net/hns3: refactor PF LSC event report
[dpdk.git] / drivers / net / hns3 / hns3_ethdev.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2021 HiSilicon Limited.
3  */
4
5 #include <rte_alarm.h>
6 #include <rte_bus_pci.h>
7 #include <ethdev_pci.h>
8 #include <rte_pci.h>
9 #include <rte_kvargs.h>
10
11 #include "hns3_ethdev.h"
12 #include "hns3_logs.h"
13 #include "hns3_rxtx.h"
14 #include "hns3_intr.h"
15 #include "hns3_regs.h"
16 #include "hns3_dcb.h"
17 #include "hns3_mp.h"
18
19 #define HNS3_DEFAULT_PORT_CONF_BURST_SIZE       32
20 #define HNS3_DEFAULT_PORT_CONF_QUEUES_NUM       1
21
22 #define HNS3_SERVICE_INTERVAL           1000000 /* us */
23 #define HNS3_SERVICE_QUICK_INTERVAL     10
24 #define HNS3_INVALID_PVID               0xFFFF
25
26 #define HNS3_FILTER_TYPE_VF             0
27 #define HNS3_FILTER_TYPE_PORT           1
28 #define HNS3_FILTER_FE_EGRESS_V1_B      BIT(0)
29 #define HNS3_FILTER_FE_NIC_INGRESS_B    BIT(0)
30 #define HNS3_FILTER_FE_NIC_EGRESS_B     BIT(1)
31 #define HNS3_FILTER_FE_ROCE_INGRESS_B   BIT(2)
32 #define HNS3_FILTER_FE_ROCE_EGRESS_B    BIT(3)
33 #define HNS3_FILTER_FE_EGRESS           (HNS3_FILTER_FE_NIC_EGRESS_B \
34                                         | HNS3_FILTER_FE_ROCE_EGRESS_B)
35 #define HNS3_FILTER_FE_INGRESS          (HNS3_FILTER_FE_NIC_INGRESS_B \
36                                         | HNS3_FILTER_FE_ROCE_INGRESS_B)
37
38 /* Reset related Registers */
39 #define HNS3_GLOBAL_RESET_BIT           0
40 #define HNS3_CORE_RESET_BIT             1
41 #define HNS3_IMP_RESET_BIT              2
42 #define HNS3_FUN_RST_ING_B              0
43
44 #define HNS3_VECTOR0_IMP_RESET_INT_B    1
45 #define HNS3_VECTOR0_IMP_CMDQ_ERR_B     4U
46 #define HNS3_VECTOR0_IMP_RD_POISON_B    5U
47 #define HNS3_VECTOR0_ALL_MSIX_ERR_B     6U
48
49 #define HNS3_RESET_WAIT_MS      100
50 #define HNS3_RESET_WAIT_CNT     200
51
52 /* FEC mode order defined in HNS3 hardware */
53 #define HNS3_HW_FEC_MODE_NOFEC  0
54 #define HNS3_HW_FEC_MODE_BASER  1
55 #define HNS3_HW_FEC_MODE_RS     2
56
57 enum hns3_evt_cause {
58         HNS3_VECTOR0_EVENT_RST,
59         HNS3_VECTOR0_EVENT_MBX,
60         HNS3_VECTOR0_EVENT_ERR,
61         HNS3_VECTOR0_EVENT_PTP,
62         HNS3_VECTOR0_EVENT_OTHER,
63 };
64
65 static const struct rte_eth_fec_capa speed_fec_capa_tbl[] = {
66         { ETH_SPEED_NUM_10G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
67                              RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
68                              RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
69
70         { ETH_SPEED_NUM_25G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
71                              RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
72                              RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
73                              RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
74
75         { ETH_SPEED_NUM_40G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
76                              RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
77                              RTE_ETH_FEC_MODE_CAPA_MASK(BASER) },
78
79         { ETH_SPEED_NUM_50G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
80                              RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
81                              RTE_ETH_FEC_MODE_CAPA_MASK(BASER) |
82                              RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
83
84         { ETH_SPEED_NUM_100G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
85                               RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
86                               RTE_ETH_FEC_MODE_CAPA_MASK(RS) },
87
88         { ETH_SPEED_NUM_200G, RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC) |
89                               RTE_ETH_FEC_MODE_CAPA_MASK(AUTO) |
90                               RTE_ETH_FEC_MODE_CAPA_MASK(RS) }
91 };
92
93 static enum hns3_reset_level hns3_get_reset_level(struct hns3_adapter *hns,
94                                                  uint64_t *levels);
95 static int hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
96 static int hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid,
97                                     int on);
98 static int hns3_update_link_info(struct rte_eth_dev *eth_dev);
99 static bool hns3_update_link_status(struct hns3_hw *hw);
100
101 static int hns3_add_mc_addr(struct hns3_hw *hw,
102                             struct rte_ether_addr *mac_addr);
103 static int hns3_remove_mc_addr(struct hns3_hw *hw,
104                             struct rte_ether_addr *mac_addr);
105 static int hns3_restore_fec(struct hns3_hw *hw);
106 static int hns3_query_dev_fec_info(struct hns3_hw *hw);
107 static int hns3_do_stop(struct hns3_adapter *hns);
108
109 void hns3_ether_format_addr(char *buf, uint16_t size,
110                             const struct rte_ether_addr *ether_addr)
111 {
112         snprintf(buf, size, "%02X:**:**:**:%02X:%02X",
113                 ether_addr->addr_bytes[0],
114                 ether_addr->addr_bytes[4],
115                 ether_addr->addr_bytes[5]);
116 }
117
118 static void
119 hns3_pf_disable_irq0(struct hns3_hw *hw)
120 {
121         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
122 }
123
124 static void
125 hns3_pf_enable_irq0(struct hns3_hw *hw)
126 {
127         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
128 }
129
130 static enum hns3_evt_cause
131 hns3_proc_imp_reset_event(struct hns3_adapter *hns, bool is_delay,
132                           uint32_t *vec_val)
133 {
134         struct hns3_hw *hw = &hns->hw;
135
136         __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
137         hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
138         *vec_val = BIT(HNS3_VECTOR0_IMPRESET_INT_B);
139         if (!is_delay) {
140                 hw->reset.stats.imp_cnt++;
141                 hns3_warn(hw, "IMP reset detected, clear reset status");
142         } else {
143                 hns3_schedule_delayed_reset(hns);
144                 hns3_warn(hw, "IMP reset detected, don't clear reset status");
145         }
146
147         return HNS3_VECTOR0_EVENT_RST;
148 }
149
150 static enum hns3_evt_cause
151 hns3_proc_global_reset_event(struct hns3_adapter *hns, bool is_delay,
152                              uint32_t *vec_val)
153 {
154         struct hns3_hw *hw = &hns->hw;
155
156         __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
157         hns3_atomic_set_bit(HNS3_GLOBAL_RESET, &hw->reset.pending);
158         *vec_val = BIT(HNS3_VECTOR0_GLOBALRESET_INT_B);
159         if (!is_delay) {
160                 hw->reset.stats.global_cnt++;
161                 hns3_warn(hw, "Global reset detected, clear reset status");
162         } else {
163                 hns3_schedule_delayed_reset(hns);
164                 hns3_warn(hw,
165                           "Global reset detected, don't clear reset status");
166         }
167
168         return HNS3_VECTOR0_EVENT_RST;
169 }
170
171 static enum hns3_evt_cause
172 hns3_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
173 {
174         struct hns3_hw *hw = &hns->hw;
175         uint32_t vector0_int_stats;
176         uint32_t cmdq_src_val;
177         uint32_t hw_err_src_reg;
178         uint32_t val;
179         enum hns3_evt_cause ret;
180         bool is_delay;
181
182         /* fetch the events from their corresponding regs */
183         vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
184         cmdq_src_val = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
185         hw_err_src_reg = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
186
187         is_delay = clearval == NULL ? true : false;
188         /*
189          * Assumption: If by any chance reset and mailbox events are reported
190          * together then we will only process reset event and defer the
191          * processing of the mailbox events. Since, we would have not cleared
192          * RX CMDQ event this time we would receive again another interrupt
193          * from H/W just for the mailbox.
194          */
195         if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats) { /* IMP */
196                 ret = hns3_proc_imp_reset_event(hns, is_delay, &val);
197                 goto out;
198         }
199
200         /* Global reset */
201         if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats) {
202                 ret = hns3_proc_global_reset_event(hns, is_delay, &val);
203                 goto out;
204         }
205
206         /* Check for vector0 1588 event source */
207         if (BIT(HNS3_VECTOR0_1588_INT_B) & vector0_int_stats) {
208                 val = BIT(HNS3_VECTOR0_1588_INT_B);
209                 ret = HNS3_VECTOR0_EVENT_PTP;
210                 goto out;
211         }
212
213         /* check for vector0 msix event source */
214         if (vector0_int_stats & HNS3_VECTOR0_REG_MSIX_MASK ||
215             hw_err_src_reg & HNS3_RAS_REG_NFE_MASK) {
216                 val = vector0_int_stats | hw_err_src_reg;
217                 ret = HNS3_VECTOR0_EVENT_ERR;
218                 goto out;
219         }
220
221         /* check for vector0 mailbox(=CMDQ RX) event source */
222         if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_val) {
223                 cmdq_src_val &= ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
224                 val = cmdq_src_val;
225                 ret = HNS3_VECTOR0_EVENT_MBX;
226                 goto out;
227         }
228
229         val = vector0_int_stats;
230         ret = HNS3_VECTOR0_EVENT_OTHER;
231 out:
232
233         if (clearval)
234                 *clearval = val;
235         return ret;
236 }
237
238 static bool
239 hns3_is_1588_event_type(uint32_t event_type)
240 {
241         return (event_type == HNS3_VECTOR0_EVENT_PTP);
242 }
243
244 static void
245 hns3_clear_event_cause(struct hns3_hw *hw, uint32_t event_type, uint32_t regclr)
246 {
247         if (event_type == HNS3_VECTOR0_EVENT_RST ||
248             hns3_is_1588_event_type(event_type))
249                 hns3_write_dev(hw, HNS3_MISC_RESET_STS_REG, regclr);
250         else if (event_type == HNS3_VECTOR0_EVENT_MBX)
251                 hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
252 }
253
254 static void
255 hns3_clear_all_event_cause(struct hns3_hw *hw)
256 {
257         uint32_t vector0_int_stats;
258         vector0_int_stats = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
259
260         if (BIT(HNS3_VECTOR0_IMPRESET_INT_B) & vector0_int_stats)
261                 hns3_warn(hw, "Probe during IMP reset interrupt");
262
263         if (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) & vector0_int_stats)
264                 hns3_warn(hw, "Probe during Global reset interrupt");
265
266         hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_RST,
267                                BIT(HNS3_VECTOR0_IMPRESET_INT_B) |
268                                BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) |
269                                BIT(HNS3_VECTOR0_CORERESET_INT_B));
270         hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_MBX, 0);
271         hns3_clear_event_cause(hw, HNS3_VECTOR0_EVENT_PTP,
272                                 BIT(HNS3_VECTOR0_1588_INT_B));
273 }
274
275 static void
276 hns3_handle_mac_tnl(struct hns3_hw *hw)
277 {
278         struct hns3_cmd_desc desc;
279         uint32_t status;
280         int ret;
281
282         /* query and clear mac tnl interruptions */
283         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_MAC_TNL_INT, true);
284         ret = hns3_cmd_send(hw, &desc, 1);
285         if (ret) {
286                 hns3_err(hw, "failed to query mac tnl int, ret = %d.", ret);
287                 return;
288         }
289
290         status = rte_le_to_cpu_32(desc.data[0]);
291         if (status) {
292                 hns3_warn(hw, "mac tnl int occurs, status = 0x%x.", status);
293                 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_MAC_TNL_INT,
294                                           false);
295                 desc.data[0] = rte_cpu_to_le_32(HNS3_MAC_TNL_INT_CLR);
296                 ret = hns3_cmd_send(hw, &desc, 1);
297                 if (ret)
298                         hns3_err(hw, "failed to clear mac tnl int, ret = %d.",
299                                  ret);
300         }
301 }
302
303 static void
304 hns3_interrupt_handler(void *param)
305 {
306         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
307         struct hns3_adapter *hns = dev->data->dev_private;
308         struct hns3_hw *hw = &hns->hw;
309         enum hns3_evt_cause event_cause;
310         uint32_t clearval = 0;
311         uint32_t vector0_int;
312         uint32_t ras_int;
313         uint32_t cmdq_int;
314
315         /* Disable interrupt */
316         hns3_pf_disable_irq0(hw);
317
318         event_cause = hns3_check_event_cause(hns, &clearval);
319         vector0_int = hns3_read_dev(hw, HNS3_VECTOR0_OTHER_INT_STS_REG);
320         ras_int = hns3_read_dev(hw, HNS3_RAS_PF_OTHER_INT_STS_REG);
321         cmdq_int = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG);
322         /* vector 0 interrupt is shared with reset and mailbox source events. */
323         if (event_cause == HNS3_VECTOR0_EVENT_ERR) {
324                 hns3_warn(hw, "received interrupt: vector0_int_stat:0x%x "
325                           "ras_int_stat:0x%x cmdq_int_stat:0x%x",
326                           vector0_int, ras_int, cmdq_int);
327                 hns3_handle_msix_error(hns, &hw->reset.request);
328                 hns3_handle_ras_error(hns, &hw->reset.request);
329                 hns3_handle_mac_tnl(hw);
330                 hns3_schedule_reset(hns);
331         } else if (event_cause == HNS3_VECTOR0_EVENT_RST) {
332                 hns3_warn(hw, "received reset interrupt");
333                 hns3_schedule_reset(hns);
334         } else if (event_cause == HNS3_VECTOR0_EVENT_MBX) {
335                 hns3_dev_handle_mbx_msg(hw);
336         } else {
337                 hns3_warn(hw, "received unknown event: vector0_int_stat:0x%x "
338                           "ras_int_stat:0x%x cmdq_int_stat:0x%x",
339                           vector0_int, ras_int, cmdq_int);
340         }
341
342         hns3_clear_event_cause(hw, event_cause, clearval);
343         /* Enable interrupt if it is not cause by reset */
344         hns3_pf_enable_irq0(hw);
345 }
346
347 static int
348 hns3_set_port_vlan_filter(struct hns3_adapter *hns, uint16_t vlan_id, int on)
349 {
350 #define HNS3_VLAN_ID_OFFSET_STEP        160
351 #define HNS3_VLAN_BYTE_SIZE             8
352         struct hns3_vlan_filter_pf_cfg_cmd *req;
353         struct hns3_hw *hw = &hns->hw;
354         uint8_t vlan_offset_byte_val;
355         struct hns3_cmd_desc desc;
356         uint8_t vlan_offset_byte;
357         uint8_t vlan_offset_base;
358         int ret;
359
360         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_PF_CFG, false);
361
362         vlan_offset_base = vlan_id / HNS3_VLAN_ID_OFFSET_STEP;
363         vlan_offset_byte = (vlan_id % HNS3_VLAN_ID_OFFSET_STEP) /
364                            HNS3_VLAN_BYTE_SIZE;
365         vlan_offset_byte_val = 1 << (vlan_id % HNS3_VLAN_BYTE_SIZE);
366
367         req = (struct hns3_vlan_filter_pf_cfg_cmd *)desc.data;
368         req->vlan_offset = vlan_offset_base;
369         req->vlan_cfg = on ? 0 : 1;
370         req->vlan_offset_bitmap[vlan_offset_byte] = vlan_offset_byte_val;
371
372         ret = hns3_cmd_send(hw, &desc, 1);
373         if (ret)
374                 hns3_err(hw, "set port vlan id failed, vlan_id =%u, ret =%d",
375                          vlan_id, ret);
376
377         return ret;
378 }
379
380 static void
381 hns3_rm_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id)
382 {
383         struct hns3_user_vlan_table *vlan_entry;
384         struct hns3_pf *pf = &hns->pf;
385
386         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
387                 if (vlan_entry->vlan_id == vlan_id) {
388                         if (vlan_entry->hd_tbl_status)
389                                 hns3_set_port_vlan_filter(hns, vlan_id, 0);
390                         LIST_REMOVE(vlan_entry, next);
391                         rte_free(vlan_entry);
392                         break;
393                 }
394         }
395 }
396
397 static void
398 hns3_add_dev_vlan_table(struct hns3_adapter *hns, uint16_t vlan_id,
399                         bool writen_to_tbl)
400 {
401         struct hns3_user_vlan_table *vlan_entry;
402         struct hns3_hw *hw = &hns->hw;
403         struct hns3_pf *pf = &hns->pf;
404
405         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
406                 if (vlan_entry->vlan_id == vlan_id)
407                         return;
408         }
409
410         vlan_entry = rte_zmalloc("hns3_vlan_tbl", sizeof(*vlan_entry), 0);
411         if (vlan_entry == NULL) {
412                 hns3_err(hw, "Failed to malloc hns3 vlan table");
413                 return;
414         }
415
416         vlan_entry->hd_tbl_status = writen_to_tbl;
417         vlan_entry->vlan_id = vlan_id;
418
419         LIST_INSERT_HEAD(&pf->vlan_list, vlan_entry, next);
420 }
421
422 static int
423 hns3_restore_vlan_table(struct hns3_adapter *hns)
424 {
425         struct hns3_user_vlan_table *vlan_entry;
426         struct hns3_hw *hw = &hns->hw;
427         struct hns3_pf *pf = &hns->pf;
428         uint16_t vlan_id;
429         int ret = 0;
430
431         if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_ENABLE)
432                 return hns3_vlan_pvid_configure(hns,
433                                                 hw->port_base_vlan_cfg.pvid, 1);
434
435         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
436                 if (vlan_entry->hd_tbl_status) {
437                         vlan_id = vlan_entry->vlan_id;
438                         ret = hns3_set_port_vlan_filter(hns, vlan_id, 1);
439                         if (ret)
440                                 break;
441                 }
442         }
443
444         return ret;
445 }
446
447 static int
448 hns3_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
449 {
450         struct hns3_hw *hw = &hns->hw;
451         bool writen_to_tbl = false;
452         int ret = 0;
453
454         /*
455          * When vlan filter is enabled, hardware regards packets without vlan
456          * as packets with vlan 0. So, to receive packets without vlan, vlan id
457          * 0 is not allowed to be removed by rte_eth_dev_vlan_filter.
458          */
459         if (on == 0 && vlan_id == 0)
460                 return 0;
461
462         /*
463          * When port base vlan enabled, we use port base vlan as the vlan
464          * filter condition. In this case, we don't update vlan filter table
465          * when user add new vlan or remove exist vlan, just update the
466          * vlan list. The vlan id in vlan list will be writen in vlan filter
467          * table until port base vlan disabled
468          */
469         if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
470                 ret = hns3_set_port_vlan_filter(hns, vlan_id, on);
471                 writen_to_tbl = true;
472         }
473
474         if (ret == 0) {
475                 if (on)
476                         hns3_add_dev_vlan_table(hns, vlan_id, writen_to_tbl);
477                 else
478                         hns3_rm_dev_vlan_table(hns, vlan_id);
479         }
480         return ret;
481 }
482
483 static int
484 hns3_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
485 {
486         struct hns3_adapter *hns = dev->data->dev_private;
487         struct hns3_hw *hw = &hns->hw;
488         int ret;
489
490         rte_spinlock_lock(&hw->lock);
491         ret = hns3_vlan_filter_configure(hns, vlan_id, on);
492         rte_spinlock_unlock(&hw->lock);
493         return ret;
494 }
495
496 static int
497 hns3_vlan_tpid_configure(struct hns3_adapter *hns, enum rte_vlan_type vlan_type,
498                          uint16_t tpid)
499 {
500         struct hns3_rx_vlan_type_cfg_cmd *rx_req;
501         struct hns3_tx_vlan_type_cfg_cmd *tx_req;
502         struct hns3_hw *hw = &hns->hw;
503         struct hns3_cmd_desc desc;
504         int ret;
505
506         if ((vlan_type != ETH_VLAN_TYPE_INNER &&
507              vlan_type != ETH_VLAN_TYPE_OUTER)) {
508                 hns3_err(hw, "Unsupported vlan type, vlan_type =%d", vlan_type);
509                 return -EINVAL;
510         }
511
512         if (tpid != RTE_ETHER_TYPE_VLAN) {
513                 hns3_err(hw, "Unsupported vlan tpid, vlan_type =%d", vlan_type);
514                 return -EINVAL;
515         }
516
517         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_TYPE_ID, false);
518         rx_req = (struct hns3_rx_vlan_type_cfg_cmd *)desc.data;
519
520         if (vlan_type == ETH_VLAN_TYPE_OUTER) {
521                 rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
522                 rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
523         } else if (vlan_type == ETH_VLAN_TYPE_INNER) {
524                 rx_req->ot_fst_vlan_type = rte_cpu_to_le_16(tpid);
525                 rx_req->ot_sec_vlan_type = rte_cpu_to_le_16(tpid);
526                 rx_req->in_fst_vlan_type = rte_cpu_to_le_16(tpid);
527                 rx_req->in_sec_vlan_type = rte_cpu_to_le_16(tpid);
528         }
529
530         ret = hns3_cmd_send(hw, &desc, 1);
531         if (ret) {
532                 hns3_err(hw, "Send rxvlan protocol type command fail, ret =%d",
533                          ret);
534                 return ret;
535         }
536
537         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_INSERT, false);
538
539         tx_req = (struct hns3_tx_vlan_type_cfg_cmd *)desc.data;
540         tx_req->ot_vlan_type = rte_cpu_to_le_16(tpid);
541         tx_req->in_vlan_type = rte_cpu_to_le_16(tpid);
542
543         ret = hns3_cmd_send(hw, &desc, 1);
544         if (ret)
545                 hns3_err(hw, "Send txvlan protocol type command fail, ret =%d",
546                          ret);
547         return ret;
548 }
549
550 static int
551 hns3_vlan_tpid_set(struct rte_eth_dev *dev, enum rte_vlan_type vlan_type,
552                    uint16_t tpid)
553 {
554         struct hns3_adapter *hns = dev->data->dev_private;
555         struct hns3_hw *hw = &hns->hw;
556         int ret;
557
558         rte_spinlock_lock(&hw->lock);
559         ret = hns3_vlan_tpid_configure(hns, vlan_type, tpid);
560         rte_spinlock_unlock(&hw->lock);
561         return ret;
562 }
563
564 static int
565 hns3_set_vlan_rx_offload_cfg(struct hns3_adapter *hns,
566                              struct hns3_rx_vtag_cfg *vcfg)
567 {
568         struct hns3_vport_vtag_rx_cfg_cmd *req;
569         struct hns3_hw *hw = &hns->hw;
570         struct hns3_cmd_desc desc;
571         uint16_t vport_id;
572         uint8_t bitmap;
573         int ret;
574
575         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_RX_CFG, false);
576
577         req = (struct hns3_vport_vtag_rx_cfg_cmd *)desc.data;
578         hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG1_EN_B,
579                      vcfg->strip_tag1_en ? 1 : 0);
580         hns3_set_bit(req->vport_vlan_cfg, HNS3_REM_TAG2_EN_B,
581                      vcfg->strip_tag2_en ? 1 : 0);
582         hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG1_EN_B,
583                      vcfg->vlan1_vlan_prionly ? 1 : 0);
584         hns3_set_bit(req->vport_vlan_cfg, HNS3_SHOW_TAG2_EN_B,
585                      vcfg->vlan2_vlan_prionly ? 1 : 0);
586
587         /* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
588         hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG1_EN_B,
589                      vcfg->strip_tag1_discard_en ? 1 : 0);
590         hns3_set_bit(req->vport_vlan_cfg, HNS3_DISCARD_TAG2_EN_B,
591                      vcfg->strip_tag2_discard_en ? 1 : 0);
592         /*
593          * In current version VF is not supported when PF is driven by DPDK
594          * driver, just need to configure parameters for PF vport.
595          */
596         vport_id = HNS3_PF_FUNC_ID;
597         req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
598         bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
599         req->vf_bitmap[req->vf_offset] = bitmap;
600
601         ret = hns3_cmd_send(hw, &desc, 1);
602         if (ret)
603                 hns3_err(hw, "Send port rxvlan cfg command fail, ret =%d", ret);
604         return ret;
605 }
606
607 static void
608 hns3_update_rx_offload_cfg(struct hns3_adapter *hns,
609                            struct hns3_rx_vtag_cfg *vcfg)
610 {
611         struct hns3_pf *pf = &hns->pf;
612         memcpy(&pf->vtag_config.rx_vcfg, vcfg, sizeof(pf->vtag_config.rx_vcfg));
613 }
614
615 static void
616 hns3_update_tx_offload_cfg(struct hns3_adapter *hns,
617                            struct hns3_tx_vtag_cfg *vcfg)
618 {
619         struct hns3_pf *pf = &hns->pf;
620         memcpy(&pf->vtag_config.tx_vcfg, vcfg, sizeof(pf->vtag_config.tx_vcfg));
621 }
622
623 static int
624 hns3_en_hw_strip_rxvtag(struct hns3_adapter *hns, bool enable)
625 {
626         struct hns3_rx_vtag_cfg rxvlan_cfg;
627         struct hns3_hw *hw = &hns->hw;
628         int ret;
629
630         if (hw->port_base_vlan_cfg.state == HNS3_PORT_BASE_VLAN_DISABLE) {
631                 rxvlan_cfg.strip_tag1_en = false;
632                 rxvlan_cfg.strip_tag2_en = enable;
633                 rxvlan_cfg.strip_tag2_discard_en = false;
634         } else {
635                 rxvlan_cfg.strip_tag1_en = enable;
636                 rxvlan_cfg.strip_tag2_en = true;
637                 rxvlan_cfg.strip_tag2_discard_en = true;
638         }
639
640         rxvlan_cfg.strip_tag1_discard_en = false;
641         rxvlan_cfg.vlan1_vlan_prionly = false;
642         rxvlan_cfg.vlan2_vlan_prionly = false;
643         rxvlan_cfg.rx_vlan_offload_en = enable;
644
645         ret = hns3_set_vlan_rx_offload_cfg(hns, &rxvlan_cfg);
646         if (ret) {
647                 hns3_err(hw, "enable strip rx vtag failed, ret =%d", ret);
648                 return ret;
649         }
650
651         hns3_update_rx_offload_cfg(hns, &rxvlan_cfg);
652
653         return ret;
654 }
655
656 static int
657 hns3_set_vlan_filter_ctrl(struct hns3_hw *hw, uint8_t vlan_type,
658                           uint8_t fe_type, bool filter_en, uint8_t vf_id)
659 {
660         struct hns3_vlan_filter_ctrl_cmd *req;
661         struct hns3_cmd_desc desc;
662         int ret;
663
664         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_FILTER_CTRL, false);
665
666         req = (struct hns3_vlan_filter_ctrl_cmd *)desc.data;
667         req->vlan_type = vlan_type;
668         req->vlan_fe = filter_en ? fe_type : 0;
669         req->vf_id = vf_id;
670
671         ret = hns3_cmd_send(hw, &desc, 1);
672         if (ret)
673                 hns3_err(hw, "set vlan filter fail, ret =%d", ret);
674
675         return ret;
676 }
677
678 static int
679 hns3_vlan_filter_init(struct hns3_adapter *hns)
680 {
681         struct hns3_hw *hw = &hns->hw;
682         int ret;
683
684         ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_VF,
685                                         HNS3_FILTER_FE_EGRESS, false,
686                                         HNS3_PF_FUNC_ID);
687         if (ret) {
688                 hns3_err(hw, "failed to init vf vlan filter, ret = %d", ret);
689                 return ret;
690         }
691
692         ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
693                                         HNS3_FILTER_FE_INGRESS, false,
694                                         HNS3_PF_FUNC_ID);
695         if (ret)
696                 hns3_err(hw, "failed to init port vlan filter, ret = %d", ret);
697
698         return ret;
699 }
700
701 static int
702 hns3_enable_vlan_filter(struct hns3_adapter *hns, bool enable)
703 {
704         struct hns3_hw *hw = &hns->hw;
705         int ret;
706
707         ret = hns3_set_vlan_filter_ctrl(hw, HNS3_FILTER_TYPE_PORT,
708                                         HNS3_FILTER_FE_INGRESS, enable,
709                                         HNS3_PF_FUNC_ID);
710         if (ret)
711                 hns3_err(hw, "failed to %s port vlan filter, ret = %d",
712                          enable ? "enable" : "disable", ret);
713
714         return ret;
715 }
716
717 static int
718 hns3_vlan_offload_set(struct rte_eth_dev *dev, int mask)
719 {
720         struct hns3_adapter *hns = dev->data->dev_private;
721         struct hns3_hw *hw = &hns->hw;
722         struct rte_eth_rxmode *rxmode;
723         unsigned int tmp_mask;
724         bool enable;
725         int ret = 0;
726
727         rte_spinlock_lock(&hw->lock);
728         rxmode = &dev->data->dev_conf.rxmode;
729         tmp_mask = (unsigned int)mask;
730         if (tmp_mask & ETH_VLAN_FILTER_MASK) {
731                 /* ignore vlan filter configuration during promiscuous mode */
732                 if (!dev->data->promiscuous) {
733                         /* Enable or disable VLAN filter */
734                         enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER ?
735                                  true : false;
736
737                         ret = hns3_enable_vlan_filter(hns, enable);
738                         if (ret) {
739                                 rte_spinlock_unlock(&hw->lock);
740                                 hns3_err(hw, "failed to %s rx filter, ret = %d",
741                                          enable ? "enable" : "disable", ret);
742                                 return ret;
743                         }
744                 }
745         }
746
747         if (tmp_mask & ETH_VLAN_STRIP_MASK) {
748                 /* Enable or disable VLAN stripping */
749                 enable = rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP ?
750                     true : false;
751
752                 ret = hns3_en_hw_strip_rxvtag(hns, enable);
753                 if (ret) {
754                         rte_spinlock_unlock(&hw->lock);
755                         hns3_err(hw, "failed to %s rx strip, ret = %d",
756                                  enable ? "enable" : "disable", ret);
757                         return ret;
758                 }
759         }
760
761         rte_spinlock_unlock(&hw->lock);
762
763         return ret;
764 }
765
766 static int
767 hns3_set_vlan_tx_offload_cfg(struct hns3_adapter *hns,
768                              struct hns3_tx_vtag_cfg *vcfg)
769 {
770         struct hns3_vport_vtag_tx_cfg_cmd *req;
771         struct hns3_cmd_desc desc;
772         struct hns3_hw *hw = &hns->hw;
773         uint16_t vport_id;
774         uint8_t bitmap;
775         int ret;
776
777         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_VLAN_PORT_TX_CFG, false);
778
779         req = (struct hns3_vport_vtag_tx_cfg_cmd *)desc.data;
780         req->def_vlan_tag1 = vcfg->default_tag1;
781         req->def_vlan_tag2 = vcfg->default_tag2;
782         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG1_B,
783                      vcfg->accept_tag1 ? 1 : 0);
784         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG1_B,
785                      vcfg->accept_untag1 ? 1 : 0);
786         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_TAG2_B,
787                      vcfg->accept_tag2 ? 1 : 0);
788         hns3_set_bit(req->vport_vlan_cfg, HNS3_ACCEPT_UNTAG2_B,
789                      vcfg->accept_untag2 ? 1 : 0);
790         hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG1_EN_B,
791                      vcfg->insert_tag1_en ? 1 : 0);
792         hns3_set_bit(req->vport_vlan_cfg, HNS3_PORT_INS_TAG2_EN_B,
793                      vcfg->insert_tag2_en ? 1 : 0);
794         hns3_set_bit(req->vport_vlan_cfg, HNS3_CFG_NIC_ROCE_SEL_B, 0);
795
796         /* firmwall will ignore this configuration for PCI_REVISION_ID_HIP08 */
797         hns3_set_bit(req->vport_vlan_cfg, HNS3_TAG_SHIFT_MODE_EN_B,
798                      vcfg->tag_shift_mode_en ? 1 : 0);
799
800         /*
801          * In current version VF is not supported when PF is driven by DPDK
802          * driver, just need to configure parameters for PF vport.
803          */
804         vport_id = HNS3_PF_FUNC_ID;
805         req->vf_offset = vport_id / HNS3_VF_NUM_PER_CMD;
806         bitmap = 1 << (vport_id % HNS3_VF_NUM_PER_BYTE);
807         req->vf_bitmap[req->vf_offset] = bitmap;
808
809         ret = hns3_cmd_send(hw, &desc, 1);
810         if (ret)
811                 hns3_err(hw, "Send port txvlan cfg command fail, ret =%d", ret);
812
813         return ret;
814 }
815
816 static int
817 hns3_vlan_txvlan_cfg(struct hns3_adapter *hns, uint16_t port_base_vlan_state,
818                      uint16_t pvid)
819 {
820         struct hns3_hw *hw = &hns->hw;
821         struct hns3_tx_vtag_cfg txvlan_cfg;
822         int ret;
823
824         if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_DISABLE) {
825                 txvlan_cfg.accept_tag1 = true;
826                 txvlan_cfg.insert_tag1_en = false;
827                 txvlan_cfg.default_tag1 = 0;
828         } else {
829                 txvlan_cfg.accept_tag1 =
830                         hw->vlan_mode == HNS3_HW_SHIFT_AND_DISCARD_MODE;
831                 txvlan_cfg.insert_tag1_en = true;
832                 txvlan_cfg.default_tag1 = pvid;
833         }
834
835         txvlan_cfg.accept_untag1 = true;
836         txvlan_cfg.accept_tag2 = true;
837         txvlan_cfg.accept_untag2 = true;
838         txvlan_cfg.insert_tag2_en = false;
839         txvlan_cfg.default_tag2 = 0;
840         txvlan_cfg.tag_shift_mode_en = true;
841
842         ret = hns3_set_vlan_tx_offload_cfg(hns, &txvlan_cfg);
843         if (ret) {
844                 hns3_err(hw, "pf vlan set pvid failed, pvid =%u ,ret =%d", pvid,
845                          ret);
846                 return ret;
847         }
848
849         hns3_update_tx_offload_cfg(hns, &txvlan_cfg);
850         return ret;
851 }
852
853
854 static void
855 hns3_rm_all_vlan_table(struct hns3_adapter *hns, bool is_del_list)
856 {
857         struct hns3_user_vlan_table *vlan_entry;
858         struct hns3_pf *pf = &hns->pf;
859
860         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
861                 if (vlan_entry->hd_tbl_status) {
862                         hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 0);
863                         vlan_entry->hd_tbl_status = false;
864                 }
865         }
866
867         if (is_del_list) {
868                 vlan_entry = LIST_FIRST(&pf->vlan_list);
869                 while (vlan_entry) {
870                         LIST_REMOVE(vlan_entry, next);
871                         rte_free(vlan_entry);
872                         vlan_entry = LIST_FIRST(&pf->vlan_list);
873                 }
874         }
875 }
876
877 static void
878 hns3_add_all_vlan_table(struct hns3_adapter *hns)
879 {
880         struct hns3_user_vlan_table *vlan_entry;
881         struct hns3_pf *pf = &hns->pf;
882
883         LIST_FOREACH(vlan_entry, &pf->vlan_list, next) {
884                 if (!vlan_entry->hd_tbl_status) {
885                         hns3_set_port_vlan_filter(hns, vlan_entry->vlan_id, 1);
886                         vlan_entry->hd_tbl_status = true;
887                 }
888         }
889 }
890
891 static void
892 hns3_remove_all_vlan_table(struct hns3_adapter *hns)
893 {
894         struct hns3_hw *hw = &hns->hw;
895         int ret;
896
897         hns3_rm_all_vlan_table(hns, true);
898         if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID) {
899                 ret = hns3_set_port_vlan_filter(hns,
900                                                 hw->port_base_vlan_cfg.pvid, 0);
901                 if (ret) {
902                         hns3_err(hw, "Failed to remove all vlan table, ret =%d",
903                                  ret);
904                         return;
905                 }
906         }
907 }
908
909 static int
910 hns3_update_vlan_filter_entries(struct hns3_adapter *hns,
911                         uint16_t port_base_vlan_state, uint16_t new_pvid)
912 {
913         struct hns3_hw *hw = &hns->hw;
914         uint16_t old_pvid;
915         int ret;
916
917         if (port_base_vlan_state == HNS3_PORT_BASE_VLAN_ENABLE) {
918                 old_pvid = hw->port_base_vlan_cfg.pvid;
919                 if (old_pvid != HNS3_INVALID_PVID) {
920                         ret = hns3_set_port_vlan_filter(hns, old_pvid, 0);
921                         if (ret) {
922                                 hns3_err(hw, "failed to remove old pvid %u, "
923                                                 "ret = %d", old_pvid, ret);
924                                 return ret;
925                         }
926                 }
927
928                 hns3_rm_all_vlan_table(hns, false);
929                 ret = hns3_set_port_vlan_filter(hns, new_pvid, 1);
930                 if (ret) {
931                         hns3_err(hw, "failed to add new pvid %u, ret = %d",
932                                         new_pvid, ret);
933                         return ret;
934                 }
935         } else {
936                 ret = hns3_set_port_vlan_filter(hns, new_pvid, 0);
937                 if (ret) {
938                         hns3_err(hw, "failed to remove pvid %u, ret = %d",
939                                         new_pvid, ret);
940                         return ret;
941                 }
942
943                 hns3_add_all_vlan_table(hns);
944         }
945         return 0;
946 }
947
948 static int
949 hns3_en_pvid_strip(struct hns3_adapter *hns, int on)
950 {
951         struct hns3_rx_vtag_cfg *old_cfg = &hns->pf.vtag_config.rx_vcfg;
952         struct hns3_rx_vtag_cfg rx_vlan_cfg;
953         bool rx_strip_en;
954         int ret;
955
956         rx_strip_en = old_cfg->rx_vlan_offload_en;
957         if (on) {
958                 rx_vlan_cfg.strip_tag1_en = rx_strip_en;
959                 rx_vlan_cfg.strip_tag2_en = true;
960                 rx_vlan_cfg.strip_tag2_discard_en = true;
961         } else {
962                 rx_vlan_cfg.strip_tag1_en = false;
963                 rx_vlan_cfg.strip_tag2_en = rx_strip_en;
964                 rx_vlan_cfg.strip_tag2_discard_en = false;
965         }
966         rx_vlan_cfg.strip_tag1_discard_en = false;
967         rx_vlan_cfg.vlan1_vlan_prionly = false;
968         rx_vlan_cfg.vlan2_vlan_prionly = false;
969         rx_vlan_cfg.rx_vlan_offload_en = old_cfg->rx_vlan_offload_en;
970
971         ret = hns3_set_vlan_rx_offload_cfg(hns, &rx_vlan_cfg);
972         if (ret)
973                 return ret;
974
975         hns3_update_rx_offload_cfg(hns, &rx_vlan_cfg);
976         return ret;
977 }
978
979 static int
980 hns3_vlan_pvid_configure(struct hns3_adapter *hns, uint16_t pvid, int on)
981 {
982         struct hns3_hw *hw = &hns->hw;
983         uint16_t port_base_vlan_state;
984         int ret, err;
985
986         if (on == 0 && pvid != hw->port_base_vlan_cfg.pvid) {
987                 if (hw->port_base_vlan_cfg.pvid != HNS3_INVALID_PVID)
988                         hns3_warn(hw, "Invalid operation! As current pvid set "
989                                   "is %u, disable pvid %u is invalid",
990                                   hw->port_base_vlan_cfg.pvid, pvid);
991                 return 0;
992         }
993
994         port_base_vlan_state = on ? HNS3_PORT_BASE_VLAN_ENABLE :
995                                     HNS3_PORT_BASE_VLAN_DISABLE;
996         ret = hns3_vlan_txvlan_cfg(hns, port_base_vlan_state, pvid);
997         if (ret) {
998                 hns3_err(hw, "failed to config tx vlan for pvid, ret = %d",
999                          ret);
1000                 return ret;
1001         }
1002
1003         ret = hns3_en_pvid_strip(hns, on);
1004         if (ret) {
1005                 hns3_err(hw, "failed to config rx vlan strip for pvid, "
1006                          "ret = %d", ret);
1007                 goto pvid_vlan_strip_fail;
1008         }
1009
1010         if (pvid == HNS3_INVALID_PVID)
1011                 goto out;
1012         ret = hns3_update_vlan_filter_entries(hns, port_base_vlan_state, pvid);
1013         if (ret) {
1014                 hns3_err(hw, "failed to update vlan filter entries, ret = %d",
1015                          ret);
1016                 goto vlan_filter_set_fail;
1017         }
1018
1019 out:
1020         hw->port_base_vlan_cfg.state = port_base_vlan_state;
1021         hw->port_base_vlan_cfg.pvid = on ? pvid : HNS3_INVALID_PVID;
1022         return ret;
1023
1024 vlan_filter_set_fail:
1025         err = hns3_en_pvid_strip(hns, hw->port_base_vlan_cfg.state ==
1026                                         HNS3_PORT_BASE_VLAN_ENABLE);
1027         if (err)
1028                 hns3_err(hw, "fail to rollback pvid strip, ret = %d", err);
1029
1030 pvid_vlan_strip_fail:
1031         err = hns3_vlan_txvlan_cfg(hns, hw->port_base_vlan_cfg.state,
1032                                         hw->port_base_vlan_cfg.pvid);
1033         if (err)
1034                 hns3_err(hw, "fail to rollback txvlan status, ret = %d", err);
1035
1036         return ret;
1037 }
1038
1039 static int
1040 hns3_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
1041 {
1042         struct hns3_adapter *hns = dev->data->dev_private;
1043         struct hns3_hw *hw = &hns->hw;
1044         bool pvid_en_state_change;
1045         uint16_t pvid_state;
1046         int ret;
1047
1048         if (pvid > RTE_ETHER_MAX_VLAN_ID) {
1049                 hns3_err(hw, "Invalid vlan_id = %u > %d", pvid,
1050                          RTE_ETHER_MAX_VLAN_ID);
1051                 return -EINVAL;
1052         }
1053
1054         /*
1055          * If PVID configuration state change, should refresh the PVID
1056          * configuration state in struct hns3_tx_queue/hns3_rx_queue.
1057          */
1058         pvid_state = hw->port_base_vlan_cfg.state;
1059         if ((on && pvid_state == HNS3_PORT_BASE_VLAN_ENABLE) ||
1060             (!on && pvid_state == HNS3_PORT_BASE_VLAN_DISABLE))
1061                 pvid_en_state_change = false;
1062         else
1063                 pvid_en_state_change = true;
1064
1065         rte_spinlock_lock(&hw->lock);
1066         ret = hns3_vlan_pvid_configure(hns, pvid, on);
1067         rte_spinlock_unlock(&hw->lock);
1068         if (ret)
1069                 return ret;
1070         /*
1071          * Only in HNS3_SW_SHIFT_AND_MODE the PVID related operation in Tx/Rx
1072          * need be processed by PMD driver.
1073          */
1074         if (pvid_en_state_change &&
1075             hw->vlan_mode == HNS3_SW_SHIFT_AND_DISCARD_MODE)
1076                 hns3_update_all_queues_pvid_proc_en(hw);
1077
1078         return 0;
1079 }
1080
1081 static int
1082 hns3_default_vlan_config(struct hns3_adapter *hns)
1083 {
1084         struct hns3_hw *hw = &hns->hw;
1085         int ret;
1086
1087         /*
1088          * When vlan filter is enabled, hardware regards packets without vlan
1089          * as packets with vlan 0. Therefore, if vlan 0 is not in the vlan
1090          * table, packets without vlan won't be received. So, add vlan 0 as
1091          * the default vlan.
1092          */
1093         ret = hns3_vlan_filter_configure(hns, 0, 1);
1094         if (ret)
1095                 hns3_err(hw, "default vlan 0 config failed, ret =%d", ret);
1096         return ret;
1097 }
1098
1099 static int
1100 hns3_init_vlan_config(struct hns3_adapter *hns)
1101 {
1102         struct hns3_hw *hw = &hns->hw;
1103         int ret;
1104
1105         /*
1106          * This function can be called in the initialization and reset process,
1107          * when in reset process, it means that hardware had been reseted
1108          * successfully and we need to restore the hardware configuration to
1109          * ensure that the hardware configuration remains unchanged before and
1110          * after reset.
1111          */
1112         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1113                 hw->port_base_vlan_cfg.state = HNS3_PORT_BASE_VLAN_DISABLE;
1114                 hw->port_base_vlan_cfg.pvid = HNS3_INVALID_PVID;
1115         }
1116
1117         ret = hns3_vlan_filter_init(hns);
1118         if (ret) {
1119                 hns3_err(hw, "vlan init fail in pf, ret =%d", ret);
1120                 return ret;
1121         }
1122
1123         ret = hns3_vlan_tpid_configure(hns, ETH_VLAN_TYPE_INNER,
1124                                        RTE_ETHER_TYPE_VLAN);
1125         if (ret) {
1126                 hns3_err(hw, "tpid set fail in pf, ret =%d", ret);
1127                 return ret;
1128         }
1129
1130         /*
1131          * When in the reinit dev stage of the reset process, the following
1132          * vlan-related configurations may differ from those at initialization,
1133          * we will restore configurations to hardware in hns3_restore_vlan_table
1134          * and hns3_restore_vlan_conf later.
1135          */
1136         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1137                 ret = hns3_vlan_pvid_configure(hns, HNS3_INVALID_PVID, 0);
1138                 if (ret) {
1139                         hns3_err(hw, "pvid set fail in pf, ret =%d", ret);
1140                         return ret;
1141                 }
1142
1143                 ret = hns3_en_hw_strip_rxvtag(hns, false);
1144                 if (ret) {
1145                         hns3_err(hw, "rx strip configure fail in pf, ret =%d",
1146                                  ret);
1147                         return ret;
1148                 }
1149         }
1150
1151         return hns3_default_vlan_config(hns);
1152 }
1153
1154 static int
1155 hns3_restore_vlan_conf(struct hns3_adapter *hns)
1156 {
1157         struct hns3_pf *pf = &hns->pf;
1158         struct hns3_hw *hw = &hns->hw;
1159         uint64_t offloads;
1160         bool enable;
1161         int ret;
1162
1163         if (!hw->data->promiscuous) {
1164                 /* restore vlan filter states */
1165                 offloads = hw->data->dev_conf.rxmode.offloads;
1166                 enable = offloads & DEV_RX_OFFLOAD_VLAN_FILTER ? true : false;
1167                 ret = hns3_enable_vlan_filter(hns, enable);
1168                 if (ret) {
1169                         hns3_err(hw, "failed to restore vlan rx filter conf, "
1170                                  "ret = %d", ret);
1171                         return ret;
1172                 }
1173         }
1174
1175         ret = hns3_set_vlan_rx_offload_cfg(hns, &pf->vtag_config.rx_vcfg);
1176         if (ret) {
1177                 hns3_err(hw, "failed to restore vlan rx conf, ret = %d", ret);
1178                 return ret;
1179         }
1180
1181         ret = hns3_set_vlan_tx_offload_cfg(hns, &pf->vtag_config.tx_vcfg);
1182         if (ret)
1183                 hns3_err(hw, "failed to restore vlan tx conf, ret = %d", ret);
1184
1185         return ret;
1186 }
1187
1188 static int
1189 hns3_dev_configure_vlan(struct rte_eth_dev *dev)
1190 {
1191         struct hns3_adapter *hns = dev->data->dev_private;
1192         struct rte_eth_dev_data *data = dev->data;
1193         struct rte_eth_txmode *txmode;
1194         struct hns3_hw *hw = &hns->hw;
1195         int mask;
1196         int ret;
1197
1198         txmode = &data->dev_conf.txmode;
1199         if (txmode->hw_vlan_reject_tagged || txmode->hw_vlan_reject_untagged)
1200                 hns3_warn(hw,
1201                           "hw_vlan_reject_tagged or hw_vlan_reject_untagged "
1202                           "configuration is not supported! Ignore these two "
1203                           "parameters: hw_vlan_reject_tagged(%u), "
1204                           "hw_vlan_reject_untagged(%u)",
1205                           txmode->hw_vlan_reject_tagged,
1206                           txmode->hw_vlan_reject_untagged);
1207
1208         /* Apply vlan offload setting */
1209         mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK;
1210         ret = hns3_vlan_offload_set(dev, mask);
1211         if (ret) {
1212                 hns3_err(hw, "dev config rx vlan offload failed, ret = %d",
1213                          ret);
1214                 return ret;
1215         }
1216
1217         /*
1218          * If pvid config is not set in rte_eth_conf, driver needn't to set
1219          * VLAN pvid related configuration to hardware.
1220          */
1221         if (txmode->pvid == 0 && txmode->hw_vlan_insert_pvid == 0)
1222                 return 0;
1223
1224         /* Apply pvid setting */
1225         ret = hns3_vlan_pvid_set(dev, txmode->pvid,
1226                                  txmode->hw_vlan_insert_pvid);
1227         if (ret)
1228                 hns3_err(hw, "dev config vlan pvid(%u) failed, ret = %d",
1229                          txmode->pvid, ret);
1230
1231         return ret;
1232 }
1233
1234 static int
1235 hns3_config_tso(struct hns3_hw *hw, unsigned int tso_mss_min,
1236                 unsigned int tso_mss_max)
1237 {
1238         struct hns3_cfg_tso_status_cmd *req;
1239         struct hns3_cmd_desc desc;
1240         uint16_t tso_mss;
1241
1242         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TSO_GENERIC_CONFIG, false);
1243
1244         req = (struct hns3_cfg_tso_status_cmd *)desc.data;
1245
1246         tso_mss = 0;
1247         hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1248                        tso_mss_min);
1249         req->tso_mss_min = rte_cpu_to_le_16(tso_mss);
1250
1251         tso_mss = 0;
1252         hns3_set_field(tso_mss, HNS3_TSO_MSS_MIN_M, HNS3_TSO_MSS_MIN_S,
1253                        tso_mss_max);
1254         req->tso_mss_max = rte_cpu_to_le_16(tso_mss);
1255
1256         return hns3_cmd_send(hw, &desc, 1);
1257 }
1258
1259 static int
1260 hns3_set_umv_space(struct hns3_hw *hw, uint16_t space_size,
1261                    uint16_t *allocated_size, bool is_alloc)
1262 {
1263         struct hns3_umv_spc_alc_cmd *req;
1264         struct hns3_cmd_desc desc;
1265         int ret;
1266
1267         req = (struct hns3_umv_spc_alc_cmd *)desc.data;
1268         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ALLOCATE, false);
1269         hns3_set_bit(req->allocate, HNS3_UMV_SPC_ALC_B, is_alloc ? 0 : 1);
1270         req->space_size = rte_cpu_to_le_32(space_size);
1271
1272         ret = hns3_cmd_send(hw, &desc, 1);
1273         if (ret) {
1274                 PMD_INIT_LOG(ERR, "%s umv space failed for cmd_send, ret =%d",
1275                              is_alloc ? "allocate" : "free", ret);
1276                 return ret;
1277         }
1278
1279         if (is_alloc && allocated_size)
1280                 *allocated_size = rte_le_to_cpu_32(desc.data[1]);
1281
1282         return 0;
1283 }
1284
1285 static int
1286 hns3_init_umv_space(struct hns3_hw *hw)
1287 {
1288         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1289         struct hns3_pf *pf = &hns->pf;
1290         uint16_t allocated_size = 0;
1291         int ret;
1292
1293         ret = hns3_set_umv_space(hw, pf->wanted_umv_size, &allocated_size,
1294                                  true);
1295         if (ret)
1296                 return ret;
1297
1298         if (allocated_size < pf->wanted_umv_size)
1299                 PMD_INIT_LOG(WARNING, "Alloc umv space failed, want %u, get %u",
1300                              pf->wanted_umv_size, allocated_size);
1301
1302         pf->max_umv_size = (!!allocated_size) ? allocated_size :
1303                                                 pf->wanted_umv_size;
1304         pf->used_umv_size = 0;
1305         return 0;
1306 }
1307
1308 static int
1309 hns3_uninit_umv_space(struct hns3_hw *hw)
1310 {
1311         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1312         struct hns3_pf *pf = &hns->pf;
1313         int ret;
1314
1315         if (pf->max_umv_size == 0)
1316                 return 0;
1317
1318         ret = hns3_set_umv_space(hw, pf->max_umv_size, NULL, false);
1319         if (ret)
1320                 return ret;
1321
1322         pf->max_umv_size = 0;
1323
1324         return 0;
1325 }
1326
1327 static bool
1328 hns3_is_umv_space_full(struct hns3_hw *hw)
1329 {
1330         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1331         struct hns3_pf *pf = &hns->pf;
1332         bool is_full;
1333
1334         is_full = (pf->used_umv_size >= pf->max_umv_size);
1335
1336         return is_full;
1337 }
1338
1339 static void
1340 hns3_update_umv_space(struct hns3_hw *hw, bool is_free)
1341 {
1342         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1343         struct hns3_pf *pf = &hns->pf;
1344
1345         if (is_free) {
1346                 if (pf->used_umv_size > 0)
1347                         pf->used_umv_size--;
1348         } else
1349                 pf->used_umv_size++;
1350 }
1351
1352 static void
1353 hns3_prepare_mac_addr(struct hns3_mac_vlan_tbl_entry_cmd *new_req,
1354                       const uint8_t *addr, bool is_mc)
1355 {
1356         const unsigned char *mac_addr = addr;
1357         uint32_t high_val = ((uint32_t)mac_addr[3] << 24) |
1358                             ((uint32_t)mac_addr[2] << 16) |
1359                             ((uint32_t)mac_addr[1] << 8) |
1360                             (uint32_t)mac_addr[0];
1361         uint32_t low_val = ((uint32_t)mac_addr[5] << 8) | (uint32_t)mac_addr[4];
1362
1363         hns3_set_bit(new_req->flags, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1364         if (is_mc) {
1365                 hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1366                 hns3_set_bit(new_req->entry_type, HNS3_MAC_VLAN_BIT1_EN_B, 1);
1367                 hns3_set_bit(new_req->mc_mac_en, HNS3_MAC_VLAN_BIT0_EN_B, 1);
1368         }
1369
1370         new_req->mac_addr_hi32 = rte_cpu_to_le_32(high_val);
1371         new_req->mac_addr_lo16 = rte_cpu_to_le_16(low_val & 0xffff);
1372 }
1373
1374 static int
1375 hns3_get_mac_vlan_cmd_status(struct hns3_hw *hw, uint16_t cmdq_resp,
1376                              uint8_t resp_code,
1377                              enum hns3_mac_vlan_tbl_opcode op)
1378 {
1379         if (cmdq_resp) {
1380                 hns3_err(hw, "cmdq execute failed for get_mac_vlan_cmd_status,status=%u",
1381                          cmdq_resp);
1382                 return -EIO;
1383         }
1384
1385         if (op == HNS3_MAC_VLAN_ADD) {
1386                 if (resp_code == 0 || resp_code == 1) {
1387                         return 0;
1388                 } else if (resp_code == HNS3_ADD_UC_OVERFLOW) {
1389                         hns3_err(hw, "add mac addr failed for uc_overflow");
1390                         return -ENOSPC;
1391                 } else if (resp_code == HNS3_ADD_MC_OVERFLOW) {
1392                         hns3_err(hw, "add mac addr failed for mc_overflow");
1393                         return -ENOSPC;
1394                 }
1395
1396                 hns3_err(hw, "add mac addr failed for undefined, code=%u",
1397                          resp_code);
1398                 return -EIO;
1399         } else if (op == HNS3_MAC_VLAN_REMOVE) {
1400                 if (resp_code == 0) {
1401                         return 0;
1402                 } else if (resp_code == 1) {
1403                         hns3_dbg(hw, "remove mac addr failed for miss");
1404                         return -ENOENT;
1405                 }
1406
1407                 hns3_err(hw, "remove mac addr failed for undefined, code=%u",
1408                          resp_code);
1409                 return -EIO;
1410         } else if (op == HNS3_MAC_VLAN_LKUP) {
1411                 if (resp_code == 0) {
1412                         return 0;
1413                 } else if (resp_code == 1) {
1414                         hns3_dbg(hw, "lookup mac addr failed for miss");
1415                         return -ENOENT;
1416                 }
1417
1418                 hns3_err(hw, "lookup mac addr failed for undefined, code=%u",
1419                          resp_code);
1420                 return -EIO;
1421         }
1422
1423         hns3_err(hw, "unknown opcode for get_mac_vlan_cmd_status, opcode=%u",
1424                  op);
1425
1426         return -EINVAL;
1427 }
1428
1429 static int
1430 hns3_lookup_mac_vlan_tbl(struct hns3_hw *hw,
1431                          struct hns3_mac_vlan_tbl_entry_cmd *req,
1432                          struct hns3_cmd_desc *desc, bool is_mc)
1433 {
1434         uint8_t resp_code;
1435         uint16_t retval;
1436         int ret;
1437
1438         hns3_cmd_setup_basic_desc(&desc[0], HNS3_OPC_MAC_VLAN_ADD, true);
1439         if (is_mc) {
1440                 desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1441                 memcpy(desc[0].data, req,
1442                            sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1443                 hns3_cmd_setup_basic_desc(&desc[1], HNS3_OPC_MAC_VLAN_ADD,
1444                                           true);
1445                 desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1446                 hns3_cmd_setup_basic_desc(&desc[2], HNS3_OPC_MAC_VLAN_ADD,
1447                                           true);
1448                 ret = hns3_cmd_send(hw, desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1449         } else {
1450                 memcpy(desc[0].data, req,
1451                        sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1452                 ret = hns3_cmd_send(hw, desc, 1);
1453         }
1454         if (ret) {
1455                 hns3_err(hw, "lookup mac addr failed for cmd_send, ret =%d.",
1456                          ret);
1457                 return ret;
1458         }
1459         resp_code = (rte_le_to_cpu_32(desc[0].data[0]) >> 8) & 0xff;
1460         retval = rte_le_to_cpu_16(desc[0].retval);
1461
1462         return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1463                                             HNS3_MAC_VLAN_LKUP);
1464 }
1465
1466 static int
1467 hns3_add_mac_vlan_tbl(struct hns3_hw *hw,
1468                       struct hns3_mac_vlan_tbl_entry_cmd *req,
1469                       struct hns3_cmd_desc *mc_desc)
1470 {
1471         uint8_t resp_code;
1472         uint16_t retval;
1473         int cfg_status;
1474         int ret;
1475
1476         if (mc_desc == NULL) {
1477                 struct hns3_cmd_desc desc;
1478
1479                 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_ADD, false);
1480                 memcpy(desc.data, req,
1481                        sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1482                 ret = hns3_cmd_send(hw, &desc, 1);
1483                 resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1484                 retval = rte_le_to_cpu_16(desc.retval);
1485
1486                 cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1487                                                           HNS3_MAC_VLAN_ADD);
1488         } else {
1489                 hns3_cmd_reuse_desc(&mc_desc[0], false);
1490                 mc_desc[0].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1491                 hns3_cmd_reuse_desc(&mc_desc[1], false);
1492                 mc_desc[1].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1493                 hns3_cmd_reuse_desc(&mc_desc[2], false);
1494                 mc_desc[2].flag &= rte_cpu_to_le_16(~HNS3_CMD_FLAG_NEXT);
1495                 memcpy(mc_desc[0].data, req,
1496                        sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1497                 mc_desc[0].retval = 0;
1498                 ret = hns3_cmd_send(hw, mc_desc, HNS3_MC_MAC_VLAN_ADD_DESC_NUM);
1499                 resp_code = (rte_le_to_cpu_32(mc_desc[0].data[0]) >> 8) & 0xff;
1500                 retval = rte_le_to_cpu_16(mc_desc[0].retval);
1501
1502                 cfg_status = hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1503                                                           HNS3_MAC_VLAN_ADD);
1504         }
1505
1506         if (ret) {
1507                 hns3_err(hw, "add mac addr failed for cmd_send, ret =%d", ret);
1508                 return ret;
1509         }
1510
1511         return cfg_status;
1512 }
1513
1514 static int
1515 hns3_remove_mac_vlan_tbl(struct hns3_hw *hw,
1516                          struct hns3_mac_vlan_tbl_entry_cmd *req)
1517 {
1518         struct hns3_cmd_desc desc;
1519         uint8_t resp_code;
1520         uint16_t retval;
1521         int ret;
1522
1523         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_VLAN_REMOVE, false);
1524
1525         memcpy(desc.data, req, sizeof(struct hns3_mac_vlan_tbl_entry_cmd));
1526
1527         ret = hns3_cmd_send(hw, &desc, 1);
1528         if (ret) {
1529                 hns3_err(hw, "del mac addr failed for cmd_send, ret =%d", ret);
1530                 return ret;
1531         }
1532         resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
1533         retval = rte_le_to_cpu_16(desc.retval);
1534
1535         return hns3_get_mac_vlan_cmd_status(hw, retval, resp_code,
1536                                             HNS3_MAC_VLAN_REMOVE);
1537 }
1538
1539 static int
1540 hns3_add_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1541 {
1542         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
1543         struct hns3_mac_vlan_tbl_entry_cmd req;
1544         struct hns3_pf *pf = &hns->pf;
1545         struct hns3_cmd_desc desc[3];
1546         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1547         uint16_t egress_port = 0;
1548         uint8_t vf_id;
1549         int ret;
1550
1551         /* check if mac addr is valid */
1552         if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1553                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1554                                       mac_addr);
1555                 hns3_err(hw, "Add unicast mac addr err! addr(%s) invalid",
1556                          mac_str);
1557                 return -EINVAL;
1558         }
1559
1560         memset(&req, 0, sizeof(req));
1561
1562         /*
1563          * In current version VF is not supported when PF is driven by DPDK
1564          * driver, just need to configure parameters for PF vport.
1565          */
1566         vf_id = HNS3_PF_FUNC_ID;
1567         hns3_set_field(egress_port, HNS3_MAC_EPORT_VFID_M,
1568                        HNS3_MAC_EPORT_VFID_S, vf_id);
1569
1570         req.egress_port = rte_cpu_to_le_16(egress_port);
1571
1572         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1573
1574         /*
1575          * Lookup the mac address in the mac_vlan table, and add
1576          * it if the entry is inexistent. Repeated unicast entry
1577          * is not allowed in the mac vlan table.
1578          */
1579         ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, false);
1580         if (ret == -ENOENT) {
1581                 if (!hns3_is_umv_space_full(hw)) {
1582                         ret = hns3_add_mac_vlan_tbl(hw, &req, NULL);
1583                         if (!ret)
1584                                 hns3_update_umv_space(hw, false);
1585                         return ret;
1586                 }
1587
1588                 hns3_err(hw, "UC MAC table full(%u)", pf->used_umv_size);
1589
1590                 return -ENOSPC;
1591         }
1592
1593         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, mac_addr);
1594
1595         /* check if we just hit the duplicate */
1596         if (ret == 0) {
1597                 hns3_dbg(hw, "mac addr(%s) has been in the MAC table", mac_str);
1598                 return 0;
1599         }
1600
1601         hns3_err(hw, "PF failed to add unicast entry(%s) in the MAC table",
1602                  mac_str);
1603
1604         return ret;
1605 }
1606
1607 static int
1608 hns3_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1609 {
1610         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1611         struct rte_ether_addr *addr;
1612         int ret;
1613         int i;
1614
1615         for (i = 0; i < hw->mc_addrs_num; i++) {
1616                 addr = &hw->mc_addrs[i];
1617                 /* Check if there are duplicate addresses */
1618                 if (rte_is_same_ether_addr(addr, mac_addr)) {
1619                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1620                                               addr);
1621                         hns3_err(hw, "failed to add mc mac addr, same addrs"
1622                                  "(%s) is added by the set_mc_mac_addr_list "
1623                                  "API", mac_str);
1624                         return -EINVAL;
1625                 }
1626         }
1627
1628         ret = hns3_add_mc_addr(hw, mac_addr);
1629         if (ret) {
1630                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1631                                       mac_addr);
1632                 hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
1633                          mac_str, ret);
1634         }
1635         return ret;
1636 }
1637
1638 static int
1639 hns3_remove_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1640 {
1641         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1642         int ret;
1643
1644         ret = hns3_remove_mc_addr(hw, mac_addr);
1645         if (ret) {
1646                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1647                                       mac_addr);
1648                 hns3_err(hw, "failed to remove mc mac addr(%s), ret = %d",
1649                          mac_str, ret);
1650         }
1651         return ret;
1652 }
1653
1654 static int
1655 hns3_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
1656                   uint32_t idx, __rte_unused uint32_t pool)
1657 {
1658         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1659         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1660         int ret;
1661
1662         rte_spinlock_lock(&hw->lock);
1663
1664         /*
1665          * In hns3 network engine adding UC and MC mac address with different
1666          * commands with firmware. We need to determine whether the input
1667          * address is a UC or a MC address to call different commands.
1668          * By the way, it is recommended calling the API function named
1669          * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
1670          * using the rte_eth_dev_mac_addr_add API function to set MC mac address
1671          * may affect the specifications of UC mac addresses.
1672          */
1673         if (rte_is_multicast_ether_addr(mac_addr))
1674                 ret = hns3_add_mc_addr_common(hw, mac_addr);
1675         else
1676                 ret = hns3_add_uc_addr_common(hw, mac_addr);
1677
1678         if (ret) {
1679                 rte_spinlock_unlock(&hw->lock);
1680                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1681                                       mac_addr);
1682                 hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
1683                          ret);
1684                 return ret;
1685         }
1686
1687         if (idx == 0)
1688                 hw->mac.default_addr_setted = true;
1689         rte_spinlock_unlock(&hw->lock);
1690
1691         return ret;
1692 }
1693
1694 static int
1695 hns3_remove_uc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1696 {
1697         struct hns3_mac_vlan_tbl_entry_cmd req;
1698         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1699         int ret;
1700
1701         /* check if mac addr is valid */
1702         if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
1703                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1704                                       mac_addr);
1705                 hns3_err(hw, "remove unicast mac addr err! addr(%s) invalid",
1706                          mac_str);
1707                 return -EINVAL;
1708         }
1709
1710         memset(&req, 0, sizeof(req));
1711         hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1712         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, false);
1713         ret = hns3_remove_mac_vlan_tbl(hw, &req);
1714         if (ret == -ENOENT) /* mac addr isn't existent in the mac vlan table. */
1715                 return 0;
1716         else if (ret == 0)
1717                 hns3_update_umv_space(hw, true);
1718
1719         return ret;
1720 }
1721
1722 static void
1723 hns3_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
1724 {
1725         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1726         /* index will be checked by upper level rte interface */
1727         struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
1728         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1729         int ret;
1730
1731         rte_spinlock_lock(&hw->lock);
1732
1733         if (rte_is_multicast_ether_addr(mac_addr))
1734                 ret = hns3_remove_mc_addr_common(hw, mac_addr);
1735         else
1736                 ret = hns3_remove_uc_addr_common(hw, mac_addr);
1737         rte_spinlock_unlock(&hw->lock);
1738         if (ret) {
1739                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1740                                       mac_addr);
1741                 hns3_err(hw, "failed to remove mac addr(%s), ret = %d", mac_str,
1742                          ret);
1743         }
1744 }
1745
1746 static int
1747 hns3_set_default_mac_addr(struct rte_eth_dev *dev,
1748                           struct rte_ether_addr *mac_addr)
1749 {
1750         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1751         struct rte_ether_addr *oaddr;
1752         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1753         bool default_addr_setted;
1754         bool rm_succes = false;
1755         int ret, ret_val;
1756
1757         /*
1758          * It has been guaranteed that input parameter named mac_addr is valid
1759          * address in the rte layer of DPDK framework.
1760          */
1761         oaddr = (struct rte_ether_addr *)hw->mac.mac_addr;
1762         default_addr_setted = hw->mac.default_addr_setted;
1763         if (default_addr_setted && !!rte_is_same_ether_addr(mac_addr, oaddr))
1764                 return 0;
1765
1766         rte_spinlock_lock(&hw->lock);
1767         if (default_addr_setted) {
1768                 ret = hns3_remove_uc_addr_common(hw, oaddr);
1769                 if (ret) {
1770                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1771                                               oaddr);
1772                         hns3_warn(hw, "Remove old uc mac address(%s) fail: %d",
1773                                   mac_str, ret);
1774                         rm_succes = false;
1775                 } else
1776                         rm_succes = true;
1777         }
1778
1779         ret = hns3_add_uc_addr_common(hw, mac_addr);
1780         if (ret) {
1781                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1782                                       mac_addr);
1783                 hns3_err(hw, "Failed to set mac addr(%s): %d", mac_str, ret);
1784                 goto err_add_uc_addr;
1785         }
1786
1787         ret = hns3_pause_addr_cfg(hw, mac_addr->addr_bytes);
1788         if (ret) {
1789                 hns3_err(hw, "Failed to configure mac pause address: %d", ret);
1790                 goto err_pause_addr_cfg;
1791         }
1792
1793         rte_ether_addr_copy(mac_addr,
1794                             (struct rte_ether_addr *)hw->mac.mac_addr);
1795         hw->mac.default_addr_setted = true;
1796         rte_spinlock_unlock(&hw->lock);
1797
1798         return 0;
1799
1800 err_pause_addr_cfg:
1801         ret_val = hns3_remove_uc_addr_common(hw, mac_addr);
1802         if (ret_val) {
1803                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1804                                       mac_addr);
1805                 hns3_warn(hw,
1806                           "Failed to roll back to del setted mac addr(%s): %d",
1807                           mac_str, ret_val);
1808         }
1809
1810 err_add_uc_addr:
1811         if (rm_succes) {
1812                 ret_val = hns3_add_uc_addr_common(hw, oaddr);
1813                 if (ret_val) {
1814                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1815                                               oaddr);
1816                         hns3_warn(hw,
1817                                   "Failed to restore old uc mac addr(%s): %d",
1818                                   mac_str, ret_val);
1819                         hw->mac.default_addr_setted = false;
1820                 }
1821         }
1822         rte_spinlock_unlock(&hw->lock);
1823
1824         return ret;
1825 }
1826
1827 static int
1828 hns3_configure_all_mac_addr(struct hns3_adapter *hns, bool del)
1829 {
1830         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1831         struct hns3_hw *hw = &hns->hw;
1832         struct rte_ether_addr *addr;
1833         int err = 0;
1834         int ret;
1835         int i;
1836
1837         for (i = 0; i < HNS3_UC_MACADDR_NUM; i++) {
1838                 addr = &hw->data->mac_addrs[i];
1839                 if (rte_is_zero_ether_addr(addr))
1840                         continue;
1841                 if (rte_is_multicast_ether_addr(addr))
1842                         ret = del ? hns3_remove_mc_addr(hw, addr) :
1843                               hns3_add_mc_addr(hw, addr);
1844                 else
1845                         ret = del ? hns3_remove_uc_addr_common(hw, addr) :
1846                               hns3_add_uc_addr_common(hw, addr);
1847
1848                 if (ret) {
1849                         err = ret;
1850                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1851                                               addr);
1852                         hns3_err(hw, "failed to %s mac addr(%s) index:%d "
1853                                  "ret = %d.", del ? "remove" : "restore",
1854                                  mac_str, i, ret);
1855                 }
1856         }
1857         return err;
1858 }
1859
1860 static void
1861 hns3_update_desc_vfid(struct hns3_cmd_desc *desc, uint8_t vfid, bool clr)
1862 {
1863 #define HNS3_VF_NUM_IN_FIRST_DESC 192
1864         uint8_t word_num;
1865         uint8_t bit_num;
1866
1867         if (vfid < HNS3_VF_NUM_IN_FIRST_DESC) {
1868                 word_num = vfid / 32;
1869                 bit_num = vfid % 32;
1870                 if (clr)
1871                         desc[1].data[word_num] &=
1872                             rte_cpu_to_le_32(~(1UL << bit_num));
1873                 else
1874                         desc[1].data[word_num] |=
1875                             rte_cpu_to_le_32(1UL << bit_num);
1876         } else {
1877                 word_num = (vfid - HNS3_VF_NUM_IN_FIRST_DESC) / 32;
1878                 bit_num = vfid % 32;
1879                 if (clr)
1880                         desc[2].data[word_num] &=
1881                             rte_cpu_to_le_32(~(1UL << bit_num));
1882                 else
1883                         desc[2].data[word_num] |=
1884                             rte_cpu_to_le_32(1UL << bit_num);
1885         }
1886 }
1887
1888 static int
1889 hns3_add_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1890 {
1891         struct hns3_mac_vlan_tbl_entry_cmd req;
1892         struct hns3_cmd_desc desc[3];
1893         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1894         uint8_t vf_id;
1895         int ret;
1896
1897         /* Check if mac addr is valid */
1898         if (!rte_is_multicast_ether_addr(mac_addr)) {
1899                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1900                                       mac_addr);
1901                 hns3_err(hw, "failed to add mc mac addr, addr(%s) invalid",
1902                          mac_str);
1903                 return -EINVAL;
1904         }
1905
1906         memset(&req, 0, sizeof(req));
1907         hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1908         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1909         ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1910         if (ret) {
1911                 /* This mac addr do not exist, add new entry for it */
1912                 memset(desc[0].data, 0, sizeof(desc[0].data));
1913                 memset(desc[1].data, 0, sizeof(desc[0].data));
1914                 memset(desc[2].data, 0, sizeof(desc[0].data));
1915         }
1916
1917         /*
1918          * In current version VF is not supported when PF is driven by DPDK
1919          * driver, just need to configure parameters for PF vport.
1920          */
1921         vf_id = HNS3_PF_FUNC_ID;
1922         hns3_update_desc_vfid(desc, vf_id, false);
1923         ret = hns3_add_mac_vlan_tbl(hw, &req, desc);
1924         if (ret) {
1925                 if (ret == -ENOSPC)
1926                         hns3_err(hw, "mc mac vlan table is full");
1927                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1928                                       mac_addr);
1929                 hns3_err(hw, "failed to add mc mac addr(%s): %d", mac_str, ret);
1930         }
1931
1932         return ret;
1933 }
1934
1935 static int
1936 hns3_remove_mc_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
1937 {
1938         struct hns3_mac_vlan_tbl_entry_cmd req;
1939         struct hns3_cmd_desc desc[3];
1940         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1941         uint8_t vf_id;
1942         int ret;
1943
1944         /* Check if mac addr is valid */
1945         if (!rte_is_multicast_ether_addr(mac_addr)) {
1946                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1947                                       mac_addr);
1948                 hns3_err(hw, "Failed to rm mc mac addr, addr(%s) invalid",
1949                          mac_str);
1950                 return -EINVAL;
1951         }
1952
1953         memset(&req, 0, sizeof(req));
1954         hns3_set_bit(req.entry_type, HNS3_MAC_VLAN_BIT0_EN_B, 0);
1955         hns3_prepare_mac_addr(&req, mac_addr->addr_bytes, true);
1956         ret = hns3_lookup_mac_vlan_tbl(hw, &req, desc, true);
1957         if (ret == 0) {
1958                 /*
1959                  * This mac addr exist, remove this handle's VFID for it.
1960                  * In current version VF is not supported when PF is driven by
1961                  * DPDK driver, just need to configure parameters for PF vport.
1962                  */
1963                 vf_id = HNS3_PF_FUNC_ID;
1964                 hns3_update_desc_vfid(desc, vf_id, true);
1965
1966                 /* All the vfid is zero, so need to delete this entry */
1967                 ret = hns3_remove_mac_vlan_tbl(hw, &req);
1968         } else if (ret == -ENOENT) {
1969                 /* This mac addr doesn't exist. */
1970                 return 0;
1971         }
1972
1973         if (ret) {
1974                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1975                                       mac_addr);
1976                 hns3_err(hw, "Failed to rm mc mac addr(%s): %d", mac_str, ret);
1977         }
1978
1979         return ret;
1980 }
1981
1982 static int
1983 hns3_set_mc_addr_chk_param(struct hns3_hw *hw,
1984                            struct rte_ether_addr *mc_addr_set,
1985                            uint32_t nb_mc_addr)
1986 {
1987         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1988         struct rte_ether_addr *addr;
1989         uint32_t i;
1990         uint32_t j;
1991
1992         if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
1993                 hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%u) "
1994                          "invalid. valid range: 0~%d",
1995                          nb_mc_addr, HNS3_MC_MACADDR_NUM);
1996                 return -EINVAL;
1997         }
1998
1999         /* Check if input mac addresses are valid */
2000         for (i = 0; i < nb_mc_addr; i++) {
2001                 addr = &mc_addr_set[i];
2002                 if (!rte_is_multicast_ether_addr(addr)) {
2003                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2004                                               addr);
2005                         hns3_err(hw,
2006                                  "failed to set mc mac addr, addr(%s) invalid.",
2007                                  mac_str);
2008                         return -EINVAL;
2009                 }
2010
2011                 /* Check if there are duplicate addresses */
2012                 for (j = i + 1; j < nb_mc_addr; j++) {
2013                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
2014                                 hns3_ether_format_addr(mac_str,
2015                                                       RTE_ETHER_ADDR_FMT_SIZE,
2016                                                       addr);
2017                                 hns3_err(hw, "failed to set mc mac addr, "
2018                                          "addrs invalid. two same addrs(%s).",
2019                                          mac_str);
2020                                 return -EINVAL;
2021                         }
2022                 }
2023
2024                 /*
2025                  * Check if there are duplicate addresses between mac_addrs
2026                  * and mc_addr_set
2027                  */
2028                 for (j = 0; j < HNS3_UC_MACADDR_NUM; j++) {
2029                         if (rte_is_same_ether_addr(addr,
2030                                                    &hw->data->mac_addrs[j])) {
2031                                 hns3_ether_format_addr(mac_str,
2032                                                       RTE_ETHER_ADDR_FMT_SIZE,
2033                                                       addr);
2034                                 hns3_err(hw, "failed to set mc mac addr, "
2035                                          "addrs invalid. addrs(%s) has already "
2036                                          "configured in mac_addr add API",
2037                                          mac_str);
2038                                 return -EINVAL;
2039                         }
2040                 }
2041         }
2042
2043         return 0;
2044 }
2045
2046 static void
2047 hns3_set_mc_addr_calc_addr(struct hns3_hw *hw,
2048                            struct rte_ether_addr *mc_addr_set,
2049                            int mc_addr_num,
2050                            struct rte_ether_addr *reserved_addr_list,
2051                            int *reserved_addr_num,
2052                            struct rte_ether_addr *add_addr_list,
2053                            int *add_addr_num,
2054                            struct rte_ether_addr *rm_addr_list,
2055                            int *rm_addr_num)
2056 {
2057         struct rte_ether_addr *addr;
2058         int current_addr_num;
2059         int reserved_num = 0;
2060         int add_num = 0;
2061         int rm_num = 0;
2062         int num;
2063         int i;
2064         int j;
2065         bool same_addr;
2066
2067         /* Calculate the mc mac address list that should be removed */
2068         current_addr_num = hw->mc_addrs_num;
2069         for (i = 0; i < current_addr_num; i++) {
2070                 addr = &hw->mc_addrs[i];
2071                 same_addr = false;
2072                 for (j = 0; j < mc_addr_num; j++) {
2073                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
2074                                 same_addr = true;
2075                                 break;
2076                         }
2077                 }
2078
2079                 if (!same_addr) {
2080                         rte_ether_addr_copy(addr, &rm_addr_list[rm_num]);
2081                         rm_num++;
2082                 } else {
2083                         rte_ether_addr_copy(addr,
2084                                             &reserved_addr_list[reserved_num]);
2085                         reserved_num++;
2086                 }
2087         }
2088
2089         /* Calculate the mc mac address list that should be added */
2090         for (i = 0; i < mc_addr_num; i++) {
2091                 addr = &mc_addr_set[i];
2092                 same_addr = false;
2093                 for (j = 0; j < current_addr_num; j++) {
2094                         if (rte_is_same_ether_addr(addr, &hw->mc_addrs[j])) {
2095                                 same_addr = true;
2096                                 break;
2097                         }
2098                 }
2099
2100                 if (!same_addr) {
2101                         rte_ether_addr_copy(addr, &add_addr_list[add_num]);
2102                         add_num++;
2103                 }
2104         }
2105
2106         /* Reorder the mc mac address list maintained by driver */
2107         for (i = 0; i < reserved_num; i++)
2108                 rte_ether_addr_copy(&reserved_addr_list[i], &hw->mc_addrs[i]);
2109
2110         for (i = 0; i < rm_num; i++) {
2111                 num = reserved_num + i;
2112                 rte_ether_addr_copy(&rm_addr_list[i], &hw->mc_addrs[num]);
2113         }
2114
2115         *reserved_addr_num = reserved_num;
2116         *add_addr_num = add_num;
2117         *rm_addr_num = rm_num;
2118 }
2119
2120 static int
2121 hns3_set_mc_mac_addr_list(struct rte_eth_dev *dev,
2122                           struct rte_ether_addr *mc_addr_set,
2123                           uint32_t nb_mc_addr)
2124 {
2125         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2126         struct rte_ether_addr reserved_addr_list[HNS3_MC_MACADDR_NUM];
2127         struct rte_ether_addr add_addr_list[HNS3_MC_MACADDR_NUM];
2128         struct rte_ether_addr rm_addr_list[HNS3_MC_MACADDR_NUM];
2129         struct rte_ether_addr *addr;
2130         int reserved_addr_num;
2131         int add_addr_num;
2132         int rm_addr_num;
2133         int mc_addr_num;
2134         int num;
2135         int ret;
2136         int i;
2137
2138         /* Check if input parameters are valid */
2139         ret = hns3_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
2140         if (ret)
2141                 return ret;
2142
2143         rte_spinlock_lock(&hw->lock);
2144
2145         /*
2146          * Calculate the mc mac address lists those should be removed and be
2147          * added, Reorder the mc mac address list maintained by driver.
2148          */
2149         mc_addr_num = (int)nb_mc_addr;
2150         hns3_set_mc_addr_calc_addr(hw, mc_addr_set, mc_addr_num,
2151                                    reserved_addr_list, &reserved_addr_num,
2152                                    add_addr_list, &add_addr_num,
2153                                    rm_addr_list, &rm_addr_num);
2154
2155         /* Remove mc mac addresses */
2156         for (i = 0; i < rm_addr_num; i++) {
2157                 num = rm_addr_num - i - 1;
2158                 addr = &rm_addr_list[num];
2159                 ret = hns3_remove_mc_addr(hw, addr);
2160                 if (ret) {
2161                         rte_spinlock_unlock(&hw->lock);
2162                         return ret;
2163                 }
2164                 hw->mc_addrs_num--;
2165         }
2166
2167         /* Add mc mac addresses */
2168         for (i = 0; i < add_addr_num; i++) {
2169                 addr = &add_addr_list[i];
2170                 ret = hns3_add_mc_addr(hw, addr);
2171                 if (ret) {
2172                         rte_spinlock_unlock(&hw->lock);
2173                         return ret;
2174                 }
2175
2176                 num = reserved_addr_num + i;
2177                 rte_ether_addr_copy(addr, &hw->mc_addrs[num]);
2178                 hw->mc_addrs_num++;
2179         }
2180         rte_spinlock_unlock(&hw->lock);
2181
2182         return 0;
2183 }
2184
2185 static int
2186 hns3_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
2187 {
2188         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2189         struct hns3_hw *hw = &hns->hw;
2190         struct rte_ether_addr *addr;
2191         int err = 0;
2192         int ret;
2193         int i;
2194
2195         for (i = 0; i < hw->mc_addrs_num; i++) {
2196                 addr = &hw->mc_addrs[i];
2197                 if (!rte_is_multicast_ether_addr(addr))
2198                         continue;
2199                 if (del)
2200                         ret = hns3_remove_mc_addr(hw, addr);
2201                 else
2202                         ret = hns3_add_mc_addr(hw, addr);
2203                 if (ret) {
2204                         err = ret;
2205                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2206                                               addr);
2207                         hns3_dbg(hw, "%s mc mac addr: %s failed for pf: ret = %d",
2208                                  del ? "Remove" : "Restore", mac_str, ret);
2209                 }
2210         }
2211         return err;
2212 }
2213
2214 static int
2215 hns3_check_mq_mode(struct rte_eth_dev *dev)
2216 {
2217         enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
2218         enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
2219         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2220         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2221         struct rte_eth_dcb_rx_conf *dcb_rx_conf;
2222         struct rte_eth_dcb_tx_conf *dcb_tx_conf;
2223         uint8_t num_tc;
2224         int max_tc = 0;
2225         int i;
2226
2227         dcb_rx_conf = &dev->data->dev_conf.rx_adv_conf.dcb_rx_conf;
2228         dcb_tx_conf = &dev->data->dev_conf.tx_adv_conf.dcb_tx_conf;
2229
2230         if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB_RSS) {
2231                 hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB_RSS is not supported. "
2232                          "rx_mq_mode = %d", rx_mq_mode);
2233                 return -EINVAL;
2234         }
2235
2236         if (rx_mq_mode == ETH_MQ_RX_VMDQ_DCB ||
2237             tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
2238                 hns3_err(hw, "ETH_MQ_RX_VMDQ_DCB and ETH_MQ_TX_VMDQ_DCB "
2239                          "is not supported. rx_mq_mode = %d, tx_mq_mode = %d",
2240                          rx_mq_mode, tx_mq_mode);
2241                 return -EINVAL;
2242         }
2243
2244         if (rx_mq_mode == ETH_MQ_RX_DCB_RSS) {
2245                 if (dcb_rx_conf->nb_tcs > pf->tc_max) {
2246                         hns3_err(hw, "nb_tcs(%u) > max_tc(%u) driver supported.",
2247                                  dcb_rx_conf->nb_tcs, pf->tc_max);
2248                         return -EINVAL;
2249                 }
2250
2251                 if (!(dcb_rx_conf->nb_tcs == HNS3_4_TCS ||
2252                       dcb_rx_conf->nb_tcs == HNS3_8_TCS)) {
2253                         hns3_err(hw, "on ETH_MQ_RX_DCB_RSS mode, "
2254                                  "nb_tcs(%d) != %d or %d in rx direction.",
2255                                  dcb_rx_conf->nb_tcs, HNS3_4_TCS, HNS3_8_TCS);
2256                         return -EINVAL;
2257                 }
2258
2259                 if (dcb_rx_conf->nb_tcs != dcb_tx_conf->nb_tcs) {
2260                         hns3_err(hw, "num_tcs(%d) of tx is not equal to rx(%d)",
2261                                  dcb_tx_conf->nb_tcs, dcb_rx_conf->nb_tcs);
2262                         return -EINVAL;
2263                 }
2264
2265                 for (i = 0; i < HNS3_MAX_USER_PRIO; i++) {
2266                         if (dcb_rx_conf->dcb_tc[i] != dcb_tx_conf->dcb_tc[i]) {
2267                                 hns3_err(hw, "dcb_tc[%d] = %u in rx direction, "
2268                                          "is not equal to one in tx direction.",
2269                                          i, dcb_rx_conf->dcb_tc[i]);
2270                                 return -EINVAL;
2271                         }
2272                         if (dcb_rx_conf->dcb_tc[i] > max_tc)
2273                                 max_tc = dcb_rx_conf->dcb_tc[i];
2274                 }
2275
2276                 num_tc = max_tc + 1;
2277                 if (num_tc > dcb_rx_conf->nb_tcs) {
2278                         hns3_err(hw, "max num_tc(%u) mapped > nb_tcs(%u)",
2279                                  num_tc, dcb_rx_conf->nb_tcs);
2280                         return -EINVAL;
2281                 }
2282         }
2283
2284         return 0;
2285 }
2286
2287 static int
2288 hns3_check_dcb_cfg(struct rte_eth_dev *dev)
2289 {
2290         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2291
2292         if (!hns3_dev_dcb_supported(hw)) {
2293                 hns3_err(hw, "this port does not support dcb configurations.");
2294                 return -EOPNOTSUPP;
2295         }
2296
2297         if (hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE) {
2298                 hns3_err(hw, "MAC pause enabled, cannot config dcb info.");
2299                 return -EOPNOTSUPP;
2300         }
2301
2302         /* Check multiple queue mode */
2303         return hns3_check_mq_mode(dev);
2304 }
2305
2306 static int
2307 hns3_bind_ring_with_vector(struct hns3_hw *hw, uint16_t vector_id, bool en,
2308                            enum hns3_ring_type queue_type, uint16_t queue_id)
2309 {
2310         struct hns3_cmd_desc desc;
2311         struct hns3_ctrl_vector_chain_cmd *req =
2312                 (struct hns3_ctrl_vector_chain_cmd *)desc.data;
2313         enum hns3_cmd_status status;
2314         enum hns3_opcode_type op;
2315         uint16_t tqp_type_and_id = 0;
2316         uint16_t type;
2317         uint16_t gl;
2318
2319         op = en ? HNS3_OPC_ADD_RING_TO_VECTOR : HNS3_OPC_DEL_RING_TO_VECTOR;
2320         hns3_cmd_setup_basic_desc(&desc, op, false);
2321         req->int_vector_id = hns3_get_field(vector_id, HNS3_TQP_INT_ID_L_M,
2322                                               HNS3_TQP_INT_ID_L_S);
2323         req->int_vector_id_h = hns3_get_field(vector_id, HNS3_TQP_INT_ID_H_M,
2324                                               HNS3_TQP_INT_ID_H_S);
2325
2326         if (queue_type == HNS3_RING_TYPE_RX)
2327                 gl = HNS3_RING_GL_RX;
2328         else
2329                 gl = HNS3_RING_GL_TX;
2330
2331         type = queue_type;
2332
2333         hns3_set_field(tqp_type_and_id, HNS3_INT_TYPE_M, HNS3_INT_TYPE_S,
2334                        type);
2335         hns3_set_field(tqp_type_and_id, HNS3_TQP_ID_M, HNS3_TQP_ID_S, queue_id);
2336         hns3_set_field(tqp_type_and_id, HNS3_INT_GL_IDX_M, HNS3_INT_GL_IDX_S,
2337                        gl);
2338         req->tqp_type_and_id[0] = rte_cpu_to_le_16(tqp_type_and_id);
2339         req->int_cause_num = 1;
2340         status = hns3_cmd_send(hw, &desc, 1);
2341         if (status) {
2342                 hns3_err(hw, "%s TQP %u fail, vector_id is %u, status is %d.",
2343                          en ? "Map" : "Unmap", queue_id, vector_id, status);
2344                 return status;
2345         }
2346
2347         return 0;
2348 }
2349
2350 static int
2351 hns3_init_ring_with_vector(struct hns3_hw *hw)
2352 {
2353         uint16_t vec;
2354         int ret;
2355         int i;
2356
2357         /*
2358          * In hns3 network engine, vector 0 is always the misc interrupt of this
2359          * function, vector 1~N can be used respectively for the queues of the
2360          * function. Tx and Rx queues with the same number share the interrupt
2361          * vector. In the initialization clearing the all hardware mapping
2362          * relationship configurations between queues and interrupt vectors is
2363          * needed, so some error caused by the residual configurations, such as
2364          * the unexpected Tx interrupt, can be avoid.
2365          */
2366         vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
2367         if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
2368                 vec = vec - 1; /* the last interrupt is reserved */
2369         hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
2370         for (i = 0; i < hw->intr_tqps_num; i++) {
2371                 /*
2372                  * Set gap limiter/rate limiter/quanity limiter algorithm
2373                  * configuration for interrupt coalesce of queue's interrupt.
2374                  */
2375                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
2376                                        HNS3_TQP_INTR_GL_DEFAULT);
2377                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
2378                                        HNS3_TQP_INTR_GL_DEFAULT);
2379                 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
2380                 /*
2381                  * QL(quantity limiter) is not used currently, just set 0 to
2382                  * close it.
2383                  */
2384                 hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
2385
2386                 ret = hns3_bind_ring_with_vector(hw, vec, false,
2387                                                  HNS3_RING_TYPE_TX, i);
2388                 if (ret) {
2389                         PMD_INIT_LOG(ERR, "PF fail to unbind TX ring(%d) with "
2390                                           "vector: %u, ret=%d", i, vec, ret);
2391                         return ret;
2392                 }
2393
2394                 ret = hns3_bind_ring_with_vector(hw, vec, false,
2395                                                  HNS3_RING_TYPE_RX, i);
2396                 if (ret) {
2397                         PMD_INIT_LOG(ERR, "PF fail to unbind RX ring(%d) with "
2398                                           "vector: %u, ret=%d", i, vec, ret);
2399                         return ret;
2400                 }
2401         }
2402
2403         return 0;
2404 }
2405
2406 static int
2407 hns3_refresh_mtu(struct rte_eth_dev *dev, struct rte_eth_conf *conf)
2408 {
2409         struct hns3_adapter *hns = dev->data->dev_private;
2410         struct hns3_hw *hw = &hns->hw;
2411         uint32_t max_rx_pkt_len;
2412         uint16_t mtu;
2413         int ret;
2414
2415         if (!(conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME))
2416                 return 0;
2417
2418         /*
2419          * If jumbo frames are enabled, MTU needs to be refreshed
2420          * according to the maximum RX packet length.
2421          */
2422         max_rx_pkt_len = conf->rxmode.max_rx_pkt_len;
2423         if (max_rx_pkt_len > HNS3_MAX_FRAME_LEN ||
2424             max_rx_pkt_len <= HNS3_DEFAULT_FRAME_LEN) {
2425                 hns3_err(hw, "maximum Rx packet length must be greater than %u "
2426                          "and no more than %u when jumbo frame enabled.",
2427                          (uint16_t)HNS3_DEFAULT_FRAME_LEN,
2428                          (uint16_t)HNS3_MAX_FRAME_LEN);
2429                 return -EINVAL;
2430         }
2431
2432         mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(max_rx_pkt_len);
2433         ret = hns3_dev_mtu_set(dev, mtu);
2434         if (ret)
2435                 return ret;
2436         dev->data->mtu = mtu;
2437
2438         return 0;
2439 }
2440
2441 static int
2442 hns3_dev_configure(struct rte_eth_dev *dev)
2443 {
2444         struct hns3_adapter *hns = dev->data->dev_private;
2445         struct rte_eth_conf *conf = &dev->data->dev_conf;
2446         enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
2447         struct hns3_hw *hw = &hns->hw;
2448         uint16_t nb_rx_q = dev->data->nb_rx_queues;
2449         uint16_t nb_tx_q = dev->data->nb_tx_queues;
2450         struct rte_eth_rss_conf rss_conf;
2451         bool gro_en;
2452         int ret;
2453
2454         hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
2455
2456         /*
2457          * Some versions of hardware network engine does not support
2458          * individually enable/disable/reset the Tx or Rx queue. These devices
2459          * must enable/disable/reset Tx and Rx queues at the same time. When the
2460          * numbers of Tx queues allocated by upper applications are not equal to
2461          * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
2462          * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
2463          * work as usual. But these fake queues are imperceptible, and can not
2464          * be used by upper applications.
2465          */
2466         if (!hns3_dev_indep_txrx_supported(hw)) {
2467                 ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
2468                 if (ret) {
2469                         hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.",
2470                                  ret);
2471                         return ret;
2472                 }
2473         }
2474
2475         hw->adapter_state = HNS3_NIC_CONFIGURING;
2476         if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
2477                 hns3_err(hw, "setting link speed/duplex not supported");
2478                 ret = -EINVAL;
2479                 goto cfg_err;
2480         }
2481
2482         if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG) {
2483                 ret = hns3_check_dcb_cfg(dev);
2484                 if (ret)
2485                         goto cfg_err;
2486         }
2487
2488         /* When RSS is not configured, redirect the packet queue 0 */
2489         if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
2490                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
2491                 rss_conf = conf->rx_adv_conf.rss_conf;
2492                 hw->rss_dis_flag = false;
2493                 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
2494                 if (ret)
2495                         goto cfg_err;
2496         }
2497
2498         ret = hns3_refresh_mtu(dev, conf);
2499         if (ret)
2500                 goto cfg_err;
2501
2502         ret = hns3_mbuf_dyn_rx_timestamp_register(dev, conf);
2503         if (ret)
2504                 goto cfg_err;
2505
2506         ret = hns3_dev_configure_vlan(dev);
2507         if (ret)
2508                 goto cfg_err;
2509
2510         /* config hardware GRO */
2511         gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
2512         ret = hns3_config_gro(hw, gro_en);
2513         if (ret)
2514                 goto cfg_err;
2515
2516         hns->rx_simple_allowed = true;
2517         hns->rx_vec_allowed = true;
2518         hns->tx_simple_allowed = true;
2519         hns->tx_vec_allowed = true;
2520
2521         hns3_init_rx_ptype_tble(dev);
2522         hw->adapter_state = HNS3_NIC_CONFIGURED;
2523
2524         return 0;
2525
2526 cfg_err:
2527         (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
2528         hw->adapter_state = HNS3_NIC_INITIALIZED;
2529
2530         return ret;
2531 }
2532
2533 static int
2534 hns3_set_mac_mtu(struct hns3_hw *hw, uint16_t new_mps)
2535 {
2536         struct hns3_config_max_frm_size_cmd *req;
2537         struct hns3_cmd_desc desc;
2538
2539         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAX_FRM_SIZE, false);
2540
2541         req = (struct hns3_config_max_frm_size_cmd *)desc.data;
2542         req->max_frm_size = rte_cpu_to_le_16(new_mps);
2543         req->min_frm_size = RTE_ETHER_MIN_LEN;
2544
2545         return hns3_cmd_send(hw, &desc, 1);
2546 }
2547
2548 static int
2549 hns3_config_mtu(struct hns3_hw *hw, uint16_t mps)
2550 {
2551         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2552         uint16_t original_mps = hns->pf.mps;
2553         int err;
2554         int ret;
2555
2556         ret = hns3_set_mac_mtu(hw, mps);
2557         if (ret) {
2558                 hns3_err(hw, "failed to set mtu, ret = %d", ret);
2559                 return ret;
2560         }
2561
2562         hns->pf.mps = mps;
2563         ret = hns3_buffer_alloc(hw);
2564         if (ret) {
2565                 hns3_err(hw, "failed to allocate buffer, ret = %d", ret);
2566                 goto rollback;
2567         }
2568
2569         return 0;
2570
2571 rollback:
2572         err = hns3_set_mac_mtu(hw, original_mps);
2573         if (err) {
2574                 hns3_err(hw, "fail to rollback MTU, err = %d", err);
2575                 return ret;
2576         }
2577         hns->pf.mps = original_mps;
2578
2579         return ret;
2580 }
2581
2582 static int
2583 hns3_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
2584 {
2585         struct hns3_adapter *hns = dev->data->dev_private;
2586         uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
2587         struct hns3_hw *hw = &hns->hw;
2588         bool is_jumbo_frame;
2589         int ret;
2590
2591         if (dev->data->dev_started) {
2592                 hns3_err(hw, "Failed to set mtu, port %u must be stopped "
2593                          "before configuration", dev->data->port_id);
2594                 return -EBUSY;
2595         }
2596
2597         rte_spinlock_lock(&hw->lock);
2598         is_jumbo_frame = frame_size > HNS3_DEFAULT_FRAME_LEN ? true : false;
2599         frame_size = RTE_MAX(frame_size, HNS3_DEFAULT_FRAME_LEN);
2600
2601         /*
2602          * Maximum value of frame_size is HNS3_MAX_FRAME_LEN, so it can safely
2603          * assign to "uint16_t" type variable.
2604          */
2605         ret = hns3_config_mtu(hw, (uint16_t)frame_size);
2606         if (ret) {
2607                 rte_spinlock_unlock(&hw->lock);
2608                 hns3_err(hw, "Failed to set mtu, port %u mtu %u: %d",
2609                          dev->data->port_id, mtu, ret);
2610                 return ret;
2611         }
2612
2613         if (is_jumbo_frame)
2614                 dev->data->dev_conf.rxmode.offloads |=
2615                                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
2616         else
2617                 dev->data->dev_conf.rxmode.offloads &=
2618                                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
2619         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
2620         rte_spinlock_unlock(&hw->lock);
2621
2622         return 0;
2623 }
2624
2625 int
2626 hns3_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
2627 {
2628         struct hns3_adapter *hns = eth_dev->data->dev_private;
2629         struct hns3_hw *hw = &hns->hw;
2630         uint16_t queue_num = hw->tqps_num;
2631
2632         /*
2633          * In interrupt mode, 'max_rx_queues' is set based on the number of
2634          * MSI-X interrupt resources of the hardware.
2635          */
2636         if (hw->data->dev_conf.intr_conf.rxq == 1)
2637                 queue_num = hw->intr_tqps_num;
2638
2639         info->max_rx_queues = queue_num;
2640         info->max_tx_queues = hw->tqps_num;
2641         info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
2642         info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
2643         info->max_mac_addrs = HNS3_UC_MACADDR_NUM;
2644         info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
2645         info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
2646         info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
2647                                  DEV_RX_OFFLOAD_TCP_CKSUM |
2648                                  DEV_RX_OFFLOAD_UDP_CKSUM |
2649                                  DEV_RX_OFFLOAD_SCTP_CKSUM |
2650                                  DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
2651                                  DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
2652                                  DEV_RX_OFFLOAD_KEEP_CRC |
2653                                  DEV_RX_OFFLOAD_SCATTER |
2654                                  DEV_RX_OFFLOAD_VLAN_STRIP |
2655                                  DEV_RX_OFFLOAD_VLAN_FILTER |
2656                                  DEV_RX_OFFLOAD_JUMBO_FRAME |
2657                                  DEV_RX_OFFLOAD_RSS_HASH |
2658                                  DEV_RX_OFFLOAD_TCP_LRO);
2659         info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
2660                                  DEV_TX_OFFLOAD_IPV4_CKSUM |
2661                                  DEV_TX_OFFLOAD_TCP_CKSUM |
2662                                  DEV_TX_OFFLOAD_UDP_CKSUM |
2663                                  DEV_TX_OFFLOAD_SCTP_CKSUM |
2664                                  DEV_TX_OFFLOAD_MULTI_SEGS |
2665                                  DEV_TX_OFFLOAD_TCP_TSO |
2666                                  DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
2667                                  DEV_TX_OFFLOAD_GRE_TNL_TSO |
2668                                  DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
2669                                  DEV_TX_OFFLOAD_MBUF_FAST_FREE |
2670                                  hns3_txvlan_cap_get(hw));
2671
2672         if (hns3_dev_outer_udp_cksum_supported(hw))
2673                 info->tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_UDP_CKSUM;
2674
2675         if (hns3_dev_indep_txrx_supported(hw))
2676                 info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
2677                                  RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
2678
2679         if (hns3_dev_ptp_supported(hw))
2680                 info->rx_offload_capa |= DEV_RX_OFFLOAD_TIMESTAMP;
2681
2682         info->rx_desc_lim = (struct rte_eth_desc_lim) {
2683                 .nb_max = HNS3_MAX_RING_DESC,
2684                 .nb_min = HNS3_MIN_RING_DESC,
2685                 .nb_align = HNS3_ALIGN_RING_DESC,
2686         };
2687
2688         info->tx_desc_lim = (struct rte_eth_desc_lim) {
2689                 .nb_max = HNS3_MAX_RING_DESC,
2690                 .nb_min = HNS3_MIN_RING_DESC,
2691                 .nb_align = HNS3_ALIGN_RING_DESC,
2692                 .nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
2693                 .nb_mtu_seg_max = hw->max_non_tso_bd_num,
2694         };
2695
2696         info->default_rxconf = (struct rte_eth_rxconf) {
2697                 .rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
2698                 /*
2699                  * If there are no available Rx buffer descriptors, incoming
2700                  * packets are always dropped by hardware based on hns3 network
2701                  * engine.
2702                  */
2703                 .rx_drop_en = 1,
2704                 .offloads = 0,
2705         };
2706         info->default_txconf = (struct rte_eth_txconf) {
2707                 .tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
2708                 .offloads = 0,
2709         };
2710
2711         info->vmdq_queue_num = 0;
2712
2713         info->reta_size = hw->rss_ind_tbl_size;
2714         info->hash_key_size = HNS3_RSS_KEY_SIZE;
2715         info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
2716
2717         info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2718         info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
2719         info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2720         info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
2721         info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2722         info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
2723
2724         return 0;
2725 }
2726
2727 static int
2728 hns3_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2729                     size_t fw_size)
2730 {
2731         struct hns3_adapter *hns = eth_dev->data->dev_private;
2732         struct hns3_hw *hw = &hns->hw;
2733         uint32_t version = hw->fw_version;
2734         int ret;
2735
2736         ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2737                        hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2738                                       HNS3_FW_VERSION_BYTE3_S),
2739                        hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2740                                       HNS3_FW_VERSION_BYTE2_S),
2741                        hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2742                                       HNS3_FW_VERSION_BYTE1_S),
2743                        hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2744                                       HNS3_FW_VERSION_BYTE0_S));
2745         ret += 1; /* add the size of '\0' */
2746         if (fw_size < (uint32_t)ret)
2747                 return ret;
2748         else
2749                 return 0;
2750 }
2751
2752 static int
2753 hns3_update_port_link_info(struct rte_eth_dev *eth_dev)
2754 {
2755         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2756         int ret;
2757
2758         (void)hns3_update_link_status(hw);
2759
2760         ret = hns3_update_link_info(eth_dev);
2761         if (ret)
2762                 hw->mac.link_status = ETH_LINK_DOWN;
2763
2764         return ret;
2765 }
2766
2767 static void
2768 hns3_setup_linkstatus(struct rte_eth_dev *eth_dev,
2769                       struct rte_eth_link *new_link)
2770 {
2771         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2772         struct hns3_mac *mac = &hw->mac;
2773
2774         switch (mac->link_speed) {
2775         case ETH_SPEED_NUM_10M:
2776         case ETH_SPEED_NUM_100M:
2777         case ETH_SPEED_NUM_1G:
2778         case ETH_SPEED_NUM_10G:
2779         case ETH_SPEED_NUM_25G:
2780         case ETH_SPEED_NUM_40G:
2781         case ETH_SPEED_NUM_50G:
2782         case ETH_SPEED_NUM_100G:
2783         case ETH_SPEED_NUM_200G:
2784                 new_link->link_speed = mac->link_speed;
2785                 break;
2786         default:
2787                 if (mac->link_status)
2788                         new_link->link_speed = ETH_SPEED_NUM_UNKNOWN;
2789                 else
2790                         new_link->link_speed = ETH_SPEED_NUM_NONE;
2791                 break;
2792         }
2793
2794         new_link->link_duplex = mac->link_duplex;
2795         new_link->link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2796         new_link->link_autoneg =
2797             !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2798 }
2799
2800 static int
2801 hns3_dev_link_update(struct rte_eth_dev *eth_dev, int wait_to_complete)
2802 {
2803 #define HNS3_LINK_CHECK_INTERVAL 100  /* 100ms */
2804 #define HNS3_MAX_LINK_CHECK_TIMES 20  /* 2s (100 * 20ms) in total */
2805
2806         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
2807         uint32_t retry_cnt = HNS3_MAX_LINK_CHECK_TIMES;
2808         struct hns3_mac *mac = &hw->mac;
2809         struct rte_eth_link new_link;
2810         int ret;
2811
2812         do {
2813                 ret = hns3_update_port_link_info(eth_dev);
2814                 if (ret) {
2815                         hns3_err(hw, "failed to get port link info, ret = %d.",
2816                                  ret);
2817                         break;
2818                 }
2819
2820                 if (!wait_to_complete || mac->link_status == ETH_LINK_UP)
2821                         break;
2822
2823                 rte_delay_ms(HNS3_LINK_CHECK_INTERVAL);
2824         } while (retry_cnt--);
2825
2826         memset(&new_link, 0, sizeof(new_link));
2827         hns3_setup_linkstatus(eth_dev, &new_link);
2828
2829         return rte_eth_linkstatus_set(eth_dev, &new_link);
2830 }
2831
2832 static int
2833 hns3_parse_func_status(struct hns3_hw *hw, struct hns3_func_status_cmd *status)
2834 {
2835         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2836         struct hns3_pf *pf = &hns->pf;
2837
2838         if (!(status->pf_state & HNS3_PF_STATE_DONE))
2839                 return -EINVAL;
2840
2841         pf->is_main_pf = (status->pf_state & HNS3_PF_STATE_MAIN) ? true : false;
2842
2843         return 0;
2844 }
2845
2846 static int
2847 hns3_query_function_status(struct hns3_hw *hw)
2848 {
2849 #define HNS3_QUERY_MAX_CNT              10
2850 #define HNS3_QUERY_SLEEP_MSCOEND        1
2851         struct hns3_func_status_cmd *req;
2852         struct hns3_cmd_desc desc;
2853         int timeout = 0;
2854         int ret;
2855
2856         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_FUNC_STATUS, true);
2857         req = (struct hns3_func_status_cmd *)desc.data;
2858
2859         do {
2860                 ret = hns3_cmd_send(hw, &desc, 1);
2861                 if (ret) {
2862                         PMD_INIT_LOG(ERR, "query function status failed %d",
2863                                      ret);
2864                         return ret;
2865                 }
2866
2867                 /* Check pf reset is done */
2868                 if (req->pf_state)
2869                         break;
2870
2871                 rte_delay_ms(HNS3_QUERY_SLEEP_MSCOEND);
2872         } while (timeout++ < HNS3_QUERY_MAX_CNT);
2873
2874         return hns3_parse_func_status(hw, req);
2875 }
2876
2877 static int
2878 hns3_get_pf_max_tqp_num(struct hns3_hw *hw)
2879 {
2880         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2881         struct hns3_pf *pf = &hns->pf;
2882
2883         if (pf->tqp_config_mode == HNS3_FLEX_MAX_TQP_NUM_MODE) {
2884                 /*
2885                  * The total_tqps_num obtained from firmware is maximum tqp
2886                  * numbers of this port, which should be used for PF and VFs.
2887                  * There is no need for pf to have so many tqp numbers in
2888                  * most cases. RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2889                  * coming from config file, is assigned to maximum queue number
2890                  * for the PF of this port by user. So users can modify the
2891                  * maximum queue number of PF according to their own application
2892                  * scenarios, which is more flexible to use. In addition, many
2893                  * memories can be saved due to allocating queue statistics
2894                  * room according to the actual number of queues required. The
2895                  * maximum queue number of PF for network engine with
2896                  * revision_id greater than 0x30 is assigned by config file.
2897                  */
2898                 if (RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF <= 0) {
2899                         hns3_err(hw, "RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF(%d) "
2900                                  "must be greater than 0.",
2901                                  RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF);
2902                         return -EINVAL;
2903                 }
2904
2905                 hw->tqps_num = RTE_MIN(RTE_LIBRTE_HNS3_MAX_TQP_NUM_PER_PF,
2906                                        hw->total_tqps_num);
2907         } else {
2908                 /*
2909                  * Due to the limitation on the number of PF interrupts
2910                  * available, the maximum queue number assigned to PF on
2911                  * the network engine with revision_id 0x21 is 64.
2912                  */
2913                 hw->tqps_num = RTE_MIN(hw->total_tqps_num,
2914                                        HNS3_MAX_TQP_NUM_HIP08_PF);
2915         }
2916
2917         return 0;
2918 }
2919
2920 static int
2921 hns3_query_pf_resource(struct hns3_hw *hw)
2922 {
2923         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
2924         struct hns3_pf *pf = &hns->pf;
2925         struct hns3_pf_res_cmd *req;
2926         struct hns3_cmd_desc desc;
2927         int ret;
2928
2929         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_PF_RSRC, true);
2930         ret = hns3_cmd_send(hw, &desc, 1);
2931         if (ret) {
2932                 PMD_INIT_LOG(ERR, "query pf resource failed %d", ret);
2933                 return ret;
2934         }
2935
2936         req = (struct hns3_pf_res_cmd *)desc.data;
2937         hw->total_tqps_num = rte_le_to_cpu_16(req->tqp_num) +
2938                              rte_le_to_cpu_16(req->ext_tqp_num);
2939         ret = hns3_get_pf_max_tqp_num(hw);
2940         if (ret)
2941                 return ret;
2942
2943         pf->pkt_buf_size = rte_le_to_cpu_16(req->buf_size) << HNS3_BUF_UNIT_S;
2944         pf->func_num = rte_le_to_cpu_16(req->pf_own_fun_number);
2945
2946         if (req->tx_buf_size)
2947                 pf->tx_buf_size =
2948                     rte_le_to_cpu_16(req->tx_buf_size) << HNS3_BUF_UNIT_S;
2949         else
2950                 pf->tx_buf_size = HNS3_DEFAULT_TX_BUF;
2951
2952         pf->tx_buf_size = roundup(pf->tx_buf_size, HNS3_BUF_SIZE_UNIT);
2953
2954         if (req->dv_buf_size)
2955                 pf->dv_buf_size =
2956                     rte_le_to_cpu_16(req->dv_buf_size) << HNS3_BUF_UNIT_S;
2957         else
2958                 pf->dv_buf_size = HNS3_DEFAULT_DV;
2959
2960         pf->dv_buf_size = roundup(pf->dv_buf_size, HNS3_BUF_SIZE_UNIT);
2961
2962         hw->num_msi =
2963                 hns3_get_field(rte_le_to_cpu_16(req->nic_pf_intr_vector_number),
2964                                HNS3_PF_VEC_NUM_M, HNS3_PF_VEC_NUM_S);
2965
2966         return 0;
2967 }
2968
2969 static void
2970 hns3_parse_cfg(struct hns3_cfg *cfg, struct hns3_cmd_desc *desc)
2971 {
2972         struct hns3_cfg_param_cmd *req;
2973         uint64_t mac_addr_tmp_high;
2974         uint8_t ext_rss_size_max;
2975         uint64_t mac_addr_tmp;
2976         uint32_t i;
2977
2978         req = (struct hns3_cfg_param_cmd *)desc[0].data;
2979
2980         /* get the configuration */
2981         cfg->vmdq_vport_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2982                                              HNS3_CFG_VMDQ_M, HNS3_CFG_VMDQ_S);
2983         cfg->tc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2984                                      HNS3_CFG_TC_NUM_M, HNS3_CFG_TC_NUM_S);
2985         cfg->tqp_desc_num = hns3_get_field(rte_le_to_cpu_32(req->param[0]),
2986                                            HNS3_CFG_TQP_DESC_N_M,
2987                                            HNS3_CFG_TQP_DESC_N_S);
2988
2989         cfg->phy_addr = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2990                                        HNS3_CFG_PHY_ADDR_M,
2991                                        HNS3_CFG_PHY_ADDR_S);
2992         cfg->media_type = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2993                                          HNS3_CFG_MEDIA_TP_M,
2994                                          HNS3_CFG_MEDIA_TP_S);
2995         cfg->rx_buf_len = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
2996                                          HNS3_CFG_RX_BUF_LEN_M,
2997                                          HNS3_CFG_RX_BUF_LEN_S);
2998         /* get mac address */
2999         mac_addr_tmp = rte_le_to_cpu_32(req->param[2]);
3000         mac_addr_tmp_high = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
3001                                            HNS3_CFG_MAC_ADDR_H_M,
3002                                            HNS3_CFG_MAC_ADDR_H_S);
3003
3004         mac_addr_tmp |= (mac_addr_tmp_high << 31) << 1;
3005
3006         cfg->default_speed = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
3007                                             HNS3_CFG_DEFAULT_SPEED_M,
3008                                             HNS3_CFG_DEFAULT_SPEED_S);
3009         cfg->rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[3]),
3010                                            HNS3_CFG_RSS_SIZE_M,
3011                                            HNS3_CFG_RSS_SIZE_S);
3012
3013         for (i = 0; i < RTE_ETHER_ADDR_LEN; i++)
3014                 cfg->mac_addr[i] = (mac_addr_tmp >> (8 * i)) & 0xff;
3015
3016         req = (struct hns3_cfg_param_cmd *)desc[1].data;
3017         cfg->numa_node_map = rte_le_to_cpu_32(req->param[0]);
3018
3019         cfg->speed_ability = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
3020                                             HNS3_CFG_SPEED_ABILITY_M,
3021                                             HNS3_CFG_SPEED_ABILITY_S);
3022         cfg->umv_space = hns3_get_field(rte_le_to_cpu_32(req->param[1]),
3023                                         HNS3_CFG_UMV_TBL_SPACE_M,
3024                                         HNS3_CFG_UMV_TBL_SPACE_S);
3025         if (!cfg->umv_space)
3026                 cfg->umv_space = HNS3_DEFAULT_UMV_SPACE_PER_PF;
3027
3028         ext_rss_size_max = hns3_get_field(rte_le_to_cpu_32(req->param[2]),
3029                                                HNS3_CFG_EXT_RSS_SIZE_M,
3030                                                HNS3_CFG_EXT_RSS_SIZE_S);
3031
3032         /*
3033          * Field ext_rss_size_max obtained from firmware will be more flexible
3034          * for future changes and expansions, which is an exponent of 2, instead
3035          * of reading out directly. If this field is not zero, hns3 PF PMD
3036          * driver uses it as rss_size_max under one TC. Device, whose revision
3037          * id is greater than or equal to PCI_REVISION_ID_HIP09_A, obtains the
3038          * maximum number of queues supported under a TC through this field.
3039          */
3040         if (ext_rss_size_max)
3041                 cfg->rss_size_max = 1U << ext_rss_size_max;
3042 }
3043
3044 /* hns3_get_board_cfg: query the static parameter from NCL_config file in flash
3045  * @hw: pointer to struct hns3_hw
3046  * @hcfg: the config structure to be getted
3047  */
3048 static int
3049 hns3_get_board_cfg(struct hns3_hw *hw, struct hns3_cfg *hcfg)
3050 {
3051         struct hns3_cmd_desc desc[HNS3_PF_CFG_DESC_NUM];
3052         struct hns3_cfg_param_cmd *req;
3053         uint32_t offset;
3054         uint32_t i;
3055         int ret;
3056
3057         for (i = 0; i < HNS3_PF_CFG_DESC_NUM; i++) {
3058                 offset = 0;
3059                 req = (struct hns3_cfg_param_cmd *)desc[i].data;
3060                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_CFG_PARAM,
3061                                           true);
3062                 hns3_set_field(offset, HNS3_CFG_OFFSET_M, HNS3_CFG_OFFSET_S,
3063                                i * HNS3_CFG_RD_LEN_BYTES);
3064                 /* Len should be divided by 4 when send to hardware */
3065                 hns3_set_field(offset, HNS3_CFG_RD_LEN_M, HNS3_CFG_RD_LEN_S,
3066                                HNS3_CFG_RD_LEN_BYTES / HNS3_CFG_RD_LEN_UNIT);
3067                 req->offset = rte_cpu_to_le_32(offset);
3068         }
3069
3070         ret = hns3_cmd_send(hw, desc, HNS3_PF_CFG_DESC_NUM);
3071         if (ret) {
3072                 PMD_INIT_LOG(ERR, "get config failed %d.", ret);
3073                 return ret;
3074         }
3075
3076         hns3_parse_cfg(hcfg, desc);
3077
3078         return 0;
3079 }
3080
3081 static int
3082 hns3_parse_speed(int speed_cmd, uint32_t *speed)
3083 {
3084         switch (speed_cmd) {
3085         case HNS3_CFG_SPEED_10M:
3086                 *speed = ETH_SPEED_NUM_10M;
3087                 break;
3088         case HNS3_CFG_SPEED_100M:
3089                 *speed = ETH_SPEED_NUM_100M;
3090                 break;
3091         case HNS3_CFG_SPEED_1G:
3092                 *speed = ETH_SPEED_NUM_1G;
3093                 break;
3094         case HNS3_CFG_SPEED_10G:
3095                 *speed = ETH_SPEED_NUM_10G;
3096                 break;
3097         case HNS3_CFG_SPEED_25G:
3098                 *speed = ETH_SPEED_NUM_25G;
3099                 break;
3100         case HNS3_CFG_SPEED_40G:
3101                 *speed = ETH_SPEED_NUM_40G;
3102                 break;
3103         case HNS3_CFG_SPEED_50G:
3104                 *speed = ETH_SPEED_NUM_50G;
3105                 break;
3106         case HNS3_CFG_SPEED_100G:
3107                 *speed = ETH_SPEED_NUM_100G;
3108                 break;
3109         case HNS3_CFG_SPEED_200G:
3110                 *speed = ETH_SPEED_NUM_200G;
3111                 break;
3112         default:
3113                 return -EINVAL;
3114         }
3115
3116         return 0;
3117 }
3118
3119 static void
3120 hns3_set_default_dev_specifications(struct hns3_hw *hw)
3121 {
3122         hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
3123         hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
3124         hw->rss_key_size = HNS3_RSS_KEY_SIZE;
3125         hw->max_tm_rate = HNS3_ETHER_MAX_RATE;
3126         hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
3127 }
3128
3129 static void
3130 hns3_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
3131 {
3132         struct hns3_dev_specs_0_cmd *req0;
3133
3134         req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
3135
3136         hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
3137         hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
3138         hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
3139         hw->max_tm_rate = rte_le_to_cpu_32(req0->max_tm_rate);
3140         hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
3141 }
3142
3143 static int
3144 hns3_check_dev_specifications(struct hns3_hw *hw)
3145 {
3146         if (hw->rss_ind_tbl_size == 0 ||
3147             hw->rss_ind_tbl_size > HNS3_RSS_IND_TBL_SIZE_MAX) {
3148                 hns3_err(hw, "the size of hash lookup table configured (%u)"
3149                               " exceeds the maximum(%u)", hw->rss_ind_tbl_size,
3150                               HNS3_RSS_IND_TBL_SIZE_MAX);
3151                 return -EINVAL;
3152         }
3153
3154         return 0;
3155 }
3156
3157 static int
3158 hns3_query_dev_specifications(struct hns3_hw *hw)
3159 {
3160         struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
3161         int ret;
3162         int i;
3163
3164         for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3165                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
3166                                           true);
3167                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3168         }
3169         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
3170
3171         ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
3172         if (ret)
3173                 return ret;
3174
3175         hns3_parse_dev_specifications(hw, desc);
3176
3177         return hns3_check_dev_specifications(hw);
3178 }
3179
3180 static int
3181 hns3_get_capability(struct hns3_hw *hw)
3182 {
3183         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3184         struct rte_pci_device *pci_dev;
3185         struct hns3_pf *pf = &hns->pf;
3186         struct rte_eth_dev *eth_dev;
3187         uint16_t device_id;
3188         uint8_t revision;
3189         int ret;
3190
3191         eth_dev = &rte_eth_devices[hw->data->port_id];
3192         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
3193         device_id = pci_dev->id.device_id;
3194
3195         if (device_id == HNS3_DEV_ID_25GE_RDMA ||
3196             device_id == HNS3_DEV_ID_50GE_RDMA ||
3197             device_id == HNS3_DEV_ID_100G_RDMA_MACSEC ||
3198             device_id == HNS3_DEV_ID_200G_RDMA)
3199                 hns3_set_bit(hw->capability, HNS3_DEV_SUPPORT_DCB_B, 1);
3200
3201         /* Get PCI revision id */
3202         ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
3203                                   HNS3_PCI_REVISION_ID);
3204         if (ret != HNS3_PCI_REVISION_ID_LEN) {
3205                 PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
3206                              ret);
3207                 return -EIO;
3208         }
3209         hw->revision = revision;
3210
3211         if (revision < PCI_REVISION_ID_HIP09_A) {
3212                 hns3_set_default_dev_specifications(hw);
3213                 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
3214                 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
3215                 hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
3216                 hw->vlan_mode = HNS3_SW_SHIFT_AND_DISCARD_MODE;
3217                 hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE1;
3218                 hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
3219                 pf->tqp_config_mode = HNS3_FIXED_MAX_TQP_NUM_MODE;
3220                 hw->rss_info.ipv6_sctp_offload_supported = false;
3221                 hw->udp_cksum_mode = HNS3_SPECIAL_PORT_SW_CKSUM_MODE;
3222                 return 0;
3223         }
3224
3225         ret = hns3_query_dev_specifications(hw);
3226         if (ret) {
3227                 PMD_INIT_LOG(ERR,
3228                              "failed to query dev specifications, ret = %d",
3229                              ret);
3230                 return ret;
3231         }
3232
3233         hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
3234         hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
3235         hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
3236         hw->vlan_mode = HNS3_HW_SHIFT_AND_DISCARD_MODE;
3237         hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE2;
3238         hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
3239         pf->tqp_config_mode = HNS3_FLEX_MAX_TQP_NUM_MODE;
3240         hw->rss_info.ipv6_sctp_offload_supported = true;
3241         hw->udp_cksum_mode = HNS3_SPECIAL_PORT_HW_CKSUM_MODE;
3242
3243         return 0;
3244 }
3245
3246 static int
3247 hns3_check_media_type(struct hns3_hw *hw, uint8_t media_type)
3248 {
3249         int ret;
3250
3251         switch (media_type) {
3252         case HNS3_MEDIA_TYPE_COPPER:
3253                 if (!hns3_dev_copper_supported(hw)) {
3254                         PMD_INIT_LOG(ERR,
3255                                      "Media type is copper, not supported.");
3256                         ret = -EOPNOTSUPP;
3257                 } else {
3258                         ret = 0;
3259                 }
3260                 break;
3261         case HNS3_MEDIA_TYPE_FIBER:
3262                 ret = 0;
3263                 break;
3264         case HNS3_MEDIA_TYPE_BACKPLANE:
3265                 PMD_INIT_LOG(ERR, "Media type is Backplane, not supported.");
3266                 ret = -EOPNOTSUPP;
3267                 break;
3268         default:
3269                 PMD_INIT_LOG(ERR, "Unknown media type = %u!", media_type);
3270                 ret = -EINVAL;
3271                 break;
3272         }
3273
3274         return ret;
3275 }
3276
3277 static int
3278 hns3_get_board_configuration(struct hns3_hw *hw)
3279 {
3280         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3281         struct hns3_pf *pf = &hns->pf;
3282         struct hns3_cfg cfg;
3283         int ret;
3284
3285         ret = hns3_get_board_cfg(hw, &cfg);
3286         if (ret) {
3287                 PMD_INIT_LOG(ERR, "get board config failed %d", ret);
3288                 return ret;
3289         }
3290
3291         ret = hns3_check_media_type(hw, cfg.media_type);
3292         if (ret)
3293                 return ret;
3294
3295         hw->mac.media_type = cfg.media_type;
3296         hw->rss_size_max = cfg.rss_size_max;
3297         hw->rss_dis_flag = false;
3298         memcpy(hw->mac.mac_addr, cfg.mac_addr, RTE_ETHER_ADDR_LEN);
3299         hw->mac.phy_addr = cfg.phy_addr;
3300         hw->mac.default_addr_setted = false;
3301         hw->num_tx_desc = cfg.tqp_desc_num;
3302         hw->num_rx_desc = cfg.tqp_desc_num;
3303         hw->dcb_info.num_pg = 1;
3304         hw->dcb_info.hw_pfc_map = 0;
3305
3306         ret = hns3_parse_speed(cfg.default_speed, &hw->mac.link_speed);
3307         if (ret) {
3308                 PMD_INIT_LOG(ERR, "Get wrong speed %u, ret = %d",
3309                              cfg.default_speed, ret);
3310                 return ret;
3311         }
3312
3313         pf->tc_max = cfg.tc_num;
3314         if (pf->tc_max > HNS3_MAX_TC_NUM || pf->tc_max < 1) {
3315                 PMD_INIT_LOG(WARNING,
3316                              "Get TC num(%u) from flash, set TC num to 1",
3317                              pf->tc_max);
3318                 pf->tc_max = 1;
3319         }
3320
3321         /* Dev does not support DCB */
3322         if (!hns3_dev_dcb_supported(hw)) {
3323                 pf->tc_max = 1;
3324                 pf->pfc_max = 0;
3325         } else
3326                 pf->pfc_max = pf->tc_max;
3327
3328         hw->dcb_info.num_tc = 1;
3329         hw->alloc_rss_size = RTE_MIN(hw->rss_size_max,
3330                                      hw->tqps_num / hw->dcb_info.num_tc);
3331         hns3_set_bit(hw->hw_tc_map, 0, 1);
3332         pf->tx_sch_mode = HNS3_FLAG_TC_BASE_SCH_MODE;
3333
3334         pf->wanted_umv_size = cfg.umv_space;
3335
3336         return ret;
3337 }
3338
3339 static int
3340 hns3_get_configuration(struct hns3_hw *hw)
3341 {
3342         int ret;
3343
3344         ret = hns3_query_function_status(hw);
3345         if (ret) {
3346                 PMD_INIT_LOG(ERR, "Failed to query function status: %d.", ret);
3347                 return ret;
3348         }
3349
3350         /* Get device capability */
3351         ret = hns3_get_capability(hw);
3352         if (ret) {
3353                 PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
3354                 return ret;
3355         }
3356
3357         /* Get pf resource */
3358         ret = hns3_query_pf_resource(hw);
3359         if (ret) {
3360                 PMD_INIT_LOG(ERR, "Failed to query pf resource: %d", ret);
3361                 return ret;
3362         }
3363
3364         ret = hns3_get_board_configuration(hw);
3365         if (ret) {
3366                 PMD_INIT_LOG(ERR, "failed to get board configuration: %d", ret);
3367                 return ret;
3368         }
3369
3370         ret = hns3_query_dev_fec_info(hw);
3371         if (ret)
3372                 PMD_INIT_LOG(ERR,
3373                              "failed to query FEC information, ret = %d", ret);
3374
3375         return ret;
3376 }
3377
3378 static int
3379 hns3_map_tqps_to_func(struct hns3_hw *hw, uint16_t func_id, uint16_t tqp_pid,
3380                       uint16_t tqp_vid, bool is_pf)
3381 {
3382         struct hns3_tqp_map_cmd *req;
3383         struct hns3_cmd_desc desc;
3384         int ret;
3385
3386         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SET_TQP_MAP, false);
3387
3388         req = (struct hns3_tqp_map_cmd *)desc.data;
3389         req->tqp_id = rte_cpu_to_le_16(tqp_pid);
3390         req->tqp_vf = func_id;
3391         req->tqp_flag = 1 << HNS3_TQP_MAP_EN_B;
3392         if (!is_pf)
3393                 req->tqp_flag |= (1 << HNS3_TQP_MAP_TYPE_B);
3394         req->tqp_vid = rte_cpu_to_le_16(tqp_vid);
3395
3396         ret = hns3_cmd_send(hw, &desc, 1);
3397         if (ret)
3398                 PMD_INIT_LOG(ERR, "TQP map failed %d", ret);
3399
3400         return ret;
3401 }
3402
3403 static int
3404 hns3_map_tqp(struct hns3_hw *hw)
3405 {
3406         int ret;
3407         int i;
3408
3409         /*
3410          * In current version, VF is not supported when PF is driven by DPDK
3411          * driver, so we assign total tqps_num tqps allocated to this port
3412          * to PF.
3413          */
3414         for (i = 0; i < hw->total_tqps_num; i++) {
3415                 ret = hns3_map_tqps_to_func(hw, HNS3_PF_FUNC_ID, i, i, true);
3416                 if (ret)
3417                         return ret;
3418         }
3419
3420         return 0;
3421 }
3422
3423 static int
3424 hns3_cfg_mac_speed_dup_hw(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
3425 {
3426         struct hns3_config_mac_speed_dup_cmd *req;
3427         struct hns3_cmd_desc desc;
3428         int ret;
3429
3430         req = (struct hns3_config_mac_speed_dup_cmd *)desc.data;
3431
3432         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_SPEED_DUP, false);
3433
3434         hns3_set_bit(req->speed_dup, HNS3_CFG_DUPLEX_B, !!duplex ? 1 : 0);
3435
3436         switch (speed) {
3437         case ETH_SPEED_NUM_10M:
3438                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3439                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10M);
3440                 break;
3441         case ETH_SPEED_NUM_100M:
3442                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3443                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100M);
3444                 break;
3445         case ETH_SPEED_NUM_1G:
3446                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3447                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_1G);
3448                 break;
3449         case ETH_SPEED_NUM_10G:
3450                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3451                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_10G);
3452                 break;
3453         case ETH_SPEED_NUM_25G:
3454                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3455                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_25G);
3456                 break;
3457         case ETH_SPEED_NUM_40G:
3458                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3459                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_40G);
3460                 break;
3461         case ETH_SPEED_NUM_50G:
3462                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3463                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_50G);
3464                 break;
3465         case ETH_SPEED_NUM_100G:
3466                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3467                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_100G);
3468                 break;
3469         case ETH_SPEED_NUM_200G:
3470                 hns3_set_field(req->speed_dup, HNS3_CFG_SPEED_M,
3471                                HNS3_CFG_SPEED_S, HNS3_CFG_SPEED_200G);
3472                 break;
3473         default:
3474                 PMD_INIT_LOG(ERR, "invalid speed (%u)", speed);
3475                 return -EINVAL;
3476         }
3477
3478         hns3_set_bit(req->mac_change_fec_en, HNS3_CFG_MAC_SPEED_CHANGE_EN_B, 1);
3479
3480         ret = hns3_cmd_send(hw, &desc, 1);
3481         if (ret)
3482                 PMD_INIT_LOG(ERR, "mac speed/duplex config cmd failed %d", ret);
3483
3484         return ret;
3485 }
3486
3487 static int
3488 hns3_tx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3489 {
3490         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3491         struct hns3_pf *pf = &hns->pf;
3492         struct hns3_priv_buf *priv;
3493         uint32_t i, total_size;
3494
3495         total_size = pf->pkt_buf_size;
3496
3497         /* alloc tx buffer for all enabled tc */
3498         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3499                 priv = &buf_alloc->priv_buf[i];
3500
3501                 if (hw->hw_tc_map & BIT(i)) {
3502                         if (total_size < pf->tx_buf_size)
3503                                 return -ENOMEM;
3504
3505                         priv->tx_buf_size = pf->tx_buf_size;
3506                 } else
3507                         priv->tx_buf_size = 0;
3508
3509                 total_size -= priv->tx_buf_size;
3510         }
3511
3512         return 0;
3513 }
3514
3515 static int
3516 hns3_tx_buffer_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3517 {
3518 /* TX buffer size is unit by 128 byte */
3519 #define HNS3_BUF_SIZE_UNIT_SHIFT        7
3520 #define HNS3_BUF_SIZE_UPDATE_EN_MSK     BIT(15)
3521         struct hns3_tx_buff_alloc_cmd *req;
3522         struct hns3_cmd_desc desc;
3523         uint32_t buf_size;
3524         uint32_t i;
3525         int ret;
3526
3527         req = (struct hns3_tx_buff_alloc_cmd *)desc.data;
3528
3529         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_TX_BUFF_ALLOC, 0);
3530         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3531                 buf_size = buf_alloc->priv_buf[i].tx_buf_size;
3532
3533                 buf_size = buf_size >> HNS3_BUF_SIZE_UNIT_SHIFT;
3534                 req->tx_pkt_buff[i] = rte_cpu_to_le_16(buf_size |
3535                                                 HNS3_BUF_SIZE_UPDATE_EN_MSK);
3536         }
3537
3538         ret = hns3_cmd_send(hw, &desc, 1);
3539         if (ret)
3540                 PMD_INIT_LOG(ERR, "tx buffer alloc cmd failed %d", ret);
3541
3542         return ret;
3543 }
3544
3545 static int
3546 hns3_get_tc_num(struct hns3_hw *hw)
3547 {
3548         int cnt = 0;
3549         uint8_t i;
3550
3551         for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3552                 if (hw->hw_tc_map & BIT(i))
3553                         cnt++;
3554         return cnt;
3555 }
3556
3557 static uint32_t
3558 hns3_get_rx_priv_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3559 {
3560         struct hns3_priv_buf *priv;
3561         uint32_t rx_priv = 0;
3562         int i;
3563
3564         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3565                 priv = &buf_alloc->priv_buf[i];
3566                 if (priv->enable)
3567                         rx_priv += priv->buf_size;
3568         }
3569         return rx_priv;
3570 }
3571
3572 static uint32_t
3573 hns3_get_tx_buff_alloced(struct hns3_pkt_buf_alloc *buf_alloc)
3574 {
3575         uint32_t total_tx_size = 0;
3576         uint32_t i;
3577
3578         for (i = 0; i < HNS3_MAX_TC_NUM; i++)
3579                 total_tx_size += buf_alloc->priv_buf[i].tx_buf_size;
3580
3581         return total_tx_size;
3582 }
3583
3584 /* Get the number of pfc enabled TCs, which have private buffer */
3585 static int
3586 hns3_get_pfc_priv_num(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3587 {
3588         struct hns3_priv_buf *priv;
3589         int cnt = 0;
3590         uint8_t i;
3591
3592         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3593                 priv = &buf_alloc->priv_buf[i];
3594                 if ((hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3595                         cnt++;
3596         }
3597
3598         return cnt;
3599 }
3600
3601 /* Get the number of pfc disabled TCs, which have private buffer */
3602 static int
3603 hns3_get_no_pfc_priv_num(struct hns3_hw *hw,
3604                          struct hns3_pkt_buf_alloc *buf_alloc)
3605 {
3606         struct hns3_priv_buf *priv;
3607         int cnt = 0;
3608         uint8_t i;
3609
3610         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3611                 priv = &buf_alloc->priv_buf[i];
3612                 if (hw->hw_tc_map & BIT(i) &&
3613                     !(hw->dcb_info.hw_pfc_map & BIT(i)) && priv->enable)
3614                         cnt++;
3615         }
3616
3617         return cnt;
3618 }
3619
3620 static bool
3621 hns3_is_rx_buf_ok(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc,
3622                   uint32_t rx_all)
3623 {
3624         uint32_t shared_buf_min, shared_buf_tc, shared_std, hi_thrd, lo_thrd;
3625         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3626         struct hns3_pf *pf = &hns->pf;
3627         uint32_t shared_buf, aligned_mps;
3628         uint32_t rx_priv;
3629         uint8_t tc_num;
3630         uint8_t i;
3631
3632         tc_num = hns3_get_tc_num(hw);
3633         aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3634
3635         if (hns3_dev_dcb_supported(hw))
3636                 shared_buf_min = HNS3_BUF_MUL_BY * aligned_mps +
3637                                         pf->dv_buf_size;
3638         else
3639                 shared_buf_min = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF
3640                                         + pf->dv_buf_size;
3641
3642         shared_buf_tc = tc_num * aligned_mps + aligned_mps;
3643         shared_std = roundup(RTE_MAX(shared_buf_min, shared_buf_tc),
3644                              HNS3_BUF_SIZE_UNIT);
3645
3646         rx_priv = hns3_get_rx_priv_buff_alloced(buf_alloc);
3647         if (rx_all < rx_priv + shared_std)
3648                 return false;
3649
3650         shared_buf = rounddown(rx_all - rx_priv, HNS3_BUF_SIZE_UNIT);
3651         buf_alloc->s_buf.buf_size = shared_buf;
3652         if (hns3_dev_dcb_supported(hw)) {
3653                 buf_alloc->s_buf.self.high = shared_buf - pf->dv_buf_size;
3654                 buf_alloc->s_buf.self.low = buf_alloc->s_buf.self.high
3655                         - roundup(aligned_mps / HNS3_BUF_DIV_BY,
3656                                   HNS3_BUF_SIZE_UNIT);
3657         } else {
3658                 buf_alloc->s_buf.self.high =
3659                         aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3660                 buf_alloc->s_buf.self.low = aligned_mps;
3661         }
3662
3663         if (hns3_dev_dcb_supported(hw)) {
3664                 hi_thrd = shared_buf - pf->dv_buf_size;
3665
3666                 if (tc_num <= NEED_RESERVE_TC_NUM)
3667                         hi_thrd = hi_thrd * BUF_RESERVE_PERCENT /
3668                                   BUF_MAX_PERCENT;
3669
3670                 if (tc_num)
3671                         hi_thrd = hi_thrd / tc_num;
3672
3673                 hi_thrd = RTE_MAX(hi_thrd, HNS3_BUF_MUL_BY * aligned_mps);
3674                 hi_thrd = rounddown(hi_thrd, HNS3_BUF_SIZE_UNIT);
3675                 lo_thrd = hi_thrd - aligned_mps / HNS3_BUF_DIV_BY;
3676         } else {
3677                 hi_thrd = aligned_mps + HNS3_NON_DCB_ADDITIONAL_BUF;
3678                 lo_thrd = aligned_mps;
3679         }
3680
3681         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3682                 buf_alloc->s_buf.tc_thrd[i].low = lo_thrd;
3683                 buf_alloc->s_buf.tc_thrd[i].high = hi_thrd;
3684         }
3685
3686         return true;
3687 }
3688
3689 static bool
3690 hns3_rx_buf_calc_all(struct hns3_hw *hw, bool max,
3691                      struct hns3_pkt_buf_alloc *buf_alloc)
3692 {
3693         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3694         struct hns3_pf *pf = &hns->pf;
3695         struct hns3_priv_buf *priv;
3696         uint32_t aligned_mps;
3697         uint32_t rx_all;
3698         uint8_t i;
3699
3700         rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3701         aligned_mps = roundup(pf->mps, HNS3_BUF_SIZE_UNIT);
3702
3703         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3704                 priv = &buf_alloc->priv_buf[i];
3705
3706                 priv->enable = 0;
3707                 priv->wl.low = 0;
3708                 priv->wl.high = 0;
3709                 priv->buf_size = 0;
3710
3711                 if (!(hw->hw_tc_map & BIT(i)))
3712                         continue;
3713
3714                 priv->enable = 1;
3715                 if (hw->dcb_info.hw_pfc_map & BIT(i)) {
3716                         priv->wl.low = max ? aligned_mps : HNS3_BUF_SIZE_UNIT;
3717                         priv->wl.high = roundup(priv->wl.low + aligned_mps,
3718                                                 HNS3_BUF_SIZE_UNIT);
3719                 } else {
3720                         priv->wl.low = 0;
3721                         priv->wl.high = max ? (aligned_mps * HNS3_BUF_MUL_BY) :
3722                                         aligned_mps;
3723                 }
3724
3725                 priv->buf_size = priv->wl.high + pf->dv_buf_size;
3726         }
3727
3728         return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3729 }
3730
3731 static bool
3732 hns3_drop_nopfc_buf_till_fit(struct hns3_hw *hw,
3733                              struct hns3_pkt_buf_alloc *buf_alloc)
3734 {
3735         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3736         struct hns3_pf *pf = &hns->pf;
3737         struct hns3_priv_buf *priv;
3738         int no_pfc_priv_num;
3739         uint32_t rx_all;
3740         uint8_t mask;
3741         int i;
3742
3743         rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3744         no_pfc_priv_num = hns3_get_no_pfc_priv_num(hw, buf_alloc);
3745
3746         /* let the last to be cleared first */
3747         for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3748                 priv = &buf_alloc->priv_buf[i];
3749                 mask = BIT((uint8_t)i);
3750
3751                 if (hw->hw_tc_map & mask &&
3752                     !(hw->dcb_info.hw_pfc_map & mask)) {
3753                         /* Clear the no pfc TC private buffer */
3754                         priv->wl.low = 0;
3755                         priv->wl.high = 0;
3756                         priv->buf_size = 0;
3757                         priv->enable = 0;
3758                         no_pfc_priv_num--;
3759                 }
3760
3761                 if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3762                     no_pfc_priv_num == 0)
3763                         break;
3764         }
3765
3766         return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3767 }
3768
3769 static bool
3770 hns3_drop_pfc_buf_till_fit(struct hns3_hw *hw,
3771                            struct hns3_pkt_buf_alloc *buf_alloc)
3772 {
3773         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3774         struct hns3_pf *pf = &hns->pf;
3775         struct hns3_priv_buf *priv;
3776         uint32_t rx_all;
3777         int pfc_priv_num;
3778         uint8_t mask;
3779         int i;
3780
3781         rx_all = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3782         pfc_priv_num = hns3_get_pfc_priv_num(hw, buf_alloc);
3783
3784         /* let the last to be cleared first */
3785         for (i = HNS3_MAX_TC_NUM - 1; i >= 0; i--) {
3786                 priv = &buf_alloc->priv_buf[i];
3787                 mask = BIT((uint8_t)i);
3788                 if (hw->hw_tc_map & mask && hw->dcb_info.hw_pfc_map & mask) {
3789                         /* Reduce the number of pfc TC with private buffer */
3790                         priv->wl.low = 0;
3791                         priv->enable = 0;
3792                         priv->wl.high = 0;
3793                         priv->buf_size = 0;
3794                         pfc_priv_num--;
3795                 }
3796                 if (hns3_is_rx_buf_ok(hw, buf_alloc, rx_all) ||
3797                     pfc_priv_num == 0)
3798                         break;
3799         }
3800
3801         return hns3_is_rx_buf_ok(hw, buf_alloc, rx_all);
3802 }
3803
3804 static bool
3805 hns3_only_alloc_priv_buff(struct hns3_hw *hw,
3806                           struct hns3_pkt_buf_alloc *buf_alloc)
3807 {
3808 #define COMPENSATE_BUFFER       0x3C00
3809 #define COMPENSATE_HALF_MPS_NUM 5
3810 #define PRIV_WL_GAP             0x1800
3811         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3812         struct hns3_pf *pf = &hns->pf;
3813         uint32_t tc_num = hns3_get_tc_num(hw);
3814         uint32_t half_mps = pf->mps >> 1;
3815         struct hns3_priv_buf *priv;
3816         uint32_t min_rx_priv;
3817         uint32_t rx_priv;
3818         uint8_t i;
3819
3820         rx_priv = pf->pkt_buf_size - hns3_get_tx_buff_alloced(buf_alloc);
3821         if (tc_num)
3822                 rx_priv = rx_priv / tc_num;
3823
3824         if (tc_num <= NEED_RESERVE_TC_NUM)
3825                 rx_priv = rx_priv * BUF_RESERVE_PERCENT / BUF_MAX_PERCENT;
3826
3827         /*
3828          * Minimum value of private buffer in rx direction (min_rx_priv) is
3829          * equal to "DV + 2.5 * MPS + 15KB". Driver only allocates rx private
3830          * buffer if rx_priv is greater than min_rx_priv.
3831          */
3832         min_rx_priv = pf->dv_buf_size + COMPENSATE_BUFFER +
3833                         COMPENSATE_HALF_MPS_NUM * half_mps;
3834         min_rx_priv = roundup(min_rx_priv, HNS3_BUF_SIZE_UNIT);
3835         rx_priv = rounddown(rx_priv, HNS3_BUF_SIZE_UNIT);
3836
3837         if (rx_priv < min_rx_priv)
3838                 return false;
3839
3840         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3841                 priv = &buf_alloc->priv_buf[i];
3842                 priv->enable = 0;
3843                 priv->wl.low = 0;
3844                 priv->wl.high = 0;
3845                 priv->buf_size = 0;
3846
3847                 if (!(hw->hw_tc_map & BIT(i)))
3848                         continue;
3849
3850                 priv->enable = 1;
3851                 priv->buf_size = rx_priv;
3852                 priv->wl.high = rx_priv - pf->dv_buf_size;
3853                 priv->wl.low = priv->wl.high - PRIV_WL_GAP;
3854         }
3855
3856         buf_alloc->s_buf.buf_size = 0;
3857
3858         return true;
3859 }
3860
3861 /*
3862  * hns3_rx_buffer_calc: calculate the rx private buffer size for all TCs
3863  * @hw: pointer to struct hns3_hw
3864  * @buf_alloc: pointer to buffer calculation data
3865  * @return: 0: calculate sucessful, negative: fail
3866  */
3867 static int
3868 hns3_rx_buffer_calc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3869 {
3870         /* When DCB is not supported, rx private buffer is not allocated. */
3871         if (!hns3_dev_dcb_supported(hw)) {
3872                 struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
3873                 struct hns3_pf *pf = &hns->pf;
3874                 uint32_t rx_all = pf->pkt_buf_size;
3875
3876                 rx_all -= hns3_get_tx_buff_alloced(buf_alloc);
3877                 if (!hns3_is_rx_buf_ok(hw, buf_alloc, rx_all))
3878                         return -ENOMEM;
3879
3880                 return 0;
3881         }
3882
3883         /*
3884          * Try to allocate privated packet buffer for all TCs without share
3885          * buffer.
3886          */
3887         if (hns3_only_alloc_priv_buff(hw, buf_alloc))
3888                 return 0;
3889
3890         /*
3891          * Try to allocate privated packet buffer for all TCs with share
3892          * buffer.
3893          */
3894         if (hns3_rx_buf_calc_all(hw, true, buf_alloc))
3895                 return 0;
3896
3897         /*
3898          * For different application scenes, the enabled port number, TC number
3899          * and no_drop TC number are different. In order to obtain the better
3900          * performance, software could allocate the buffer size and configure
3901          * the waterline by tring to decrease the private buffer size according
3902          * to the order, namely, waterline of valided tc, pfc disabled tc, pfc
3903          * enabled tc.
3904          */
3905         if (hns3_rx_buf_calc_all(hw, false, buf_alloc))
3906                 return 0;
3907
3908         if (hns3_drop_nopfc_buf_till_fit(hw, buf_alloc))
3909                 return 0;
3910
3911         if (hns3_drop_pfc_buf_till_fit(hw, buf_alloc))
3912                 return 0;
3913
3914         return -ENOMEM;
3915 }
3916
3917 static int
3918 hns3_rx_priv_buf_alloc(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3919 {
3920         struct hns3_rx_priv_buff_cmd *req;
3921         struct hns3_cmd_desc desc;
3922         uint32_t buf_size;
3923         int ret;
3924         int i;
3925
3926         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_PRIV_BUFF_ALLOC, false);
3927         req = (struct hns3_rx_priv_buff_cmd *)desc.data;
3928
3929         /* Alloc private buffer TCs */
3930         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
3931                 struct hns3_priv_buf *priv = &buf_alloc->priv_buf[i];
3932
3933                 req->buf_num[i] =
3934                         rte_cpu_to_le_16(priv->buf_size >> HNS3_BUF_UNIT_S);
3935                 req->buf_num[i] |= rte_cpu_to_le_16(1 << HNS3_TC0_PRI_BUF_EN_B);
3936         }
3937
3938         buf_size = buf_alloc->s_buf.buf_size;
3939         req->shared_buf = rte_cpu_to_le_16((buf_size >> HNS3_BUF_UNIT_S) |
3940                                            (1 << HNS3_TC0_PRI_BUF_EN_B));
3941
3942         ret = hns3_cmd_send(hw, &desc, 1);
3943         if (ret)
3944                 PMD_INIT_LOG(ERR, "rx private buffer alloc cmd failed %d", ret);
3945
3946         return ret;
3947 }
3948
3949 static int
3950 hns3_rx_priv_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
3951 {
3952 #define HNS3_RX_PRIV_WL_ALLOC_DESC_NUM 2
3953         struct hns3_rx_priv_wl_buf *req;
3954         struct hns3_priv_buf *priv;
3955         struct hns3_cmd_desc desc[HNS3_RX_PRIV_WL_ALLOC_DESC_NUM];
3956         int i, j;
3957         int ret;
3958
3959         for (i = 0; i < HNS3_RX_PRIV_WL_ALLOC_DESC_NUM; i++) {
3960                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_PRIV_WL_ALLOC,
3961                                           false);
3962                 req = (struct hns3_rx_priv_wl_buf *)desc[i].data;
3963
3964                 /* The first descriptor set the NEXT bit to 1 */
3965                 if (i == 0)
3966                         desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3967                 else
3968                         desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
3969
3970                 for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
3971                         uint32_t idx = i * HNS3_TC_NUM_ONE_DESC + j;
3972
3973                         priv = &buf_alloc->priv_buf[idx];
3974                         req->tc_wl[j].high = rte_cpu_to_le_16(priv->wl.high >>
3975                                                         HNS3_BUF_UNIT_S);
3976                         req->tc_wl[j].high |=
3977                                 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3978                         req->tc_wl[j].low = rte_cpu_to_le_16(priv->wl.low >>
3979                                                         HNS3_BUF_UNIT_S);
3980                         req->tc_wl[j].low |=
3981                                 rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
3982                 }
3983         }
3984
3985         /* Send 2 descriptor at one time */
3986         ret = hns3_cmd_send(hw, desc, HNS3_RX_PRIV_WL_ALLOC_DESC_NUM);
3987         if (ret)
3988                 PMD_INIT_LOG(ERR, "rx private waterline config cmd failed %d",
3989                              ret);
3990         return ret;
3991 }
3992
3993 static int
3994 hns3_common_thrd_config(struct hns3_hw *hw,
3995                         struct hns3_pkt_buf_alloc *buf_alloc)
3996 {
3997 #define HNS3_RX_COM_THRD_ALLOC_DESC_NUM 2
3998         struct hns3_shared_buf *s_buf = &buf_alloc->s_buf;
3999         struct hns3_rx_com_thrd *req;
4000         struct hns3_cmd_desc desc[HNS3_RX_COM_THRD_ALLOC_DESC_NUM];
4001         struct hns3_tc_thrd *tc;
4002         int tc_idx;
4003         int i, j;
4004         int ret;
4005
4006         for (i = 0; i < HNS3_RX_COM_THRD_ALLOC_DESC_NUM; i++) {
4007                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_RX_COM_THRD_ALLOC,
4008                                           false);
4009                 req = (struct hns3_rx_com_thrd *)&desc[i].data;
4010
4011                 /* The first descriptor set the NEXT bit to 1 */
4012                 if (i == 0)
4013                         desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4014                 else
4015                         desc[i].flag &= ~rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4016
4017                 for (j = 0; j < HNS3_TC_NUM_ONE_DESC; j++) {
4018                         tc_idx = i * HNS3_TC_NUM_ONE_DESC + j;
4019                         tc = &s_buf->tc_thrd[tc_idx];
4020
4021                         req->com_thrd[j].high =
4022                                 rte_cpu_to_le_16(tc->high >> HNS3_BUF_UNIT_S);
4023                         req->com_thrd[j].high |=
4024                                  rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4025                         req->com_thrd[j].low =
4026                                 rte_cpu_to_le_16(tc->low >> HNS3_BUF_UNIT_S);
4027                         req->com_thrd[j].low |=
4028                                  rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4029                 }
4030         }
4031
4032         /* Send 2 descriptors at one time */
4033         ret = hns3_cmd_send(hw, desc, HNS3_RX_COM_THRD_ALLOC_DESC_NUM);
4034         if (ret)
4035                 PMD_INIT_LOG(ERR, "common threshold config cmd failed %d", ret);
4036
4037         return ret;
4038 }
4039
4040 static int
4041 hns3_common_wl_config(struct hns3_hw *hw, struct hns3_pkt_buf_alloc *buf_alloc)
4042 {
4043         struct hns3_shared_buf *buf = &buf_alloc->s_buf;
4044         struct hns3_rx_com_wl *req;
4045         struct hns3_cmd_desc desc;
4046         int ret;
4047
4048         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_RX_COM_WL_ALLOC, false);
4049
4050         req = (struct hns3_rx_com_wl *)desc.data;
4051         req->com_wl.high = rte_cpu_to_le_16(buf->self.high >> HNS3_BUF_UNIT_S);
4052         req->com_wl.high |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4053
4054         req->com_wl.low = rte_cpu_to_le_16(buf->self.low >> HNS3_BUF_UNIT_S);
4055         req->com_wl.low |= rte_cpu_to_le_16(BIT(HNS3_RX_PRIV_EN_B));
4056
4057         ret = hns3_cmd_send(hw, &desc, 1);
4058         if (ret)
4059                 PMD_INIT_LOG(ERR, "common waterline config cmd failed %d", ret);
4060
4061         return ret;
4062 }
4063
4064 int
4065 hns3_buffer_alloc(struct hns3_hw *hw)
4066 {
4067         struct hns3_pkt_buf_alloc pkt_buf;
4068         int ret;
4069
4070         memset(&pkt_buf, 0, sizeof(pkt_buf));
4071         ret = hns3_tx_buffer_calc(hw, &pkt_buf);
4072         if (ret) {
4073                 PMD_INIT_LOG(ERR,
4074                              "could not calc tx buffer size for all TCs %d",
4075                              ret);
4076                 return ret;
4077         }
4078
4079         ret = hns3_tx_buffer_alloc(hw, &pkt_buf);
4080         if (ret) {
4081                 PMD_INIT_LOG(ERR, "could not alloc tx buffers %d", ret);
4082                 return ret;
4083         }
4084
4085         ret = hns3_rx_buffer_calc(hw, &pkt_buf);
4086         if (ret) {
4087                 PMD_INIT_LOG(ERR,
4088                              "could not calc rx priv buffer size for all TCs %d",
4089                              ret);
4090                 return ret;
4091         }
4092
4093         ret = hns3_rx_priv_buf_alloc(hw, &pkt_buf);
4094         if (ret) {
4095                 PMD_INIT_LOG(ERR, "could not alloc rx priv buffer %d", ret);
4096                 return ret;
4097         }
4098
4099         if (hns3_dev_dcb_supported(hw)) {
4100                 ret = hns3_rx_priv_wl_config(hw, &pkt_buf);
4101                 if (ret) {
4102                         PMD_INIT_LOG(ERR,
4103                                      "could not configure rx private waterline %d",
4104                                      ret);
4105                         return ret;
4106                 }
4107
4108                 ret = hns3_common_thrd_config(hw, &pkt_buf);
4109                 if (ret) {
4110                         PMD_INIT_LOG(ERR,
4111                                      "could not configure common threshold %d",
4112                                      ret);
4113                         return ret;
4114                 }
4115         }
4116
4117         ret = hns3_common_wl_config(hw, &pkt_buf);
4118         if (ret)
4119                 PMD_INIT_LOG(ERR, "could not configure common waterline %d",
4120                              ret);
4121
4122         return ret;
4123 }
4124
4125 static int
4126 hns3_firmware_compat_config(struct hns3_hw *hw, bool is_init)
4127 {
4128         struct hns3_firmware_compat_cmd *req;
4129         struct hns3_cmd_desc desc;
4130         uint32_t compat = 0;
4131
4132         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_FIRMWARE_COMPAT_CFG, false);
4133         req = (struct hns3_firmware_compat_cmd *)desc.data;
4134
4135         if (is_init) {
4136                 hns3_set_bit(compat, HNS3_LINK_EVENT_REPORT_EN_B, 1);
4137                 hns3_set_bit(compat, HNS3_NCSI_ERROR_REPORT_EN_B, 0);
4138                 if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER)
4139                         hns3_set_bit(compat, HNS3_FIRMWARE_PHY_DRIVER_EN_B, 1);
4140         }
4141
4142         req->compat = rte_cpu_to_le_32(compat);
4143
4144         return hns3_cmd_send(hw, &desc, 1);
4145 }
4146
4147 static int
4148 hns3_mac_init(struct hns3_hw *hw)
4149 {
4150         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4151         struct hns3_mac *mac = &hw->mac;
4152         struct hns3_pf *pf = &hns->pf;
4153         int ret;
4154
4155         pf->support_sfp_query = true;
4156         mac->link_duplex = ETH_LINK_FULL_DUPLEX;
4157         ret = hns3_cfg_mac_speed_dup_hw(hw, mac->link_speed, mac->link_duplex);
4158         if (ret) {
4159                 PMD_INIT_LOG(ERR, "Config mac speed dup fail ret = %d", ret);
4160                 return ret;
4161         }
4162
4163         mac->link_status = ETH_LINK_DOWN;
4164
4165         return hns3_config_mtu(hw, pf->mps);
4166 }
4167
4168 static int
4169 hns3_get_mac_ethertype_cmd_status(uint16_t cmdq_resp, uint8_t resp_code)
4170 {
4171 #define HNS3_ETHERTYPE_SUCCESS_ADD              0
4172 #define HNS3_ETHERTYPE_ALREADY_ADD              1
4173 #define HNS3_ETHERTYPE_MGR_TBL_OVERFLOW         2
4174 #define HNS3_ETHERTYPE_KEY_CONFLICT             3
4175         int return_status;
4176
4177         if (cmdq_resp) {
4178                 PMD_INIT_LOG(ERR,
4179                              "cmdq execute failed for get_mac_ethertype_cmd_status, status=%u.\n",
4180                              cmdq_resp);
4181                 return -EIO;
4182         }
4183
4184         switch (resp_code) {
4185         case HNS3_ETHERTYPE_SUCCESS_ADD:
4186         case HNS3_ETHERTYPE_ALREADY_ADD:
4187                 return_status = 0;
4188                 break;
4189         case HNS3_ETHERTYPE_MGR_TBL_OVERFLOW:
4190                 PMD_INIT_LOG(ERR,
4191                              "add mac ethertype failed for manager table overflow.");
4192                 return_status = -EIO;
4193                 break;
4194         case HNS3_ETHERTYPE_KEY_CONFLICT:
4195                 PMD_INIT_LOG(ERR, "add mac ethertype failed for key conflict.");
4196                 return_status = -EIO;
4197                 break;
4198         default:
4199                 PMD_INIT_LOG(ERR,
4200                              "add mac ethertype failed for undefined, code=%u.",
4201                              resp_code);
4202                 return_status = -EIO;
4203                 break;
4204         }
4205
4206         return return_status;
4207 }
4208
4209 static int
4210 hns3_add_mgr_tbl(struct hns3_hw *hw,
4211                  const struct hns3_mac_mgr_tbl_entry_cmd *req)
4212 {
4213         struct hns3_cmd_desc desc;
4214         uint8_t resp_code;
4215         uint16_t retval;
4216         int ret;
4217
4218         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MAC_ETHTYPE_ADD, false);
4219         memcpy(desc.data, req, sizeof(struct hns3_mac_mgr_tbl_entry_cmd));
4220
4221         ret = hns3_cmd_send(hw, &desc, 1);
4222         if (ret) {
4223                 PMD_INIT_LOG(ERR,
4224                              "add mac ethertype failed for cmd_send, ret =%d.",
4225                              ret);
4226                 return ret;
4227         }
4228
4229         resp_code = (rte_le_to_cpu_32(desc.data[0]) >> 8) & 0xff;
4230         retval = rte_le_to_cpu_16(desc.retval);
4231
4232         return hns3_get_mac_ethertype_cmd_status(retval, resp_code);
4233 }
4234
4235 static void
4236 hns3_prepare_mgr_tbl(struct hns3_mac_mgr_tbl_entry_cmd *mgr_table,
4237                      int *table_item_num)
4238 {
4239         struct hns3_mac_mgr_tbl_entry_cmd *tbl;
4240
4241         /*
4242          * In current version, we add one item in management table as below:
4243          * 0x0180C200000E -- LLDP MC address
4244          */
4245         tbl = mgr_table;
4246         tbl->flags = HNS3_MAC_MGR_MASK_VLAN_B;
4247         tbl->ethter_type = rte_cpu_to_le_16(HNS3_MAC_ETHERTYPE_LLDP);
4248         tbl->mac_addr_hi32 = rte_cpu_to_le_32(htonl(0x0180C200));
4249         tbl->mac_addr_lo16 = rte_cpu_to_le_16(htons(0x000E));
4250         tbl->i_port_bitmap = 0x1;
4251         *table_item_num = 1;
4252 }
4253
4254 static int
4255 hns3_init_mgr_tbl(struct hns3_hw *hw)
4256 {
4257 #define HNS_MAC_MGR_TBL_MAX_SIZE        16
4258         struct hns3_mac_mgr_tbl_entry_cmd mgr_table[HNS_MAC_MGR_TBL_MAX_SIZE];
4259         int table_item_num;
4260         int ret;
4261         int i;
4262
4263         memset(mgr_table, 0, sizeof(mgr_table));
4264         hns3_prepare_mgr_tbl(mgr_table, &table_item_num);
4265         for (i = 0; i < table_item_num; i++) {
4266                 ret = hns3_add_mgr_tbl(hw, &mgr_table[i]);
4267                 if (ret) {
4268                         PMD_INIT_LOG(ERR, "add mac ethertype failed, ret =%d",
4269                                      ret);
4270                         return ret;
4271                 }
4272         }
4273
4274         return 0;
4275 }
4276
4277 static void
4278 hns3_promisc_param_init(struct hns3_promisc_param *param, bool en_uc,
4279                         bool en_mc, bool en_bc, int vport_id)
4280 {
4281         if (!param)
4282                 return;
4283
4284         memset(param, 0, sizeof(struct hns3_promisc_param));
4285         if (en_uc)
4286                 param->enable = HNS3_PROMISC_EN_UC;
4287         if (en_mc)
4288                 param->enable |= HNS3_PROMISC_EN_MC;
4289         if (en_bc)
4290                 param->enable |= HNS3_PROMISC_EN_BC;
4291         param->vf_id = vport_id;
4292 }
4293
4294 static int
4295 hns3_cmd_set_promisc_mode(struct hns3_hw *hw, struct hns3_promisc_param *param)
4296 {
4297         struct hns3_promisc_cfg_cmd *req;
4298         struct hns3_cmd_desc desc;
4299         int ret;
4300
4301         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_PROMISC_MODE, false);
4302
4303         req = (struct hns3_promisc_cfg_cmd *)desc.data;
4304         req->vf_id = param->vf_id;
4305         req->flag = (param->enable << HNS3_PROMISC_EN_B) |
4306             HNS3_PROMISC_TX_EN_B | HNS3_PROMISC_RX_EN_B;
4307
4308         ret = hns3_cmd_send(hw, &desc, 1);
4309         if (ret)
4310                 PMD_INIT_LOG(ERR, "Set promisc mode fail, ret = %d", ret);
4311
4312         return ret;
4313 }
4314
4315 static int
4316 hns3_set_promisc_mode(struct hns3_hw *hw, bool en_uc_pmc, bool en_mc_pmc)
4317 {
4318         struct hns3_promisc_param param;
4319         bool en_bc_pmc = true;
4320         uint8_t vf_id;
4321
4322         /*
4323          * In current version VF is not supported when PF is driven by DPDK
4324          * driver, just need to configure parameters for PF vport.
4325          */
4326         vf_id = HNS3_PF_FUNC_ID;
4327
4328         hns3_promisc_param_init(&param, en_uc_pmc, en_mc_pmc, en_bc_pmc, vf_id);
4329         return hns3_cmd_set_promisc_mode(hw, &param);
4330 }
4331
4332 static int
4333 hns3_promisc_init(struct hns3_hw *hw)
4334 {
4335         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
4336         struct hns3_pf *pf = &hns->pf;
4337         struct hns3_promisc_param param;
4338         uint16_t func_id;
4339         int ret;
4340
4341         ret = hns3_set_promisc_mode(hw, false, false);
4342         if (ret) {
4343                 PMD_INIT_LOG(ERR, "failed to set promisc mode, ret = %d", ret);
4344                 return ret;
4345         }
4346
4347         /*
4348          * In current version VFs are not supported when PF is driven by DPDK
4349          * driver. After PF has been taken over by DPDK, the original VF will
4350          * be invalid. So, there is a possibility of entry residues. It should
4351          * clear VFs's promisc mode to avoid unnecessary bandwidth usage
4352          * during init.
4353          */
4354         for (func_id = HNS3_1ST_VF_FUNC_ID; func_id < pf->func_num; func_id++) {
4355                 hns3_promisc_param_init(&param, false, false, false, func_id);
4356                 ret = hns3_cmd_set_promisc_mode(hw, &param);
4357                 if (ret) {
4358                         PMD_INIT_LOG(ERR, "failed to clear vf:%u promisc mode,"
4359                                         " ret = %d", func_id, ret);
4360                         return ret;
4361                 }
4362         }
4363
4364         return 0;
4365 }
4366
4367 static void
4368 hns3_promisc_uninit(struct hns3_hw *hw)
4369 {
4370         struct hns3_promisc_param param;
4371         uint16_t func_id;
4372         int ret;
4373
4374         func_id = HNS3_PF_FUNC_ID;
4375
4376         /*
4377          * In current version VFs are not supported when PF is driven by
4378          * DPDK driver, and VFs' promisc mode status has been cleared during
4379          * init and their status will not change. So just clear PF's promisc
4380          * mode status during uninit.
4381          */
4382         hns3_promisc_param_init(&param, false, false, false, func_id);
4383         ret = hns3_cmd_set_promisc_mode(hw, &param);
4384         if (ret)
4385                 PMD_INIT_LOG(ERR, "failed to clear promisc status during"
4386                                 " uninit, ret = %d", ret);
4387 }
4388
4389 static int
4390 hns3_dev_promiscuous_enable(struct rte_eth_dev *dev)
4391 {
4392         bool allmulti = dev->data->all_multicast ? true : false;
4393         struct hns3_adapter *hns = dev->data->dev_private;
4394         struct hns3_hw *hw = &hns->hw;
4395         uint64_t offloads;
4396         int err;
4397         int ret;
4398
4399         rte_spinlock_lock(&hw->lock);
4400         ret = hns3_set_promisc_mode(hw, true, true);
4401         if (ret) {
4402                 rte_spinlock_unlock(&hw->lock);
4403                 hns3_err(hw, "failed to enable promiscuous mode, ret = %d",
4404                          ret);
4405                 return ret;
4406         }
4407
4408         /*
4409          * When promiscuous mode was enabled, disable the vlan filter to let
4410          * all packets coming in in the receiving direction.
4411          */
4412         offloads = dev->data->dev_conf.rxmode.offloads;
4413         if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4414                 ret = hns3_enable_vlan_filter(hns, false);
4415                 if (ret) {
4416                         hns3_err(hw, "failed to enable promiscuous mode due to "
4417                                      "failure to disable vlan filter, ret = %d",
4418                                  ret);
4419                         err = hns3_set_promisc_mode(hw, false, allmulti);
4420                         if (err)
4421                                 hns3_err(hw, "failed to restore promiscuous "
4422                                          "status after disable vlan filter "
4423                                          "failed during enabling promiscuous "
4424                                          "mode, ret = %d", ret);
4425                 }
4426         }
4427
4428         rte_spinlock_unlock(&hw->lock);
4429
4430         return ret;
4431 }
4432
4433 static int
4434 hns3_dev_promiscuous_disable(struct rte_eth_dev *dev)
4435 {
4436         bool allmulti = dev->data->all_multicast ? true : false;
4437         struct hns3_adapter *hns = dev->data->dev_private;
4438         struct hns3_hw *hw = &hns->hw;
4439         uint64_t offloads;
4440         int err;
4441         int ret;
4442
4443         /* If now in all_multicast mode, must remain in all_multicast mode. */
4444         rte_spinlock_lock(&hw->lock);
4445         ret = hns3_set_promisc_mode(hw, false, allmulti);
4446         if (ret) {
4447                 rte_spinlock_unlock(&hw->lock);
4448                 hns3_err(hw, "failed to disable promiscuous mode, ret = %d",
4449                          ret);
4450                 return ret;
4451         }
4452         /* when promiscuous mode was disabled, restore the vlan filter status */
4453         offloads = dev->data->dev_conf.rxmode.offloads;
4454         if (offloads & DEV_RX_OFFLOAD_VLAN_FILTER) {
4455                 ret = hns3_enable_vlan_filter(hns, true);
4456                 if (ret) {
4457                         hns3_err(hw, "failed to disable promiscuous mode due to"
4458                                  " failure to restore vlan filter, ret = %d",
4459                                  ret);
4460                         err = hns3_set_promisc_mode(hw, true, true);
4461                         if (err)
4462                                 hns3_err(hw, "failed to restore promiscuous "
4463                                          "status after enabling vlan filter "
4464                                          "failed during disabling promiscuous "
4465                                          "mode, ret = %d", ret);
4466                 }
4467         }
4468         rte_spinlock_unlock(&hw->lock);
4469
4470         return ret;
4471 }
4472
4473 static int
4474 hns3_dev_allmulticast_enable(struct rte_eth_dev *dev)
4475 {
4476         struct hns3_adapter *hns = dev->data->dev_private;
4477         struct hns3_hw *hw = &hns->hw;
4478         int ret;
4479
4480         if (dev->data->promiscuous)
4481                 return 0;
4482
4483         rte_spinlock_lock(&hw->lock);
4484         ret = hns3_set_promisc_mode(hw, false, true);
4485         rte_spinlock_unlock(&hw->lock);
4486         if (ret)
4487                 hns3_err(hw, "failed to enable allmulticast mode, ret = %d",
4488                          ret);
4489
4490         return ret;
4491 }
4492
4493 static int
4494 hns3_dev_allmulticast_disable(struct rte_eth_dev *dev)
4495 {
4496         struct hns3_adapter *hns = dev->data->dev_private;
4497         struct hns3_hw *hw = &hns->hw;
4498         int ret;
4499
4500         /* If now in promiscuous mode, must remain in all_multicast mode. */
4501         if (dev->data->promiscuous)
4502                 return 0;
4503
4504         rte_spinlock_lock(&hw->lock);
4505         ret = hns3_set_promisc_mode(hw, false, false);
4506         rte_spinlock_unlock(&hw->lock);
4507         if (ret)
4508                 hns3_err(hw, "failed to disable allmulticast mode, ret = %d",
4509                          ret);
4510
4511         return ret;
4512 }
4513
4514 static int
4515 hns3_dev_promisc_restore(struct hns3_adapter *hns)
4516 {
4517         struct hns3_hw *hw = &hns->hw;
4518         bool allmulti = hw->data->all_multicast ? true : false;
4519         int ret;
4520
4521         if (hw->data->promiscuous) {
4522                 ret = hns3_set_promisc_mode(hw, true, true);
4523                 if (ret)
4524                         hns3_err(hw, "failed to restore promiscuous mode, "
4525                                  "ret = %d", ret);
4526                 return ret;
4527         }
4528
4529         ret = hns3_set_promisc_mode(hw, false, allmulti);
4530         if (ret)
4531                 hns3_err(hw, "failed to restore allmulticast mode, ret = %d",
4532                          ret);
4533         return ret;
4534 }
4535
4536 static int
4537 hns3_get_sfp_speed(struct hns3_hw *hw, uint32_t *speed)
4538 {
4539         struct hns3_sfp_speed_cmd *resp;
4540         struct hns3_cmd_desc desc;
4541         int ret;
4542
4543         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SFP_GET_SPEED, true);
4544         resp = (struct hns3_sfp_speed_cmd *)desc.data;
4545         ret = hns3_cmd_send(hw, &desc, 1);
4546         if (ret == -EOPNOTSUPP) {
4547                 hns3_err(hw, "IMP do not support get SFP speed %d", ret);
4548                 return ret;
4549         } else if (ret) {
4550                 hns3_err(hw, "get sfp speed failed %d", ret);
4551                 return ret;
4552         }
4553
4554         *speed = resp->sfp_speed;
4555
4556         return 0;
4557 }
4558
4559 static uint8_t
4560 hns3_check_speed_dup(uint8_t duplex, uint32_t speed)
4561 {
4562         if (!(speed == ETH_SPEED_NUM_10M || speed == ETH_SPEED_NUM_100M))
4563                 duplex = ETH_LINK_FULL_DUPLEX;
4564
4565         return duplex;
4566 }
4567
4568 static int
4569 hns3_cfg_mac_speed_dup(struct hns3_hw *hw, uint32_t speed, uint8_t duplex)
4570 {
4571         struct hns3_mac *mac = &hw->mac;
4572         int ret;
4573
4574         duplex = hns3_check_speed_dup(duplex, speed);
4575         if (mac->link_speed == speed && mac->link_duplex == duplex)
4576                 return 0;
4577
4578         ret = hns3_cfg_mac_speed_dup_hw(hw, speed, duplex);
4579         if (ret)
4580                 return ret;
4581
4582         ret = hns3_port_shaper_update(hw, speed);
4583         if (ret)
4584                 return ret;
4585
4586         mac->link_speed = speed;
4587         mac->link_duplex = duplex;
4588
4589         return 0;
4590 }
4591
4592 static int
4593 hns3_update_fiber_link_info(struct hns3_hw *hw)
4594 {
4595         struct hns3_pf *pf = HNS3_DEV_HW_TO_PF(hw);
4596         uint32_t speed;
4597         int ret;
4598
4599         /* If IMP do not support get SFP/qSFP speed, return directly */
4600         if (!pf->support_sfp_query)
4601                 return 0;
4602
4603         ret = hns3_get_sfp_speed(hw, &speed);
4604         if (ret == -EOPNOTSUPP) {
4605                 pf->support_sfp_query = false;
4606                 return ret;
4607         } else if (ret)
4608                 return ret;
4609
4610         if (speed == ETH_SPEED_NUM_NONE)
4611                 return 0; /* do nothing if no SFP */
4612
4613         /* Config full duplex for SFP */
4614         return hns3_cfg_mac_speed_dup(hw, speed, ETH_LINK_FULL_DUPLEX);
4615 }
4616
4617 static void
4618 hns3_parse_copper_phy_params(struct hns3_cmd_desc *desc, struct hns3_mac *mac)
4619 {
4620         struct hns3_phy_params_bd0_cmd *req;
4621
4622         req = (struct hns3_phy_params_bd0_cmd *)desc[0].data;
4623         mac->link_speed = rte_le_to_cpu_32(req->speed);
4624         mac->link_duplex = hns3_get_bit(req->duplex,
4625                                            HNS3_PHY_DUPLEX_CFG_B);
4626         mac->link_autoneg = hns3_get_bit(req->autoneg,
4627                                            HNS3_PHY_AUTONEG_CFG_B);
4628         mac->supported_capa = rte_le_to_cpu_32(req->supported);
4629         mac->advertising = rte_le_to_cpu_32(req->advertising);
4630         mac->lp_advertising = rte_le_to_cpu_32(req->lp_advertising);
4631         mac->support_autoneg = !!(mac->supported_capa &
4632                                 HNS3_PHY_LINK_MODE_AUTONEG_BIT);
4633 }
4634
4635 static int
4636 hns3_get_copper_phy_params(struct hns3_hw *hw, struct hns3_mac *mac)
4637 {
4638         struct hns3_cmd_desc desc[HNS3_PHY_PARAM_CFG_BD_NUM];
4639         uint16_t i;
4640         int ret;
4641
4642         for (i = 0; i < HNS3_PHY_PARAM_CFG_BD_NUM - 1; i++) {
4643                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG,
4644                                           true);
4645                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
4646         }
4647         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_PHY_PARAM_CFG, true);
4648
4649         ret = hns3_cmd_send(hw, desc, HNS3_PHY_PARAM_CFG_BD_NUM);
4650         if (ret) {
4651                 hns3_err(hw, "get phy parameters failed, ret = %d.", ret);
4652                 return ret;
4653         }
4654
4655         hns3_parse_copper_phy_params(desc, mac);
4656
4657         return 0;
4658 }
4659
4660 static int
4661 hns3_update_copper_link_info(struct hns3_hw *hw)
4662 {
4663         struct hns3_mac *mac = &hw->mac;
4664         struct hns3_mac mac_info;
4665         int ret;
4666
4667         memset(&mac_info, 0, sizeof(struct hns3_mac));
4668         ret = hns3_get_copper_phy_params(hw, &mac_info);
4669         if (ret)
4670                 return ret;
4671
4672         if (mac_info.link_speed != mac->link_speed) {
4673                 ret = hns3_port_shaper_update(hw, mac_info.link_speed);
4674                 if (ret)
4675                         return ret;
4676         }
4677
4678         mac->link_speed = mac_info.link_speed;
4679         mac->link_duplex = mac_info.link_duplex;
4680         mac->link_autoneg = mac_info.link_autoneg;
4681         mac->supported_capa = mac_info.supported_capa;
4682         mac->advertising = mac_info.advertising;
4683         mac->lp_advertising = mac_info.lp_advertising;
4684         mac->support_autoneg = mac_info.support_autoneg;
4685
4686         return 0;
4687 }
4688
4689 static int
4690 hns3_update_link_info(struct rte_eth_dev *eth_dev)
4691 {
4692         struct hns3_adapter *hns = eth_dev->data->dev_private;
4693         struct hns3_hw *hw = &hns->hw;
4694         int ret = 0;
4695
4696         if (hw->mac.media_type == HNS3_MEDIA_TYPE_COPPER)
4697                 ret = hns3_update_copper_link_info(hw);
4698         else if (hw->mac.media_type == HNS3_MEDIA_TYPE_FIBER)
4699                 ret = hns3_update_fiber_link_info(hw);
4700
4701         return ret;
4702 }
4703
4704 static int
4705 hns3_cfg_mac_mode(struct hns3_hw *hw, bool enable)
4706 {
4707         struct hns3_config_mac_mode_cmd *req;
4708         struct hns3_cmd_desc desc;
4709         uint32_t loop_en = 0;
4710         uint8_t val = 0;
4711         int ret;
4712
4713         req = (struct hns3_config_mac_mode_cmd *)desc.data;
4714
4715         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_MAC_MODE, false);
4716         if (enable)
4717                 val = 1;
4718         hns3_set_bit(loop_en, HNS3_MAC_TX_EN_B, val);
4719         hns3_set_bit(loop_en, HNS3_MAC_RX_EN_B, val);
4720         hns3_set_bit(loop_en, HNS3_MAC_PAD_TX_B, val);
4721         hns3_set_bit(loop_en, HNS3_MAC_PAD_RX_B, val);
4722         hns3_set_bit(loop_en, HNS3_MAC_1588_TX_B, 0);
4723         hns3_set_bit(loop_en, HNS3_MAC_1588_RX_B, 0);
4724         hns3_set_bit(loop_en, HNS3_MAC_APP_LP_B, 0);
4725         hns3_set_bit(loop_en, HNS3_MAC_LINE_LP_B, 0);
4726         hns3_set_bit(loop_en, HNS3_MAC_FCS_TX_B, val);
4727         hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_B, val);
4728
4729         /*
4730          * If DEV_RX_OFFLOAD_KEEP_CRC offload is set, MAC will not strip CRC
4731          * when receiving frames. Otherwise, CRC will be stripped.
4732          */
4733         if (hw->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
4734                 hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, 0);
4735         else
4736                 hns3_set_bit(loop_en, HNS3_MAC_RX_FCS_STRIP_B, val);
4737         hns3_set_bit(loop_en, HNS3_MAC_TX_OVERSIZE_TRUNCATE_B, val);
4738         hns3_set_bit(loop_en, HNS3_MAC_RX_OVERSIZE_TRUNCATE_B, val);
4739         hns3_set_bit(loop_en, HNS3_MAC_TX_UNDER_MIN_ERR_B, val);
4740         req->txrx_pad_fcs_loop_en = rte_cpu_to_le_32(loop_en);
4741
4742         ret = hns3_cmd_send(hw, &desc, 1);
4743         if (ret)
4744                 PMD_INIT_LOG(ERR, "mac enable fail, ret =%d.", ret);
4745
4746         return ret;
4747 }
4748
4749 static int
4750 hns3_get_mac_link_status(struct hns3_hw *hw)
4751 {
4752         struct hns3_link_status_cmd *req;
4753         struct hns3_cmd_desc desc;
4754         int link_status;
4755         int ret;
4756
4757         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_LINK_STATUS, true);
4758         ret = hns3_cmd_send(hw, &desc, 1);
4759         if (ret) {
4760                 hns3_err(hw, "get link status cmd failed %d", ret);
4761                 return ETH_LINK_DOWN;
4762         }
4763
4764         req = (struct hns3_link_status_cmd *)desc.data;
4765         link_status = req->status & HNS3_LINK_STATUS_UP_M;
4766
4767         return !!link_status;
4768 }
4769
4770 static bool
4771 hns3_update_link_status(struct hns3_hw *hw)
4772 {
4773         int state;
4774
4775         state = hns3_get_mac_link_status(hw);
4776         if (state != hw->mac.link_status) {
4777                 hw->mac.link_status = state;
4778                 hns3_warn(hw, "Link status change to %s!", state ? "up" : "down");
4779                 hns3_config_mac_tnl_int(hw,
4780                                         state == ETH_LINK_UP ? true : false);
4781                 return true;
4782         }
4783
4784         return false;
4785 }
4786
4787 void
4788 hns3_update_linkstatus_and_event(struct hns3_hw *hw, bool query)
4789 {
4790         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
4791         struct rte_eth_link new_link;
4792         int ret;
4793
4794         if (query)
4795                 hns3_update_port_link_info(dev);
4796
4797         memset(&new_link, 0, sizeof(new_link));
4798         hns3_setup_linkstatus(dev, &new_link);
4799
4800         ret = rte_eth_linkstatus_set(dev, &new_link);
4801         if (ret == 0 && dev->data->dev_conf.intr_conf.lsc != 0)
4802                 hns3_start_report_lse(dev);
4803 }
4804
4805 static void
4806 hns3_service_handler(void *param)
4807 {
4808         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
4809         struct hns3_adapter *hns = eth_dev->data->dev_private;
4810         struct hns3_hw *hw = &hns->hw;
4811
4812         if (!hns3_is_reset_pending(hns))
4813                 hns3_update_linkstatus_and_event(hw, true);
4814         else
4815                 hns3_warn(hw, "Cancel the query when reset is pending");
4816
4817         rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, eth_dev);
4818 }
4819
4820 static void
4821 hns3_update_dev_lsc_cap(struct hns3_hw *hw,
4822                         int fw_compact_cmd_result)
4823 {
4824         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
4825
4826         if (hw->adapter_state != HNS3_NIC_UNINITIALIZED)
4827                 return;
4828
4829         if (fw_compact_cmd_result != 0) {
4830                 /*
4831                  * If fw_compact_cmd_result is not zero, it means firmware don't
4832                  * support link status change interrupt.
4833                  * Framework already set RTE_ETH_DEV_INTR_LSC bit because driver
4834                  * declared RTE_PCI_DRV_INTR_LSC in drv_flags. It need to clear
4835                  * the RTE_ETH_DEV_INTR_LSC capability when detect firmware
4836                  * don't support link status change interrupt.
4837                  */
4838                 dev->data->dev_flags &= ~RTE_ETH_DEV_INTR_LSC;
4839         }
4840 }
4841
4842 static int
4843 hns3_init_hardware(struct hns3_adapter *hns)
4844 {
4845         struct hns3_hw *hw = &hns->hw;
4846         int ret;
4847
4848         ret = hns3_map_tqp(hw);
4849         if (ret) {
4850                 PMD_INIT_LOG(ERR, "Failed to map tqp: %d", ret);
4851                 return ret;
4852         }
4853
4854         ret = hns3_init_umv_space(hw);
4855         if (ret) {
4856                 PMD_INIT_LOG(ERR, "Failed to init umv space: %d", ret);
4857                 return ret;
4858         }
4859
4860         ret = hns3_mac_init(hw);
4861         if (ret) {
4862                 PMD_INIT_LOG(ERR, "Failed to init MAC: %d", ret);
4863                 goto err_mac_init;
4864         }
4865
4866         ret = hns3_init_mgr_tbl(hw);
4867         if (ret) {
4868                 PMD_INIT_LOG(ERR, "Failed to init manager table: %d", ret);
4869                 goto err_mac_init;
4870         }
4871
4872         ret = hns3_promisc_init(hw);
4873         if (ret) {
4874                 PMD_INIT_LOG(ERR, "Failed to init promisc: %d",
4875                              ret);
4876                 goto err_mac_init;
4877         }
4878
4879         ret = hns3_init_vlan_config(hns);
4880         if (ret) {
4881                 PMD_INIT_LOG(ERR, "Failed to init vlan: %d", ret);
4882                 goto err_mac_init;
4883         }
4884
4885         ret = hns3_dcb_init(hw);
4886         if (ret) {
4887                 PMD_INIT_LOG(ERR, "Failed to init dcb: %d", ret);
4888                 goto err_mac_init;
4889         }
4890
4891         ret = hns3_init_fd_config(hns);
4892         if (ret) {
4893                 PMD_INIT_LOG(ERR, "Failed to init flow director: %d", ret);
4894                 goto err_mac_init;
4895         }
4896
4897         ret = hns3_config_tso(hw, HNS3_TSO_MSS_MIN, HNS3_TSO_MSS_MAX);
4898         if (ret) {
4899                 PMD_INIT_LOG(ERR, "Failed to config tso: %d", ret);
4900                 goto err_mac_init;
4901         }
4902
4903         ret = hns3_config_gro(hw, false);
4904         if (ret) {
4905                 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
4906                 goto err_mac_init;
4907         }
4908
4909         /*
4910          * In the initialization clearing the all hardware mapping relationship
4911          * configurations between queues and interrupt vectors is needed, so
4912          * some error caused by the residual configurations, such as the
4913          * unexpected interrupt, can be avoid.
4914          */
4915         ret = hns3_init_ring_with_vector(hw);
4916         if (ret) {
4917                 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
4918                 goto err_mac_init;
4919         }
4920
4921         /*
4922          * Requiring firmware to enable some features, driver can
4923          * still work without it.
4924          */
4925         ret = hns3_firmware_compat_config(hw, true);
4926         if (ret)
4927                 PMD_INIT_LOG(WARNING, "firmware compatible features not "
4928                              "supported, ret = %d.", ret);
4929         hns3_update_dev_lsc_cap(hw, ret);
4930
4931         return 0;
4932
4933 err_mac_init:
4934         hns3_uninit_umv_space(hw);
4935         return ret;
4936 }
4937
4938 static int
4939 hns3_clear_hw(struct hns3_hw *hw)
4940 {
4941         struct hns3_cmd_desc desc;
4942         int ret;
4943
4944         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CLEAR_HW_STATE, false);
4945
4946         ret = hns3_cmd_send(hw, &desc, 1);
4947         if (ret && ret != -EOPNOTSUPP)
4948                 return ret;
4949
4950         return 0;
4951 }
4952
4953 static void
4954 hns3_config_all_msix_error(struct hns3_hw *hw, bool enable)
4955 {
4956         uint32_t val;
4957
4958         /*
4959          * The new firmware support report more hardware error types by
4960          * msix mode. These errors are defined as RAS errors in hardware
4961          * and belong to a different type from the MSI-x errors processed
4962          * by the network driver.
4963          *
4964          * Network driver should open the new error report on initialition
4965          */
4966         val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
4967         hns3_set_bit(val, HNS3_VECTOR0_ALL_MSIX_ERR_B, enable ? 1 : 0);
4968         hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, val);
4969 }
4970
4971 static int
4972 hns3_init_pf(struct rte_eth_dev *eth_dev)
4973 {
4974         struct rte_device *dev = eth_dev->device;
4975         struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
4976         struct hns3_adapter *hns = eth_dev->data->dev_private;
4977         struct hns3_hw *hw = &hns->hw;
4978         int ret;
4979
4980         PMD_INIT_FUNC_TRACE();
4981
4982         /* Get hardware io base address from pcie BAR2 IO space */
4983         hw->io_base = pci_dev->mem_resource[2].addr;
4984
4985         /* Firmware command queue initialize */
4986         ret = hns3_cmd_init_queue(hw);
4987         if (ret) {
4988                 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
4989                 goto err_cmd_init_queue;
4990         }
4991
4992         hns3_clear_all_event_cause(hw);
4993
4994         /* Firmware command initialize */
4995         ret = hns3_cmd_init(hw);
4996         if (ret) {
4997                 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
4998                 goto err_cmd_init;
4999         }
5000
5001         /*
5002          * To ensure that the hardware environment is clean during
5003          * initialization, the driver actively clear the hardware environment
5004          * during initialization, including PF and corresponding VFs' vlan, mac,
5005          * flow table configurations, etc.
5006          */
5007         ret = hns3_clear_hw(hw);
5008         if (ret) {
5009                 PMD_INIT_LOG(ERR, "failed to clear hardware: %d", ret);
5010                 goto err_cmd_init;
5011         }
5012
5013         /* Hardware statistics of imissed registers cleared. */
5014         ret = hns3_update_imissed_stats(hw, true);
5015         if (ret) {
5016                 hns3_err(hw, "clear imissed stats failed, ret = %d", ret);
5017                 return ret;
5018         }
5019
5020         hns3_config_all_msix_error(hw, true);
5021
5022         ret = rte_intr_callback_register(&pci_dev->intr_handle,
5023                                          hns3_interrupt_handler,
5024                                          eth_dev);
5025         if (ret) {
5026                 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
5027                 goto err_intr_callback_register;
5028         }
5029
5030         ret = hns3_ptp_init(hw);
5031         if (ret)
5032                 goto err_get_config;
5033
5034         /* Enable interrupt */
5035         rte_intr_enable(&pci_dev->intr_handle);
5036         hns3_pf_enable_irq0(hw);
5037
5038         /* Get configuration */
5039         ret = hns3_get_configuration(hw);
5040         if (ret) {
5041                 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
5042                 goto err_get_config;
5043         }
5044
5045         ret = hns3_tqp_stats_init(hw);
5046         if (ret)
5047                 goto err_get_config;
5048
5049         ret = hns3_init_hardware(hns);
5050         if (ret) {
5051                 PMD_INIT_LOG(ERR, "Failed to init hardware: %d", ret);
5052                 goto err_init_hw;
5053         }
5054
5055         /* Initialize flow director filter list & hash */
5056         ret = hns3_fdir_filter_init(hns);
5057         if (ret) {
5058                 PMD_INIT_LOG(ERR, "Failed to alloc hashmap for fdir: %d", ret);
5059                 goto err_fdir;
5060         }
5061
5062         hns3_rss_set_default_args(hw);
5063
5064         ret = hns3_enable_hw_error_intr(hns, true);
5065         if (ret) {
5066                 PMD_INIT_LOG(ERR, "fail to enable hw error interrupts: %d",
5067                              ret);
5068                 goto err_enable_intr;
5069         }
5070
5071         hns3_tm_conf_init(eth_dev);
5072
5073         return 0;
5074
5075 err_enable_intr:
5076         hns3_fdir_filter_uninit(hns);
5077 err_fdir:
5078         (void)hns3_firmware_compat_config(hw, false);
5079         hns3_uninit_umv_space(hw);
5080 err_init_hw:
5081         hns3_tqp_stats_uninit(hw);
5082 err_get_config:
5083         hns3_pf_disable_irq0(hw);
5084         rte_intr_disable(&pci_dev->intr_handle);
5085         hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
5086                              eth_dev);
5087 err_intr_callback_register:
5088 err_cmd_init:
5089         hns3_cmd_uninit(hw);
5090         hns3_cmd_destroy_queue(hw);
5091 err_cmd_init_queue:
5092         hw->io_base = NULL;
5093
5094         return ret;
5095 }
5096
5097 static void
5098 hns3_uninit_pf(struct rte_eth_dev *eth_dev)
5099 {
5100         struct hns3_adapter *hns = eth_dev->data->dev_private;
5101         struct rte_device *dev = eth_dev->device;
5102         struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev);
5103         struct hns3_hw *hw = &hns->hw;
5104
5105         PMD_INIT_FUNC_TRACE();
5106
5107         hns3_tm_conf_uninit(eth_dev);
5108         hns3_enable_hw_error_intr(hns, false);
5109         hns3_rss_uninit(hns);
5110         (void)hns3_config_gro(hw, false);
5111         hns3_promisc_uninit(hw);
5112         hns3_fdir_filter_uninit(hns);
5113         (void)hns3_firmware_compat_config(hw, false);
5114         hns3_uninit_umv_space(hw);
5115         hns3_tqp_stats_uninit(hw);
5116         hns3_config_mac_tnl_int(hw, false);
5117         hns3_pf_disable_irq0(hw);
5118         rte_intr_disable(&pci_dev->intr_handle);
5119         hns3_intr_unregister(&pci_dev->intr_handle, hns3_interrupt_handler,
5120                              eth_dev);
5121         hns3_config_all_msix_error(hw, false);
5122         hns3_cmd_uninit(hw);
5123         hns3_cmd_destroy_queue(hw);
5124         hw->io_base = NULL;
5125 }
5126
5127 static int
5128 hns3_do_start(struct hns3_adapter *hns, bool reset_queue)
5129 {
5130         struct hns3_hw *hw = &hns->hw;
5131         int ret;
5132
5133         ret = hns3_dcb_cfg_update(hns);
5134         if (ret)
5135                 return ret;
5136
5137         /*
5138          * The hns3_dcb_cfg_update may configure TM module, so
5139          * hns3_tm_conf_update must called later.
5140          */
5141         ret = hns3_tm_conf_update(hw);
5142         if (ret) {
5143                 PMD_INIT_LOG(ERR, "failed to update tm conf, ret = %d.", ret);
5144                 return ret;
5145         }
5146
5147         hns3_enable_rxd_adv_layout(hw);
5148
5149         ret = hns3_init_queues(hns, reset_queue);
5150         if (ret) {
5151                 PMD_INIT_LOG(ERR, "failed to init queues, ret = %d.", ret);
5152                 return ret;
5153         }
5154
5155         ret = hns3_cfg_mac_mode(hw, true);
5156         if (ret) {
5157                 PMD_INIT_LOG(ERR, "failed to enable MAC, ret = %d", ret);
5158                 goto err_config_mac_mode;
5159         }
5160         return 0;
5161
5162 err_config_mac_mode:
5163         hns3_dev_release_mbufs(hns);
5164         /*
5165          * Here is exception handling, hns3_reset_all_tqps will have the
5166          * corresponding error message if it is handled incorrectly, so it is
5167          * not necessary to check hns3_reset_all_tqps return value, here keep
5168          * ret as the error code causing the exception.
5169          */
5170         (void)hns3_reset_all_tqps(hns);
5171         return ret;
5172 }
5173
5174 static int
5175 hns3_map_rx_interrupt(struct rte_eth_dev *dev)
5176 {
5177         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5178         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5179         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5180         uint16_t base = RTE_INTR_VEC_ZERO_OFFSET;
5181         uint16_t vec = RTE_INTR_VEC_ZERO_OFFSET;
5182         uint32_t intr_vector;
5183         uint16_t q_id;
5184         int ret;
5185
5186         /*
5187          * hns3 needs a separate interrupt to be used as event interrupt which
5188          * could not be shared with task queue pair, so KERNEL drivers need
5189          * support multiple interrupt vectors.
5190          */
5191         if (dev->data->dev_conf.intr_conf.rxq == 0 ||
5192             !rte_intr_cap_multiple(intr_handle))
5193                 return 0;
5194
5195         rte_intr_disable(intr_handle);
5196         intr_vector = hw->used_rx_queues;
5197         /* creates event fd for each intr vector when MSIX is used */
5198         if (rte_intr_efd_enable(intr_handle, intr_vector))
5199                 return -EINVAL;
5200
5201         if (intr_handle->intr_vec == NULL) {
5202                 intr_handle->intr_vec =
5203                         rte_zmalloc("intr_vec",
5204                                     hw->used_rx_queues * sizeof(int), 0);
5205                 if (intr_handle->intr_vec == NULL) {
5206                         hns3_err(hw, "failed to allocate %u rx_queues intr_vec",
5207                                         hw->used_rx_queues);
5208                         ret = -ENOMEM;
5209                         goto alloc_intr_vec_error;
5210                 }
5211         }
5212
5213         if (rte_intr_allow_others(intr_handle)) {
5214                 vec = RTE_INTR_VEC_RXTX_OFFSET;
5215                 base = RTE_INTR_VEC_RXTX_OFFSET;
5216         }
5217
5218         for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5219                 ret = hns3_bind_ring_with_vector(hw, vec, true,
5220                                                  HNS3_RING_TYPE_RX, q_id);
5221                 if (ret)
5222                         goto bind_vector_error;
5223                 intr_handle->intr_vec[q_id] = vec;
5224                 /*
5225                  * If there are not enough efds (e.g. not enough interrupt),
5226                  * remaining queues will be bond to the last interrupt.
5227                  */
5228                 if (vec < base + intr_handle->nb_efd - 1)
5229                         vec++;
5230         }
5231         rte_intr_enable(intr_handle);
5232         return 0;
5233
5234 bind_vector_error:
5235         rte_free(intr_handle->intr_vec);
5236         intr_handle->intr_vec = NULL;
5237 alloc_intr_vec_error:
5238         rte_intr_efd_disable(intr_handle);
5239         return ret;
5240 }
5241
5242 static int
5243 hns3_restore_rx_interrupt(struct hns3_hw *hw)
5244 {
5245         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
5246         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5247         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5248         uint16_t q_id;
5249         int ret;
5250
5251         if (dev->data->dev_conf.intr_conf.rxq == 0)
5252                 return 0;
5253
5254         if (rte_intr_dp_is_en(intr_handle)) {
5255                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5256                         ret = hns3_bind_ring_with_vector(hw,
5257                                         intr_handle->intr_vec[q_id], true,
5258                                         HNS3_RING_TYPE_RX, q_id);
5259                         if (ret)
5260                                 return ret;
5261                 }
5262         }
5263
5264         return 0;
5265 }
5266
5267 static void
5268 hns3_restore_filter(struct rte_eth_dev *dev)
5269 {
5270         hns3_restore_rss_filter(dev);
5271 }
5272
5273 static int
5274 hns3_dev_start(struct rte_eth_dev *dev)
5275 {
5276         struct hns3_adapter *hns = dev->data->dev_private;
5277         struct hns3_hw *hw = &hns->hw;
5278         int ret;
5279
5280         PMD_INIT_FUNC_TRACE();
5281         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
5282                 return -EBUSY;
5283
5284         rte_spinlock_lock(&hw->lock);
5285         hw->adapter_state = HNS3_NIC_STARTING;
5286
5287         ret = hns3_do_start(hns, true);
5288         if (ret) {
5289                 hw->adapter_state = HNS3_NIC_CONFIGURED;
5290                 rte_spinlock_unlock(&hw->lock);
5291                 return ret;
5292         }
5293         ret = hns3_map_rx_interrupt(dev);
5294         if (ret)
5295                 goto map_rx_inter_err;
5296
5297         /*
5298          * There are three register used to control the status of a TQP
5299          * (contains a pair of Tx queue and Rx queue) in the new version network
5300          * engine. One is used to control the enabling of Tx queue, the other is
5301          * used to control the enabling of Rx queue, and the last is the master
5302          * switch used to control the enabling of the tqp. The Tx register and
5303          * TQP register must be enabled at the same time to enable a Tx queue.
5304          * The same applies to the Rx queue. For the older network engine, this
5305          * function only refresh the enabled flag, and it is used to update the
5306          * status of queue in the dpdk framework.
5307          */
5308         ret = hns3_start_all_txqs(dev);
5309         if (ret)
5310                 goto map_rx_inter_err;
5311
5312         ret = hns3_start_all_rxqs(dev);
5313         if (ret)
5314                 goto start_all_rxqs_fail;
5315
5316         hw->adapter_state = HNS3_NIC_STARTED;
5317         rte_spinlock_unlock(&hw->lock);
5318
5319         hns3_rx_scattered_calc(dev);
5320         hns3_set_rxtx_function(dev);
5321         hns3_mp_req_start_rxtx(dev);
5322
5323         hns3_restore_filter(dev);
5324
5325         /* Enable interrupt of all rx queues before enabling queues */
5326         hns3_dev_all_rx_queue_intr_enable(hw, true);
5327
5328         /*
5329          * After finished the initialization, enable tqps to receive/transmit
5330          * packets and refresh all queue status.
5331          */
5332         hns3_start_tqps(hw);
5333
5334         hns3_tm_dev_start_proc(hw);
5335
5336         if (dev->data->dev_conf.intr_conf.lsc != 0)
5337                 hns3_dev_link_update(dev, 0);
5338         rte_eal_alarm_set(HNS3_SERVICE_INTERVAL, hns3_service_handler, dev);
5339
5340         hns3_info(hw, "hns3 dev start successful!");
5341
5342         return 0;
5343
5344 start_all_rxqs_fail:
5345         hns3_stop_all_txqs(dev);
5346 map_rx_inter_err:
5347         (void)hns3_do_stop(hns);
5348         hw->adapter_state = HNS3_NIC_CONFIGURED;
5349         rte_spinlock_unlock(&hw->lock);
5350
5351         return ret;
5352 }
5353
5354 static int
5355 hns3_do_stop(struct hns3_adapter *hns)
5356 {
5357         struct hns3_hw *hw = &hns->hw;
5358         int ret;
5359
5360         /*
5361          * The "hns3_do_stop" function will also be called by .stop_service to
5362          * prepare reset. At the time of global or IMP reset, the command cannot
5363          * be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be
5364          * accessed during the reset process. So the mbuf can not be released
5365          * during reset and is required to be released after the reset is
5366          * completed.
5367          */
5368         if (__atomic_load_n(&hw->reset.resetting,  __ATOMIC_RELAXED) == 0)
5369                 hns3_dev_release_mbufs(hns);
5370
5371         ret = hns3_cfg_mac_mode(hw, false);
5372         if (ret)
5373                 return ret;
5374         hw->mac.link_status = ETH_LINK_DOWN;
5375
5376         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) {
5377                 hns3_configure_all_mac_addr(hns, true);
5378                 ret = hns3_reset_all_tqps(hns);
5379                 if (ret) {
5380                         hns3_err(hw, "failed to reset all queues ret = %d.",
5381                                  ret);
5382                         return ret;
5383                 }
5384         }
5385         hw->mac.default_addr_setted = false;
5386         return 0;
5387 }
5388
5389 static void
5390 hns3_unmap_rx_interrupt(struct rte_eth_dev *dev)
5391 {
5392         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5393         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5394         struct hns3_adapter *hns = dev->data->dev_private;
5395         struct hns3_hw *hw = &hns->hw;
5396         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
5397         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
5398         uint16_t q_id;
5399
5400         if (dev->data->dev_conf.intr_conf.rxq == 0)
5401                 return;
5402
5403         /* unmap the ring with vector */
5404         if (rte_intr_allow_others(intr_handle)) {
5405                 vec = RTE_INTR_VEC_RXTX_OFFSET;
5406                 base = RTE_INTR_VEC_RXTX_OFFSET;
5407         }
5408         if (rte_intr_dp_is_en(intr_handle)) {
5409                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
5410                         (void)hns3_bind_ring_with_vector(hw, vec, false,
5411                                                          HNS3_RING_TYPE_RX,
5412                                                          q_id);
5413                         if (vec < base + intr_handle->nb_efd - 1)
5414                                 vec++;
5415                 }
5416         }
5417         /* Clean datapath event and queue/vec mapping */
5418         rte_intr_efd_disable(intr_handle);
5419         if (intr_handle->intr_vec) {
5420                 rte_free(intr_handle->intr_vec);
5421                 intr_handle->intr_vec = NULL;
5422         }
5423 }
5424
5425 static int
5426 hns3_dev_stop(struct rte_eth_dev *dev)
5427 {
5428         struct hns3_adapter *hns = dev->data->dev_private;
5429         struct hns3_hw *hw = &hns->hw;
5430
5431         PMD_INIT_FUNC_TRACE();
5432         dev->data->dev_started = 0;
5433
5434         hw->adapter_state = HNS3_NIC_STOPPING;
5435         hns3_set_rxtx_function(dev);
5436         rte_wmb();
5437         /* Disable datapath on secondary process. */
5438         hns3_mp_req_stop_rxtx(dev);
5439         /* Prevent crashes when queues are still in use. */
5440         rte_delay_ms(hw->tqps_num);
5441
5442         rte_spinlock_lock(&hw->lock);
5443         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
5444                 hns3_tm_dev_stop_proc(hw);
5445                 hns3_config_mac_tnl_int(hw, false);
5446                 hns3_stop_tqps(hw);
5447                 hns3_do_stop(hns);
5448                 hns3_unmap_rx_interrupt(dev);
5449                 hw->adapter_state = HNS3_NIC_CONFIGURED;
5450         }
5451         hns3_rx_scattered_reset(dev);
5452         rte_eal_alarm_cancel(hns3_service_handler, dev);
5453         hns3_stop_report_lse(dev);
5454         rte_spinlock_unlock(&hw->lock);
5455
5456         return 0;
5457 }
5458
5459 static int
5460 hns3_dev_close(struct rte_eth_dev *eth_dev)
5461 {
5462         struct hns3_adapter *hns = eth_dev->data->dev_private;
5463         struct hns3_hw *hw = &hns->hw;
5464         int ret = 0;
5465
5466         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
5467                 rte_free(eth_dev->process_private);
5468                 eth_dev->process_private = NULL;
5469                 return 0;
5470         }
5471
5472         if (hw->adapter_state == HNS3_NIC_STARTED)
5473                 ret = hns3_dev_stop(eth_dev);
5474
5475         hw->adapter_state = HNS3_NIC_CLOSING;
5476         hns3_reset_abort(hns);
5477         hw->adapter_state = HNS3_NIC_CLOSED;
5478
5479         hns3_configure_all_mc_mac_addr(hns, true);
5480         hns3_remove_all_vlan_table(hns);
5481         hns3_vlan_txvlan_cfg(hns, HNS3_PORT_BASE_VLAN_DISABLE, 0);
5482         hns3_uninit_pf(eth_dev);
5483         hns3_free_all_queues(eth_dev);
5484         rte_free(hw->reset.wait_data);
5485         rte_free(eth_dev->process_private);
5486         eth_dev->process_private = NULL;
5487         hns3_mp_uninit_primary();
5488         hns3_warn(hw, "Close port %u finished", hw->data->port_id);
5489
5490         return ret;
5491 }
5492
5493 static int
5494 hns3_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5495 {
5496         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5497         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5498
5499         fc_conf->pause_time = pf->pause_time;
5500
5501         /* return fc current mode */
5502         switch (hw->current_mode) {
5503         case HNS3_FC_FULL:
5504                 fc_conf->mode = RTE_FC_FULL;
5505                 break;
5506         case HNS3_FC_TX_PAUSE:
5507                 fc_conf->mode = RTE_FC_TX_PAUSE;
5508                 break;
5509         case HNS3_FC_RX_PAUSE:
5510                 fc_conf->mode = RTE_FC_RX_PAUSE;
5511                 break;
5512         case HNS3_FC_NONE:
5513         default:
5514                 fc_conf->mode = RTE_FC_NONE;
5515                 break;
5516         }
5517
5518         return 0;
5519 }
5520
5521 static void
5522 hns3_get_fc_mode(struct hns3_hw *hw, enum rte_eth_fc_mode mode)
5523 {
5524         switch (mode) {
5525         case RTE_FC_NONE:
5526                 hw->requested_mode = HNS3_FC_NONE;
5527                 break;
5528         case RTE_FC_RX_PAUSE:
5529                 hw->requested_mode = HNS3_FC_RX_PAUSE;
5530                 break;
5531         case RTE_FC_TX_PAUSE:
5532                 hw->requested_mode = HNS3_FC_TX_PAUSE;
5533                 break;
5534         case RTE_FC_FULL:
5535                 hw->requested_mode = HNS3_FC_FULL;
5536                 break;
5537         default:
5538                 hw->requested_mode = HNS3_FC_NONE;
5539                 hns3_warn(hw, "fc_mode(%u) exceeds member scope and is "
5540                           "configured to RTE_FC_NONE", mode);
5541                 break;
5542         }
5543 }
5544
5545 static int
5546 hns3_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
5547 {
5548         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5549         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5550         int ret;
5551
5552         if (fc_conf->high_water || fc_conf->low_water ||
5553             fc_conf->send_xon || fc_conf->mac_ctrl_frame_fwd) {
5554                 hns3_err(hw, "Unsupported flow control settings specified, "
5555                          "high_water(%u), low_water(%u), send_xon(%u) and "
5556                          "mac_ctrl_frame_fwd(%u) must be set to '0'",
5557                          fc_conf->high_water, fc_conf->low_water,
5558                          fc_conf->send_xon, fc_conf->mac_ctrl_frame_fwd);
5559                 return -EINVAL;
5560         }
5561         if (fc_conf->autoneg) {
5562                 hns3_err(hw, "Unsupported fc auto-negotiation setting.");
5563                 return -EINVAL;
5564         }
5565         if (!fc_conf->pause_time) {
5566                 hns3_err(hw, "Invalid pause time %u setting.",
5567                          fc_conf->pause_time);
5568                 return -EINVAL;
5569         }
5570
5571         if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5572             hw->current_fc_status == HNS3_FC_STATUS_MAC_PAUSE)) {
5573                 hns3_err(hw, "PFC is enabled. Cannot set MAC pause. "
5574                          "current_fc_status = %d", hw->current_fc_status);
5575                 return -EOPNOTSUPP;
5576         }
5577
5578         if (hw->num_tc > 1) {
5579                 hns3_err(hw, "in multi-TC scenarios, MAC pause is not supported.");
5580                 return -EOPNOTSUPP;
5581         }
5582
5583         hns3_get_fc_mode(hw, fc_conf->mode);
5584         if (hw->requested_mode == hw->current_mode &&
5585             pf->pause_time == fc_conf->pause_time)
5586                 return 0;
5587
5588         rte_spinlock_lock(&hw->lock);
5589         ret = hns3_fc_enable(dev, fc_conf);
5590         rte_spinlock_unlock(&hw->lock);
5591
5592         return ret;
5593 }
5594
5595 static int
5596 hns3_priority_flow_ctrl_set(struct rte_eth_dev *dev,
5597                             struct rte_eth_pfc_conf *pfc_conf)
5598 {
5599         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5600         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5601         uint8_t priority;
5602         int ret;
5603
5604         if (!hns3_dev_dcb_supported(hw)) {
5605                 hns3_err(hw, "This port does not support dcb configurations.");
5606                 return -EOPNOTSUPP;
5607         }
5608
5609         if (pfc_conf->fc.high_water || pfc_conf->fc.low_water ||
5610             pfc_conf->fc.send_xon || pfc_conf->fc.mac_ctrl_frame_fwd) {
5611                 hns3_err(hw, "Unsupported flow control settings specified, "
5612                          "high_water(%u), low_water(%u), send_xon(%u) and "
5613                          "mac_ctrl_frame_fwd(%u) must be set to '0'",
5614                          pfc_conf->fc.high_water, pfc_conf->fc.low_water,
5615                          pfc_conf->fc.send_xon,
5616                          pfc_conf->fc.mac_ctrl_frame_fwd);
5617                 return -EINVAL;
5618         }
5619         if (pfc_conf->fc.autoneg) {
5620                 hns3_err(hw, "Unsupported fc auto-negotiation setting.");
5621                 return -EINVAL;
5622         }
5623         if (pfc_conf->fc.pause_time == 0) {
5624                 hns3_err(hw, "Invalid pause time %u setting.",
5625                          pfc_conf->fc.pause_time);
5626                 return -EINVAL;
5627         }
5628
5629         if (!(hw->current_fc_status == HNS3_FC_STATUS_NONE ||
5630             hw->current_fc_status == HNS3_FC_STATUS_PFC)) {
5631                 hns3_err(hw, "MAC pause is enabled. Cannot set PFC."
5632                              "current_fc_status = %d", hw->current_fc_status);
5633                 return -EOPNOTSUPP;
5634         }
5635
5636         priority = pfc_conf->priority;
5637         hns3_get_fc_mode(hw, pfc_conf->fc.mode);
5638         if (hw->dcb_info.pfc_en & BIT(priority) &&
5639             hw->requested_mode == hw->current_mode &&
5640             pfc_conf->fc.pause_time == pf->pause_time)
5641                 return 0;
5642
5643         rte_spinlock_lock(&hw->lock);
5644         ret = hns3_dcb_pfc_enable(dev, pfc_conf);
5645         rte_spinlock_unlock(&hw->lock);
5646
5647         return ret;
5648 }
5649
5650 static int
5651 hns3_get_dcb_info(struct rte_eth_dev *dev, struct rte_eth_dcb_info *dcb_info)
5652 {
5653         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5654         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5655         enum rte_eth_rx_mq_mode mq_mode = dev->data->dev_conf.rxmode.mq_mode;
5656         int i;
5657
5658         rte_spinlock_lock(&hw->lock);
5659         if ((uint32_t)mq_mode & ETH_MQ_RX_DCB_FLAG)
5660                 dcb_info->nb_tcs = pf->local_max_tc;
5661         else
5662                 dcb_info->nb_tcs = 1;
5663
5664         for (i = 0; i < HNS3_MAX_USER_PRIO; i++)
5665                 dcb_info->prio_tc[i] = hw->dcb_info.prio_tc[i];
5666         for (i = 0; i < dcb_info->nb_tcs; i++)
5667                 dcb_info->tc_bws[i] = hw->dcb_info.pg_info[0].tc_dwrr[i];
5668
5669         for (i = 0; i < hw->num_tc; i++) {
5670                 dcb_info->tc_queue.tc_rxq[0][i].base = hw->alloc_rss_size * i;
5671                 dcb_info->tc_queue.tc_txq[0][i].base =
5672                                                 hw->tc_queue[i].tqp_offset;
5673                 dcb_info->tc_queue.tc_rxq[0][i].nb_queue = hw->alloc_rss_size;
5674                 dcb_info->tc_queue.tc_txq[0][i].nb_queue =
5675                                                 hw->tc_queue[i].tqp_count;
5676         }
5677         rte_spinlock_unlock(&hw->lock);
5678
5679         return 0;
5680 }
5681
5682 static int
5683 hns3_reinit_dev(struct hns3_adapter *hns)
5684 {
5685         struct hns3_hw *hw = &hns->hw;
5686         int ret;
5687
5688         ret = hns3_cmd_init(hw);
5689         if (ret) {
5690                 hns3_err(hw, "Failed to init cmd: %d", ret);
5691                 return ret;
5692         }
5693
5694         ret = hns3_reset_all_tqps(hns);
5695         if (ret) {
5696                 hns3_err(hw, "Failed to reset all queues: %d", ret);
5697                 return ret;
5698         }
5699
5700         ret = hns3_init_hardware(hns);
5701         if (ret) {
5702                 hns3_err(hw, "Failed to init hardware: %d", ret);
5703                 return ret;
5704         }
5705
5706         ret = hns3_enable_hw_error_intr(hns, true);
5707         if (ret) {
5708                 hns3_err(hw, "fail to enable hw error interrupts: %d",
5709                              ret);
5710                 return ret;
5711         }
5712         hns3_info(hw, "Reset done, driver initialization finished.");
5713
5714         return 0;
5715 }
5716
5717 static bool
5718 is_pf_reset_done(struct hns3_hw *hw)
5719 {
5720         uint32_t val, reg, reg_bit;
5721
5722         switch (hw->reset.level) {
5723         case HNS3_IMP_RESET:
5724                 reg = HNS3_GLOBAL_RESET_REG;
5725                 reg_bit = HNS3_IMP_RESET_BIT;
5726                 break;
5727         case HNS3_GLOBAL_RESET:
5728                 reg = HNS3_GLOBAL_RESET_REG;
5729                 reg_bit = HNS3_GLOBAL_RESET_BIT;
5730                 break;
5731         case HNS3_FUNC_RESET:
5732                 reg = HNS3_FUN_RST_ING;
5733                 reg_bit = HNS3_FUN_RST_ING_B;
5734                 break;
5735         case HNS3_FLR_RESET:
5736         default:
5737                 hns3_err(hw, "Wait for unsupported reset level: %d",
5738                          hw->reset.level);
5739                 return true;
5740         }
5741         val = hns3_read_dev(hw, reg);
5742         if (hns3_get_bit(val, reg_bit))
5743                 return false;
5744         else
5745                 return true;
5746 }
5747
5748 bool
5749 hns3_is_reset_pending(struct hns3_adapter *hns)
5750 {
5751         struct hns3_hw *hw = &hns->hw;
5752         enum hns3_reset_level reset;
5753
5754         hns3_check_event_cause(hns, NULL);
5755         reset = hns3_get_reset_level(hns, &hw->reset.pending);
5756         if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
5757                 hns3_warn(hw, "High level reset %d is pending", reset);
5758                 return true;
5759         }
5760         reset = hns3_get_reset_level(hns, &hw->reset.request);
5761         if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
5762                 hns3_warn(hw, "High level reset %d is request", reset);
5763                 return true;
5764         }
5765         return false;
5766 }
5767
5768 static int
5769 hns3_wait_hardware_ready(struct hns3_adapter *hns)
5770 {
5771         struct hns3_hw *hw = &hns->hw;
5772         struct hns3_wait_data *wait_data = hw->reset.wait_data;
5773         struct timeval tv;
5774
5775         if (wait_data->result == HNS3_WAIT_SUCCESS)
5776                 return 0;
5777         else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
5778                 gettimeofday(&tv, NULL);
5779                 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
5780                           tv.tv_sec, tv.tv_usec);
5781                 return -ETIME;
5782         } else if (wait_data->result == HNS3_WAIT_REQUEST)
5783                 return -EAGAIN;
5784
5785         wait_data->hns = hns;
5786         wait_data->check_completion = is_pf_reset_done;
5787         wait_data->end_ms = (uint64_t)HNS3_RESET_WAIT_CNT *
5788                                       HNS3_RESET_WAIT_MS + get_timeofday_ms();
5789         wait_data->interval = HNS3_RESET_WAIT_MS * USEC_PER_MSEC;
5790         wait_data->count = HNS3_RESET_WAIT_CNT;
5791         wait_data->result = HNS3_WAIT_REQUEST;
5792         rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
5793         return -EAGAIN;
5794 }
5795
5796 static int
5797 hns3_func_reset_cmd(struct hns3_hw *hw, int func_id)
5798 {
5799         struct hns3_cmd_desc desc;
5800         struct hns3_reset_cmd *req = (struct hns3_reset_cmd *)desc.data;
5801
5802         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CFG_RST_TRIGGER, false);
5803         hns3_set_bit(req->mac_func_reset, HNS3_CFG_RESET_FUNC_B, 1);
5804         req->fun_reset_vfid = func_id;
5805
5806         return hns3_cmd_send(hw, &desc, 1);
5807 }
5808
5809 static int
5810 hns3_imp_reset_cmd(struct hns3_hw *hw)
5811 {
5812         struct hns3_cmd_desc desc;
5813
5814         hns3_cmd_setup_basic_desc(&desc, 0xFFFE, false);
5815         desc.data[0] = 0xeedd;
5816
5817         return hns3_cmd_send(hw, &desc, 1);
5818 }
5819
5820 static void
5821 hns3_msix_process(struct hns3_adapter *hns, enum hns3_reset_level reset_level)
5822 {
5823         struct hns3_hw *hw = &hns->hw;
5824         struct timeval tv;
5825         uint32_t val;
5826
5827         gettimeofday(&tv, NULL);
5828         if (hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG) ||
5829             hns3_read_dev(hw, HNS3_FUN_RST_ING)) {
5830                 hns3_warn(hw, "Don't process msix during resetting time=%ld.%.6ld",
5831                           tv.tv_sec, tv.tv_usec);
5832                 return;
5833         }
5834
5835         switch (reset_level) {
5836         case HNS3_IMP_RESET:
5837                 hns3_imp_reset_cmd(hw);
5838                 hns3_warn(hw, "IMP Reset requested time=%ld.%.6ld",
5839                           tv.tv_sec, tv.tv_usec);
5840                 break;
5841         case HNS3_GLOBAL_RESET:
5842                 val = hns3_read_dev(hw, HNS3_GLOBAL_RESET_REG);
5843                 hns3_set_bit(val, HNS3_GLOBAL_RESET_BIT, 1);
5844                 hns3_write_dev(hw, HNS3_GLOBAL_RESET_REG, val);
5845                 hns3_warn(hw, "Global Reset requested time=%ld.%.6ld",
5846                           tv.tv_sec, tv.tv_usec);
5847                 break;
5848         case HNS3_FUNC_RESET:
5849                 hns3_warn(hw, "PF Reset requested time=%ld.%.6ld",
5850                           tv.tv_sec, tv.tv_usec);
5851                 /* schedule again to check later */
5852                 hns3_atomic_set_bit(HNS3_FUNC_RESET, &hw->reset.pending);
5853                 hns3_schedule_reset(hns);
5854                 break;
5855         default:
5856                 hns3_warn(hw, "Unsupported reset level: %d", reset_level);
5857                 return;
5858         }
5859         hns3_atomic_clear_bit(reset_level, &hw->reset.request);
5860 }
5861
5862 static enum hns3_reset_level
5863 hns3_get_reset_level(struct hns3_adapter *hns, uint64_t *levels)
5864 {
5865         struct hns3_hw *hw = &hns->hw;
5866         enum hns3_reset_level reset_level = HNS3_NONE_RESET;
5867
5868         /* Return the highest priority reset level amongst all */
5869         if (hns3_atomic_test_bit(HNS3_IMP_RESET, levels))
5870                 reset_level = HNS3_IMP_RESET;
5871         else if (hns3_atomic_test_bit(HNS3_GLOBAL_RESET, levels))
5872                 reset_level = HNS3_GLOBAL_RESET;
5873         else if (hns3_atomic_test_bit(HNS3_FUNC_RESET, levels))
5874                 reset_level = HNS3_FUNC_RESET;
5875         else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
5876                 reset_level = HNS3_FLR_RESET;
5877
5878         if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
5879                 return HNS3_NONE_RESET;
5880
5881         return reset_level;
5882 }
5883
5884 static void
5885 hns3_record_imp_error(struct hns3_adapter *hns)
5886 {
5887         struct hns3_hw *hw = &hns->hw;
5888         uint32_t reg_val;
5889
5890         reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5891         if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B)) {
5892                 hns3_warn(hw, "Detected IMP RD poison!");
5893                 hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_RD_POISON_B, 0);
5894                 hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5895         }
5896
5897         if (hns3_get_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B)) {
5898                 hns3_warn(hw, "Detected IMP CMDQ error!");
5899                 hns3_set_bit(reg_val, HNS3_VECTOR0_IMP_CMDQ_ERR_B, 0);
5900                 hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val);
5901         }
5902 }
5903
5904 static int
5905 hns3_prepare_reset(struct hns3_adapter *hns)
5906 {
5907         struct hns3_hw *hw = &hns->hw;
5908         uint32_t reg_val;
5909         int ret;
5910
5911         switch (hw->reset.level) {
5912         case HNS3_FUNC_RESET:
5913                 ret = hns3_func_reset_cmd(hw, HNS3_PF_FUNC_ID);
5914                 if (ret)
5915                         return ret;
5916
5917                 /*
5918                  * After performaning pf reset, it is not necessary to do the
5919                  * mailbox handling or send any command to firmware, because
5920                  * any mailbox handling or command to firmware is only valid
5921                  * after hns3_cmd_init is called.
5922                  */
5923                 __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
5924                 hw->reset.stats.request_cnt++;
5925                 break;
5926         case HNS3_IMP_RESET:
5927                 hns3_record_imp_error(hns);
5928                 reg_val = hns3_read_dev(hw, HNS3_VECTOR0_OTER_EN_REG);
5929                 hns3_write_dev(hw, HNS3_VECTOR0_OTER_EN_REG, reg_val |
5930                                BIT(HNS3_VECTOR0_IMP_RESET_INT_B));
5931                 break;
5932         default:
5933                 break;
5934         }
5935         return 0;
5936 }
5937
5938 static int
5939 hns3_set_rst_done(struct hns3_hw *hw)
5940 {
5941         struct hns3_pf_rst_done_cmd *req;
5942         struct hns3_cmd_desc desc;
5943
5944         req = (struct hns3_pf_rst_done_cmd *)desc.data;
5945         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_PF_RST_DONE, false);
5946         req->pf_rst_done |= HNS3_PF_RESET_DONE_BIT;
5947         return hns3_cmd_send(hw, &desc, 1);
5948 }
5949
5950 static int
5951 hns3_stop_service(struct hns3_adapter *hns)
5952 {
5953         struct hns3_hw *hw = &hns->hw;
5954         struct rte_eth_dev *eth_dev;
5955
5956         eth_dev = &rte_eth_devices[hw->data->port_id];
5957         hw->mac.link_status = ETH_LINK_DOWN;
5958         if (hw->adapter_state == HNS3_NIC_STARTED) {
5959                 rte_eal_alarm_cancel(hns3_service_handler, eth_dev);
5960                 hns3_update_linkstatus_and_event(hw, false);
5961         }
5962
5963         hns3_set_rxtx_function(eth_dev);
5964         rte_wmb();
5965         /* Disable datapath on secondary process. */
5966         hns3_mp_req_stop_rxtx(eth_dev);
5967         rte_delay_ms(hw->tqps_num);
5968
5969         rte_spinlock_lock(&hw->lock);
5970         if (hns->hw.adapter_state == HNS3_NIC_STARTED ||
5971             hw->adapter_state == HNS3_NIC_STOPPING) {
5972                 hns3_enable_all_queues(hw, false);
5973                 hns3_do_stop(hns);
5974                 hw->reset.mbuf_deferred_free = true;
5975         } else
5976                 hw->reset.mbuf_deferred_free = false;
5977
5978         /*
5979          * It is cumbersome for hardware to pick-and-choose entries for deletion
5980          * from table space. Hence, for function reset software intervention is
5981          * required to delete the entries
5982          */
5983         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0)
5984                 hns3_configure_all_mc_mac_addr(hns, true);
5985         rte_spinlock_unlock(&hw->lock);
5986
5987         return 0;
5988 }
5989
5990 static int
5991 hns3_start_service(struct hns3_adapter *hns)
5992 {
5993         struct hns3_hw *hw = &hns->hw;
5994         struct rte_eth_dev *eth_dev;
5995
5996         if (hw->reset.level == HNS3_IMP_RESET ||
5997             hw->reset.level == HNS3_GLOBAL_RESET)
5998                 hns3_set_rst_done(hw);
5999         eth_dev = &rte_eth_devices[hw->data->port_id];
6000         hns3_set_rxtx_function(eth_dev);
6001         hns3_mp_req_start_rxtx(eth_dev);
6002         if (hw->adapter_state == HNS3_NIC_STARTED) {
6003                 /*
6004                  * This API parent function already hold the hns3_hw.lock, the
6005                  * hns3_service_handler may report lse, in bonding application
6006                  * it will call driver's ops which may acquire the hns3_hw.lock
6007                  * again, thus lead to deadlock.
6008                  * We defer calls hns3_service_handler to avoid the deadlock.
6009                  */
6010                 rte_eal_alarm_set(HNS3_SERVICE_QUICK_INTERVAL,
6011                                   hns3_service_handler, eth_dev);
6012
6013                 /* Enable interrupt of all rx queues before enabling queues */
6014                 hns3_dev_all_rx_queue_intr_enable(hw, true);
6015                 /*
6016                  * Enable state of each rxq and txq will be recovered after
6017                  * reset, so we need to restore them before enable all tqps;
6018                  */
6019                 hns3_restore_tqp_enable_state(hw);
6020                 /*
6021                  * When finished the initialization, enable queues to receive
6022                  * and transmit packets.
6023                  */
6024                 hns3_enable_all_queues(hw, true);
6025         }
6026
6027         return 0;
6028 }
6029
6030 static int
6031 hns3_restore_conf(struct hns3_adapter *hns)
6032 {
6033         struct hns3_hw *hw = &hns->hw;
6034         int ret;
6035
6036         ret = hns3_configure_all_mac_addr(hns, false);
6037         if (ret)
6038                 return ret;
6039
6040         ret = hns3_configure_all_mc_mac_addr(hns, false);
6041         if (ret)
6042                 goto err_mc_mac;
6043
6044         ret = hns3_dev_promisc_restore(hns);
6045         if (ret)
6046                 goto err_promisc;
6047
6048         ret = hns3_restore_vlan_table(hns);
6049         if (ret)
6050                 goto err_promisc;
6051
6052         ret = hns3_restore_vlan_conf(hns);
6053         if (ret)
6054                 goto err_promisc;
6055
6056         ret = hns3_restore_all_fdir_filter(hns);
6057         if (ret)
6058                 goto err_promisc;
6059
6060         ret = hns3_restore_ptp(hns);
6061         if (ret)
6062                 goto err_promisc;
6063
6064         ret = hns3_restore_rx_interrupt(hw);
6065         if (ret)
6066                 goto err_promisc;
6067
6068         ret = hns3_restore_gro_conf(hw);
6069         if (ret)
6070                 goto err_promisc;
6071
6072         ret = hns3_restore_fec(hw);
6073         if (ret)
6074                 goto err_promisc;
6075
6076         if (hns->hw.adapter_state == HNS3_NIC_STARTED) {
6077                 ret = hns3_do_start(hns, false);
6078                 if (ret)
6079                         goto err_promisc;
6080                 hns3_info(hw, "hns3 dev restart successful!");
6081         } else if (hw->adapter_state == HNS3_NIC_STOPPING)
6082                 hw->adapter_state = HNS3_NIC_CONFIGURED;
6083         return 0;
6084
6085 err_promisc:
6086         hns3_configure_all_mc_mac_addr(hns, true);
6087 err_mc_mac:
6088         hns3_configure_all_mac_addr(hns, true);
6089         return ret;
6090 }
6091
6092 static void
6093 hns3_reset_service(void *param)
6094 {
6095         struct hns3_adapter *hns = (struct hns3_adapter *)param;
6096         struct hns3_hw *hw = &hns->hw;
6097         enum hns3_reset_level reset_level;
6098         struct timeval tv_delta;
6099         struct timeval tv_start;
6100         struct timeval tv;
6101         uint64_t msec;
6102         int ret;
6103
6104         /*
6105          * The interrupt is not triggered within the delay time.
6106          * The interrupt may have been lost. It is necessary to handle
6107          * the interrupt to recover from the error.
6108          */
6109         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
6110                             SCHEDULE_DEFERRED) {
6111                 __atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED,
6112                                   __ATOMIC_RELAXED);
6113                 hns3_err(hw, "Handling interrupts in delayed tasks");
6114                 hns3_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
6115                 reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
6116                 if (reset_level == HNS3_NONE_RESET) {
6117                         hns3_err(hw, "No reset level is set, try IMP reset");
6118                         hns3_atomic_set_bit(HNS3_IMP_RESET, &hw->reset.pending);
6119                 }
6120         }
6121         __atomic_store_n(&hw->reset.schedule, SCHEDULE_NONE, __ATOMIC_RELAXED);
6122
6123         /*
6124          * Check if there is any ongoing reset in the hardware. This status can
6125          * be checked from reset_pending. If there is then, we need to wait for
6126          * hardware to complete reset.
6127          *    a. If we are able to figure out in reasonable time that hardware
6128          *       has fully resetted then, we can proceed with driver, client
6129          *       reset.
6130          *    b. else, we can come back later to check this status so re-sched
6131          *       now.
6132          */
6133         reset_level = hns3_get_reset_level(hns, &hw->reset.pending);
6134         if (reset_level != HNS3_NONE_RESET) {
6135                 gettimeofday(&tv_start, NULL);
6136                 ret = hns3_reset_process(hns, reset_level);
6137                 gettimeofday(&tv, NULL);
6138                 timersub(&tv, &tv_start, &tv_delta);
6139                 msec = tv_delta.tv_sec * MSEC_PER_SEC +
6140                        tv_delta.tv_usec / USEC_PER_MSEC;
6141                 if (msec > HNS3_RESET_PROCESS_MS)
6142                         hns3_err(hw, "%d handle long time delta %" PRIx64
6143                                      " ms time=%ld.%.6ld",
6144                                  hw->reset.level, msec,
6145                                  tv.tv_sec, tv.tv_usec);
6146                 if (ret == -EAGAIN)
6147                         return;
6148         }
6149
6150         /* Check if we got any *new* reset requests to be honored */
6151         reset_level = hns3_get_reset_level(hns, &hw->reset.request);
6152         if (reset_level != HNS3_NONE_RESET)
6153                 hns3_msix_process(hns, reset_level);
6154 }
6155
6156 static unsigned int
6157 hns3_get_speed_capa_num(uint16_t device_id)
6158 {
6159         unsigned int num;
6160
6161         switch (device_id) {
6162         case HNS3_DEV_ID_25GE:
6163         case HNS3_DEV_ID_25GE_RDMA:
6164                 num = 2;
6165                 break;
6166         case HNS3_DEV_ID_100G_RDMA_MACSEC:
6167         case HNS3_DEV_ID_200G_RDMA:
6168                 num = 1;
6169                 break;
6170         default:
6171                 num = 0;
6172                 break;
6173         }
6174
6175         return num;
6176 }
6177
6178 static int
6179 hns3_get_speed_fec_capa(struct rte_eth_fec_capa *speed_fec_capa,
6180                         uint16_t device_id)
6181 {
6182         switch (device_id) {
6183         case HNS3_DEV_ID_25GE:
6184         /* fallthrough */
6185         case HNS3_DEV_ID_25GE_RDMA:
6186                 speed_fec_capa[0].speed = speed_fec_capa_tbl[1].speed;
6187                 speed_fec_capa[0].capa = speed_fec_capa_tbl[1].capa;
6188
6189                 /* In HNS3 device, the 25G NIC is compatible with 10G rate */
6190                 speed_fec_capa[1].speed = speed_fec_capa_tbl[0].speed;
6191                 speed_fec_capa[1].capa = speed_fec_capa_tbl[0].capa;
6192                 break;
6193         case HNS3_DEV_ID_100G_RDMA_MACSEC:
6194                 speed_fec_capa[0].speed = speed_fec_capa_tbl[4].speed;
6195                 speed_fec_capa[0].capa = speed_fec_capa_tbl[4].capa;
6196                 break;
6197         case HNS3_DEV_ID_200G_RDMA:
6198                 speed_fec_capa[0].speed = speed_fec_capa_tbl[5].speed;
6199                 speed_fec_capa[0].capa = speed_fec_capa_tbl[5].capa;
6200                 break;
6201         default:
6202                 return -ENOTSUP;
6203         }
6204
6205         return 0;
6206 }
6207
6208 static int
6209 hns3_fec_get_capability(struct rte_eth_dev *dev,
6210                         struct rte_eth_fec_capa *speed_fec_capa,
6211                         unsigned int num)
6212 {
6213         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6214         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
6215         uint16_t device_id = pci_dev->id.device_id;
6216         unsigned int capa_num;
6217         int ret;
6218
6219         capa_num = hns3_get_speed_capa_num(device_id);
6220         if (capa_num == 0) {
6221                 hns3_err(hw, "device(0x%x) is not supported by hns3 PMD",
6222                          device_id);
6223                 return -ENOTSUP;
6224         }
6225
6226         if (speed_fec_capa == NULL || num < capa_num)
6227                 return capa_num;
6228
6229         ret = hns3_get_speed_fec_capa(speed_fec_capa, device_id);
6230         if (ret)
6231                 return -ENOTSUP;
6232
6233         return capa_num;
6234 }
6235
6236 static int
6237 get_current_fec_auto_state(struct hns3_hw *hw, uint8_t *state)
6238 {
6239         struct hns3_config_fec_cmd *req;
6240         struct hns3_cmd_desc desc;
6241         int ret;
6242
6243         /*
6244          * CMD(HNS3_OPC_CONFIG_FEC_MODE) read is not supported
6245          * in device of link speed
6246          * below 10 Gbps.
6247          */
6248         if (hw->mac.link_speed < ETH_SPEED_NUM_10G) {
6249                 *state = 0;
6250                 return 0;
6251         }
6252
6253         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, true);
6254         req = (struct hns3_config_fec_cmd *)desc.data;
6255         ret = hns3_cmd_send(hw, &desc, 1);
6256         if (ret) {
6257                 hns3_err(hw, "get current fec auto state failed, ret = %d",
6258                          ret);
6259                 return ret;
6260         }
6261
6262         *state = req->fec_mode & (1U << HNS3_MAC_CFG_FEC_AUTO_EN_B);
6263         return 0;
6264 }
6265
6266 static int
6267 hns3_fec_get_internal(struct hns3_hw *hw, uint32_t *fec_capa)
6268 {
6269 #define QUERY_ACTIVE_SPEED      1
6270         struct hns3_sfp_speed_cmd *resp;
6271         uint32_t tmp_fec_capa;
6272         uint8_t auto_state;
6273         struct hns3_cmd_desc desc;
6274         int ret;
6275
6276         /*
6277          * If link is down and AUTO is enabled, AUTO is returned, otherwise,
6278          * configured FEC mode is returned.
6279          * If link is up, current FEC mode is returned.
6280          */
6281         if (hw->mac.link_status == ETH_LINK_DOWN) {
6282                 ret = get_current_fec_auto_state(hw, &auto_state);
6283                 if (ret)
6284                         return ret;
6285
6286                 if (auto_state == 0x1) {
6287                         *fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(AUTO);
6288                         return 0;
6289                 }
6290         }
6291
6292         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_SFP_GET_SPEED, true);
6293         resp = (struct hns3_sfp_speed_cmd *)desc.data;
6294         resp->query_type = QUERY_ACTIVE_SPEED;
6295
6296         ret = hns3_cmd_send(hw, &desc, 1);
6297         if (ret == -EOPNOTSUPP) {
6298                 hns3_err(hw, "IMP do not support get FEC, ret = %d", ret);
6299                 return ret;
6300         } else if (ret) {
6301                 hns3_err(hw, "get FEC failed, ret = %d", ret);
6302                 return ret;
6303         }
6304
6305         /*
6306          * FEC mode order defined in hns3 hardware is inconsistend with
6307          * that defined in the ethdev library. So the sequence needs
6308          * to be converted.
6309          */
6310         switch (resp->active_fec) {
6311         case HNS3_HW_FEC_MODE_NOFEC:
6312                 tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6313                 break;
6314         case HNS3_HW_FEC_MODE_BASER:
6315                 tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(BASER);
6316                 break;
6317         case HNS3_HW_FEC_MODE_RS:
6318                 tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(RS);
6319                 break;
6320         default:
6321                 tmp_fec_capa = RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC);
6322                 break;
6323         }
6324
6325         *fec_capa = tmp_fec_capa;
6326         return 0;
6327 }
6328
6329 static int
6330 hns3_fec_get(struct rte_eth_dev *dev, uint32_t *fec_capa)
6331 {
6332         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
6333
6334         return hns3_fec_get_internal(hw, fec_capa);
6335 }
6336
6337 static int
6338 hns3_set_fec_hw(struct hns3_hw *hw, uint32_t mode)
6339 {
6340         struct hns3_config_fec_cmd *req;
6341         struct hns3_cmd_desc desc;
6342         int ret;
6343
6344         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_CONFIG_FEC_MODE, false);
6345
6346         req = (struct hns3_config_fec_cmd *)desc.data;
6347         switch (mode) {
6348         case RTE_ETH_FEC_MODE_CAPA_MASK(NOFEC):
6349                 hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6350                                 HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_OFF);
6351                 break;
6352         case RTE_ETH_FEC_MODE_CAPA_MASK(BASER):
6353                 hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6354                                 HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_BASER);
6355                 break;
6356         case RTE_ETH_FEC_MODE_CAPA_MASK(RS):
6357                 hns3_set_field(req->fec_mode, HNS3_MAC_CFG_FEC_MODE_M,
6358                                 HNS3_MAC_CFG_FEC_MODE_S, HNS3_MAC_FEC_RS);
6359                 break;
6360         case RTE_ETH_FEC_MODE_CAPA_MASK(AUTO):
6361                 hns3_set_bit(req->fec_mode, HNS3_MAC_CFG_FEC_AUTO_EN_B, 1);
6362                 break;
6363         default:
6364                 return 0;
6365         }
6366         ret = hns3_cmd_send(hw, &desc, 1);
6367         if (ret)
6368                 hns3_err(hw, "set fec mode failed, ret = %d", ret);
6369
6370         return ret;
6371 }
6372
6373 static uint32_t
6374 get_current_speed_fec_cap(struct hns3_hw *hw, struct rte_eth_fec_capa *fec_capa)
6375 {
6376         struct hns3_mac *mac = &hw->mac;
6377         uint32_t cur_capa;
6378
6379         switch (mac->link_speed) {
6380         case ETH_SPEED_NUM_10G:
6381                 cur_capa = fec_capa[1].capa;
6382                 break;
6383         case ETH_SPEED_NUM_25G:
6384         case ETH_SPEED_NUM_100G:
6385         case ETH_SPEED_NUM_200G:
6386                 cur_capa = fec_capa[0].capa;
6387                 break;
6388         default:
6389                 cur_capa = 0;
6390                 break;
6391         }
6392
6393         return cur_capa;
6394 }
6395
6396 static bool
6397 is_fec_mode_one_bit_set(uint32_t mode)
6398 {
6399         int cnt = 0;
6400         uint8_t i;
6401
6402         for (i = 0; i < sizeof(mode); i++)
6403                 if (mode >> i & 0x1)
6404                         cnt++;
6405
6406         return cnt == 1 ? true : false;
6407 }
6408
6409 static int
6410 hns3_fec_set(struct rte_eth_dev *dev, uint32_t mode)
6411 {
6412 #define FEC_CAPA_NUM 2
6413         struct hns3_adapter *hns = dev->data->dev_private;
6414         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6415         struct hns3_pf *pf = &hns->pf;
6416
6417         struct rte_eth_fec_capa fec_capa[FEC_CAPA_NUM];
6418         uint32_t cur_capa;
6419         uint32_t num = FEC_CAPA_NUM;
6420         int ret;
6421
6422         ret = hns3_fec_get_capability(dev, fec_capa, num);
6423         if (ret < 0)
6424                 return ret;
6425
6426         /* HNS3 PMD driver only support one bit set mode, e.g. 0x1, 0x4 */
6427         if (!is_fec_mode_one_bit_set(mode))
6428                 hns3_err(hw, "FEC mode(0x%x) not supported in HNS3 PMD,"
6429                              "FEC mode should be only one bit set", mode);
6430
6431         /*
6432          * Check whether the configured mode is within the FEC capability.
6433          * If not, the configured mode will not be supported.
6434          */
6435         cur_capa = get_current_speed_fec_cap(hw, fec_capa);
6436         if (!(cur_capa & mode)) {
6437                 hns3_err(hw, "unsupported FEC mode = 0x%x", mode);
6438                 return -EINVAL;
6439         }
6440
6441         ret = hns3_set_fec_hw(hw, mode);
6442         if (ret)
6443                 return ret;
6444
6445         pf->fec_mode = mode;
6446         return 0;
6447 }
6448
6449 static int
6450 hns3_restore_fec(struct hns3_hw *hw)
6451 {
6452         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
6453         struct hns3_pf *pf = &hns->pf;
6454         uint32_t mode = pf->fec_mode;
6455         int ret;
6456
6457         ret = hns3_set_fec_hw(hw, mode);
6458         if (ret)
6459                 hns3_err(hw, "restore fec mode(0x%x) failed, ret = %d",
6460                          mode, ret);
6461
6462         return ret;
6463 }
6464
6465 static int
6466 hns3_query_dev_fec_info(struct hns3_hw *hw)
6467 {
6468         struct hns3_adapter *hns = HNS3_DEV_HW_TO_ADAPTER(hw);
6469         struct hns3_pf *pf = HNS3_DEV_PRIVATE_TO_PF(hns);
6470         int ret;
6471
6472         ret = hns3_fec_get_internal(hw, &pf->fec_mode);
6473         if (ret)
6474                 hns3_err(hw, "query device FEC info failed, ret = %d", ret);
6475
6476         return ret;
6477 }
6478
6479 static bool
6480 hns3_optical_module_existed(struct hns3_hw *hw)
6481 {
6482         struct hns3_cmd_desc desc;
6483         bool existed;
6484         int ret;
6485
6486         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_GET_SFP_EXIST, true);
6487         ret = hns3_cmd_send(hw, &desc, 1);
6488         if (ret) {
6489                 hns3_err(hw,
6490                          "fail to get optical module exist state, ret = %d.\n",
6491                          ret);
6492                 return false;
6493         }
6494         existed = !!desc.data[0];
6495
6496         return existed;
6497 }
6498
6499 static int
6500 hns3_get_module_eeprom_data(struct hns3_hw *hw, uint32_t offset,
6501                                 uint32_t len, uint8_t *data)
6502 {
6503 #define HNS3_SFP_INFO_CMD_NUM 6
6504 #define HNS3_SFP_INFO_MAX_LEN \
6505         (HNS3_SFP_INFO_BD0_LEN + \
6506         (HNS3_SFP_INFO_CMD_NUM - 1) * HNS3_SFP_INFO_BDX_LEN)
6507         struct hns3_cmd_desc desc[HNS3_SFP_INFO_CMD_NUM];
6508         struct hns3_sfp_info_bd0_cmd *sfp_info_bd0;
6509         uint16_t read_len;
6510         uint16_t copy_len;
6511         int ret;
6512         int i;
6513
6514         for (i = 0; i < HNS3_SFP_INFO_CMD_NUM; i++) {
6515                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_GET_SFP_EEPROM,
6516                                           true);
6517                 if (i < HNS3_SFP_INFO_CMD_NUM - 1)
6518                         desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
6519         }
6520
6521         sfp_info_bd0 = (struct hns3_sfp_info_bd0_cmd *)desc[0].data;
6522         sfp_info_bd0->offset = rte_cpu_to_le_16((uint16_t)offset);
6523         read_len = RTE_MIN(len, HNS3_SFP_INFO_MAX_LEN);
6524         sfp_info_bd0->read_len = rte_cpu_to_le_16((uint16_t)read_len);
6525
6526         ret = hns3_cmd_send(hw, desc, HNS3_SFP_INFO_CMD_NUM);
6527         if (ret) {
6528                 hns3_err(hw, "fail to get module EEPROM info, ret = %d.\n",
6529                                 ret);
6530                 return ret;
6531         }
6532
6533         /* The data format in BD0 is different with the others. */
6534         copy_len = RTE_MIN(len, HNS3_SFP_INFO_BD0_LEN);
6535         memcpy(data, sfp_info_bd0->data, copy_len);
6536         read_len = copy_len;
6537
6538         for (i = 1; i < HNS3_SFP_INFO_CMD_NUM; i++) {
6539                 if (read_len >= len)
6540                         break;
6541
6542                 copy_len = RTE_MIN(len - read_len, HNS3_SFP_INFO_BDX_LEN);
6543                 memcpy(data + read_len, desc[i].data, copy_len);
6544                 read_len += copy_len;
6545         }
6546
6547         return (int)read_len;
6548 }
6549
6550 static int
6551 hns3_get_module_eeprom(struct rte_eth_dev *dev,
6552                        struct rte_dev_eeprom_info *info)
6553 {
6554         struct hns3_adapter *hns = dev->data->dev_private;
6555         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6556         uint32_t offset = info->offset;
6557         uint32_t len = info->length;
6558         uint8_t *data = info->data;
6559         uint32_t read_len = 0;
6560
6561         if (hw->mac.media_type != HNS3_MEDIA_TYPE_FIBER)
6562                 return -ENOTSUP;
6563
6564         if (!hns3_optical_module_existed(hw)) {
6565                 hns3_err(hw, "fail to read module EEPROM: no module is connected.\n");
6566                 return -EIO;
6567         }
6568
6569         while (read_len < len) {
6570                 int ret;
6571                 ret = hns3_get_module_eeprom_data(hw, offset + read_len,
6572                                                   len - read_len,
6573                                                   data + read_len);
6574                 if (ret < 0)
6575                         return -EIO;
6576                 read_len += ret;
6577         }
6578
6579         return 0;
6580 }
6581
6582 static int
6583 hns3_get_module_info(struct rte_eth_dev *dev,
6584                      struct rte_eth_dev_module_info *modinfo)
6585 {
6586 #define HNS3_SFF8024_ID_SFP             0x03
6587 #define HNS3_SFF8024_ID_QSFP_8438       0x0c
6588 #define HNS3_SFF8024_ID_QSFP_8436_8636  0x0d
6589 #define HNS3_SFF8024_ID_QSFP28_8636     0x11
6590 #define HNS3_SFF_8636_V1_3              0x03
6591         struct hns3_adapter *hns = dev->data->dev_private;
6592         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(hns);
6593         struct rte_dev_eeprom_info info;
6594         struct hns3_sfp_type sfp_type;
6595         int ret;
6596
6597         memset(&sfp_type, 0, sizeof(sfp_type));
6598         memset(&info, 0, sizeof(info));
6599         info.data = (uint8_t *)&sfp_type;
6600         info.length = sizeof(sfp_type);
6601         ret = hns3_get_module_eeprom(dev, &info);
6602         if (ret)
6603                 return ret;
6604
6605         switch (sfp_type.type) {
6606         case HNS3_SFF8024_ID_SFP:
6607                 modinfo->type = RTE_ETH_MODULE_SFF_8472;
6608                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
6609                 break;
6610         case HNS3_SFF8024_ID_QSFP_8438:
6611                 modinfo->type = RTE_ETH_MODULE_SFF_8436;
6612                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
6613                 break;
6614         case HNS3_SFF8024_ID_QSFP_8436_8636:
6615                 if (sfp_type.ext_type < HNS3_SFF_8636_V1_3) {
6616                         modinfo->type = RTE_ETH_MODULE_SFF_8436;
6617                         modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8436_MAX_LEN;
6618                 } else {
6619                         modinfo->type = RTE_ETH_MODULE_SFF_8636;
6620                         modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
6621                 }
6622                 break;
6623         case HNS3_SFF8024_ID_QSFP28_8636:
6624                 modinfo->type = RTE_ETH_MODULE_SFF_8636;
6625                 modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8636_MAX_LEN;
6626                 break;
6627         default:
6628                 hns3_err(hw, "unknown module, type = %u, extra_type = %u.\n",
6629                          sfp_type.type, sfp_type.ext_type);
6630                 return -EINVAL;
6631         }
6632
6633         return 0;
6634 }
6635
6636 static int
6637 hns3_parse_io_hint_func(const char *key, const char *value, void *extra_args)
6638 {
6639         uint32_t hint = HNS3_IO_FUNC_HINT_NONE;
6640
6641         RTE_SET_USED(key);
6642
6643         if (strcmp(value, "vec") == 0)
6644                 hint = HNS3_IO_FUNC_HINT_VEC;
6645         else if (strcmp(value, "sve") == 0)
6646                 hint = HNS3_IO_FUNC_HINT_SVE;
6647         else if (strcmp(value, "simple") == 0)
6648                 hint = HNS3_IO_FUNC_HINT_SIMPLE;
6649         else if (strcmp(value, "common") == 0)
6650                 hint = HNS3_IO_FUNC_HINT_COMMON;
6651
6652         /* If the hint is valid then update output parameters */
6653         if (hint != HNS3_IO_FUNC_HINT_NONE)
6654                 *(uint32_t *)extra_args = hint;
6655
6656         return 0;
6657 }
6658
6659 static const char *
6660 hns3_get_io_hint_func_name(uint32_t hint)
6661 {
6662         switch (hint) {
6663         case HNS3_IO_FUNC_HINT_VEC:
6664                 return "vec";
6665         case HNS3_IO_FUNC_HINT_SVE:
6666                 return "sve";
6667         case HNS3_IO_FUNC_HINT_SIMPLE:
6668                 return "simple";
6669         case HNS3_IO_FUNC_HINT_COMMON:
6670                 return "common";
6671         default:
6672                 return "none";
6673         }
6674 }
6675
6676 void
6677 hns3_parse_devargs(struct rte_eth_dev *dev)
6678 {
6679         struct hns3_adapter *hns = dev->data->dev_private;
6680         uint32_t rx_func_hint = HNS3_IO_FUNC_HINT_NONE;
6681         uint32_t tx_func_hint = HNS3_IO_FUNC_HINT_NONE;
6682         struct hns3_hw *hw = &hns->hw;
6683         struct rte_kvargs *kvlist;
6684
6685         if (dev->device->devargs == NULL)
6686                 return;
6687
6688         kvlist = rte_kvargs_parse(dev->device->devargs->args, NULL);
6689         if (!kvlist)
6690                 return;
6691
6692         rte_kvargs_process(kvlist, HNS3_DEVARG_RX_FUNC_HINT,
6693                            &hns3_parse_io_hint_func, &rx_func_hint);
6694         rte_kvargs_process(kvlist, HNS3_DEVARG_TX_FUNC_HINT,
6695                            &hns3_parse_io_hint_func, &tx_func_hint);
6696         rte_kvargs_free(kvlist);
6697
6698         if (rx_func_hint != HNS3_IO_FUNC_HINT_NONE)
6699                 hns3_warn(hw, "parsed %s = %s.", HNS3_DEVARG_RX_FUNC_HINT,
6700                           hns3_get_io_hint_func_name(rx_func_hint));
6701         hns->rx_func_hint = rx_func_hint;
6702         if (tx_func_hint != HNS3_IO_FUNC_HINT_NONE)
6703                 hns3_warn(hw, "parsed %s = %s.", HNS3_DEVARG_TX_FUNC_HINT,
6704                           hns3_get_io_hint_func_name(tx_func_hint));
6705         hns->tx_func_hint = tx_func_hint;
6706 }
6707
6708 static const struct eth_dev_ops hns3_eth_dev_ops = {
6709         .dev_configure      = hns3_dev_configure,
6710         .dev_start          = hns3_dev_start,
6711         .dev_stop           = hns3_dev_stop,
6712         .dev_close          = hns3_dev_close,
6713         .promiscuous_enable = hns3_dev_promiscuous_enable,
6714         .promiscuous_disable = hns3_dev_promiscuous_disable,
6715         .allmulticast_enable  = hns3_dev_allmulticast_enable,
6716         .allmulticast_disable = hns3_dev_allmulticast_disable,
6717         .mtu_set            = hns3_dev_mtu_set,
6718         .stats_get          = hns3_stats_get,
6719         .stats_reset        = hns3_stats_reset,
6720         .xstats_get         = hns3_dev_xstats_get,
6721         .xstats_get_names   = hns3_dev_xstats_get_names,
6722         .xstats_reset       = hns3_dev_xstats_reset,
6723         .xstats_get_by_id   = hns3_dev_xstats_get_by_id,
6724         .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
6725         .dev_infos_get          = hns3_dev_infos_get,
6726         .fw_version_get         = hns3_fw_version_get,
6727         .rx_queue_setup         = hns3_rx_queue_setup,
6728         .tx_queue_setup         = hns3_tx_queue_setup,
6729         .rx_queue_release       = hns3_dev_rx_queue_release,
6730         .tx_queue_release       = hns3_dev_tx_queue_release,
6731         .rx_queue_start         = hns3_dev_rx_queue_start,
6732         .rx_queue_stop          = hns3_dev_rx_queue_stop,
6733         .tx_queue_start         = hns3_dev_tx_queue_start,
6734         .tx_queue_stop          = hns3_dev_tx_queue_stop,
6735         .rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
6736         .rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
6737         .rxq_info_get           = hns3_rxq_info_get,
6738         .txq_info_get           = hns3_txq_info_get,
6739         .rx_burst_mode_get      = hns3_rx_burst_mode_get,
6740         .tx_burst_mode_get      = hns3_tx_burst_mode_get,
6741         .flow_ctrl_get          = hns3_flow_ctrl_get,
6742         .flow_ctrl_set          = hns3_flow_ctrl_set,
6743         .priority_flow_ctrl_set = hns3_priority_flow_ctrl_set,
6744         .mac_addr_add           = hns3_add_mac_addr,
6745         .mac_addr_remove        = hns3_remove_mac_addr,
6746         .mac_addr_set           = hns3_set_default_mac_addr,
6747         .set_mc_addr_list       = hns3_set_mc_mac_addr_list,
6748         .link_update            = hns3_dev_link_update,
6749         .rss_hash_update        = hns3_dev_rss_hash_update,
6750         .rss_hash_conf_get      = hns3_dev_rss_hash_conf_get,
6751         .reta_update            = hns3_dev_rss_reta_update,
6752         .reta_query             = hns3_dev_rss_reta_query,
6753         .flow_ops_get           = hns3_dev_flow_ops_get,
6754         .vlan_filter_set        = hns3_vlan_filter_set,
6755         .vlan_tpid_set          = hns3_vlan_tpid_set,
6756         .vlan_offload_set       = hns3_vlan_offload_set,
6757         .vlan_pvid_set          = hns3_vlan_pvid_set,
6758         .get_reg                = hns3_get_regs,
6759         .get_module_info        = hns3_get_module_info,
6760         .get_module_eeprom      = hns3_get_module_eeprom,
6761         .get_dcb_info           = hns3_get_dcb_info,
6762         .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
6763         .fec_get_capability     = hns3_fec_get_capability,
6764         .fec_get                = hns3_fec_get,
6765         .fec_set                = hns3_fec_set,
6766         .tm_ops_get             = hns3_tm_ops_get,
6767         .tx_done_cleanup        = hns3_tx_done_cleanup,
6768         .timesync_enable            = hns3_timesync_enable,
6769         .timesync_disable           = hns3_timesync_disable,
6770         .timesync_read_rx_timestamp = hns3_timesync_read_rx_timestamp,
6771         .timesync_read_tx_timestamp = hns3_timesync_read_tx_timestamp,
6772         .timesync_adjust_time       = hns3_timesync_adjust_time,
6773         .timesync_read_time         = hns3_timesync_read_time,
6774         .timesync_write_time        = hns3_timesync_write_time,
6775 };
6776
6777 static const struct hns3_reset_ops hns3_reset_ops = {
6778         .reset_service       = hns3_reset_service,
6779         .stop_service        = hns3_stop_service,
6780         .prepare_reset       = hns3_prepare_reset,
6781         .wait_hardware_ready = hns3_wait_hardware_ready,
6782         .reinit_dev          = hns3_reinit_dev,
6783         .restore_conf        = hns3_restore_conf,
6784         .start_service       = hns3_start_service,
6785 };
6786
6787 static int
6788 hns3_dev_init(struct rte_eth_dev *eth_dev)
6789 {
6790         struct hns3_adapter *hns = eth_dev->data->dev_private;
6791         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
6792         struct rte_ether_addr *eth_addr;
6793         struct hns3_hw *hw = &hns->hw;
6794         int ret;
6795
6796         PMD_INIT_FUNC_TRACE();
6797
6798         eth_dev->process_private = (struct hns3_process_private *)
6799             rte_zmalloc_socket("hns3_filter_list",
6800                                sizeof(struct hns3_process_private),
6801                                RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
6802         if (eth_dev->process_private == NULL) {
6803                 PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
6804                 return -ENOMEM;
6805         }
6806         /* initialize flow filter lists */
6807         hns3_filterlist_init(eth_dev);
6808
6809         hns3_set_rxtx_function(eth_dev);
6810         eth_dev->dev_ops = &hns3_eth_dev_ops;
6811         eth_dev->rx_queue_count = hns3_rx_queue_count;
6812         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
6813                 ret = hns3_mp_init_secondary();
6814                 if (ret) {
6815                         PMD_INIT_LOG(ERR, "Failed to init for secondary "
6816                                      "process, ret = %d", ret);
6817                         goto err_mp_init_secondary;
6818                 }
6819
6820                 hw->secondary_cnt++;
6821                 return 0;
6822         }
6823
6824         ret = hns3_mp_init_primary();
6825         if (ret) {
6826                 PMD_INIT_LOG(ERR,
6827                              "Failed to init for primary process, ret = %d",
6828                              ret);
6829                 goto err_mp_init_primary;
6830         }
6831
6832         hw->adapter_state = HNS3_NIC_UNINITIALIZED;
6833         hns->is_vf = false;
6834         hw->data = eth_dev->data;
6835         hns3_parse_devargs(eth_dev);
6836
6837         /*
6838          * Set default max packet size according to the mtu
6839          * default vale in DPDK frame.
6840          */
6841         hns->pf.mps = hw->data->mtu + HNS3_ETH_OVERHEAD;
6842
6843         ret = hns3_reset_init(hw);
6844         if (ret)
6845                 goto err_init_reset;
6846         hw->reset.ops = &hns3_reset_ops;
6847
6848         ret = hns3_init_pf(eth_dev);
6849         if (ret) {
6850                 PMD_INIT_LOG(ERR, "Failed to init pf: %d", ret);
6851                 goto err_init_pf;
6852         }
6853
6854         /* Allocate memory for storing MAC addresses */
6855         eth_dev->data->mac_addrs = rte_zmalloc("hns3-mac",
6856                                                sizeof(struct rte_ether_addr) *
6857                                                HNS3_UC_MACADDR_NUM, 0);
6858         if (eth_dev->data->mac_addrs == NULL) {
6859                 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
6860                              "to store MAC addresses",
6861                              sizeof(struct rte_ether_addr) *
6862                              HNS3_UC_MACADDR_NUM);
6863                 ret = -ENOMEM;
6864                 goto err_rte_zmalloc;
6865         }
6866
6867         eth_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
6868         if (!rte_is_valid_assigned_ether_addr(eth_addr)) {
6869                 rte_eth_random_addr(hw->mac.mac_addr);
6870                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
6871                                 (struct rte_ether_addr *)hw->mac.mac_addr);
6872                 hns3_warn(hw, "default mac_addr from firmware is an invalid "
6873                           "unicast address, using random MAC address %s",
6874                           mac_str);
6875         }
6876         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
6877                             &eth_dev->data->mac_addrs[0]);
6878
6879         hw->adapter_state = HNS3_NIC_INITIALIZED;
6880
6881         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
6882                             SCHEDULE_PENDING) {
6883                 hns3_err(hw, "Reschedule reset service after dev_init");
6884                 hns3_schedule_reset(hns);
6885         } else {
6886                 /* IMP will wait ready flag before reset */
6887                 hns3_notify_reset_ready(hw, false);
6888         }
6889
6890         hns3_info(hw, "hns3 dev initialization successful!");
6891         return 0;
6892
6893 err_rte_zmalloc:
6894         hns3_uninit_pf(eth_dev);
6895
6896 err_init_pf:
6897         rte_free(hw->reset.wait_data);
6898
6899 err_init_reset:
6900         hns3_mp_uninit_primary();
6901
6902 err_mp_init_primary:
6903 err_mp_init_secondary:
6904         eth_dev->dev_ops = NULL;
6905         eth_dev->rx_pkt_burst = NULL;
6906         eth_dev->rx_descriptor_status = NULL;
6907         eth_dev->tx_pkt_burst = NULL;
6908         eth_dev->tx_pkt_prepare = NULL;
6909         eth_dev->tx_descriptor_status = NULL;
6910         rte_free(eth_dev->process_private);
6911         eth_dev->process_private = NULL;
6912         return ret;
6913 }
6914
6915 static int
6916 hns3_dev_uninit(struct rte_eth_dev *eth_dev)
6917 {
6918         struct hns3_adapter *hns = eth_dev->data->dev_private;
6919         struct hns3_hw *hw = &hns->hw;
6920
6921         PMD_INIT_FUNC_TRACE();
6922
6923         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
6924                 rte_free(eth_dev->process_private);
6925                 eth_dev->process_private = NULL;
6926                 return 0;
6927         }
6928
6929         if (hw->adapter_state < HNS3_NIC_CLOSING)
6930                 hns3_dev_close(eth_dev);
6931
6932         hw->adapter_state = HNS3_NIC_REMOVED;
6933         return 0;
6934 }
6935
6936 static int
6937 eth_hns3_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
6938                    struct rte_pci_device *pci_dev)
6939 {
6940         return rte_eth_dev_pci_generic_probe(pci_dev,
6941                                              sizeof(struct hns3_adapter),
6942                                              hns3_dev_init);
6943 }
6944
6945 static int
6946 eth_hns3_pci_remove(struct rte_pci_device *pci_dev)
6947 {
6948         return rte_eth_dev_pci_generic_remove(pci_dev, hns3_dev_uninit);
6949 }
6950
6951 static const struct rte_pci_id pci_id_hns3_map[] = {
6952         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_GE) },
6953         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE) },
6954         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_25GE_RDMA) },
6955         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_50GE_RDMA) },
6956         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_MACSEC) },
6957         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_200G_RDMA) },
6958         { .vendor_id = 0, }, /* sentinel */
6959 };
6960
6961 static struct rte_pci_driver rte_hns3_pmd = {
6962         .id_table = pci_id_hns3_map,
6963         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
6964         .probe = eth_hns3_pci_probe,
6965         .remove = eth_hns3_pci_remove,
6966 };
6967
6968 RTE_PMD_REGISTER_PCI(net_hns3, rte_hns3_pmd);
6969 RTE_PMD_REGISTER_PCI_TABLE(net_hns3, pci_id_hns3_map);
6970 RTE_PMD_REGISTER_KMOD_DEP(net_hns3, "* igb_uio | vfio-pci");
6971 RTE_PMD_REGISTER_PARAM_STRING(net_hns3,
6972                 HNS3_DEVARG_RX_FUNC_HINT "=vec|sve|simple|common "
6973                 HNS3_DEVARG_TX_FUNC_HINT "=vec|sve|simple|common ");
6974 RTE_LOG_REGISTER(hns3_logtype_init, pmd.net.hns3.init, NOTICE);
6975 RTE_LOG_REGISTER(hns3_logtype_driver, pmd.net.hns3.driver, NOTICE);