34a6927e77afa7d3f42c0abf925f9bbaf0a16487
[dpdk.git] / drivers / net / hns3 / hns3_ethdev_vf.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4
5 #include <linux/pci_regs.h>
6 #include <rte_alarm.h>
7 #include <ethdev_pci.h>
8 #include <rte_io.h>
9 #include <rte_pci.h>
10 #include <rte_vfio.h>
11
12 #include "hns3_ethdev.h"
13 #include "hns3_logs.h"
14 #include "hns3_rxtx.h"
15 #include "hns3_regs.h"
16 #include "hns3_intr.h"
17 #include "hns3_dcb.h"
18 #include "hns3_mp.h"
19
20 #define HNS3VF_KEEP_ALIVE_INTERVAL      2000000 /* us */
21 #define HNS3VF_SERVICE_INTERVAL         1000000 /* us */
22
23 #define HNS3VF_RESET_WAIT_MS    20
24 #define HNS3VF_RESET_WAIT_CNT   2000
25
26 /* Reset related Registers */
27 #define HNS3_GLOBAL_RESET_BIT           0
28 #define HNS3_CORE_RESET_BIT             1
29 #define HNS3_IMP_RESET_BIT              2
30 #define HNS3_FUN_RST_ING_B              0
31
32 enum hns3vf_evt_cause {
33         HNS3VF_VECTOR0_EVENT_RST,
34         HNS3VF_VECTOR0_EVENT_MBX,
35         HNS3VF_VECTOR0_EVENT_OTHER,
36 };
37
38 static enum hns3_reset_level hns3vf_get_reset_level(struct hns3_hw *hw,
39                                                     uint64_t *levels);
40 static int hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
41 static int hns3vf_dev_configure_vlan(struct rte_eth_dev *dev);
42
43 static int hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
44                                   struct rte_ether_addr *mac_addr);
45 static int hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
46                                      struct rte_ether_addr *mac_addr);
47 /* set PCI bus mastering */
48 static int
49 hns3vf_set_bus_master(const struct rte_pci_device *device, bool op)
50 {
51         uint16_t reg;
52         int ret;
53
54         ret = rte_pci_read_config(device, &reg, sizeof(reg), PCI_COMMAND);
55         if (ret < 0) {
56                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
57                              PCI_COMMAND);
58                 return ret;
59         }
60
61         if (op)
62                 /* set the master bit */
63                 reg |= PCI_COMMAND_MASTER;
64         else
65                 reg &= ~(PCI_COMMAND_MASTER);
66
67         return rte_pci_write_config(device, &reg, sizeof(reg), PCI_COMMAND);
68 }
69
70 /**
71  * hns3vf_find_pci_capability - lookup a capability in the PCI capability list
72  * @cap: the capability
73  *
74  * Return the address of the given capability within the PCI capability list.
75  */
76 static int
77 hns3vf_find_pci_capability(const struct rte_pci_device *device, int cap)
78 {
79 #define MAX_PCIE_CAPABILITY 48
80         uint16_t status;
81         uint8_t pos;
82         uint8_t id;
83         int ttl;
84         int ret;
85
86         ret = rte_pci_read_config(device, &status, sizeof(status), PCI_STATUS);
87         if (ret < 0) {
88                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x", PCI_STATUS);
89                 return 0;
90         }
91
92         if (!(status & PCI_STATUS_CAP_LIST))
93                 return 0;
94
95         ttl = MAX_PCIE_CAPABILITY;
96         ret = rte_pci_read_config(device, &pos, sizeof(pos),
97                                   PCI_CAPABILITY_LIST);
98         if (ret < 0) {
99                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
100                              PCI_CAPABILITY_LIST);
101                 return 0;
102         }
103
104         while (ttl-- && pos >= PCI_STD_HEADER_SIZEOF) {
105                 ret = rte_pci_read_config(device, &id, sizeof(id),
106                                           (pos + PCI_CAP_LIST_ID));
107                 if (ret < 0) {
108                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
109                                      (pos + PCI_CAP_LIST_ID));
110                         break;
111                 }
112
113                 if (id == 0xFF)
114                         break;
115
116                 if (id == cap)
117                         return (int)pos;
118
119                 ret = rte_pci_read_config(device, &pos, sizeof(pos),
120                                           (pos + PCI_CAP_LIST_NEXT));
121                 if (ret < 0) {
122                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
123                                      (pos + PCI_CAP_LIST_NEXT));
124                         break;
125                 }
126         }
127         return 0;
128 }
129
130 static int
131 hns3vf_enable_msix(const struct rte_pci_device *device, bool op)
132 {
133         uint16_t control;
134         int pos;
135         int ret;
136
137         pos = hns3vf_find_pci_capability(device, PCI_CAP_ID_MSIX);
138         if (pos) {
139                 ret = rte_pci_read_config(device, &control, sizeof(control),
140                                     (pos + PCI_MSIX_FLAGS));
141                 if (ret < 0) {
142                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
143                                      (pos + PCI_MSIX_FLAGS));
144                         return -ENXIO;
145                 }
146
147                 if (op)
148                         control |= PCI_MSIX_FLAGS_ENABLE;
149                 else
150                         control &= ~PCI_MSIX_FLAGS_ENABLE;
151                 ret = rte_pci_write_config(device, &control, sizeof(control),
152                                           (pos + PCI_MSIX_FLAGS));
153                 if (ret < 0) {
154                         PMD_INIT_LOG(ERR, "failed to write PCI offset 0x%x",
155                                     (pos + PCI_MSIX_FLAGS));
156                 }
157                 return 0;
158         }
159         return -ENXIO;
160 }
161
162 static int
163 hns3vf_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
164 {
165         /* mac address was checked by upper level interface */
166         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
167         int ret;
168
169         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
170                                 HNS3_MBX_MAC_VLAN_UC_ADD, mac_addr->addr_bytes,
171                                 RTE_ETHER_ADDR_LEN, false, NULL, 0);
172         if (ret) {
173                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
174                                       mac_addr);
175                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
176                          mac_str, ret);
177         }
178         return ret;
179 }
180
181 static int
182 hns3vf_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
183 {
184         /* mac address was checked by upper level interface */
185         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
186         int ret;
187
188         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
189                                 HNS3_MBX_MAC_VLAN_UC_REMOVE,
190                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN,
191                                 false, NULL, 0);
192         if (ret) {
193                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
194                                       mac_addr);
195                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
196                          mac_str, ret);
197         }
198         return ret;
199 }
200
201 static int
202 hns3vf_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
203 {
204         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
205         struct rte_ether_addr *addr;
206         int ret;
207         int i;
208
209         for (i = 0; i < hw->mc_addrs_num; i++) {
210                 addr = &hw->mc_addrs[i];
211                 /* Check if there are duplicate addresses */
212                 if (rte_is_same_ether_addr(addr, mac_addr)) {
213                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
214                                               addr);
215                         hns3_err(hw, "failed to add mc mac addr, same addrs"
216                                  "(%s) is added by the set_mc_mac_addr_list "
217                                  "API", mac_str);
218                         return -EINVAL;
219                 }
220         }
221
222         ret = hns3vf_add_mc_mac_addr(hw, mac_addr);
223         if (ret) {
224                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
225                                       mac_addr);
226                 hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
227                          mac_str, ret);
228         }
229         return ret;
230 }
231
232 static int
233 hns3vf_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
234                     __rte_unused uint32_t idx,
235                     __rte_unused uint32_t pool)
236 {
237         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
238         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
239         int ret;
240
241         rte_spinlock_lock(&hw->lock);
242
243         /*
244          * In hns3 network engine adding UC and MC mac address with different
245          * commands with firmware. We need to determine whether the input
246          * address is a UC or a MC address to call different commands.
247          * By the way, it is recommended calling the API function named
248          * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
249          * using the rte_eth_dev_mac_addr_add API function to set MC mac address
250          * may affect the specifications of UC mac addresses.
251          */
252         if (rte_is_multicast_ether_addr(mac_addr))
253                 ret = hns3vf_add_mc_addr_common(hw, mac_addr);
254         else
255                 ret = hns3vf_add_uc_mac_addr(hw, mac_addr);
256
257         rte_spinlock_unlock(&hw->lock);
258         if (ret) {
259                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
260                                       mac_addr);
261                 hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
262                          ret);
263         }
264
265         return ret;
266 }
267
268 static void
269 hns3vf_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
270 {
271         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
272         /* index will be checked by upper level rte interface */
273         struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
274         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
275         int ret;
276
277         rte_spinlock_lock(&hw->lock);
278
279         if (rte_is_multicast_ether_addr(mac_addr))
280                 ret = hns3vf_remove_mc_mac_addr(hw, mac_addr);
281         else
282                 ret = hns3vf_remove_uc_mac_addr(hw, mac_addr);
283
284         rte_spinlock_unlock(&hw->lock);
285         if (ret) {
286                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
287                                       mac_addr);
288                 hns3_err(hw, "failed to remove mac addr(%s), ret = %d",
289                          mac_str, ret);
290         }
291 }
292
293 static int
294 hns3vf_set_default_mac_addr(struct rte_eth_dev *dev,
295                             struct rte_ether_addr *mac_addr)
296 {
297 #define HNS3_TWO_ETHER_ADDR_LEN (RTE_ETHER_ADDR_LEN * 2)
298         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
299         struct rte_ether_addr *old_addr;
300         uint8_t addr_bytes[HNS3_TWO_ETHER_ADDR_LEN]; /* for 2 MAC addresses */
301         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
302         int ret;
303
304         /*
305          * It has been guaranteed that input parameter named mac_addr is valid
306          * address in the rte layer of DPDK framework.
307          */
308         old_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
309         rte_spinlock_lock(&hw->lock);
310         memcpy(addr_bytes, mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN);
311         memcpy(&addr_bytes[RTE_ETHER_ADDR_LEN], old_addr->addr_bytes,
312                RTE_ETHER_ADDR_LEN);
313
314         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
315                                 HNS3_MBX_MAC_VLAN_UC_MODIFY, addr_bytes,
316                                 HNS3_TWO_ETHER_ADDR_LEN, true, NULL, 0);
317         if (ret) {
318                 /*
319                  * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev
320                  * driver. When user has configured a MAC address for VF device
321                  * by "ip link set ..." command based on the PF device, the hns3
322                  * PF kernel ethdev driver does not allow VF driver to request
323                  * reconfiguring a different default MAC address, and return
324                  * -EPREM to VF driver through mailbox.
325                  */
326                 if (ret == -EPERM) {
327                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
328                                               old_addr);
329                         hns3_warn(hw, "Has permanet mac addr(%s) for vf",
330                                   mac_str);
331                 } else {
332                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
333                                               mac_addr);
334                         hns3_err(hw, "Failed to set mac addr(%s) for vf: %d",
335                                  mac_str, ret);
336                 }
337         }
338
339         rte_ether_addr_copy(mac_addr,
340                             (struct rte_ether_addr *)hw->mac.mac_addr);
341         rte_spinlock_unlock(&hw->lock);
342
343         return ret;
344 }
345
346 static int
347 hns3vf_configure_mac_addr(struct hns3_adapter *hns, bool del)
348 {
349         struct hns3_hw *hw = &hns->hw;
350         struct rte_ether_addr *addr;
351         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
352         int err = 0;
353         int ret;
354         int i;
355
356         for (i = 0; i < HNS3_VF_UC_MACADDR_NUM; i++) {
357                 addr = &hw->data->mac_addrs[i];
358                 if (rte_is_zero_ether_addr(addr))
359                         continue;
360                 if (rte_is_multicast_ether_addr(addr))
361                         ret = del ? hns3vf_remove_mc_mac_addr(hw, addr) :
362                               hns3vf_add_mc_mac_addr(hw, addr);
363                 else
364                         ret = del ? hns3vf_remove_uc_mac_addr(hw, addr) :
365                               hns3vf_add_uc_mac_addr(hw, addr);
366
367                 if (ret) {
368                         err = ret;
369                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
370                                               addr);
371                         hns3_err(hw, "failed to %s mac addr(%s) index:%d "
372                                  "ret = %d.", del ? "remove" : "restore",
373                                  mac_str, i, ret);
374                 }
375         }
376         return err;
377 }
378
379 static int
380 hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
381                        struct rte_ether_addr *mac_addr)
382 {
383         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
384         int ret;
385
386         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
387                                 HNS3_MBX_MAC_VLAN_MC_ADD,
388                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
389                                 NULL, 0);
390         if (ret) {
391                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
392                                       mac_addr);
393                 hns3_err(hw, "Failed to add mc mac addr(%s) for vf: %d",
394                          mac_str, ret);
395         }
396
397         return ret;
398 }
399
400 static int
401 hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
402                           struct rte_ether_addr *mac_addr)
403 {
404         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
405         int ret;
406
407         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
408                                 HNS3_MBX_MAC_VLAN_MC_REMOVE,
409                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
410                                 NULL, 0);
411         if (ret) {
412                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
413                                       mac_addr);
414                 hns3_err(hw, "Failed to remove mc mac addr(%s) for vf: %d",
415                          mac_str, ret);
416         }
417
418         return ret;
419 }
420
421 static int
422 hns3vf_set_mc_addr_chk_param(struct hns3_hw *hw,
423                              struct rte_ether_addr *mc_addr_set,
424                              uint32_t nb_mc_addr)
425 {
426         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
427         struct rte_ether_addr *addr;
428         uint32_t i;
429         uint32_t j;
430
431         if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
432                 hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%u) "
433                          "invalid. valid range: 0~%d",
434                          nb_mc_addr, HNS3_MC_MACADDR_NUM);
435                 return -EINVAL;
436         }
437
438         /* Check if input mac addresses are valid */
439         for (i = 0; i < nb_mc_addr; i++) {
440                 addr = &mc_addr_set[i];
441                 if (!rte_is_multicast_ether_addr(addr)) {
442                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
443                                               addr);
444                         hns3_err(hw,
445                                  "failed to set mc mac addr, addr(%s) invalid.",
446                                  mac_str);
447                         return -EINVAL;
448                 }
449
450                 /* Check if there are duplicate addresses */
451                 for (j = i + 1; j < nb_mc_addr; j++) {
452                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
453                                 hns3_ether_format_addr(mac_str,
454                                                       RTE_ETHER_ADDR_FMT_SIZE,
455                                                       addr);
456                                 hns3_err(hw, "failed to set mc mac addr, "
457                                          "addrs invalid. two same addrs(%s).",
458                                          mac_str);
459                                 return -EINVAL;
460                         }
461                 }
462
463                 /*
464                  * Check if there are duplicate addresses between mac_addrs
465                  * and mc_addr_set
466                  */
467                 for (j = 0; j < HNS3_VF_UC_MACADDR_NUM; j++) {
468                         if (rte_is_same_ether_addr(addr,
469                                                    &hw->data->mac_addrs[j])) {
470                                 hns3_ether_format_addr(mac_str,
471                                                       RTE_ETHER_ADDR_FMT_SIZE,
472                                                       addr);
473                                 hns3_err(hw, "failed to set mc mac addr, "
474                                          "addrs invalid. addrs(%s) has already "
475                                          "configured in mac_addr add API",
476                                          mac_str);
477                                 return -EINVAL;
478                         }
479                 }
480         }
481
482         return 0;
483 }
484
485 static int
486 hns3vf_set_mc_mac_addr_list(struct rte_eth_dev *dev,
487                             struct rte_ether_addr *mc_addr_set,
488                             uint32_t nb_mc_addr)
489 {
490         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
491         struct rte_ether_addr *addr;
492         int cur_addr_num;
493         int set_addr_num;
494         int num;
495         int ret;
496         int i;
497
498         ret = hns3vf_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
499         if (ret)
500                 return ret;
501
502         rte_spinlock_lock(&hw->lock);
503         cur_addr_num = hw->mc_addrs_num;
504         for (i = 0; i < cur_addr_num; i++) {
505                 num = cur_addr_num - i - 1;
506                 addr = &hw->mc_addrs[num];
507                 ret = hns3vf_remove_mc_mac_addr(hw, addr);
508                 if (ret) {
509                         rte_spinlock_unlock(&hw->lock);
510                         return ret;
511                 }
512
513                 hw->mc_addrs_num--;
514         }
515
516         set_addr_num = (int)nb_mc_addr;
517         for (i = 0; i < set_addr_num; i++) {
518                 addr = &mc_addr_set[i];
519                 ret = hns3vf_add_mc_mac_addr(hw, addr);
520                 if (ret) {
521                         rte_spinlock_unlock(&hw->lock);
522                         return ret;
523                 }
524
525                 rte_ether_addr_copy(addr, &hw->mc_addrs[hw->mc_addrs_num]);
526                 hw->mc_addrs_num++;
527         }
528         rte_spinlock_unlock(&hw->lock);
529
530         return 0;
531 }
532
533 static int
534 hns3vf_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
535 {
536         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
537         struct hns3_hw *hw = &hns->hw;
538         struct rte_ether_addr *addr;
539         int err = 0;
540         int ret;
541         int i;
542
543         for (i = 0; i < hw->mc_addrs_num; i++) {
544                 addr = &hw->mc_addrs[i];
545                 if (!rte_is_multicast_ether_addr(addr))
546                         continue;
547                 if (del)
548                         ret = hns3vf_remove_mc_mac_addr(hw, addr);
549                 else
550                         ret = hns3vf_add_mc_mac_addr(hw, addr);
551                 if (ret) {
552                         err = ret;
553                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
554                                               addr);
555                         hns3_err(hw, "Failed to %s mc mac addr: %s for vf: %d",
556                                  del ? "Remove" : "Restore", mac_str, ret);
557                 }
558         }
559         return err;
560 }
561
562 static int
563 hns3vf_set_promisc_mode(struct hns3_hw *hw, bool en_bc_pmc,
564                         bool en_uc_pmc, bool en_mc_pmc)
565 {
566         struct hns3_mbx_vf_to_pf_cmd *req;
567         struct hns3_cmd_desc desc;
568         int ret;
569
570         req = (struct hns3_mbx_vf_to_pf_cmd *)desc.data;
571
572         /*
573          * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev driver,
574          * so there are some features for promiscuous/allmulticast mode in hns3
575          * VF PMD driver as below:
576          * 1. The promiscuous/allmulticast mode can be configured successfully
577          *    only based on the trusted VF device. If based on the non trusted
578          *    VF device, configuring promiscuous/allmulticast mode will fail.
579          *    The hns3 VF device can be confiruged as trusted device by hns3 PF
580          *    kernel ethdev driver on the host by the following command:
581          *      "ip link set <eth num> vf <vf id> turst on"
582          * 2. After the promiscuous mode is configured successfully, hns3 VF PMD
583          *    driver can receive the ingress and outgoing traffic. In the words,
584          *    all the ingress packets, all the packets sent from the PF and
585          *    other VFs on the same physical port.
586          * 3. Note: Because of the hardware constraints, By default vlan filter
587          *    is enabled and couldn't be turned off based on VF device, so vlan
588          *    filter is still effective even in promiscuous mode. If upper
589          *    applications don't call rte_eth_dev_vlan_filter API function to
590          *    set vlan based on VF device, hns3 VF PMD driver will can't receive
591          *    the packets with vlan tag in promiscuoue mode.
592          */
593         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MBX_VF_TO_PF, false);
594         req->msg[0] = HNS3_MBX_SET_PROMISC_MODE;
595         req->msg[1] = en_bc_pmc ? 1 : 0;
596         req->msg[2] = en_uc_pmc ? 1 : 0;
597         req->msg[3] = en_mc_pmc ? 1 : 0;
598         req->msg[4] = hw->promisc_mode == HNS3_LIMIT_PROMISC_MODE ? 1 : 0;
599
600         ret = hns3_cmd_send(hw, &desc, 1);
601         if (ret)
602                 hns3_err(hw, "Set promisc mode fail, ret = %d", ret);
603
604         return ret;
605 }
606
607 static int
608 hns3vf_dev_promiscuous_enable(struct rte_eth_dev *dev)
609 {
610         struct hns3_adapter *hns = dev->data->dev_private;
611         struct hns3_hw *hw = &hns->hw;
612         int ret;
613
614         ret = hns3vf_set_promisc_mode(hw, true, true, true);
615         if (ret)
616                 hns3_err(hw, "Failed to enable promiscuous mode, ret = %d",
617                         ret);
618         return ret;
619 }
620
621 static int
622 hns3vf_dev_promiscuous_disable(struct rte_eth_dev *dev)
623 {
624         bool allmulti = dev->data->all_multicast ? true : false;
625         struct hns3_adapter *hns = dev->data->dev_private;
626         struct hns3_hw *hw = &hns->hw;
627         int ret;
628
629         ret = hns3vf_set_promisc_mode(hw, true, false, allmulti);
630         if (ret)
631                 hns3_err(hw, "Failed to disable promiscuous mode, ret = %d",
632                         ret);
633         return ret;
634 }
635
636 static int
637 hns3vf_dev_allmulticast_enable(struct rte_eth_dev *dev)
638 {
639         struct hns3_adapter *hns = dev->data->dev_private;
640         struct hns3_hw *hw = &hns->hw;
641         int ret;
642
643         if (dev->data->promiscuous)
644                 return 0;
645
646         ret = hns3vf_set_promisc_mode(hw, true, false, true);
647         if (ret)
648                 hns3_err(hw, "Failed to enable allmulticast mode, ret = %d",
649                         ret);
650         return ret;
651 }
652
653 static int
654 hns3vf_dev_allmulticast_disable(struct rte_eth_dev *dev)
655 {
656         struct hns3_adapter *hns = dev->data->dev_private;
657         struct hns3_hw *hw = &hns->hw;
658         int ret;
659
660         if (dev->data->promiscuous)
661                 return 0;
662
663         ret = hns3vf_set_promisc_mode(hw, true, false, false);
664         if (ret)
665                 hns3_err(hw, "Failed to disable allmulticast mode, ret = %d",
666                         ret);
667         return ret;
668 }
669
670 static int
671 hns3vf_restore_promisc(struct hns3_adapter *hns)
672 {
673         struct hns3_hw *hw = &hns->hw;
674         bool allmulti = hw->data->all_multicast ? true : false;
675
676         if (hw->data->promiscuous)
677                 return hns3vf_set_promisc_mode(hw, true, true, true);
678
679         return hns3vf_set_promisc_mode(hw, true, false, allmulti);
680 }
681
682 static int
683 hns3vf_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id,
684                              bool mmap, enum hns3_ring_type queue_type,
685                              uint16_t queue_id)
686 {
687         struct hns3_vf_bind_vector_msg bind_msg;
688         const char *op_str;
689         uint16_t code;
690         int ret;
691
692         memset(&bind_msg, 0, sizeof(bind_msg));
693         code = mmap ? HNS3_MBX_MAP_RING_TO_VECTOR :
694                 HNS3_MBX_UNMAP_RING_TO_VECTOR;
695         bind_msg.vector_id = vector_id;
696
697         if (queue_type == HNS3_RING_TYPE_RX)
698                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_RX;
699         else
700                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_TX;
701
702         bind_msg.param[0].ring_type = queue_type;
703         bind_msg.ring_num = 1;
704         bind_msg.param[0].tqp_index = queue_id;
705         op_str = mmap ? "Map" : "Unmap";
706         ret = hns3_send_mbx_msg(hw, code, 0, (uint8_t *)&bind_msg,
707                                 sizeof(bind_msg), false, NULL, 0);
708         if (ret)
709                 hns3_err(hw, "%s TQP %u fail, vector_id is %u, ret is %d.",
710                          op_str, queue_id, bind_msg.vector_id, ret);
711
712         return ret;
713 }
714
715 static int
716 hns3vf_init_ring_with_vector(struct hns3_hw *hw)
717 {
718         uint16_t vec;
719         int ret;
720         int i;
721
722         /*
723          * In hns3 network engine, vector 0 is always the misc interrupt of this
724          * function, vector 1~N can be used respectively for the queues of the
725          * function. Tx and Rx queues with the same number share the interrupt
726          * vector. In the initialization clearing the all hardware mapping
727          * relationship configurations between queues and interrupt vectors is
728          * needed, so some error caused by the residual configurations, such as
729          * the unexpected Tx interrupt, can be avoid.
730          */
731         vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
732         if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
733                 vec = vec - 1; /* the last interrupt is reserved */
734         hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
735         for (i = 0; i < hw->intr_tqps_num; i++) {
736                 /*
737                  * Set gap limiter/rate limiter/quanity limiter algorithm
738                  * configuration for interrupt coalesce of queue's interrupt.
739                  */
740                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
741                                        HNS3_TQP_INTR_GL_DEFAULT);
742                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
743                                        HNS3_TQP_INTR_GL_DEFAULT);
744                 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
745                 /*
746                  * QL(quantity limiter) is not used currently, just set 0 to
747                  * close it.
748                  */
749                 hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
750
751                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
752                                                    HNS3_RING_TYPE_TX, i);
753                 if (ret) {
754                         PMD_INIT_LOG(ERR, "VF fail to unbind TX ring(%d) with "
755                                           "vector: %u, ret=%d", i, vec, ret);
756                         return ret;
757                 }
758
759                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
760                                                    HNS3_RING_TYPE_RX, i);
761                 if (ret) {
762                         PMD_INIT_LOG(ERR, "VF fail to unbind RX ring(%d) with "
763                                           "vector: %u, ret=%d", i, vec, ret);
764                         return ret;
765                 }
766         }
767
768         return 0;
769 }
770
771 static int
772 hns3vf_dev_configure(struct rte_eth_dev *dev)
773 {
774         struct hns3_adapter *hns = dev->data->dev_private;
775         struct hns3_hw *hw = &hns->hw;
776         struct rte_eth_conf *conf = &dev->data->dev_conf;
777         enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
778         uint16_t nb_rx_q = dev->data->nb_rx_queues;
779         uint16_t nb_tx_q = dev->data->nb_tx_queues;
780         struct rte_eth_rss_conf rss_conf;
781         uint32_t max_rx_pkt_len;
782         uint16_t mtu;
783         bool gro_en;
784         int ret;
785
786         hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
787
788         /*
789          * Some versions of hardware network engine does not support
790          * individually enable/disable/reset the Tx or Rx queue. These devices
791          * must enable/disable/reset Tx and Rx queues at the same time. When the
792          * numbers of Tx queues allocated by upper applications are not equal to
793          * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
794          * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
795          * work as usual. But these fake queues are imperceptible, and can not
796          * be used by upper applications.
797          */
798         if (!hns3_dev_indep_txrx_supported(hw)) {
799                 ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
800                 if (ret) {
801                         hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.",
802                                  ret);
803                         return ret;
804                 }
805         }
806
807         hw->adapter_state = HNS3_NIC_CONFIGURING;
808         if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
809                 hns3_err(hw, "setting link speed/duplex not supported");
810                 ret = -EINVAL;
811                 goto cfg_err;
812         }
813
814         /* When RSS is not configured, redirect the packet queue 0 */
815         if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
816                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
817                 hw->rss_dis_flag = false;
818                 rss_conf = conf->rx_adv_conf.rss_conf;
819                 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
820                 if (ret)
821                         goto cfg_err;
822         }
823
824         /*
825          * If jumbo frames are enabled, MTU needs to be refreshed
826          * according to the maximum RX packet length.
827          */
828         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
829                 max_rx_pkt_len = conf->rxmode.max_rx_pkt_len;
830                 if (max_rx_pkt_len > HNS3_MAX_FRAME_LEN ||
831                     max_rx_pkt_len <= HNS3_DEFAULT_FRAME_LEN) {
832                         hns3_err(hw, "maximum Rx packet length must be greater "
833                                  "than %u and less than %u when jumbo frame enabled.",
834                                  (uint16_t)HNS3_DEFAULT_FRAME_LEN,
835                                  (uint16_t)HNS3_MAX_FRAME_LEN);
836                         ret = -EINVAL;
837                         goto cfg_err;
838                 }
839
840                 mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(max_rx_pkt_len);
841                 ret = hns3vf_dev_mtu_set(dev, mtu);
842                 if (ret)
843                         goto cfg_err;
844                 dev->data->mtu = mtu;
845         }
846
847         ret = hns3vf_dev_configure_vlan(dev);
848         if (ret)
849                 goto cfg_err;
850
851         /* config hardware GRO */
852         gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
853         ret = hns3_config_gro(hw, gro_en);
854         if (ret)
855                 goto cfg_err;
856
857         hns->rx_simple_allowed = true;
858         hns->rx_vec_allowed = true;
859         hns->tx_simple_allowed = true;
860         hns->tx_vec_allowed = true;
861
862         hns3_init_rx_ptype_tble(dev);
863
864         hw->adapter_state = HNS3_NIC_CONFIGURED;
865         return 0;
866
867 cfg_err:
868         (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
869         hw->adapter_state = HNS3_NIC_INITIALIZED;
870
871         return ret;
872 }
873
874 static int
875 hns3vf_config_mtu(struct hns3_hw *hw, uint16_t mtu)
876 {
877         int ret;
878
879         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MTU, 0, (const uint8_t *)&mtu,
880                                 sizeof(mtu), true, NULL, 0);
881         if (ret)
882                 hns3_err(hw, "Failed to set mtu (%u) for vf: %d", mtu, ret);
883
884         return ret;
885 }
886
887 static int
888 hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
889 {
890         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
891         uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
892         int ret;
893
894         /*
895          * The hns3 PF/VF devices on the same port share the hardware MTU
896          * configuration. Currently, we send mailbox to inform hns3 PF kernel
897          * ethdev driver to finish hardware MTU configuration in hns3 VF PMD
898          * driver, there is no need to stop the port for hns3 VF device, and the
899          * MTU value issued by hns3 VF PMD driver must be less than or equal to
900          * PF's MTU.
901          */
902         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
903                 hns3_err(hw, "Failed to set mtu during resetting");
904                 return -EIO;
905         }
906
907         /*
908          * when Rx of scattered packets is off, we have some possibility of
909          * using vector Rx process function or simple Rx functions in hns3 PMD
910          * driver. If the input MTU is increased and the maximum length of
911          * received packets is greater than the length of a buffer for Rx
912          * packet, the hardware network engine needs to use multiple BDs and
913          * buffers to store these packets. This will cause problems when still
914          * using vector Rx process function or simple Rx function to receiving
915          * packets. So, when Rx of scattered packets is off and device is
916          * started, it is not permitted to increase MTU so that the maximum
917          * length of Rx packets is greater than Rx buffer length.
918          */
919         if (dev->data->dev_started && !dev->data->scattered_rx &&
920             frame_size > hw->rx_buf_len) {
921                 hns3_err(hw, "failed to set mtu because current is "
922                         "not scattered rx mode");
923                 return -EOPNOTSUPP;
924         }
925
926         rte_spinlock_lock(&hw->lock);
927         ret = hns3vf_config_mtu(hw, mtu);
928         if (ret) {
929                 rte_spinlock_unlock(&hw->lock);
930                 return ret;
931         }
932         if (mtu > RTE_ETHER_MTU)
933                 dev->data->dev_conf.rxmode.offloads |=
934                                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
935         else
936                 dev->data->dev_conf.rxmode.offloads &=
937                                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
938         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
939         rte_spinlock_unlock(&hw->lock);
940
941         return 0;
942 }
943
944 static int
945 hns3vf_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
946 {
947         struct hns3_adapter *hns = eth_dev->data->dev_private;
948         struct hns3_hw *hw = &hns->hw;
949         uint16_t q_num = hw->tqps_num;
950
951         /*
952          * In interrupt mode, 'max_rx_queues' is set based on the number of
953          * MSI-X interrupt resources of the hardware.
954          */
955         if (hw->data->dev_conf.intr_conf.rxq == 1)
956                 q_num = hw->intr_tqps_num;
957
958         info->max_rx_queues = q_num;
959         info->max_tx_queues = hw->tqps_num;
960         info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
961         info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
962         info->max_mac_addrs = HNS3_VF_UC_MACADDR_NUM;
963         info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
964         info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
965
966         info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
967                                  DEV_RX_OFFLOAD_UDP_CKSUM |
968                                  DEV_RX_OFFLOAD_TCP_CKSUM |
969                                  DEV_RX_OFFLOAD_SCTP_CKSUM |
970                                  DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
971                                  DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
972                                  DEV_RX_OFFLOAD_SCATTER |
973                                  DEV_RX_OFFLOAD_VLAN_STRIP |
974                                  DEV_RX_OFFLOAD_VLAN_FILTER |
975                                  DEV_RX_OFFLOAD_JUMBO_FRAME |
976                                  DEV_RX_OFFLOAD_RSS_HASH |
977                                  DEV_RX_OFFLOAD_TCP_LRO);
978         info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
979                                  DEV_TX_OFFLOAD_IPV4_CKSUM |
980                                  DEV_TX_OFFLOAD_TCP_CKSUM |
981                                  DEV_TX_OFFLOAD_UDP_CKSUM |
982                                  DEV_TX_OFFLOAD_SCTP_CKSUM |
983                                  DEV_TX_OFFLOAD_MULTI_SEGS |
984                                  DEV_TX_OFFLOAD_TCP_TSO |
985                                  DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
986                                  DEV_TX_OFFLOAD_GRE_TNL_TSO |
987                                  DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
988                                  DEV_TX_OFFLOAD_MBUF_FAST_FREE |
989                                  hns3_txvlan_cap_get(hw));
990
991         if (hns3_dev_outer_udp_cksum_supported(hw))
992                 info->tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_UDP_CKSUM;
993
994         if (hns3_dev_indep_txrx_supported(hw))
995                 info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
996                                  RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
997
998         info->rx_desc_lim = (struct rte_eth_desc_lim) {
999                 .nb_max = HNS3_MAX_RING_DESC,
1000                 .nb_min = HNS3_MIN_RING_DESC,
1001                 .nb_align = HNS3_ALIGN_RING_DESC,
1002         };
1003
1004         info->tx_desc_lim = (struct rte_eth_desc_lim) {
1005                 .nb_max = HNS3_MAX_RING_DESC,
1006                 .nb_min = HNS3_MIN_RING_DESC,
1007                 .nb_align = HNS3_ALIGN_RING_DESC,
1008                 .nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
1009                 .nb_mtu_seg_max = hw->max_non_tso_bd_num,
1010         };
1011
1012         info->default_rxconf = (struct rte_eth_rxconf) {
1013                 .rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
1014                 /*
1015                  * If there are no available Rx buffer descriptors, incoming
1016                  * packets are always dropped by hardware based on hns3 network
1017                  * engine.
1018                  */
1019                 .rx_drop_en = 1,
1020                 .offloads = 0,
1021         };
1022         info->default_txconf = (struct rte_eth_txconf) {
1023                 .tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
1024                 .offloads = 0,
1025         };
1026
1027         info->vmdq_queue_num = 0;
1028
1029         info->reta_size = hw->rss_ind_tbl_size;
1030         info->hash_key_size = HNS3_RSS_KEY_SIZE;
1031         info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
1032         info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1033         info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1034
1035         return 0;
1036 }
1037
1038 static void
1039 hns3vf_clear_event_cause(struct hns3_hw *hw, uint32_t regclr)
1040 {
1041         hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
1042 }
1043
1044 static void
1045 hns3vf_disable_irq0(struct hns3_hw *hw)
1046 {
1047         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
1048 }
1049
1050 static void
1051 hns3vf_enable_irq0(struct hns3_hw *hw)
1052 {
1053         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
1054 }
1055
1056 static enum hns3vf_evt_cause
1057 hns3vf_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
1058 {
1059         struct hns3_hw *hw = &hns->hw;
1060         enum hns3vf_evt_cause ret;
1061         uint32_t cmdq_stat_reg;
1062         uint32_t rst_ing_reg;
1063         uint32_t val;
1064
1065         /* Fetch the events from their corresponding regs */
1066         cmdq_stat_reg = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_STAT_REG);
1067
1068         if (BIT(HNS3_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1069                 rst_ing_reg = hns3_read_dev(hw, HNS3_FUN_RST_ING);
1070                 hns3_warn(hw, "resetting reg: 0x%x", rst_ing_reg);
1071                 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
1072                 __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
1073                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
1074                 hns3_write_dev(hw, HNS3_VF_RST_ING, val | HNS3_VF_RST_ING_BIT);
1075                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RST_INT_B);
1076                 if (clearval) {
1077                         hw->reset.stats.global_cnt++;
1078                         hns3_warn(hw, "Global reset detected, clear reset status");
1079                 } else {
1080                         hns3_schedule_delayed_reset(hns);
1081                         hns3_warn(hw, "Global reset detected, don't clear reset status");
1082                 }
1083
1084                 ret = HNS3VF_VECTOR0_EVENT_RST;
1085                 goto out;
1086         }
1087
1088         /* Check for vector0 mailbox(=CMDQ RX) event source */
1089         if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1090                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
1091                 ret = HNS3VF_VECTOR0_EVENT_MBX;
1092                 goto out;
1093         }
1094
1095         val = 0;
1096         ret = HNS3VF_VECTOR0_EVENT_OTHER;
1097 out:
1098         if (clearval)
1099                 *clearval = val;
1100         return ret;
1101 }
1102
1103 static void
1104 hns3vf_interrupt_handler(void *param)
1105 {
1106         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1107         struct hns3_adapter *hns = dev->data->dev_private;
1108         struct hns3_hw *hw = &hns->hw;
1109         enum hns3vf_evt_cause event_cause;
1110         uint32_t clearval;
1111
1112         if (hw->irq_thread_id == 0)
1113                 hw->irq_thread_id = pthread_self();
1114
1115         /* Disable interrupt */
1116         hns3vf_disable_irq0(hw);
1117
1118         /* Read out interrupt causes */
1119         event_cause = hns3vf_check_event_cause(hns, &clearval);
1120
1121         switch (event_cause) {
1122         case HNS3VF_VECTOR0_EVENT_RST:
1123                 hns3_schedule_reset(hns);
1124                 break;
1125         case HNS3VF_VECTOR0_EVENT_MBX:
1126                 hns3_dev_handle_mbx_msg(hw);
1127                 break;
1128         default:
1129                 break;
1130         }
1131
1132         /* Clear interrupt causes */
1133         hns3vf_clear_event_cause(hw, clearval);
1134
1135         /* Enable interrupt */
1136         hns3vf_enable_irq0(hw);
1137 }
1138
1139 static void
1140 hns3vf_set_default_dev_specifications(struct hns3_hw *hw)
1141 {
1142         hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
1143         hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
1144         hw->rss_key_size = HNS3_RSS_KEY_SIZE;
1145         hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
1146 }
1147
1148 static void
1149 hns3vf_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
1150 {
1151         struct hns3_dev_specs_0_cmd *req0;
1152
1153         req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
1154
1155         hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
1156         hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
1157         hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
1158         hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
1159 }
1160
1161 static int
1162 hns3vf_check_dev_specifications(struct hns3_hw *hw)
1163 {
1164         if (hw->rss_ind_tbl_size == 0 ||
1165             hw->rss_ind_tbl_size > HNS3_RSS_IND_TBL_SIZE_MAX) {
1166                 hns3_warn(hw, "the size of hash lookup table configured (%u)"
1167                               " exceeds the maximum(%u)", hw->rss_ind_tbl_size,
1168                               HNS3_RSS_IND_TBL_SIZE_MAX);
1169                 return -EINVAL;
1170         }
1171
1172         return 0;
1173 }
1174
1175 static int
1176 hns3vf_query_dev_specifications(struct hns3_hw *hw)
1177 {
1178         struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
1179         int ret;
1180         int i;
1181
1182         for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
1183                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
1184                                           true);
1185                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1186         }
1187         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
1188
1189         ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
1190         if (ret)
1191                 return ret;
1192
1193         hns3vf_parse_dev_specifications(hw, desc);
1194
1195         return hns3vf_check_dev_specifications(hw);
1196 }
1197
1198 static int
1199 hns3vf_get_capability(struct hns3_hw *hw)
1200 {
1201         struct rte_pci_device *pci_dev;
1202         struct rte_eth_dev *eth_dev;
1203         uint8_t revision;
1204         int ret;
1205
1206         eth_dev = &rte_eth_devices[hw->data->port_id];
1207         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1208
1209         /* Get PCI revision id */
1210         ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
1211                                   HNS3_PCI_REVISION_ID);
1212         if (ret != HNS3_PCI_REVISION_ID_LEN) {
1213                 PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
1214                              ret);
1215                 return -EIO;
1216         }
1217         hw->revision = revision;
1218
1219         if (revision < PCI_REVISION_ID_HIP09_A) {
1220                 hns3vf_set_default_dev_specifications(hw);
1221                 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
1222                 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
1223                 hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
1224                 hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE1;
1225                 hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
1226                 hw->rss_info.ipv6_sctp_offload_supported = false;
1227                 hw->promisc_mode = HNS3_UNLIMIT_PROMISC_MODE;
1228                 return 0;
1229         }
1230
1231         ret = hns3vf_query_dev_specifications(hw);
1232         if (ret) {
1233                 PMD_INIT_LOG(ERR,
1234                              "failed to query dev specifications, ret = %d",
1235                              ret);
1236                 return ret;
1237         }
1238
1239         hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
1240         hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
1241         hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
1242         hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE2;
1243         hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
1244         hw->rss_info.ipv6_sctp_offload_supported = true;
1245         hw->promisc_mode = HNS3_LIMIT_PROMISC_MODE;
1246
1247         return 0;
1248 }
1249
1250 static int
1251 hns3vf_check_tqp_info(struct hns3_hw *hw)
1252 {
1253         if (hw->tqps_num == 0) {
1254                 PMD_INIT_LOG(ERR, "Get invalid tqps_num(0) from PF.");
1255                 return -EINVAL;
1256         }
1257
1258         if (hw->rss_size_max == 0) {
1259                 PMD_INIT_LOG(ERR, "Get invalid rss_size_max(0) from PF.");
1260                 return -EINVAL;
1261         }
1262
1263         hw->tqps_num = RTE_MIN(hw->rss_size_max, hw->tqps_num);
1264
1265         return 0;
1266 }
1267
1268 static int
1269 hns3vf_get_port_base_vlan_filter_state(struct hns3_hw *hw)
1270 {
1271         uint8_t resp_msg;
1272         int ret;
1273
1274         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN,
1275                                 HNS3_MBX_GET_PORT_BASE_VLAN_STATE, NULL, 0,
1276                                 true, &resp_msg, sizeof(resp_msg));
1277         if (ret) {
1278                 if (ret == -ETIME) {
1279                         /*
1280                          * Getting current port based VLAN state from PF driver
1281                          * will not affect VF driver's basic function. Because
1282                          * the VF driver relies on hns3 PF kernel ether driver,
1283                          * to avoid introducing compatibility issues with older
1284                          * version of PF driver, no failure will be returned
1285                          * when the return value is ETIME. This return value has
1286                          * the following scenarios:
1287                          * 1) Firmware didn't return the results in time
1288                          * 2) the result return by firmware is timeout
1289                          * 3) the older version of kernel side PF driver does
1290                          *    not support this mailbox message.
1291                          * For scenarios 1 and 2, it is most likely that a
1292                          * hardware error has occurred, or a hardware reset has
1293                          * occurred. In this case, these errors will be caught
1294                          * by other functions.
1295                          */
1296                         PMD_INIT_LOG(WARNING,
1297                                 "failed to get PVID state for timeout, maybe "
1298                                 "kernel side PF driver doesn't support this "
1299                                 "mailbox message, or firmware didn't respond.");
1300                         resp_msg = HNS3_PORT_BASE_VLAN_DISABLE;
1301                 } else {
1302                         PMD_INIT_LOG(ERR, "failed to get port based VLAN state,"
1303                                 " ret = %d", ret);
1304                         return ret;
1305                 }
1306         }
1307         hw->port_base_vlan_cfg.state = resp_msg ?
1308                 HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
1309         return 0;
1310 }
1311
1312 static int
1313 hns3vf_get_queue_info(struct hns3_hw *hw)
1314 {
1315 #define HNS3VF_TQPS_RSS_INFO_LEN        6
1316         uint8_t resp_msg[HNS3VF_TQPS_RSS_INFO_LEN];
1317         int ret;
1318
1319         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QINFO, 0, NULL, 0, true,
1320                                 resp_msg, HNS3VF_TQPS_RSS_INFO_LEN);
1321         if (ret) {
1322                 PMD_INIT_LOG(ERR, "Failed to get tqp info from PF: %d", ret);
1323                 return ret;
1324         }
1325
1326         memcpy(&hw->tqps_num, &resp_msg[0], sizeof(uint16_t));
1327         memcpy(&hw->rss_size_max, &resp_msg[2], sizeof(uint16_t));
1328
1329         return hns3vf_check_tqp_info(hw);
1330 }
1331
1332 static int
1333 hns3vf_get_queue_depth(struct hns3_hw *hw)
1334 {
1335 #define HNS3VF_TQPS_DEPTH_INFO_LEN      4
1336         uint8_t resp_msg[HNS3VF_TQPS_DEPTH_INFO_LEN];
1337         int ret;
1338
1339         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QDEPTH, 0, NULL, 0, true,
1340                                 resp_msg, HNS3VF_TQPS_DEPTH_INFO_LEN);
1341         if (ret) {
1342                 PMD_INIT_LOG(ERR, "Failed to get tqp depth info from PF: %d",
1343                              ret);
1344                 return ret;
1345         }
1346
1347         memcpy(&hw->num_tx_desc, &resp_msg[0], sizeof(uint16_t));
1348         memcpy(&hw->num_rx_desc, &resp_msg[2], sizeof(uint16_t));
1349
1350         return 0;
1351 }
1352
1353 static int
1354 hns3vf_get_tc_info(struct hns3_hw *hw)
1355 {
1356         uint8_t resp_msg;
1357         int ret;
1358         uint32_t i;
1359
1360         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_TCINFO, 0, NULL, 0,
1361                                 true, &resp_msg, sizeof(resp_msg));
1362         if (ret) {
1363                 hns3_err(hw, "VF request to get TC info from PF failed %d",
1364                          ret);
1365                 return ret;
1366         }
1367
1368         hw->hw_tc_map = resp_msg;
1369
1370         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
1371                 if (hw->hw_tc_map & BIT(i))
1372                         hw->num_tc++;
1373         }
1374
1375         return 0;
1376 }
1377
1378 static int
1379 hns3vf_get_host_mac_addr(struct hns3_hw *hw)
1380 {
1381         uint8_t host_mac[RTE_ETHER_ADDR_LEN];
1382         int ret;
1383
1384         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_MAC_ADDR, 0, NULL, 0,
1385                                 true, host_mac, RTE_ETHER_ADDR_LEN);
1386         if (ret) {
1387                 hns3_err(hw, "Failed to get mac addr from PF: %d", ret);
1388                 return ret;
1389         }
1390
1391         memcpy(hw->mac.mac_addr, host_mac, RTE_ETHER_ADDR_LEN);
1392
1393         return 0;
1394 }
1395
1396 static int
1397 hns3vf_get_configuration(struct hns3_hw *hw)
1398 {
1399         int ret;
1400
1401         hw->mac.media_type = HNS3_MEDIA_TYPE_NONE;
1402         hw->rss_dis_flag = false;
1403
1404         /* Get device capability */
1405         ret = hns3vf_get_capability(hw);
1406         if (ret) {
1407                 PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
1408                 return ret;
1409         }
1410
1411         /* Get queue configuration from PF */
1412         ret = hns3vf_get_queue_info(hw);
1413         if (ret)
1414                 return ret;
1415
1416         /* Get queue depth info from PF */
1417         ret = hns3vf_get_queue_depth(hw);
1418         if (ret)
1419                 return ret;
1420
1421         /* Get user defined VF MAC addr from PF */
1422         ret = hns3vf_get_host_mac_addr(hw);
1423         if (ret)
1424                 return ret;
1425
1426         ret = hns3vf_get_port_base_vlan_filter_state(hw);
1427         if (ret)
1428                 return ret;
1429
1430         /* Get tc configuration from PF */
1431         return hns3vf_get_tc_info(hw);
1432 }
1433
1434 static int
1435 hns3vf_set_tc_queue_mapping(struct hns3_adapter *hns, uint16_t nb_rx_q,
1436                             uint16_t nb_tx_q)
1437 {
1438         struct hns3_hw *hw = &hns->hw;
1439
1440         if (nb_rx_q < hw->num_tc) {
1441                 hns3_err(hw, "number of Rx queues(%u) is less than tcs(%u).",
1442                          nb_rx_q, hw->num_tc);
1443                 return -EINVAL;
1444         }
1445
1446         if (nb_tx_q < hw->num_tc) {
1447                 hns3_err(hw, "number of Tx queues(%u) is less than tcs(%u).",
1448                          nb_tx_q, hw->num_tc);
1449                 return -EINVAL;
1450         }
1451
1452         return hns3_queue_to_tc_mapping(hw, nb_rx_q, nb_tx_q);
1453 }
1454
1455 static void
1456 hns3vf_request_link_info(struct hns3_hw *hw)
1457 {
1458         uint8_t resp_msg;
1459         int ret;
1460
1461         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
1462                 return;
1463         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1464                                 &resp_msg, sizeof(resp_msg));
1465         if (ret)
1466                 hns3_err(hw, "Failed to fetch link status from PF: %d", ret);
1467 }
1468
1469 void
1470 hns3vf_update_link_status(struct hns3_hw *hw, uint8_t link_status,
1471                           uint32_t link_speed, uint8_t link_duplex)
1472 {
1473         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
1474         struct hns3_mac *mac = &hw->mac;
1475         bool report_lse;
1476         bool changed;
1477
1478         changed = mac->link_status != link_status ||
1479                   mac->link_speed != link_speed ||
1480                   mac->link_duplex != link_duplex;
1481         if (!changed)
1482                 return;
1483
1484         /*
1485          * VF's link status/speed/duplex were updated by polling from PF driver,
1486          * because the link status/speed/duplex may be changed in the polling
1487          * interval, so driver will report lse (lsc event) once any of the above
1488          * thress variables changed.
1489          * But if the PF's link status is down and driver saved link status is
1490          * also down, there are no need to report lse.
1491          */
1492         report_lse = true;
1493         if (link_status == ETH_LINK_DOWN && link_status == mac->link_status)
1494                 report_lse = false;
1495
1496         mac->link_status = link_status;
1497         mac->link_speed = link_speed;
1498         mac->link_duplex = link_duplex;
1499
1500         if (report_lse)
1501                 rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
1502 }
1503
1504 static int
1505 hns3vf_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
1506 {
1507 #define HNS3VF_VLAN_MBX_MSG_LEN 5
1508         struct hns3_hw *hw = &hns->hw;
1509         uint8_t msg_data[HNS3VF_VLAN_MBX_MSG_LEN];
1510         uint16_t proto = htons(RTE_ETHER_TYPE_VLAN);
1511         uint8_t is_kill = on ? 0 : 1;
1512
1513         msg_data[0] = is_kill;
1514         memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1515         memcpy(&msg_data[3], &proto, sizeof(proto));
1516
1517         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_FILTER,
1518                                  msg_data, HNS3VF_VLAN_MBX_MSG_LEN, true, NULL,
1519                                  0);
1520 }
1521
1522 static int
1523 hns3vf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1524 {
1525         struct hns3_adapter *hns = dev->data->dev_private;
1526         struct hns3_hw *hw = &hns->hw;
1527         int ret;
1528
1529         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
1530                 hns3_err(hw,
1531                          "vf set vlan id failed during resetting, vlan_id =%u",
1532                          vlan_id);
1533                 return -EIO;
1534         }
1535         rte_spinlock_lock(&hw->lock);
1536         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1537         rte_spinlock_unlock(&hw->lock);
1538         if (ret)
1539                 hns3_err(hw, "vf set vlan id failed, vlan_id =%u, ret =%d",
1540                          vlan_id, ret);
1541
1542         return ret;
1543 }
1544
1545 static int
1546 hns3vf_en_hw_strip_rxvtag(struct hns3_hw *hw, bool enable)
1547 {
1548         uint8_t msg_data;
1549         int ret;
1550
1551         msg_data = enable ? 1 : 0;
1552         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_RX_OFF_CFG,
1553                                 &msg_data, sizeof(msg_data), false, NULL, 0);
1554         if (ret)
1555                 hns3_err(hw, "vf enable strip failed, ret =%d", ret);
1556
1557         return ret;
1558 }
1559
1560 static int
1561 hns3vf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1562 {
1563         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1564         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1565         unsigned int tmp_mask;
1566         int ret = 0;
1567
1568         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
1569                 hns3_err(hw, "vf set vlan offload failed during resetting, "
1570                              "mask = 0x%x", mask);
1571                 return -EIO;
1572         }
1573
1574         tmp_mask = (unsigned int)mask;
1575         /* Vlan stripping setting */
1576         if (tmp_mask & ETH_VLAN_STRIP_MASK) {
1577                 rte_spinlock_lock(&hw->lock);
1578                 /* Enable or disable VLAN stripping */
1579                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1580                         ret = hns3vf_en_hw_strip_rxvtag(hw, true);
1581                 else
1582                         ret = hns3vf_en_hw_strip_rxvtag(hw, false);
1583                 rte_spinlock_unlock(&hw->lock);
1584         }
1585
1586         return ret;
1587 }
1588
1589 static int
1590 hns3vf_handle_all_vlan_table(struct hns3_adapter *hns, int on)
1591 {
1592         struct rte_vlan_filter_conf *vfc;
1593         struct hns3_hw *hw = &hns->hw;
1594         uint16_t vlan_id;
1595         uint64_t vbit;
1596         uint64_t ids;
1597         int ret = 0;
1598         uint32_t i;
1599
1600         vfc = &hw->data->vlan_filter_conf;
1601         for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1602                 if (vfc->ids[i] == 0)
1603                         continue;
1604                 ids = vfc->ids[i];
1605                 while (ids) {
1606                         /*
1607                          * 64 means the num bits of ids, one bit corresponds to
1608                          * one vlan id
1609                          */
1610                         vlan_id = 64 * i;
1611                         /* count trailing zeroes */
1612                         vbit = ~ids & (ids - 1);
1613                         /* clear least significant bit set */
1614                         ids ^= (ids ^ (ids - 1)) ^ vbit;
1615                         for (; vbit;) {
1616                                 vbit >>= 1;
1617                                 vlan_id++;
1618                         }
1619                         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1620                         if (ret) {
1621                                 hns3_err(hw,
1622                                          "VF handle vlan table failed, ret =%d, on = %d",
1623                                          ret, on);
1624                                 return ret;
1625                         }
1626                 }
1627         }
1628
1629         return ret;
1630 }
1631
1632 static int
1633 hns3vf_remove_all_vlan_table(struct hns3_adapter *hns)
1634 {
1635         return hns3vf_handle_all_vlan_table(hns, 0);
1636 }
1637
1638 static int
1639 hns3vf_restore_vlan_conf(struct hns3_adapter *hns)
1640 {
1641         struct hns3_hw *hw = &hns->hw;
1642         struct rte_eth_conf *dev_conf;
1643         bool en;
1644         int ret;
1645
1646         dev_conf = &hw->data->dev_conf;
1647         en = dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP ? true
1648                                                                    : false;
1649         ret = hns3vf_en_hw_strip_rxvtag(hw, en);
1650         if (ret)
1651                 hns3_err(hw, "VF restore vlan conf fail, en =%d, ret =%d", en,
1652                          ret);
1653         return ret;
1654 }
1655
1656 static int
1657 hns3vf_dev_configure_vlan(struct rte_eth_dev *dev)
1658 {
1659         struct hns3_adapter *hns = dev->data->dev_private;
1660         struct rte_eth_dev_data *data = dev->data;
1661         struct hns3_hw *hw = &hns->hw;
1662         int ret;
1663
1664         if (data->dev_conf.txmode.hw_vlan_reject_tagged ||
1665             data->dev_conf.txmode.hw_vlan_reject_untagged ||
1666             data->dev_conf.txmode.hw_vlan_insert_pvid) {
1667                 hns3_warn(hw, "hw_vlan_reject_tagged, hw_vlan_reject_untagged "
1668                               "or hw_vlan_insert_pvid is not support!");
1669         }
1670
1671         /* Apply vlan offload setting */
1672         ret = hns3vf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
1673         if (ret)
1674                 hns3_err(hw, "dev config vlan offload failed, ret =%d", ret);
1675
1676         return ret;
1677 }
1678
1679 static int
1680 hns3vf_set_alive(struct hns3_hw *hw, bool alive)
1681 {
1682         uint8_t msg_data;
1683
1684         msg_data = alive ? 1 : 0;
1685         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_ALIVE, 0, &msg_data,
1686                                  sizeof(msg_data), false, NULL, 0);
1687 }
1688
1689 static void
1690 hns3vf_keep_alive_handler(void *param)
1691 {
1692         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1693         struct hns3_adapter *hns = eth_dev->data->dev_private;
1694         struct hns3_hw *hw = &hns->hw;
1695         uint8_t respmsg;
1696         int ret;
1697
1698         ret = hns3_send_mbx_msg(hw, HNS3_MBX_KEEP_ALIVE, 0, NULL, 0,
1699                                 false, &respmsg, sizeof(uint8_t));
1700         if (ret)
1701                 hns3_err(hw, "VF sends keeping alive cmd failed(=%d)",
1702                          ret);
1703
1704         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
1705                           eth_dev);
1706 }
1707
1708 static void
1709 hns3vf_service_handler(void *param)
1710 {
1711         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1712         struct hns3_adapter *hns = eth_dev->data->dev_private;
1713         struct hns3_hw *hw = &hns->hw;
1714
1715         /*
1716          * The query link status and reset processing are executed in the
1717          * interrupt thread.When the IMP reset occurs, IMP will not respond,
1718          * and the query operation will time out after 30ms. In the case of
1719          * multiple PF/VFs, each query failure timeout causes the IMP reset
1720          * interrupt to fail to respond within 100ms.
1721          * Before querying the link status, check whether there is a reset
1722          * pending, and if so, abandon the query.
1723          */
1724         if (!hns3vf_is_reset_pending(hns))
1725                 hns3vf_request_link_info(hw);
1726         else
1727                 hns3_warn(hw, "Cancel the query when reset is pending");
1728
1729         rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler,
1730                           eth_dev);
1731 }
1732
1733 static int
1734 hns3_query_vf_resource(struct hns3_hw *hw)
1735 {
1736         struct hns3_vf_res_cmd *req;
1737         struct hns3_cmd_desc desc;
1738         uint16_t num_msi;
1739         int ret;
1740
1741         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_VF_RSRC, true);
1742         ret = hns3_cmd_send(hw, &desc, 1);
1743         if (ret) {
1744                 hns3_err(hw, "query vf resource failed, ret = %d", ret);
1745                 return ret;
1746         }
1747
1748         req = (struct hns3_vf_res_cmd *)desc.data;
1749         num_msi = hns3_get_field(rte_le_to_cpu_16(req->vf_intr_vector_number),
1750                                  HNS3_VF_VEC_NUM_M, HNS3_VF_VEC_NUM_S);
1751         if (num_msi < HNS3_MIN_VECTOR_NUM) {
1752                 hns3_err(hw, "Just %u msi resources, not enough for vf(min:%d)",
1753                          num_msi, HNS3_MIN_VECTOR_NUM);
1754                 return -EINVAL;
1755         }
1756
1757         hw->num_msi = num_msi;
1758
1759         return 0;
1760 }
1761
1762 static int
1763 hns3vf_init_hardware(struct hns3_adapter *hns)
1764 {
1765         struct hns3_hw *hw = &hns->hw;
1766         uint16_t mtu = hw->data->mtu;
1767         int ret;
1768
1769         ret = hns3vf_set_promisc_mode(hw, true, false, false);
1770         if (ret)
1771                 return ret;
1772
1773         ret = hns3vf_config_mtu(hw, mtu);
1774         if (ret)
1775                 goto err_init_hardware;
1776
1777         ret = hns3vf_vlan_filter_configure(hns, 0, 1);
1778         if (ret) {
1779                 PMD_INIT_LOG(ERR, "Failed to initialize VLAN config: %d", ret);
1780                 goto err_init_hardware;
1781         }
1782
1783         ret = hns3_config_gro(hw, false);
1784         if (ret) {
1785                 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
1786                 goto err_init_hardware;
1787         }
1788
1789         /*
1790          * In the initialization clearing the all hardware mapping relationship
1791          * configurations between queues and interrupt vectors is needed, so
1792          * some error caused by the residual configurations, such as the
1793          * unexpected interrupt, can be avoid.
1794          */
1795         ret = hns3vf_init_ring_with_vector(hw);
1796         if (ret) {
1797                 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
1798                 goto err_init_hardware;
1799         }
1800
1801         ret = hns3vf_set_alive(hw, true);
1802         if (ret) {
1803                 PMD_INIT_LOG(ERR, "Failed to VF send alive to PF: %d", ret);
1804                 goto err_init_hardware;
1805         }
1806
1807         return 0;
1808
1809 err_init_hardware:
1810         (void)hns3vf_set_promisc_mode(hw, false, false, false);
1811         return ret;
1812 }
1813
1814 static int
1815 hns3vf_clear_vport_list(struct hns3_hw *hw)
1816 {
1817         return hns3_send_mbx_msg(hw, HNS3_MBX_HANDLE_VF_TBL,
1818                                  HNS3_MBX_VPORT_LIST_CLEAR, NULL, 0, false,
1819                                  NULL, 0);
1820 }
1821
1822 static int
1823 hns3vf_init_vf(struct rte_eth_dev *eth_dev)
1824 {
1825         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1826         struct hns3_adapter *hns = eth_dev->data->dev_private;
1827         struct hns3_hw *hw = &hns->hw;
1828         int ret;
1829
1830         PMD_INIT_FUNC_TRACE();
1831
1832         /* Get hardware io base address from pcie BAR2 IO space */
1833         hw->io_base = pci_dev->mem_resource[2].addr;
1834
1835         /* Firmware command queue initialize */
1836         ret = hns3_cmd_init_queue(hw);
1837         if (ret) {
1838                 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
1839                 goto err_cmd_init_queue;
1840         }
1841
1842         /* Firmware command initialize */
1843         ret = hns3_cmd_init(hw);
1844         if (ret) {
1845                 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
1846                 goto err_cmd_init;
1847         }
1848
1849         /* Get VF resource */
1850         ret = hns3_query_vf_resource(hw);
1851         if (ret)
1852                 goto err_cmd_init;
1853
1854         rte_spinlock_init(&hw->mbx_resp.lock);
1855
1856         hns3vf_clear_event_cause(hw, 0);
1857
1858         ret = rte_intr_callback_register(&pci_dev->intr_handle,
1859                                          hns3vf_interrupt_handler, eth_dev);
1860         if (ret) {
1861                 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
1862                 goto err_intr_callback_register;
1863         }
1864
1865         /* Enable interrupt */
1866         rte_intr_enable(&pci_dev->intr_handle);
1867         hns3vf_enable_irq0(hw);
1868
1869         /* Get configuration from PF */
1870         ret = hns3vf_get_configuration(hw);
1871         if (ret) {
1872                 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
1873                 goto err_get_config;
1874         }
1875
1876         ret = hns3_tqp_stats_init(hw);
1877         if (ret)
1878                 goto err_get_config;
1879
1880         /* Hardware statistics of imissed registers cleared. */
1881         ret = hns3_update_imissed_stats(hw, true);
1882         if (ret) {
1883                 hns3_err(hw, "clear imissed stats failed, ret = %d", ret);
1884                 goto err_set_tc_queue;
1885         }
1886
1887         ret = hns3vf_set_tc_queue_mapping(hns, hw->tqps_num, hw->tqps_num);
1888         if (ret) {
1889                 PMD_INIT_LOG(ERR, "failed to set tc info, ret = %d.", ret);
1890                 goto err_set_tc_queue;
1891         }
1892
1893         ret = hns3vf_clear_vport_list(hw);
1894         if (ret) {
1895                 PMD_INIT_LOG(ERR, "Failed to clear tbl list: %d", ret);
1896                 goto err_set_tc_queue;
1897         }
1898
1899         ret = hns3vf_init_hardware(hns);
1900         if (ret)
1901                 goto err_set_tc_queue;
1902
1903         hns3_rss_set_default_args(hw);
1904
1905         return 0;
1906
1907 err_set_tc_queue:
1908         hns3_tqp_stats_uninit(hw);
1909
1910 err_get_config:
1911         hns3vf_disable_irq0(hw);
1912         rte_intr_disable(&pci_dev->intr_handle);
1913         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1914                              eth_dev);
1915 err_intr_callback_register:
1916 err_cmd_init:
1917         hns3_cmd_uninit(hw);
1918         hns3_cmd_destroy_queue(hw);
1919 err_cmd_init_queue:
1920         hw->io_base = NULL;
1921
1922         return ret;
1923 }
1924
1925 static void
1926 hns3vf_uninit_vf(struct rte_eth_dev *eth_dev)
1927 {
1928         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1929         struct hns3_adapter *hns = eth_dev->data->dev_private;
1930         struct hns3_hw *hw = &hns->hw;
1931
1932         PMD_INIT_FUNC_TRACE();
1933
1934         hns3_rss_uninit(hns);
1935         (void)hns3_config_gro(hw, false);
1936         (void)hns3vf_set_alive(hw, false);
1937         (void)hns3vf_set_promisc_mode(hw, false, false, false);
1938         hns3_tqp_stats_uninit(hw);
1939         hns3vf_disable_irq0(hw);
1940         rte_intr_disable(&pci_dev->intr_handle);
1941         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1942                              eth_dev);
1943         hns3_cmd_uninit(hw);
1944         hns3_cmd_destroy_queue(hw);
1945         hw->io_base = NULL;
1946 }
1947
1948 static int
1949 hns3vf_do_stop(struct hns3_adapter *hns)
1950 {
1951         struct hns3_hw *hw = &hns->hw;
1952         int ret;
1953
1954         hw->mac.link_status = ETH_LINK_DOWN;
1955
1956         /*
1957          * The "hns3vf_do_stop" function will also be called by .stop_service to
1958          * prepare reset. At the time of global or IMP reset, the command cannot
1959          * be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be
1960          * accessed during the reset process. So the mbuf can not be released
1961          * during reset and is required to be released after the reset is
1962          * completed.
1963          */
1964         if (__atomic_load_n(&hw->reset.resetting,  __ATOMIC_RELAXED) == 0)
1965                 hns3_dev_release_mbufs(hns);
1966
1967         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) {
1968                 hns3vf_configure_mac_addr(hns, true);
1969                 ret = hns3_reset_all_tqps(hns);
1970                 if (ret) {
1971                         hns3_err(hw, "failed to reset all queues ret = %d",
1972                                  ret);
1973                         return ret;
1974                 }
1975         }
1976         return 0;
1977 }
1978
1979 static void
1980 hns3vf_unmap_rx_interrupt(struct rte_eth_dev *dev)
1981 {
1982         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1983         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1984         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1985         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
1986         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
1987         uint16_t q_id;
1988
1989         if (dev->data->dev_conf.intr_conf.rxq == 0)
1990                 return;
1991
1992         /* unmap the ring with vector */
1993         if (rte_intr_allow_others(intr_handle)) {
1994                 vec = RTE_INTR_VEC_RXTX_OFFSET;
1995                 base = RTE_INTR_VEC_RXTX_OFFSET;
1996         }
1997         if (rte_intr_dp_is_en(intr_handle)) {
1998                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
1999                         (void)hns3vf_bind_ring_with_vector(hw, vec, false,
2000                                                            HNS3_RING_TYPE_RX,
2001                                                            q_id);
2002                         if (vec < base + intr_handle->nb_efd - 1)
2003                                 vec++;
2004                 }
2005         }
2006         /* Clean datapath event and queue/vec mapping */
2007         rte_intr_efd_disable(intr_handle);
2008         if (intr_handle->intr_vec) {
2009                 rte_free(intr_handle->intr_vec);
2010                 intr_handle->intr_vec = NULL;
2011         }
2012 }
2013
2014 static int
2015 hns3vf_dev_stop(struct rte_eth_dev *dev)
2016 {
2017         struct hns3_adapter *hns = dev->data->dev_private;
2018         struct hns3_hw *hw = &hns->hw;
2019
2020         PMD_INIT_FUNC_TRACE();
2021         dev->data->dev_started = 0;
2022
2023         hw->adapter_state = HNS3_NIC_STOPPING;
2024         hns3_set_rxtx_function(dev);
2025         rte_wmb();
2026         /* Disable datapath on secondary process. */
2027         hns3_mp_req_stop_rxtx(dev);
2028         /* Prevent crashes when queues are still in use. */
2029         rte_delay_ms(hw->tqps_num);
2030
2031         rte_spinlock_lock(&hw->lock);
2032         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
2033                 hns3_stop_tqps(hw);
2034                 hns3vf_do_stop(hns);
2035                 hns3vf_unmap_rx_interrupt(dev);
2036                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2037         }
2038         hns3_rx_scattered_reset(dev);
2039         rte_eal_alarm_cancel(hns3vf_service_handler, dev);
2040         rte_spinlock_unlock(&hw->lock);
2041
2042         return 0;
2043 }
2044
2045 static int
2046 hns3vf_dev_close(struct rte_eth_dev *eth_dev)
2047 {
2048         struct hns3_adapter *hns = eth_dev->data->dev_private;
2049         struct hns3_hw *hw = &hns->hw;
2050         int ret = 0;
2051
2052         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2053                 rte_free(eth_dev->process_private);
2054                 eth_dev->process_private = NULL;
2055                 return 0;
2056         }
2057
2058         if (hw->adapter_state == HNS3_NIC_STARTED)
2059                 ret = hns3vf_dev_stop(eth_dev);
2060
2061         hw->adapter_state = HNS3_NIC_CLOSING;
2062         hns3_reset_abort(hns);
2063         hw->adapter_state = HNS3_NIC_CLOSED;
2064         rte_eal_alarm_cancel(hns3vf_keep_alive_handler, eth_dev);
2065         hns3vf_configure_all_mc_mac_addr(hns, true);
2066         hns3vf_remove_all_vlan_table(hns);
2067         hns3vf_uninit_vf(eth_dev);
2068         hns3_free_all_queues(eth_dev);
2069         rte_free(hw->reset.wait_data);
2070         rte_free(eth_dev->process_private);
2071         eth_dev->process_private = NULL;
2072         hns3_mp_uninit_primary();
2073         hns3_warn(hw, "Close port %u finished", hw->data->port_id);
2074
2075         return ret;
2076 }
2077
2078 static int
2079 hns3vf_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2080                       size_t fw_size)
2081 {
2082         struct hns3_adapter *hns = eth_dev->data->dev_private;
2083         struct hns3_hw *hw = &hns->hw;
2084         uint32_t version = hw->fw_version;
2085         int ret;
2086
2087         ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2088                        hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2089                                       HNS3_FW_VERSION_BYTE3_S),
2090                        hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2091                                       HNS3_FW_VERSION_BYTE2_S),
2092                        hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2093                                       HNS3_FW_VERSION_BYTE1_S),
2094                        hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2095                                       HNS3_FW_VERSION_BYTE0_S));
2096         ret += 1; /* add the size of '\0' */
2097         if (fw_size < (uint32_t)ret)
2098                 return ret;
2099         else
2100                 return 0;
2101 }
2102
2103 static int
2104 hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
2105                        __rte_unused int wait_to_complete)
2106 {
2107         struct hns3_adapter *hns = eth_dev->data->dev_private;
2108         struct hns3_hw *hw = &hns->hw;
2109         struct hns3_mac *mac = &hw->mac;
2110         struct rte_eth_link new_link;
2111
2112         memset(&new_link, 0, sizeof(new_link));
2113         switch (mac->link_speed) {
2114         case ETH_SPEED_NUM_10M:
2115         case ETH_SPEED_NUM_100M:
2116         case ETH_SPEED_NUM_1G:
2117         case ETH_SPEED_NUM_10G:
2118         case ETH_SPEED_NUM_25G:
2119         case ETH_SPEED_NUM_40G:
2120         case ETH_SPEED_NUM_50G:
2121         case ETH_SPEED_NUM_100G:
2122         case ETH_SPEED_NUM_200G:
2123                 new_link.link_speed = mac->link_speed;
2124                 break;
2125         default:
2126                 new_link.link_speed = ETH_SPEED_NUM_100M;
2127                 break;
2128         }
2129
2130         new_link.link_duplex = mac->link_duplex;
2131         new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2132         new_link.link_autoneg =
2133             !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2134
2135         return rte_eth_linkstatus_set(eth_dev, &new_link);
2136 }
2137
2138 static int
2139 hns3vf_do_start(struct hns3_adapter *hns, bool reset_queue)
2140 {
2141         struct hns3_hw *hw = &hns->hw;
2142         uint16_t nb_rx_q = hw->data->nb_rx_queues;
2143         uint16_t nb_tx_q = hw->data->nb_tx_queues;
2144         int ret;
2145
2146         ret = hns3vf_set_tc_queue_mapping(hns, nb_rx_q, nb_tx_q);
2147         if (ret)
2148                 return ret;
2149
2150         hns3_enable_rxd_adv_layout(hw);
2151
2152         ret = hns3_init_queues(hns, reset_queue);
2153         if (ret)
2154                 hns3_err(hw, "failed to init queues, ret = %d.", ret);
2155
2156         return ret;
2157 }
2158
2159 static int
2160 hns3vf_map_rx_interrupt(struct rte_eth_dev *dev)
2161 {
2162         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2163         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2164         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2165         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
2166         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
2167         uint32_t intr_vector;
2168         uint16_t q_id;
2169         int ret;
2170
2171         /*
2172          * hns3 needs a separate interrupt to be used as event interrupt which
2173          * could not be shared with task queue pair, so KERNEL drivers need
2174          * support multiple interrupt vectors.
2175          */
2176         if (dev->data->dev_conf.intr_conf.rxq == 0 ||
2177             !rte_intr_cap_multiple(intr_handle))
2178                 return 0;
2179
2180         rte_intr_disable(intr_handle);
2181         intr_vector = hw->used_rx_queues;
2182         /* It creates event fd for each intr vector when MSIX is used */
2183         if (rte_intr_efd_enable(intr_handle, intr_vector))
2184                 return -EINVAL;
2185
2186         if (intr_handle->intr_vec == NULL) {
2187                 intr_handle->intr_vec =
2188                         rte_zmalloc("intr_vec",
2189                                     hw->used_rx_queues * sizeof(int), 0);
2190                 if (intr_handle->intr_vec == NULL) {
2191                         hns3_err(hw, "Failed to allocate %u rx_queues"
2192                                      " intr_vec", hw->used_rx_queues);
2193                         ret = -ENOMEM;
2194                         goto vf_alloc_intr_vec_error;
2195                 }
2196         }
2197
2198         if (rte_intr_allow_others(intr_handle)) {
2199                 vec = RTE_INTR_VEC_RXTX_OFFSET;
2200                 base = RTE_INTR_VEC_RXTX_OFFSET;
2201         }
2202
2203         for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2204                 ret = hns3vf_bind_ring_with_vector(hw, vec, true,
2205                                                    HNS3_RING_TYPE_RX, q_id);
2206                 if (ret)
2207                         goto vf_bind_vector_error;
2208                 intr_handle->intr_vec[q_id] = vec;
2209                 /*
2210                  * If there are not enough efds (e.g. not enough interrupt),
2211                  * remaining queues will be bond to the last interrupt.
2212                  */
2213                 if (vec < base + intr_handle->nb_efd - 1)
2214                         vec++;
2215         }
2216         rte_intr_enable(intr_handle);
2217         return 0;
2218
2219 vf_bind_vector_error:
2220         free(intr_handle->intr_vec);
2221         intr_handle->intr_vec = NULL;
2222 vf_alloc_intr_vec_error:
2223         rte_intr_efd_disable(intr_handle);
2224         return ret;
2225 }
2226
2227 static int
2228 hns3vf_restore_rx_interrupt(struct hns3_hw *hw)
2229 {
2230         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
2231         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2232         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2233         uint16_t q_id;
2234         int ret;
2235
2236         if (dev->data->dev_conf.intr_conf.rxq == 0)
2237                 return 0;
2238
2239         if (rte_intr_dp_is_en(intr_handle)) {
2240                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2241                         ret = hns3vf_bind_ring_with_vector(hw,
2242                                         intr_handle->intr_vec[q_id], true,
2243                                         HNS3_RING_TYPE_RX, q_id);
2244                         if (ret)
2245                                 return ret;
2246                 }
2247         }
2248
2249         return 0;
2250 }
2251
2252 static void
2253 hns3vf_restore_filter(struct rte_eth_dev *dev)
2254 {
2255         hns3_restore_rss_filter(dev);
2256 }
2257
2258 static int
2259 hns3vf_dev_start(struct rte_eth_dev *dev)
2260 {
2261         struct hns3_adapter *hns = dev->data->dev_private;
2262         struct hns3_hw *hw = &hns->hw;
2263         int ret;
2264
2265         PMD_INIT_FUNC_TRACE();
2266         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
2267                 return -EBUSY;
2268
2269         rte_spinlock_lock(&hw->lock);
2270         hw->adapter_state = HNS3_NIC_STARTING;
2271         ret = hns3vf_do_start(hns, true);
2272         if (ret) {
2273                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2274                 rte_spinlock_unlock(&hw->lock);
2275                 return ret;
2276         }
2277         ret = hns3vf_map_rx_interrupt(dev);
2278         if (ret)
2279                 goto map_rx_inter_err;
2280
2281         /*
2282          * There are three register used to control the status of a TQP
2283          * (contains a pair of Tx queue and Rx queue) in the new version network
2284          * engine. One is used to control the enabling of Tx queue, the other is
2285          * used to control the enabling of Rx queue, and the last is the master
2286          * switch used to control the enabling of the tqp. The Tx register and
2287          * TQP register must be enabled at the same time to enable a Tx queue.
2288          * The same applies to the Rx queue. For the older network enginem, this
2289          * function only refresh the enabled flag, and it is used to update the
2290          * status of queue in the dpdk framework.
2291          */
2292         ret = hns3_start_all_txqs(dev);
2293         if (ret)
2294                 goto map_rx_inter_err;
2295
2296         ret = hns3_start_all_rxqs(dev);
2297         if (ret)
2298                 goto start_all_rxqs_fail;
2299
2300         hw->adapter_state = HNS3_NIC_STARTED;
2301         rte_spinlock_unlock(&hw->lock);
2302
2303         hns3_rx_scattered_calc(dev);
2304         hns3_set_rxtx_function(dev);
2305         hns3_mp_req_start_rxtx(dev);
2306         hns3vf_service_handler(dev);
2307
2308         hns3vf_restore_filter(dev);
2309
2310         /* Enable interrupt of all rx queues before enabling queues */
2311         hns3_dev_all_rx_queue_intr_enable(hw, true);
2312
2313         /*
2314          * After finished the initialization, start all tqps to receive/transmit
2315          * packets and refresh all queue status.
2316          */
2317         hns3_start_tqps(hw);
2318
2319         return ret;
2320
2321 start_all_rxqs_fail:
2322         hns3_stop_all_txqs(dev);
2323 map_rx_inter_err:
2324         (void)hns3vf_do_stop(hns);
2325         hw->adapter_state = HNS3_NIC_CONFIGURED;
2326         rte_spinlock_unlock(&hw->lock);
2327
2328         return ret;
2329 }
2330
2331 static bool
2332 is_vf_reset_done(struct hns3_hw *hw)
2333 {
2334 #define HNS3_FUN_RST_ING_BITS \
2335         (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) | \
2336          BIT(HNS3_VECTOR0_CORERESET_INT_B) | \
2337          BIT(HNS3_VECTOR0_IMPRESET_INT_B) | \
2338          BIT(HNS3_VECTOR0_FUNCRESET_INT_B))
2339
2340         uint32_t val;
2341
2342         if (hw->reset.level == HNS3_VF_RESET) {
2343                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
2344                 if (val & HNS3_VF_RST_ING_BIT)
2345                         return false;
2346         } else {
2347                 val = hns3_read_dev(hw, HNS3_FUN_RST_ING);
2348                 if (val & HNS3_FUN_RST_ING_BITS)
2349                         return false;
2350         }
2351         return true;
2352 }
2353
2354 bool
2355 hns3vf_is_reset_pending(struct hns3_adapter *hns)
2356 {
2357         struct hns3_hw *hw = &hns->hw;
2358         enum hns3_reset_level reset;
2359
2360         /*
2361          * According to the protocol of PCIe, FLR to a PF device resets the PF
2362          * state as well as the SR-IOV extended capability including VF Enable
2363          * which means that VFs no longer exist.
2364          *
2365          * HNS3_VF_FULL_RESET means PF device is in FLR reset. when PF device
2366          * is in FLR stage, the register state of VF device is not reliable,
2367          * so register states detection can not be carried out. In this case,
2368          * we just ignore the register states and return false to indicate that
2369          * there are no other reset states that need to be processed by driver.
2370          */
2371         if (hw->reset.level == HNS3_VF_FULL_RESET)
2372                 return false;
2373
2374         /* Check the registers to confirm whether there is reset pending */
2375         hns3vf_check_event_cause(hns, NULL);
2376         reset = hns3vf_get_reset_level(hw, &hw->reset.pending);
2377         if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
2378                 hns3_warn(hw, "High level reset %d is pending", reset);
2379                 return true;
2380         }
2381         return false;
2382 }
2383
2384 static int
2385 hns3vf_wait_hardware_ready(struct hns3_adapter *hns)
2386 {
2387         struct hns3_hw *hw = &hns->hw;
2388         struct hns3_wait_data *wait_data = hw->reset.wait_data;
2389         struct timeval tv;
2390
2391         if (wait_data->result == HNS3_WAIT_SUCCESS) {
2392                 /*
2393                  * After vf reset is ready, the PF may not have completed
2394                  * the reset processing. The vf sending mbox to PF may fail
2395                  * during the pf reset, so it is better to add extra delay.
2396                  */
2397                 if (hw->reset.level == HNS3_VF_FUNC_RESET ||
2398                     hw->reset.level == HNS3_FLR_RESET)
2399                         return 0;
2400                 /* Reset retry process, no need to add extra delay. */
2401                 if (hw->reset.attempts)
2402                         return 0;
2403                 if (wait_data->check_completion == NULL)
2404                         return 0;
2405
2406                 wait_data->check_completion = NULL;
2407                 wait_data->interval = 1 * MSEC_PER_SEC * USEC_PER_MSEC;
2408                 wait_data->count = 1;
2409                 wait_data->result = HNS3_WAIT_REQUEST;
2410                 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback,
2411                                   wait_data);
2412                 hns3_warn(hw, "hardware is ready, delay 1 sec for PF reset complete");
2413                 return -EAGAIN;
2414         } else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
2415                 gettimeofday(&tv, NULL);
2416                 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
2417                           tv.tv_sec, tv.tv_usec);
2418                 return -ETIME;
2419         } else if (wait_data->result == HNS3_WAIT_REQUEST)
2420                 return -EAGAIN;
2421
2422         wait_data->hns = hns;
2423         wait_data->check_completion = is_vf_reset_done;
2424         wait_data->end_ms = (uint64_t)HNS3VF_RESET_WAIT_CNT *
2425                                       HNS3VF_RESET_WAIT_MS + get_timeofday_ms();
2426         wait_data->interval = HNS3VF_RESET_WAIT_MS * USEC_PER_MSEC;
2427         wait_data->count = HNS3VF_RESET_WAIT_CNT;
2428         wait_data->result = HNS3_WAIT_REQUEST;
2429         rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
2430         return -EAGAIN;
2431 }
2432
2433 static int
2434 hns3vf_prepare_reset(struct hns3_adapter *hns)
2435 {
2436         struct hns3_hw *hw = &hns->hw;
2437         int ret;
2438
2439         if (hw->reset.level == HNS3_VF_FUNC_RESET) {
2440                 ret = hns3_send_mbx_msg(hw, HNS3_MBX_RESET, 0, NULL,
2441                                         0, true, NULL, 0);
2442                 if (ret)
2443                         return ret;
2444         }
2445         __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
2446
2447         return 0;
2448 }
2449
2450 static int
2451 hns3vf_stop_service(struct hns3_adapter *hns)
2452 {
2453         struct hns3_hw *hw = &hns->hw;
2454         struct rte_eth_dev *eth_dev;
2455
2456         eth_dev = &rte_eth_devices[hw->data->port_id];
2457         if (hw->adapter_state == HNS3_NIC_STARTED) {
2458                 rte_eal_alarm_cancel(hns3vf_service_handler, eth_dev);
2459                 hns3vf_update_link_status(hw, ETH_LINK_DOWN, hw->mac.link_speed,
2460                         hw->mac.link_duplex);
2461         }
2462         hw->mac.link_status = ETH_LINK_DOWN;
2463
2464         hns3_set_rxtx_function(eth_dev);
2465         rte_wmb();
2466         /* Disable datapath on secondary process. */
2467         hns3_mp_req_stop_rxtx(eth_dev);
2468         rte_delay_ms(hw->tqps_num);
2469
2470         rte_spinlock_lock(&hw->lock);
2471         if (hw->adapter_state == HNS3_NIC_STARTED ||
2472             hw->adapter_state == HNS3_NIC_STOPPING) {
2473                 hns3_enable_all_queues(hw, false);
2474                 hns3vf_do_stop(hns);
2475                 hw->reset.mbuf_deferred_free = true;
2476         } else
2477                 hw->reset.mbuf_deferred_free = false;
2478
2479         /*
2480          * It is cumbersome for hardware to pick-and-choose entries for deletion
2481          * from table space. Hence, for function reset software intervention is
2482          * required to delete the entries.
2483          */
2484         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0)
2485                 hns3vf_configure_all_mc_mac_addr(hns, true);
2486         rte_spinlock_unlock(&hw->lock);
2487
2488         return 0;
2489 }
2490
2491 static int
2492 hns3vf_start_service(struct hns3_adapter *hns)
2493 {
2494         struct hns3_hw *hw = &hns->hw;
2495         struct rte_eth_dev *eth_dev;
2496
2497         eth_dev = &rte_eth_devices[hw->data->port_id];
2498         hns3_set_rxtx_function(eth_dev);
2499         hns3_mp_req_start_rxtx(eth_dev);
2500         if (hw->adapter_state == HNS3_NIC_STARTED) {
2501                 hns3vf_service_handler(eth_dev);
2502
2503                 /* Enable interrupt of all rx queues before enabling queues */
2504                 hns3_dev_all_rx_queue_intr_enable(hw, true);
2505                 /*
2506                  * Enable state of each rxq and txq will be recovered after
2507                  * reset, so we need to restore them before enable all tqps;
2508                  */
2509                 hns3_restore_tqp_enable_state(hw);
2510                 /*
2511                  * When finished the initialization, enable queues to receive
2512                  * and transmit packets.
2513                  */
2514                 hns3_enable_all_queues(hw, true);
2515         }
2516
2517         return 0;
2518 }
2519
2520 static int
2521 hns3vf_check_default_mac_change(struct hns3_hw *hw)
2522 {
2523         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2524         struct rte_ether_addr *hw_mac;
2525         int ret;
2526
2527         /*
2528          * The hns3 PF ethdev driver in kernel support setting VF MAC address
2529          * on the host by "ip link set ..." command. If the hns3 PF kernel
2530          * ethdev driver sets the MAC address for VF device after the
2531          * initialization of the related VF device, the PF driver will notify
2532          * VF driver to reset VF device to make the new MAC address effective
2533          * immediately. The hns3 VF PMD driver should check whether the MAC
2534          * address has been changed by the PF kernel ethdev driver, if changed
2535          * VF driver should configure hardware using the new MAC address in the
2536          * recovering hardware configuration stage of the reset process.
2537          */
2538         ret = hns3vf_get_host_mac_addr(hw);
2539         if (ret)
2540                 return ret;
2541
2542         hw_mac = (struct rte_ether_addr *)hw->mac.mac_addr;
2543         ret = rte_is_zero_ether_addr(hw_mac);
2544         if (ret) {
2545                 rte_ether_addr_copy(&hw->data->mac_addrs[0], hw_mac);
2546         } else {
2547                 ret = rte_is_same_ether_addr(&hw->data->mac_addrs[0], hw_mac);
2548                 if (!ret) {
2549                         rte_ether_addr_copy(hw_mac, &hw->data->mac_addrs[0]);
2550                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2551                                               &hw->data->mac_addrs[0]);
2552                         hns3_warn(hw, "Default MAC address has been changed to:"
2553                                   " %s by the host PF kernel ethdev driver",
2554                                   mac_str);
2555                 }
2556         }
2557
2558         return 0;
2559 }
2560
2561 static int
2562 hns3vf_restore_conf(struct hns3_adapter *hns)
2563 {
2564         struct hns3_hw *hw = &hns->hw;
2565         int ret;
2566
2567         ret = hns3vf_check_default_mac_change(hw);
2568         if (ret)
2569                 return ret;
2570
2571         ret = hns3vf_configure_mac_addr(hns, false);
2572         if (ret)
2573                 return ret;
2574
2575         ret = hns3vf_configure_all_mc_mac_addr(hns, false);
2576         if (ret)
2577                 goto err_mc_mac;
2578
2579         ret = hns3vf_restore_promisc(hns);
2580         if (ret)
2581                 goto err_vlan_table;
2582
2583         ret = hns3vf_restore_vlan_conf(hns);
2584         if (ret)
2585                 goto err_vlan_table;
2586
2587         ret = hns3vf_get_port_base_vlan_filter_state(hw);
2588         if (ret)
2589                 goto err_vlan_table;
2590
2591         ret = hns3vf_restore_rx_interrupt(hw);
2592         if (ret)
2593                 goto err_vlan_table;
2594
2595         ret = hns3_restore_gro_conf(hw);
2596         if (ret)
2597                 goto err_vlan_table;
2598
2599         if (hw->adapter_state == HNS3_NIC_STARTED) {
2600                 ret = hns3vf_do_start(hns, false);
2601                 if (ret)
2602                         goto err_vlan_table;
2603                 hns3_info(hw, "hns3vf dev restart successful!");
2604         } else if (hw->adapter_state == HNS3_NIC_STOPPING)
2605                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2606         return 0;
2607
2608 err_vlan_table:
2609         hns3vf_configure_all_mc_mac_addr(hns, true);
2610 err_mc_mac:
2611         hns3vf_configure_mac_addr(hns, true);
2612         return ret;
2613 }
2614
2615 static enum hns3_reset_level
2616 hns3vf_get_reset_level(struct hns3_hw *hw, uint64_t *levels)
2617 {
2618         enum hns3_reset_level reset_level;
2619
2620         /* return the highest priority reset level amongst all */
2621         if (hns3_atomic_test_bit(HNS3_VF_RESET, levels))
2622                 reset_level = HNS3_VF_RESET;
2623         else if (hns3_atomic_test_bit(HNS3_VF_FULL_RESET, levels))
2624                 reset_level = HNS3_VF_FULL_RESET;
2625         else if (hns3_atomic_test_bit(HNS3_VF_PF_FUNC_RESET, levels))
2626                 reset_level = HNS3_VF_PF_FUNC_RESET;
2627         else if (hns3_atomic_test_bit(HNS3_VF_FUNC_RESET, levels))
2628                 reset_level = HNS3_VF_FUNC_RESET;
2629         else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
2630                 reset_level = HNS3_FLR_RESET;
2631         else
2632                 reset_level = HNS3_NONE_RESET;
2633
2634         if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
2635                 return HNS3_NONE_RESET;
2636
2637         return reset_level;
2638 }
2639
2640 static void
2641 hns3vf_reset_service(void *param)
2642 {
2643         struct hns3_adapter *hns = (struct hns3_adapter *)param;
2644         struct hns3_hw *hw = &hns->hw;
2645         enum hns3_reset_level reset_level;
2646         struct timeval tv_delta;
2647         struct timeval tv_start;
2648         struct timeval tv;
2649         uint64_t msec;
2650
2651         /*
2652          * The interrupt is not triggered within the delay time.
2653          * The interrupt may have been lost. It is necessary to handle
2654          * the interrupt to recover from the error.
2655          */
2656         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
2657                             SCHEDULE_DEFERRED) {
2658                 __atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED,
2659                                  __ATOMIC_RELAXED);
2660                 hns3_err(hw, "Handling interrupts in delayed tasks");
2661                 hns3vf_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
2662                 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2663                 if (reset_level == HNS3_NONE_RESET) {
2664                         hns3_err(hw, "No reset level is set, try global reset");
2665                         hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
2666                 }
2667         }
2668         __atomic_store_n(&hw->reset.schedule, SCHEDULE_NONE, __ATOMIC_RELAXED);
2669
2670         /*
2671          * Hardware reset has been notified, we now have to poll & check if
2672          * hardware has actually completed the reset sequence.
2673          */
2674         reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2675         if (reset_level != HNS3_NONE_RESET) {
2676                 gettimeofday(&tv_start, NULL);
2677                 hns3_reset_process(hns, reset_level);
2678                 gettimeofday(&tv, NULL);
2679                 timersub(&tv, &tv_start, &tv_delta);
2680                 msec = tv_delta.tv_sec * MSEC_PER_SEC +
2681                        tv_delta.tv_usec / USEC_PER_MSEC;
2682                 if (msec > HNS3_RESET_PROCESS_MS)
2683                         hns3_err(hw, "%d handle long time delta %" PRIx64
2684                                  " ms time=%ld.%.6ld",
2685                                  hw->reset.level, msec, tv.tv_sec, tv.tv_usec);
2686         }
2687 }
2688
2689 static int
2690 hns3vf_reinit_dev(struct hns3_adapter *hns)
2691 {
2692         struct rte_eth_dev *eth_dev = &rte_eth_devices[hns->hw.data->port_id];
2693         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2694         struct hns3_hw *hw = &hns->hw;
2695         int ret;
2696
2697         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2698                 rte_intr_disable(&pci_dev->intr_handle);
2699                 ret = hns3vf_set_bus_master(pci_dev, true);
2700                 if (ret < 0) {
2701                         hns3_err(hw, "failed to set pci bus, ret = %d", ret);
2702                         return ret;
2703                 }
2704         }
2705
2706         /* Firmware command initialize */
2707         ret = hns3_cmd_init(hw);
2708         if (ret) {
2709                 hns3_err(hw, "Failed to init cmd: %d", ret);
2710                 return ret;
2711         }
2712
2713         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2714                 /*
2715                  * UIO enables msix by writing the pcie configuration space
2716                  * vfio_pci enables msix in rte_intr_enable.
2717                  */
2718                 if (pci_dev->kdrv == RTE_PCI_KDRV_IGB_UIO ||
2719                     pci_dev->kdrv == RTE_PCI_KDRV_UIO_GENERIC) {
2720                         if (hns3vf_enable_msix(pci_dev, true))
2721                                 hns3_err(hw, "Failed to enable msix");
2722                 }
2723
2724                 rte_intr_enable(&pci_dev->intr_handle);
2725         }
2726
2727         ret = hns3_reset_all_tqps(hns);
2728         if (ret) {
2729                 hns3_err(hw, "Failed to reset all queues: %d", ret);
2730                 return ret;
2731         }
2732
2733         ret = hns3vf_init_hardware(hns);
2734         if (ret) {
2735                 hns3_err(hw, "Failed to init hardware: %d", ret);
2736                 return ret;
2737         }
2738
2739         return 0;
2740 }
2741
2742 static const struct eth_dev_ops hns3vf_eth_dev_ops = {
2743         .dev_configure      = hns3vf_dev_configure,
2744         .dev_start          = hns3vf_dev_start,
2745         .dev_stop           = hns3vf_dev_stop,
2746         .dev_close          = hns3vf_dev_close,
2747         .mtu_set            = hns3vf_dev_mtu_set,
2748         .promiscuous_enable = hns3vf_dev_promiscuous_enable,
2749         .promiscuous_disable = hns3vf_dev_promiscuous_disable,
2750         .allmulticast_enable = hns3vf_dev_allmulticast_enable,
2751         .allmulticast_disable = hns3vf_dev_allmulticast_disable,
2752         .stats_get          = hns3_stats_get,
2753         .stats_reset        = hns3_stats_reset,
2754         .xstats_get         = hns3_dev_xstats_get,
2755         .xstats_get_names   = hns3_dev_xstats_get_names,
2756         .xstats_reset       = hns3_dev_xstats_reset,
2757         .xstats_get_by_id   = hns3_dev_xstats_get_by_id,
2758         .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
2759         .dev_infos_get      = hns3vf_dev_infos_get,
2760         .fw_version_get     = hns3vf_fw_version_get,
2761         .rx_queue_setup     = hns3_rx_queue_setup,
2762         .tx_queue_setup     = hns3_tx_queue_setup,
2763         .rx_queue_release   = hns3_dev_rx_queue_release,
2764         .tx_queue_release   = hns3_dev_tx_queue_release,
2765         .rx_queue_start     = hns3_dev_rx_queue_start,
2766         .rx_queue_stop      = hns3_dev_rx_queue_stop,
2767         .tx_queue_start     = hns3_dev_tx_queue_start,
2768         .tx_queue_stop      = hns3_dev_tx_queue_stop,
2769         .rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
2770         .rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
2771         .rxq_info_get       = hns3_rxq_info_get,
2772         .txq_info_get       = hns3_txq_info_get,
2773         .rx_burst_mode_get  = hns3_rx_burst_mode_get,
2774         .tx_burst_mode_get  = hns3_tx_burst_mode_get,
2775         .mac_addr_add       = hns3vf_add_mac_addr,
2776         .mac_addr_remove    = hns3vf_remove_mac_addr,
2777         .mac_addr_set       = hns3vf_set_default_mac_addr,
2778         .set_mc_addr_list   = hns3vf_set_mc_mac_addr_list,
2779         .link_update        = hns3vf_dev_link_update,
2780         .rss_hash_update    = hns3_dev_rss_hash_update,
2781         .rss_hash_conf_get  = hns3_dev_rss_hash_conf_get,
2782         .reta_update        = hns3_dev_rss_reta_update,
2783         .reta_query         = hns3_dev_rss_reta_query,
2784         .filter_ctrl        = hns3_dev_filter_ctrl,
2785         .vlan_filter_set    = hns3vf_vlan_filter_set,
2786         .vlan_offload_set   = hns3vf_vlan_offload_set,
2787         .get_reg            = hns3_get_regs,
2788         .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
2789         .tx_done_cleanup    = hns3_tx_done_cleanup,
2790 };
2791
2792 static const struct hns3_reset_ops hns3vf_reset_ops = {
2793         .reset_service       = hns3vf_reset_service,
2794         .stop_service        = hns3vf_stop_service,
2795         .prepare_reset       = hns3vf_prepare_reset,
2796         .wait_hardware_ready = hns3vf_wait_hardware_ready,
2797         .reinit_dev          = hns3vf_reinit_dev,
2798         .restore_conf        = hns3vf_restore_conf,
2799         .start_service       = hns3vf_start_service,
2800 };
2801
2802 static int
2803 hns3vf_dev_init(struct rte_eth_dev *eth_dev)
2804 {
2805         struct hns3_adapter *hns = eth_dev->data->dev_private;
2806         struct hns3_hw *hw = &hns->hw;
2807         int ret;
2808
2809         PMD_INIT_FUNC_TRACE();
2810
2811         eth_dev->process_private = (struct hns3_process_private *)
2812             rte_zmalloc_socket("hns3_filter_list",
2813                                sizeof(struct hns3_process_private),
2814                                RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
2815         if (eth_dev->process_private == NULL) {
2816                 PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
2817                 return -ENOMEM;
2818         }
2819
2820         /* initialize flow filter lists */
2821         hns3_filterlist_init(eth_dev);
2822
2823         hns3_set_rxtx_function(eth_dev);
2824         eth_dev->dev_ops = &hns3vf_eth_dev_ops;
2825         eth_dev->rx_queue_count = hns3_rx_queue_count;
2826         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2827                 ret = hns3_mp_init_secondary();
2828                 if (ret) {
2829                         PMD_INIT_LOG(ERR, "Failed to init for secondary "
2830                                           "process, ret = %d", ret);
2831                         goto err_mp_init_secondary;
2832                 }
2833
2834                 hw->secondary_cnt++;
2835                 return 0;
2836         }
2837
2838         ret = hns3_mp_init_primary();
2839         if (ret) {
2840                 PMD_INIT_LOG(ERR,
2841                              "Failed to init for primary process, ret = %d",
2842                              ret);
2843                 goto err_mp_init_primary;
2844         }
2845
2846         hw->adapter_state = HNS3_NIC_UNINITIALIZED;
2847         hns->is_vf = true;
2848         hw->data = eth_dev->data;
2849         hns3_parse_devargs(eth_dev);
2850
2851         ret = hns3_reset_init(hw);
2852         if (ret)
2853                 goto err_init_reset;
2854         hw->reset.ops = &hns3vf_reset_ops;
2855
2856         ret = hns3vf_init_vf(eth_dev);
2857         if (ret) {
2858                 PMD_INIT_LOG(ERR, "Failed to init vf: %d", ret);
2859                 goto err_init_vf;
2860         }
2861
2862         /* Allocate memory for storing MAC addresses */
2863         eth_dev->data->mac_addrs = rte_zmalloc("hns3vf-mac",
2864                                                sizeof(struct rte_ether_addr) *
2865                                                HNS3_VF_UC_MACADDR_NUM, 0);
2866         if (eth_dev->data->mac_addrs == NULL) {
2867                 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
2868                              "to store MAC addresses",
2869                              sizeof(struct rte_ether_addr) *
2870                              HNS3_VF_UC_MACADDR_NUM);
2871                 ret = -ENOMEM;
2872                 goto err_rte_zmalloc;
2873         }
2874
2875         /*
2876          * The hns3 PF ethdev driver in kernel support setting VF MAC address
2877          * on the host by "ip link set ..." command. To avoid some incorrect
2878          * scenes, for example, hns3 VF PMD driver fails to receive and send
2879          * packets after user configure the MAC address by using the
2880          * "ip link set ..." command, hns3 VF PMD driver keep the same MAC
2881          * address strategy as the hns3 kernel ethdev driver in the
2882          * initialization. If user configure a MAC address by the ip command
2883          * for VF device, then hns3 VF PMD driver will start with it, otherwise
2884          * start with a random MAC address in the initialization.
2885          */
2886         if (rte_is_zero_ether_addr((struct rte_ether_addr *)hw->mac.mac_addr))
2887                 rte_eth_random_addr(hw->mac.mac_addr);
2888         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
2889                             &eth_dev->data->mac_addrs[0]);
2890
2891         hw->adapter_state = HNS3_NIC_INITIALIZED;
2892
2893         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
2894                             SCHEDULE_PENDING) {
2895                 hns3_err(hw, "Reschedule reset service after dev_init");
2896                 hns3_schedule_reset(hns);
2897         } else {
2898                 /* IMP will wait ready flag before reset */
2899                 hns3_notify_reset_ready(hw, false);
2900         }
2901         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
2902                           eth_dev);
2903         return 0;
2904
2905 err_rte_zmalloc:
2906         hns3vf_uninit_vf(eth_dev);
2907
2908 err_init_vf:
2909         rte_free(hw->reset.wait_data);
2910
2911 err_init_reset:
2912         hns3_mp_uninit_primary();
2913
2914 err_mp_init_primary:
2915 err_mp_init_secondary:
2916         eth_dev->dev_ops = NULL;
2917         eth_dev->rx_pkt_burst = NULL;
2918         eth_dev->rx_descriptor_status = NULL;
2919         eth_dev->tx_pkt_burst = NULL;
2920         eth_dev->tx_pkt_prepare = NULL;
2921         eth_dev->tx_descriptor_status = NULL;
2922         rte_free(eth_dev->process_private);
2923         eth_dev->process_private = NULL;
2924
2925         return ret;
2926 }
2927
2928 static int
2929 hns3vf_dev_uninit(struct rte_eth_dev *eth_dev)
2930 {
2931         struct hns3_adapter *hns = eth_dev->data->dev_private;
2932         struct hns3_hw *hw = &hns->hw;
2933
2934         PMD_INIT_FUNC_TRACE();
2935
2936         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2937                 rte_free(eth_dev->process_private);
2938                 eth_dev->process_private = NULL;
2939                 return 0;
2940         }
2941
2942         if (hw->adapter_state < HNS3_NIC_CLOSING)
2943                 hns3vf_dev_close(eth_dev);
2944
2945         hw->adapter_state = HNS3_NIC_REMOVED;
2946         return 0;
2947 }
2948
2949 static int
2950 eth_hns3vf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2951                      struct rte_pci_device *pci_dev)
2952 {
2953         return rte_eth_dev_pci_generic_probe(pci_dev,
2954                                              sizeof(struct hns3_adapter),
2955                                              hns3vf_dev_init);
2956 }
2957
2958 static int
2959 eth_hns3vf_pci_remove(struct rte_pci_device *pci_dev)
2960 {
2961         return rte_eth_dev_pci_generic_remove(pci_dev, hns3vf_dev_uninit);
2962 }
2963
2964 static const struct rte_pci_id pci_id_hns3vf_map[] = {
2965         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_VF) },
2966         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_PFC_VF) },
2967         { .vendor_id = 0, }, /* sentinel */
2968 };
2969
2970 static struct rte_pci_driver rte_hns3vf_pmd = {
2971         .id_table = pci_id_hns3vf_map,
2972         .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
2973         .probe = eth_hns3vf_pci_probe,
2974         .remove = eth_hns3vf_pci_remove,
2975 };
2976
2977 RTE_PMD_REGISTER_PCI(net_hns3_vf, rte_hns3vf_pmd);
2978 RTE_PMD_REGISTER_PCI_TABLE(net_hns3_vf, pci_id_hns3vf_map);
2979 RTE_PMD_REGISTER_KMOD_DEP(net_hns3_vf, "* igb_uio | vfio-pci");
2980 RTE_PMD_REGISTER_PARAM_STRING(net_hns3_vf,
2981                 HNS3_DEVARG_RX_FUNC_HINT "=vec|sve|simple|common "
2982                 HNS3_DEVARG_TX_FUNC_HINT "=vec|sve|simple|common ");