1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2018-2019 Hisilicon Limited.
11 #include <arpa/inet.h>
12 #include <linux/pci_regs.h>
14 #include <rte_alarm.h>
15 #include <rte_atomic.h>
16 #include <rte_bus_pci.h>
17 #include <rte_byteorder.h>
18 #include <rte_common.h>
19 #include <rte_cycles.h>
22 #include <rte_ether.h>
23 #include <rte_ethdev_driver.h>
24 #include <rte_ethdev_pci.h>
25 #include <rte_interrupts.h>
31 #include "hns3_ethdev.h"
32 #include "hns3_logs.h"
33 #include "hns3_rxtx.h"
34 #include "hns3_regs.h"
35 #include "hns3_intr.h"
39 #define HNS3VF_KEEP_ALIVE_INTERVAL 2000000 /* us */
40 #define HNS3VF_SERVICE_INTERVAL 1000000 /* us */
42 #define HNS3VF_RESET_WAIT_MS 20
43 #define HNS3VF_RESET_WAIT_CNT 2000
45 /* Reset related Registers */
46 #define HNS3_GLOBAL_RESET_BIT 0
47 #define HNS3_CORE_RESET_BIT 1
48 #define HNS3_IMP_RESET_BIT 2
49 #define HNS3_FUN_RST_ING_B 0
51 enum hns3vf_evt_cause {
52 HNS3VF_VECTOR0_EVENT_RST,
53 HNS3VF_VECTOR0_EVENT_MBX,
54 HNS3VF_VECTOR0_EVENT_OTHER,
57 static enum hns3_reset_level hns3vf_get_reset_level(struct hns3_hw *hw,
59 static int hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
60 static int hns3vf_dev_configure_vlan(struct rte_eth_dev *dev);
62 static int hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
63 struct rte_ether_addr *mac_addr);
64 static int hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
65 struct rte_ether_addr *mac_addr);
66 /* set PCI bus mastering */
68 hns3vf_set_bus_master(const struct rte_pci_device *device, bool op)
72 rte_pci_read_config(device, ®, sizeof(reg), PCI_COMMAND);
75 /* set the master bit */
76 reg |= PCI_COMMAND_MASTER;
78 reg &= ~(PCI_COMMAND_MASTER);
80 rte_pci_write_config(device, ®, sizeof(reg), PCI_COMMAND);
84 * hns3vf_find_pci_capability - lookup a capability in the PCI capability list
85 * @cap: the capability
87 * Return the address of the given capability within the PCI capability list.
90 hns3vf_find_pci_capability(const struct rte_pci_device *device, int cap)
92 #define MAX_PCIE_CAPABILITY 48
98 rte_pci_read_config(device, &status, sizeof(status), PCI_STATUS);
99 if (!(status & PCI_STATUS_CAP_LIST))
102 ttl = MAX_PCIE_CAPABILITY;
103 rte_pci_read_config(device, &pos, sizeof(pos), PCI_CAPABILITY_LIST);
104 while (ttl-- && pos >= PCI_STD_HEADER_SIZEOF) {
105 rte_pci_read_config(device, &id, sizeof(id),
106 (pos + PCI_CAP_LIST_ID));
114 rte_pci_read_config(device, &pos, sizeof(pos),
115 (pos + PCI_CAP_LIST_NEXT));
121 hns3vf_enable_msix(const struct rte_pci_device *device, bool op)
126 pos = hns3vf_find_pci_capability(device, PCI_CAP_ID_MSIX);
128 rte_pci_read_config(device, &control, sizeof(control),
129 (pos + PCI_MSIX_FLAGS));
131 control |= PCI_MSIX_FLAGS_ENABLE;
133 control &= ~PCI_MSIX_FLAGS_ENABLE;
134 rte_pci_write_config(device, &control, sizeof(control),
135 (pos + PCI_MSIX_FLAGS));
142 hns3vf_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
144 /* mac address was checked by upper level interface */
145 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
148 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
149 HNS3_MBX_MAC_VLAN_UC_ADD, mac_addr->addr_bytes,
150 RTE_ETHER_ADDR_LEN, false, NULL, 0);
152 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
154 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
161 hns3vf_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
163 /* mac address was checked by upper level interface */
164 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
167 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
168 HNS3_MBX_MAC_VLAN_UC_REMOVE,
169 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN,
172 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
174 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
181 hns3vf_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
183 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
184 struct rte_ether_addr *addr;
188 for (i = 0; i < hw->mc_addrs_num; i++) {
189 addr = &hw->mc_addrs[i];
190 /* Check if there are duplicate addresses */
191 if (rte_is_same_ether_addr(addr, mac_addr)) {
192 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
194 hns3_err(hw, "failed to add mc mac addr, same addrs"
195 "(%s) is added by the set_mc_mac_addr_list "
201 ret = hns3vf_add_mc_mac_addr(hw, mac_addr);
203 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
205 hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
212 hns3vf_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
213 __rte_unused uint32_t idx,
214 __rte_unused uint32_t pool)
216 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
217 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
220 rte_spinlock_lock(&hw->lock);
223 * In hns3 network engine adding UC and MC mac address with different
224 * commands with firmware. We need to determine whether the input
225 * address is a UC or a MC address to call different commands.
226 * By the way, it is recommended calling the API function named
227 * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
228 * using the rte_eth_dev_mac_addr_add API function to set MC mac address
229 * may affect the specifications of UC mac addresses.
231 if (rte_is_multicast_ether_addr(mac_addr))
232 ret = hns3vf_add_mc_addr_common(hw, mac_addr);
234 ret = hns3vf_add_uc_mac_addr(hw, mac_addr);
236 rte_spinlock_unlock(&hw->lock);
238 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
240 hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
248 hns3vf_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
250 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
251 /* index will be checked by upper level rte interface */
252 struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
253 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
256 rte_spinlock_lock(&hw->lock);
258 if (rte_is_multicast_ether_addr(mac_addr))
259 ret = hns3vf_remove_mc_mac_addr(hw, mac_addr);
261 ret = hns3vf_remove_uc_mac_addr(hw, mac_addr);
263 rte_spinlock_unlock(&hw->lock);
265 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
267 hns3_err(hw, "failed to remove mac addr(%s), ret = %d",
273 hns3vf_set_default_mac_addr(struct rte_eth_dev *dev,
274 struct rte_ether_addr *mac_addr)
276 #define HNS3_TWO_ETHER_ADDR_LEN (RTE_ETHER_ADDR_LEN * 2)
277 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
278 struct rte_ether_addr *old_addr;
279 uint8_t addr_bytes[HNS3_TWO_ETHER_ADDR_LEN]; /* for 2 MAC addresses */
280 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
284 * It has been guaranteed that input parameter named mac_addr is valid
285 * address in the rte layer of DPDK framework.
287 old_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
288 rte_spinlock_lock(&hw->lock);
289 memcpy(addr_bytes, mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN);
290 memcpy(&addr_bytes[RTE_ETHER_ADDR_LEN], old_addr->addr_bytes,
293 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
294 HNS3_MBX_MAC_VLAN_UC_MODIFY, addr_bytes,
295 HNS3_TWO_ETHER_ADDR_LEN, true, NULL, 0);
298 * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev
299 * driver. When user has configured a MAC address for VF device
300 * by "ip link set ..." command based on the PF device, the hns3
301 * PF kernel ethdev driver does not allow VF driver to request
302 * reconfiguring a different default MAC address, and return
303 * -EPREM to VF driver through mailbox.
306 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
308 hns3_warn(hw, "Has permanet mac addr(%s) for vf",
311 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
313 hns3_err(hw, "Failed to set mac addr(%s) for vf: %d",
318 rte_ether_addr_copy(mac_addr,
319 (struct rte_ether_addr *)hw->mac.mac_addr);
320 rte_spinlock_unlock(&hw->lock);
326 hns3vf_configure_mac_addr(struct hns3_adapter *hns, bool del)
328 struct hns3_hw *hw = &hns->hw;
329 struct rte_ether_addr *addr;
330 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
335 for (i = 0; i < HNS3_VF_UC_MACADDR_NUM; i++) {
336 addr = &hw->data->mac_addrs[i];
337 if (rte_is_zero_ether_addr(addr))
339 if (rte_is_multicast_ether_addr(addr))
340 ret = del ? hns3vf_remove_mc_mac_addr(hw, addr) :
341 hns3vf_add_mc_mac_addr(hw, addr);
343 ret = del ? hns3vf_remove_uc_mac_addr(hw, addr) :
344 hns3vf_add_uc_mac_addr(hw, addr);
348 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
350 hns3_err(hw, "failed to %s mac addr(%s) index:%d "
351 "ret = %d.", del ? "remove" : "restore",
359 hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
360 struct rte_ether_addr *mac_addr)
362 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
365 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
366 HNS3_MBX_MAC_VLAN_MC_ADD,
367 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
370 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
372 hns3_err(hw, "Failed to add mc mac addr(%s) for vf: %d",
380 hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
381 struct rte_ether_addr *mac_addr)
383 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
386 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
387 HNS3_MBX_MAC_VLAN_MC_REMOVE,
388 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
391 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
393 hns3_err(hw, "Failed to remove mc mac addr(%s) for vf: %d",
401 hns3vf_set_mc_addr_chk_param(struct hns3_hw *hw,
402 struct rte_ether_addr *mc_addr_set,
405 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
406 struct rte_ether_addr *addr;
410 if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
411 hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%d) "
412 "invalid. valid range: 0~%d",
413 nb_mc_addr, HNS3_MC_MACADDR_NUM);
417 /* Check if input mac addresses are valid */
418 for (i = 0; i < nb_mc_addr; i++) {
419 addr = &mc_addr_set[i];
420 if (!rte_is_multicast_ether_addr(addr)) {
421 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
424 "failed to set mc mac addr, addr(%s) invalid.",
429 /* Check if there are duplicate addresses */
430 for (j = i + 1; j < nb_mc_addr; j++) {
431 if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
432 rte_ether_format_addr(mac_str,
433 RTE_ETHER_ADDR_FMT_SIZE,
435 hns3_err(hw, "failed to set mc mac addr, "
436 "addrs invalid. two same addrs(%s).",
443 * Check if there are duplicate addresses between mac_addrs
446 for (j = 0; j < HNS3_VF_UC_MACADDR_NUM; j++) {
447 if (rte_is_same_ether_addr(addr,
448 &hw->data->mac_addrs[j])) {
449 rte_ether_format_addr(mac_str,
450 RTE_ETHER_ADDR_FMT_SIZE,
452 hns3_err(hw, "failed to set mc mac addr, "
453 "addrs invalid. addrs(%s) has already "
454 "configured in mac_addr add API",
465 hns3vf_set_mc_mac_addr_list(struct rte_eth_dev *dev,
466 struct rte_ether_addr *mc_addr_set,
469 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
470 struct rte_ether_addr *addr;
477 ret = hns3vf_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
481 rte_spinlock_lock(&hw->lock);
482 cur_addr_num = hw->mc_addrs_num;
483 for (i = 0; i < cur_addr_num; i++) {
484 num = cur_addr_num - i - 1;
485 addr = &hw->mc_addrs[num];
486 ret = hns3vf_remove_mc_mac_addr(hw, addr);
488 rte_spinlock_unlock(&hw->lock);
495 set_addr_num = (int)nb_mc_addr;
496 for (i = 0; i < set_addr_num; i++) {
497 addr = &mc_addr_set[i];
498 ret = hns3vf_add_mc_mac_addr(hw, addr);
500 rte_spinlock_unlock(&hw->lock);
504 rte_ether_addr_copy(addr, &hw->mc_addrs[hw->mc_addrs_num]);
507 rte_spinlock_unlock(&hw->lock);
513 hns3vf_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
515 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
516 struct hns3_hw *hw = &hns->hw;
517 struct rte_ether_addr *addr;
522 for (i = 0; i < hw->mc_addrs_num; i++) {
523 addr = &hw->mc_addrs[i];
524 if (!rte_is_multicast_ether_addr(addr))
527 ret = hns3vf_remove_mc_mac_addr(hw, addr);
529 ret = hns3vf_add_mc_mac_addr(hw, addr);
532 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
534 hns3_err(hw, "Failed to %s mc mac addr: %s for vf: %d",
535 del ? "Remove" : "Restore", mac_str, ret);
542 hns3vf_set_promisc_mode(struct hns3_hw *hw, bool en_bc_pmc,
543 bool en_uc_pmc, bool en_mc_pmc)
545 struct hns3_mbx_vf_to_pf_cmd *req;
546 struct hns3_cmd_desc desc;
549 req = (struct hns3_mbx_vf_to_pf_cmd *)desc.data;
552 * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev driver,
553 * so there are some features for promiscuous/allmulticast mode in hns3
554 * VF PMD driver as below:
555 * 1. The promiscuous/allmulticast mode can be configured successfully
556 * only based on the trusted VF device. If based on the non trusted
557 * VF device, configuring promiscuous/allmulticast mode will fail.
558 * The hns3 VF device can be confiruged as trusted device by hns3 PF
559 * kernel ethdev driver on the host by the following command:
560 * "ip link set <eth num> vf <vf id> turst on"
561 * 2. After the promiscuous mode is configured successfully, hns3 VF PMD
562 * driver can receive the ingress and outgoing traffic. In the words,
563 * all the ingress packets, all the packets sent from the PF and
564 * other VFs on the same physical port.
565 * 3. Note: Because of the hardware constraints, By default vlan filter
566 * is enabled and couldn't be turned off based on VF device, so vlan
567 * filter is still effective even in promiscuous mode. If upper
568 * applications don't call rte_eth_dev_vlan_filter API function to
569 * set vlan based on VF device, hns3 VF PMD driver will can't receive
570 * the packets with vlan tag in promiscuoue mode.
572 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MBX_VF_TO_PF, false);
573 req->msg[0] = HNS3_MBX_SET_PROMISC_MODE;
574 req->msg[1] = en_bc_pmc ? 1 : 0;
575 req->msg[2] = en_uc_pmc ? 1 : 0;
576 req->msg[3] = en_mc_pmc ? 1 : 0;
578 ret = hns3_cmd_send(hw, &desc, 1);
580 hns3_err(hw, "Set promisc mode fail, ret = %d", ret);
586 hns3vf_dev_promiscuous_enable(struct rte_eth_dev *dev)
588 struct hns3_adapter *hns = dev->data->dev_private;
589 struct hns3_hw *hw = &hns->hw;
592 ret = hns3vf_set_promisc_mode(hw, true, true, true);
594 hns3_err(hw, "Failed to enable promiscuous mode, ret = %d",
600 hns3vf_dev_promiscuous_disable(struct rte_eth_dev *dev)
602 bool allmulti = dev->data->all_multicast ? true : false;
603 struct hns3_adapter *hns = dev->data->dev_private;
604 struct hns3_hw *hw = &hns->hw;
607 ret = hns3vf_set_promisc_mode(hw, true, false, allmulti);
609 hns3_err(hw, "Failed to disable promiscuous mode, ret = %d",
615 hns3vf_dev_allmulticast_enable(struct rte_eth_dev *dev)
617 struct hns3_adapter *hns = dev->data->dev_private;
618 struct hns3_hw *hw = &hns->hw;
621 if (dev->data->promiscuous)
624 ret = hns3vf_set_promisc_mode(hw, true, false, true);
626 hns3_err(hw, "Failed to enable allmulticast mode, ret = %d",
632 hns3vf_dev_allmulticast_disable(struct rte_eth_dev *dev)
634 struct hns3_adapter *hns = dev->data->dev_private;
635 struct hns3_hw *hw = &hns->hw;
638 if (dev->data->promiscuous)
641 ret = hns3vf_set_promisc_mode(hw, true, false, false);
643 hns3_err(hw, "Failed to disable allmulticast mode, ret = %d",
649 hns3vf_restore_promisc(struct hns3_adapter *hns)
651 struct hns3_hw *hw = &hns->hw;
652 bool allmulti = hw->data->all_multicast ? true : false;
654 if (hw->data->promiscuous)
655 return hns3vf_set_promisc_mode(hw, true, true, true);
657 return hns3vf_set_promisc_mode(hw, true, false, allmulti);
661 hns3vf_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id,
662 bool mmap, enum hns3_ring_type queue_type,
665 struct hns3_vf_bind_vector_msg bind_msg;
670 memset(&bind_msg, 0, sizeof(bind_msg));
671 code = mmap ? HNS3_MBX_MAP_RING_TO_VECTOR :
672 HNS3_MBX_UNMAP_RING_TO_VECTOR;
673 bind_msg.vector_id = vector_id;
675 if (queue_type == HNS3_RING_TYPE_RX)
676 bind_msg.param[0].int_gl_index = HNS3_RING_GL_RX;
678 bind_msg.param[0].int_gl_index = HNS3_RING_GL_TX;
680 bind_msg.param[0].ring_type = queue_type;
681 bind_msg.ring_num = 1;
682 bind_msg.param[0].tqp_index = queue_id;
683 op_str = mmap ? "Map" : "Unmap";
684 ret = hns3_send_mbx_msg(hw, code, 0, (uint8_t *)&bind_msg,
685 sizeof(bind_msg), false, NULL, 0);
687 hns3_err(hw, "%s TQP %d fail, vector_id is %d, ret is %d.",
688 op_str, queue_id, bind_msg.vector_id, ret);
694 hns3vf_init_ring_with_vector(struct hns3_hw *hw)
701 * In hns3 network engine, vector 0 is always the misc interrupt of this
702 * function, vector 1~N can be used respectively for the queues of the
703 * function. Tx and Rx queues with the same number share the interrupt
704 * vector. In the initialization clearing the all hardware mapping
705 * relationship configurations between queues and interrupt vectors is
706 * needed, so some error caused by the residual configurations, such as
707 * the unexpected Tx interrupt, can be avoid.
709 vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
710 if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
711 vec = vec - 1; /* the last interrupt is reserved */
712 hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
713 for (i = 0; i < hw->intr_tqps_num; i++) {
715 * Set gap limiter/rate limiter/quanity limiter algorithm
716 * configuration for interrupt coalesce of queue's interrupt.
718 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
719 HNS3_TQP_INTR_GL_DEFAULT);
720 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
721 HNS3_TQP_INTR_GL_DEFAULT);
722 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
723 hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
725 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
726 HNS3_RING_TYPE_TX, i);
728 PMD_INIT_LOG(ERR, "VF fail to unbind TX ring(%d) with "
729 "vector: %d, ret=%d", i, vec, ret);
733 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
734 HNS3_RING_TYPE_RX, i);
736 PMD_INIT_LOG(ERR, "VF fail to unbind RX ring(%d) with "
737 "vector: %d, ret=%d", i, vec, ret);
746 hns3vf_dev_configure(struct rte_eth_dev *dev)
748 struct hns3_adapter *hns = dev->data->dev_private;
749 struct hns3_hw *hw = &hns->hw;
750 struct hns3_rss_conf *rss_cfg = &hw->rss_info;
751 struct rte_eth_conf *conf = &dev->data->dev_conf;
752 enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
753 uint16_t nb_rx_q = dev->data->nb_rx_queues;
754 uint16_t nb_tx_q = dev->data->nb_tx_queues;
755 struct rte_eth_rss_conf rss_conf;
761 * Hardware does not support individually enable/disable/reset the Tx or
762 * Rx queue in hns3 network engine. Driver must enable/disable/reset Tx
763 * and Rx queues at the same time. When the numbers of Tx queues
764 * allocated by upper applications are not equal to the numbers of Rx
765 * queues, driver needs to setup fake Tx or Rx queues to adjust numbers
766 * of Tx/Rx queues. otherwise, network engine can not work as usual. But
767 * these fake queues are imperceptible, and can not be used by upper
770 ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
772 hns3_err(hw, "Failed to set rx/tx fake queues: %d", ret);
776 hw->adapter_state = HNS3_NIC_CONFIGURING;
777 if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
778 hns3_err(hw, "setting link speed/duplex not supported");
783 /* When RSS is not configured, redirect the packet queue 0 */
784 if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
785 conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
786 rss_conf = conf->rx_adv_conf.rss_conf;
787 if (rss_conf.rss_key == NULL) {
788 rss_conf.rss_key = rss_cfg->key;
789 rss_conf.rss_key_len = HNS3_RSS_KEY_SIZE;
792 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
798 * If jumbo frames are enabled, MTU needs to be refreshed
799 * according to the maximum RX packet length.
801 if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
803 * Security of max_rx_pkt_len is guaranteed in dpdk frame.
804 * Maximum value of max_rx_pkt_len is HNS3_MAX_FRAME_LEN, so it
805 * can safely assign to "uint16_t" type variable.
807 mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(conf->rxmode.max_rx_pkt_len);
808 ret = hns3vf_dev_mtu_set(dev, mtu);
811 dev->data->mtu = mtu;
814 ret = hns3vf_dev_configure_vlan(dev);
818 /* config hardware GRO */
819 gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
820 ret = hns3_config_gro(hw, gro_en);
824 hns->rx_simple_allowed = true;
825 hns->rx_vec_allowed = true;
826 hns->tx_simple_allowed = true;
827 hns->tx_vec_allowed = true;
829 hns3_init_rx_ptype_tble(dev);
831 hw->adapter_state = HNS3_NIC_CONFIGURED;
835 (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
836 hw->adapter_state = HNS3_NIC_INITIALIZED;
842 hns3vf_config_mtu(struct hns3_hw *hw, uint16_t mtu)
846 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MTU, 0, (const uint8_t *)&mtu,
847 sizeof(mtu), true, NULL, 0);
849 hns3_err(hw, "Failed to set mtu (%u) for vf: %d", mtu, ret);
855 hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
857 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
858 uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
862 * The hns3 PF/VF devices on the same port share the hardware MTU
863 * configuration. Currently, we send mailbox to inform hns3 PF kernel
864 * ethdev driver to finish hardware MTU configuration in hns3 VF PMD
865 * driver, there is no need to stop the port for hns3 VF device, and the
866 * MTU value issued by hns3 VF PMD driver must be less than or equal to
869 if (rte_atomic16_read(&hw->reset.resetting)) {
870 hns3_err(hw, "Failed to set mtu during resetting");
874 rte_spinlock_lock(&hw->lock);
875 ret = hns3vf_config_mtu(hw, mtu);
877 rte_spinlock_unlock(&hw->lock);
880 if (frame_size > RTE_ETHER_MAX_LEN)
881 dev->data->dev_conf.rxmode.offloads |=
882 DEV_RX_OFFLOAD_JUMBO_FRAME;
884 dev->data->dev_conf.rxmode.offloads &=
885 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
886 dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
887 rte_spinlock_unlock(&hw->lock);
893 hns3vf_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
895 struct hns3_adapter *hns = eth_dev->data->dev_private;
896 struct hns3_hw *hw = &hns->hw;
897 uint16_t q_num = hw->tqps_num;
900 * In interrupt mode, 'max_rx_queues' is set based on the number of
901 * MSI-X interrupt resources of the hardware.
903 if (hw->data->dev_conf.intr_conf.rxq == 1)
904 q_num = hw->intr_tqps_num;
906 info->max_rx_queues = q_num;
907 info->max_tx_queues = hw->tqps_num;
908 info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
909 info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
910 info->max_mac_addrs = HNS3_VF_UC_MACADDR_NUM;
911 info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
912 info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
914 info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
915 DEV_RX_OFFLOAD_UDP_CKSUM |
916 DEV_RX_OFFLOAD_TCP_CKSUM |
917 DEV_RX_OFFLOAD_SCTP_CKSUM |
918 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
919 DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
920 DEV_RX_OFFLOAD_SCATTER |
921 DEV_RX_OFFLOAD_VLAN_STRIP |
922 DEV_RX_OFFLOAD_VLAN_FILTER |
923 DEV_RX_OFFLOAD_JUMBO_FRAME |
924 DEV_RX_OFFLOAD_RSS_HASH |
925 DEV_RX_OFFLOAD_TCP_LRO);
926 info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
927 DEV_TX_OFFLOAD_IPV4_CKSUM |
928 DEV_TX_OFFLOAD_TCP_CKSUM |
929 DEV_TX_OFFLOAD_UDP_CKSUM |
930 DEV_TX_OFFLOAD_SCTP_CKSUM |
931 DEV_TX_OFFLOAD_MULTI_SEGS |
932 DEV_TX_OFFLOAD_TCP_TSO |
933 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
934 DEV_TX_OFFLOAD_GRE_TNL_TSO |
935 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
936 DEV_TX_OFFLOAD_MBUF_FAST_FREE |
937 hns3_txvlan_cap_get(hw));
939 info->rx_desc_lim = (struct rte_eth_desc_lim) {
940 .nb_max = HNS3_MAX_RING_DESC,
941 .nb_min = HNS3_MIN_RING_DESC,
942 .nb_align = HNS3_ALIGN_RING_DESC,
945 info->tx_desc_lim = (struct rte_eth_desc_lim) {
946 .nb_max = HNS3_MAX_RING_DESC,
947 .nb_min = HNS3_MIN_RING_DESC,
948 .nb_align = HNS3_ALIGN_RING_DESC,
949 .nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
950 .nb_mtu_seg_max = HNS3_MAX_NON_TSO_BD_PER_PKT,
953 info->default_rxconf = (struct rte_eth_rxconf) {
954 .rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
956 * If there are no available Rx buffer descriptors, incoming
957 * packets are always dropped by hardware based on hns3 network
963 info->default_txconf = (struct rte_eth_txconf) {
964 .tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
968 info->vmdq_queue_num = 0;
970 info->reta_size = HNS3_RSS_IND_TBL_SIZE;
971 info->hash_key_size = HNS3_RSS_KEY_SIZE;
972 info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
973 info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
974 info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
980 hns3vf_clear_event_cause(struct hns3_hw *hw, uint32_t regclr)
982 hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
986 hns3vf_disable_irq0(struct hns3_hw *hw)
988 hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
992 hns3vf_enable_irq0(struct hns3_hw *hw)
994 hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
997 static enum hns3vf_evt_cause
998 hns3vf_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
1000 struct hns3_hw *hw = &hns->hw;
1001 enum hns3vf_evt_cause ret;
1002 uint32_t cmdq_stat_reg;
1003 uint32_t rst_ing_reg;
1006 /* Fetch the events from their corresponding regs */
1007 cmdq_stat_reg = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_STAT_REG);
1009 if (BIT(HNS3_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1010 rst_ing_reg = hns3_read_dev(hw, HNS3_FUN_RST_ING);
1011 hns3_warn(hw, "resetting reg: 0x%x", rst_ing_reg);
1012 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
1013 rte_atomic16_set(&hw->reset.disable_cmd, 1);
1014 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
1015 hns3_write_dev(hw, HNS3_VF_RST_ING, val | HNS3_VF_RST_ING_BIT);
1016 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RST_INT_B);
1018 hw->reset.stats.global_cnt++;
1019 hns3_warn(hw, "Global reset detected, clear reset status");
1021 hns3_schedule_delayed_reset(hns);
1022 hns3_warn(hw, "Global reset detected, don't clear reset status");
1025 ret = HNS3VF_VECTOR0_EVENT_RST;
1029 /* Check for vector0 mailbox(=CMDQ RX) event source */
1030 if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1031 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
1032 ret = HNS3VF_VECTOR0_EVENT_MBX;
1037 ret = HNS3VF_VECTOR0_EVENT_OTHER;
1045 hns3vf_interrupt_handler(void *param)
1047 struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1048 struct hns3_adapter *hns = dev->data->dev_private;
1049 struct hns3_hw *hw = &hns->hw;
1050 enum hns3vf_evt_cause event_cause;
1053 if (hw->irq_thread_id == 0)
1054 hw->irq_thread_id = pthread_self();
1056 /* Disable interrupt */
1057 hns3vf_disable_irq0(hw);
1059 /* Read out interrupt causes */
1060 event_cause = hns3vf_check_event_cause(hns, &clearval);
1062 switch (event_cause) {
1063 case HNS3VF_VECTOR0_EVENT_RST:
1064 hns3_schedule_reset(hns);
1066 case HNS3VF_VECTOR0_EVENT_MBX:
1067 hns3_dev_handle_mbx_msg(hw);
1073 /* Clear interrupt causes */
1074 hns3vf_clear_event_cause(hw, clearval);
1076 /* Enable interrupt */
1077 hns3vf_enable_irq0(hw);
1081 hns3vf_set_default_dev_specifications(struct hns3_hw *hw)
1083 hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
1084 hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
1085 hw->rss_key_size = HNS3_RSS_KEY_SIZE;
1089 hns3vf_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
1091 struct hns3_dev_specs_0_cmd *req0;
1093 req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
1095 hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
1096 hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
1097 hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
1101 hns3vf_query_dev_specifications(struct hns3_hw *hw)
1103 struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
1107 for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
1108 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
1110 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1112 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
1114 ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
1118 hns3vf_parse_dev_specifications(hw, desc);
1124 hns3vf_get_capability(struct hns3_hw *hw)
1126 struct rte_pci_device *pci_dev;
1127 struct rte_eth_dev *eth_dev;
1131 eth_dev = &rte_eth_devices[hw->data->port_id];
1132 pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1134 /* Get PCI revision id */
1135 ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
1136 HNS3_PCI_REVISION_ID);
1137 if (ret != HNS3_PCI_REVISION_ID_LEN) {
1138 PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
1142 hw->revision = revision;
1144 if (revision < PCI_REVISION_ID_HIP09_A) {
1145 hns3vf_set_default_dev_specifications(hw);
1146 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
1147 hw->intr.coalesce_mode = HNS3_INTR_COALESCE_NON_QL;
1148 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
1149 hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
1153 ret = hns3vf_query_dev_specifications(hw);
1156 "failed to query dev specifications, ret = %d",
1161 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
1162 hw->intr.coalesce_mode = HNS3_INTR_COALESCE_QL;
1163 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
1164 hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
1170 hns3vf_check_tqp_info(struct hns3_hw *hw)
1174 tqps_num = hw->tqps_num;
1175 if (tqps_num > HNS3_MAX_TQP_NUM_PER_FUNC || tqps_num == 0) {
1176 PMD_INIT_LOG(ERR, "Get invalid tqps_num(%u) from PF. valid "
1178 tqps_num, HNS3_MAX_TQP_NUM_PER_FUNC);
1182 hw->alloc_rss_size = RTE_MIN(hw->rss_size_max, hw->tqps_num);
1187 hns3vf_get_port_base_vlan_filter_state(struct hns3_hw *hw)
1192 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN,
1193 HNS3_MBX_GET_PORT_BASE_VLAN_STATE, NULL, 0,
1194 true, &resp_msg, sizeof(resp_msg));
1196 if (ret == -ETIME) {
1198 * Getting current port based VLAN state from PF driver
1199 * will not affect VF driver's basic function. Because
1200 * the VF driver relies on hns3 PF kernel ether driver,
1201 * to avoid introducing compatibility issues with older
1202 * version of PF driver, no failure will be returned
1203 * when the return value is ETIME. This return value has
1204 * the following scenarios:
1205 * 1) Firmware didn't return the results in time
1206 * 2) the result return by firmware is timeout
1207 * 3) the older version of kernel side PF driver does
1208 * not support this mailbox message.
1209 * For scenarios 1 and 2, it is most likely that a
1210 * hardware error has occurred, or a hardware reset has
1211 * occurred. In this case, these errors will be caught
1212 * by other functions.
1214 PMD_INIT_LOG(WARNING,
1215 "failed to get PVID state for timeout, maybe "
1216 "kernel side PF driver doesn't support this "
1217 "mailbox message, or firmware didn't respond.");
1218 resp_msg = HNS3_PORT_BASE_VLAN_DISABLE;
1220 PMD_INIT_LOG(ERR, "failed to get port based VLAN state,"
1225 hw->port_base_vlan_cfg.state = resp_msg ?
1226 HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
1231 hns3vf_get_queue_info(struct hns3_hw *hw)
1233 #define HNS3VF_TQPS_RSS_INFO_LEN 6
1234 uint8_t resp_msg[HNS3VF_TQPS_RSS_INFO_LEN];
1237 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QINFO, 0, NULL, 0, true,
1238 resp_msg, HNS3VF_TQPS_RSS_INFO_LEN);
1240 PMD_INIT_LOG(ERR, "Failed to get tqp info from PF: %d", ret);
1244 memcpy(&hw->tqps_num, &resp_msg[0], sizeof(uint16_t));
1245 memcpy(&hw->rss_size_max, &resp_msg[2], sizeof(uint16_t));
1247 return hns3vf_check_tqp_info(hw);
1251 hns3vf_get_queue_depth(struct hns3_hw *hw)
1253 #define HNS3VF_TQPS_DEPTH_INFO_LEN 4
1254 uint8_t resp_msg[HNS3VF_TQPS_DEPTH_INFO_LEN];
1257 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QDEPTH, 0, NULL, 0, true,
1258 resp_msg, HNS3VF_TQPS_DEPTH_INFO_LEN);
1260 PMD_INIT_LOG(ERR, "Failed to get tqp depth info from PF: %d",
1265 memcpy(&hw->num_tx_desc, &resp_msg[0], sizeof(uint16_t));
1266 memcpy(&hw->num_rx_desc, &resp_msg[2], sizeof(uint16_t));
1272 hns3vf_get_tc_info(struct hns3_hw *hw)
1277 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_TCINFO, 0, NULL, 0,
1278 true, &resp_msg, sizeof(resp_msg));
1280 hns3_err(hw, "VF request to get TC info from PF failed %d",
1285 hw->hw_tc_map = resp_msg;
1291 hns3vf_get_host_mac_addr(struct hns3_hw *hw)
1293 uint8_t host_mac[RTE_ETHER_ADDR_LEN];
1296 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_MAC_ADDR, 0, NULL, 0,
1297 true, host_mac, RTE_ETHER_ADDR_LEN);
1299 hns3_err(hw, "Failed to get mac addr from PF: %d", ret);
1303 memcpy(hw->mac.mac_addr, host_mac, RTE_ETHER_ADDR_LEN);
1309 hns3vf_get_configuration(struct hns3_hw *hw)
1313 hw->mac.media_type = HNS3_MEDIA_TYPE_NONE;
1314 hw->rss_dis_flag = false;
1316 /* Get device capability */
1317 ret = hns3vf_get_capability(hw);
1319 PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
1323 /* Get queue configuration from PF */
1324 ret = hns3vf_get_queue_info(hw);
1328 /* Get queue depth info from PF */
1329 ret = hns3vf_get_queue_depth(hw);
1333 /* Get user defined VF MAC addr from PF */
1334 ret = hns3vf_get_host_mac_addr(hw);
1338 ret = hns3vf_get_port_base_vlan_filter_state(hw);
1342 /* Get tc configuration from PF */
1343 return hns3vf_get_tc_info(hw);
1347 hns3vf_set_tc_info(struct hns3_adapter *hns)
1349 struct hns3_hw *hw = &hns->hw;
1350 uint16_t nb_rx_q = hw->data->nb_rx_queues;
1351 uint16_t nb_tx_q = hw->data->nb_tx_queues;
1355 for (i = 0; i < HNS3_MAX_TC_NUM; i++)
1356 if (hw->hw_tc_map & BIT(i))
1359 if (nb_rx_q < hw->num_tc) {
1360 hns3_err(hw, "number of Rx queues(%d) is less than tcs(%d).",
1361 nb_rx_q, hw->num_tc);
1365 if (nb_tx_q < hw->num_tc) {
1366 hns3_err(hw, "number of Tx queues(%d) is less than tcs(%d).",
1367 nb_tx_q, hw->num_tc);
1371 hns3_set_rss_size(hw, nb_rx_q);
1372 hns3_tc_queue_mapping_cfg(hw, nb_tx_q);
1378 hns3vf_request_link_info(struct hns3_hw *hw)
1383 if (rte_atomic16_read(&hw->reset.resetting))
1385 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1386 &resp_msg, sizeof(resp_msg));
1388 hns3_err(hw, "Failed to fetch link status from PF: %d", ret);
1392 hns3vf_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
1394 #define HNS3VF_VLAN_MBX_MSG_LEN 5
1395 struct hns3_hw *hw = &hns->hw;
1396 uint8_t msg_data[HNS3VF_VLAN_MBX_MSG_LEN];
1397 uint16_t proto = htons(RTE_ETHER_TYPE_VLAN);
1398 uint8_t is_kill = on ? 0 : 1;
1400 msg_data[0] = is_kill;
1401 memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1402 memcpy(&msg_data[3], &proto, sizeof(proto));
1404 return hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_FILTER,
1405 msg_data, HNS3VF_VLAN_MBX_MSG_LEN, true, NULL,
1410 hns3vf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1412 struct hns3_adapter *hns = dev->data->dev_private;
1413 struct hns3_hw *hw = &hns->hw;
1416 if (rte_atomic16_read(&hw->reset.resetting)) {
1418 "vf set vlan id failed during resetting, vlan_id =%u",
1422 rte_spinlock_lock(&hw->lock);
1423 ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1424 rte_spinlock_unlock(&hw->lock);
1426 hns3_err(hw, "vf set vlan id failed, vlan_id =%u, ret =%d",
1433 hns3vf_en_hw_strip_rxvtag(struct hns3_hw *hw, bool enable)
1438 msg_data = enable ? 1 : 0;
1439 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_RX_OFF_CFG,
1440 &msg_data, sizeof(msg_data), false, NULL, 0);
1442 hns3_err(hw, "vf enable strip failed, ret =%d", ret);
1448 hns3vf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1450 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1451 struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1452 unsigned int tmp_mask;
1455 if (rte_atomic16_read(&hw->reset.resetting)) {
1456 hns3_err(hw, "vf set vlan offload failed during resetting, "
1457 "mask = 0x%x", mask);
1461 tmp_mask = (unsigned int)mask;
1462 /* Vlan stripping setting */
1463 if (tmp_mask & ETH_VLAN_STRIP_MASK) {
1464 rte_spinlock_lock(&hw->lock);
1465 /* Enable or disable VLAN stripping */
1466 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1467 ret = hns3vf_en_hw_strip_rxvtag(hw, true);
1469 ret = hns3vf_en_hw_strip_rxvtag(hw, false);
1470 rte_spinlock_unlock(&hw->lock);
1477 hns3vf_handle_all_vlan_table(struct hns3_adapter *hns, int on)
1479 struct rte_vlan_filter_conf *vfc;
1480 struct hns3_hw *hw = &hns->hw;
1487 vfc = &hw->data->vlan_filter_conf;
1488 for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1489 if (vfc->ids[i] == 0)
1494 * 64 means the num bits of ids, one bit corresponds to
1498 /* count trailing zeroes */
1499 vbit = ~ids & (ids - 1);
1500 /* clear least significant bit set */
1501 ids ^= (ids ^ (ids - 1)) ^ vbit;
1506 ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1509 "VF handle vlan table failed, ret =%d, on = %d",
1520 hns3vf_remove_all_vlan_table(struct hns3_adapter *hns)
1522 return hns3vf_handle_all_vlan_table(hns, 0);
1526 hns3vf_restore_vlan_conf(struct hns3_adapter *hns)
1528 struct hns3_hw *hw = &hns->hw;
1529 struct rte_eth_conf *dev_conf;
1533 dev_conf = &hw->data->dev_conf;
1534 en = dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP ? true
1536 ret = hns3vf_en_hw_strip_rxvtag(hw, en);
1538 hns3_err(hw, "VF restore vlan conf fail, en =%d, ret =%d", en,
1544 hns3vf_dev_configure_vlan(struct rte_eth_dev *dev)
1546 struct hns3_adapter *hns = dev->data->dev_private;
1547 struct rte_eth_dev_data *data = dev->data;
1548 struct hns3_hw *hw = &hns->hw;
1551 if (data->dev_conf.txmode.hw_vlan_reject_tagged ||
1552 data->dev_conf.txmode.hw_vlan_reject_untagged ||
1553 data->dev_conf.txmode.hw_vlan_insert_pvid) {
1554 hns3_warn(hw, "hw_vlan_reject_tagged, hw_vlan_reject_untagged "
1555 "or hw_vlan_insert_pvid is not support!");
1558 /* Apply vlan offload setting */
1559 ret = hns3vf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
1561 hns3_err(hw, "dev config vlan offload failed, ret =%d", ret);
1567 hns3vf_set_alive(struct hns3_hw *hw, bool alive)
1571 msg_data = alive ? 1 : 0;
1572 return hns3_send_mbx_msg(hw, HNS3_MBX_SET_ALIVE, 0, &msg_data,
1573 sizeof(msg_data), false, NULL, 0);
1577 hns3vf_keep_alive_handler(void *param)
1579 struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1580 struct hns3_adapter *hns = eth_dev->data->dev_private;
1581 struct hns3_hw *hw = &hns->hw;
1585 ret = hns3_send_mbx_msg(hw, HNS3_MBX_KEEP_ALIVE, 0, NULL, 0,
1586 false, &respmsg, sizeof(uint8_t));
1588 hns3_err(hw, "VF sends keeping alive cmd failed(=%d)",
1591 rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
1596 hns3vf_service_handler(void *param)
1598 struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1599 struct hns3_adapter *hns = eth_dev->data->dev_private;
1600 struct hns3_hw *hw = &hns->hw;
1603 * The query link status and reset processing are executed in the
1604 * interrupt thread.When the IMP reset occurs, IMP will not respond,
1605 * and the query operation will time out after 30ms. In the case of
1606 * multiple PF/VFs, each query failure timeout causes the IMP reset
1607 * interrupt to fail to respond within 100ms.
1608 * Before querying the link status, check whether there is a reset
1609 * pending, and if so, abandon the query.
1611 if (!hns3vf_is_reset_pending(hns))
1612 hns3vf_request_link_info(hw);
1614 hns3_warn(hw, "Cancel the query when reset is pending");
1616 rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler,
1621 hns3_query_vf_resource(struct hns3_hw *hw)
1623 struct hns3_vf_res_cmd *req;
1624 struct hns3_cmd_desc desc;
1628 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_VF_RSRC, true);
1629 ret = hns3_cmd_send(hw, &desc, 1);
1631 hns3_err(hw, "query vf resource failed, ret = %d", ret);
1635 req = (struct hns3_vf_res_cmd *)desc.data;
1636 num_msi = hns3_get_field(rte_le_to_cpu_16(req->vf_intr_vector_number),
1637 HNS3_VF_VEC_NUM_M, HNS3_VF_VEC_NUM_S);
1638 if (num_msi < HNS3_MIN_VECTOR_NUM) {
1639 hns3_err(hw, "Just %u msi resources, not enough for vf(min:%d)",
1640 num_msi, HNS3_MIN_VECTOR_NUM);
1644 hw->num_msi = num_msi;
1650 hns3vf_init_hardware(struct hns3_adapter *hns)
1652 struct hns3_hw *hw = &hns->hw;
1653 uint16_t mtu = hw->data->mtu;
1656 ret = hns3vf_set_promisc_mode(hw, true, false, false);
1660 ret = hns3vf_config_mtu(hw, mtu);
1662 goto err_init_hardware;
1664 ret = hns3vf_vlan_filter_configure(hns, 0, 1);
1666 PMD_INIT_LOG(ERR, "Failed to initialize VLAN config: %d", ret);
1667 goto err_init_hardware;
1670 ret = hns3_config_gro(hw, false);
1672 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
1673 goto err_init_hardware;
1677 * In the initialization clearing the all hardware mapping relationship
1678 * configurations between queues and interrupt vectors is needed, so
1679 * some error caused by the residual configurations, such as the
1680 * unexpected interrupt, can be avoid.
1682 ret = hns3vf_init_ring_with_vector(hw);
1684 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
1685 goto err_init_hardware;
1688 ret = hns3vf_set_alive(hw, true);
1690 PMD_INIT_LOG(ERR, "Failed to VF send alive to PF: %d", ret);
1691 goto err_init_hardware;
1694 hns3vf_request_link_info(hw);
1698 (void)hns3vf_set_promisc_mode(hw, false, false, false);
1703 hns3vf_clear_vport_list(struct hns3_hw *hw)
1705 return hns3_send_mbx_msg(hw, HNS3_MBX_HANDLE_VF_TBL,
1706 HNS3_MBX_VPORT_LIST_CLEAR, NULL, 0, false,
1711 hns3vf_init_vf(struct rte_eth_dev *eth_dev)
1713 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1714 struct hns3_adapter *hns = eth_dev->data->dev_private;
1715 struct hns3_hw *hw = &hns->hw;
1718 PMD_INIT_FUNC_TRACE();
1720 /* Get hardware io base address from pcie BAR2 IO space */
1721 hw->io_base = pci_dev->mem_resource[2].addr;
1723 /* Firmware command queue initialize */
1724 ret = hns3_cmd_init_queue(hw);
1726 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
1727 goto err_cmd_init_queue;
1730 /* Firmware command initialize */
1731 ret = hns3_cmd_init(hw);
1733 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
1737 /* Get VF resource */
1738 ret = hns3_query_vf_resource(hw);
1742 rte_spinlock_init(&hw->mbx_resp.lock);
1744 hns3vf_clear_event_cause(hw, 0);
1746 ret = rte_intr_callback_register(&pci_dev->intr_handle,
1747 hns3vf_interrupt_handler, eth_dev);
1749 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
1750 goto err_intr_callback_register;
1753 /* Enable interrupt */
1754 rte_intr_enable(&pci_dev->intr_handle);
1755 hns3vf_enable_irq0(hw);
1757 /* Get configuration from PF */
1758 ret = hns3vf_get_configuration(hw);
1760 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
1761 goto err_get_config;
1764 ret = hns3vf_clear_vport_list(hw);
1766 PMD_INIT_LOG(ERR, "Failed to clear tbl list: %d", ret);
1767 goto err_get_config;
1770 ret = hns3vf_init_hardware(hns);
1772 goto err_get_config;
1774 hns3_set_default_rss_args(hw);
1779 hns3vf_disable_irq0(hw);
1780 rte_intr_disable(&pci_dev->intr_handle);
1781 hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1783 err_intr_callback_register:
1785 hns3_cmd_uninit(hw);
1786 hns3_cmd_destroy_queue(hw);
1794 hns3vf_uninit_vf(struct rte_eth_dev *eth_dev)
1796 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1797 struct hns3_adapter *hns = eth_dev->data->dev_private;
1798 struct hns3_hw *hw = &hns->hw;
1800 PMD_INIT_FUNC_TRACE();
1802 hns3_rss_uninit(hns);
1803 (void)hns3_config_gro(hw, false);
1804 (void)hns3vf_set_alive(hw, false);
1805 (void)hns3vf_set_promisc_mode(hw, false, false, false);
1806 hns3vf_disable_irq0(hw);
1807 rte_intr_disable(&pci_dev->intr_handle);
1808 hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1810 hns3_cmd_uninit(hw);
1811 hns3_cmd_destroy_queue(hw);
1816 hns3vf_do_stop(struct hns3_adapter *hns)
1818 struct hns3_hw *hw = &hns->hw;
1821 hw->mac.link_status = ETH_LINK_DOWN;
1823 if (rte_atomic16_read(&hw->reset.disable_cmd) == 0) {
1824 hns3vf_configure_mac_addr(hns, true);
1827 reset_queue = false;
1828 return hns3_stop_queues(hns, reset_queue);
1832 hns3vf_unmap_rx_interrupt(struct rte_eth_dev *dev)
1834 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1835 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1836 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1837 uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
1838 uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
1841 if (dev->data->dev_conf.intr_conf.rxq == 0)
1844 /* unmap the ring with vector */
1845 if (rte_intr_allow_others(intr_handle)) {
1846 vec = RTE_INTR_VEC_RXTX_OFFSET;
1847 base = RTE_INTR_VEC_RXTX_OFFSET;
1849 if (rte_intr_dp_is_en(intr_handle)) {
1850 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
1851 (void)hns3vf_bind_ring_with_vector(hw, vec, false,
1854 if (vec < base + intr_handle->nb_efd - 1)
1858 /* Clean datapath event and queue/vec mapping */
1859 rte_intr_efd_disable(intr_handle);
1860 if (intr_handle->intr_vec) {
1861 rte_free(intr_handle->intr_vec);
1862 intr_handle->intr_vec = NULL;
1867 hns3vf_dev_stop(struct rte_eth_dev *dev)
1869 struct hns3_adapter *hns = dev->data->dev_private;
1870 struct hns3_hw *hw = &hns->hw;
1872 PMD_INIT_FUNC_TRACE();
1874 hw->adapter_state = HNS3_NIC_STOPPING;
1875 hns3_set_rxtx_function(dev);
1877 /* Disable datapath on secondary process. */
1878 hns3_mp_req_stop_rxtx(dev);
1879 /* Prevent crashes when queues are still in use. */
1880 rte_delay_ms(hw->tqps_num);
1882 rte_spinlock_lock(&hw->lock);
1883 if (rte_atomic16_read(&hw->reset.resetting) == 0) {
1884 hns3vf_do_stop(hns);
1885 hns3vf_unmap_rx_interrupt(dev);
1886 hns3_dev_release_mbufs(hns);
1887 hw->adapter_state = HNS3_NIC_CONFIGURED;
1889 hns3_rx_scattered_reset(dev);
1890 rte_eal_alarm_cancel(hns3vf_service_handler, dev);
1891 rte_spinlock_unlock(&hw->lock);
1895 hns3vf_dev_close(struct rte_eth_dev *eth_dev)
1897 struct hns3_adapter *hns = eth_dev->data->dev_private;
1898 struct hns3_hw *hw = &hns->hw;
1900 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1903 if (hw->adapter_state == HNS3_NIC_STARTED)
1904 hns3vf_dev_stop(eth_dev);
1906 hw->adapter_state = HNS3_NIC_CLOSING;
1907 hns3_reset_abort(hns);
1908 hw->adapter_state = HNS3_NIC_CLOSED;
1909 rte_eal_alarm_cancel(hns3vf_keep_alive_handler, eth_dev);
1910 hns3vf_configure_all_mc_mac_addr(hns, true);
1911 hns3vf_remove_all_vlan_table(hns);
1912 hns3vf_uninit_vf(eth_dev);
1913 hns3_free_all_queues(eth_dev);
1914 rte_free(hw->reset.wait_data);
1915 rte_free(eth_dev->process_private);
1916 eth_dev->process_private = NULL;
1917 hns3_mp_uninit_primary();
1918 hns3_warn(hw, "Close port %d finished", hw->data->port_id);
1922 hns3vf_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
1925 struct hns3_adapter *hns = eth_dev->data->dev_private;
1926 struct hns3_hw *hw = &hns->hw;
1927 uint32_t version = hw->fw_version;
1930 ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
1931 hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
1932 HNS3_FW_VERSION_BYTE3_S),
1933 hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
1934 HNS3_FW_VERSION_BYTE2_S),
1935 hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
1936 HNS3_FW_VERSION_BYTE1_S),
1937 hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
1938 HNS3_FW_VERSION_BYTE0_S));
1939 ret += 1; /* add the size of '\0' */
1940 if (fw_size < (uint32_t)ret)
1947 hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
1948 __rte_unused int wait_to_complete)
1950 struct hns3_adapter *hns = eth_dev->data->dev_private;
1951 struct hns3_hw *hw = &hns->hw;
1952 struct hns3_mac *mac = &hw->mac;
1953 struct rte_eth_link new_link;
1955 memset(&new_link, 0, sizeof(new_link));
1956 switch (mac->link_speed) {
1957 case ETH_SPEED_NUM_10M:
1958 case ETH_SPEED_NUM_100M:
1959 case ETH_SPEED_NUM_1G:
1960 case ETH_SPEED_NUM_10G:
1961 case ETH_SPEED_NUM_25G:
1962 case ETH_SPEED_NUM_40G:
1963 case ETH_SPEED_NUM_50G:
1964 case ETH_SPEED_NUM_100G:
1965 case ETH_SPEED_NUM_200G:
1966 new_link.link_speed = mac->link_speed;
1969 new_link.link_speed = ETH_SPEED_NUM_100M;
1973 new_link.link_duplex = mac->link_duplex;
1974 new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
1975 new_link.link_autoneg =
1976 !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
1978 return rte_eth_linkstatus_set(eth_dev, &new_link);
1982 hns3vf_do_start(struct hns3_adapter *hns, bool reset_queue)
1984 struct hns3_hw *hw = &hns->hw;
1987 ret = hns3vf_set_tc_info(hns);
1991 ret = hns3_start_queues(hns, reset_queue);
1993 hns3_err(hw, "Failed to start queues: %d", ret);
1999 hns3vf_map_rx_interrupt(struct rte_eth_dev *dev)
2001 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2002 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2003 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2004 uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
2005 uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
2006 uint32_t intr_vector;
2010 if (dev->data->dev_conf.intr_conf.rxq == 0)
2013 /* disable uio/vfio intr/eventfd mapping */
2014 rte_intr_disable(intr_handle);
2016 /* check and configure queue intr-vector mapping */
2017 if (rte_intr_cap_multiple(intr_handle) ||
2018 !RTE_ETH_DEV_SRIOV(dev).active) {
2019 intr_vector = hw->used_rx_queues;
2020 /* It creates event fd for each intr vector when MSIX is used */
2021 if (rte_intr_efd_enable(intr_handle, intr_vector))
2024 if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
2025 intr_handle->intr_vec =
2026 rte_zmalloc("intr_vec",
2027 hw->used_rx_queues * sizeof(int), 0);
2028 if (intr_handle->intr_vec == NULL) {
2029 hns3_err(hw, "Failed to allocate %d rx_queues"
2030 " intr_vec", hw->used_rx_queues);
2032 goto vf_alloc_intr_vec_error;
2036 if (rte_intr_allow_others(intr_handle)) {
2037 vec = RTE_INTR_VEC_RXTX_OFFSET;
2038 base = RTE_INTR_VEC_RXTX_OFFSET;
2040 if (rte_intr_dp_is_en(intr_handle)) {
2041 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2042 ret = hns3vf_bind_ring_with_vector(hw, vec, true,
2046 goto vf_bind_vector_error;
2047 intr_handle->intr_vec[q_id] = vec;
2048 if (vec < base + intr_handle->nb_efd - 1)
2052 rte_intr_enable(intr_handle);
2055 vf_bind_vector_error:
2056 rte_intr_efd_disable(intr_handle);
2057 if (intr_handle->intr_vec) {
2058 free(intr_handle->intr_vec);
2059 intr_handle->intr_vec = NULL;
2062 vf_alloc_intr_vec_error:
2063 rte_intr_efd_disable(intr_handle);
2068 hns3vf_restore_rx_interrupt(struct hns3_hw *hw)
2070 struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
2071 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2072 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2076 if (dev->data->dev_conf.intr_conf.rxq == 0)
2079 if (rte_intr_dp_is_en(intr_handle)) {
2080 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2081 ret = hns3vf_bind_ring_with_vector(hw,
2082 intr_handle->intr_vec[q_id], true,
2083 HNS3_RING_TYPE_RX, q_id);
2093 hns3vf_restore_filter(struct rte_eth_dev *dev)
2095 hns3_restore_rss_filter(dev);
2099 hns3vf_dev_start(struct rte_eth_dev *dev)
2101 struct hns3_adapter *hns = dev->data->dev_private;
2102 struct hns3_hw *hw = &hns->hw;
2105 PMD_INIT_FUNC_TRACE();
2106 if (rte_atomic16_read(&hw->reset.resetting))
2109 rte_spinlock_lock(&hw->lock);
2110 hw->adapter_state = HNS3_NIC_STARTING;
2111 ret = hns3vf_do_start(hns, true);
2113 hw->adapter_state = HNS3_NIC_CONFIGURED;
2114 rte_spinlock_unlock(&hw->lock);
2117 ret = hns3vf_map_rx_interrupt(dev);
2119 hw->adapter_state = HNS3_NIC_CONFIGURED;
2120 rte_spinlock_unlock(&hw->lock);
2123 hw->adapter_state = HNS3_NIC_STARTED;
2124 rte_spinlock_unlock(&hw->lock);
2126 hns3_rx_scattered_calc(dev);
2127 hns3_set_rxtx_function(dev);
2128 hns3_mp_req_start_rxtx(dev);
2129 rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler, dev);
2131 hns3vf_restore_filter(dev);
2133 /* Enable interrupt of all rx queues before enabling queues */
2134 hns3_dev_all_rx_queue_intr_enable(hw, true);
2136 * When finished the initialization, enable queues to receive/transmit
2139 hns3_enable_all_queues(hw, true);
2145 is_vf_reset_done(struct hns3_hw *hw)
2147 #define HNS3_FUN_RST_ING_BITS \
2148 (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) | \
2149 BIT(HNS3_VECTOR0_CORERESET_INT_B) | \
2150 BIT(HNS3_VECTOR0_IMPRESET_INT_B) | \
2151 BIT(HNS3_VECTOR0_FUNCRESET_INT_B))
2155 if (hw->reset.level == HNS3_VF_RESET) {
2156 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
2157 if (val & HNS3_VF_RST_ING_BIT)
2160 val = hns3_read_dev(hw, HNS3_FUN_RST_ING);
2161 if (val & HNS3_FUN_RST_ING_BITS)
2168 hns3vf_is_reset_pending(struct hns3_adapter *hns)
2170 struct hns3_hw *hw = &hns->hw;
2171 enum hns3_reset_level reset;
2173 hns3vf_check_event_cause(hns, NULL);
2174 reset = hns3vf_get_reset_level(hw, &hw->reset.pending);
2175 if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
2176 hns3_warn(hw, "High level reset %d is pending", reset);
2183 hns3vf_wait_hardware_ready(struct hns3_adapter *hns)
2185 struct hns3_hw *hw = &hns->hw;
2186 struct hns3_wait_data *wait_data = hw->reset.wait_data;
2189 if (wait_data->result == HNS3_WAIT_SUCCESS) {
2191 * After vf reset is ready, the PF may not have completed
2192 * the reset processing. The vf sending mbox to PF may fail
2193 * during the pf reset, so it is better to add extra delay.
2195 if (hw->reset.level == HNS3_VF_FUNC_RESET ||
2196 hw->reset.level == HNS3_FLR_RESET)
2198 /* Reset retry process, no need to add extra delay. */
2199 if (hw->reset.attempts)
2201 if (wait_data->check_completion == NULL)
2204 wait_data->check_completion = NULL;
2205 wait_data->interval = 1 * MSEC_PER_SEC * USEC_PER_MSEC;
2206 wait_data->count = 1;
2207 wait_data->result = HNS3_WAIT_REQUEST;
2208 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback,
2210 hns3_warn(hw, "hardware is ready, delay 1 sec for PF reset complete");
2212 } else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
2213 gettimeofday(&tv, NULL);
2214 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
2215 tv.tv_sec, tv.tv_usec);
2217 } else if (wait_data->result == HNS3_WAIT_REQUEST)
2220 wait_data->hns = hns;
2221 wait_data->check_completion = is_vf_reset_done;
2222 wait_data->end_ms = (uint64_t)HNS3VF_RESET_WAIT_CNT *
2223 HNS3VF_RESET_WAIT_MS + get_timeofday_ms();
2224 wait_data->interval = HNS3VF_RESET_WAIT_MS * USEC_PER_MSEC;
2225 wait_data->count = HNS3VF_RESET_WAIT_CNT;
2226 wait_data->result = HNS3_WAIT_REQUEST;
2227 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
2232 hns3vf_prepare_reset(struct hns3_adapter *hns)
2234 struct hns3_hw *hw = &hns->hw;
2237 if (hw->reset.level == HNS3_VF_FUNC_RESET) {
2238 ret = hns3_send_mbx_msg(hw, HNS3_MBX_RESET, 0, NULL,
2241 rte_atomic16_set(&hw->reset.disable_cmd, 1);
2247 hns3vf_stop_service(struct hns3_adapter *hns)
2249 struct hns3_hw *hw = &hns->hw;
2250 struct rte_eth_dev *eth_dev;
2252 eth_dev = &rte_eth_devices[hw->data->port_id];
2253 if (hw->adapter_state == HNS3_NIC_STARTED)
2254 rte_eal_alarm_cancel(hns3vf_service_handler, eth_dev);
2255 hw->mac.link_status = ETH_LINK_DOWN;
2257 hns3_set_rxtx_function(eth_dev);
2259 /* Disable datapath on secondary process. */
2260 hns3_mp_req_stop_rxtx(eth_dev);
2261 rte_delay_ms(hw->tqps_num);
2263 rte_spinlock_lock(&hw->lock);
2264 if (hw->adapter_state == HNS3_NIC_STARTED ||
2265 hw->adapter_state == HNS3_NIC_STOPPING) {
2266 hns3vf_do_stop(hns);
2267 hw->reset.mbuf_deferred_free = true;
2269 hw->reset.mbuf_deferred_free = false;
2272 * It is cumbersome for hardware to pick-and-choose entries for deletion
2273 * from table space. Hence, for function reset software intervention is
2274 * required to delete the entries.
2276 if (rte_atomic16_read(&hw->reset.disable_cmd) == 0)
2277 hns3vf_configure_all_mc_mac_addr(hns, true);
2278 rte_spinlock_unlock(&hw->lock);
2284 hns3vf_start_service(struct hns3_adapter *hns)
2286 struct hns3_hw *hw = &hns->hw;
2287 struct rte_eth_dev *eth_dev;
2289 eth_dev = &rte_eth_devices[hw->data->port_id];
2290 hns3_set_rxtx_function(eth_dev);
2291 hns3_mp_req_start_rxtx(eth_dev);
2292 if (hw->adapter_state == HNS3_NIC_STARTED) {
2293 hns3vf_service_handler(eth_dev);
2295 /* Enable interrupt of all rx queues before enabling queues */
2296 hns3_dev_all_rx_queue_intr_enable(hw, true);
2298 * When finished the initialization, enable queues to receive
2299 * and transmit packets.
2301 hns3_enable_all_queues(hw, true);
2308 hns3vf_check_default_mac_change(struct hns3_hw *hw)
2310 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2311 struct rte_ether_addr *hw_mac;
2315 * The hns3 PF ethdev driver in kernel support setting VF MAC address
2316 * on the host by "ip link set ..." command. If the hns3 PF kernel
2317 * ethdev driver sets the MAC address for VF device after the
2318 * initialization of the related VF device, the PF driver will notify
2319 * VF driver to reset VF device to make the new MAC address effective
2320 * immediately. The hns3 VF PMD driver should check whether the MAC
2321 * address has been changed by the PF kernel ethdev driver, if changed
2322 * VF driver should configure hardware using the new MAC address in the
2323 * recovering hardware configuration stage of the reset process.
2325 ret = hns3vf_get_host_mac_addr(hw);
2329 hw_mac = (struct rte_ether_addr *)hw->mac.mac_addr;
2330 ret = rte_is_zero_ether_addr(hw_mac);
2332 rte_ether_addr_copy(&hw->data->mac_addrs[0], hw_mac);
2334 ret = rte_is_same_ether_addr(&hw->data->mac_addrs[0], hw_mac);
2336 rte_ether_addr_copy(hw_mac, &hw->data->mac_addrs[0]);
2337 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2338 &hw->data->mac_addrs[0]);
2339 hns3_warn(hw, "Default MAC address has been changed to:"
2340 " %s by the host PF kernel ethdev driver",
2349 hns3vf_restore_conf(struct hns3_adapter *hns)
2351 struct hns3_hw *hw = &hns->hw;
2354 ret = hns3vf_check_default_mac_change(hw);
2358 ret = hns3vf_configure_mac_addr(hns, false);
2362 ret = hns3vf_configure_all_mc_mac_addr(hns, false);
2366 ret = hns3vf_restore_promisc(hns);
2368 goto err_vlan_table;
2370 ret = hns3vf_restore_vlan_conf(hns);
2372 goto err_vlan_table;
2374 ret = hns3vf_get_port_base_vlan_filter_state(hw);
2376 goto err_vlan_table;
2378 ret = hns3vf_restore_rx_interrupt(hw);
2380 goto err_vlan_table;
2382 ret = hns3_restore_gro_conf(hw);
2384 goto err_vlan_table;
2386 if (hw->adapter_state == HNS3_NIC_STARTED) {
2387 ret = hns3vf_do_start(hns, false);
2389 goto err_vlan_table;
2390 hns3_info(hw, "hns3vf dev restart successful!");
2391 } else if (hw->adapter_state == HNS3_NIC_STOPPING)
2392 hw->adapter_state = HNS3_NIC_CONFIGURED;
2396 hns3vf_configure_all_mc_mac_addr(hns, true);
2398 hns3vf_configure_mac_addr(hns, true);
2402 static enum hns3_reset_level
2403 hns3vf_get_reset_level(struct hns3_hw *hw, uint64_t *levels)
2405 enum hns3_reset_level reset_level;
2407 /* return the highest priority reset level amongst all */
2408 if (hns3_atomic_test_bit(HNS3_VF_RESET, levels))
2409 reset_level = HNS3_VF_RESET;
2410 else if (hns3_atomic_test_bit(HNS3_VF_FULL_RESET, levels))
2411 reset_level = HNS3_VF_FULL_RESET;
2412 else if (hns3_atomic_test_bit(HNS3_VF_PF_FUNC_RESET, levels))
2413 reset_level = HNS3_VF_PF_FUNC_RESET;
2414 else if (hns3_atomic_test_bit(HNS3_VF_FUNC_RESET, levels))
2415 reset_level = HNS3_VF_FUNC_RESET;
2416 else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
2417 reset_level = HNS3_FLR_RESET;
2419 reset_level = HNS3_NONE_RESET;
2421 if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
2422 return HNS3_NONE_RESET;
2428 hns3vf_reset_service(void *param)
2430 struct hns3_adapter *hns = (struct hns3_adapter *)param;
2431 struct hns3_hw *hw = &hns->hw;
2432 enum hns3_reset_level reset_level;
2433 struct timeval tv_delta;
2434 struct timeval tv_start;
2439 * The interrupt is not triggered within the delay time.
2440 * The interrupt may have been lost. It is necessary to handle
2441 * the interrupt to recover from the error.
2443 if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_DEFERRED) {
2444 rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_REQUESTED);
2445 hns3_err(hw, "Handling interrupts in delayed tasks");
2446 hns3vf_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
2447 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2448 if (reset_level == HNS3_NONE_RESET) {
2449 hns3_err(hw, "No reset level is set, try global reset");
2450 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
2453 rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_NONE);
2456 * Hardware reset has been notified, we now have to poll & check if
2457 * hardware has actually completed the reset sequence.
2459 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2460 if (reset_level != HNS3_NONE_RESET) {
2461 gettimeofday(&tv_start, NULL);
2462 hns3_reset_process(hns, reset_level);
2463 gettimeofday(&tv, NULL);
2464 timersub(&tv, &tv_start, &tv_delta);
2465 msec = tv_delta.tv_sec * MSEC_PER_SEC +
2466 tv_delta.tv_usec / USEC_PER_MSEC;
2467 if (msec > HNS3_RESET_PROCESS_MS)
2468 hns3_err(hw, "%d handle long time delta %" PRIx64
2469 " ms time=%ld.%.6ld",
2470 hw->reset.level, msec, tv.tv_sec, tv.tv_usec);
2475 hns3vf_reinit_dev(struct hns3_adapter *hns)
2477 struct rte_eth_dev *eth_dev = &rte_eth_devices[hns->hw.data->port_id];
2478 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2479 struct hns3_hw *hw = &hns->hw;
2482 if (hw->reset.level == HNS3_VF_FULL_RESET) {
2483 rte_intr_disable(&pci_dev->intr_handle);
2484 hns3vf_set_bus_master(pci_dev, true);
2487 /* Firmware command initialize */
2488 ret = hns3_cmd_init(hw);
2490 hns3_err(hw, "Failed to init cmd: %d", ret);
2494 if (hw->reset.level == HNS3_VF_FULL_RESET) {
2496 * UIO enables msix by writing the pcie configuration space
2497 * vfio_pci enables msix in rte_intr_enable.
2499 if (pci_dev->kdrv == RTE_PCI_KDRV_IGB_UIO ||
2500 pci_dev->kdrv == RTE_PCI_KDRV_UIO_GENERIC) {
2501 if (hns3vf_enable_msix(pci_dev, true))
2502 hns3_err(hw, "Failed to enable msix");
2505 rte_intr_enable(&pci_dev->intr_handle);
2508 ret = hns3_reset_all_queues(hns);
2510 hns3_err(hw, "Failed to reset all queues: %d", ret);
2514 ret = hns3vf_init_hardware(hns);
2516 hns3_err(hw, "Failed to init hardware: %d", ret);
2523 static const struct eth_dev_ops hns3vf_eth_dev_ops = {
2524 .dev_configure = hns3vf_dev_configure,
2525 .dev_start = hns3vf_dev_start,
2526 .dev_stop = hns3vf_dev_stop,
2527 .dev_close = hns3vf_dev_close,
2528 .mtu_set = hns3vf_dev_mtu_set,
2529 .promiscuous_enable = hns3vf_dev_promiscuous_enable,
2530 .promiscuous_disable = hns3vf_dev_promiscuous_disable,
2531 .allmulticast_enable = hns3vf_dev_allmulticast_enable,
2532 .allmulticast_disable = hns3vf_dev_allmulticast_disable,
2533 .stats_get = hns3_stats_get,
2534 .stats_reset = hns3_stats_reset,
2535 .xstats_get = hns3_dev_xstats_get,
2536 .xstats_get_names = hns3_dev_xstats_get_names,
2537 .xstats_reset = hns3_dev_xstats_reset,
2538 .xstats_get_by_id = hns3_dev_xstats_get_by_id,
2539 .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
2540 .dev_infos_get = hns3vf_dev_infos_get,
2541 .fw_version_get = hns3vf_fw_version_get,
2542 .rx_queue_setup = hns3_rx_queue_setup,
2543 .tx_queue_setup = hns3_tx_queue_setup,
2544 .rx_queue_release = hns3_dev_rx_queue_release,
2545 .tx_queue_release = hns3_dev_tx_queue_release,
2546 .rx_queue_intr_enable = hns3_dev_rx_queue_intr_enable,
2547 .rx_queue_intr_disable = hns3_dev_rx_queue_intr_disable,
2548 .rxq_info_get = hns3_rxq_info_get,
2549 .txq_info_get = hns3_txq_info_get,
2550 .rx_burst_mode_get = hns3_rx_burst_mode_get,
2551 .tx_burst_mode_get = hns3_tx_burst_mode_get,
2552 .mac_addr_add = hns3vf_add_mac_addr,
2553 .mac_addr_remove = hns3vf_remove_mac_addr,
2554 .mac_addr_set = hns3vf_set_default_mac_addr,
2555 .set_mc_addr_list = hns3vf_set_mc_mac_addr_list,
2556 .link_update = hns3vf_dev_link_update,
2557 .rss_hash_update = hns3_dev_rss_hash_update,
2558 .rss_hash_conf_get = hns3_dev_rss_hash_conf_get,
2559 .reta_update = hns3_dev_rss_reta_update,
2560 .reta_query = hns3_dev_rss_reta_query,
2561 .filter_ctrl = hns3_dev_filter_ctrl,
2562 .vlan_filter_set = hns3vf_vlan_filter_set,
2563 .vlan_offload_set = hns3vf_vlan_offload_set,
2564 .get_reg = hns3_get_regs,
2565 .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
2568 static const struct hns3_reset_ops hns3vf_reset_ops = {
2569 .reset_service = hns3vf_reset_service,
2570 .stop_service = hns3vf_stop_service,
2571 .prepare_reset = hns3vf_prepare_reset,
2572 .wait_hardware_ready = hns3vf_wait_hardware_ready,
2573 .reinit_dev = hns3vf_reinit_dev,
2574 .restore_conf = hns3vf_restore_conf,
2575 .start_service = hns3vf_start_service,
2579 hns3vf_dev_init(struct rte_eth_dev *eth_dev)
2581 struct hns3_adapter *hns = eth_dev->data->dev_private;
2582 struct hns3_hw *hw = &hns->hw;
2585 PMD_INIT_FUNC_TRACE();
2587 eth_dev->process_private = (struct hns3_process_private *)
2588 rte_zmalloc_socket("hns3_filter_list",
2589 sizeof(struct hns3_process_private),
2590 RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
2591 if (eth_dev->process_private == NULL) {
2592 PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
2596 /* initialize flow filter lists */
2597 hns3_filterlist_init(eth_dev);
2599 hns3_set_rxtx_function(eth_dev);
2600 eth_dev->dev_ops = &hns3vf_eth_dev_ops;
2601 if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2602 ret = hns3_mp_init_secondary();
2604 PMD_INIT_LOG(ERR, "Failed to init for secondary "
2605 "process, ret = %d", ret);
2606 goto err_mp_init_secondary;
2609 hw->secondary_cnt++;
2613 ret = hns3_mp_init_primary();
2616 "Failed to init for primary process, ret = %d",
2618 goto err_mp_init_primary;
2621 hw->adapter_state = HNS3_NIC_UNINITIALIZED;
2623 hw->data = eth_dev->data;
2625 ret = hns3_reset_init(hw);
2627 goto err_init_reset;
2628 hw->reset.ops = &hns3vf_reset_ops;
2630 ret = hns3vf_init_vf(eth_dev);
2632 PMD_INIT_LOG(ERR, "Failed to init vf: %d", ret);
2636 /* Allocate memory for storing MAC addresses */
2637 eth_dev->data->mac_addrs = rte_zmalloc("hns3vf-mac",
2638 sizeof(struct rte_ether_addr) *
2639 HNS3_VF_UC_MACADDR_NUM, 0);
2640 if (eth_dev->data->mac_addrs == NULL) {
2641 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
2642 "to store MAC addresses",
2643 sizeof(struct rte_ether_addr) *
2644 HNS3_VF_UC_MACADDR_NUM);
2646 goto err_rte_zmalloc;
2650 * The hns3 PF ethdev driver in kernel support setting VF MAC address
2651 * on the host by "ip link set ..." command. To avoid some incorrect
2652 * scenes, for example, hns3 VF PMD driver fails to receive and send
2653 * packets after user configure the MAC address by using the
2654 * "ip link set ..." command, hns3 VF PMD driver keep the same MAC
2655 * address strategy as the hns3 kernel ethdev driver in the
2656 * initialization. If user configure a MAC address by the ip command
2657 * for VF device, then hns3 VF PMD driver will start with it, otherwise
2658 * start with a random MAC address in the initialization.
2660 if (rte_is_zero_ether_addr((struct rte_ether_addr *)hw->mac.mac_addr))
2661 rte_eth_random_addr(hw->mac.mac_addr);
2662 rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
2663 ð_dev->data->mac_addrs[0]);
2665 hw->adapter_state = HNS3_NIC_INITIALIZED;
2667 * Pass the information to the rte_eth_dev_close() that it should also
2668 * release the private port resources.
2670 eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
2672 if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_PENDING) {
2673 hns3_err(hw, "Reschedule reset service after dev_init");
2674 hns3_schedule_reset(hns);
2676 /* IMP will wait ready flag before reset */
2677 hns3_notify_reset_ready(hw, false);
2679 rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
2684 hns3vf_uninit_vf(eth_dev);
2687 rte_free(hw->reset.wait_data);
2690 hns3_mp_uninit_primary();
2692 err_mp_init_primary:
2693 err_mp_init_secondary:
2694 eth_dev->dev_ops = NULL;
2695 eth_dev->rx_pkt_burst = NULL;
2696 eth_dev->tx_pkt_burst = NULL;
2697 eth_dev->tx_pkt_prepare = NULL;
2698 rte_free(eth_dev->process_private);
2699 eth_dev->process_private = NULL;
2705 hns3vf_dev_uninit(struct rte_eth_dev *eth_dev)
2707 struct hns3_adapter *hns = eth_dev->data->dev_private;
2708 struct hns3_hw *hw = &hns->hw;
2710 PMD_INIT_FUNC_TRACE();
2712 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2715 eth_dev->dev_ops = NULL;
2716 eth_dev->rx_pkt_burst = NULL;
2717 eth_dev->tx_pkt_burst = NULL;
2718 eth_dev->tx_pkt_prepare = NULL;
2720 if (hw->adapter_state < HNS3_NIC_CLOSING)
2721 hns3vf_dev_close(eth_dev);
2723 hw->adapter_state = HNS3_NIC_REMOVED;
2728 eth_hns3vf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2729 struct rte_pci_device *pci_dev)
2731 return rte_eth_dev_pci_generic_probe(pci_dev,
2732 sizeof(struct hns3_adapter),
2737 eth_hns3vf_pci_remove(struct rte_pci_device *pci_dev)
2739 return rte_eth_dev_pci_generic_remove(pci_dev, hns3vf_dev_uninit);
2742 static const struct rte_pci_id pci_id_hns3vf_map[] = {
2743 { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_VF) },
2744 { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_PFC_VF) },
2745 { .vendor_id = 0, /* sentinel */ },
2748 static struct rte_pci_driver rte_hns3vf_pmd = {
2749 .id_table = pci_id_hns3vf_map,
2750 .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
2751 .probe = eth_hns3vf_pci_probe,
2752 .remove = eth_hns3vf_pci_remove,
2755 RTE_PMD_REGISTER_PCI(net_hns3_vf, rte_hns3vf_pmd);
2756 RTE_PMD_REGISTER_PCI_TABLE(net_hns3_vf, pci_id_hns3vf_map);
2757 RTE_PMD_REGISTER_KMOD_DEP(net_hns3_vf, "* igb_uio | vfio-pci");