2873                 return ret;
2874
2875         pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S;
2876         pf->func_num = rte_le_to_cpu_16(req->pf_own_fun_number);
2877
2878         if (req->tx_buf_size)
2879                 pf->tx_buf_size =
2880                     rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S;
2881         else
2882                 pf->tx_buf_size = HNS3_DEFAULT_TX_BUF;
2883
2884         pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT);
2885
2886         if (req->dv_buf_size)
2887                 pf->dv_buf_size =
2888                     rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S;
2889         else
2890                 pf->dv_buf_size = HNS3_DEFAULT_DV;
2891
2892         pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT);
2893
2894         hw->num_msi =
2895                 hns3_get_field(rte_le_to_cpu_16(req->nic_pf_intr_vector_number),
2896                                HNS3_PF_VEC_NUM_M, HNS3_PF_VEC_NUM_S);
2897
2898         return 0;
2899 }
2900
2901 static void
2902 hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc)
2903 {
2904         struct hns3_cfg_param_cmd *req;
2905         uint64_t mac_addr_tmp_high;
2906         uint8_t ext_rss_size_max;
2907         uint64_t mac_addr_tmp;
2908         uint32_t i;
2909
2910         req = (struct hns3_cfg_param_cmd *)desc[0].data;
2911
2912         /* get the configuration */
2913         cfg->vmdq_vport_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2914                                              HNS3_CFG_VMDQ_M, HNS3_CFG_VMDQ_S);
2915         cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2916                                      HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S);
2917         cfg->tqp_desc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2918                                            HNS3_CFG_TQP_DESC_N_M,
2919                                            HNS3_CFG_TQP_DESC_N_S);
2920
2921         cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2922                                        HNS3_CFG_PHY_ADDR_M,
2923                                        HNS3_CFG_PHY_ADDR_S);
2924         cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2925                                          HNS3_CFG_MEDIA_TP_M,
2926                                          HNS3_CFG_MEDIA_TP_S);
2927         cfg->rx_buf_len = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2928                                          HNS3_CFG_RX_BUF_LEN_M,
2929                                          HNS3_CFG_RX_BUF_LEN_S);
2930         /* get mac address */
2931         mac_addr_tmp = rte_le_to_cpu_32(req->param[2]);
2932         mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2933                                            HNS3_CFG_MAC_ADDR_H_M,
2934                                            HNS3_CFG_MAC_ADDR_H_S);
2935
2936         mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
2937
2938         cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2939                                             HNS3_CFG_DEFAULT_SPEED_M,
2940                                             HNS3_CFG_DEFAULT_SPEED_S);
2941         cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
2942                                            HNS3_CFG_RSS_SIZE_M,
2943                                            HNS3_CFG_RSS_SIZE_S);
2944
2945         for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
2946                 cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
2947
2948         req = (struct hns3_cfg_param_cmd *)desc[1].data;
2949         cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]);
2950
2951         cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2952                                             HNS3_CFG_SPEED_ABILITY_M,
2953                                             HNS3_CFG_SPEED_ABILITY_S);
2954         cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2955                                         HNS3_CFG_UMV_TBL_SPACE_M,
2956                                         HNS3_CFG_UMV_TBL_SPACE_S);
2957         if (!cfg->umv_space)
2958                 cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF;
2959
2960         ext_rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[2]),
2961                                                HNS3_CFG_EXT_RSS_SIZE_M,
2962                                                HNS3_CFG_EXT_RSS_SIZE_S);
2963
2964         /*
2965          * Field ext_rss_size_max obtained from firmware will be more flexible
2966          * for future changes and expansions, which is an exponent of 2, instead
2967          * of reading out directly. If this field is not zero, hns3 PF PMD
2968          * driver uses it as rss_size_max under one TC. Device, whose revision
2969          * id is greater than or equal to PCI_REVISION_ID_HIP09_A, obtains the
2970          * maximum number of queues supported under a TC through this field.
2971          */
2972         if (ext_rss_size_max)
2973                 cfg->rss_size_max = 1U << ext_rss_size_max;
2974 }
2975
2976 /* hns3_get_board_cfg: query the static parameter from NCL_config file in flash
2977  * @hw: pointer to struct hns3_hw
2978  * @hcfg: the config structure to be getted
2979  */
2980 static int
2981 hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg)
2982 {
2983         struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM];
2984         struct hns3_cfg_param_cmd *req;
2985         uint32_t offset;
2986         uint32_t i;
2987         int ret;
2988
2989         for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) {
2990                 offset = 0;
2991                 req = (struct hns3_cfg_param_cmd *)desc[i].data;
2992                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM,
2993                                           true);
2994                 hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S,
2995                                i * HNS3_CFG_RD_LEN_BYTES);
2996                 /* Len should be divided by 4 when send to hardware */
2997                 hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S,
2998                                HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT);
2999                 req->offset = rte_cpu_to_le_32(offset);
3000         }
3001
3002         ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM);
3003         if (ret) {
3004                 PMD_INIT_LOG(ERR, "get config failed %d.", ret);
3005                 return ret;
3006         }
3007
3008         hns3_parse_cfg(hcfg, desc);
3009
3010         return 0;
3011 }
3012
3013 static int
3014 hns3_parse_speed(int speed_cmd, uint32_t *speed)
3015 {
3016         switch (speed_cmd) {
3017         case HNS3_CFG_SPEED_10M:
3018                 *speed = ETH_SPEED_NUM_10M;
3019                 break;
3020         case HNS3_CFG_SPEED_100M:
3021                 *speed = ETH_SPEED_NUM_100M;
3022                 break;
3023         case HNS3_CFG_SPEED_1G:
3024                 *speed = ETH_SPEED_NUM_1G;
3025                 break;
3026         case HNS3_CFG_SPEED_10G:
3027                 *speed = ETH_SPEED_NUM_10G;
3028                 break;
3029         case HNS3_CFG_SPEED_25G:
3030                 *speed = ETH_SPEED_NUM_25G;
3031                 break;
3032         case HNS3_CFG_SPEED_40G:
3033                 *speed = ETH_SPEED_NUM_40G;
3034                 break;
3035         case HNS3_CFG_SPEED_50G:
3036                 *speed = ETH_SPEED_NUM_50G;
3037                 break;
3038         case HNS3_CFG_SPEED_100G:
3039                 *speed = ETH_SPEED_NUM_100G;
3040                 break;
3041         case HNS3_CFG_SPEED_200G:
3042                 *speed = ETH_SPEED_NUM_200G;
3043                 break;
3044         default:
3045                 return -EINVAL;
3046         }
3047
3048         return 0;
3049 }
3050
3051 static void
3052 hns3_set_default_dev_specifications(struct hns3_hw *hw)
3053 {
3054         hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
3055         hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
3056         hw->rss_key_size = HNS3_RSS_KEY_SIZE;
3057         hw->max_tm_rate = HNS3_ETHER_MAX_RATE;
3058         hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
3059 }
3060
3061 static void
3062 hns3_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
3063 {
3064         struct hns3_dev_specs_0_cmd *req0;
3065
3066         req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
3067
3068         hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
3069         hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
3070         hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
3071         hw->max_tm_rate = rte_le_to_cpu_32(req0->max_tm_rate);
3072         hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
3073 }
3074
3075 static int
3076 hns3_check_dev_specifications(struct hns3_hw *hw)
3077 {
3078         if (hw->rss_ind_tbl_size == 0 ||
3079             hw->rss_ind_tbl_size > HNS3_RSS_IND_TBL_SIZE_MAX) {
3080                 hns3_err(hw, "the size of hash lookup table configured (%u)"
3081                               " exceeds the maximum(%u)", hw->rss_ind_tbl_size,
3082                               HNS3_RSS_IND_TBL_SIZE_MAX);
3083                 return -EINVAL;
3084         }
3085
3086         return 0;
3087 }
3088
3089 static int
3090 hns3_query_dev_specifications(struct hns3_hw *hw)
3091 {
3092         struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
3093         int ret;
3094         int i;
3095
3096         for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3097                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
3098                                           true);
3099                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3100         }
3101         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
3102
3103         ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
3104         if (ret)
3105                 return ret;
3106
3107         hns3_parse_dev_specifications(hw, desc);
3108
3109         return hns3_check_dev_specifications(hw);
3110 }
3111
3112 static int
3113 hns3_get_capability(struct hns3_hw *hw)
3114 {
3115         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3116         struct rte_pci_device *pci_dev;
3117         struct hns3_pf *pf = &hns->pf;
3118         struct rte_eth_dev *eth_dev;
3119         uint16_t device_id;
3120         uint8_t revision;
3121         int ret;
3122
3123         eth_dev = &rte_eth_devices[hw->data->port_id];
3124         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3125         device_id = pci_dev->id.device_id;
3126
3127         if (device_id == HNS3_DEV_ID_25GE_RDMA ||
3128             device_id == HNS3_DEV_ID_50GE_RDMA ||
3129             device_id == HNS3_DEV_ID_100G_RDMA_MACSEC ||
3130             device_id == HNS3_DEV_ID_200G_RDMA)
3131                 hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_DCB_B, 1);
3132
3133         /* Get PCI revision id */
3134         ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
3135                                   HNS3_PCI_REVISION_ID);
3136         if (ret != HNS3_PCI_REVISION_ID_LEN) {
3137                 PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
3138                              ret);
3139                 return -EIO;
3140         }
3141         hw->revision = revision;
3142
3143         if (revision < PCI_REVISION_ID_HIP09_A) {
3144                 hns3_set_default_dev_specifications(hw);
3145                 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
3146                 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
3147                 hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
3148                 hw->vlan_mode = HNS3_SW_SHIFT_AND_DISCARD_MODE;
3149                 hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE1;
3150                 hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
3151                 pf->tqp_config_mode = HNS3_FIXED_MAX_TQP_NUM_MODE;
3152                 hw->rss_info.ipv6_sctp_offload_supported = false;
3153                 hw->udp_cksum_mode = HNS3_SPECIAL_PORT_SW_CKSUM_MODE;
3154                 return 0;
3155         }
3156
3157         ret = hns3_query_dev_specifications(hw);
3158         if (ret) {
3159                 PMD_INIT_LOG(ERR,
3160                              "failed to query dev specifications, ret = %d",
3161                              ret);
3162                 return ret;
3163         }
3164
3165         hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
3166         hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
3167         hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
3168         hw->vlan_mode = HNS3_HW_SHIFT_AND_DISCARD_MODE;
3169         hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE2;
3170         hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
3171         pf->tqp_config_mode = HNS3_FLEX_MAX_TQP_NUM_MODE;
3172         hw->rss_info.ipv6_sctp_offload_supported = true;
3173         hw->udp_cksum_mode = HNS3_SPECIAL_PORT_HW_CKSUM_MODE;
3174
3175         return 0;
3176 }
3177
3178 static int
3179 hns3_check_media_type(struct hns3_hw *hw, uint8_t media_type)
3180 {
3181         int ret;
3182
3183         switch (media_type) {
3184         case HNS3_MEDIA_TYPE_COPPER:
3185                 if (!hns3_dev_copper_supported(hw)) {
3186                         PMD_INIT_LOG(ERR,
3187                                      "Media type is copper, not supported.");
3188                         ret = -EOPNOTSUPP;
3189                 } else {
3190                         ret = 0;
3191                 }
3192                 break;
3193         case HNS3_MEDIA_TYPE_FIBER:
3194                 ret = 0;
3195                 break;
3196         case HNS3_MEDIA_TYPE_BACKPLANE:
3197                 PMD_INIT_LOG(ERR, "Media type is Backplane, not supported.");
3198                 ret = -EOPNOTSUPP;
3199                 break;
3200         default:
3201                 PMD_INIT_LOG(ERR, "Unknown media type = %u!", media_type);
3202                 ret = -EINVAL;
3203                 break;
3204         }
3205
3206         return ret;
3207 }
3208
3209 static int
3210 hns3_get_board_configuration(struct hns3_hw *hw)
3211 {
3212         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3213         struct hns3_pf *pf = &hns->pf;
3214         struct hns3_cfg cfg;
3215         int ret;
3216
3217         ret = hns3_get_board_cfg(hw, &cfg);
3218         if (ret) {
3219                 PMD_INIT_LOG(ERR, "get board config failed %d", ret);
3220                 return ret;
3221         }
3222
3223         ret = hns3_check_media_type(hw, cfg.media_type);
3224         if (ret)
3225                 return ret;
3226
3227         hw->mac.media_type = cfg.media_type;
3228         hw->rss_size_max = cfg.rss_size_max;
3229         hw->rss_dis_flag = false;
3230         memcpy(hw->mac.mac_addr, cfg.mac_addr, RTE_ETHER_ADDR_LEN);
3231         hw->mac.phy_addr = cfg.phy_addr;
3232         hw->mac.default_addr_setted = false;
3233         hw->num_tx_desc = cfg.tqp_desc_num;
3234         hw->num_rx_desc = cfg.tqp_desc_num;
3235         hw->dcb_info.num_pg = 1;
3236         hw->dcb_info.hw_pfc_map = 0;
3237
3238         ret = hns3_parse_speed(cfg.default_speed, &hw->mac.link_speed);
3239         if (ret) {
3240                 PMD_INIT_LOG(ERR, "Get wrong speed %u, ret = %d",
3241                              cfg.default_speed, ret);
3242                 return ret;
3243         }
3244
3245         pf->tc_max = cfg.tc_num;
3246         if (pf->tc_max > HNS3_MAX_TC_NUM || pf->tc_max < 1) {
3247                 PMD_INIT_LOG(WARNING,
3248                              "Get TC num(%u) from flash, set TC num to 1",
3249                              pf->tc_max);
3250                 pf->tc_max = 1;
3251         }
3252
3253         /* Dev does not support DCB */
3254         if (!hns3_dev_dcb_supported(hw)) {
3255                 pf->tc_max = 1;
3256                 pf->pfc_max = 0;
3257         } else
3258                 pf->pfc_max = pf->tc_max;
3259
3260         hw->dcb_info.num_tc = 1;
3261         hw->alloc_rss_size = RTE_MIN(hw->rss_size_max,
3262                                      hw->tqps_num / hw->dcb_info.num_tc);
3263         hns3_set_bit(hw->hw_tc_map, 0, 1);
3264         pf->tx_sch_mode = HNS3_FLAG_TC_BASE_SCH_MODE;
3265
3266         pf->wanted_umv_size = cfg.umv_space;
3267
3268         return ret;
3269 }
3270
3271 static int
3272 hns3_get_configuration(struct hns3_hw *hw)
3273 {
3274         int ret;
3275
3276         ret = hns3_query_function_status(hw);
3277         if (ret) {
3278                 PMD_INIT_LOG(ERR, "Failed to query function status: %d.", ret);
3279                 return ret;
3280         }
3281
3282         /* Get device capability */
3283         ret = hns3_get_capability(hw);
3284         if (ret) {
3285                 PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
3286                 return ret;
3287         }
3288
3289         /* Get pf resource */
3290         ret = hns3_query_pf_resource(hw);
3291         if (ret) {
3292                 PMD_INIT_LOG(ERR, "Failed to query pf resource: %d", ret);
3293                 return ret;
3294         }
3295
3296         ret = hns3_get_board_configuration(hw);
3297         if (ret) {
3298                 PMD_INIT_LOG(ERR, "failed to get board configuration: %d", ret);
3299                 return ret;
3300         }
3301
3302         ret = hns3_query_dev_fec_info(hw);
3303         if (ret)
3304                 PMD_INIT_LOG(ERR,
3305                              "failed to query FEC information, ret = %d", ret);
3306
3307         return ret;
3308 }
3309
3310 static int
3311 hns3_map_tqps_to_func(struct hns3_hw *hw, uint16_t func_id, uint16_t tqp_pid,
3312                       uint16_t tqp_vid, bool is_pf)
3313 {
3314         struct hns3_tqp_map_cmd *req;
3315         struct hns3_cmd_desc desc;
3316         int ret;
3317
3318         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SET_TQP_MAP, false);
3319
3320         req = (struct hns3_tqp_map_cmd *)desc.data;
3321         req->tqp_id = rte_cpu_to_le_16(tqp_pid);
3322         req->tqp_vf = func_id;
3323         req->tqp_flag = 1 << HNS3_TQP_MAP_EN_B;
3324         if (!is_pf)
3325                 req->tqp_flag |= (1 << HNS3_TQP_MAP_TYPE_B);
3326         req->tqp_vid = rte_cpu_to_le_16(tqp_vid);
3327
3328         ret = hns3_cmd_send(hw, &desc, 1);
3329         if (ret)
3330                 PMD_INIT_LOG(ERR, "TQP map failed %d", ret);
3331
3332         return ret;
3333 }
3334
3335 static int
3336 hns3_map_tqp(struct hns3_hw *hw)
3337 {
3338         int ret;
3339         int i;
3340
3341         /*
3342          * In current version, VF is not supported when PF is driven by DPDK
3343          * driver, so we assign total tqps_num tqps allocated to this port
3344          * to PF.
3345          */
3346         for (i = 0; i < hw->total_tqps_num; i++) {
3347                 ret = hns3_map_tqps_to_func(hw, HNS3_PF_FUNC_ID, i, i, true);
3348                 if (ret)
3349                         return ret;
3350         }
3351
3352         return 0;
3353 }
3354
3355 static int
3356 hns3_cfg_mac_speed_dup_hw(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
3357 {
3358         struct hns3_config_mac_speed_dup_cmd *req;
3359         struct hns3_cmd_desc desc;
3360         int ret;
3361
3362         req = (struct hns3_config_mac_speed_dup_cmd *)desc.data;
3363
3364         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_SPEED_DUP, false);
3365
3366         hns3_set_bit(req->speed_dup, HNS3_CFG_DUPLEX_B, !!duplex ? 1 : 0);
3367
3368         switch (speed) {
3369         case ETH_SPEED_NUM_10M:
3370                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3371                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10M);
3372                 break;
3373         case ETH_SPEED_NUM_100M:
3374                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3375                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100M);
3376                 break;
3377         case ETH_SPEED_NUM_1G:
3378                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3379                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_1G);
3380                 break;
3381         case ETH_SPEED_NUM_10G:
3382                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3383                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10G);
3384                 break;
3385         case ETH_SPEED_NUM_25G:
3386                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3387                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_25G);
3388                 break;
3389         case ETH_SPEED_NUM_40G:
3390                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3391                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_40G);
3392                 break;
3393         case ETH_SPEED_NUM_50G:
3394                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3395                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_50G);
3396                 break;
3397         case ETH_SPEED_NUM_100G:
3398                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3399                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100G);
3400                 break;
3401         case ETH_SPEED_NUM_200G:
3402                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3403                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_200G);
3404                 break;
3405         default:
3406                 PMD_INIT_LOG(ERR, "invalid speed (%u)", speed);
3407                 return -EINVAL;
3408         }
3409
3410         hns3_set_bit(req->mac_change_fec_en, HNS3_CFG_MAC_SPEED_CHANGE_EN_B, 1);
3411
3412         ret = hns3_cmd_send(hw, &desc, 1);
3413         if (ret)
3414                 PMD_INIT_LOG(ERR, "mac speed/duplex config cmd failed %d", ret);
3415
3416         return ret;
3417 }
3418
3419 static int
3420 hns3_tx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3421 {
3422         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3423         struct hns3_pf *pf = &hns->pf;
3424         struct hns3_priv_buf *priv;
3425         uint32_t i, total_size;
3426
3427         total_size = pf->pkt_buf_size;
3428
3429         /* alloc tx buffer for all enabled tc */
3430         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3431                 priv = &buf_alloc->priv_buf[i];
3432
3433                 if (hw->hw_tc_map & BIT(i)) {
3434                         if (total_size < pf->tx_buf_size)
3435                                 return -ENOMEM;
3436
3437                         priv->tx_buf_size = pf->tx_buf_size;
3438                 } else
3439                         priv->tx_buf_size = 0;
3440
3441                 total_size -= priv->tx_buf_size;
3442         }
3443
3444         return 0;
3445 }
3446
3447 static int
3448 hns3_tx_buffer_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3449 {
3450 /* TX buffer size is unit by 128 byte */
3451 #define HNS3_BUF_SIZE_UNIT_SHIFT        7
3452 #define HNS3_BUF_SIZE_UPDATE_EN_MSK     BIT(15)
3453         struct hns3_tx_buff_alloc_cmd *req;
3454         struct hns3_cmd_desc desc;
3455         uint32_t buf_size;
3456         uint32_t i;
3457         int ret;
3458
3459         req = (struct hns3_tx_buff_alloc_cmd *)desc.data;
3460
3461         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TX_BUFF_ALLOC, 0);
3462         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3463                 buf_size = buf_alloc->priv_buf[i].tx_buf_size;
3464
3465                 buf_size = buf_size >> HNS3_BUF_SIZE_UNIT_SHIFT;
3466                 req->tx_pkt_buff[i] = rte_cpu_to_le_16(buf_size |
3467                                                 HNS3_BUF_SIZE_UPDATE_EN_MSK);
3468         }
3469
3470         ret = hns3_cmd_send(hw, &desc, 1);
3471         if (ret)
3472                 PMD_INIT_LOG(ERR, "tx buffer alloc cmd failed %d", ret);
3473
3474         return ret;
3475 }
3476
3477 static int
3478 hns3_get_tc_num(struct hns3_hw *hw)
3479 {
3480         int cnt = 0;
3481         uint8_t i;
3482
3483         for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3484                 if (hw->hw_tc_map & BIT(i))
3485                         cnt++;
3486         return cnt;
3487 }
3488
3489 static uint32_t
3490 hns3_get_rx_priv_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3491 {
3492         struct hns3_priv_buf *priv;
3493         uint32_t rx_priv = 0;
3494         int i;
3495
3496         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3497                 priv = &buf_alloc->priv_buf[i];
3498                 if (priv->enable)
3499                         rx_priv += priv->buf_size;
3500         }
3501         return rx_priv;
3502 }
3503
3504 static uint32_t
3505 hns3_get_tx_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3506 {
3507         uint32_t total_tx_size = 0;
3508         uint32_t i;
3509
3510         for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3511                 total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
3512
3513         return total_tx_size;
3514 }
3515
3516 /* Get the number of pfc enabled TCs, which have private buffer */
3517 static int
3518 hns3_get_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3519 {
3520         struct hns3_priv_buf *priv;
3521         int cnt = 0;
3522         uint8_t i;
3523
3524         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3525                 priv = &buf_alloc->priv_buf[i];
3526                 if ((hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3527                         cnt++;
3528         }
3529
3530         return cnt;
3531 }
3532
3533 /* Get the number of pfc disabled TCs, which have private buffer */
3534 static int
3535 hns3_get_no_pfc_priv_num(struct hns3_hw *hw,
3536                          struct hns3_pkt_buf_alloc *buf_alloc)
3537 {
3538         struct hns3_priv_buf *priv;
3539         int cnt = 0;
3540         uint8_t i;
3541
3542         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3543                 priv = &buf_alloc->priv_buf[i];
3544                 if (hw->hw_tc_map & BIT(i) &&
3545                     !(hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3546                         cnt++;
3547         }
3548
3549         return cnt;
3550 }
3551
3552 static bool
3553 hns3_is_rx_buf_ok(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc,
3554                   uint32_t rx_all)
3555 {
3556         uint32_t shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
3557         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3558         struct hns3_pf *pf = &hns->pf;
3559         uint32_t shared_buf, aligned_mps;
3560         uint32_t rx_priv;
3561         uint8_t tc_num;
3562         uint8_t i;
3563
3564         tc_num = hns3_get_tc_num(hw);
3565         aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3566
3567         if (hns3_dev_dcb_supported(hw))
3568                 shared_buf_min = HNS3_BUF_MUL_BY * aligned_mps +
3569                                         pf->dv_buf_size;
3570         else
3571                 shared_buf_min = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF
3572                                         + pf->dv_buf_size;
3573
3574         shared_buf_tc = tc_num * aligned_mps + aligned_mps;
3575         shared_std = roundup(RTE_MAX(shared_buf_min, shared_buf_tc),
3576                              HNS3_BUF_SIZE_UNIT);
3577
3578         rx_priv = hns3_get_rx_priv_buff_alloced(buf_alloc);
3579         if (rx_all < rx_priv + shared_std)
3580                 return false;
3581
3582         shared_buf = rounddown(rx_all - rx_priv, HNS3_BUF_SIZE_UNIT);
3583         buf_alloc->s_buf.buf_size = shared_buf;
3584         if (hns3_dev_dcb_supported(hw)) {
3585                 buf_alloc->s_buf.self.high = shared_buf - pf->dv_buf_size;
3586                 buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
3587                         - roundup(aligned_mps / HNS3_BUF_DIV_BY,
3588                                   HNS3_BUF_SIZE_UNIT);
3589         } else {
3590                 buf_alloc->s_buf.self.high =
3591                         aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3592                 buf_alloc->s_buf.self.low = aligned_mps;
3593         }
3594
3595         if (hns3_dev_dcb_supported(hw)) {
3596                 hi_thrd = shared_buf - pf->dv_buf_size;
3597
3598                 if (tc_num <= NEED_RESERVE_TC_NUM)
3599                         hi_thrd = hi_thrd * BUF_RESERVE_PERCENT /
3600                                   BUF_MAX_PERCENT;
3601
3602                 if (tc_num)
3603                         hi_thrd = hi_thrd / tc_num;
3604
3605                 hi_thrd = RTE_MAX(hi_thrd, HNS3_BUF_MUL_BY * aligned_mps);
3606                 hi_thrd = rounddown(hi_thrd, HNS3_BUF_SIZE_UNIT);
3607                 lo_thrd = hi_thrd - aligned_mps / HNS3_BUF_DIV_BY;
3608         } else {
3609                 hi_thrd = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3610                 lo_thrd = aligned_mps;
3611         }
3612
3613         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3614                 buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
3615                 buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
3616         }
3617
3618         return true;
3619 }
3620
3621 static bool
3622 hns3_rx_buf_calc_all(struct hns3_hw *hw, bool max,
3623                      struct hns3_pkt_buf_alloc *buf_alloc)
3624 {
3625         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3626         struct hns3_pf *pf = &hns->pf;
3627         struct hns3_priv_buf *priv;
3628         uint32_t aligned_mps;
3629         uint32_t rx_all;
3630         uint8_t i;
3631
3632         rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3633         aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3634
3635         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3636                 priv = &buf_alloc->priv_buf[i];
3637
3638                 priv->enable = 0;
3639                 priv->wl.low = 0;
3640                 priv->wl.high = 0;
3641                 priv->buf_size = 0;
3642
3643                 if (!(hw->hw_tc_map & BIT(i)))
3644                         continue;
3645
3646                 priv->enable = 1;
3647                 if (hw->dcb_info.hw_pfc_map & BIT(i)) {
3648                         priv->wl.low = max ? aligned_mps : HNS3_BUF_SIZE_UNIT;
3649                         priv->wl.high = roundup(priv->wl.low + aligned_mps,
3650                                                 HNS3_BUF_SIZE_UNIT);
3651                 } else {
3652                         priv->wl.low = 0;
3653                         priv->wl.high = max ? (aligned_mps * HNS3_BUF_MUL_BY) :
3654                                         aligned_mps;
3655                 }
3656
3657                 priv->buf_size = priv->wl.high + pf->dv_buf_size;
3658         }
3659
3660         return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3661 }
3662
3663 static bool
3664 hns3_drop_nopfc_buf_till_fit(struct hns3_hw *hw,
3665                              struct hns3_pkt_buf_alloc *buf_alloc)
3666 {
3667         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3668         struct hns3_pf *pf = &hns->pf;
3669         struct hns3_priv_buf *priv;
3670         int no_pfc_priv_num;
3671         uint32_t rx_all;
3672         uint8_t mask;
3673         int i;
3674
3675         rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3676         no_pfc_priv_num = hns3_get_no_pfc_priv_num(hw, buf_alloc);
3677
3678         /* let the last to be cleared first */
3679         for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3680                 priv = &buf_alloc->priv_buf[i];
3681                 mask = BIT((uint8_t)i);
3682
3683                 if (hw->hw_tc_map & mask &&
3684                     !(hw->dcb_info.hw_pfc_map & mask)) {
3685                         /* Clear the no pfc TC private buffer */
3686                         priv->wl.low = 0;
3687                         priv->wl.high = 0;
3688                         priv->buf_size = 0;
3689                         priv->enable = 0;
3690                         no_pfc_priv_num--;
3691                 }
3692
3693                 if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3694                     no_pfc_priv_num == 0)
3695                         break;
3696         }
3697
3698         return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3699 }
3700
3701 static bool
3702 hns3_drop_pfc_buf_till_fit(struct hns3_hw *hw,
3703                            struct hns3_pkt_buf_alloc *buf_alloc)
3704 {
3705         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3706         struct hns3_pf *pf = &hns->pf;
3707         struct hns3_priv_buf *priv;
3708         uint32_t rx_all;
3709         int pfc_priv_num;
3710         uint8_t mask;
3711         int i;
3712
3713         rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3714         pfc_priv_num = hns3_get_pfc_priv_num(hw, buf_alloc);
3715
3716         /* let the last to be cleared first */
3717         for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3718                 priv = &buf_alloc->priv_buf[i];
3719                 mask = BIT((uint8_t)i);
3720                 if (hw->hw_tc_map & mask && hw->dcb_info.hw_pfc_map & mask) {
3721                         /* Reduce the number of pfc TC with private buffer */
3722                         priv->wl.low = 0;
3723                         priv->enable = 0;
3724                         priv->wl.high = 0;
3725                         priv->buf_size = 0;
3726                         pfc_priv_num--;
3727                 }
3728                 if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3729                     pfc_priv_num == 0)
3730                         break;
3731         }
3732
3733         return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3734 }
3735
3736 static bool
3737 hns3_only_alloc_priv_buff(struct hns3_hw *hw,
3738                           struct hns3_pkt_buf_alloc *buf_alloc)
3739 {
3740 #define COMPENSATE_BUFFER       0x3C00
3741 #define COMPENSATE_HALF_MPS_NUM 5
3742 #define PRIV_WL_GAP             0x1800
3743         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3744         struct hns3_pf *pf = &hns->pf;
3745         uint32_t tc_num = hns3_get_tc_num(hw);
3746         uint32_t half_mps = pf->mps >> 1;
3747         struct hns3_priv_buf *priv;
3748         uint32_t min_rx_priv;
3749         uint32_t rx_priv;
3750         uint8_t i;
3751
3752         rx_priv = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3753         if (tc_num)
3754                 rx_priv = rx_priv / tc_num;
3755
3756         if (tc_num <= NEED_RESERVE_TC_NUM)
3757                 rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
3758
3759         /*
3760          * Minimum value of private buffer in rx direction (min_rx_priv) is
3761          * equal to "DV + 2.5 * MPS + 15KB". Driver only allocates rx private
3762          * buffer if rx_priv is greater than min_rx_priv.
3763          */
3764         min_rx_priv = pf->dv_buf_size + COMPENSATE_BUFFER +
3765                         COMPENSATE_HALF_MPS_NUM * half_mps;
3766         min_rx_priv = roundup(min_rx_priv, HNS3_BUF_SIZE_UNIT);
3767         rx_priv = rounddown(rx_priv, HNS3_BUF_SIZE_UNIT);
3768
3769         if (rx_priv < min_rx_priv)
3770                 return false;
3771
3772         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3773                 priv = &buf_alloc->priv_buf[i];
3774                 priv->enable = 0;
3775                 priv->wl.low = 0;
3776                 priv->wl.high = 0;
3777                 priv->buf_size = 0;
3778
3779                 if (!(hw->hw_tc_map & BIT(i)))
3780                         continue;
3781
3782                 priv->enable = 1;
3783                 priv->buf_size = rx_priv;
3784                 priv->wl.high = rx_priv - pf->dv_buf_size;
3785                 priv->wl.low = priv->wl.high - PRIV_WL_GAP;
3786         }
3787
3788         buf_alloc->s_buf.buf_size = 0;
3789
3790         return true;
3791 }
3792
3793 /*
3794  * hns3_rx_buffer_calc: calculate the rx private buffer size for all TCs
3795  * @hw: pointer to struct hns3_hw
3796  * @buf_alloc: pointer to buffer calculation data
3797  * @return: 0: calculate sucessful, negative: fail
3798  */
3799 static int
3800 hns3_rx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3801 {
3802         /* When DCB is not supported, rx private buffer is not allocated. */
3803         if (!hns3_dev_dcb_supported(hw)) {
3804                 struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3805                 struct hns3_pf *pf = &hns->pf;
3806                 uint32_t rx_all = pf->pkt_buf_size;
3807
3808                 rx_all -= hns3_get_tx_buff_alloced(buf_alloc);
3809                 if (!hns3_is_rx_buf_ok(hw, buf_alloc, rx_all))
3810                         return -ENOMEM;
3811
3812                 return 0;
3813         }
3814
3815         /*
3816          * Try to allocate privated packet buffer for all TCs without share
3817          * buffer.
3818          */
3819         if (hns3_only_alloc_priv_buff(hw, buf_alloc))
3820                 return 0;
3821
3822         /*
3823          * Try to allocate privated packet buffer for all TCs with share
3824          * buffer.
3825          */
3826         if (hns3_rx_buf_calc_all(hw, true, buf_alloc))
3827                 return 0;
3828
3829         /*
3830          * For different application scenes, the enabled port number, TC number
3831          * and no_drop TC number are different. In order to obtain the better
3832          * performance, software could allocate the buffer size and configure
3833          * the waterline by tring to decrease the private buffer size according
3834          * to the order, namely, waterline of valided tc, pfc disabled tc, pfc
3835          * enabled tc.
3836          */
3837         if (hns3_rx_buf_calc_all(hw, false, buf_alloc))
3838                 return 0;
3839
3840         if (hns3_drop_nopfc_buf_till_fit(hw, buf_alloc))
3841                 return 0;
3842
3843         if (hns3_drop_pfc_buf_till_fit(hw, buf_alloc))
3844                 return 0;
3845
3846         return -ENOMEM;
3847 }
3848
3849 static int
3850 hns3_rx_priv_buf_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3851 {
3852         struct hns3_rx_priv_buff_cmd *req;
3853         struct hns3_cmd_desc desc;
3854         uint32_t buf_size;
3855         int ret;
3856         int i;
3857
3858         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_PRIV_BUFF_ALLOC, false);
3859         req = (struct hns3_rx_priv_buff_cmd *)desc.data;
3860
3861         /* Alloc private buffer TCs */
3862         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3863                 struct hns3_priv_buf *priv = &buf_alloc->priv_buf[i];
3864
3865                 req->buf_num[i] =
3866                         rte_cpu_to_le_16(priv->buf_size >> HNS3_BUF_UNIT_S);
3867                 req->buf_num[i] |= rte_cpu_to_le_16(1 << HNS3_TC0_PRI_BUF_EN_B);
3868         }
3869
3870         buf_size = buf_alloc->s_buf.buf_size;
3871         req->shared_buf = rte_cpu_to_le_16((buf_size >> HNS3_BUF_UNIT_S) |
3872                                            (1 << HNS3_TC0_PRI_BUF_EN_B));
3873
3874         ret = hns3_cmd_send(hw, &desc, 1);
3875         if (ret)
3876                 PMD_INIT_LOG(ERR, "rx private buffer alloc cmd failed %d", ret);
3877
3878         return ret;
3879 }
3880
3881 static int
3882 hns3_rx_priv_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3883 {
3884 #define HNS3_RX_PRIV_WL_ALLOC_DESC_NUM 2
3885         struct hns3_rx_priv_wl_buf *req;
3886         struct hns3_priv_buf *priv;
3887         struct hns3_cmd_desc desc[HNS3_RX_PRIV_WL_ALLOC_DESC_NUM];
3888         int i, j;
3889         int ret;
3890
3891         for (i = 0; i < HNS3_RX_PRIV_WL_ALLOC_DESC_NUM; i++) {
3892                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_PRIV_WL_ALLOC,
3893                                           false);
3894                 req = (struct hns3_rx_priv_wl_buf *)desc[i].data;
3895
3896                 /* The first descriptor set the NEXT bit to 1 */
3897                 if (i == 0)
3898                         desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3899                 else
3900                         desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3901
3902                 for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3903                         uint32_t idx = i * HNS3_TC_NUM_ONE_DESC + j;
3904
3905                         priv = &buf_alloc->priv_buf[idx];
3906                         req->tc_wl[j].high = rte_cpu_to_le_16(priv->wl.high >>
3907                                                         HNS3_BUF_UNIT_S);
3908                         req->tc_wl[j].high |=
3909                                 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3910                         req->tc_wl[j].low = rte_cpu_to_le_16(priv->wl.low >>
3911                                                         HNS3_BUF_UNIT_S);
3912                         req->tc_wl[j].low |=
3913                                 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3914                 }
3915         }
3916
3917         /* Send 2 descriptor at one time */
3918         ret = hns3_cmd_send(hw, desc, HNS3_RX_PRIV_WL_ALLOC_DESC_NUM);
3919         if (ret)
3920                 PMD_INIT_LOG(ERR, "rx private waterline config cmd failed %d",
3921                              ret);
3922         return ret;
3923 }
3924
3925 static int
3926 hns3_common_thrd_config(struct hns3_hw *hw,
3927                         struct hns3_pkt_buf_alloc *buf_alloc)
3928 {
3929 #define HNS3_RX_COM_THRD_ALLOC_DESC_NUM 2
3930         struct hns3_shared_buf *s_buf = &buf_alloc->s_buf;
3931         struct hns3_rx_com_thrd *req;
3932         struct hns3_cmd_desc desc[HNS3_RX_COM_THRD_ALLOC_DESC_NUM];
3933         struct hns3_tc_thrd *tc;
3934         int tc_idx;
3935         int i, j;
3936         int ret;
3937
3938         for (i = 0; i < HNS3_RX_COM_THRD_ALLOC_DESC_NUM; i++) {
3939                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_COM_THRD_ALLOC,
3940                                           false);
3941                 req = (struct hns3_rx_com_thrd *)&desc[i].data;
3942
3943                 /* The first descriptor set the NEXT bit to 1 */
3944                 if (i == 0)
3945                         desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3946                 else
3947                         desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3948
3949                 for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3950                         tc_idx = i * HNS3_TC_NUM_ONE_DESC + j;
3951                         tc = &s_buf->tc_thrd[tc_idx];
3952
3953                         req->com_thrd[j].high =
3954                                 rte_cpu_to_le_16(tc->high >> HNS3_BUF_UNIT_S);
3955                         req->com_thrd[j].high |=
3956                                  rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3957                         req->com_thrd[j].low =
3958                                 rte_cpu_to_le_16(tc->low >> HNS3_BUF_UNIT_S);
3959                         req->com_thrd[j].low |=
3960                                  rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3961                 }
3962         }
3963
3964         /* Send 2 descriptors at one time */
3965         ret = hns3_cmd_send(hw, desc, HNS3_RX_COM_THRD_ALLOC_DESC_NUM);
3966         if (ret)
3967                 PMD_INIT_LOG(ERR, "common threshold config cmd failed %d", ret);
3968
3969         return ret;
3970 }
3971
3972 static int
3973 hns3_common_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3974 {
3975         struct hns3_shared_buf *buf = &buf_alloc->s_buf;
3976         struct hns3_rx_com_wl *req;
3977         struct hns3_cmd_desc desc;
3978         int ret;
3979
3980         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_COM_WL_ALLOC, false);
3981
3982         req = (struct hns3_rx_com_wl *)desc.data;
3983         req->com_wl.high = rte_cpu_to_le_16(buf->self.high >> HNS3_BUF_UNIT_S);
3984         req->com_wl.high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3985
3986         req->com_wl.low = rte_cpu_to_le_16(buf->self.low >> HNS3_BUF_UNIT_S);
3987         req->com_wl.low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3988
3989         ret = hns3_cmd_send(hw, &desc, 1);
3990         if (ret)
3991                 PMD_INIT_LOG(ERR, "common waterline config cmd failed %d", ret);
3992
3993         return ret;
3994 }
3995
3996 int
3997 hns3_buffer_alloc(struct hns3_hw *hw)
3998 {
3999         struct hns3_pkt_buf_alloc pkt_buf;
4000         int ret;
4001
4002         memset(&pkt_buf, 0, sizeof(pkt_buf));
4003         ret = hns3_tx_buffer_calc(hw, &pkt_buf);
4004         if (ret) {
4005                 PMD_INIT_LOG(ERR,
4006                              "could not calc tx buffer size for all TCs %d",
4007                              ret);
4008                 return ret;
4009         }
4010
4011         ret = hns3_tx_buffer_alloc(hw, &pkt_buf);
4012         if (ret) {
4013                 PMD_INIT_LOG(ERR, "could not alloc tx buffers %d", ret);
4014                 return ret;
4015         }
4016
4017         ret = hns3_rx_buffer_calc(hw, &pkt_buf);
4018         if (ret) {
4019                 PMD_INIT_LOG(ERR,
4020                              "could not calc rx priv buffer size for all TCs %d",
4021                              ret);
4022                 return ret;
4023         }
4024
4025         ret = hns3_rx_priv_buf_alloc(hw, &pkt_buf);
4026         if (ret) {
4027                 PMD_INIT_LOG(ERR, "could not alloc rx priv buffer %d", ret);
4028                 return ret;
4029         }
4030
4031         if (hns3_dev_dcb_supported(hw)) {
4032                 ret = hns3_rx_priv_wl_config(hw, &pkt_buf);
4033                 if (ret) {
4034                         PMD_INIT_LOG(ERR,
4035                                      "could not configure rx private waterline %d",
4036                                      ret);
4037                         return ret;
4038                 }
4039
4040                 ret = hns3_common_thrd_config(hw, &pkt_buf);
4041                 if (ret) {
4042                         PMD_INIT_LOG(ERR,
4043                                      "could not configure common threshold %d",
4044                                      ret);
4045                         return ret;
4046                 }
4047         }
4048
4049         ret = hns3_common_wl_config(hw, &pkt_buf);
4050         if (ret)
4051                 PMD_INIT_LOG(ERR, "could not configure common waterline %d",
4052                              ret);
4053
4054         return ret;
4055 }
4056
4057 static int
4058 hns3_firmware_compat_config(struct hns3_hw *hw, bool is_init)
4059 {
4060         struct hns3_firmware_compat_cmd *req;
4061         struct hns3_cmd_desc desc;
4062         uint32_t compat = 0;
4063
4064         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_FIRMWARE_COMPAT_CFG, false);
4065         req = (struct hns3_firmware_compat_cmd *)desc.data;
4066
4067         if (is_init) {
4068                 hns3_set_bit(compat, HNS3_LINK_EVENT_REPORT_EN_B, 1);
4069                 hns3_set_bit(compat, HNS3_NCSI_ERROR_REPORT_EN_B, 0);
4070                 if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER)
4071                         hns3_set_bit(compat, HNS3_FIRMWARE_PHY_DRIVER_EN_B, 1);
4072         }
4073
4074         req->compat = rte_cpu_to_le_32(compat);
4075
4076         return hns3_cmd_send(hw, &desc, 1);
4077 }
4078
4079 static int
4080 hns3_mac_init(struct hns3_hw *hw)
4081 {
4082         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4083         struct hns3_mac *mac = &hw->mac;
4084         struct hns3_pf *pf = &hns->pf;
4085         int ret;
4086
4087         pf->support_sfp_query = true;
4088         mac->link_duplex = ETH_LINK_FULL_DUPLEX;
4089         ret = hns3_cfg_mac_speed_dup_hw(hw, mac->link_speed, mac->link_duplex);
4090         if (ret) {
4091                 PMD_INIT_LOG(ERR, "Config mac speed dup fail ret = %d", ret);
4092                 return ret;
4093         }
4094
4095         mac->link_status = ETH_LINK_DOWN;
4096
4097         return hns3_config_mtu(hw, pf->mps);
4098 }
4099
4100 static int
4101 hns3_get_mac_ethertype_cmd_status(uint16_t cmdq_resp, uint8_t resp_code)
4102 {
4103 #define HNS3_ETHERTYPE_SUCCESS_ADD              0
4104 #define HNS3_ETHERTYPE_ALREADY_ADD              1
4105 #define HNS3_ETHERTYPE_MGR_TBL_OVERFLOW         2
4106 #define HNS3_ETHERTYPE_KEY_CONFLICT             3
4107         int return_status;
4108
4109         if (cmdq_resp) {
4110                 PMD_INIT_LOG(ERR,
4111                              "cmdq execute failed for get_mac_ethertype_cmd_status, status=%u.\n",
4112                              cmdq_resp);
4113                 return -EIO;
4114         }
4115
4116         switch (resp_code) {
4117         case HNS3_ETHERTYPE_SUCCESS_ADD:
4118         case HNS3_ETHERTYPE_ALREADY_ADD:
4119                 return_status = 0;
4120                 break;
4121         case HNS3_ETHERTYPE_MGR_TBL_OVERFLOW:
4122                 PMD_INIT_LOG(ERR,
4123                              "add mac ethertype failed for manager table overflow.");
4124                 return_status = -EIO;
4125                 break;
4126         case HNS3_ETHERTYPE_KEY_CONFLICT:
4127                 PMD_INIT_LOG(ERR, "add mac ethertype failed for key conflict.");
4128                 return_status = -EIO;
4129                 break;
4130         default:
4131                 PMD_INIT_LOG(ERR,
4132                              "add mac ethertype failed for undefined, code=%u.",
4133                              resp_code);
4134                 return_status = -EIO;
4135                 break;
4136         }
4137
4138         return return_status;
4139 }
4140
4141 static int
4142 hns3_add_mgr_tbl(struct hns3_hw *hw,
4143                  const struct hns3_mac_mgr_tbl_entry_cmd *req)
4144 {
4145         struct hns3_cmd_desc desc;
4146         uint8_t resp_code;
4147         uint16_t retval;
4148         int ret;
4149
4150         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_ETHTYPE_ADD, false);
4151         memcpy(desc.data, req, sizeof(struct hns3_mac_mgr_tbl_entry_cmd));
4152
4153         ret = hns3_cmd_send(hw, &desc, 1);
4154         if (ret) {
4155                 PMD_INIT_LOG(ERR,
4156                              "add mac ethertype failed for cmd_send, ret =%d.",
4157                              ret);
4158                 return ret;
4159         }
4160
4161         resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
4162         retval = rte_le_to_cpu_16(desc.retval);
4163
4164         return hns3_get_mac_ethertype_cmd_status(retval, resp_code);
4165 }
4166
4167 static void
4168 hns3_prepare_mgr_tbl(struct hns3_mac_mgr_tbl_entry_cmd *mgr_table,
4169                      int *table_item_num)
4170 {
4171         struct hns3_mac_mgr_tbl_entry_cmd *tbl;
4172
4173         /*
4174          * In current version, we add one item in management table as below:
4175          * 0x0180C200000E -- LLDP MC address
4176          */
4177         tbl = mgr_table;
4178         tbl->flags = HNS3_MAC_MGR_MASK_VLAN_B;
4179         tbl->ethter_type = rte_cpu_to_le_16(HNS3_MAC_ETHERTYPE_LLDP);
4180         tbl->mac_addr_hi32 = rte_cpu_to_le_32(htonl(0x0180C200));
4181         tbl->mac_addr_lo16 = rte_cpu_to_le_16(htons(0x000E));
4182         tbl->i_port_bitmap = 0x1;
4183         *table_item_num = 1;
4184 }
4185
4186 static int
4187 hns3_init_mgr_tbl(struct hns3_hw *hw)
4188 {
4189 #define HNS_MAC_MGR_TBL_MAX_SIZE        16
4190         struct hns3_mac_mgr_tbl_entry_cmd mgr_table[HNS_MAC_MGR_TBL_MAX_SIZE];
4191         int table_item_num;
4192         int ret;
4193         int i;
4194
4195         memset(mgr_table, 0, sizeof(mgr_table));
4196         hns3_prepare_mgr_tbl(mgr_table, &table_item_num);
4197         for (i = 0; i < table_item_num; i++) {
4198                 ret = hns3_add_mgr_tbl(hw, &mgr_table[i]);
4199                 if (ret) {
4200                         PMD_INIT_LOG(ERR, "add mac ethertype failed, ret =%d",
4201                                      ret);
4202                         return ret;
4203                 }
4204         }
4205
4206         return 0;
4207 }
4208
4209 static void
4210 hns3_promisc_param_init(struct hns3_promisc_param *param, bool en_uc,
4211                         bool en_mc, bool en_bc, int vport_id)
4212 {
4213         if (!param)
4214                 return;
4215
4216         memset(param, 0, sizeof(struct hns3_promisc_param));
4217         if (en_uc)
4218                 param->enable = HNS3_PROMISC_EN_UC;
4219         if (en_mc)
4220                 param->enable |= HNS3_PROMISC_EN_MC;
4221         if (en_bc)
4222                 param->enable |= HNS3_PROMISC_EN_BC;
4223         param->vf_id = vport_id;
4224 }
4225
4226 static int
4227 hns3_cmd_set_promisc_mode(struct hns3_hw *hw, struct hns3_promisc_param *param)
4228 {
4229         struct hns3_promisc_cfg_cmd *req;
4230         struct hns3_cmd_desc desc;
4231         int ret;
4232
4233         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PROMISC_MODE, false);
4234
4235         req = (struct hns3_promisc_cfg_cmd *)desc.data;
4236         req->vf_id = param->vf_id;
4237         req->flag = (param->enable << HNS3_PROMISC_EN_B) |
4238             HNS3_PROMISC_TX_EN_B | HNS3_PROMISC_RX_EN_B;
4239
4240         ret = hns3_cmd_send(hw, &desc, 1);
4241         if (ret)
4242                 PMD_INIT_LOG(ERR, "Set promisc mode fail, ret = %d", ret);
4243
4244         return ret;
4245 }
4246
4247 static int
4248 hns3_set_promisc_mode(struct hns3_hw *hw, bool en_uc_pmc, bool en_mc_pmc)
4249 {
4250         struct hns3_promisc_param param;
4251         bool en_bc_pmc = true;
4252         uint8_t vf_id;
4253
4254         /*
4255          * In current version VF is not supported when PF is driven by DPDK
4256          * driver, just need to configure parameters for PF vport.
4257          */
4258         vf_id = HNS3_PF_FUNC_ID;
4259
4260         hns3_promisc_param_init(&param, en_uc_pmc, en_mc_pmc, en_bc_pmc, vf_id);
4261         return hns3_cmd_set_promisc_mode(hw, &param);
4262 }
4263
4264 static int
4265 hns3_promisc_init(struct hns3_hw *hw)
4266 {
4267         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4268         struct hns3_pf *pf = &hns->pf;
4269         struct hns3_promisc_param param;
4270         uint16_t func_id;
4271         int ret;
4272
4273         ret = hns3_set_promisc_mode(hw, false, false);
4274         if (ret) {
4275                 PMD_INIT_LOG(ERR, "failed to set promisc mode, ret = %d", ret);
4276                 return ret;
4277         }
4278
4279         /*
4280          * In current version VFs are not supported when PF is driven by DPDK
4281          * driver. After PF has been taken over by DPDK, the original VF will
4282          * be invalid. So, there is a possibility of entry residues. It should
4283          * clear VFs's promisc mode to avoid unnecessary bandwidth usage
4284          * during init.
4285          */
4286         for (func_id = HNS3_1ST_VF_FUNC_ID; func_id < pf->func_num; func_id++) {
4287                 hns3_promisc_param_init(&param, false, false, false, func_id);
4288                 ret = hns3_cmd_set_promisc_mode(hw, &param);
4289                 if (ret) {
4290                         PMD_INIT_LOG(ERR, "failed to clear vf:%u promisc mode,"
4291                                         " ret = %d", func_id, ret);
4292                         return ret;
4293                 }
4294         }
4295
4296         return 0;
4297 }
4298
4299 static void
4300 hns3_promisc_uninit(struct hns3_hw *hw)
4301 {
4302         struct hns3_promisc_param param;
4303         uint16_t func_id;
4304         int ret;
4305
4306         func_id = HNS3_PF_FUNC_ID;
4307
4308         /*
4309          * In current version VFs are not supported when PF is driven by
4310          * DPDK driver, and VFs' promisc mode status has been cleared during
4311          * init and their status will not change. So just clear PF's promisc
4312          * mode status during uninit.
4313          */
4314         hns3_promisc_param_init(&param, false, false, false, func_id);
4315         ret = hns3_cmd_set_promisc_mode(hw, &param);
4316         if (ret)
4317                 PMD_INIT_LOG(ERR, "failed to clear promisc status during"
4318                                 " uninit, ret = %d", ret);
4319 }
4320
4321 static int
4322 hns3_dev_promiscuous_enable(struct rte_eth_dev *dev)
4323 {
4324         bool allmulti = dev->data->all_multicast ? true : false;
4325         struct hns3_adapter *hns = dev->data->dev_private;
4326         struct hns3_hw *hw = &hns->hw;
4327         uint64_t offloads;
4328         int err;
4329         int ret;
4330
4331         rte_spinlock_lock(&hw->lock);
4332         ret = hns3_set_promisc_mode(hw, true, true);
4333         if (ret) {
4334                 rte_spinlock_unlock(&hw->lock);
4335                 hns3_err(hw, "failed to enable promiscuous mode, ret = %d",
4336                          ret);
4337                 return ret;
4338         }
4339
4340         /*
4341          * When promiscuous mode was enabled, disable the vlan filter to let
4342          * all packets coming in in the receiving direction.
4343          */
4344         offloads = dev->data->dev_conf.rxmode.offloads;
4345         if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4346                 ret = hns3_enable_vlan_filter(hns, false);
4347                 if (ret) {
4348                         hns3_err(hw, "failed to enable promiscuous mode due to "
4349                                      "failure to disable vlan filter, ret = %d",
4350                                  ret);
4351                         err = hns3_set_promisc_mode(hw, false, allmulti);
4352                         if (err)
4353                                 hns3_err(hw, "failed to restore promiscuous "
4354                                          "status after disable vlan filter "
4355                                          "failed during enabling promiscuous "
4356                                          "mode, ret = %d", ret);
4357                 }
4358         }
4359
4360         rte_spinlock_unlock(&hw->lock);
4361
4362         return ret;
4363 }
4364
4365 static int
4366 hns3_dev_promiscuous_disable(struct rte_eth_dev *dev)
4367 {
4368         bool allmulti = dev->data->all_multicast ? true : false;
4369         struct hns3_adapter *hns = dev->data->dev_private;
4370         struct hns3_hw *hw = &hns->hw;
4371         uint64_t offloads;
4372         int err;
4373         int ret;
4374
4375         /* If now in all_multicast mode, must remain in all_multicast mode. */
4376         rte_spinlock_lock(&hw->lock);
4377         ret = hns3_set_promisc_mode(hw, false, allmulti);
4378         if (ret) {
4379                 rte_spinlock_unlock(&hw->lock);
4380                 hns3_err(hw, "failed to disable promiscuous mode, ret = %d",
4381                          ret);
4382                 return ret;
4383         }
4384         /* when promiscuous mode was disabled, restore the vlan filter status */
4385         offloads = dev->data->dev_conf.rxmode.offloads;
4386         if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4387                 ret = hns3_enable_vlan_filter(hns, true);
4388                 if (ret) {
4389                         hns3_err(hw, "failed to disable promiscuous mode due to"
4390                                  " failure to restore vlan filter, ret = %d",
4391                                  ret);
4392                         err = hns3_set_promisc_mode(hw, true, true);
4393                         if (err)
4394                                 hns3_err(hw, "failed to restore promiscuous "
4395                                          "status after enabling vlan filter "
4396                                          "failed during disabling promiscuous "
4397                                          "mode, ret = %d", ret);
4398                 }
4399         }
4400         rte_spinlock_unlock(&hw->lock);
4401
4402         return ret;
4403 }
4404
4405 static int
4406 hns3_dev_allmulticast_enable(struct rte_eth_dev *dev)
4407 {
4408         struct hns3_adapter *hns = dev->data->dev_private;
4409         struct hns3_hw *hw = &hns->hw;
4410         int ret;
4411
4412         if (dev->data->promiscuous)
4413                 return 0;
4414
4415         rte_spinlock_lock(&hw->lock);
4416         ret = hns3_set_promisc_mode(hw, false, true);
4417         rte_spinlock_unlock(&hw->lock);
4418         if (ret)
4419                 hns3_err(hw, "failed to enable allmulticast mode, ret = %d",
4420                          ret);
4421
4422         return ret;
4423 }
4424
4425 static int
4426 hns3_dev_allmulticast_disable(struct rte_eth_dev *dev)
4427 {
4428         struct hns3_adapter *hns = dev->data->dev_private;
4429         struct hns3_hw *hw = &hns->hw;
4430         int ret;
4431
4432         /* If now in promiscuous mode, must remain in all_multicast mode. */
4433         if (dev->data->promiscuous)
4434                 return 0;
4435
4436         rte_spinlock_lock(&hw->lock);
4437         ret = hns3_set_promisc_mode(hw, false, false);
4438         rte_spinlock_unlock(&hw->lock);
4439         if (ret)
4440                 hns3_err(hw, "failed to disable allmulticast mode, ret = %d",
4441                          ret);
4442
4443         return ret;
4444 }
4445
4446 static int
4447 hns3_dev_promisc_restore(struct hns3_adapter *hns)
4448 {
4449         struct hns3_hw *hw = &hns->hw;
4450         bool allmulti = hw->data->all_multicast ? true : false;
4451         int ret;
4452
4453         if (hw->data->promiscuous) {
4454                 ret = hns3_set_promisc_mode(hw, true, true);
4455                 if (ret)
4456                         hns3_err(hw, "failed to restore promiscuous mode, "
4457                                  "ret = %d", ret);
4458                 return ret;
4459         }
4460
4461         ret = hns3_set_promisc_mode(hw, false, allmulti);
4462         if (ret)
4463                 hns3_err(hw, "failed to restore allmulticast mode, ret = %d",
4464                          ret);
4465         return ret;
4466 }
4467
4468 static int
4469 hns3_get_sfp_speed(struct hns3_hw *hw, uint32_t *speed)
4470 {
4471         struct hns3_sfp_speed_cmd *resp;
4472         struct hns3_cmd_desc desc;
4473         int ret;
4474
4475         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SFP_GET_SPEED, true);
4476         resp = (struct hns3_sfp_speed_cmd *)desc.data;
4477         ret = hns3_cmd_send(hw, &desc, 1);
4478         if (ret == -EOPNOTSUPP) {
4479                 hns3_err(hw, "IMP do not support get SFP speed %d", ret);
4480                 return ret;
4481         } else if (ret) {
4482                 hns3_err(hw, "get sfp speed failed %d", ret);
4483                 return ret;
4484         }
4485
4486         *speed = resp->sfp_speed;
4487
4488         return 0;
4489 }
4490
4491 static uint8_t
4492 hns3_check_speed_dup(uint8_t duplex, uint32_t speed)
4493 {
4494         if (!(speed == ETH_SPEED_NUM_10M || speed == ETH_SPEED_NUM_100M))
4495                 duplex = ETH_LINK_FULL_DUPLEX;
4496
4497         return duplex;
4498 }
4499
4500 static int
4501 hns3_cfg_mac_speed_dup(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
4502 {
4503         struct hns3_mac *mac = &hw->mac;
4504         int ret;
4505
4506         duplex = hns3_check_speed_dup(duplex, speed);
4507         if (mac->link_speed == speed && mac->link_duplex == duplex)
4508                 return 0;
4509
4510         ret = hns3_cfg_mac_speed_dup_hw(hw, speed, duplex);
4511         if (ret)
4512                 return ret;
4513
4514         ret = hns3_port_shaper_update(hw, speed);
4515         if (ret)
4516                 return ret;
4517
4518         mac->link_speed = speed;
4519         mac->link_duplex = duplex;
4520
4521         return 0;
4522 }
4523
4524 static int
4525 hns3_update_fiber_link_info(struct hns3_hw *hw)
4526 {
4527         struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
4528         uint32_t speed;
4529         int ret;
4530
4531         /* If IMP do not support get SFP/qSFP speed, return directly */
4532         if (!pf->support_sfp_query)
4533                 return 0;
4534
4535         ret = hns3_get_sfp_speed(hw, &speed);
4536         if (ret == -EOPNOTSUPP) {
4537                 pf->support_sfp_query = false;
4538                 return ret;
4539         } else if (ret)
4540                 return ret;
4541
4542         if (speed == ETH_SPEED_NUM_NONE)
4543                 return 0; /* do nothing if no SFP */
4544
4545         /* Config full duplex for SFP */
4546         return hns3_cfg_mac_speed_dup(hw, speed, ETH_LINK_FULL_DUPLEX);
4547 }
4548
4549 static void
4550 hns3_parse_phy_params(struct hns3_cmd_desc *desc, struct hns3_mac *mac)
4551 {
4552         struct hns3_phy_params_bd0_cmd *req;
4553
4554         req = (struct hns3_phy_params_bd0_cmd *)desc[0].data;
4555         mac->link_speed = rte_le_to_cpu_32(req->speed);
4556         mac->link_duplex = hns3_get_bit(req->duplex,
4557                                            HNS3_PHY_DUPLEX_CFG_B);
4558         mac->link_autoneg = hns3_get_bit(req->autoneg,
4559                                            HNS3_PHY_AUTONEG_CFG_B);
4560         mac->supported_capa = rte_le_to_cpu_32(req->supported);
4561         mac->advertising = rte_le_to_cpu_32(req->advertising);
4562         mac->lp_advertising = rte_le_to_cpu_32(req->lp_advertising);
4563         mac->support_autoneg = !!(mac->supported_capa &
4564                                 HNS3_PHY_LINK_MODE_AUTONEG_BIT);
4565 }
4566
4567 static int
4568 hns3_get_phy_params(struct hns3_hw *hw, struct hns3_mac *mac)
4569 {
4570         struct hns3_cmd_desc desc[HNS3_PHY_PARAM_CFG_BD_NUM];
4571         uint16_t i;
4572         int ret;
4573
4574         for (i = 0; i < HNS3_PHY_PARAM_CFG_BD_NUM - 1; i++) {
4575                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG,
4576                                           true);
4577                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4578         }
4579         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, true);
4580
4581         ret = hns3_cmd_send(hw, desc, HNS3_PHY_PARAM_CFG_BD_NUM);
4582         if (ret) {
4583                 hns3_err(hw, "get phy parameters failed, ret = %d.", ret);
4584                 return ret;
4585         }
4586
4587         hns3_parse_phy_params(desc, mac);
4588
4589         return 0;
4590 }
4591
4592 static int
4593 hns3_update_phy_link_info(struct hns3_hw *hw)
4594 {
4595         struct hns3_mac *mac = &hw->mac;
4596         struct hns3_mac mac_info;
4597         int ret;
4598
4599         memset(&mac_info, 0, sizeof(struct hns3_mac));
4600         ret = hns3_get_phy_params(hw, &mac_info);
4601         if (ret)
4602                 return ret;
4603
4604         if (mac_info.link_speed != mac->link_speed) {
4605                 ret = hns3_port_shaper_update(hw, mac_info.link_speed);
4606                 if (ret)
4607                         return ret;
4608         }
4609
4610         mac->link_speed = mac_info.link_speed;
4611         mac->link_duplex = mac_info.link_duplex;
4612         mac->link_autoneg = mac_info.link_autoneg;
4613         mac->supported_capa = mac_info.supported_capa;
4614         mac->advertising = mac_info.advertising;
4615         mac->lp_advertising = mac_info.lp_advertising;
4616         mac->support_autoneg = mac_info.support_autoneg;
4617
4618         return 0;
4619 }
4620
4621 static int
4622 hns3_update_link_info(struct rte_eth_dev *eth_dev)
4623 {
4624         struct hns3_adapter *hns = eth_dev->data->dev_private;
4625         struct hns3_hw *hw = &hns->hw;
4626         int ret = 0;
4627
4628         if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER)
4629                 ret = hns3_update_phy_link_info(hw);
4630         else if (hw->mac.media_type == HNS3_MEDIA_TYPE_FIBER)
4631                 ret = hns3_update_fiber_link_info(hw);
4632
4633         return ret;
4634 }
4635
4636 static int
4637 hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable)
4638 {
4639         struct hns3_config_mac_mode_cmd *req;
4640         struct hns3_cmd_desc desc;
4641         uint32_t loop_en = 0;
4642         uint8_t val = 0;
4643         int ret;
4644
4645         req = (struct hns3_config_mac_mode_cmd *)desc.data;
4646
4647         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAC_MODE, false);
4648         if (enable)
4649                 val = 1;
4650         hns3_set_bit(loop_en, HNS3_MAC_TX_EN_B, val);
4651         hns3_set_bit(loop_en, HNS3_MAC_RX_EN_B, val);
4652         hns3_set_bit(loop_en, HNS3_MAC_PAD_TX_B, val);
4653         hns3_set_bit(loop_en, HNS3_MAC_PAD_RX_B, val);
4654         hns3_set_bit(loop_en, HNS3_MAC_1588_TX_B, 0);
4655         hns3_set_bit(loop_en, HNS3_MAC_1588_RX_B, 0);
4656         hns3_set_bit(loop_en, HNS3_MAC_APP_LP_B, 0);
4657         hns3_set_bit(loop_en, HNS3_MAC_LINE_LP_B, 0);
4658         hns3_set_bit(loop_en, HNS3_MAC_FCS_TX_B, val);
4659         hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_B, val);
4660
4661         /*
4662          * If DEV_RX_OFFLOAD_KEEP_CRC offload is set, MAC will not strip CRC
4663          * when receiving frames. Otherwise, CRC will be stripped.
4664          */
4665         if (hw->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
4666                 hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, 0);
4667         else
4668                 hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, val);
4669         hns3_set_bit(loop_en, HNS3_MAC_TX_OVERSIZE_TRUNCATE_B, val);
4670         hns3_set_bit(loop_en, HNS3_MAC_RX_OVERSIZE_TRUNCATE_B, val);
4671         hns3_set_bit(loop_en, HNS3_MAC_TX_UNDER_MIN_ERR_B, val);
4672         req->txrx_pad_fcs_loop_en = rte_cpu_to_le_32(loop_en);
4673
4674         ret = hns3_cmd_send(hw, &desc, 1);
4675         if (ret)
4676                 PMD_INIT_LOG(ERR, "mac enable fail, ret =%d.", ret);
4677
4678         return ret;
4679 }
4680
4681 static int
4682 hns3_get_mac_link_status(struct hns3_hw *hw)
4683 {
4684         struct hns3_link_status_cmd *req;
4685         struct hns3_cmd_desc desc;
4686         int link_status;
4687         int ret;
4688
4689         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_LINK_STATUS, true);
4690         ret = hns3_cmd_send(hw, &desc, 1);
4691         if (ret) {
4692                 hns3_err(hw, "get link status cmd failed %d", ret);
4693                 return ETH_LINK_DOWN;
4694         }
4695
4696         req = (struct hns3_link_status_cmd *)desc.data;
4697         link_status = req->status & HNS3_LINK_STATUS_UP_M;
4698
4699         return !!link_status;
4700 }
4701
4702 static bool
4703 hns3_update_link_status(struct hns3_hw *hw)
4704 {
4705         int state;
4706
4707         state = hns3_get_mac_link_status(hw);
4708         if (state != hw->mac.link_status) {
4709                 hw->mac.link_status = state;
4710                 hns3_warn(hw, "Link status change to %s!", state ? "up" : "down");
4711                 hns3_config_mac_tnl_int(hw,
4712                                         state == ETH_LINK_UP ? true : false);
4713                 return true;
4714         }
4715
4716         return false;
4717 }
4718
4719 /*
4720  * Current, the PF driver get link status by two ways:
4721  * 1) Periodic polling in the intr thread context, driver call
4722  *    hns3_update_link_status to update link status.
4723  * 2) Firmware report async interrupt, driver process the event in the intr
4724  *    thread context, and call hns3_update_link_status to update link status.
4725  *
4726  * If detect link status changed, driver need report LSE. One method is add the
4727  * report LSE logic in hns3_update_link_status.
4728  *
4729  * But the PF driver ops(link_update) also call hns3_update_link_status to
4730  * update link status.
4731  * If we report LSE in hns3_update_link_status, it may lead to deadlock in the
4732  * bonding application.
4733  *
4734  * So add the one new API which used only in intr thread context.
4735  */
4736 void
4737 hns3_update_link_status_and_event(struct hns3_hw *hw)
4738 {
4739         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
4740         bool changed = hns3_update_link_status(hw);
4741         if (changed)
4742                 rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
4743 }
4744
4745 static void
4746 hns3_service_handler(void *param)
4747 {
4748         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
4749         struct hns3_adapter *hns = eth_dev->data->dev_private;
4750         struct hns3_hw *hw = &hns->hw;
4751
4752         if (!hns3_is_reset_pending(hns)) {
4753                 hns3_update_link_status_and_event(hw);
4754                 hns3_update_link_info(eth_dev);
4755         } else {
4756                 hns3_warn(hw, "Cancel the query when reset is pending");
4757         }
4758
4759         rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev);
4760 }
4761
4762 static int
4763 hns3_init_hardware(struct hns3_adapter *hns)
4764 {
4765         struct hns3_hw *hw = &hns->hw;
4766         int ret;
4767
4768         ret = hns3_map_tqp(hw);
4769         if (ret) {
4770                 PMD_INIT_LOG(ERR, "Failed to map tqp: %d", ret);
4771                 return ret;
4772         }
4773
4774         ret = hns3_init_umv_space(hw);
4775         if (ret) {
4776                 PMD_INIT_LOG(ERR, "Failed to init umv space: %d", ret);
4777                 return ret;
4778         }
4779
4780         ret = hns3_mac_init(hw);
4781         if (ret) {
4782                 PMD_INIT_LOG(ERR, "Failed to init MAC: %d", ret);
4783                 goto err_mac_init;
4784         }
4785
4786         ret = hns3_init_mgr_tbl(hw);
4787         if (ret) {
4788                 PMD_INIT_LOG(ERR, "Failed to init manager table: %d", ret);
4789                 goto err_mac_init;
4790         }
4791
4792         ret = hns3_promisc_init(hw);
4793         if (ret) {
4794                 PMD_INIT_LOG(ERR, "Failed to init promisc: %d",
4795                              ret);
4796                 goto err_mac_init;
4797         }
4798
4799         ret = hns3_init_vlan_config(hns);
4800         if (ret) {
4801                 PMD_INIT_LOG(ERR, "Failed to init vlan: %d", ret);
4802                 goto err_mac_init;
4803         }
4804
4805         ret = hns3_dcb_init(hw);
4806         if (ret) {
4807                 PMD_INIT_LOG(ERR, "Failed to init dcb: %d", ret);
4808                 goto err_mac_init;
4809         }
4810
4811         ret = hns3_init_fd_config(hns);
4812         if (ret) {
4813                 PMD_INIT_LOG(ERR, "Failed to init flow director: %d", ret);
4814                 goto err_mac_init;
4815         }
4816
4817         ret = hns3_config_tso(hw, HNS3_TSO_MSS_MIN, HNS3_TSO_MSS_MAX);
4818         if (ret) {
4819                 PMD_INIT_LOG(ERR, "Failed to config tso: %d", ret);
4820                 goto err_mac_init;
4821         }
4822
4823         ret = hns3_config_gro(hw, false);
4824         if (ret) {
4825                 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
4826                 goto err_mac_init;
4827         }
4828
4829         /*
4830          * In the initialization clearing the all hardware mapping relationship
4831          * configurations between queues and interrupt vectors is needed, so
4832          * some error caused by the residual configurations, such as the
4833          * unexpected interrupt, can be avoid.
4834          */
4835         ret = hns3_init_ring_with_vector(hw);
4836         if (ret) {
4837                 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
4838                 goto err_mac_init;
4839         }
4840
4841         /*
4842          * Requiring firmware to enable some features, driver can
4843          * still work without it.
4844          */
4845         ret = hns3_firmware_compat_config(hw, true);
4846         if (ret)
4847                 PMD_INIT_LOG(WARNING, "firmware compatible features not "
4848                              "supported, ret = %d.", ret);
4849
4850         return 0;
4851
4852 err_mac_init:
4853         hns3_uninit_umv_space(hw);
4854         return ret;
4855 }
4856
4857 static int
4858 hns3_clear_hw(struct hns3_hw *hw)
4859 {
4860         struct hns3_cmd_desc desc;
4861         int ret;
4862
4863         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_HW_STATE, false);
4864
4865         ret = hns3_cmd_send(hw, &desc, 1);
4866         if (ret && ret != -EOPNOTSUPP)
4867                 return ret;
4868
4869         return 0;
4870 }
4871
4872 static void
4873 hns3_config_all_msix_error(struct hns3_hw *hw, bool enable)
4874 {
4875         uint32_t val;
4876
4877         /*
4878          * The new firmware support report more hardware error types by
4879          * msix mode. These errors are defined as RAS errors in hardware
4880          * and belong to a different type from the MSI-x errors processed
4881          * by the network driver.
4882          *
4883          * Network driver should open the new error report on initialition
4884          */
4885         val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
4886         hns3_set_bit(val, HNS3_VECTOR0_ALL_MSIX_ERR_B, enable ? 1 : 0);
4887         hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, val);
4888 }
4889
4890 static int
4891 hns3_init_pf(struct rte_eth_dev *eth_dev)
4892 {
4893         struct rte_device *dev = eth_dev->device;
4894         struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4895         struct hns3_adapter *hns = eth_dev->data->dev_private;
4896         struct hns3_hw *hw = &hns->hw;
4897         int ret;
4898
4899         PMD_INIT_FUNC_TRACE();
4900
4901         /* Get hardware io base address from pcie BAR2 IO space */
4902         hw->io_base = pci_dev->mem_resource[2].addr;
4903
4904         /* Firmware command queue initialize */
4905         ret = hns3_cmd_init_queue(hw);
4906         if (ret) {
4907                 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
4908                 goto err_cmd_init_queue;
4909         }
4910
4911         hns3_clear_all_event_cause(hw);
4912
4913         /* Firmware command initialize */
4914         ret = hns3_cmd_init(hw);
4915         if (ret) {
4916                 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
4917                 goto err_cmd_init;
4918         }
4919
4920         /*
4921          * To ensure that the hardware environment is clean during
4922          * initialization, the driver actively clear the hardware environment
4923          * during initialization, including PF and corresponding VFs' vlan, mac,
4924          * flow table configurations, etc.
4925          */
4926         ret = hns3_clear_hw(hw);
4927         if (ret) {
4928                 PMD_INIT_LOG(ERR, "failed to clear hardware: %d", ret);
4929                 goto err_cmd_init;
4930         }
4931
4932         /* Hardware statistics of imissed registers cleared. */
4933         ret = hns3_update_imissed_stats(hw, true);
4934         if (ret) {
4935                 hns3_err(hw, "clear imissed stats failed, ret = %d", ret);
4936                 return ret;
4937         }
4938
4939         hns3_config_all_msix_error(hw, true);
4940
4941         ret = rte_intr_callback_register(&pci_dev->intr_handle,
4942                                          hns3_interrupt_handler,
4943                                          eth_dev);
4944         if (ret) {
4945                 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
4946                 goto err_intr_callback_register;
4947         }
4948
4949         /* Enable interrupt */
4950         rte_intr_enable(&pci_dev->intr_handle);
4951         hns3_pf_enable_irq0(hw);
4952
4953         /* Get configuration */
4954         ret = hns3_get_configuration(hw);
4955         if (ret) {
4956                 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
4957                 goto err_get_config;
4958         }
4959
4960         ret = hns3_tqp_stats_init(hw);
4961         if (ret)
4962                 goto err_get_config;
4963
4964         ret = hns3_init_hardware(hns);
4965         if (ret) {
4966                 PMD_INIT_LOG(ERR, "Failed to init hardware: %d", ret);
4967                 goto err_init_hw;
4968         }
4969
4970         /* Initialize flow director filter list & hash */
4971         ret = hns3_fdir_filter_init(hns);
4972         if (ret) {
4973                 PMD_INIT_LOG(ERR, "Failed to alloc hashmap for fdir: %d", ret);
4974                 goto err_fdir;
4975         }
4976
4977         hns3_rss_set_default_args(hw);
4978
4979         ret = hns3_enable_hw_error_intr(hns, true);
4980         if (ret) {
4981                 PMD_INIT_LOG(ERR, "fail to enable hw error interrupts: %d",
4982                              ret);
4983                 goto err_enable_intr;
4984         }
4985
4986         hns3_tm_conf_init(eth_dev);
4987
4988         return 0;
4989
4990 err_enable_intr:
4991         hns3_fdir_filter_uninit(hns);
4992 err_fdir:
4993         (void)hns3_firmware_compat_config(hw, false);
4994         hns3_uninit_umv_space(hw);
4995 err_init_hw:
4996         hns3_tqp_stats_uninit(hw);
4997 err_get_config:
4998         hns3_pf_disable_irq0(hw);
4999         rte_intr_disable(&pci_dev->intr_handle);
5000         hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
5001                              eth_dev);
5002 err_intr_callback_register:
5003 err_cmd_init:
5004         hns3_cmd_uninit(hw);
5005         hns3_cmd_destroy_queue(hw);
5006 err_cmd_init_queue:
5007         hw->io_base = NULL;
5008
5009         return ret;
5010 }
5011
5012 static void
5013 hns3_uninit_pf(struct rte_eth_dev *eth_dev)
5014 {
5015         struct hns3_adapter *hns = eth_dev->data->dev_private;
5016         struct rte_device *dev = eth_dev->device;
5017         struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
5018         struct hns3_hw *hw = &hns->hw;
5019
5020         PMD_INIT_FUNC_TRACE();
5021
5022         hns3_tm_conf_uninit(eth_dev);
5023         hns3_enable_hw_error_intr(hns, false);
5024         hns3_rss_uninit(hns);
5025         (void)hns3_config_gro(hw, false);
5026         hns3_promisc_uninit(hw);
5027         hns3_fdir_filter_uninit(hns);
5028         (void)hns3_firmware_compat_config(hw, false);
5029         hns3_uninit_umv_space(hw);
5030         hns3_tqp_stats_uninit(hw);
5031         hns3_config_mac_tnl_int(hw, false);
5032         hns3_pf_disable_irq0(hw);
5033         rte_intr_disable(&pci_dev->intr_handle);
5034         hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
5035                              eth_dev);
5036         hns3_config_all_msix_error(hw, false);
5037         hns3_cmd_uninit(hw);
5038         hns3_cmd_destroy_queue(hw);
5039         hw->io_base = NULL;
5040 }
5041
5042 static int
5043 hns3_do_start(struct hns3_adapter *hns, bool reset_queue)
5044 {
5045         struct hns3_hw *hw = &hns->hw;
5046         int ret;
5047
5048         ret = hns3_dcb_cfg_update(hns);
5049         if (ret)
5050                 return ret;
5051
5052         /*
5053          * The hns3_dcb_cfg_update may configure TM module, so
5054          * hns3_tm_conf_update must called later.
5055          */
5056         ret = hns3_tm_conf_update(hw);
5057         if (ret) {
5058                 PMD_INIT_LOG(ERR, "failed to update tm conf, ret = %d.", ret);
5059                 return ret;
5060         }
5061
5062         hns3_enable_rxd_adv_layout(hw);
5063
5064         ret = hns3_init_queues(hns, reset_queue);
5065         if (ret) {
5066                 PMD_INIT_LOG(ERR, "failed to init queues, ret = %d.", ret);
5067                 return ret;
5068         }
5069
5070         ret = hns3_cfg_mac_mode(hw, true);
5071         if (ret) {
5072                 PMD_INIT_LOG(ERR, "failed to enable MAC, ret = %d", ret);
5073                 goto err_config_mac_mode;
5074         }
5075         return 0;
5076
5077 err_config_mac_mode:
5078         hns3_dev_release_mbufs(hns);
5079         /*
5080          * Here is exception handling, hns3_reset_all_tqps will have the
5081          * corresponding error message if it is handled incorrectly, so it is
5082          * not necessary to check hns3_reset_all_tqps return value, here keep
5083          * ret as the error code causing the exception.
5084          */
5085         (void)hns3_reset_all_tqps(hns);
5086         return ret;
5087 }
5088
5089 static int
5090 hns3_map_rx_interrupt(struct rte_eth_dev *dev)
5091 {
5092         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5093         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5094         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5095         uint16_t base = RTE_INTR_VEC_ZERO_OFFSET;
5096         uint16_t vec = RTE_INTR_VEC_ZERO_OFFSET;
5097         uint32_t intr_vector;
5098         uint16_t q_id;
5099         int ret;
5100
5101         /*
5102          * hns3 needs a separate interrupt to be used as event interrupt which
5103          * could not be shared with task queue pair, so KERNEL drivers need
5104          * support multiple interrupt vectors.
5105          */
5106         if (dev->data->dev_conf.intr_conf.rxq == 0 ||
5107             !rte_intr_cap_multiple(intr_handle))
5108                 return 0;
5109
5110         rte_intr_disable(intr_handle);
5111         intr_vector = hw->used_rx_queues;
5112         /* creates event fd for each intr vector when MSIX is used */
5113         if (rte_intr_efd_enable(intr_handle, intr_vector))
5114                 return -EINVAL;
5115
5116         if (intr_handle->intr_vec == NULL) {
5117                 intr_handle->intr_vec =
5118                         rte_zmalloc("intr_vec",
5119                                     hw->used_rx_queues * sizeof(int), 0);
5120                 if (intr_handle->intr_vec == NULL) {
5121                         hns3_err(hw, "failed to allocate %u rx_queues intr_vec",
5122                                         hw->used_rx_queues);
5123                         ret = -ENOMEM;
5124                         goto alloc_intr_vec_error;
5125                 }
5126         }
5127
5128         if (rte_intr_allow_others(intr_handle)) {
5129                 vec = RTE_INTR_VEC_RXTX_OFFSET;
5130                 base = RTE_INTR_VEC_RXTX_OFFSET;
5131         }
5132
5133         for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5134                 ret = hns3_bind_ring_with_vector(hw, vec, true,
5135                                                  HNS3_RING_TYPE_RX, q_id);
5136                 if (ret)
5137                         goto bind_vector_error;
5138                 intr_handle->intr_vec[q_id] = vec;
5139                 /*
5140                  * If there are not enough efds (e.g. not enough interrupt),
5141                  * remaining queues will be bond to the last interrupt.
5142                  */
5143                 if (vec < base + intr_handle->nb_efd - 1)
5144                         vec++;
5145         }
5146         rte_intr_enable(intr_handle);
5147         return 0;
5148
5149 bind_vector_error:
5150         rte_free(intr_handle->intr_vec);
5151         intr_handle->intr_vec = NULL;
5152 alloc_intr_vec_error:
5153         rte_intr_efd_disable(intr_handle);
5154         return ret;
5155 }
5156
5157 static int
5158 hns3_restore_rx_interrupt(struct hns3_hw *hw)
5159 {
5160         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
5161         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5162         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5163         uint16_t q_id;
5164         int ret;
5165
5166         if (dev->data->dev_conf.intr_conf.rxq == 0)
5167                 return 0;
5168
5169         if (rte_intr_dp_is_en(intr_handle)) {
5170                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5171                         ret = hns3_bind_ring_with_vector(hw,
5172                                         intr_handle->intr_vec[q_id], true,
5173                                         HNS3_RING_TYPE_RX, q_id);
5174                         if (ret)
5175                                 return ret;
5176                 }
5177         }
5178
5179         return 0;
5180 }
5181
5182 static void
5183 hns3_restore_filter(struct rte_eth_dev *dev)
5184 {
5185         hns3_restore_rss_filter(dev);
5186 }
5187
5188 static int
5189 hns3_dev_start(struct rte_eth_dev *dev)
5190 {
5191         struct hns3_adapter *hns = dev->data->dev_private;
5192         struct hns3_hw *hw = &hns->hw;
5193         int ret;
5194
5195         PMD_INIT_FUNC_TRACE();
5196         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
5197                 return -EBUSY;
5198
5199         rte_spinlock_lock(&hw->lock);
5200         hw->adapter_state = HNS3_NIC_STARTING;
5201
5202         ret = hns3_do_start(hns, true);
5203         if (ret) {
5204                 hw->adapter_state = HNS3_NIC_CONFIGURED;
5205                 rte_spinlock_unlock(&hw->lock);
5206                 return ret;
5207         }
5208         ret = hns3_map_rx_interrupt(dev);
5209         if (ret)
5210                 goto map_rx_inter_err;
5211
5212         /*
5213          * There are three register used to control the status of a TQP
5214          * (contains a pair of Tx queue and Rx queue) in the new version network
5215          * engine. One is used to control the enabling of Tx queue, the other is
5216          * used to control the enabling of Rx queue, and the last is the master
5217          * switch used to control the enabling of the tqp. The Tx register and
5218          * TQP register must be enabled at the same time to enable a Tx queue.
5219          * The same applies to the Rx queue. For the older network engine, this
5220          * function only refresh the enabled flag, and it is used to update the
5221          * status of queue in the dpdk framework.
5222          */
5223         ret = hns3_start_all_txqs(dev);
5224         if (ret)
5225                 goto map_rx_inter_err;
5226
5227         ret = hns3_start_all_rxqs(dev);
5228         if (ret)
5229                 goto start_all_rxqs_fail;
5230
5231         hw->adapter_state = HNS3_NIC_STARTED;
5232         rte_spinlock_unlock(&hw->lock);
5233
5234         hns3_rx_scattered_calc(dev);
5235         hns3_set_rxtx_function(dev);
5236         hns3_mp_req_start_rxtx(dev);
5237         rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, dev);
5238
5239         hns3_restore_filter(dev);
5240
5241         /* Enable interrupt of all rx queues before enabling queues */
5242         hns3_dev_all_rx_queue_intr_enable(hw, true);
5243
5244         /*
5245          * After finished the initialization, enable tqps to receive/transmit
5246          * packets and refresh all queue status.
5247          */
5248         hns3_start_tqps(hw);
5249
5250         hns3_tm_dev_start_proc(hw);
5251
5252         hns3_info(hw, "hns3 dev start successful!");
5253
5254         return 0;
5255
5256 start_all_rxqs_fail:
5257         hns3_stop_all_txqs(dev);
5258 map_rx_inter_err:
5259         (void)hns3_do_stop(hns);
5260         hw->adapter_state = HNS3_NIC_CONFIGURED;
5261         rte_spinlock_unlock(&hw->lock);
5262
5263         return ret;
5264 }
5265
5266 static int
5267 hns3_do_stop(struct hns3_adapter *hns)
5268 {
5269         struct hns3_hw *hw = &hns->hw;
5270         int ret;
5271
5272         /*
5273          * The "hns3_do_stop" function will also be called by .stop_service to
5274          * prepare reset. At the time of global or IMP reset, the command cannot
5275          * be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be
5276          * accessed during the reset process. So the mbuf can not be released
5277          * during reset and is required to be released after the reset is
5278          * completed.
5279          */
5280         if (__atomic_load_n(&hw->reset.resetting,  __ATOMIC_RELAXED) == 0)
5281                 hns3_dev_release_mbufs(hns);
5282
5283         ret = hns3_cfg_mac_mode(hw, false);
5284         if (ret)
5285                 return ret;
5286         hw->mac.link_status = ETH_LINK_DOWN;
5287
5288         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) {
5289                 hns3_configure_all_mac_addr(hns, true);
5290                 ret = hns3_reset_all_tqps(hns);
5291                 if (ret) {
5292                         hns3_err(hw, "failed to reset all queues ret = %d.",
5293                                  ret);
5294                         return ret;
5295                 }
5296         }
5297         hw->mac.default_addr_setted = false;
5298         return 0;
5299 }
5300
5301 static void
5302 hns3_unmap_rx_interrupt(struct rte_eth_dev *dev)
5303 {
5304         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5305         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5306         struct hns3_adapter *hns = dev->data->dev_private;
5307         struct hns3_hw *hw = &hns->hw;
5308         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
5309         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
5310         uint16_t q_id;
5311
5312         if (dev->data->dev_conf.intr_conf.rxq == 0)
5313                 return;
5314
5315         /* unmap the ring with vector */
5316         if (rte_intr_allow_others(intr_handle)) {
5317                 vec = RTE_INTR_VEC_RXTX_OFFSET;
5318                 base = RTE_INTR_VEC_RXTX_OFFSET;
5319         }
5320         if (rte_intr_dp_is_en(intr_handle)) {
5321                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5322                         (void)hns3_bind_ring_with_vector(hw, vec, false,
5323                                                          HNS3_RING_TYPE_RX,
5324                                                          q_id);
5325                         if (vec < base + intr_handle->nb_efd - 1)
5326                                 vec++;
5327                 }
5328         }
5329         /* Clean datapath event and queue/vec mapping */
5330         rte_intr_efd_disable(intr_handle);
5331         if (intr_handle->intr_vec) {
5332                 rte_free(intr_handle->intr_vec);
5333                 intr_handle->intr_vec = NULL;
5334         }
5335 }
5336
5337 static int
5338 hns3_dev_stop(struct rte_eth_dev *dev)
5339 {
5340         struct hns3_adapter *hns = dev->data->dev_private;
5341         struct hns3_hw *hw = &hns->hw;
5342
5343         PMD_INIT_FUNC_TRACE();
5344         dev->data->dev_started = 0;
5345
5346         hw->adapter_state = HNS3_NIC_STOPPING;
5347         hns3_set_rxtx_function(dev);
5348         rte_wmb();
5349         /* Disable datapath on secondary process. */
5350         hns3_mp_req_stop_rxtx(dev);
5351         /* Prevent crashes when queues are still in use. */
5352         rte_delay_ms(hw->tqps_num);
5353
5354         rte_spinlock_lock(&hw->lock);
5355         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
5356                 hns3_tm_dev_stop_proc(hw);
5357                 hns3_config_mac_tnl_int(hw, false);
5358                 hns3_stop_tqps(hw);
5359                 hns3_do_stop(hns);
5360                 hns3_unmap_rx_interrupt(dev);
5361                 hw->adapter_state = HNS3_NIC_CONFIGURED;
5362         }
5363         hns3_rx_scattered_reset(dev);
5364         rte_eal_alarm_cancel(hns3_service_handler, dev);
5365         rte_spinlock_unlock(&hw->lock);
5366
5367         return 0;
5368 }
5369
5370 static int
5371 hns3_dev_close(struct rte_eth_dev *eth_dev)
5372 {
5373         struct hns3_adapter *hns = eth_dev->data->dev_private;
5374         struct hns3_hw *hw = &hns->hw;
5375         int ret = 0;
5376
5377         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
5378                 rte_free(eth_dev->process_private);
5379                 eth_dev->process_private = NULL;
5380                 return 0;
5381         }
5382
5383         if (hw->adapter_state == HNS3_NIC_STARTED)
5384                 ret = hns3_dev_stop(eth_dev);
5385
5386         hw->adapter_state = HNS3_NIC_CLOSING;
5387         hns3_reset_abort(hns);
5388         hw->adapter_state = HNS3_NIC_CLOSED;
5389
5390         hns3_configure_all_mc_mac_addr(hns, true);
5391         hns3_remove_all_vlan_table(hns);
5392         hns3_vlan_txvlan_cfg(hns, HNS3_PORT_BASE_VLAN_DISABLE, 0);
5393         hns3_uninit_pf(eth_dev);
5394         hns3_free_all_queues(eth_dev);
5395         rte_free(hw->reset.wait_data);
5396         rte_free(eth_dev->process_private);
5397         eth_dev->process_private = NULL;
5398         hns3_mp_uninit_primary();
5399         hns3_warn(hw, "Close port %u finished", hw->data->port_id);
5400
5401         return ret;
5402 }
5403
5404 static int
5405 hns3_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5406 {
5407         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5408         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5409
5410         fc_conf->pause_time = pf->pause_time;
5411
5412         /* return fc current mode */
5413         switch (hw->current_mode) {
5414         case HNS3_FC_FULL:
5415                 fc_conf->mode = RTE_FC_FULL;
5416                 break;
5417         case HNS3_FC_TX_PAUSE:
5418                 fc_conf->mode = RTE_FC_TX_PAUSE;
5419                 break;
5420         case HNS3_FC_RX_PAUSE:
5421                 fc_conf->mode = RTE_FC_RX_PAUSE;
5422                 break;
5423         case HNS3_FC_NONE:
5424         default:
5425                 fc_conf->mode = RTE_FC_NONE;
5426                 break;
5427         }
5428
5429         return 0;
5430 }
5431
5432 static void
5433 hns3_get_fc_mode(struct hns3_hw *hw, enum rte_eth_fc_mode mode)
5434 {
5435         switch (mode) {
5436         case RTE_FC_NONE:
5437                 hw->requested_mode = HNS3_FC_NONE;
5438                 break;
5439         case RTE_FC_RX_PAUSE:
5440                 hw->requested_mode = HNS3_FC_RX_PAUSE;
5441                 break;
5442         case RTE_FC_TX_PAUSE:
5443                 hw->requested_mode = HNS3_FC_TX_PAUSE;
5444                 break;
5445         case RTE_FC_FULL:
5446                 hw->requested_mode = HNS3_FC_FULL;
5447                 break;
5448         default:
5449                 hw->requested_mode = HNS3_FC_NONE;
5450                 hns3_warn(hw, "fc_mode(%u) exceeds member scope and is "
5451                           "configured to RTE_FC_NONE", mode);
5452                 break;
5453         }
5454 }
5455
5456 static int
5457 hns3_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5458 {
5459         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5460         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5461         int ret;
5462
5463         if (fc_conf->high_water || fc_conf->low_water ||
5464             fc_conf->send_xon || fc_conf->mac_ctrl_frame_fwd) {
5465                 hns3_err(hw, "Unsupported flow control settings specified, "
5466                          "high_water(%u), low_water(%u), send_xon(%u) and "
5467                          "mac_ctrl_frame_fwd(%u) must be set to '0'",
5468                          fc_conf->high_water, fc_conf->low_water,
5469                          fc_conf->send_xon, fc_conf->mac_ctrl_frame_fwd);
5470                 return -EINVAL;
5471         }
5472         if (fc_conf->autoneg) {
5473                 hns3_err(hw, "Unsupported fc auto-negotiation setting.");
5474                 return -EINVAL;
5475         }
5476         if (!fc_conf->pause_time) {
5477                 hns3_err(hw, "Invalid pause time %u setting.",
5478                          fc_conf->pause_time);
5479                 return -EINVAL;
5480         }
5481
5482         if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5483             hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)) {
5484                 hns3_err(hw, "PFC is enabled. Cannot set MAC pause. "
5485                          "current_fc_status = %d", hw->current_fc_status);
5486                 return -EOPNOTSUPP;
5487         }
5488
5489         hns3_get_fc_mode(hw, fc_conf->mode);
5490         if (hw->requested_mode == hw->current_mode &&
5491             pf->pause_time == fc_conf->pause_time)
5492                 return 0;
5493
5494         rte_spinlock_lock(&hw->lock);
5495         ret = hns3_fc_enable(dev, fc_conf);
5496         rte_spinlock_unlock(&hw->lock);
5497
5498         return ret;
5499 }
5500
5501 static int
5502 hns3_priority_flow_ctrl_set(struct rte_eth_dev *dev,
5503                             struct rte_eth_pfc_conf *pfc_conf)
5504 {
5505         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5506         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5507         uint8_t priority;
5508         int ret;
5509
5510         if (!hns3_dev_dcb_supported(hw)) {
5511                 hns3_err(hw, "This port does not support dcb configurations.");
5512                 return -EOPNOTSUPP;
5513         }
5514
5515         if (pfc_conf->fc.high_water || pfc_conf->fc.low_water ||
5516             pfc_conf->fc.send_xon || pfc_conf->fc.mac_ctrl_frame_fwd) {
5517                 hns3_err(hw, "Unsupported flow control settings specified, "
5518                          "high_water(%u), low_water(%u), send_xon(%u) and "
5519                          "mac_ctrl_frame_fwd(%u) must be set to '0'",
5520                          pfc_conf->fc.high_water, pfc_conf->fc.low_water,
5521                          pfc_conf->fc.send_xon,
5522                          pfc_conf->fc.mac_ctrl_frame_fwd);
5523                 return -EINVAL;
5524         }
5525         if (pfc_conf->fc.autoneg) {
5526                 hns3_err(hw, "Unsupported fc auto-negotiation setting.");
5527                 return -EINVAL;
5528         }
5529         if (pfc_conf->fc.pause_time == 0) {
5530                 hns3_err(hw, "Invalid pause time %u setting.",
5531                          pfc_conf->fc.pause_time);
5532                 return -EINVAL;
5533         }
5534
5535         if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5536             hw->current_fc_status == HNS3_FC_STATUS_PFC)) {
5537                 hns3_err(hw, "MAC pause is enabled. Cannot set PFC."
5538                              "current_fc_status = %d", hw->current_fc_status);
5539                 return -EOPNOTSUPP;
5540         }
5541
5542         priority = pfc_conf->priority;
5543         hns3_get_fc_mode(hw, pfc_conf->fc.mode);
5544         if (hw->dcb_info.pfc_en & BIT(priority) &&
5545             hw->requested_mode == hw->current_mode &&
5546             pfc_conf->fc.pause_time == pf->pause_time)
5547                 return 0;
5548
5549         rte_spinlock_lock(&hw->lock);
5550         ret = hns3_dcb_pfc_enable(dev, pfc_conf);
5551         rte_spinlock_unlock(&hw->lock);
5552
5553         return ret;
5554 }
5555
5556 static int
5557 hns3_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info)
5558 {
5559         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5560         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5561         enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
5562         int i;
5563
5564         rte_spinlock_lock(&hw->lock);
5565         if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG)
5566                 dcb_info->nb_tcs = pf->local_max_tc;
5567         else
5568                 dcb_info->nb_tcs = 1;
5569
5570         for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
5571                 dcb_info->prio_tc[i] = hw->dcb_info.prio_tc[i];
5572         for (i = 0; i < dcb_info->nb_tcs; i++)
5573                 dcb_info->tc_bws[i] = hw->dcb_info.pg_info[0].tc_dwrr[i];
5574
5575         for (i = 0; i < hw->num_tc; i++) {
5576                 dcb_info->tc_queue.tc_rxq[0][i].base = hw->alloc_rss_size * i;
5577                 dcb_info->tc_queue.tc_txq[0][i].base =
5578                                                 hw->tc_queue[i].tqp_offset;
5579                 dcb_info->tc_queue.tc_rxq[0][i].nb_queue = hw->alloc_rss_size;
5580                 dcb_info->tc_queue.tc_txq[0][i].nb_queue =
5581                                                 hw->tc_queue[i].tqp_count;
5582         }
5583         rte_spinlock_unlock(&hw->lock);
5584
5585         return 0;
5586 }
5587
5588 static int
5589 hns3_reinit_dev(struct hns3_adapter *hns)
5590 {
5591         struct hns3_hw *hw = &hns->hw;
5592         int ret;
5593
5594         ret = hns3_cmd_init(hw);
5595         if (ret) {
5596                 hns3_err(hw, "Failed to init cmd: %d", ret);
5597                 return ret;
5598         }
5599
5600         ret = hns3_reset_all_tqps(hns);
5601         if (ret) {
5602                 hns3_err(hw, "Failed to reset all queues: %d", ret);
5603                 return ret;
5604         }
5605
5606         ret = hns3_init_hardware(hns);
5607         if (ret) {
5608                 hns3_err(hw, "Failed to init hardware: %d", ret);
5609                 return ret;
5610         }
5611
5612         ret = hns3_enable_hw_error_intr(hns, true);
5613         if (ret) {
5614                 hns3_err(hw, "fail to enable hw error interrupts: %d",
5615                              ret);
5616                 return ret;
5617         }
5618         hns3_info(hw, "Reset done, driver initialization finished.");
5619
5620         return 0;
5621 }
5622
5623 static bool
5624 is_pf_reset_done(struct hns3_hw *hw)
5625 {
5626         uint32_t val, reg, reg_bit;
5627
5628         switch (hw->reset.level) {
5629         case HNS3_IMP_RESET:
5630                 reg = HNS3_GLOBAL_RESET_REG;
5631                 reg_bit = HNS3_IMP_RESET_BIT;
5632                 break;
5633         case HNS3_GLOBAL_RESET:
5634                 reg = HNS3_GLOBAL_RESET_REG;
5635                 reg_bit = HNS3_GLOBAL_RESET_BIT;
5636                 break;
5637         case HNS3_FUNC_RESET:
5638                 reg = HNS3_FUN_RST_ING;
5639                 reg_bit = HNS3_FUN_RST_ING_B;
5640                 break;
5641         case HNS3_FLR_RESET:
5642         default:
5643                 hns3_err(hw, "Wait for unsupported reset level: %d",
5644                          hw->reset.level);
5645                 return true;
5646         }
5647         val = hns3_read_dev(hw, reg);
5648         if (hns3_get_bit(val, reg_bit))
5649                 return false;
5650         else
5651                 return true;
5652 }
5653
5654 bool
5655 hns3_is_reset_pending(struct hns3_adapter *hns)
5656 {
5657         struct hns3_hw *hw = &hns->hw;
5658         enum hns3_reset_level reset;
5659
5660         hns3_check_event_cause(hns, NULL);
5661         reset = hns3_get_reset_level(hns, &hw->reset.pending);
5662         if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
5663                 hns3_warn(hw, "High level reset %d is pending", reset);
5664                 return true;
5665         }
5666         reset = hns3_get_reset_level(hns, &hw->reset.request);
5667         if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
5668                 hns3_warn(hw, "High level reset %d is request", reset);
5669                 return true;
5670         }
5671         return false;
5672 }
5673
5674 static int
5675 hns3_wait_hardware_ready(struct hns3_adapter *hns)
5676 {
5677         struct hns3_hw *hw = &hns->hw;
5678         struct hns3_wait_data *wait_data = hw->reset.wait_data;
5679         struct timeval tv;
5680
5681         if (wait_data->result == HNS3_WAIT_SUCCESS)
5682                 return 0;
5683         else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
5684                 gettimeofday(&tv, NULL);
5685                 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
5686                           tv.tv_sec, tv.tv_usec);
5687                 return -ETIME;
5688         } else if (wait_data->result == HNS3_WAIT_REQUEST)
5689                 return -EAGAIN;
5690
5691         wait_data->hns = hns;
5692         wait_data->check_completion = is_pf_reset_done;
5693         wait_data->end_ms = (uint64_t)HNS3_RESET_WAIT_CNT *
5694                                       HNS3_RESET_WAIT_MS + get_timeofday_ms();
5695         wait_data->interval = HNS3_RESET_WAIT_MS * USEC_PER_MSEC;
5696         wait_data->count = HNS3_RESET_WAIT_CNT;
5697         wait_data->result = HNS3_WAIT_REQUEST;
5698         rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
5699         return -EAGAIN;
5700 }
5701
5702 static int
5703 hns3_func_reset_cmd(struct hns3_hw *hw, int func_id)
5704 {
5705         struct hns3_cmd_desc desc;
5706         struct hns3_reset_cmd *req = (struct hns3_reset_cmd *)desc.data;
5707
5708         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
5709         hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_FUNC_B, 1);
5710         req->fun_reset_vfid = func_id;
5711
5712         return hns3_cmd_send(hw, &desc, 1);
5713 }
5714
5715 static int
5716 hns3_imp_reset_cmd(struct hns3_hw *hw)
5717 {
5718         struct hns3_cmd_desc desc;
5719
5720         hns3_cmd_setup_basic_desc(&desc, 0xFFFE, false);
5721         desc.data[0] = 0xeedd;
5722
5723         return hns3_cmd_send(hw, &desc, 1);
5724 }
5725
5726 static void
5727 hns3_msix_process(struct hns3_adapter *hns, enum hns3_reset_level reset_level)
5728 {
5729         struct hns3_hw *hw = &hns->hw;
5730         struct timeval tv;
5731         uint32_t val;
5732
5733         gettimeofday(&tv, NULL);
5734         if (hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG) ||
5735             hns3_read_dev(hw, HNS3_FUN_RST_ING)) {
5736                 hns3_warn(hw, "Don't process msix during resetting time=%ld.%.6ld",
5737                           tv.tv_sec, tv.tv_usec);
5738                 return;
5739         }
5740
5741         switch (reset_level) {
5742         case HNS3_IMP_RESET:
5743                 hns3_imp_reset_cmd(hw);
5744                 hns3_warn(hw, "IMP Reset requested time=%ld.%.6ld",
5745                           tv.tv_sec, tv.tv_usec);
5746                 break;
5747         case HNS3_GLOBAL_RESET:
5748                 val = hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG);
5749                 hns3_set_bit(val, HNS3_GLOBAL_RESET_BIT, 1);
5750                 hns3_write_dev(hw, HNS3_GLOBAL_RESET_REG, val);
5751                 hns3_warn(hw, "Global Reset requested time=%ld.%.6ld",
5752                           tv.tv_sec, tv.tv_usec);
5753                 break;
5754         case HNS3_FUNC_RESET:
5755                 hns3_warn(hw, "PF Reset requested time=%ld.%.6ld",
5756                           tv.tv_sec, tv.tv_usec);
5757                 /* schedule again to check later */
5758                 hns3_atomic_set_bit(HNS3_FUNC_RESET, &hw->reset.pending);
5759                 hns3_schedule_reset(hns);
5760                 break;
5761         default:
5762                 hns3_warn(hw, "Unsupported reset level: %d", reset_level);
5763                 return;
5764         }
5765         hns3_atomic_clear_bit(reset_level, &hw->reset.request);
5766 }
5767
5768 static enum hns3_reset_level
5769 hns3_get_reset_level(struct hns3_adapter *hns, uint64_t *levels)
5770 {
5771         struct hns3_hw *hw = &hns->hw;
5772         enum hns3_reset_level reset_level = HNS3_NONE_RESET;
5773
5774         /* Return the highest priority reset level amongst all */
5775         if (hns3_atomic_test_bit(HNS3_IMP_RESET, levels))
5776                 reset_level = HNS3_IMP_RESET;
5777         else if (hns3_atomic_test_bit(HNS3_GLOBAL_RESET, levels))
5778                 reset_level = HNS3_GLOBAL_RESET;
5779         else if (hns3_atomic_test_bit(HNS3_FUNC_RESET, levels))
5780                 reset_level = HNS3_FUNC_RESET;
5781         else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
5782                 reset_level = HNS3_FLR_RESET;
5783
5784         if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
5785                 return HNS3_NONE_RESET;
5786
5787         return reset_level;
5788 }
5789
5790 static void
5791 hns3_record_imp_error(struct hns3_adapter *hns)
5792 {
5793         struct hns3_hw *hw = &hns->hw;
5794         uint32_t reg_val;
5795
5796         reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5797         if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B)) {
5798                 hns3_warn(hw, "Detected IMP RD poison!");
5799                 hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B, 0);
5800                 hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5801         }
5802
5803         if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B)) {
5804                 hns3_warn(hw, "Detected IMP CMDQ error!");
5805                 hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B, 0);
5806                 hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5807         }
5808 }
5809
5810 static int
5811 hns3_prepare_reset(struct hns3_adapter *hns)
5812 {
5813         struct hns3_hw *hw = &hns->hw;
5814         uint32_t reg_val;
5815         int ret;
5816
5817         switch (hw->reset.level) {
5818         case HNS3_FUNC_RESET:
5819                 ret = hns3_func_reset_cmd(hw, HNS3_PF_FUNC_ID);
5820                 if (ret)
5821                         return ret;
5822
5823                 /*
5824                  * After performaning pf reset, it is not necessary to do the
5825                  * mailbox handling or send any command to firmware, because
5826                  * any mailbox handling or command to firmware is only valid
5827                  * after hns3_cmd_init is called.
5828                  */
5829                 __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
5830                 hw->reset.stats.request_cnt++;
5831                 break;
5832         case HNS3_IMP_RESET:
5833                 hns3_record_imp_error(hns);
5834                 reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5835                 hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val |
5836                                BIT(HNS3_VECTOR0_IMP_RESET_INT_B));
5837                 break;
5838         default:
5839                 break;
5840         }
5841         return 0;
5842 }
5843
5844 static int
5845 hns3_set_rst_done(struct hns3_hw *hw)
5846 {
5847         struct hns3_pf_rst_done_cmd *req;
5848         struct hns3_cmd_desc desc;
5849
5850         req = (struct hns3_pf_rst_done_cmd *)desc.data;
5851         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PF_RST_DONE, false);
5852         req->pf_rst_done |= HNS3_PF_RESET_DONE_BIT;
5853         return hns3_cmd_send(hw, &desc, 1);
5854 }
5855
5856 static int
5857 hns3_stop_service(struct hns3_adapter *hns)
5858 {
5859         struct hns3_hw *hw = &hns->hw;
5860         struct rte_eth_dev *eth_dev;
5861
5862         eth_dev = &rte_eth_devices[hw->data->port_id];
5863         if (hw->adapter_state == HNS3_NIC_STARTED) {
5864                 rte_eal_alarm_cancel(hns3_service_handler, eth_dev);
5865                 hns3_update_link_status_and_event(hw);
5866         }
5867         hw->mac.link_status = ETH_LINK_DOWN;
5868
5869         hns3_set_rxtx_function(eth_dev);
5870         rte_wmb();
5871         /* Disable datapath on secondary process. */
5872         hns3_mp_req_stop_rxtx(eth_dev);
5873         rte_delay_ms(hw->tqps_num);
5874
5875         rte_spinlock_lock(&hw->lock);
5876         if (hns->hw.adapter_state == HNS3_NIC_STARTED ||
5877             hw->adapter_state == HNS3_NIC_STOPPING) {
5878                 hns3_enable_all_queues(hw, false);
5879                 hns3_do_stop(hns);
5880                 hw->reset.mbuf_deferred_free = true;
5881         } else
5882                 hw->reset.mbuf_deferred_free = false;
5883
5884         /*
5885          * It is cumbersome for hardware to pick-and-choose entries for deletion
5886          * from table space. Hence, for function reset software intervention is
5887          * required to delete the entries
5888          */
5889         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0)
5890                 hns3_configure_all_mc_mac_addr(hns, true);
5891         rte_spinlock_unlock(&hw->lock);
5892
5893         return 0;
5894 }
5895
5896 static int
5897 hns3_start_service(struct hns3_adapter *hns)
5898 {
5899         struct hns3_hw *hw = &hns->hw;
5900         struct rte_eth_dev *eth_dev;
5901
5902         if (hw->reset.level == HNS3_IMP_RESET ||
5903             hw->reset.level == HNS3_GLOBAL_RESET)
5904                 hns3_set_rst_done(hw);
5905         eth_dev = &rte_eth_devices[hw->data->port_id];
5906         hns3_set_rxtx_function(eth_dev);
5907         hns3_mp_req_start_rxtx(eth_dev);
5908         if (hw->adapter_state == HNS3_NIC_STARTED) {
5909                 /*
5910                  * This API parent function already hold the hns3_hw.lock, the
5911                  * hns3_service_handler may report lse, in bonding application
5912                  * it will call driver's ops which may acquire the hns3_hw.lock
5913                  * again, thus lead to deadlock.
5914                  * We defer calls hns3_service_handler to avoid the deadlock.
5915                  */
5916                 rte_eal_alarm_set(HNS3_SERVICE_QUICK_INTERVAL,
5917                                   hns3_service_handler, eth_dev);
5918
5919                 /* Enable interrupt of all rx queues before enabling queues */
5920                 hns3_dev_all_rx_queue_intr_enable(hw, true);
5921                 /*
5922                  * Enable state of each rxq and txq will be recovered after
5923                  * reset, so we need to restore them before enable all tqps;
5924                  */
5925                 hns3_restore_tqp_enable_state(hw);
5926                 /*
5927                  * When finished the initialization, enable queues to receive
5928                  * and transmit packets.
5929                  */
5930                 hns3_enable_all_queues(hw, true);
5931         }
5932
5933         return 0;
5934 }
5935
5936 static int
5937 hns3_restore_conf(struct hns3_adapter *hns)
5938 {
5939         struct hns3_hw *hw = &hns->hw;
5940         int ret;
5941
5942         ret = hns3_configure_all_mac_addr(hns, false);
5943         if (ret)
5944                 return ret;
5945
5946         ret = hns3_configure_all_mc_mac_addr(hns, false);
5947         if (ret)
5948                 goto err_mc_mac;
5949
5950         ret = hns3_dev_promisc_restore(hns);
5951         if (ret)
5952                 goto err_promisc;
5953
5954         ret = hns3_restore_vlan_table(hns);
5955         if (ret)
5956                 goto err_promisc;
5957
5958         ret = hns3_restore_vlan_conf(hns);
5959         if (ret)
5960                 goto err_promisc;
5961
5962         ret = hns3_restore_all_fdir_filter(hns);
5963         if (ret)
5964                 goto err_promisc;
5965
5966         ret = hns3_restore_rx_interrupt(hw);
5967         if (ret)
5968                 goto err_promisc;
5969
5970         ret = hns3_restore_gro_conf(hw);
5971         if (ret)
5972                 goto err_promisc;
5973
5974         ret = hns3_restore_fec(hw);
5975         if (ret)
5976                 goto err_promisc;
5977
5978         if (hns->hw.adapter_state == HNS3_NIC_STARTED) {
5979                 ret = hns3_do_start(hns, false);
5980                 if (ret)
5981                         goto err_promisc;
5982                 hns3_info(hw, "hns3 dev restart successful!");
5983         } else if (hw->adapter_state == HNS3_NIC_STOPPING)
5984                 hw->adapter_state = HNS3_NIC_CONFIGURED;
5985         return 0;
5986
5987 err_promisc:
5988         hns3_configure_all_mc_mac_addr(hns, true);
5989 err_mc_mac:
5990         hns3_configure_all_mac_addr(hns, true);
5991         return ret;
5992 }
5993
5994 static void
5995 hns3_reset_service(void *param)
5996 {
5997         struct hns3_adapter *hns = (struct hns3_adapter *)param;
5998         struct hns3_hw *hw = &hns->hw;
5999         enum hns3_reset_level reset_level;
6000         struct timeval tv_delta;
6001         struct timeval tv_start;
6002         struct timeval tv;
6003         uint64_t msec;
6004         int ret;
6005
6006         /*
6007          * The interrupt is not triggered within the delay time.
6008          * The interrupt may have been lost. It is necessary to handle
6009          * the interrupt to recover from the error.
6010          */
6011         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
6012                             SCHEDULE_DEFERRED) {
6013                 __atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED,
6014                                   __ATOMIC_RELAXED);
6015                 hns3_err(hw, "Handling interrupts in delayed tasks");
6016                 hns3_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
6017                 reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
6018                 if (reset_level == HNS3_NONE_RESET) {
6019                         hns3_err(hw, "No reset level is set, try IMP reset");
6020                         hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
6021                 }
6022         }
6023         __atomic_store_n(&hw->reset.schedule, SCHEDULE_NONE, __ATOMIC_RELAXED);
6024
6025         /*
6026          * Check if there is any ongoing reset in the hardware. This status can
6027          * be checked from reset_pending. If there is then, we need to wait for
6028          * hardware to complete reset.
6029          *    a. If we are able to figure out in reasonable time that hardware
6030          *       has fully resetted then, we can proceed with driver, client
6031          *       reset.
6032          *    b. else, we can come back later to check this status so re-sched
6033          *       now.
6034          */
6035         reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
6036         if (reset_level != HNS3_NONE_RESET) {
6037                 gettimeofday(&tv_start, NULL);
6038                 ret = hns3_reset_process(hns, reset_level);
6039                 gettimeofday(&tv, NULL);
6040                 timersub(&tv, &tv_start, &tv_delta);
6041                 msec = tv_delta.tv_sec * MSEC_PER_SEC +
6042                        tv_delta.tv_usec / USEC_PER_MSEC;
6043                 if (msec > HNS3_RESET_PROCESS_MS)
6044                         hns3_err(hw, "%d handle long time delta %" PRIx64
6045                                      " ms time=%ld.%.6ld",
6046                                  hw->reset.level, msec,
6047                                  tv.tv_sec, tv.tv_usec);
6048                 if (ret == -EAGAIN)
6049                         return;
6050         }
6051
6052         /* Check if we got any *new* reset requests to be honored */
6053         reset_level = hns3_get_reset_level(hns, &hw->reset.request);
6054         if (reset_level != HNS3_NONE_RESET)
6055                 hns3_msix_process(hns, reset_level);
6056 }
6057
6058 static unsigned int
6059 hns3_get_speed_capa_num(uint16_t device_id)
6060 {
6061         unsigned int num;
6062
6063         switch (device_id) {
6064         case HNS3_DEV_ID_25GE:
6065         case HNS3_DEV_ID_25GE_RDMA:
6066                 num = 2;
6067                 break;
6068         case HNS3_DEV_ID_100G_RDMA_MACSEC:
6069         case HNS3_DEV_ID_200G_RDMA:
6070                 num = 1;
6071                 break;
6072         default:
6073                 num = 0;
6074                 break;
6075         }
6076
6077         return num;
6078 }
6079
6080 static int
6081 hns3_get_speed_fec_capa(struct rte_eth_fec_capa *speed_fec_capa,
6082                         uint16_t device_id)
6083 {
6084         switch (device_id) {
6085         case HNS3_DEV_ID_25GE:
6086         /* fallthrough */
6087         case HNS3_DEV_ID_25GE_RDMA:
6088                 speed_fec_capa[0].speed = speed_fec_capa_tbl[1].speed;
6089                 speed_fec_capa[0].capa = speed_fec_capa_tbl[1].capa;
6090
6091                 /* In HNS3 device, the 25G NIC is compatible with 10G rate */
6092                 speed_fec_capa[1].speed = speed_fec_capa_tbl[0].speed;
6093                 speed_fec_capa[1].capa = speed_fec_capa_tbl[0].capa;
6094                 break;
6095         case HNS3_DEV_ID_100G_RDMA_MACSEC:
6096                 speed_fec_capa[0].speed = speed_fec_capa_tbl[4].speed;
6097                 speed_fec_capa[0].capa = speed_fec_capa_tbl[4].capa;
6098                 break;
6099         case HNS3_DEV_ID_200G_RDMA:
6100                 speed_fec_capa[0].speed = speed_fec_capa_tbl[5].speed;
6101                 speed_fec_capa[0].capa = speed_fec_capa_tbl[5].capa;
6102                 break;
6103         default:
6104                 return -ENOTSUP;
6105         }
6106
6107         return 0;
6108 }
6109
6110 static int
6111 hns3_fec_get_capability(struct rte_eth_dev *dev,
6112                         struct rte_eth_fec_capa *speed_fec_capa,
6113                         unsigned int num)
6114 {
6115         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6116         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
6117         uint16_t device_id = pci_dev->id.device_id;
6118         unsigned int capa_num;
6119         int ret;
6120
6121         capa_num = hns3_get_speed_capa_num(device_id);
6122         if (capa_num == 0) {
6123                 hns3_err(hw, "device(0x%x) is not supported by hns3 PMD",
6124                          device_id);
6125                 return -ENOTSUP;
6126         }
6127
6128         if (speed_fec_capa == NULL || num < capa_num)
6129                 return capa_num;
6130
6131         ret = hns3_get_speed_fec_capa(speed_fec_capa, device_id);
6132         if (ret)
6133                 return -ENOTSUP;
6134
6135         return capa_num;
6136 }
6137
6138 static int
6139 get_current_fec_auto_state(struct hns3_hw *hw, uint8_t *state)
6140 {
6141         struct hns3_config_fec_cmd *req;
6142         struct hns3_cmd_desc desc;
6143         int ret;
6144
6145         /*
6146          * CMD(HNS3_OPC_CONFIG_FEC_MODE) read is not supported
6147          * in device of link speed
6148          * below 10 Gbps.
6149          */
6150         if (hw->mac.link_speed < ETH_SPEED_NUM_10G) {
6151                 *state = 0;
6152                 return 0;
6153         }
6154
6155         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, true);
6156         req = (struct hns3_config_fec_cmd *)desc.data;
6157         ret = hns3_cmd_send(hw, &desc, 1);
6158         if (ret) {
6159                 hns3_err(hw, "get current fec auto state failed, ret = %d",
6160                          ret);
6161                 return ret;
6162         }
6163
6164         *state = req->fec_mode & (1U << HNS3_MAC_CFG_FEC_AUTO_EN_B);
6165         return 0;
6166 }
6167
6168 static int
6169 hns3_fec_get_internal(struct hns3_hw *hw, uint32_t *fec_capa)
6170 {
6171 #define QUERY_ACTIVE_SPEED      1
6172         struct hns3_sfp_speed_cmd *resp;
6173         uint32_t tmp_fec_capa;
6174         uint8_t auto_state;
6175         struct hns3_cmd_desc desc;
6176         int ret;
6177
6178         /*
6179          * If link is down and AUTO is enabled, AUTO is returned, otherwise,
6180          * configured FEC mode is returned.
6181          * If link is up, current FEC mode is returned.
6182          */
6183         if (hw->mac.link_status == ETH_LINK_DOWN) {
6184                 ret = get_current_fec_auto_state(hw, &auto_state);
6185                 if (ret)
6186                         return ret;
6187
6188                 if (auto_state == 0x1) {
6189                         *fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(AUTO);
6190                         return 0;
6191                 }
6192         }
6193
6194         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SFP_GET_SPEED, true);
6195         resp = (struct hns3_sfp_speed_cmd *)desc.data;
6196         resp->query_type = QUERY_ACTIVE_SPEED;
6197
6198         ret = hns3_cmd_send(hw, &desc, 1);
6199         if (ret == -EOPNOTSUPP) {
6200                 hns3_err(hw, "IMP do not support get FEC, ret = %d", ret);
6201                 return ret;
6202         } else if (ret) {
6203                 hns3_err(hw, "get FEC failed, ret = %d", ret);
6204                 return ret;
6205         }
6206
6207         /*
6208          * FEC mode order defined in hns3 hardware is inconsistend with
6209          * that defined in the ethdev library. So the sequence needs
6210          * to be converted.
6211          */
6212         switch (resp->active_fec) {
6213         case HNS3_HW_FEC_MODE_NOFEC:
6214                 tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6215                 break;
6216         case HNS3_HW_FEC_MODE_BASER:
6217                 tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(BASER);
6218                 break;
6219         case HNS3_HW_FEC_MODE_RS:
6220                 tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(RS);
6221                 break;
6222         default:
6223                 tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6224                 break;
6225         }
6226
6227         *fec_capa = tmp_fec_capa;
6228         return 0;
6229 }
6230
6231 static int
6232 hns3_fec_get(struct rte_eth_dev *dev, uint32_t *fec_capa)
6233 {
6234         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6235
6236         return hns3_fec_get_internal(hw, fec_capa);
6237 }
6238
6239 static int
6240 hns3_set_fec_hw(struct hns3_hw *hw, uint32_t mode)
6241 {
6242         struct hns3_config_fec_cmd *req;
6243         struct hns3_cmd_desc desc;
6244         int ret;
6245
6246         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, false);
6247
6248         req = (struct hns3_config_fec_cmd *)desc.data;
6249         switch (mode) {
6250         case RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC):
6251                 hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6252                                 HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_OFF);
6253                 break;
6254         case RTE_ETH_FEC_MODE_CAPA_MASK(BASER):
6255                 hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6256                                 HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_BASER);
6257                 break;
6258         case RTE_ETH_FEC_MODE_CAPA_MASK(RS):
6259                 hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6260                                 HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_RS);
6261                 break;
6262         case RTE_ETH_FEC_MODE_CAPA_MASK(AUTO):
6263                 hns3_set_bit(req->fec_mode, HNS3_MAC_CFG_FEC_AUTO_EN_B, 1);
6264                 break;
6265         default:
6266                 return 0;
6267         }
6268         ret = hns3_cmd_send(hw, &desc, 1);
6269         if (ret)
6270                 hns3_err(hw, "set fec mode failed, ret = %d", ret);
6271
6272         return ret;
6273 }
6274
6275 static uint32_t
6276 get_current_speed_fec_cap(struct hns3_hw *hw, struct rte_eth_fec_capa *fec_capa)
6277 {
6278         struct hns3_mac *mac = &hw->mac;
6279         uint32_t cur_capa;
6280
6281         switch (mac->link_speed) {
6282         case ETH_SPEED_NUM_10G:
6283                 cur_capa = fec_capa[1].capa;
6284                 break;
6285         case ETH_SPEED_NUM_25G:
6286         case ETH_SPEED_NUM_100G:
6287         case ETH_SPEED_NUM_200G:
6288                 cur_capa = fec_capa[0].capa;
6289                 break;
6290         default:
6291                 cur_capa = 0;
6292                 break;
6293         }
6294
6295         return cur_capa;
6296 }
6297
6298 static bool
6299 is_fec_mode_one_bit_set(uint32_t mode)
6300 {
6301         int cnt = 0;
6302         uint8_t i;
6303
6304         for (i = 0; i < sizeof(mode); i++)
6305                 if (mode >> i & 0x1)
6306                         cnt++;
6307
6308         return cnt == 1 ? true : false;
6309 }
6310
6311 static int
6312 hns3_fec_set(struct rte_eth_dev *dev, uint32_t mode)
6313 {
6314 #define FEC_CAPA_NUM 2
6315         struct hns3_adapter *hns = dev->data->dev_private;
6316         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6317         struct hns3_pf *pf = &hns->pf;
6318
6319         struct rte_eth_fec_capa fec_capa[FEC_CAPA_NUM];
6320         uint32_t cur_capa;
6321         uint32_t num = FEC_CAPA_NUM;
6322         int ret;
6323
6324         ret = hns3_fec_get_capability(dev, fec_capa, num);
6325         if (ret < 0)
6326                 return ret;
6327
6328         /* HNS3 PMD driver only support one bit set mode, e.g. 0x1, 0x4 */
6329         if (!is_fec_mode_one_bit_set(mode))
6330                 hns3_err(hw, "FEC mode(0x%x) not supported in HNS3 PMD,"
6331                              "FEC mode should be only one bit set", mode);
6332
6333         /*
6334          * Check whether the configured mode is within the FEC capability.
6335          * If not, the configured mode will not be supported.
6336          */
6337         cur_capa = get_current_speed_fec_cap(hw, fec_capa);
6338         if (!(cur_capa & mode)) {
6339                 hns3_err(hw, "unsupported FEC mode = 0x%x", mode);
6340                 return -EINVAL;
6341         }
6342
6343         ret = hns3_set_fec_hw(hw, mode);
6344         if (ret)
6345                 return ret;
6346
6347         pf->fec_mode = mode;
6348         return 0;
6349 }
6350
6351 static int
6352 hns3_restore_fec(struct hns3_hw *hw)
6353 {
6354         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
6355         struct hns3_pf *pf = &hns->pf;
6356         uint32_t mode = pf->fec_mode;
6357         int ret;
6358
6359         ret = hns3_set_fec_hw(hw, mode);
6360         if (ret)
6361                 hns3_err(hw, "restore fec mode(0x%x) failed, ret = %d",
6362                          mode, ret);
6363
6364         return ret;
6365 }
6366
6367 static int
6368 hns3_query_dev_fec_info(struct hns3_hw *hw)
6369 {
6370         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
6371         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(hns);
6372         int ret;
6373
6374         ret = hns3_fec_get_internal(hw, &pf->fec_mode);
6375         if (ret)
6376                 hns3_err(hw, "query device FEC info failed, ret = %d", ret);
6377
6378         return ret;
6379 }
6380
6381 static bool
6382 hns3_optical_module_existed(struct hns3_hw *hw)
6383 {
6384         struct hns3_cmd_desc desc;
6385         bool existed;
6386         int ret;
6387
6388         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_EXIST, true);
6389         ret = hns3_cmd_send(hw, &desc, 1);
6390         if (ret) {
6391                 hns3_err(hw,
6392                          "fail to get optical module exist state, ret = %d.\n",
6393                          ret);
6394                 return false;
6395         }
6396         existed = !!desc.data[0];
6397
6398         return existed;
6399 }
6400
6401 static int
6402 hns3_get_module_eeprom_data(struct hns3_hw *hw, uint32_t offset,
6403                                 uint32_t len, uint8_t *data)
6404 {
6405 #define HNS3_SFP_INFO_CMD_NUM 6
6406 #define HNS3_SFP_INFO_MAX_LEN \
6407         (HNS3_SFP_INFO_BD0_LEN + \
6408         (HNS3_SFP_INFO_CMD_NUM - 1) * HNS3_SFP_INFO_BDX_LEN)
6409         struct hns3_cmd_desc desc[HNS3_SFP_INFO_CMD_NUM];
6410         struct hns3_sfp_info_bd0_cmd *sfp_info_bd0;
6411         uint16_t read_len;
6412         uint16_t copy_len;
6413         int ret;
6414         int i;
6415
6416         for (i = 0; i < HNS3_SFP_INFO_CMD_NUM; i++) {
6417                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_SFP_EEPROM,
6418                                           true);
6419                 if (i < HNS3_SFP_INFO_CMD_NUM - 1)
6420                         desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
6421         }
6422
6423         sfp_info_bd0 = (struct hns3_sfp_info_bd0_cmd *)desc[0].data;
6424         sfp_info_bd0->offset = rte_cpu_to_le_16((uint16_t)offset);
6425         read_len = RTE_MIN(len, HNS3_SFP_INFO_MAX_LEN);
6426         sfp_info_bd0->read_len = rte_cpu_to_le_16((uint16_t)read_len);
6427
6428         ret = hns3_cmd_send(hw, desc, HNS3_SFP_INFO_CMD_NUM);
6429         if (ret) {
6430                 hns3_err(hw, "fail to get module EEPROM info, ret = %d.\n",
6431                                 ret);
6432                 return ret;
6433         }
6434
6435         /* The data format in BD0 is different with the others. */
6436         copy_len = RTE_MIN(len, HNS3_SFP_INFO_BD0_LEN);
6437         memcpy(data, sfp_info_bd0->data, copy_len);
6438         read_len = copy_len;
6439
6440         for (i = 1; i < HNS3_SFP_INFO_CMD_NUM; i++) {
6441                 if (read_len >= len)
6442                         break;
6443
6444                 copy_len = RTE_MIN(len - read_len, HNS3_SFP_INFO_BDX_LEN);
6445                 memcpy(data + read_len, desc[i].data, copy_len);
6446                 read_len += copy_len;
6447         }
6448
6449         return (int)read_len;
6450 }
6451
6452 static int
6453 hns3_get_module_eeprom(struct rte_eth_dev *dev,
6454                        struct rte_dev_eeprom_info *info)
6455 {
6456         struct hns3_adapter *hns = dev->data->dev_private;
6457         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6458         uint32_t offset = info->offset;
6459         uint32_t len = info->length;
6460         uint8_t *data = info->data;
6461         uint32_t read_len = 0;
6462
6463         if (hw->mac.media_type != HNS3_MEDIA_TYPE_FIBER)
6464                 return -ENOTSUP;
6465
6466         if (!hns3_optical_module_existed(hw)) {
6467                 hns3_err(hw, "fail to read module EEPROM: no module is connected.\n");
6468                 return -EIO;
6469         }
6470
6471         while (read_len < len) {
6472                 int ret;
6473                 ret = hns3_get_module_eeprom_data(hw, offset + read_len,
6474                                                   len - read_len,
6475                                                   data + read_len);
6476                 if (ret < 0)
6477                         return -EIO;
6478                 read_len += ret;
6479         }
6480
6481         return 0;
6482 }
6483
6484 static int
6485 hns3_get_module_info(struct rte_eth_dev *dev,
6486                      struct rte_eth_dev_module_info *modinfo)
6487 {
6488 #define HNS3_SFF8024_ID_SFP             0x03
6489 #define HNS3_SFF8024_ID_QSFP_8438       0x0c
6490 #define HNS3_SFF8024_ID_QSFP_8436_8636  0x0d
6491 #define HNS3_SFF8024_ID_QSFP28_8636     0x11
6492 #define HNS3_SFF_8636_V1_3              0x03
6493         struct hns3_adapter *hns = dev->data->dev_private;
6494         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6495         struct rte_dev_eeprom_info info;
6496         struct hns3_sfp_type sfp_type;
6497         int ret;
6498
6499         memset(&sfp_type, 0, sizeof(sfp_type));
6500         memset(&info, 0, sizeof(info));
6501         info.data = (uint8_t *)&sfp_type;
6502         info.length = sizeof(sfp_type);
6503         ret = hns3_get_module_eeprom(dev, &info);
6504         if (ret)
6505                 return ret;
6506
6507         switch (sfp_type.type) {
6508         case HNS3_SFF8024_ID_SFP:
6509                 modinfo->type = RTE_ETH_MODULE_SFF_8472;
6510                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
6511                 break;
6512         case HNS3_SFF8024_ID_QSFP_8438:
6513                 modinfo->type = RTE_ETH_MODULE_SFF_8436;
6514                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
6515                 break;
6516         case HNS3_SFF8024_ID_QSFP_8436_8636:
6517                 if (sfp_type.ext_type < HNS3_SFF_8636_V1_3) {
6518                         modinfo->type = RTE_ETH_MODULE_SFF_8436;
6519                         modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
6520                 } else {
6521                         modinfo->type = RTE_ETH_MODULE_SFF_8636;
6522                         modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
6523                 }
6524                 break;
6525         case HNS3_SFF8024_ID_QSFP28_8636:
6526                 modinfo->type = RTE_ETH_MODULE_SFF_8636;
6527                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
6528                 break;
6529         default:
6530                 hns3_err(hw, "unknown module, type = %u, extra_type = %u.\n",
6531                          sfp_type.type, sfp_type.ext_type);
6532                 return -EINVAL;
6533         }
6534
6535         return 0;
6536 }
6537
6538 static int
6539 hns3_parse_io_hint_func(const char *key, const char *value, void *extra_args)
6540 {
6541         uint32_t hint = HNS3_IO_FUNC_HINT_NONE;
6542
6543         RTE_SET_USED(key);
6544
6545         if (strcmp(value, "vec") == 0)
6546                 hint = HNS3_IO_FUNC_HINT_VEC;
6547         else if (strcmp(value, "sve") == 0)
6548                 hint = HNS3_IO_FUNC_HINT_SVE;
6549         else if (strcmp(value, "simple") == 0)
6550                 hint = HNS3_IO_FUNC_HINT_SIMPLE;
6551         else if (strcmp(value, "common") == 0)
6552                 hint = HNS3_IO_FUNC_HINT_COMMON;
6553
6554         /* If the hint is valid then update output parameters */
6555         if (hint != HNS3_IO_FUNC_HINT_NONE)
6556                 *(uint32_t *)extra_args = hint;
6557
6558         return 0;
6559 }
6560
6561 static const char *
6562 hns3_get_io_hint_func_name(uint32_t hint)
6563 {
6564         switch (hint) {
6565         case HNS3_IO_FUNC_HINT_VEC:
6566                 return "vec";
6567         case HNS3_IO_FUNC_HINT_SVE:
6568                 return "sve";
6569         case HNS3_IO_FUNC_HINT_SIMPLE:
6570                 return "simple";
6571         case HNS3_IO_FUNC_HINT_COMMON:
6572                 return "common";
6573         default:
6574                 return "none";
6575         }
6576 }
6577
6578 void
6579 hns3_parse_devargs(struct rte_eth_dev *dev)
6580 {
6581         struct hns3_adapter *hns = dev->data->dev_private;
6582         uint32_t rx_func_hint = HNS3_IO_FUNC_HINT_NONE;
6583         uint32_t tx_func_hint = HNS3_IO_FUNC_HINT_NONE;
6584         struct hns3_hw *hw = &hns->hw;
6585         struct rte_kvargs *kvlist;
6586
6587         if (dev->device->devargs == NULL)
6588                 return;
6589
6590         kvlist = rte_kvargs_parse(dev->device->devargs->args, NULL);
6591         if (!kvlist)
6592                 return;
6593
6594         rte_kvargs_process(kvlist, HNS3_DEVARG_RX_FUNC_HINT,
6595                            &hns3_parse_io_hint_func, &rx_func_hint);
6596         rte_kvargs_process(kvlist, HNS3_DEVARG_TX_FUNC_HINT,
6597                            &hns3_parse_io_hint_func, &tx_func_hint);
6598         rte_kvargs_free(kvlist);
6599
6600         if (rx_func_hint != HNS3_IO_FUNC_HINT_NONE)
6601                 hns3_warn(hw, "parsed %s = %s.", HNS3_DEVARG_RX_FUNC_HINT,
6602                           hns3_get_io_hint_func_name(rx_func_hint));
6603         hns->rx_func_hint = rx_func_hint;
6604         if (tx_func_hint != HNS3_IO_FUNC_HINT_NONE)
6605                 hns3_warn(hw, "parsed %s = %s.", HNS3_DEVARG_TX_FUNC_HINT,
6606                           hns3_get_io_hint_func_name(tx_func_hint));
6607         hns->tx_func_hint = tx_func_hint;
6608 }
6609
6610 static const struct eth_dev_ops hns3_eth_dev_ops = {
6611         .dev_configure      = hns3_dev_configure,
6612         .dev_start          = hns3_dev_start,
6613         .dev_stop           = hns3_dev_stop,
6614         .dev_close          = hns3_dev_close,
6615         .promiscuous_enable = hns3_dev_promiscuous_enable,
6616         .promiscuous_disable = hns3_dev_promiscuous_disable,
6617         .allmulticast_enable  = hns3_dev_allmulticast_enable,
6618         .allmulticast_disable = hns3_dev_allmulticast_disable,
6619         .mtu_set            = hns3_dev_mtu_set,
6620         .stats_get          = hns3_stats_get,
6621         .stats_reset        = hns3_stats_reset,
6622         .xstats_get         = hns3_dev_xstats_get,
6623         .xstats_get_names   = hns3_dev_xstats_get_names,
6624         .xstats_reset       = hns3_dev_xstats_reset,
6625         .xstats_get_by_id   = hns3_dev_xstats_get_by_id,
6626         .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
6627         .dev_infos_get          = hns3_dev_infos_get,
6628         .fw_version_get         = hns3_fw_version_get,
6629         .rx_queue_setup         = hns3_rx_queue_setup,
6630         .tx_queue_setup         = hns3_tx_queue_setup,
6631         .rx_queue_release       = hns3_dev_rx_queue_release,
6632         .tx_queue_release       = hns3_dev_tx_queue_release,
6633         .rx_queue_start         = hns3_dev_rx_queue_start,
6634         .rx_queue_stop          = hns3_dev_rx_queue_stop,
6635         .tx_queue_start         = hns3_dev_tx_queue_start,
6636         .tx_queue_stop          = hns3_dev_tx_queue_stop,
6637         .rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
6638         .rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
6639         .rxq_info_get           = hns3_rxq_info_get,
6640         .txq_info_get           = hns3_txq_info_get,
6641         .rx_burst_mode_get      = hns3_rx_burst_mode_get,
6642         .tx_burst_mode_get      = hns3_tx_burst_mode_get,
6643         .flow_ctrl_get          = hns3_flow_ctrl_get,
6644         .flow_ctrl_set          = hns3_flow_ctrl_set,
6645         .priority_flow_ctrl_set = hns3_priority_flow_ctrl_set,
6646         .mac_addr_add           = hns3_add_mac_addr,
6647         .mac_addr_remove        = hns3_remove_mac_addr,
6648         .mac_addr_set           = hns3_set_default_mac_addr,
6649         .set_mc_addr_list       = hns3_set_mc_mac_addr_list,
6650         .link_update            = hns3_dev_link_update,
6651         .rss_hash_update        = hns3_dev_rss_hash_update,
6652         .rss_hash_conf_get      = hns3_dev_rss_hash_conf_get,
6653         .reta_update            = hns3_dev_rss_reta_update,
6654         .reta_query             = hns3_dev_rss_reta_query,
6655         .flow_ops_get           = hns3_dev_flow_ops_get,
6656         .vlan_filter_set        = hns3_vlan_filter_set,
6657         .vlan_tpid_set          = hns3_vlan_tpid_set,
6658         .vlan_offload_set       = hns3_vlan_offload_set,
6659         .vlan_pvid_set          = hns3_vlan_pvid_set,
6660         .get_reg                = hns3_get_regs,
6661         .get_module_info        = hns3_get_module_info,
6662         .get_module_eeprom      = hns3_get_module_eeprom,
6663         .get_dcb_info           = hns3_get_dcb_info,
6664         .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
6665         .fec_get_capability     = hns3_fec_get_capability,
6666         .fec_get                = hns3_fec_get,
6667         .fec_set                = hns3_fec_set,
6668         .tm_ops_get             = hns3_tm_ops_get,
6669         .tx_done_cleanup        = hns3_tx_done_cleanup,
6670 };
6671
6672 static const struct hns3_reset_ops hns3_reset_ops = {
6673         .reset_service       = hns3_reset_service,
6674         .stop_service        = hns3_stop_service,
6675         .prepare_reset       = hns3_prepare_reset,
6676         .wait_hardware_ready = hns3_wait_hardware_ready,
6677         .reinit_dev          = hns3_reinit_dev,
6678         .restore_conf        = hns3_restore_conf,
6679         .start_service       = hns3_start_service,
6680 };
6681
6682 static int
6683 hns3_dev_init(struct rte_eth_dev *eth_dev)
6684 {
6685         struct hns3_adapter *hns = eth_dev->data->dev_private;
6686         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
6687         struct rte_ether_addr *eth_addr;
6688         struct hns3_hw *hw = &hns->hw;
6689         int ret;
6690
6691         PMD_INIT_FUNC_TRACE();
6692
6693         eth_dev->process_private = (struct hns3_process_private *)
6694             rte_zmalloc_socket("hns3_filter_list",
6695                                sizeof(struct hns3_process_private),
6696                                RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
6697         if (eth_dev->process_private == NULL) {
6698                 PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
6699                 return -ENOMEM;
6700         }
6701         /* initialize flow filter lists */
6702         hns3_filterlist_init(eth_dev);
6703
6704         hns3_set_rxtx_function(eth_dev);
6705         eth_dev->dev_ops = &hns3_eth_dev_ops;
6706         eth_dev->rx_queue_count = hns3_rx_queue_count;
6707         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
6708                 ret = hns3_mp_init_secondary();
6709                 if (ret) {
6710                         PMD_INIT_LOG(ERR, "Failed to init for secondary "
6711                                      "process, ret = %d", ret);
6712                         goto err_mp_init_secondary;
6713                 }
6714
6715                 hw->secondary_cnt++;
6716                 return 0;
6717         }
6718
6719         ret = hns3_mp_init_primary();
6720         if (ret) {
6721                 PMD_INIT_LOG(ERR,
6722                              "Failed to init for primary process, ret = %d",
6723                              ret);
6724                 goto err_mp_init_primary;
6725         }
6726
6727         hw->adapter_state = HNS3_NIC_UNINITIALIZED;
6728         hns->is_vf = false;
6729         hw->data = eth_dev->data;
6730         hns3_parse_devargs(eth_dev);
6731
6732         /*
6733          * Set default max packet size according to the mtu
6734          * default vale in DPDK frame.
6735          */
6736         hns->pf.mps = hw->data->mtu + HNS3_ETH_OVERHEAD;
6737
6738         ret = hns3_reset_init(hw);
6739         if (ret)
6740                 goto err_init_reset;
6741         hw->reset.ops = &hns3_reset_ops;
6742
6743         ret = hns3_init_pf(eth_dev);
6744         if (ret) {
6745                 PMD_INIT_LOG(ERR, "Failed to init pf: %d", ret);
6746                 goto err_init_pf;
6747         }
6748
6749         /* Allocate memory for storing MAC addresses */
6750         eth_dev->data->mac_addrs = rte_zmalloc("hns3-mac",
6751                                                sizeof(struct rte_ether_addr) *
6752                                                HNS3_UC_MACADDR_NUM, 0);
6753         if (eth_dev->data->mac_addrs == NULL) {
6754                 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
6755                              "to store MAC addresses",
6756                              sizeof(struct rte_ether_addr) *
6757                              HNS3_UC_MACADDR_NUM);
6758                 ret = -ENOMEM;
6759                 goto err_rte_zmalloc;
6760         }
6761
6762         eth_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
6763         if (!rte_is_valid_assigned_ether_addr(eth_addr)) {
6764                 rte_eth_random_addr(hw->mac.mac_addr);
6765                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
6766                                 (struct rte_ether_addr *)hw->mac.mac_addr);
6767                 hns3_warn(hw, "default mac_addr from firmware is an invalid "
6768                           "unicast address, using random MAC address %s",
6769                           mac_str);
6770         }
6771         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
6772                             &eth_dev->data->mac_addrs[0]);
6773
6774         hw->adapter_state = HNS3_NIC_INITIALIZED;
6775
6776         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
6777                             SCHEDULE_PENDING) {
6778                 hns3_err(hw, "Reschedule reset service after dev_init");
6779                 hns3_schedule_reset(hns);
6780         } else {
6781                 /* IMP will wait ready flag before reset */
6782                 hns3_notify_reset_ready(hw, false);
6783         }
6784
6785         hns3_info(hw, "hns3 dev initialization successful!");
6786         return 0;
6787
6788 err_rte_zmalloc:
6789         hns3_uninit_pf(eth_dev);
6790
6791 err_init_pf:
6792         rte_free(hw->reset.wait_data);
6793
6794 err_init_reset:
6795         hns3_mp_uninit_primary();
6796
6797 err_mp_init_primary:
6798 err_mp_init_secondary:
6799         eth_dev->dev_ops = NULL;
6800         eth_dev->rx_pkt_burst = NULL;
6801         eth_dev->rx_descriptor_status = NULL;
6802         eth_dev->tx_pkt_burst = NULL;
6803         eth_dev->tx_pkt_prepare = NULL;
6804         eth_dev->tx_descriptor_status = NULL;
6805         rte_free(eth_dev->process_private);
6806         eth_dev->process_private = NULL;
6807         return ret;
6808 }
6809
6810 static int
6811 hns3_dev_uninit(struct rte_eth_dev *eth_dev)
6812 {
6813         struct hns3_adapter *hns = eth_dev->data->dev_private;
6814         struct hns3_hw *hw = &hns->hw;
6815
6816         PMD_INIT_FUNC_TRACE();
6817
6818         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
6819                 rte_free(eth_dev->process_private);
6820                 eth_dev->process_private = NULL;
6821                 return 0;
6822         }
6823
6824         if (hw->adapter_state < HNS3_NIC_CLOSING)
6825                 hns3_dev_close(eth_dev);
6826
6827         hw->adapter_state = HNS3_NIC_REMOVED;
6828         return 0;
6829 }
6830
6831 static int
6832 eth_hns3_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
6833                    struct rte_pci_device *pci_dev)
6834 {
6835         return rte_eth_dev_pci_generic_probe(pci_dev,
6836                                              sizeof(struct hns3_adapter),
6837                                              hns3_dev_init);
6838 }
6839
6840 static int
6841 eth_hns3_pci_remove(struct rte_pci_device *pci_dev)
6842 {
6843         return rte_eth_dev_pci_generic_remove(pci_dev, hns3_dev_uninit);
6844 }
6845
6846 static const struct rte_pci_id pci_id_hns3_map[] = {
6847         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_GE) },
6848         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE) },
6849         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE_RDMA) },
6850         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_50GE_RDMA) },
6851         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_MACSEC) },
6852         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_200G_RDMA) },
6853         { .vendor_id = 0, }, /* sentinel */
6854 };
6855
6856 static struct rte_pci_driver rte_hns3_pmd = {
6857         .id_table = pci_id_hns3_map,
6858         .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
6859         .probe = eth_hns3_pci_probe,
6860         .remove = eth_hns3_pci_remove,
6861 };
6862
6863 RTE_PMD_REGISTER_PCI(net_hns3, rte_hns3_pmd);
6864 RTE_PMD_REGISTER_PCI_TABLE(net_hns3, pci_id_hns3_map);
6865 RTE_PMD_REGISTER_KMOD_DEP(net_hns3, "* igb_uio | vfio-pci");
6866 RTE_PMD_REGISTER_PARAM_STRING(net_hns3,
6867                 HNS3_DEVARG_RX_FUNC_HINT "=vec|sve|simple|common "
6868                 HNS3_DEVARG_TX_FUNC_HINT "=vec|sve|simple|common ");
6869 RTE_LOG_REGISTER(hns3_logtype_init, pmd.net.hns3.init, NOTICE);
6870 RTE_LOG_REGISTER(hns3_logtype_driver, pmd.net.hns3.driver, NOTICE);