0ee06bf6ed4e09001895cb141b8839e71c3d5ebe
[dpdk.git] / drivers / net / hns3 / hns3_ethdev_vf.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4
5 #include <linux/pci_regs.h>
6 #include <rte_alarm.h>
7 #include <ethdev_pci.h>
8 #include <rte_io.h>
9 #include <rte_pci.h>
10 #include <rte_vfio.h>
11
12 #include "hns3_ethdev.h"
13 #include "hns3_logs.h"
14 #include "hns3_rxtx.h"
15 #include "hns3_regs.h"
16 #include "hns3_intr.h"
17 #include "hns3_dcb.h"
18 #include "hns3_mp.h"
19
20 #define HNS3VF_KEEP_ALIVE_INTERVAL      2000000 /* us */
21 #define HNS3VF_SERVICE_INTERVAL         1000000 /* us */
22
23 #define HNS3VF_RESET_WAIT_MS    20
24 #define HNS3VF_RESET_WAIT_CNT   2000
25
26 /* Reset related Registers */
27 #define HNS3_GLOBAL_RESET_BIT           0
28 #define HNS3_CORE_RESET_BIT             1
29 #define HNS3_IMP_RESET_BIT              2
30 #define HNS3_FUN_RST_ING_B              0
31
32 enum hns3vf_evt_cause {
33         HNS3VF_VECTOR0_EVENT_RST,
34         HNS3VF_VECTOR0_EVENT_MBX,
35         HNS3VF_VECTOR0_EVENT_OTHER,
36 };
37
38 static enum hns3_reset_level hns3vf_get_reset_level(struct hns3_hw *hw,
39                                                     uint64_t *levels);
40 static int hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
41 static int hns3vf_dev_configure_vlan(struct rte_eth_dev *dev);
42
43 static int hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
44                                   struct rte_ether_addr *mac_addr);
45 static int hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
46                                      struct rte_ether_addr *mac_addr);
47 /* set PCI bus mastering */
48 static int
49 hns3vf_set_bus_master(const struct rte_pci_device *device, bool op)
50 {
51         uint16_t reg;
52         int ret;
53
54         ret = rte_pci_read_config(device, &reg, sizeof(reg), PCI_COMMAND);
55         if (ret < 0) {
56                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
57                              PCI_COMMAND);
58                 return ret;
59         }
60
61         if (op)
62                 /* set the master bit */
63                 reg |= PCI_COMMAND_MASTER;
64         else
65                 reg &= ~(PCI_COMMAND_MASTER);
66
67         return rte_pci_write_config(device, &reg, sizeof(reg), PCI_COMMAND);
68 }
69
70 /**
71  * hns3vf_find_pci_capability - lookup a capability in the PCI capability list
72  * @cap: the capability
73  *
74  * Return the address of the given capability within the PCI capability list.
75  */
76 static int
77 hns3vf_find_pci_capability(const struct rte_pci_device *device, int cap)
78 {
79 #define MAX_PCIE_CAPABILITY 48
80         uint16_t status;
81         uint8_t pos;
82         uint8_t id;
83         int ttl;
84         int ret;
85
86         ret = rte_pci_read_config(device, &status, sizeof(status), PCI_STATUS);
87         if (ret < 0) {
88                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x", PCI_STATUS);
89                 return 0;
90         }
91
92         if (!(status & PCI_STATUS_CAP_LIST))
93                 return 0;
94
95         ttl = MAX_PCIE_CAPABILITY;
96         ret = rte_pci_read_config(device, &pos, sizeof(pos),
97                                   PCI_CAPABILITY_LIST);
98         if (ret < 0) {
99                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
100                              PCI_CAPABILITY_LIST);
101                 return 0;
102         }
103
104         while (ttl-- && pos >= PCI_STD_HEADER_SIZEOF) {
105                 ret = rte_pci_read_config(device, &id, sizeof(id),
106                                           (pos + PCI_CAP_LIST_ID));
107                 if (ret < 0) {
108                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
109                                      (pos + PCI_CAP_LIST_ID));
110                         break;
111                 }
112
113                 if (id == 0xFF)
114                         break;
115
116                 if (id == cap)
117                         return (int)pos;
118
119                 ret = rte_pci_read_config(device, &pos, sizeof(pos),
120                                           (pos + PCI_CAP_LIST_NEXT));
121                 if (ret < 0) {
122                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
123                                      (pos + PCI_CAP_LIST_NEXT));
124                         break;
125                 }
126         }
127         return 0;
128 }
129
130 static int
131 hns3vf_enable_msix(const struct rte_pci_device *device, bool op)
132 {
133         uint16_t control;
134         int pos;
135         int ret;
136
137         pos = hns3vf_find_pci_capability(device, PCI_CAP_ID_MSIX);
138         if (pos) {
139                 ret = rte_pci_read_config(device, &control, sizeof(control),
140                                     (pos + PCI_MSIX_FLAGS));
141                 if (ret < 0) {
142                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
143                                      (pos + PCI_MSIX_FLAGS));
144                         return -ENXIO;
145                 }
146
147                 if (op)
148                         control |= PCI_MSIX_FLAGS_ENABLE;
149                 else
150                         control &= ~PCI_MSIX_FLAGS_ENABLE;
151                 ret = rte_pci_write_config(device, &control, sizeof(control),
152                                           (pos + PCI_MSIX_FLAGS));
153                 if (ret < 0) {
154                         PMD_INIT_LOG(ERR, "failed to write PCI offset 0x%x",
155                                     (pos + PCI_MSIX_FLAGS));
156                 }
157                 return 0;
158         }
159         return -ENXIO;
160 }
161
162 static int
163 hns3vf_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
164 {
165         /* mac address was checked by upper level interface */
166         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
167         int ret;
168
169         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
170                                 HNS3_MBX_MAC_VLAN_UC_ADD, mac_addr->addr_bytes,
171                                 RTE_ETHER_ADDR_LEN, false, NULL, 0);
172         if (ret) {
173                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
174                                       mac_addr);
175                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
176                          mac_str, ret);
177         }
178         return ret;
179 }
180
181 static int
182 hns3vf_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
183 {
184         /* mac address was checked by upper level interface */
185         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
186         int ret;
187
188         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
189                                 HNS3_MBX_MAC_VLAN_UC_REMOVE,
190                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN,
191                                 false, NULL, 0);
192         if (ret) {
193                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
194                                       mac_addr);
195                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
196                          mac_str, ret);
197         }
198         return ret;
199 }
200
201 static int
202 hns3vf_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
203 {
204         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
205         struct rte_ether_addr *addr;
206         int ret;
207         int i;
208
209         for (i = 0; i < hw->mc_addrs_num; i++) {
210                 addr = &hw->mc_addrs[i];
211                 /* Check if there are duplicate addresses */
212                 if (rte_is_same_ether_addr(addr, mac_addr)) {
213                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
214                                               addr);
215                         hns3_err(hw, "failed to add mc mac addr, same addrs"
216                                  "(%s) is added by the set_mc_mac_addr_list "
217                                  "API", mac_str);
218                         return -EINVAL;
219                 }
220         }
221
222         ret = hns3vf_add_mc_mac_addr(hw, mac_addr);
223         if (ret) {
224                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
225                                       mac_addr);
226                 hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
227                          mac_str, ret);
228         }
229         return ret;
230 }
231
232 static int
233 hns3vf_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
234                     __rte_unused uint32_t idx,
235                     __rte_unused uint32_t pool)
236 {
237         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
238         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
239         int ret;
240
241         rte_spinlock_lock(&hw->lock);
242
243         /*
244          * In hns3 network engine adding UC and MC mac address with different
245          * commands with firmware. We need to determine whether the input
246          * address is a UC or a MC address to call different commands.
247          * By the way, it is recommended calling the API function named
248          * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
249          * using the rte_eth_dev_mac_addr_add API function to set MC mac address
250          * may affect the specifications of UC mac addresses.
251          */
252         if (rte_is_multicast_ether_addr(mac_addr))
253                 ret = hns3vf_add_mc_addr_common(hw, mac_addr);
254         else
255                 ret = hns3vf_add_uc_mac_addr(hw, mac_addr);
256
257         rte_spinlock_unlock(&hw->lock);
258         if (ret) {
259                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
260                                       mac_addr);
261                 hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
262                          ret);
263         }
264
265         return ret;
266 }
267
268 static void
269 hns3vf_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
270 {
271         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
272         /* index will be checked by upper level rte interface */
273         struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
274         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
275         int ret;
276
277         rte_spinlock_lock(&hw->lock);
278
279         if (rte_is_multicast_ether_addr(mac_addr))
280                 ret = hns3vf_remove_mc_mac_addr(hw, mac_addr);
281         else
282                 ret = hns3vf_remove_uc_mac_addr(hw, mac_addr);
283
284         rte_spinlock_unlock(&hw->lock);
285         if (ret) {
286                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
287                                       mac_addr);
288                 hns3_err(hw, "failed to remove mac addr(%s), ret = %d",
289                          mac_str, ret);
290         }
291 }
292
293 static int
294 hns3vf_set_default_mac_addr(struct rte_eth_dev *dev,
295                             struct rte_ether_addr *mac_addr)
296 {
297 #define HNS3_TWO_ETHER_ADDR_LEN (RTE_ETHER_ADDR_LEN * 2)
298         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
299         struct rte_ether_addr *old_addr;
300         uint8_t addr_bytes[HNS3_TWO_ETHER_ADDR_LEN]; /* for 2 MAC addresses */
301         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
302         int ret;
303
304         /*
305          * It has been guaranteed that input parameter named mac_addr is valid
306          * address in the rte layer of DPDK framework.
307          */
308         old_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
309         rte_spinlock_lock(&hw->lock);
310         memcpy(addr_bytes, mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN);
311         memcpy(&addr_bytes[RTE_ETHER_ADDR_LEN], old_addr->addr_bytes,
312                RTE_ETHER_ADDR_LEN);
313
314         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
315                                 HNS3_MBX_MAC_VLAN_UC_MODIFY, addr_bytes,
316                                 HNS3_TWO_ETHER_ADDR_LEN, true, NULL, 0);
317         if (ret) {
318                 /*
319                  * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev
320                  * driver. When user has configured a MAC address for VF device
321                  * by "ip link set ..." command based on the PF device, the hns3
322                  * PF kernel ethdev driver does not allow VF driver to request
323                  * reconfiguring a different default MAC address, and return
324                  * -EPREM to VF driver through mailbox.
325                  */
326                 if (ret == -EPERM) {
327                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
328                                               old_addr);
329                         hns3_warn(hw, "Has permanet mac addr(%s) for vf",
330                                   mac_str);
331                 } else {
332                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
333                                               mac_addr);
334                         hns3_err(hw, "Failed to set mac addr(%s) for vf: %d",
335                                  mac_str, ret);
336                 }
337         }
338
339         rte_ether_addr_copy(mac_addr,
340                             (struct rte_ether_addr *)hw->mac.mac_addr);
341         rte_spinlock_unlock(&hw->lock);
342
343         return ret;
344 }
345
346 static int
347 hns3vf_configure_mac_addr(struct hns3_adapter *hns, bool del)
348 {
349         struct hns3_hw *hw = &hns->hw;
350         struct rte_ether_addr *addr;
351         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
352         int err = 0;
353         int ret;
354         int i;
355
356         for (i = 0; i < HNS3_VF_UC_MACADDR_NUM; i++) {
357                 addr = &hw->data->mac_addrs[i];
358                 if (rte_is_zero_ether_addr(addr))
359                         continue;
360                 if (rte_is_multicast_ether_addr(addr))
361                         ret = del ? hns3vf_remove_mc_mac_addr(hw, addr) :
362                               hns3vf_add_mc_mac_addr(hw, addr);
363                 else
364                         ret = del ? hns3vf_remove_uc_mac_addr(hw, addr) :
365                               hns3vf_add_uc_mac_addr(hw, addr);
366
367                 if (ret) {
368                         err = ret;
369                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
370                                               addr);
371                         hns3_err(hw, "failed to %s mac addr(%s) index:%d "
372                                  "ret = %d.", del ? "remove" : "restore",
373                                  mac_str, i, ret);
374                 }
375         }
376         return err;
377 }
378
379 static int
380 hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
381                        struct rte_ether_addr *mac_addr)
382 {
383         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
384         int ret;
385
386         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
387                                 HNS3_MBX_MAC_VLAN_MC_ADD,
388                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
389                                 NULL, 0);
390         if (ret) {
391                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
392                                       mac_addr);
393                 hns3_err(hw, "Failed to add mc mac addr(%s) for vf: %d",
394                          mac_str, ret);
395         }
396
397         return ret;
398 }
399
400 static int
401 hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
402                           struct rte_ether_addr *mac_addr)
403 {
404         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
405         int ret;
406
407         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
408                                 HNS3_MBX_MAC_VLAN_MC_REMOVE,
409                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
410                                 NULL, 0);
411         if (ret) {
412                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
413                                       mac_addr);
414                 hns3_err(hw, "Failed to remove mc mac addr(%s) for vf: %d",
415                          mac_str, ret);
416         }
417
418         return ret;
419 }
420
421 static int
422 hns3vf_set_mc_addr_chk_param(struct hns3_hw *hw,
423                              struct rte_ether_addr *mc_addr_set,
424                              uint32_t nb_mc_addr)
425 {
426         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
427         struct rte_ether_addr *addr;
428         uint32_t i;
429         uint32_t j;
430
431         if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
432                 hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%u) "
433                          "invalid. valid range: 0~%d",
434                          nb_mc_addr, HNS3_MC_MACADDR_NUM);
435                 return -EINVAL;
436         }
437
438         /* Check if input mac addresses are valid */
439         for (i = 0; i < nb_mc_addr; i++) {
440                 addr = &mc_addr_set[i];
441                 if (!rte_is_multicast_ether_addr(addr)) {
442                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
443                                               addr);
444                         hns3_err(hw,
445                                  "failed to set mc mac addr, addr(%s) invalid.",
446                                  mac_str);
447                         return -EINVAL;
448                 }
449
450                 /* Check if there are duplicate addresses */
451                 for (j = i + 1; j < nb_mc_addr; j++) {
452                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
453                                 hns3_ether_format_addr(mac_str,
454                                                       RTE_ETHER_ADDR_FMT_SIZE,
455                                                       addr);
456                                 hns3_err(hw, "failed to set mc mac addr, "
457                                          "addrs invalid. two same addrs(%s).",
458                                          mac_str);
459                                 return -EINVAL;
460                         }
461                 }
462
463                 /*
464                  * Check if there are duplicate addresses between mac_addrs
465                  * and mc_addr_set
466                  */
467                 for (j = 0; j < HNS3_VF_UC_MACADDR_NUM; j++) {
468                         if (rte_is_same_ether_addr(addr,
469                                                    &hw->data->mac_addrs[j])) {
470                                 hns3_ether_format_addr(mac_str,
471                                                       RTE_ETHER_ADDR_FMT_SIZE,
472                                                       addr);
473                                 hns3_err(hw, "failed to set mc mac addr, "
474                                          "addrs invalid. addrs(%s) has already "
475                                          "configured in mac_addr add API",
476                                          mac_str);
477                                 return -EINVAL;
478                         }
479                 }
480         }
481
482         return 0;
483 }
484
485 static int
486 hns3vf_set_mc_mac_addr_list(struct rte_eth_dev *dev,
487                             struct rte_ether_addr *mc_addr_set,
488                             uint32_t nb_mc_addr)
489 {
490         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
491         struct rte_ether_addr *addr;
492         int cur_addr_num;
493         int set_addr_num;
494         int num;
495         int ret;
496         int i;
497
498         ret = hns3vf_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
499         if (ret)
500                 return ret;
501
502         rte_spinlock_lock(&hw->lock);
503         cur_addr_num = hw->mc_addrs_num;
504         for (i = 0; i < cur_addr_num; i++) {
505                 num = cur_addr_num - i - 1;
506                 addr = &hw->mc_addrs[num];
507                 ret = hns3vf_remove_mc_mac_addr(hw, addr);
508                 if (ret) {
509                         rte_spinlock_unlock(&hw->lock);
510                         return ret;
511                 }
512
513                 hw->mc_addrs_num--;
514         }
515
516         set_addr_num = (int)nb_mc_addr;
517         for (i = 0; i < set_addr_num; i++) {
518                 addr = &mc_addr_set[i];
519                 ret = hns3vf_add_mc_mac_addr(hw, addr);
520                 if (ret) {
521                         rte_spinlock_unlock(&hw->lock);
522                         return ret;
523                 }
524
525                 rte_ether_addr_copy(addr, &hw->mc_addrs[hw->mc_addrs_num]);
526                 hw->mc_addrs_num++;
527         }
528         rte_spinlock_unlock(&hw->lock);
529
530         return 0;
531 }
532
533 static int
534 hns3vf_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
535 {
536         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
537         struct hns3_hw *hw = &hns->hw;
538         struct rte_ether_addr *addr;
539         int err = 0;
540         int ret;
541         int i;
542
543         for (i = 0; i < hw->mc_addrs_num; i++) {
544                 addr = &hw->mc_addrs[i];
545                 if (!rte_is_multicast_ether_addr(addr))
546                         continue;
547                 if (del)
548                         ret = hns3vf_remove_mc_mac_addr(hw, addr);
549                 else
550                         ret = hns3vf_add_mc_mac_addr(hw, addr);
551                 if (ret) {
552                         err = ret;
553                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
554                                               addr);
555                         hns3_err(hw, "Failed to %s mc mac addr: %s for vf: %d",
556                                  del ? "Remove" : "Restore", mac_str, ret);
557                 }
558         }
559         return err;
560 }
561
562 static int
563 hns3vf_set_promisc_mode(struct hns3_hw *hw, bool en_bc_pmc,
564                         bool en_uc_pmc, bool en_mc_pmc)
565 {
566         struct hns3_mbx_vf_to_pf_cmd *req;
567         struct hns3_cmd_desc desc;
568         int ret;
569
570         req = (struct hns3_mbx_vf_to_pf_cmd *)desc.data;
571
572         /*
573          * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev driver,
574          * so there are some features for promiscuous/allmulticast mode in hns3
575          * VF PMD driver as below:
576          * 1. The promiscuous/allmulticast mode can be configured successfully
577          *    only based on the trusted VF device. If based on the non trusted
578          *    VF device, configuring promiscuous/allmulticast mode will fail.
579          *    The hns3 VF device can be confiruged as trusted device by hns3 PF
580          *    kernel ethdev driver on the host by the following command:
581          *      "ip link set <eth num> vf <vf id> turst on"
582          * 2. After the promiscuous mode is configured successfully, hns3 VF PMD
583          *    driver can receive the ingress and outgoing traffic. In the words,
584          *    all the ingress packets, all the packets sent from the PF and
585          *    other VFs on the same physical port.
586          * 3. Note: Because of the hardware constraints, By default vlan filter
587          *    is enabled and couldn't be turned off based on VF device, so vlan
588          *    filter is still effective even in promiscuous mode. If upper
589          *    applications don't call rte_eth_dev_vlan_filter API function to
590          *    set vlan based on VF device, hns3 VF PMD driver will can't receive
591          *    the packets with vlan tag in promiscuoue mode.
592          */
593         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MBX_VF_TO_PF, false);
594         req->msg[0] = HNS3_MBX_SET_PROMISC_MODE;
595         req->msg[1] = en_bc_pmc ? 1 : 0;
596         req->msg[2] = en_uc_pmc ? 1 : 0;
597         req->msg[3] = en_mc_pmc ? 1 : 0;
598         req->msg[4] = hw->promisc_mode == HNS3_LIMIT_PROMISC_MODE ? 1 : 0;
599
600         ret = hns3_cmd_send(hw, &desc, 1);
601         if (ret)
602                 hns3_err(hw, "Set promisc mode fail, ret = %d", ret);
603
604         return ret;
605 }
606
607 static int
608 hns3vf_dev_promiscuous_enable(struct rte_eth_dev *dev)
609 {
610         struct hns3_adapter *hns = dev->data->dev_private;
611         struct hns3_hw *hw = &hns->hw;
612         int ret;
613
614         ret = hns3vf_set_promisc_mode(hw, true, true, true);
615         if (ret)
616                 hns3_err(hw, "Failed to enable promiscuous mode, ret = %d",
617                         ret);
618         return ret;
619 }
620
621 static int
622 hns3vf_dev_promiscuous_disable(struct rte_eth_dev *dev)
623 {
624         bool allmulti = dev->data->all_multicast ? true : false;
625         struct hns3_adapter *hns = dev->data->dev_private;
626         struct hns3_hw *hw = &hns->hw;
627         int ret;
628
629         ret = hns3vf_set_promisc_mode(hw, true, false, allmulti);
630         if (ret)
631                 hns3_err(hw, "Failed to disable promiscuous mode, ret = %d",
632                         ret);
633         return ret;
634 }
635
636 static int
637 hns3vf_dev_allmulticast_enable(struct rte_eth_dev *dev)
638 {
639         struct hns3_adapter *hns = dev->data->dev_private;
640         struct hns3_hw *hw = &hns->hw;
641         int ret;
642
643         if (dev->data->promiscuous)
644                 return 0;
645
646         ret = hns3vf_set_promisc_mode(hw, true, false, true);
647         if (ret)
648                 hns3_err(hw, "Failed to enable allmulticast mode, ret = %d",
649                         ret);
650         return ret;
651 }
652
653 static int
654 hns3vf_dev_allmulticast_disable(struct rte_eth_dev *dev)
655 {
656         struct hns3_adapter *hns = dev->data->dev_private;
657         struct hns3_hw *hw = &hns->hw;
658         int ret;
659
660         if (dev->data->promiscuous)
661                 return 0;
662
663         ret = hns3vf_set_promisc_mode(hw, true, false, false);
664         if (ret)
665                 hns3_err(hw, "Failed to disable allmulticast mode, ret = %d",
666                         ret);
667         return ret;
668 }
669
670 static int
671 hns3vf_restore_promisc(struct hns3_adapter *hns)
672 {
673         struct hns3_hw *hw = &hns->hw;
674         bool allmulti = hw->data->all_multicast ? true : false;
675
676         if (hw->data->promiscuous)
677                 return hns3vf_set_promisc_mode(hw, true, true, true);
678
679         return hns3vf_set_promisc_mode(hw, true, false, allmulti);
680 }
681
682 static int
683 hns3vf_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id,
684                              bool mmap, enum hns3_ring_type queue_type,
685                              uint16_t queue_id)
686 {
687         struct hns3_vf_bind_vector_msg bind_msg;
688         const char *op_str;
689         uint16_t code;
690         int ret;
691
692         memset(&bind_msg, 0, sizeof(bind_msg));
693         code = mmap ? HNS3_MBX_MAP_RING_TO_VECTOR :
694                 HNS3_MBX_UNMAP_RING_TO_VECTOR;
695         bind_msg.vector_id = vector_id;
696
697         if (queue_type == HNS3_RING_TYPE_RX)
698                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_RX;
699         else
700                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_TX;
701
702         bind_msg.param[0].ring_type = queue_type;
703         bind_msg.ring_num = 1;
704         bind_msg.param[0].tqp_index = queue_id;
705         op_str = mmap ? "Map" : "Unmap";
706         ret = hns3_send_mbx_msg(hw, code, 0, (uint8_t *)&bind_msg,
707                                 sizeof(bind_msg), false, NULL, 0);
708         if (ret)
709                 hns3_err(hw, "%s TQP %u fail, vector_id is %u, ret is %d.",
710                          op_str, queue_id, bind_msg.vector_id, ret);
711
712         return ret;
713 }
714
715 static int
716 hns3vf_init_ring_with_vector(struct hns3_hw *hw)
717 {
718         uint16_t vec;
719         int ret;
720         int i;
721
722         /*
723          * In hns3 network engine, vector 0 is always the misc interrupt of this
724          * function, vector 1~N can be used respectively for the queues of the
725          * function. Tx and Rx queues with the same number share the interrupt
726          * vector. In the initialization clearing the all hardware mapping
727          * relationship configurations between queues and interrupt vectors is
728          * needed, so some error caused by the residual configurations, such as
729          * the unexpected Tx interrupt, can be avoid.
730          */
731         vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
732         if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
733                 vec = vec - 1; /* the last interrupt is reserved */
734         hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
735         for (i = 0; i < hw->intr_tqps_num; i++) {
736                 /*
737                  * Set gap limiter/rate limiter/quanity limiter algorithm
738                  * configuration for interrupt coalesce of queue's interrupt.
739                  */
740                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
741                                        HNS3_TQP_INTR_GL_DEFAULT);
742                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
743                                        HNS3_TQP_INTR_GL_DEFAULT);
744                 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
745                 /*
746                  * QL(quantity limiter) is not used currently, just set 0 to
747                  * close it.
748                  */
749                 hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
750
751                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
752                                                    HNS3_RING_TYPE_TX, i);
753                 if (ret) {
754                         PMD_INIT_LOG(ERR, "VF fail to unbind TX ring(%d) with "
755                                           "vector: %u, ret=%d", i, vec, ret);
756                         return ret;
757                 }
758
759                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
760                                                    HNS3_RING_TYPE_RX, i);
761                 if (ret) {
762                         PMD_INIT_LOG(ERR, "VF fail to unbind RX ring(%d) with "
763                                           "vector: %u, ret=%d", i, vec, ret);
764                         return ret;
765                 }
766         }
767
768         return 0;
769 }
770
771 static int
772 hns3vf_dev_configure(struct rte_eth_dev *dev)
773 {
774         struct hns3_adapter *hns = dev->data->dev_private;
775         struct hns3_hw *hw = &hns->hw;
776         struct rte_eth_conf *conf = &dev->data->dev_conf;
777         enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
778         uint16_t nb_rx_q = dev->data->nb_rx_queues;
779         uint16_t nb_tx_q = dev->data->nb_tx_queues;
780         struct rte_eth_rss_conf rss_conf;
781         uint16_t mtu;
782         bool gro_en;
783         int ret;
784
785         hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
786
787         /*
788          * Some versions of hardware network engine does not support
789          * individually enable/disable/reset the Tx or Rx queue. These devices
790          * must enable/disable/reset Tx and Rx queues at the same time. When the
791          * numbers of Tx queues allocated by upper applications are not equal to
792          * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
793          * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
794          * work as usual. But these fake queues are imperceptible, and can not
795          * be used by upper applications.
796          */
797         if (!hns3_dev_indep_txrx_supported(hw)) {
798                 ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
799                 if (ret) {
800                         hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.",
801                                  ret);
802                         return ret;
803                 }
804         }
805
806         hw->adapter_state = HNS3_NIC_CONFIGURING;
807         if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
808                 hns3_err(hw, "setting link speed/duplex not supported");
809                 ret = -EINVAL;
810                 goto cfg_err;
811         }
812
813         /* When RSS is not configured, redirect the packet queue 0 */
814         if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
815                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
816                 hw->rss_dis_flag = false;
817                 rss_conf = conf->rx_adv_conf.rss_conf;
818                 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
819                 if (ret)
820                         goto cfg_err;
821         }
822
823         /*
824          * If jumbo frames are enabled, MTU needs to be refreshed
825          * according to the maximum RX packet length.
826          */
827         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
828                 /*
829                  * Security of max_rx_pkt_len is guaranteed in dpdk frame.
830                  * Maximum value of max_rx_pkt_len is HNS3_MAX_FRAME_LEN, so it
831                  * can safely assign to "uint16_t" type variable.
832                  */
833                 mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(conf->rxmode.max_rx_pkt_len);
834                 ret = hns3vf_dev_mtu_set(dev, mtu);
835                 if (ret)
836                         goto cfg_err;
837                 dev->data->mtu = mtu;
838         }
839
840         ret = hns3vf_dev_configure_vlan(dev);
841         if (ret)
842                 goto cfg_err;
843
844         /* config hardware GRO */
845         gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
846         ret = hns3_config_gro(hw, gro_en);
847         if (ret)
848                 goto cfg_err;
849
850         hns->rx_simple_allowed = true;
851         hns->rx_vec_allowed = true;
852         hns->tx_simple_allowed = true;
853         hns->tx_vec_allowed = true;
854
855         hns3_init_rx_ptype_tble(dev);
856
857         hw->adapter_state = HNS3_NIC_CONFIGURED;
858         return 0;
859
860 cfg_err:
861         (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
862         hw->adapter_state = HNS3_NIC_INITIALIZED;
863
864         return ret;
865 }
866
867 static int
868 hns3vf_config_mtu(struct hns3_hw *hw, uint16_t mtu)
869 {
870         int ret;
871
872         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MTU, 0, (const uint8_t *)&mtu,
873                                 sizeof(mtu), true, NULL, 0);
874         if (ret)
875                 hns3_err(hw, "Failed to set mtu (%u) for vf: %d", mtu, ret);
876
877         return ret;
878 }
879
880 static int
881 hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
882 {
883         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
884         uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
885         int ret;
886
887         /*
888          * The hns3 PF/VF devices on the same port share the hardware MTU
889          * configuration. Currently, we send mailbox to inform hns3 PF kernel
890          * ethdev driver to finish hardware MTU configuration in hns3 VF PMD
891          * driver, there is no need to stop the port for hns3 VF device, and the
892          * MTU value issued by hns3 VF PMD driver must be less than or equal to
893          * PF's MTU.
894          */
895         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
896                 hns3_err(hw, "Failed to set mtu during resetting");
897                 return -EIO;
898         }
899
900         /*
901          * when Rx of scattered packets is off, we have some possibility of
902          * using vector Rx process function or simple Rx functions in hns3 PMD
903          * driver. If the input MTU is increased and the maximum length of
904          * received packets is greater than the length of a buffer for Rx
905          * packet, the hardware network engine needs to use multiple BDs and
906          * buffers to store these packets. This will cause problems when still
907          * using vector Rx process function or simple Rx function to receiving
908          * packets. So, when Rx of scattered packets is off and device is
909          * started, it is not permitted to increase MTU so that the maximum
910          * length of Rx packets is greater than Rx buffer length.
911          */
912         if (dev->data->dev_started && !dev->data->scattered_rx &&
913             frame_size > hw->rx_buf_len) {
914                 hns3_err(hw, "failed to set mtu because current is "
915                         "not scattered rx mode");
916                 return -EOPNOTSUPP;
917         }
918
919         rte_spinlock_lock(&hw->lock);
920         ret = hns3vf_config_mtu(hw, mtu);
921         if (ret) {
922                 rte_spinlock_unlock(&hw->lock);
923                 return ret;
924         }
925         if (mtu > RTE_ETHER_MTU)
926                 dev->data->dev_conf.rxmode.offloads |=
927                                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
928         else
929                 dev->data->dev_conf.rxmode.offloads &=
930                                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
931         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
932         rte_spinlock_unlock(&hw->lock);
933
934         return 0;
935 }
936
937 static int
938 hns3vf_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
939 {
940         struct hns3_adapter *hns = eth_dev->data->dev_private;
941         struct hns3_hw *hw = &hns->hw;
942         uint16_t q_num = hw->tqps_num;
943
944         /*
945          * In interrupt mode, 'max_rx_queues' is set based on the number of
946          * MSI-X interrupt resources of the hardware.
947          */
948         if (hw->data->dev_conf.intr_conf.rxq == 1)
949                 q_num = hw->intr_tqps_num;
950
951         info->max_rx_queues = q_num;
952         info->max_tx_queues = hw->tqps_num;
953         info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
954         info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
955         info->max_mac_addrs = HNS3_VF_UC_MACADDR_NUM;
956         info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
957         info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
958
959         info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
960                                  DEV_RX_OFFLOAD_UDP_CKSUM |
961                                  DEV_RX_OFFLOAD_TCP_CKSUM |
962                                  DEV_RX_OFFLOAD_SCTP_CKSUM |
963                                  DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
964                                  DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
965                                  DEV_RX_OFFLOAD_SCATTER |
966                                  DEV_RX_OFFLOAD_VLAN_STRIP |
967                                  DEV_RX_OFFLOAD_VLAN_FILTER |
968                                  DEV_RX_OFFLOAD_JUMBO_FRAME |
969                                  DEV_RX_OFFLOAD_RSS_HASH |
970                                  DEV_RX_OFFLOAD_TCP_LRO);
971         info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
972                                  DEV_TX_OFFLOAD_IPV4_CKSUM |
973                                  DEV_TX_OFFLOAD_TCP_CKSUM |
974                                  DEV_TX_OFFLOAD_UDP_CKSUM |
975                                  DEV_TX_OFFLOAD_SCTP_CKSUM |
976                                  DEV_TX_OFFLOAD_MULTI_SEGS |
977                                  DEV_TX_OFFLOAD_TCP_TSO |
978                                  DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
979                                  DEV_TX_OFFLOAD_GRE_TNL_TSO |
980                                  DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
981                                  DEV_TX_OFFLOAD_MBUF_FAST_FREE |
982                                  hns3_txvlan_cap_get(hw));
983
984         if (hns3_dev_indep_txrx_supported(hw))
985                 info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
986                                  RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
987
988         info->rx_desc_lim = (struct rte_eth_desc_lim) {
989                 .nb_max = HNS3_MAX_RING_DESC,
990                 .nb_min = HNS3_MIN_RING_DESC,
991                 .nb_align = HNS3_ALIGN_RING_DESC,
992         };
993
994         info->tx_desc_lim = (struct rte_eth_desc_lim) {
995                 .nb_max = HNS3_MAX_RING_DESC,
996                 .nb_min = HNS3_MIN_RING_DESC,
997                 .nb_align = HNS3_ALIGN_RING_DESC,
998                 .nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
999                 .nb_mtu_seg_max = hw->max_non_tso_bd_num,
1000         };
1001
1002         info->default_rxconf = (struct rte_eth_rxconf) {
1003                 .rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
1004                 /*
1005                  * If there are no available Rx buffer descriptors, incoming
1006                  * packets are always dropped by hardware based on hns3 network
1007                  * engine.
1008                  */
1009                 .rx_drop_en = 1,
1010                 .offloads = 0,
1011         };
1012         info->default_txconf = (struct rte_eth_txconf) {
1013                 .tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
1014                 .offloads = 0,
1015         };
1016
1017         info->vmdq_queue_num = 0;
1018
1019         info->reta_size = HNS3_RSS_IND_TBL_SIZE;
1020         info->hash_key_size = HNS3_RSS_KEY_SIZE;
1021         info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
1022         info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1023         info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1024
1025         return 0;
1026 }
1027
1028 static void
1029 hns3vf_clear_event_cause(struct hns3_hw *hw, uint32_t regclr)
1030 {
1031         hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
1032 }
1033
1034 static void
1035 hns3vf_disable_irq0(struct hns3_hw *hw)
1036 {
1037         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
1038 }
1039
1040 static void
1041 hns3vf_enable_irq0(struct hns3_hw *hw)
1042 {
1043         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
1044 }
1045
1046 static enum hns3vf_evt_cause
1047 hns3vf_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
1048 {
1049         struct hns3_hw *hw = &hns->hw;
1050         enum hns3vf_evt_cause ret;
1051         uint32_t cmdq_stat_reg;
1052         uint32_t rst_ing_reg;
1053         uint32_t val;
1054
1055         /* Fetch the events from their corresponding regs */
1056         cmdq_stat_reg = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_STAT_REG);
1057
1058         if (BIT(HNS3_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1059                 rst_ing_reg = hns3_read_dev(hw, HNS3_FUN_RST_ING);
1060                 hns3_warn(hw, "resetting reg: 0x%x", rst_ing_reg);
1061                 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
1062                 rte_atomic16_set(&hw->reset.disable_cmd, 1);
1063                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
1064                 hns3_write_dev(hw, HNS3_VF_RST_ING, val | HNS3_VF_RST_ING_BIT);
1065                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RST_INT_B);
1066                 if (clearval) {
1067                         hw->reset.stats.global_cnt++;
1068                         hns3_warn(hw, "Global reset detected, clear reset status");
1069                 } else {
1070                         hns3_schedule_delayed_reset(hns);
1071                         hns3_warn(hw, "Global reset detected, don't clear reset status");
1072                 }
1073
1074                 ret = HNS3VF_VECTOR0_EVENT_RST;
1075                 goto out;
1076         }
1077
1078         /* Check for vector0 mailbox(=CMDQ RX) event source */
1079         if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1080                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
1081                 ret = HNS3VF_VECTOR0_EVENT_MBX;
1082                 goto out;
1083         }
1084
1085         val = 0;
1086         ret = HNS3VF_VECTOR0_EVENT_OTHER;
1087 out:
1088         if (clearval)
1089                 *clearval = val;
1090         return ret;
1091 }
1092
1093 static void
1094 hns3vf_interrupt_handler(void *param)
1095 {
1096         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1097         struct hns3_adapter *hns = dev->data->dev_private;
1098         struct hns3_hw *hw = &hns->hw;
1099         enum hns3vf_evt_cause event_cause;
1100         uint32_t clearval;
1101
1102         if (hw->irq_thread_id == 0)
1103                 hw->irq_thread_id = pthread_self();
1104
1105         /* Disable interrupt */
1106         hns3vf_disable_irq0(hw);
1107
1108         /* Read out interrupt causes */
1109         event_cause = hns3vf_check_event_cause(hns, &clearval);
1110
1111         switch (event_cause) {
1112         case HNS3VF_VECTOR0_EVENT_RST:
1113                 hns3_schedule_reset(hns);
1114                 break;
1115         case HNS3VF_VECTOR0_EVENT_MBX:
1116                 hns3_dev_handle_mbx_msg(hw);
1117                 break;
1118         default:
1119                 break;
1120         }
1121
1122         /* Clear interrupt causes */
1123         hns3vf_clear_event_cause(hw, clearval);
1124
1125         /* Enable interrupt */
1126         hns3vf_enable_irq0(hw);
1127 }
1128
1129 static void
1130 hns3vf_set_default_dev_specifications(struct hns3_hw *hw)
1131 {
1132         hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
1133         hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
1134         hw->rss_key_size = HNS3_RSS_KEY_SIZE;
1135         hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
1136 }
1137
1138 static void
1139 hns3vf_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
1140 {
1141         struct hns3_dev_specs_0_cmd *req0;
1142
1143         req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
1144
1145         hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
1146         hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
1147         hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
1148         hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
1149 }
1150
1151 static int
1152 hns3vf_query_dev_specifications(struct hns3_hw *hw)
1153 {
1154         struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
1155         int ret;
1156         int i;
1157
1158         for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
1159                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
1160                                           true);
1161                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1162         }
1163         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
1164
1165         ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
1166         if (ret)
1167                 return ret;
1168
1169         hns3vf_parse_dev_specifications(hw, desc);
1170
1171         return 0;
1172 }
1173
1174 static int
1175 hns3vf_get_capability(struct hns3_hw *hw)
1176 {
1177         struct rte_pci_device *pci_dev;
1178         struct rte_eth_dev *eth_dev;
1179         uint8_t revision;
1180         int ret;
1181
1182         eth_dev = &rte_eth_devices[hw->data->port_id];
1183         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1184
1185         /* Get PCI revision id */
1186         ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
1187                                   HNS3_PCI_REVISION_ID);
1188         if (ret != HNS3_PCI_REVISION_ID_LEN) {
1189                 PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
1190                              ret);
1191                 return -EIO;
1192         }
1193         hw->revision = revision;
1194
1195         if (revision < PCI_REVISION_ID_HIP09_A) {
1196                 hns3vf_set_default_dev_specifications(hw);
1197                 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
1198                 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
1199                 hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
1200                 hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
1201                 hw->rss_info.ipv6_sctp_offload_supported = false;
1202                 hw->promisc_mode = HNS3_UNLIMIT_PROMISC_MODE;
1203                 return 0;
1204         }
1205
1206         ret = hns3vf_query_dev_specifications(hw);
1207         if (ret) {
1208                 PMD_INIT_LOG(ERR,
1209                              "failed to query dev specifications, ret = %d",
1210                              ret);
1211                 return ret;
1212         }
1213
1214         hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
1215         hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
1216         hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
1217         hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
1218         hw->rss_info.ipv6_sctp_offload_supported = true;
1219         hw->promisc_mode = HNS3_LIMIT_PROMISC_MODE;
1220
1221         return 0;
1222 }
1223
1224 static int
1225 hns3vf_check_tqp_info(struct hns3_hw *hw)
1226 {
1227         if (hw->tqps_num == 0) {
1228                 PMD_INIT_LOG(ERR, "Get invalid tqps_num(0) from PF.");
1229                 return -EINVAL;
1230         }
1231
1232         if (hw->rss_size_max == 0) {
1233                 PMD_INIT_LOG(ERR, "Get invalid rss_size_max(0) from PF.");
1234                 return -EINVAL;
1235         }
1236
1237         hw->tqps_num = RTE_MIN(hw->rss_size_max, hw->tqps_num);
1238
1239         return 0;
1240 }
1241
1242 static int
1243 hns3vf_get_port_base_vlan_filter_state(struct hns3_hw *hw)
1244 {
1245         uint8_t resp_msg;
1246         int ret;
1247
1248         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN,
1249                                 HNS3_MBX_GET_PORT_BASE_VLAN_STATE, NULL, 0,
1250                                 true, &resp_msg, sizeof(resp_msg));
1251         if (ret) {
1252                 if (ret == -ETIME) {
1253                         /*
1254                          * Getting current port based VLAN state from PF driver
1255                          * will not affect VF driver's basic function. Because
1256                          * the VF driver relies on hns3 PF kernel ether driver,
1257                          * to avoid introducing compatibility issues with older
1258                          * version of PF driver, no failure will be returned
1259                          * when the return value is ETIME. This return value has
1260                          * the following scenarios:
1261                          * 1) Firmware didn't return the results in time
1262                          * 2) the result return by firmware is timeout
1263                          * 3) the older version of kernel side PF driver does
1264                          *    not support this mailbox message.
1265                          * For scenarios 1 and 2, it is most likely that a
1266                          * hardware error has occurred, or a hardware reset has
1267                          * occurred. In this case, these errors will be caught
1268                          * by other functions.
1269                          */
1270                         PMD_INIT_LOG(WARNING,
1271                                 "failed to get PVID state for timeout, maybe "
1272                                 "kernel side PF driver doesn't support this "
1273                                 "mailbox message, or firmware didn't respond.");
1274                         resp_msg = HNS3_PORT_BASE_VLAN_DISABLE;
1275                 } else {
1276                         PMD_INIT_LOG(ERR, "failed to get port based VLAN state,"
1277                                 " ret = %d", ret);
1278                         return ret;
1279                 }
1280         }
1281         hw->port_base_vlan_cfg.state = resp_msg ?
1282                 HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
1283         return 0;
1284 }
1285
1286 static int
1287 hns3vf_get_queue_info(struct hns3_hw *hw)
1288 {
1289 #define HNS3VF_TQPS_RSS_INFO_LEN        6
1290         uint8_t resp_msg[HNS3VF_TQPS_RSS_INFO_LEN];
1291         int ret;
1292
1293         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QINFO, 0, NULL, 0, true,
1294                                 resp_msg, HNS3VF_TQPS_RSS_INFO_LEN);
1295         if (ret) {
1296                 PMD_INIT_LOG(ERR, "Failed to get tqp info from PF: %d", ret);
1297                 return ret;
1298         }
1299
1300         memcpy(&hw->tqps_num, &resp_msg[0], sizeof(uint16_t));
1301         memcpy(&hw->rss_size_max, &resp_msg[2], sizeof(uint16_t));
1302
1303         return hns3vf_check_tqp_info(hw);
1304 }
1305
1306 static int
1307 hns3vf_get_queue_depth(struct hns3_hw *hw)
1308 {
1309 #define HNS3VF_TQPS_DEPTH_INFO_LEN      4
1310         uint8_t resp_msg[HNS3VF_TQPS_DEPTH_INFO_LEN];
1311         int ret;
1312
1313         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QDEPTH, 0, NULL, 0, true,
1314                                 resp_msg, HNS3VF_TQPS_DEPTH_INFO_LEN);
1315         if (ret) {
1316                 PMD_INIT_LOG(ERR, "Failed to get tqp depth info from PF: %d",
1317                              ret);
1318                 return ret;
1319         }
1320
1321         memcpy(&hw->num_tx_desc, &resp_msg[0], sizeof(uint16_t));
1322         memcpy(&hw->num_rx_desc, &resp_msg[2], sizeof(uint16_t));
1323
1324         return 0;
1325 }
1326
1327 static int
1328 hns3vf_get_tc_info(struct hns3_hw *hw)
1329 {
1330         uint8_t resp_msg;
1331         int ret;
1332         uint32_t i;
1333
1334         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_TCINFO, 0, NULL, 0,
1335                                 true, &resp_msg, sizeof(resp_msg));
1336         if (ret) {
1337                 hns3_err(hw, "VF request to get TC info from PF failed %d",
1338                          ret);
1339                 return ret;
1340         }
1341
1342         hw->hw_tc_map = resp_msg;
1343
1344         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
1345                 if (hw->hw_tc_map & BIT(i))
1346                         hw->num_tc++;
1347         }
1348
1349         return 0;
1350 }
1351
1352 static int
1353 hns3vf_get_host_mac_addr(struct hns3_hw *hw)
1354 {
1355         uint8_t host_mac[RTE_ETHER_ADDR_LEN];
1356         int ret;
1357
1358         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_MAC_ADDR, 0, NULL, 0,
1359                                 true, host_mac, RTE_ETHER_ADDR_LEN);
1360         if (ret) {
1361                 hns3_err(hw, "Failed to get mac addr from PF: %d", ret);
1362                 return ret;
1363         }
1364
1365         memcpy(hw->mac.mac_addr, host_mac, RTE_ETHER_ADDR_LEN);
1366
1367         return 0;
1368 }
1369
1370 static int
1371 hns3vf_get_configuration(struct hns3_hw *hw)
1372 {
1373         int ret;
1374
1375         hw->mac.media_type = HNS3_MEDIA_TYPE_NONE;
1376         hw->rss_dis_flag = false;
1377
1378         /* Get device capability */
1379         ret = hns3vf_get_capability(hw);
1380         if (ret) {
1381                 PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
1382                 return ret;
1383         }
1384
1385         /* Get queue configuration from PF */
1386         ret = hns3vf_get_queue_info(hw);
1387         if (ret)
1388                 return ret;
1389
1390         /* Get queue depth info from PF */
1391         ret = hns3vf_get_queue_depth(hw);
1392         if (ret)
1393                 return ret;
1394
1395         /* Get user defined VF MAC addr from PF */
1396         ret = hns3vf_get_host_mac_addr(hw);
1397         if (ret)
1398                 return ret;
1399
1400         ret = hns3vf_get_port_base_vlan_filter_state(hw);
1401         if (ret)
1402                 return ret;
1403
1404         /* Get tc configuration from PF */
1405         return hns3vf_get_tc_info(hw);
1406 }
1407
1408 static int
1409 hns3vf_set_tc_queue_mapping(struct hns3_adapter *hns, uint16_t nb_rx_q,
1410                             uint16_t nb_tx_q)
1411 {
1412         struct hns3_hw *hw = &hns->hw;
1413
1414         if (nb_rx_q < hw->num_tc) {
1415                 hns3_err(hw, "number of Rx queues(%u) is less than tcs(%u).",
1416                          nb_rx_q, hw->num_tc);
1417                 return -EINVAL;
1418         }
1419
1420         if (nb_tx_q < hw->num_tc) {
1421                 hns3_err(hw, "number of Tx queues(%u) is less than tcs(%u).",
1422                          nb_tx_q, hw->num_tc);
1423                 return -EINVAL;
1424         }
1425
1426         return hns3_queue_to_tc_mapping(hw, nb_rx_q, nb_tx_q);
1427 }
1428
1429 static void
1430 hns3vf_request_link_info(struct hns3_hw *hw)
1431 {
1432         uint8_t resp_msg;
1433         int ret;
1434
1435         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
1436                 return;
1437         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1438                                 &resp_msg, sizeof(resp_msg));
1439         if (ret)
1440                 hns3_err(hw, "Failed to fetch link status from PF: %d", ret);
1441 }
1442
1443 static int
1444 hns3vf_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
1445 {
1446 #define HNS3VF_VLAN_MBX_MSG_LEN 5
1447         struct hns3_hw *hw = &hns->hw;
1448         uint8_t msg_data[HNS3VF_VLAN_MBX_MSG_LEN];
1449         uint16_t proto = htons(RTE_ETHER_TYPE_VLAN);
1450         uint8_t is_kill = on ? 0 : 1;
1451
1452         msg_data[0] = is_kill;
1453         memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1454         memcpy(&msg_data[3], &proto, sizeof(proto));
1455
1456         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_FILTER,
1457                                  msg_data, HNS3VF_VLAN_MBX_MSG_LEN, true, NULL,
1458                                  0);
1459 }
1460
1461 static int
1462 hns3vf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1463 {
1464         struct hns3_adapter *hns = dev->data->dev_private;
1465         struct hns3_hw *hw = &hns->hw;
1466         int ret;
1467
1468         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
1469                 hns3_err(hw,
1470                          "vf set vlan id failed during resetting, vlan_id =%u",
1471                          vlan_id);
1472                 return -EIO;
1473         }
1474         rte_spinlock_lock(&hw->lock);
1475         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1476         rte_spinlock_unlock(&hw->lock);
1477         if (ret)
1478                 hns3_err(hw, "vf set vlan id failed, vlan_id =%u, ret =%d",
1479                          vlan_id, ret);
1480
1481         return ret;
1482 }
1483
1484 static int
1485 hns3vf_en_hw_strip_rxvtag(struct hns3_hw *hw, bool enable)
1486 {
1487         uint8_t msg_data;
1488         int ret;
1489
1490         msg_data = enable ? 1 : 0;
1491         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_RX_OFF_CFG,
1492                                 &msg_data, sizeof(msg_data), false, NULL, 0);
1493         if (ret)
1494                 hns3_err(hw, "vf enable strip failed, ret =%d", ret);
1495
1496         return ret;
1497 }
1498
1499 static int
1500 hns3vf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1501 {
1502         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1503         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1504         unsigned int tmp_mask;
1505         int ret = 0;
1506
1507         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
1508                 hns3_err(hw, "vf set vlan offload failed during resetting, "
1509                              "mask = 0x%x", mask);
1510                 return -EIO;
1511         }
1512
1513         tmp_mask = (unsigned int)mask;
1514         /* Vlan stripping setting */
1515         if (tmp_mask & ETH_VLAN_STRIP_MASK) {
1516                 rte_spinlock_lock(&hw->lock);
1517                 /* Enable or disable VLAN stripping */
1518                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1519                         ret = hns3vf_en_hw_strip_rxvtag(hw, true);
1520                 else
1521                         ret = hns3vf_en_hw_strip_rxvtag(hw, false);
1522                 rte_spinlock_unlock(&hw->lock);
1523         }
1524
1525         return ret;
1526 }
1527
1528 static int
1529 hns3vf_handle_all_vlan_table(struct hns3_adapter *hns, int on)
1530 {
1531         struct rte_vlan_filter_conf *vfc;
1532         struct hns3_hw *hw = &hns->hw;
1533         uint16_t vlan_id;
1534         uint64_t vbit;
1535         uint64_t ids;
1536         int ret = 0;
1537         uint32_t i;
1538
1539         vfc = &hw->data->vlan_filter_conf;
1540         for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1541                 if (vfc->ids[i] == 0)
1542                         continue;
1543                 ids = vfc->ids[i];
1544                 while (ids) {
1545                         /*
1546                          * 64 means the num bits of ids, one bit corresponds to
1547                          * one vlan id
1548                          */
1549                         vlan_id = 64 * i;
1550                         /* count trailing zeroes */
1551                         vbit = ~ids & (ids - 1);
1552                         /* clear least significant bit set */
1553                         ids ^= (ids ^ (ids - 1)) ^ vbit;
1554                         for (; vbit;) {
1555                                 vbit >>= 1;
1556                                 vlan_id++;
1557                         }
1558                         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1559                         if (ret) {
1560                                 hns3_err(hw,
1561                                          "VF handle vlan table failed, ret =%d, on = %d",
1562                                          ret, on);
1563                                 return ret;
1564                         }
1565                 }
1566         }
1567
1568         return ret;
1569 }
1570
1571 static int
1572 hns3vf_remove_all_vlan_table(struct hns3_adapter *hns)
1573 {
1574         return hns3vf_handle_all_vlan_table(hns, 0);
1575 }
1576
1577 static int
1578 hns3vf_restore_vlan_conf(struct hns3_adapter *hns)
1579 {
1580         struct hns3_hw *hw = &hns->hw;
1581         struct rte_eth_conf *dev_conf;
1582         bool en;
1583         int ret;
1584
1585         dev_conf = &hw->data->dev_conf;
1586         en = dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP ? true
1587                                                                    : false;
1588         ret = hns3vf_en_hw_strip_rxvtag(hw, en);
1589         if (ret)
1590                 hns3_err(hw, "VF restore vlan conf fail, en =%d, ret =%d", en,
1591                          ret);
1592         return ret;
1593 }
1594
1595 static int
1596 hns3vf_dev_configure_vlan(struct rte_eth_dev *dev)
1597 {
1598         struct hns3_adapter *hns = dev->data->dev_private;
1599         struct rte_eth_dev_data *data = dev->data;
1600         struct hns3_hw *hw = &hns->hw;
1601         int ret;
1602
1603         if (data->dev_conf.txmode.hw_vlan_reject_tagged ||
1604             data->dev_conf.txmode.hw_vlan_reject_untagged ||
1605             data->dev_conf.txmode.hw_vlan_insert_pvid) {
1606                 hns3_warn(hw, "hw_vlan_reject_tagged, hw_vlan_reject_untagged "
1607                               "or hw_vlan_insert_pvid is not support!");
1608         }
1609
1610         /* Apply vlan offload setting */
1611         ret = hns3vf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
1612         if (ret)
1613                 hns3_err(hw, "dev config vlan offload failed, ret =%d", ret);
1614
1615         return ret;
1616 }
1617
1618 static int
1619 hns3vf_set_alive(struct hns3_hw *hw, bool alive)
1620 {
1621         uint8_t msg_data;
1622
1623         msg_data = alive ? 1 : 0;
1624         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_ALIVE, 0, &msg_data,
1625                                  sizeof(msg_data), false, NULL, 0);
1626 }
1627
1628 static void
1629 hns3vf_keep_alive_handler(void *param)
1630 {
1631         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1632         struct hns3_adapter *hns = eth_dev->data->dev_private;
1633         struct hns3_hw *hw = &hns->hw;
1634         uint8_t respmsg;
1635         int ret;
1636
1637         ret = hns3_send_mbx_msg(hw, HNS3_MBX_KEEP_ALIVE, 0, NULL, 0,
1638                                 false, &respmsg, sizeof(uint8_t));
1639         if (ret)
1640                 hns3_err(hw, "VF sends keeping alive cmd failed(=%d)",
1641                          ret);
1642
1643         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
1644                           eth_dev);
1645 }
1646
1647 static void
1648 hns3vf_service_handler(void *param)
1649 {
1650         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1651         struct hns3_adapter *hns = eth_dev->data->dev_private;
1652         struct hns3_hw *hw = &hns->hw;
1653
1654         /*
1655          * The query link status and reset processing are executed in the
1656          * interrupt thread.When the IMP reset occurs, IMP will not respond,
1657          * and the query operation will time out after 30ms. In the case of
1658          * multiple PF/VFs, each query failure timeout causes the IMP reset
1659          * interrupt to fail to respond within 100ms.
1660          * Before querying the link status, check whether there is a reset
1661          * pending, and if so, abandon the query.
1662          */
1663         if (!hns3vf_is_reset_pending(hns))
1664                 hns3vf_request_link_info(hw);
1665         else
1666                 hns3_warn(hw, "Cancel the query when reset is pending");
1667
1668         rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler,
1669                           eth_dev);
1670 }
1671
1672 static int
1673 hns3_query_vf_resource(struct hns3_hw *hw)
1674 {
1675         struct hns3_vf_res_cmd *req;
1676         struct hns3_cmd_desc desc;
1677         uint16_t num_msi;
1678         int ret;
1679
1680         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_VF_RSRC, true);
1681         ret = hns3_cmd_send(hw, &desc, 1);
1682         if (ret) {
1683                 hns3_err(hw, "query vf resource failed, ret = %d", ret);
1684                 return ret;
1685         }
1686
1687         req = (struct hns3_vf_res_cmd *)desc.data;
1688         num_msi = hns3_get_field(rte_le_to_cpu_16(req->vf_intr_vector_number),
1689                                  HNS3_VF_VEC_NUM_M, HNS3_VF_VEC_NUM_S);
1690         if (num_msi < HNS3_MIN_VECTOR_NUM) {
1691                 hns3_err(hw, "Just %u msi resources, not enough for vf(min:%d)",
1692                          num_msi, HNS3_MIN_VECTOR_NUM);
1693                 return -EINVAL;
1694         }
1695
1696         hw->num_msi = num_msi;
1697
1698         return 0;
1699 }
1700
1701 static int
1702 hns3vf_init_hardware(struct hns3_adapter *hns)
1703 {
1704         struct hns3_hw *hw = &hns->hw;
1705         uint16_t mtu = hw->data->mtu;
1706         int ret;
1707
1708         ret = hns3vf_set_promisc_mode(hw, true, false, false);
1709         if (ret)
1710                 return ret;
1711
1712         ret = hns3vf_config_mtu(hw, mtu);
1713         if (ret)
1714                 goto err_init_hardware;
1715
1716         ret = hns3vf_vlan_filter_configure(hns, 0, 1);
1717         if (ret) {
1718                 PMD_INIT_LOG(ERR, "Failed to initialize VLAN config: %d", ret);
1719                 goto err_init_hardware;
1720         }
1721
1722         ret = hns3_config_gro(hw, false);
1723         if (ret) {
1724                 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
1725                 goto err_init_hardware;
1726         }
1727
1728         /*
1729          * In the initialization clearing the all hardware mapping relationship
1730          * configurations between queues and interrupt vectors is needed, so
1731          * some error caused by the residual configurations, such as the
1732          * unexpected interrupt, can be avoid.
1733          */
1734         ret = hns3vf_init_ring_with_vector(hw);
1735         if (ret) {
1736                 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
1737                 goto err_init_hardware;
1738         }
1739
1740         ret = hns3vf_set_alive(hw, true);
1741         if (ret) {
1742                 PMD_INIT_LOG(ERR, "Failed to VF send alive to PF: %d", ret);
1743                 goto err_init_hardware;
1744         }
1745
1746         return 0;
1747
1748 err_init_hardware:
1749         (void)hns3vf_set_promisc_mode(hw, false, false, false);
1750         return ret;
1751 }
1752
1753 static int
1754 hns3vf_clear_vport_list(struct hns3_hw *hw)
1755 {
1756         return hns3_send_mbx_msg(hw, HNS3_MBX_HANDLE_VF_TBL,
1757                                  HNS3_MBX_VPORT_LIST_CLEAR, NULL, 0, false,
1758                                  NULL, 0);
1759 }
1760
1761 static int
1762 hns3vf_init_vf(struct rte_eth_dev *eth_dev)
1763 {
1764         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1765         struct hns3_adapter *hns = eth_dev->data->dev_private;
1766         struct hns3_hw *hw = &hns->hw;
1767         int ret;
1768
1769         PMD_INIT_FUNC_TRACE();
1770
1771         /* Get hardware io base address from pcie BAR2 IO space */
1772         hw->io_base = pci_dev->mem_resource[2].addr;
1773
1774         /* Firmware command queue initialize */
1775         ret = hns3_cmd_init_queue(hw);
1776         if (ret) {
1777                 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
1778                 goto err_cmd_init_queue;
1779         }
1780
1781         /* Firmware command initialize */
1782         ret = hns3_cmd_init(hw);
1783         if (ret) {
1784                 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
1785                 goto err_cmd_init;
1786         }
1787
1788         /* Get VF resource */
1789         ret = hns3_query_vf_resource(hw);
1790         if (ret)
1791                 goto err_cmd_init;
1792
1793         rte_spinlock_init(&hw->mbx_resp.lock);
1794
1795         hns3vf_clear_event_cause(hw, 0);
1796
1797         ret = rte_intr_callback_register(&pci_dev->intr_handle,
1798                                          hns3vf_interrupt_handler, eth_dev);
1799         if (ret) {
1800                 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
1801                 goto err_intr_callback_register;
1802         }
1803
1804         /* Enable interrupt */
1805         rte_intr_enable(&pci_dev->intr_handle);
1806         hns3vf_enable_irq0(hw);
1807
1808         /* Get configuration from PF */
1809         ret = hns3vf_get_configuration(hw);
1810         if (ret) {
1811                 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
1812                 goto err_get_config;
1813         }
1814
1815         ret = hns3_tqp_stats_init(hw);
1816         if (ret)
1817                 goto err_get_config;
1818
1819         ret = hns3vf_set_tc_queue_mapping(hns, hw->tqps_num, hw->tqps_num);
1820         if (ret) {
1821                 PMD_INIT_LOG(ERR, "failed to set tc info, ret = %d.", ret);
1822                 goto err_set_tc_queue;
1823         }
1824
1825         ret = hns3vf_clear_vport_list(hw);
1826         if (ret) {
1827                 PMD_INIT_LOG(ERR, "Failed to clear tbl list: %d", ret);
1828                 goto err_set_tc_queue;
1829         }
1830
1831         ret = hns3vf_init_hardware(hns);
1832         if (ret)
1833                 goto err_set_tc_queue;
1834
1835         hns3_rss_set_default_args(hw);
1836
1837         return 0;
1838
1839 err_set_tc_queue:
1840         hns3_tqp_stats_uninit(hw);
1841
1842 err_get_config:
1843         hns3vf_disable_irq0(hw);
1844         rte_intr_disable(&pci_dev->intr_handle);
1845         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1846                              eth_dev);
1847 err_intr_callback_register:
1848 err_cmd_init:
1849         hns3_cmd_uninit(hw);
1850         hns3_cmd_destroy_queue(hw);
1851 err_cmd_init_queue:
1852         hw->io_base = NULL;
1853
1854         return ret;
1855 }
1856
1857 static void
1858 hns3vf_uninit_vf(struct rte_eth_dev *eth_dev)
1859 {
1860         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1861         struct hns3_adapter *hns = eth_dev->data->dev_private;
1862         struct hns3_hw *hw = &hns->hw;
1863
1864         PMD_INIT_FUNC_TRACE();
1865
1866         hns3_rss_uninit(hns);
1867         (void)hns3_config_gro(hw, false);
1868         (void)hns3vf_set_alive(hw, false);
1869         (void)hns3vf_set_promisc_mode(hw, false, false, false);
1870         hns3_tqp_stats_uninit(hw);
1871         hns3vf_disable_irq0(hw);
1872         rte_intr_disable(&pci_dev->intr_handle);
1873         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1874                              eth_dev);
1875         hns3_cmd_uninit(hw);
1876         hns3_cmd_destroy_queue(hw);
1877         hw->io_base = NULL;
1878 }
1879
1880 static int
1881 hns3vf_do_stop(struct hns3_adapter *hns)
1882 {
1883         struct hns3_hw *hw = &hns->hw;
1884         int ret;
1885
1886         hw->mac.link_status = ETH_LINK_DOWN;
1887
1888         if (rte_atomic16_read(&hw->reset.disable_cmd) == 0) {
1889                 hns3vf_configure_mac_addr(hns, true);
1890                 ret = hns3_reset_all_tqps(hns);
1891                 if (ret) {
1892                         hns3_err(hw, "failed to reset all queues ret = %d",
1893                                  ret);
1894                         return ret;
1895                 }
1896         }
1897         return 0;
1898 }
1899
1900 static void
1901 hns3vf_unmap_rx_interrupt(struct rte_eth_dev *dev)
1902 {
1903         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1904         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1905         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1906         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
1907         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
1908         uint16_t q_id;
1909
1910         if (dev->data->dev_conf.intr_conf.rxq == 0)
1911                 return;
1912
1913         /* unmap the ring with vector */
1914         if (rte_intr_allow_others(intr_handle)) {
1915                 vec = RTE_INTR_VEC_RXTX_OFFSET;
1916                 base = RTE_INTR_VEC_RXTX_OFFSET;
1917         }
1918         if (rte_intr_dp_is_en(intr_handle)) {
1919                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
1920                         (void)hns3vf_bind_ring_with_vector(hw, vec, false,
1921                                                            HNS3_RING_TYPE_RX,
1922                                                            q_id);
1923                         if (vec < base + intr_handle->nb_efd - 1)
1924                                 vec++;
1925                 }
1926         }
1927         /* Clean datapath event and queue/vec mapping */
1928         rte_intr_efd_disable(intr_handle);
1929         if (intr_handle->intr_vec) {
1930                 rte_free(intr_handle->intr_vec);
1931                 intr_handle->intr_vec = NULL;
1932         }
1933 }
1934
1935 static int
1936 hns3vf_dev_stop(struct rte_eth_dev *dev)
1937 {
1938         struct hns3_adapter *hns = dev->data->dev_private;
1939         struct hns3_hw *hw = &hns->hw;
1940
1941         PMD_INIT_FUNC_TRACE();
1942         dev->data->dev_started = 0;
1943
1944         hw->adapter_state = HNS3_NIC_STOPPING;
1945         hns3_set_rxtx_function(dev);
1946         rte_wmb();
1947         /* Disable datapath on secondary process. */
1948         hns3_mp_req_stop_rxtx(dev);
1949         /* Prevent crashes when queues are still in use. */
1950         rte_delay_ms(hw->tqps_num);
1951
1952         rte_spinlock_lock(&hw->lock);
1953         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
1954                 hns3_stop_tqps(hw);
1955                 hns3vf_do_stop(hns);
1956                 hns3vf_unmap_rx_interrupt(dev);
1957                 hns3_dev_release_mbufs(hns);
1958                 hw->adapter_state = HNS3_NIC_CONFIGURED;
1959         }
1960         hns3_rx_scattered_reset(dev);
1961         rte_eal_alarm_cancel(hns3vf_service_handler, dev);
1962         rte_spinlock_unlock(&hw->lock);
1963
1964         return 0;
1965 }
1966
1967 static int
1968 hns3vf_dev_close(struct rte_eth_dev *eth_dev)
1969 {
1970         struct hns3_adapter *hns = eth_dev->data->dev_private;
1971         struct hns3_hw *hw = &hns->hw;
1972         int ret = 0;
1973
1974         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1975                 rte_free(eth_dev->process_private);
1976                 eth_dev->process_private = NULL;
1977                 return 0;
1978         }
1979
1980         if (hw->adapter_state == HNS3_NIC_STARTED)
1981                 ret = hns3vf_dev_stop(eth_dev);
1982
1983         hw->adapter_state = HNS3_NIC_CLOSING;
1984         hns3_reset_abort(hns);
1985         hw->adapter_state = HNS3_NIC_CLOSED;
1986         rte_eal_alarm_cancel(hns3vf_keep_alive_handler, eth_dev);
1987         hns3vf_configure_all_mc_mac_addr(hns, true);
1988         hns3vf_remove_all_vlan_table(hns);
1989         hns3vf_uninit_vf(eth_dev);
1990         hns3_free_all_queues(eth_dev);
1991         rte_free(hw->reset.wait_data);
1992         rte_free(eth_dev->process_private);
1993         eth_dev->process_private = NULL;
1994         hns3_mp_uninit_primary();
1995         hns3_warn(hw, "Close port %u finished", hw->data->port_id);
1996
1997         return ret;
1998 }
1999
2000 static int
2001 hns3vf_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2002                       size_t fw_size)
2003 {
2004         struct hns3_adapter *hns = eth_dev->data->dev_private;
2005         struct hns3_hw *hw = &hns->hw;
2006         uint32_t version = hw->fw_version;
2007         int ret;
2008
2009         ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2010                        hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2011                                       HNS3_FW_VERSION_BYTE3_S),
2012                        hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2013                                       HNS3_FW_VERSION_BYTE2_S),
2014                        hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2015                                       HNS3_FW_VERSION_BYTE1_S),
2016                        hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2017                                       HNS3_FW_VERSION_BYTE0_S));
2018         ret += 1; /* add the size of '\0' */
2019         if (fw_size < (uint32_t)ret)
2020                 return ret;
2021         else
2022                 return 0;
2023 }
2024
2025 static int
2026 hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
2027                        __rte_unused int wait_to_complete)
2028 {
2029         struct hns3_adapter *hns = eth_dev->data->dev_private;
2030         struct hns3_hw *hw = &hns->hw;
2031         struct hns3_mac *mac = &hw->mac;
2032         struct rte_eth_link new_link;
2033
2034         memset(&new_link, 0, sizeof(new_link));
2035         switch (mac->link_speed) {
2036         case ETH_SPEED_NUM_10M:
2037         case ETH_SPEED_NUM_100M:
2038         case ETH_SPEED_NUM_1G:
2039         case ETH_SPEED_NUM_10G:
2040         case ETH_SPEED_NUM_25G:
2041         case ETH_SPEED_NUM_40G:
2042         case ETH_SPEED_NUM_50G:
2043         case ETH_SPEED_NUM_100G:
2044         case ETH_SPEED_NUM_200G:
2045                 new_link.link_speed = mac->link_speed;
2046                 break;
2047         default:
2048                 new_link.link_speed = ETH_SPEED_NUM_100M;
2049                 break;
2050         }
2051
2052         new_link.link_duplex = mac->link_duplex;
2053         new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2054         new_link.link_autoneg =
2055             !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2056
2057         return rte_eth_linkstatus_set(eth_dev, &new_link);
2058 }
2059
2060 static int
2061 hns3vf_do_start(struct hns3_adapter *hns, bool reset_queue)
2062 {
2063         struct hns3_hw *hw = &hns->hw;
2064         uint16_t nb_rx_q = hw->data->nb_rx_queues;
2065         uint16_t nb_tx_q = hw->data->nb_tx_queues;
2066         int ret;
2067
2068         ret = hns3vf_set_tc_queue_mapping(hns, nb_rx_q, nb_tx_q);
2069         if (ret)
2070                 return ret;
2071
2072         ret = hns3_init_queues(hns, reset_queue);
2073         if (ret)
2074                 hns3_err(hw, "failed to init queues, ret = %d.", ret);
2075
2076         return ret;
2077 }
2078
2079 static int
2080 hns3vf_map_rx_interrupt(struct rte_eth_dev *dev)
2081 {
2082         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2083         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2084         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2085         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
2086         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
2087         uint32_t intr_vector;
2088         uint16_t q_id;
2089         int ret;
2090
2091         /*
2092          * hns3 needs a separate interrupt to be used as event interrupt which
2093          * could not be shared with task queue pair, so KERNEL drivers need
2094          * support multiple interrupt vectors.
2095          */
2096         if (dev->data->dev_conf.intr_conf.rxq == 0 ||
2097             !rte_intr_cap_multiple(intr_handle))
2098                 return 0;
2099
2100         rte_intr_disable(intr_handle);
2101         intr_vector = hw->used_rx_queues;
2102         /* It creates event fd for each intr vector when MSIX is used */
2103         if (rte_intr_efd_enable(intr_handle, intr_vector))
2104                 return -EINVAL;
2105
2106         if (intr_handle->intr_vec == NULL) {
2107                 intr_handle->intr_vec =
2108                         rte_zmalloc("intr_vec",
2109                                     hw->used_rx_queues * sizeof(int), 0);
2110                 if (intr_handle->intr_vec == NULL) {
2111                         hns3_err(hw, "Failed to allocate %u rx_queues"
2112                                      " intr_vec", hw->used_rx_queues);
2113                         ret = -ENOMEM;
2114                         goto vf_alloc_intr_vec_error;
2115                 }
2116         }
2117
2118         if (rte_intr_allow_others(intr_handle)) {
2119                 vec = RTE_INTR_VEC_RXTX_OFFSET;
2120                 base = RTE_INTR_VEC_RXTX_OFFSET;
2121         }
2122
2123         for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2124                 ret = hns3vf_bind_ring_with_vector(hw, vec, true,
2125                                                    HNS3_RING_TYPE_RX, q_id);
2126                 if (ret)
2127                         goto vf_bind_vector_error;
2128                 intr_handle->intr_vec[q_id] = vec;
2129                 /*
2130                  * If there are not enough efds (e.g. not enough interrupt),
2131                  * remaining queues will be bond to the last interrupt.
2132                  */
2133                 if (vec < base + intr_handle->nb_efd - 1)
2134                         vec++;
2135         }
2136         rte_intr_enable(intr_handle);
2137         return 0;
2138
2139 vf_bind_vector_error:
2140         free(intr_handle->intr_vec);
2141         intr_handle->intr_vec = NULL;
2142 vf_alloc_intr_vec_error:
2143         rte_intr_efd_disable(intr_handle);
2144         return ret;
2145 }
2146
2147 static int
2148 hns3vf_restore_rx_interrupt(struct hns3_hw *hw)
2149 {
2150         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
2151         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2152         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2153         uint16_t q_id;
2154         int ret;
2155
2156         if (dev->data->dev_conf.intr_conf.rxq == 0)
2157                 return 0;
2158
2159         if (rte_intr_dp_is_en(intr_handle)) {
2160                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2161                         ret = hns3vf_bind_ring_with_vector(hw,
2162                                         intr_handle->intr_vec[q_id], true,
2163                                         HNS3_RING_TYPE_RX, q_id);
2164                         if (ret)
2165                                 return ret;
2166                 }
2167         }
2168
2169         return 0;
2170 }
2171
2172 static void
2173 hns3vf_restore_filter(struct rte_eth_dev *dev)
2174 {
2175         hns3_restore_rss_filter(dev);
2176 }
2177
2178 static int
2179 hns3vf_dev_start(struct rte_eth_dev *dev)
2180 {
2181         struct hns3_adapter *hns = dev->data->dev_private;
2182         struct hns3_hw *hw = &hns->hw;
2183         int ret;
2184
2185         PMD_INIT_FUNC_TRACE();
2186         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
2187                 return -EBUSY;
2188
2189         rte_spinlock_lock(&hw->lock);
2190         hw->adapter_state = HNS3_NIC_STARTING;
2191         ret = hns3vf_do_start(hns, true);
2192         if (ret) {
2193                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2194                 rte_spinlock_unlock(&hw->lock);
2195                 return ret;
2196         }
2197         ret = hns3vf_map_rx_interrupt(dev);
2198         if (ret) {
2199                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2200                 rte_spinlock_unlock(&hw->lock);
2201                 return ret;
2202         }
2203
2204         /*
2205          * There are three register used to control the status of a TQP
2206          * (contains a pair of Tx queue and Rx queue) in the new version network
2207          * engine. One is used to control the enabling of Tx queue, the other is
2208          * used to control the enabling of Rx queue, and the last is the master
2209          * switch used to control the enabling of the tqp. The Tx register and
2210          * TQP register must be enabled at the same time to enable a Tx queue.
2211          * The same applies to the Rx queue. For the older network enginem, this
2212          * function only refresh the enabled flag, and it is used to update the
2213          * status of queue in the dpdk framework.
2214          */
2215         ret = hns3_start_all_txqs(dev);
2216         if (ret) {
2217                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2218                 rte_spinlock_unlock(&hw->lock);
2219                 return ret;
2220         }
2221
2222         ret = hns3_start_all_rxqs(dev);
2223         if (ret) {
2224                 hns3_stop_all_txqs(dev);
2225                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2226                 rte_spinlock_unlock(&hw->lock);
2227                 return ret;
2228         }
2229
2230         hw->adapter_state = HNS3_NIC_STARTED;
2231         rte_spinlock_unlock(&hw->lock);
2232
2233         hns3_rx_scattered_calc(dev);
2234         hns3_set_rxtx_function(dev);
2235         hns3_mp_req_start_rxtx(dev);
2236         hns3vf_service_handler(dev);
2237
2238         hns3vf_restore_filter(dev);
2239
2240         /* Enable interrupt of all rx queues before enabling queues */
2241         hns3_dev_all_rx_queue_intr_enable(hw, true);
2242
2243         /*
2244          * After finished the initialization, start all tqps to receive/transmit
2245          * packets and refresh all queue status.
2246          */
2247         hns3_start_tqps(hw);
2248
2249         return ret;
2250 }
2251
2252 static bool
2253 is_vf_reset_done(struct hns3_hw *hw)
2254 {
2255 #define HNS3_FUN_RST_ING_BITS \
2256         (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) | \
2257          BIT(HNS3_VECTOR0_CORERESET_INT_B) | \
2258          BIT(HNS3_VECTOR0_IMPRESET_INT_B) | \
2259          BIT(HNS3_VECTOR0_FUNCRESET_INT_B))
2260
2261         uint32_t val;
2262
2263         if (hw->reset.level == HNS3_VF_RESET) {
2264                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
2265                 if (val & HNS3_VF_RST_ING_BIT)
2266                         return false;
2267         } else {
2268                 val = hns3_read_dev(hw, HNS3_FUN_RST_ING);
2269                 if (val & HNS3_FUN_RST_ING_BITS)
2270                         return false;
2271         }
2272         return true;
2273 }
2274
2275 bool
2276 hns3vf_is_reset_pending(struct hns3_adapter *hns)
2277 {
2278         struct hns3_hw *hw = &hns->hw;
2279         enum hns3_reset_level reset;
2280
2281         /*
2282          * According to the protocol of PCIe, FLR to a PF device resets the PF
2283          * state as well as the SR-IOV extended capability including VF Enable
2284          * which means that VFs no longer exist.
2285          *
2286          * HNS3_VF_FULL_RESET means PF device is in FLR reset. when PF device
2287          * is in FLR stage, the register state of VF device is not reliable,
2288          * so register states detection can not be carried out. In this case,
2289          * we just ignore the register states and return false to indicate that
2290          * there are no other reset states that need to be processed by driver.
2291          */
2292         if (hw->reset.level == HNS3_VF_FULL_RESET)
2293                 return false;
2294
2295         /* Check the registers to confirm whether there is reset pending */
2296         hns3vf_check_event_cause(hns, NULL);
2297         reset = hns3vf_get_reset_level(hw, &hw->reset.pending);
2298         if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
2299                 hns3_warn(hw, "High level reset %d is pending", reset);
2300                 return true;
2301         }
2302         return false;
2303 }
2304
2305 static int
2306 hns3vf_wait_hardware_ready(struct hns3_adapter *hns)
2307 {
2308         struct hns3_hw *hw = &hns->hw;
2309         struct hns3_wait_data *wait_data = hw->reset.wait_data;
2310         struct timeval tv;
2311
2312         if (wait_data->result == HNS3_WAIT_SUCCESS) {
2313                 /*
2314                  * After vf reset is ready, the PF may not have completed
2315                  * the reset processing. The vf sending mbox to PF may fail
2316                  * during the pf reset, so it is better to add extra delay.
2317                  */
2318                 if (hw->reset.level == HNS3_VF_FUNC_RESET ||
2319                     hw->reset.level == HNS3_FLR_RESET)
2320                         return 0;
2321                 /* Reset retry process, no need to add extra delay. */
2322                 if (hw->reset.attempts)
2323                         return 0;
2324                 if (wait_data->check_completion == NULL)
2325                         return 0;
2326
2327                 wait_data->check_completion = NULL;
2328                 wait_data->interval = 1 * MSEC_PER_SEC * USEC_PER_MSEC;
2329                 wait_data->count = 1;
2330                 wait_data->result = HNS3_WAIT_REQUEST;
2331                 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback,
2332                                   wait_data);
2333                 hns3_warn(hw, "hardware is ready, delay 1 sec for PF reset complete");
2334                 return -EAGAIN;
2335         } else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
2336                 gettimeofday(&tv, NULL);
2337                 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
2338                           tv.tv_sec, tv.tv_usec);
2339                 return -ETIME;
2340         } else if (wait_data->result == HNS3_WAIT_REQUEST)
2341                 return -EAGAIN;
2342
2343         wait_data->hns = hns;
2344         wait_data->check_completion = is_vf_reset_done;
2345         wait_data->end_ms = (uint64_t)HNS3VF_RESET_WAIT_CNT *
2346                                       HNS3VF_RESET_WAIT_MS + get_timeofday_ms();
2347         wait_data->interval = HNS3VF_RESET_WAIT_MS * USEC_PER_MSEC;
2348         wait_data->count = HNS3VF_RESET_WAIT_CNT;
2349         wait_data->result = HNS3_WAIT_REQUEST;
2350         rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
2351         return -EAGAIN;
2352 }
2353
2354 static int
2355 hns3vf_prepare_reset(struct hns3_adapter *hns)
2356 {
2357         struct hns3_hw *hw = &hns->hw;
2358         int ret = 0;
2359
2360         if (hw->reset.level == HNS3_VF_FUNC_RESET) {
2361                 ret = hns3_send_mbx_msg(hw, HNS3_MBX_RESET, 0, NULL,
2362                                         0, true, NULL, 0);
2363         }
2364         rte_atomic16_set(&hw->reset.disable_cmd, 1);
2365
2366         return ret;
2367 }
2368
2369 static int
2370 hns3vf_stop_service(struct hns3_adapter *hns)
2371 {
2372         struct hns3_hw *hw = &hns->hw;
2373         struct rte_eth_dev *eth_dev;
2374
2375         eth_dev = &rte_eth_devices[hw->data->port_id];
2376         if (hw->adapter_state == HNS3_NIC_STARTED)
2377                 rte_eal_alarm_cancel(hns3vf_service_handler, eth_dev);
2378         hw->mac.link_status = ETH_LINK_DOWN;
2379
2380         hns3_set_rxtx_function(eth_dev);
2381         rte_wmb();
2382         /* Disable datapath on secondary process. */
2383         hns3_mp_req_stop_rxtx(eth_dev);
2384         rte_delay_ms(hw->tqps_num);
2385
2386         rte_spinlock_lock(&hw->lock);
2387         if (hw->adapter_state == HNS3_NIC_STARTED ||
2388             hw->adapter_state == HNS3_NIC_STOPPING) {
2389                 hns3_enable_all_queues(hw, false);
2390                 hns3vf_do_stop(hns);
2391                 hw->reset.mbuf_deferred_free = true;
2392         } else
2393                 hw->reset.mbuf_deferred_free = false;
2394
2395         /*
2396          * It is cumbersome for hardware to pick-and-choose entries for deletion
2397          * from table space. Hence, for function reset software intervention is
2398          * required to delete the entries.
2399          */
2400         if (rte_atomic16_read(&hw->reset.disable_cmd) == 0)
2401                 hns3vf_configure_all_mc_mac_addr(hns, true);
2402         rte_spinlock_unlock(&hw->lock);
2403
2404         return 0;
2405 }
2406
2407 static int
2408 hns3vf_start_service(struct hns3_adapter *hns)
2409 {
2410         struct hns3_hw *hw = &hns->hw;
2411         struct rte_eth_dev *eth_dev;
2412
2413         eth_dev = &rte_eth_devices[hw->data->port_id];
2414         hns3_set_rxtx_function(eth_dev);
2415         hns3_mp_req_start_rxtx(eth_dev);
2416         if (hw->adapter_state == HNS3_NIC_STARTED) {
2417                 hns3vf_service_handler(eth_dev);
2418
2419                 /* Enable interrupt of all rx queues before enabling queues */
2420                 hns3_dev_all_rx_queue_intr_enable(hw, true);
2421                 /*
2422                  * Enable state of each rxq and txq will be recovered after
2423                  * reset, so we need to restore them before enable all tqps;
2424                  */
2425                 hns3_restore_tqp_enable_state(hw);
2426                 /*
2427                  * When finished the initialization, enable queues to receive
2428                  * and transmit packets.
2429                  */
2430                 hns3_enable_all_queues(hw, true);
2431         }
2432
2433         return 0;
2434 }
2435
2436 static int
2437 hns3vf_check_default_mac_change(struct hns3_hw *hw)
2438 {
2439         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2440         struct rte_ether_addr *hw_mac;
2441         int ret;
2442
2443         /*
2444          * The hns3 PF ethdev driver in kernel support setting VF MAC address
2445          * on the host by "ip link set ..." command. If the hns3 PF kernel
2446          * ethdev driver sets the MAC address for VF device after the
2447          * initialization of the related VF device, the PF driver will notify
2448          * VF driver to reset VF device to make the new MAC address effective
2449          * immediately. The hns3 VF PMD driver should check whether the MAC
2450          * address has been changed by the PF kernel ethdev driver, if changed
2451          * VF driver should configure hardware using the new MAC address in the
2452          * recovering hardware configuration stage of the reset process.
2453          */
2454         ret = hns3vf_get_host_mac_addr(hw);
2455         if (ret)
2456                 return ret;
2457
2458         hw_mac = (struct rte_ether_addr *)hw->mac.mac_addr;
2459         ret = rte_is_zero_ether_addr(hw_mac);
2460         if (ret) {
2461                 rte_ether_addr_copy(&hw->data->mac_addrs[0], hw_mac);
2462         } else {
2463                 ret = rte_is_same_ether_addr(&hw->data->mac_addrs[0], hw_mac);
2464                 if (!ret) {
2465                         rte_ether_addr_copy(hw_mac, &hw->data->mac_addrs[0]);
2466                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2467                                               &hw->data->mac_addrs[0]);
2468                         hns3_warn(hw, "Default MAC address has been changed to:"
2469                                   " %s by the host PF kernel ethdev driver",
2470                                   mac_str);
2471                 }
2472         }
2473
2474         return 0;
2475 }
2476
2477 static int
2478 hns3vf_restore_conf(struct hns3_adapter *hns)
2479 {
2480         struct hns3_hw *hw = &hns->hw;
2481         int ret;
2482
2483         ret = hns3vf_check_default_mac_change(hw);
2484         if (ret)
2485                 return ret;
2486
2487         ret = hns3vf_configure_mac_addr(hns, false);
2488         if (ret)
2489                 return ret;
2490
2491         ret = hns3vf_configure_all_mc_mac_addr(hns, false);
2492         if (ret)
2493                 goto err_mc_mac;
2494
2495         ret = hns3vf_restore_promisc(hns);
2496         if (ret)
2497                 goto err_vlan_table;
2498
2499         ret = hns3vf_restore_vlan_conf(hns);
2500         if (ret)
2501                 goto err_vlan_table;
2502
2503         ret = hns3vf_get_port_base_vlan_filter_state(hw);
2504         if (ret)
2505                 goto err_vlan_table;
2506
2507         ret = hns3vf_restore_rx_interrupt(hw);
2508         if (ret)
2509                 goto err_vlan_table;
2510
2511         ret = hns3_restore_gro_conf(hw);
2512         if (ret)
2513                 goto err_vlan_table;
2514
2515         if (hw->adapter_state == HNS3_NIC_STARTED) {
2516                 ret = hns3vf_do_start(hns, false);
2517                 if (ret)
2518                         goto err_vlan_table;
2519                 hns3_info(hw, "hns3vf dev restart successful!");
2520         } else if (hw->adapter_state == HNS3_NIC_STOPPING)
2521                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2522         return 0;
2523
2524 err_vlan_table:
2525         hns3vf_configure_all_mc_mac_addr(hns, true);
2526 err_mc_mac:
2527         hns3vf_configure_mac_addr(hns, true);
2528         return ret;
2529 }
2530
2531 static enum hns3_reset_level
2532 hns3vf_get_reset_level(struct hns3_hw *hw, uint64_t *levels)
2533 {
2534         enum hns3_reset_level reset_level;
2535
2536         /* return the highest priority reset level amongst all */
2537         if (hns3_atomic_test_bit(HNS3_VF_RESET, levels))
2538                 reset_level = HNS3_VF_RESET;
2539         else if (hns3_atomic_test_bit(HNS3_VF_FULL_RESET, levels))
2540                 reset_level = HNS3_VF_FULL_RESET;
2541         else if (hns3_atomic_test_bit(HNS3_VF_PF_FUNC_RESET, levels))
2542                 reset_level = HNS3_VF_PF_FUNC_RESET;
2543         else if (hns3_atomic_test_bit(HNS3_VF_FUNC_RESET, levels))
2544                 reset_level = HNS3_VF_FUNC_RESET;
2545         else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
2546                 reset_level = HNS3_FLR_RESET;
2547         else
2548                 reset_level = HNS3_NONE_RESET;
2549
2550         if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
2551                 return HNS3_NONE_RESET;
2552
2553         return reset_level;
2554 }
2555
2556 static void
2557 hns3vf_reset_service(void *param)
2558 {
2559         struct hns3_adapter *hns = (struct hns3_adapter *)param;
2560         struct hns3_hw *hw = &hns->hw;
2561         enum hns3_reset_level reset_level;
2562         struct timeval tv_delta;
2563         struct timeval tv_start;
2564         struct timeval tv;
2565         uint64_t msec;
2566
2567         /*
2568          * The interrupt is not triggered within the delay time.
2569          * The interrupt may have been lost. It is necessary to handle
2570          * the interrupt to recover from the error.
2571          */
2572         if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_DEFERRED) {
2573                 rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_REQUESTED);
2574                 hns3_err(hw, "Handling interrupts in delayed tasks");
2575                 hns3vf_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
2576                 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2577                 if (reset_level == HNS3_NONE_RESET) {
2578                         hns3_err(hw, "No reset level is set, try global reset");
2579                         hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
2580                 }
2581         }
2582         rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_NONE);
2583
2584         /*
2585          * Hardware reset has been notified, we now have to poll & check if
2586          * hardware has actually completed the reset sequence.
2587          */
2588         reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2589         if (reset_level != HNS3_NONE_RESET) {
2590                 gettimeofday(&tv_start, NULL);
2591                 hns3_reset_process(hns, reset_level);
2592                 gettimeofday(&tv, NULL);
2593                 timersub(&tv, &tv_start, &tv_delta);
2594                 msec = tv_delta.tv_sec * MSEC_PER_SEC +
2595                        tv_delta.tv_usec / USEC_PER_MSEC;
2596                 if (msec > HNS3_RESET_PROCESS_MS)
2597                         hns3_err(hw, "%d handle long time delta %" PRIx64
2598                                  " ms time=%ld.%.6ld",
2599                                  hw->reset.level, msec, tv.tv_sec, tv.tv_usec);
2600         }
2601 }
2602
2603 static int
2604 hns3vf_reinit_dev(struct hns3_adapter *hns)
2605 {
2606         struct rte_eth_dev *eth_dev = &rte_eth_devices[hns->hw.data->port_id];
2607         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2608         struct hns3_hw *hw = &hns->hw;
2609         int ret;
2610
2611         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2612                 rte_intr_disable(&pci_dev->intr_handle);
2613                 ret = hns3vf_set_bus_master(pci_dev, true);
2614                 if (ret < 0) {
2615                         hns3_err(hw, "failed to set pci bus, ret = %d", ret);
2616                         return ret;
2617                 }
2618         }
2619
2620         /* Firmware command initialize */
2621         ret = hns3_cmd_init(hw);
2622         if (ret) {
2623                 hns3_err(hw, "Failed to init cmd: %d", ret);
2624                 return ret;
2625         }
2626
2627         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2628                 /*
2629                  * UIO enables msix by writing the pcie configuration space
2630                  * vfio_pci enables msix in rte_intr_enable.
2631                  */
2632                 if (pci_dev->kdrv == RTE_PCI_KDRV_IGB_UIO ||
2633                     pci_dev->kdrv == RTE_PCI_KDRV_UIO_GENERIC) {
2634                         if (hns3vf_enable_msix(pci_dev, true))
2635                                 hns3_err(hw, "Failed to enable msix");
2636                 }
2637
2638                 rte_intr_enable(&pci_dev->intr_handle);
2639         }
2640
2641         ret = hns3_reset_all_tqps(hns);
2642         if (ret) {
2643                 hns3_err(hw, "Failed to reset all queues: %d", ret);
2644                 return ret;
2645         }
2646
2647         ret = hns3vf_init_hardware(hns);
2648         if (ret) {
2649                 hns3_err(hw, "Failed to init hardware: %d", ret);
2650                 return ret;
2651         }
2652
2653         return 0;
2654 }
2655
2656 static const struct eth_dev_ops hns3vf_eth_dev_ops = {
2657         .dev_configure      = hns3vf_dev_configure,
2658         .dev_start          = hns3vf_dev_start,
2659         .dev_stop           = hns3vf_dev_stop,
2660         .dev_close          = hns3vf_dev_close,
2661         .mtu_set            = hns3vf_dev_mtu_set,
2662         .promiscuous_enable = hns3vf_dev_promiscuous_enable,
2663         .promiscuous_disable = hns3vf_dev_promiscuous_disable,
2664         .allmulticast_enable = hns3vf_dev_allmulticast_enable,
2665         .allmulticast_disable = hns3vf_dev_allmulticast_disable,
2666         .stats_get          = hns3_stats_get,
2667         .stats_reset        = hns3_stats_reset,
2668         .xstats_get         = hns3_dev_xstats_get,
2669         .xstats_get_names   = hns3_dev_xstats_get_names,
2670         .xstats_reset       = hns3_dev_xstats_reset,
2671         .xstats_get_by_id   = hns3_dev_xstats_get_by_id,
2672         .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
2673         .dev_infos_get      = hns3vf_dev_infos_get,
2674         .fw_version_get     = hns3vf_fw_version_get,
2675         .rx_queue_setup     = hns3_rx_queue_setup,
2676         .tx_queue_setup     = hns3_tx_queue_setup,
2677         .rx_queue_release   = hns3_dev_rx_queue_release,
2678         .tx_queue_release   = hns3_dev_tx_queue_release,
2679         .rx_queue_start     = hns3_dev_rx_queue_start,
2680         .rx_queue_stop      = hns3_dev_rx_queue_stop,
2681         .tx_queue_start     = hns3_dev_tx_queue_start,
2682         .tx_queue_stop      = hns3_dev_tx_queue_stop,
2683         .rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
2684         .rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
2685         .rxq_info_get       = hns3_rxq_info_get,
2686         .txq_info_get       = hns3_txq_info_get,
2687         .rx_burst_mode_get  = hns3_rx_burst_mode_get,
2688         .tx_burst_mode_get  = hns3_tx_burst_mode_get,
2689         .mac_addr_add       = hns3vf_add_mac_addr,
2690         .mac_addr_remove    = hns3vf_remove_mac_addr,
2691         .mac_addr_set       = hns3vf_set_default_mac_addr,
2692         .set_mc_addr_list   = hns3vf_set_mc_mac_addr_list,
2693         .link_update        = hns3vf_dev_link_update,
2694         .rss_hash_update    = hns3_dev_rss_hash_update,
2695         .rss_hash_conf_get  = hns3_dev_rss_hash_conf_get,
2696         .reta_update        = hns3_dev_rss_reta_update,
2697         .reta_query         = hns3_dev_rss_reta_query,
2698         .filter_ctrl        = hns3_dev_filter_ctrl,
2699         .vlan_filter_set    = hns3vf_vlan_filter_set,
2700         .vlan_offload_set   = hns3vf_vlan_offload_set,
2701         .get_reg            = hns3_get_regs,
2702         .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
2703 };
2704
2705 static const struct hns3_reset_ops hns3vf_reset_ops = {
2706         .reset_service       = hns3vf_reset_service,
2707         .stop_service        = hns3vf_stop_service,
2708         .prepare_reset       = hns3vf_prepare_reset,
2709         .wait_hardware_ready = hns3vf_wait_hardware_ready,
2710         .reinit_dev          = hns3vf_reinit_dev,
2711         .restore_conf        = hns3vf_restore_conf,
2712         .start_service       = hns3vf_start_service,
2713 };
2714
2715 static int
2716 hns3vf_dev_init(struct rte_eth_dev *eth_dev)
2717 {
2718         struct hns3_adapter *hns = eth_dev->data->dev_private;
2719         struct hns3_hw *hw = &hns->hw;
2720         int ret;
2721
2722         PMD_INIT_FUNC_TRACE();
2723
2724         eth_dev->process_private = (struct hns3_process_private *)
2725             rte_zmalloc_socket("hns3_filter_list",
2726                                sizeof(struct hns3_process_private),
2727                                RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
2728         if (eth_dev->process_private == NULL) {
2729                 PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
2730                 return -ENOMEM;
2731         }
2732
2733         /* initialize flow filter lists */
2734         hns3_filterlist_init(eth_dev);
2735
2736         hns3_set_rxtx_function(eth_dev);
2737         eth_dev->dev_ops = &hns3vf_eth_dev_ops;
2738         eth_dev->rx_queue_count = hns3_rx_queue_count;
2739         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2740                 ret = hns3_mp_init_secondary();
2741                 if (ret) {
2742                         PMD_INIT_LOG(ERR, "Failed to init for secondary "
2743                                           "process, ret = %d", ret);
2744                         goto err_mp_init_secondary;
2745                 }
2746
2747                 hw->secondary_cnt++;
2748                 return 0;
2749         }
2750
2751         ret = hns3_mp_init_primary();
2752         if (ret) {
2753                 PMD_INIT_LOG(ERR,
2754                              "Failed to init for primary process, ret = %d",
2755                              ret);
2756                 goto err_mp_init_primary;
2757         }
2758
2759         hw->adapter_state = HNS3_NIC_UNINITIALIZED;
2760         hns->is_vf = true;
2761         hw->data = eth_dev->data;
2762
2763         ret = hns3_reset_init(hw);
2764         if (ret)
2765                 goto err_init_reset;
2766         hw->reset.ops = &hns3vf_reset_ops;
2767
2768         ret = hns3vf_init_vf(eth_dev);
2769         if (ret) {
2770                 PMD_INIT_LOG(ERR, "Failed to init vf: %d", ret);
2771                 goto err_init_vf;
2772         }
2773
2774         /* Allocate memory for storing MAC addresses */
2775         eth_dev->data->mac_addrs = rte_zmalloc("hns3vf-mac",
2776                                                sizeof(struct rte_ether_addr) *
2777                                                HNS3_VF_UC_MACADDR_NUM, 0);
2778         if (eth_dev->data->mac_addrs == NULL) {
2779                 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
2780                              "to store MAC addresses",
2781                              sizeof(struct rte_ether_addr) *
2782                              HNS3_VF_UC_MACADDR_NUM);
2783                 ret = -ENOMEM;
2784                 goto err_rte_zmalloc;
2785         }
2786
2787         /*
2788          * The hns3 PF ethdev driver in kernel support setting VF MAC address
2789          * on the host by "ip link set ..." command. To avoid some incorrect
2790          * scenes, for example, hns3 VF PMD driver fails to receive and send
2791          * packets after user configure the MAC address by using the
2792          * "ip link set ..." command, hns3 VF PMD driver keep the same MAC
2793          * address strategy as the hns3 kernel ethdev driver in the
2794          * initialization. If user configure a MAC address by the ip command
2795          * for VF device, then hns3 VF PMD driver will start with it, otherwise
2796          * start with a random MAC address in the initialization.
2797          */
2798         if (rte_is_zero_ether_addr((struct rte_ether_addr *)hw->mac.mac_addr))
2799                 rte_eth_random_addr(hw->mac.mac_addr);
2800         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
2801                             &eth_dev->data->mac_addrs[0]);
2802
2803         hw->adapter_state = HNS3_NIC_INITIALIZED;
2804
2805         if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_PENDING) {
2806                 hns3_err(hw, "Reschedule reset service after dev_init");
2807                 hns3_schedule_reset(hns);
2808         } else {
2809                 /* IMP will wait ready flag before reset */
2810                 hns3_notify_reset_ready(hw, false);
2811         }
2812         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
2813                           eth_dev);
2814         return 0;
2815
2816 err_rte_zmalloc:
2817         hns3vf_uninit_vf(eth_dev);
2818
2819 err_init_vf:
2820         rte_free(hw->reset.wait_data);
2821
2822 err_init_reset:
2823         hns3_mp_uninit_primary();
2824
2825 err_mp_init_primary:
2826 err_mp_init_secondary:
2827         eth_dev->dev_ops = NULL;
2828         eth_dev->rx_pkt_burst = NULL;
2829         eth_dev->tx_pkt_burst = NULL;
2830         eth_dev->tx_pkt_prepare = NULL;
2831         rte_free(eth_dev->process_private);
2832         eth_dev->process_private = NULL;
2833
2834         return ret;
2835 }
2836
2837 static int
2838 hns3vf_dev_uninit(struct rte_eth_dev *eth_dev)
2839 {
2840         struct hns3_adapter *hns = eth_dev->data->dev_private;
2841         struct hns3_hw *hw = &hns->hw;
2842
2843         PMD_INIT_FUNC_TRACE();
2844
2845         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2846                 rte_free(eth_dev->process_private);
2847                 eth_dev->process_private = NULL;
2848                 return 0;
2849         }
2850
2851         if (hw->adapter_state < HNS3_NIC_CLOSING)
2852                 hns3vf_dev_close(eth_dev);
2853
2854         hw->adapter_state = HNS3_NIC_REMOVED;
2855         return 0;
2856 }
2857
2858 static int
2859 eth_hns3vf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2860                      struct rte_pci_device *pci_dev)
2861 {
2862         return rte_eth_dev_pci_generic_probe(pci_dev,
2863                                              sizeof(struct hns3_adapter),
2864                                              hns3vf_dev_init);
2865 }
2866
2867 static int
2868 eth_hns3vf_pci_remove(struct rte_pci_device *pci_dev)
2869 {
2870         return rte_eth_dev_pci_generic_remove(pci_dev, hns3vf_dev_uninit);
2871 }
2872
2873 static const struct rte_pci_id pci_id_hns3vf_map[] = {
2874         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_VF) },
2875         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_PFC_VF) },
2876         { .vendor_id = 0, }, /* sentinel */
2877 };
2878
2879 static struct rte_pci_driver rte_hns3vf_pmd = {
2880         .id_table = pci_id_hns3vf_map,
2881         .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
2882         .probe = eth_hns3vf_pci_probe,
2883         .remove = eth_hns3vf_pci_remove,
2884 };
2885
2886 RTE_PMD_REGISTER_PCI(net_hns3_vf, rte_hns3vf_pmd);
2887 RTE_PMD_REGISTER_PCI_TABLE(net_hns3_vf, pci_id_hns3vf_map);
2888 RTE_PMD_REGISTER_KMOD_DEP(net_hns3_vf, "* igb_uio | vfio-pci");