net/hns3: remove useless variable initializations
[dpdk.git] / drivers / net / hns3 / hns3_ethdev_vf.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4
5 #include <errno.h>
6 #include <stdio.h>
7 #include <stdbool.h>
8 #include <string.h>
9 #include <inttypes.h>
10 #include <unistd.h>
11 #include <arpa/inet.h>
12 #include <linux/pci_regs.h>
13
14 #include <rte_alarm.h>
15 #include <rte_atomic.h>
16 #include <rte_bus_pci.h>
17 #include <rte_byteorder.h>
18 #include <rte_common.h>
19 #include <rte_cycles.h>
20 #include <rte_dev.h>
21 #include <rte_eal.h>
22 #include <rte_ether.h>
23 #include <rte_ethdev_driver.h>
24 #include <rte_ethdev_pci.h>
25 #include <rte_interrupts.h>
26 #include <rte_io.h>
27 #include <rte_log.h>
28 #include <rte_pci.h>
29 #include <rte_vfio.h>
30
31 #include "hns3_ethdev.h"
32 #include "hns3_logs.h"
33 #include "hns3_rxtx.h"
34 #include "hns3_regs.h"
35 #include "hns3_intr.h"
36 #include "hns3_dcb.h"
37 #include "hns3_mp.h"
38
39 #define HNS3VF_KEEP_ALIVE_INTERVAL      2000000 /* us */
40 #define HNS3VF_SERVICE_INTERVAL         1000000 /* us */
41
42 #define HNS3VF_RESET_WAIT_MS    20
43 #define HNS3VF_RESET_WAIT_CNT   2000
44
45 /* Reset related Registers */
46 #define HNS3_GLOBAL_RESET_BIT           0
47 #define HNS3_CORE_RESET_BIT             1
48 #define HNS3_IMP_RESET_BIT              2
49 #define HNS3_FUN_RST_ING_B              0
50
51 enum hns3vf_evt_cause {
52         HNS3VF_VECTOR0_EVENT_RST,
53         HNS3VF_VECTOR0_EVENT_MBX,
54         HNS3VF_VECTOR0_EVENT_OTHER,
55 };
56
57 static enum hns3_reset_level hns3vf_get_reset_level(struct hns3_hw *hw,
58                                                     uint64_t *levels);
59 static int hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
60 static int hns3vf_dev_configure_vlan(struct rte_eth_dev *dev);
61
62 /* set PCI bus mastering */
63 static void
64 hns3vf_set_bus_master(const struct rte_pci_device *device, bool op)
65 {
66         uint16_t reg;
67
68         rte_pci_read_config(device, &reg, sizeof(reg), PCI_COMMAND);
69
70         if (op)
71                 /* set the master bit */
72                 reg |= PCI_COMMAND_MASTER;
73         else
74                 reg &= ~(PCI_COMMAND_MASTER);
75
76         rte_pci_write_config(device, &reg, sizeof(reg), PCI_COMMAND);
77 }
78
79 /**
80  * hns3vf_find_pci_capability - lookup a capability in the PCI capability list
81  * @cap: the capability
82  *
83  * Return the address of the given capability within the PCI capability list.
84  */
85 static int
86 hns3vf_find_pci_capability(const struct rte_pci_device *device, int cap)
87 {
88 #define MAX_PCIE_CAPABILITY 48
89         uint16_t status;
90         uint8_t pos;
91         uint8_t id;
92         int ttl;
93
94         rte_pci_read_config(device, &status, sizeof(status), PCI_STATUS);
95         if (!(status & PCI_STATUS_CAP_LIST))
96                 return 0;
97
98         ttl = MAX_PCIE_CAPABILITY;
99         rte_pci_read_config(device, &pos, sizeof(pos), PCI_CAPABILITY_LIST);
100         while (ttl-- && pos >= PCI_STD_HEADER_SIZEOF) {
101                 rte_pci_read_config(device, &id, sizeof(id),
102                                     (pos + PCI_CAP_LIST_ID));
103
104                 if (id == 0xFF)
105                         break;
106
107                 if (id == cap)
108                         return (int)pos;
109
110                 rte_pci_read_config(device, &pos, sizeof(pos),
111                                     (pos + PCI_CAP_LIST_NEXT));
112         }
113         return 0;
114 }
115
116 static int
117 hns3vf_enable_msix(const struct rte_pci_device *device, bool op)
118 {
119         uint16_t control;
120         int pos;
121
122         pos = hns3vf_find_pci_capability(device, PCI_CAP_ID_MSIX);
123         if (pos) {
124                 rte_pci_read_config(device, &control, sizeof(control),
125                                     (pos + PCI_MSIX_FLAGS));
126                 if (op)
127                         control |= PCI_MSIX_FLAGS_ENABLE;
128                 else
129                         control &= ~PCI_MSIX_FLAGS_ENABLE;
130                 rte_pci_write_config(device, &control, sizeof(control),
131                                      (pos + PCI_MSIX_FLAGS));
132                 return 0;
133         }
134         return -ENXIO;
135 }
136
137 static int
138 hns3vf_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
139                     __attribute__ ((unused)) uint32_t idx,
140                     __attribute__ ((unused)) uint32_t pool)
141 {
142         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
143         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
144         int ret;
145
146         rte_spinlock_lock(&hw->lock);
147         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
148                                 HNS3_MBX_MAC_VLAN_UC_ADD, mac_addr->addr_bytes,
149                                 RTE_ETHER_ADDR_LEN, false, NULL, 0);
150         rte_spinlock_unlock(&hw->lock);
151         if (ret) {
152                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
153                                       mac_addr);
154                 hns3_err(hw, "Failed to add mac addr(%s) for vf: %d", mac_str,
155                          ret);
156         }
157
158         return ret;
159 }
160
161 static void
162 hns3vf_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
163 {
164         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
165         /* index will be checked by upper level rte interface */
166         struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
167         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
168         int ret;
169
170         rte_spinlock_lock(&hw->lock);
171         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
172                                 HNS3_MBX_MAC_VLAN_UC_REMOVE,
173                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
174                                 NULL, 0);
175         rte_spinlock_unlock(&hw->lock);
176         if (ret) {
177                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
178                                       mac_addr);
179                 hns3_err(hw, "Failed to remove mac addr(%s) for vf: %d",
180                          mac_str, ret);
181         }
182 }
183
184 static int
185 hns3vf_set_default_mac_addr(struct rte_eth_dev *dev,
186                             struct rte_ether_addr *mac_addr)
187 {
188 #define HNS3_TWO_ETHER_ADDR_LEN (RTE_ETHER_ADDR_LEN * 2)
189         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
190         struct rte_ether_addr *old_addr;
191         uint8_t addr_bytes[HNS3_TWO_ETHER_ADDR_LEN]; /* for 2 MAC addresses */
192         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
193         int ret;
194
195         if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
196                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
197                                       mac_addr);
198                 hns3_err(hw, "Failed to set mac addr, addr(%s) invalid.",
199                          mac_str);
200                 return -EINVAL;
201         }
202
203         old_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
204         rte_spinlock_lock(&hw->lock);
205         memcpy(addr_bytes, mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN);
206         memcpy(&addr_bytes[RTE_ETHER_ADDR_LEN], old_addr->addr_bytes,
207                RTE_ETHER_ADDR_LEN);
208
209         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
210                                 HNS3_MBX_MAC_VLAN_UC_MODIFY, addr_bytes,
211                                 HNS3_TWO_ETHER_ADDR_LEN, false, NULL, 0);
212         if (ret) {
213                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
214                                       mac_addr);
215                 hns3_err(hw, "Failed to set mac addr(%s) for vf: %d", mac_str,
216                          ret);
217         }
218
219         rte_ether_addr_copy(mac_addr,
220                             (struct rte_ether_addr *)hw->mac.mac_addr);
221         rte_spinlock_unlock(&hw->lock);
222
223         return ret;
224 }
225
226 static int
227 hns3vf_configure_mac_addr(struct hns3_adapter *hns, bool del)
228 {
229         struct hns3_hw *hw = &hns->hw;
230         struct rte_ether_addr *addr;
231         enum hns3_mbx_mac_vlan_subcode opcode;
232         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
233         int ret = 0;
234         int i;
235
236         if (del)
237                 opcode = HNS3_MBX_MAC_VLAN_UC_REMOVE;
238         else
239                 opcode = HNS3_MBX_MAC_VLAN_UC_ADD;
240         for (i = 0; i < HNS3_VF_UC_MACADDR_NUM; i++) {
241                 addr = &hw->data->mac_addrs[i];
242                 if (!rte_is_valid_assigned_ether_addr(addr))
243                         continue;
244                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, addr);
245                 hns3_dbg(hw, "rm mac addr: %s", mac_str);
246                 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST, opcode,
247                                         addr->addr_bytes, RTE_ETHER_ADDR_LEN,
248                                         false, NULL, 0);
249                 if (ret) {
250                         hns3_err(hw, "Failed to remove mac addr for vf: %d",
251                                  ret);
252                         break;
253                 }
254         }
255         return ret;
256 }
257
258 static int
259 hns3vf_add_mc_mac_addr(struct hns3_adapter *hns,
260                        struct rte_ether_addr *mac_addr)
261 {
262         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
263         struct hns3_hw *hw = &hns->hw;
264         int ret;
265
266         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
267                                 HNS3_MBX_MAC_VLAN_MC_ADD,
268                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
269                                 NULL, 0);
270         if (ret) {
271                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
272                                       mac_addr);
273                 hns3_err(hw, "Failed to add mc mac addr(%s) for vf: %d",
274                          mac_str, ret);
275                 return ret;
276         }
277
278         return 0;
279 }
280
281 static int
282 hns3vf_remove_mc_mac_addr(struct hns3_adapter *hns,
283                           struct rte_ether_addr *mac_addr)
284 {
285         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
286         struct hns3_hw *hw = &hns->hw;
287         int ret;
288
289         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
290                                 HNS3_MBX_MAC_VLAN_MC_REMOVE,
291                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
292                                 NULL, 0);
293         if (ret) {
294                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
295                                       mac_addr);
296                 hns3_err(hw, "Failed to remove mc mac addr(%s) for vf: %d",
297                          mac_str, ret);
298                 return ret;
299         }
300
301         return 0;
302 }
303
304 static int
305 hns3vf_set_mc_mac_addr_list(struct rte_eth_dev *dev,
306                             struct rte_ether_addr *mc_addr_set,
307                             uint32_t nb_mc_addr)
308 {
309         struct hns3_adapter *hns = dev->data->dev_private;
310         struct hns3_hw *hw = &hns->hw;
311         struct rte_ether_addr *addr;
312         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
313         int cur_addr_num;
314         int set_addr_num;
315         int num;
316         int ret;
317         int i;
318
319         if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
320                 hns3_err(hw, "Failed to set mc mac addr, nb_mc_addr(%d) "
321                          "invalid. valid range: 0~%d",
322                          nb_mc_addr, HNS3_MC_MACADDR_NUM);
323                 return -EINVAL;
324         }
325
326         set_addr_num = (int)nb_mc_addr;
327         for (i = 0; i < set_addr_num; i++) {
328                 addr = &mc_addr_set[i];
329                 if (!rte_is_multicast_ether_addr(addr)) {
330                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
331                                               addr);
332                         hns3_err(hw,
333                                  "Failed to set mc mac addr, addr(%s) invalid.",
334                                  mac_str);
335                         return -EINVAL;
336                 }
337         }
338         rte_spinlock_lock(&hw->lock);
339         cur_addr_num = hw->mc_addrs_num;
340         for (i = 0; i < cur_addr_num; i++) {
341                 num = cur_addr_num - i - 1;
342                 addr = &hw->mc_addrs[num];
343                 ret = hns3vf_remove_mc_mac_addr(hns, addr);
344                 if (ret) {
345                         rte_spinlock_unlock(&hw->lock);
346                         return ret;
347                 }
348
349                 hw->mc_addrs_num--;
350         }
351
352         for (i = 0; i < set_addr_num; i++) {
353                 addr = &mc_addr_set[i];
354                 ret = hns3vf_add_mc_mac_addr(hns, addr);
355                 if (ret) {
356                         rte_spinlock_unlock(&hw->lock);
357                         return ret;
358                 }
359
360                 rte_ether_addr_copy(addr, &hw->mc_addrs[hw->mc_addrs_num]);
361                 hw->mc_addrs_num++;
362         }
363         rte_spinlock_unlock(&hw->lock);
364
365         return 0;
366 }
367
368 static int
369 hns3vf_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
370 {
371         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
372         struct hns3_hw *hw = &hns->hw;
373         struct rte_ether_addr *addr;
374         int err = 0;
375         int ret;
376         int i;
377
378         for (i = 0; i < hw->mc_addrs_num; i++) {
379                 addr = &hw->mc_addrs[i];
380                 if (!rte_is_multicast_ether_addr(addr))
381                         continue;
382                 if (del)
383                         ret = hns3vf_remove_mc_mac_addr(hns, addr);
384                 else
385                         ret = hns3vf_add_mc_mac_addr(hns, addr);
386                 if (ret) {
387                         err = ret;
388                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
389                                               addr);
390                         hns3_err(hw, "Failed to %s mc mac addr: %s for vf: %d",
391                                  del ? "Remove" : "Restore", mac_str, ret);
392                 }
393         }
394         return err;
395 }
396
397 static int
398 hns3vf_set_promisc_mode(struct hns3_hw *hw, bool en_bc_pmc)
399 {
400         struct hns3_mbx_vf_to_pf_cmd *req;
401         struct hns3_cmd_desc desc;
402         int ret;
403
404         req = (struct hns3_mbx_vf_to_pf_cmd *)desc.data;
405
406         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MBX_VF_TO_PF, false);
407         req->msg[0] = HNS3_MBX_SET_PROMISC_MODE;
408         req->msg[1] = en_bc_pmc ? 1 : 0;
409
410         ret = hns3_cmd_send(hw, &desc, 1);
411         if (ret)
412                 hns3_err(hw, "Set promisc mode fail, status is %d", ret);
413
414         return ret;
415 }
416
417 static int
418 hns3vf_dev_configure(struct rte_eth_dev *dev)
419 {
420         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
421         struct hns3_rss_conf *rss_cfg = &hw->rss_info;
422         struct rte_eth_conf *conf = &dev->data->dev_conf;
423         enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
424         uint16_t nb_rx_q = dev->data->nb_rx_queues;
425         uint16_t nb_tx_q = dev->data->nb_tx_queues;
426         struct rte_eth_rss_conf rss_conf;
427         uint16_t mtu;
428         int ret;
429
430         /*
431          * Hardware does not support where the number of rx and tx queues is
432          * not equal in hip08.
433          */
434         if (nb_rx_q != nb_tx_q) {
435                 hns3_err(hw,
436                          "nb_rx_queues(%u) not equal with nb_tx_queues(%u)! "
437                          "Hardware does not support this configuration!",
438                          nb_rx_q, nb_tx_q);
439                 return -EINVAL;
440         }
441
442         if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
443                 hns3_err(hw, "setting link speed/duplex not supported");
444                 return -EINVAL;
445         }
446
447         hw->adapter_state = HNS3_NIC_CONFIGURING;
448
449         /* When RSS is not configured, redirect the packet queue 0 */
450         if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
451                 rss_conf = conf->rx_adv_conf.rss_conf;
452                 if (rss_conf.rss_key == NULL) {
453                         rss_conf.rss_key = rss_cfg->key;
454                         rss_conf.rss_key_len = HNS3_RSS_KEY_SIZE;
455                 }
456
457                 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
458                 if (ret)
459                         goto cfg_err;
460         }
461
462         /*
463          * If jumbo frames are enabled, MTU needs to be refreshed
464          * according to the maximum RX packet length.
465          */
466         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
467                 /*
468                  * Security of max_rx_pkt_len is guaranteed in dpdk frame.
469                  * Maximum value of max_rx_pkt_len is HNS3_MAX_FRAME_LEN, so it
470                  * can safely assign to "uint16_t" type variable.
471                  */
472                 mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(conf->rxmode.max_rx_pkt_len);
473                 ret = hns3vf_dev_mtu_set(dev, mtu);
474                 if (ret)
475                         goto cfg_err;
476                 dev->data->mtu = mtu;
477         }
478
479         ret = hns3vf_dev_configure_vlan(dev);
480         if (ret)
481                 goto cfg_err;
482
483         hw->adapter_state = HNS3_NIC_CONFIGURED;
484         return 0;
485
486 cfg_err:
487         hw->adapter_state = HNS3_NIC_INITIALIZED;
488         return ret;
489 }
490
491 static int
492 hns3vf_config_mtu(struct hns3_hw *hw, uint16_t mtu)
493 {
494         int ret;
495
496         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MTU, 0, (const uint8_t *)&mtu,
497                                 sizeof(mtu), true, NULL, 0);
498         if (ret)
499                 hns3_err(hw, "Failed to set mtu (%u) for vf: %d", mtu, ret);
500
501         return ret;
502 }
503
504 static int
505 hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
506 {
507         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
508         uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
509         int ret;
510
511         if (dev->data->dev_started) {
512                 hns3_err(hw, "Failed to set mtu, port %u must be stopped "
513                          "before configuration", dev->data->port_id);
514                 return -EBUSY;
515         }
516
517         if (rte_atomic16_read(&hw->reset.resetting)) {
518                 hns3_err(hw, "Failed to set mtu during resetting");
519                 return -EIO;
520         }
521
522         rte_spinlock_lock(&hw->lock);
523         ret = hns3vf_config_mtu(hw, mtu);
524         if (ret) {
525                 rte_spinlock_unlock(&hw->lock);
526                 return ret;
527         }
528         if (frame_size > RTE_ETHER_MAX_LEN)
529                 dev->data->dev_conf.rxmode.offloads |=
530                                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
531         else
532                 dev->data->dev_conf.rxmode.offloads &=
533                                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
534         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
535         rte_spinlock_unlock(&hw->lock);
536
537         return 0;
538 }
539
540 static int
541 hns3vf_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
542 {
543         struct hns3_adapter *hns = eth_dev->data->dev_private;
544         struct hns3_hw *hw = &hns->hw;
545
546         info->max_rx_queues = hw->tqps_num;
547         info->max_tx_queues = hw->tqps_num;
548         info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
549         info->min_rx_bufsize = hw->rx_buf_len;
550         info->max_mac_addrs = HNS3_VF_UC_MACADDR_NUM;
551         info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
552
553         info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
554                                  DEV_RX_OFFLOAD_UDP_CKSUM |
555                                  DEV_RX_OFFLOAD_TCP_CKSUM |
556                                  DEV_RX_OFFLOAD_SCTP_CKSUM |
557                                  DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
558                                  DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
559                                  DEV_RX_OFFLOAD_KEEP_CRC |
560                                  DEV_RX_OFFLOAD_SCATTER |
561                                  DEV_RX_OFFLOAD_VLAN_STRIP |
562                                  DEV_RX_OFFLOAD_QINQ_STRIP |
563                                  DEV_RX_OFFLOAD_VLAN_FILTER |
564                                  DEV_RX_OFFLOAD_JUMBO_FRAME);
565         info->tx_queue_offload_capa = DEV_TX_OFFLOAD_MBUF_FAST_FREE;
566         info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
567                                  DEV_TX_OFFLOAD_IPV4_CKSUM |
568                                  DEV_TX_OFFLOAD_TCP_CKSUM |
569                                  DEV_TX_OFFLOAD_UDP_CKSUM |
570                                  DEV_TX_OFFLOAD_SCTP_CKSUM |
571                                  DEV_TX_OFFLOAD_VLAN_INSERT |
572                                  DEV_TX_OFFLOAD_QINQ_INSERT |
573                                  DEV_TX_OFFLOAD_MULTI_SEGS |
574                                  info->tx_queue_offload_capa);
575
576         info->rx_desc_lim = (struct rte_eth_desc_lim) {
577                 .nb_max = HNS3_MAX_RING_DESC,
578                 .nb_min = HNS3_MIN_RING_DESC,
579                 .nb_align = HNS3_ALIGN_RING_DESC,
580         };
581
582         info->tx_desc_lim = (struct rte_eth_desc_lim) {
583                 .nb_max = HNS3_MAX_RING_DESC,
584                 .nb_min = HNS3_MIN_RING_DESC,
585                 .nb_align = HNS3_ALIGN_RING_DESC,
586         };
587
588         info->vmdq_queue_num = 0;
589
590         info->reta_size = HNS3_RSS_IND_TBL_SIZE;
591         info->hash_key_size = HNS3_RSS_KEY_SIZE;
592         info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
593         info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
594         info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
595
596         return 0;
597 }
598
599 static void
600 hns3vf_clear_event_cause(struct hns3_hw *hw, uint32_t regclr)
601 {
602         hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
603 }
604
605 static void
606 hns3vf_disable_irq0(struct hns3_hw *hw)
607 {
608         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
609 }
610
611 static void
612 hns3vf_enable_irq0(struct hns3_hw *hw)
613 {
614         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
615 }
616
617 static enum hns3vf_evt_cause
618 hns3vf_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
619 {
620         struct hns3_hw *hw = &hns->hw;
621         enum hns3vf_evt_cause ret;
622         uint32_t cmdq_stat_reg;
623         uint32_t rst_ing_reg;
624         uint32_t val;
625
626         /* Fetch the events from their corresponding regs */
627         cmdq_stat_reg = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_STAT_REG);
628
629         if (BIT(HNS3_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
630                 rst_ing_reg = hns3_read_dev(hw, HNS3_FUN_RST_ING);
631                 hns3_warn(hw, "resetting reg: 0x%x", rst_ing_reg);
632                 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
633                 rte_atomic16_set(&hw->reset.disable_cmd, 1);
634                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
635                 hns3_write_dev(hw, HNS3_VF_RST_ING, val | HNS3_VF_RST_ING_BIT);
636                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RST_INT_B);
637                 if (clearval) {
638                         hw->reset.stats.global_cnt++;
639                         hns3_warn(hw, "Global reset detected, clear reset status");
640                 } else {
641                         hns3_schedule_delayed_reset(hns);
642                         hns3_warn(hw, "Global reset detected, don't clear reset status");
643                 }
644
645                 ret = HNS3VF_VECTOR0_EVENT_RST;
646                 goto out;
647         }
648
649         /* Check for vector0 mailbox(=CMDQ RX) event source */
650         if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
651                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
652                 ret = HNS3VF_VECTOR0_EVENT_MBX;
653                 goto out;
654         }
655
656         val = 0;
657         ret = HNS3VF_VECTOR0_EVENT_OTHER;
658 out:
659         if (clearval)
660                 *clearval = val;
661         return ret;
662 }
663
664 static void
665 hns3vf_interrupt_handler(void *param)
666 {
667         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
668         struct hns3_adapter *hns = dev->data->dev_private;
669         struct hns3_hw *hw = &hns->hw;
670         enum hns3vf_evt_cause event_cause;
671         uint32_t clearval;
672
673         if (hw->irq_thread_id == 0)
674                 hw->irq_thread_id = pthread_self();
675
676         /* Disable interrupt */
677         hns3vf_disable_irq0(hw);
678
679         /* Read out interrupt causes */
680         event_cause = hns3vf_check_event_cause(hns, &clearval);
681
682         switch (event_cause) {
683         case HNS3VF_VECTOR0_EVENT_RST:
684                 hns3_schedule_reset(hns);
685                 break;
686         case HNS3VF_VECTOR0_EVENT_MBX:
687                 hns3_dev_handle_mbx_msg(hw);
688                 break;
689         default:
690                 break;
691         }
692
693         /* Clear interrupt causes */
694         hns3vf_clear_event_cause(hw, clearval);
695
696         /* Enable interrupt */
697         hns3vf_enable_irq0(hw);
698 }
699
700 static int
701 hns3vf_check_tqp_info(struct hns3_hw *hw)
702 {
703         uint16_t tqps_num;
704
705         tqps_num = hw->tqps_num;
706         if (tqps_num > HNS3_MAX_TQP_NUM_PER_FUNC || tqps_num == 0) {
707                 PMD_INIT_LOG(ERR, "Get invalid tqps_num(%u) from PF. valid "
708                                   "range: 1~%d",
709                              tqps_num, HNS3_MAX_TQP_NUM_PER_FUNC);
710                 return -EINVAL;
711         }
712
713         if (hw->rx_buf_len == 0)
714                 hw->rx_buf_len = HNS3_DEFAULT_RX_BUF_LEN;
715         hw->alloc_rss_size = RTE_MIN(hw->rss_size_max, hw->tqps_num);
716
717         return 0;
718 }
719
720 static int
721 hns3vf_get_queue_info(struct hns3_hw *hw)
722 {
723 #define HNS3VF_TQPS_RSS_INFO_LEN        6
724         uint8_t resp_msg[HNS3VF_TQPS_RSS_INFO_LEN];
725         int ret;
726
727         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QINFO, 0, NULL, 0, true,
728                                 resp_msg, HNS3VF_TQPS_RSS_INFO_LEN);
729         if (ret) {
730                 PMD_INIT_LOG(ERR, "Failed to get tqp info from PF: %d", ret);
731                 return ret;
732         }
733
734         memcpy(&hw->tqps_num, &resp_msg[0], sizeof(uint16_t));
735         memcpy(&hw->rss_size_max, &resp_msg[2], sizeof(uint16_t));
736         memcpy(&hw->rx_buf_len, &resp_msg[4], sizeof(uint16_t));
737
738         return hns3vf_check_tqp_info(hw);
739 }
740
741 static int
742 hns3vf_get_queue_depth(struct hns3_hw *hw)
743 {
744 #define HNS3VF_TQPS_DEPTH_INFO_LEN      4
745         uint8_t resp_msg[HNS3VF_TQPS_DEPTH_INFO_LEN];
746         int ret;
747
748         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QDEPTH, 0, NULL, 0, true,
749                                 resp_msg, HNS3VF_TQPS_DEPTH_INFO_LEN);
750         if (ret) {
751                 PMD_INIT_LOG(ERR, "Failed to get tqp depth info from PF: %d",
752                              ret);
753                 return ret;
754         }
755
756         memcpy(&hw->num_tx_desc, &resp_msg[0], sizeof(uint16_t));
757         memcpy(&hw->num_rx_desc, &resp_msg[2], sizeof(uint16_t));
758
759         return 0;
760 }
761
762 static int
763 hns3vf_get_tc_info(struct hns3_hw *hw)
764 {
765         uint8_t resp_msg;
766         int ret;
767
768         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_TCINFO, 0, NULL, 0,
769                                 true, &resp_msg, sizeof(resp_msg));
770         if (ret) {
771                 hns3_err(hw, "VF request to get TC info from PF failed %d",
772                          ret);
773                 return ret;
774         }
775
776         hw->hw_tc_map = resp_msg;
777
778         return 0;
779 }
780
781 static int
782 hns3vf_get_configuration(struct hns3_hw *hw)
783 {
784         int ret;
785
786         hw->mac.media_type = HNS3_MEDIA_TYPE_NONE;
787
788         /* Get queue configuration from PF */
789         ret = hns3vf_get_queue_info(hw);
790         if (ret)
791                 return ret;
792
793         /* Get queue depth info from PF */
794         ret = hns3vf_get_queue_depth(hw);
795         if (ret)
796                 return ret;
797
798         /* Get tc configuration from PF */
799         return hns3vf_get_tc_info(hw);
800 }
801
802 static void
803 hns3vf_set_tc_info(struct hns3_adapter *hns)
804 {
805         struct hns3_hw *hw = &hns->hw;
806         uint16_t nb_rx_q = hw->data->nb_rx_queues;
807         uint16_t new_tqps;
808         uint8_t i;
809
810         hw->num_tc = 0;
811         for (i = 0; i < HNS3_MAX_TC_NUM; i++)
812                 if (hw->hw_tc_map & BIT(i))
813                         hw->num_tc++;
814
815         new_tqps = RTE_MIN(hw->tqps_num, nb_rx_q);
816         hw->alloc_rss_size = RTE_MIN(hw->rss_size_max, new_tqps / hw->num_tc);
817         hw->alloc_tqps = hw->alloc_rss_size * hw->num_tc;
818
819         hns3_tc_queue_mapping_cfg(hw);
820 }
821
822 static void
823 hns3vf_request_link_info(struct hns3_hw *hw)
824 {
825         uint8_t resp_msg;
826         int ret;
827
828         if (rte_atomic16_read(&hw->reset.resetting))
829                 return;
830         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
831                                 &resp_msg, sizeof(resp_msg));
832         if (ret)
833                 hns3_err(hw, "Failed to fetch link status from PF: %d", ret);
834 }
835
836 static int
837 hns3vf_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
838 {
839 #define HNS3VF_VLAN_MBX_MSG_LEN 5
840         struct hns3_hw *hw = &hns->hw;
841         uint8_t msg_data[HNS3VF_VLAN_MBX_MSG_LEN];
842         uint16_t proto = htons(RTE_ETHER_TYPE_VLAN);
843         uint8_t is_kill = on ? 0 : 1;
844
845         msg_data[0] = is_kill;
846         memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
847         memcpy(&msg_data[3], &proto, sizeof(proto));
848
849         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_FILTER,
850                                  msg_data, HNS3VF_VLAN_MBX_MSG_LEN, true, NULL,
851                                  0);
852 }
853
854 static int
855 hns3vf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
856 {
857         struct hns3_adapter *hns = dev->data->dev_private;
858         struct hns3_hw *hw = &hns->hw;
859         int ret;
860
861         if (rte_atomic16_read(&hw->reset.resetting)) {
862                 hns3_err(hw,
863                          "vf set vlan id failed during resetting, vlan_id =%u",
864                          vlan_id);
865                 return -EIO;
866         }
867         rte_spinlock_lock(&hw->lock);
868         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
869         rte_spinlock_unlock(&hw->lock);
870         if (ret)
871                 hns3_err(hw, "vf set vlan id failed, vlan_id =%u, ret =%d",
872                          vlan_id, ret);
873
874         return ret;
875 }
876
877 static int
878 hns3vf_en_hw_strip_rxvtag(struct hns3_hw *hw, bool enable)
879 {
880         uint8_t msg_data;
881         int ret;
882
883         msg_data = enable ? 1 : 0;
884         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_RX_OFF_CFG,
885                                 &msg_data, sizeof(msg_data), false, NULL, 0);
886         if (ret)
887                 hns3_err(hw, "vf enable strip failed, ret =%d", ret);
888
889         return ret;
890 }
891
892 static int
893 hns3vf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
894 {
895         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
896         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
897         unsigned int tmp_mask;
898
899         tmp_mask = (unsigned int)mask;
900         /* Vlan stripping setting */
901         if (tmp_mask & ETH_VLAN_STRIP_MASK) {
902                 rte_spinlock_lock(&hw->lock);
903                 /* Enable or disable VLAN stripping */
904                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
905                         hns3vf_en_hw_strip_rxvtag(hw, true);
906                 else
907                         hns3vf_en_hw_strip_rxvtag(hw, false);
908                 rte_spinlock_unlock(&hw->lock);
909         }
910
911         return 0;
912 }
913
914 static int
915 hns3vf_handle_all_vlan_table(struct hns3_adapter *hns, int on)
916 {
917         struct rte_vlan_filter_conf *vfc;
918         struct hns3_hw *hw = &hns->hw;
919         uint16_t vlan_id;
920         uint64_t vbit;
921         uint64_t ids;
922         int ret = 0;
923         uint32_t i;
924
925         vfc = &hw->data->vlan_filter_conf;
926         for (i = 0; i < RTE_DIM(vfc->ids); i++) {
927                 if (vfc->ids[i] == 0)
928                         continue;
929                 ids = vfc->ids[i];
930                 while (ids) {
931                         /*
932                          * 64 means the num bits of ids, one bit corresponds to
933                          * one vlan id
934                          */
935                         vlan_id = 64 * i;
936                         /* count trailing zeroes */
937                         vbit = ~ids & (ids - 1);
938                         /* clear least significant bit set */
939                         ids ^= (ids ^ (ids - 1)) ^ vbit;
940                         for (; vbit;) {
941                                 vbit >>= 1;
942                                 vlan_id++;
943                         }
944                         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
945                         if (ret) {
946                                 hns3_err(hw,
947                                          "VF handle vlan table failed, ret =%d, on = %d",
948                                          ret, on);
949                                 return ret;
950                         }
951                 }
952         }
953
954         return ret;
955 }
956
957 static int
958 hns3vf_remove_all_vlan_table(struct hns3_adapter *hns)
959 {
960         return hns3vf_handle_all_vlan_table(hns, 0);
961 }
962
963 static int
964 hns3vf_restore_vlan_conf(struct hns3_adapter *hns)
965 {
966         struct hns3_hw *hw = &hns->hw;
967         struct rte_eth_conf *dev_conf;
968         bool en;
969         int ret;
970
971         dev_conf = &hw->data->dev_conf;
972         en = dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP ? true
973                                                                    : false;
974         ret = hns3vf_en_hw_strip_rxvtag(hw, en);
975         if (ret)
976                 hns3_err(hw, "VF restore vlan conf fail, en =%d, ret =%d", en,
977                          ret);
978         return ret;
979 }
980
981 static int
982 hns3vf_dev_configure_vlan(struct rte_eth_dev *dev)
983 {
984         struct hns3_adapter *hns = dev->data->dev_private;
985         struct rte_eth_dev_data *data = dev->data;
986         struct hns3_hw *hw = &hns->hw;
987         int ret;
988
989         if (data->dev_conf.txmode.hw_vlan_reject_tagged ||
990             data->dev_conf.txmode.hw_vlan_reject_untagged ||
991             data->dev_conf.txmode.hw_vlan_insert_pvid) {
992                 hns3_warn(hw, "hw_vlan_reject_tagged, hw_vlan_reject_untagged "
993                               "or hw_vlan_insert_pvid is not support!");
994         }
995
996         /* Apply vlan offload setting */
997         ret = hns3vf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
998         if (ret)
999                 hns3_err(hw, "dev config vlan offload failed, ret =%d", ret);
1000
1001         return ret;
1002 }
1003
1004 static int
1005 hns3vf_set_alive(struct hns3_hw *hw, bool alive)
1006 {
1007         uint8_t msg_data;
1008
1009         msg_data = alive ? 1 : 0;
1010         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_ALIVE, 0, &msg_data,
1011                                  sizeof(msg_data), false, NULL, 0);
1012 }
1013
1014 static void
1015 hns3vf_keep_alive_handler(void *param)
1016 {
1017         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1018         struct hns3_adapter *hns = eth_dev->data->dev_private;
1019         struct hns3_hw *hw = &hns->hw;
1020         uint8_t respmsg;
1021         int ret;
1022
1023         ret = hns3_send_mbx_msg(hw, HNS3_MBX_KEEP_ALIVE, 0, NULL, 0,
1024                                 false, &respmsg, sizeof(uint8_t));
1025         if (ret)
1026                 hns3_err(hw, "VF sends keeping alive cmd failed(=%d)",
1027                          ret);
1028
1029         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
1030                           eth_dev);
1031 }
1032
1033 static void
1034 hns3vf_service_handler(void *param)
1035 {
1036         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1037         struct hns3_adapter *hns = eth_dev->data->dev_private;
1038         struct hns3_hw *hw = &hns->hw;
1039
1040         /*
1041          * The query link status and reset processing are executed in the
1042          * interrupt thread.When the IMP reset occurs, IMP will not respond,
1043          * and the query operation will time out after 30ms. In the case of
1044          * multiple PF/VFs, each query failure timeout causes the IMP reset
1045          * interrupt to fail to respond within 100ms.
1046          * Before querying the link status, check whether there is a reset
1047          * pending, and if so, abandon the query.
1048          */
1049         if (!hns3vf_is_reset_pending(hns))
1050                 hns3vf_request_link_info(hw);
1051         else
1052                 hns3_warn(hw, "Cancel the query when reset is pending");
1053
1054         rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler,
1055                           eth_dev);
1056 }
1057
1058 static int
1059 hns3vf_init_hardware(struct hns3_adapter *hns)
1060 {
1061         struct hns3_hw *hw = &hns->hw;
1062         uint16_t mtu = hw->data->mtu;
1063         int ret;
1064
1065         ret = hns3vf_set_promisc_mode(hw, true);
1066         if (ret)
1067                 return ret;
1068
1069         ret = hns3vf_config_mtu(hw, mtu);
1070         if (ret)
1071                 goto err_init_hardware;
1072
1073         ret = hns3vf_vlan_filter_configure(hns, 0, 1);
1074         if (ret) {
1075                 PMD_INIT_LOG(ERR, "Failed to initialize VLAN config: %d", ret);
1076                 goto err_init_hardware;
1077         }
1078
1079         ret = hns3_config_gro(hw, false);
1080         if (ret) {
1081                 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
1082                 goto err_init_hardware;
1083         }
1084
1085         ret = hns3vf_set_alive(hw, true);
1086         if (ret) {
1087                 PMD_INIT_LOG(ERR, "Failed to VF send alive to PF: %d", ret);
1088                 goto err_init_hardware;
1089         }
1090
1091         hns3vf_request_link_info(hw);
1092         return 0;
1093
1094 err_init_hardware:
1095         (void)hns3vf_set_promisc_mode(hw, false);
1096         return ret;
1097 }
1098
1099 static int
1100 hns3vf_clear_vport_list(struct hns3_hw *hw)
1101 {
1102         return hns3_send_mbx_msg(hw, HNS3_MBX_HANDLE_VF_TBL,
1103                                  HNS3_MBX_VPORT_LIST_CLEAR, NULL, 0, false,
1104                                  NULL, 0);
1105 }
1106
1107 static int
1108 hns3vf_init_vf(struct rte_eth_dev *eth_dev)
1109 {
1110         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1111         struct hns3_adapter *hns = eth_dev->data->dev_private;
1112         struct hns3_hw *hw = &hns->hw;
1113         int ret;
1114
1115         PMD_INIT_FUNC_TRACE();
1116
1117         /* Get hardware io base address from pcie BAR2 IO space */
1118         hw->io_base = pci_dev->mem_resource[2].addr;
1119
1120         /* Firmware command queue initialize */
1121         ret = hns3_cmd_init_queue(hw);
1122         if (ret) {
1123                 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
1124                 goto err_cmd_init_queue;
1125         }
1126
1127         /* Firmware command initialize */
1128         ret = hns3_cmd_init(hw);
1129         if (ret) {
1130                 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
1131                 goto err_cmd_init;
1132         }
1133
1134         rte_spinlock_init(&hw->mbx_resp.lock);
1135
1136         hns3vf_clear_event_cause(hw, 0);
1137
1138         ret = rte_intr_callback_register(&pci_dev->intr_handle,
1139                                          hns3vf_interrupt_handler, eth_dev);
1140         if (ret) {
1141                 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
1142                 goto err_intr_callback_register;
1143         }
1144
1145         /* Enable interrupt */
1146         rte_intr_enable(&pci_dev->intr_handle);
1147         hns3vf_enable_irq0(hw);
1148
1149         /* Get configuration from PF */
1150         ret = hns3vf_get_configuration(hw);
1151         if (ret) {
1152                 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
1153                 goto err_get_config;
1154         }
1155
1156         rte_eth_random_addr(hw->mac.mac_addr); /* Generate a random mac addr */
1157
1158         ret = hns3vf_clear_vport_list(hw);
1159         if (ret) {
1160                 PMD_INIT_LOG(ERR, "Failed to clear tbl list: %d", ret);
1161                 goto err_get_config;
1162         }
1163
1164         ret = hns3vf_init_hardware(hns);
1165         if (ret)
1166                 goto err_get_config;
1167
1168         hns3_set_default_rss_args(hw);
1169
1170         return 0;
1171
1172 err_get_config:
1173         hns3vf_disable_irq0(hw);
1174         rte_intr_disable(&pci_dev->intr_handle);
1175         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1176                              eth_dev);
1177 err_intr_callback_register:
1178         hns3_cmd_uninit(hw);
1179
1180 err_cmd_init:
1181         hns3_cmd_destroy_queue(hw);
1182
1183 err_cmd_init_queue:
1184         hw->io_base = NULL;
1185
1186         return ret;
1187 }
1188
1189 static void
1190 hns3vf_uninit_vf(struct rte_eth_dev *eth_dev)
1191 {
1192         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1193         struct hns3_adapter *hns = eth_dev->data->dev_private;
1194         struct hns3_hw *hw = &hns->hw;
1195
1196         PMD_INIT_FUNC_TRACE();
1197
1198         hns3_rss_uninit(hns);
1199         (void)hns3vf_set_alive(hw, false);
1200         (void)hns3vf_set_promisc_mode(hw, false);
1201         hns3vf_disable_irq0(hw);
1202         rte_intr_disable(&pci_dev->intr_handle);
1203         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1204                              eth_dev);
1205         hns3_cmd_uninit(hw);
1206         hns3_cmd_destroy_queue(hw);
1207         hw->io_base = NULL;
1208 }
1209
1210 static int
1211 hns3vf_bind_ring_with_vector(struct rte_eth_dev *dev, uint8_t vector_id,
1212                              bool mmap, uint16_t queue_id)
1213
1214 {
1215         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1216         struct hns3_vf_bind_vector_msg bind_msg;
1217         uint16_t code;
1218         int ret;
1219
1220         memset(&bind_msg, 0, sizeof(bind_msg));
1221         code = mmap ? HNS3_MBX_MAP_RING_TO_VECTOR :
1222                 HNS3_MBX_UNMAP_RING_TO_VECTOR;
1223         bind_msg.vector_id = vector_id;
1224         bind_msg.ring_num = 1;
1225         bind_msg.param[0].ring_type = HNS3_RING_TYPE_RX;
1226         bind_msg.param[0].tqp_index = queue_id;
1227         bind_msg.param[0].int_gl_index = HNS3_RING_GL_RX;
1228
1229         ret = hns3_send_mbx_msg(hw, code, 0, (uint8_t *)&bind_msg,
1230                                 sizeof(bind_msg), false, NULL, 0);
1231         if (ret) {
1232                 hns3_err(hw, "Map TQP %d fail, vector_id is %d, ret is %d.",
1233                          queue_id, vector_id, ret);
1234                 return ret;
1235         }
1236
1237         return 0;
1238 }
1239
1240 static int
1241 hns3vf_do_stop(struct hns3_adapter *hns)
1242 {
1243         struct hns3_hw *hw = &hns->hw;
1244         bool reset_queue;
1245
1246         hw->mac.link_status = ETH_LINK_DOWN;
1247
1248         if (rte_atomic16_read(&hw->reset.disable_cmd) == 0) {
1249                 hns3vf_configure_mac_addr(hns, true);
1250                 reset_queue = true;
1251         } else
1252                 reset_queue = false;
1253         return hns3_stop_queues(hns, reset_queue);
1254 }
1255
1256 static void
1257 hns3vf_unmap_rx_interrupt(struct rte_eth_dev *dev)
1258 {
1259         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1260         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1261         uint8_t base = 0;
1262         uint8_t vec = 0;
1263         uint16_t q_id;
1264
1265         if (dev->data->dev_conf.intr_conf.rxq == 0)
1266                 return;
1267
1268         /* unmap the ring with vector */
1269         if (rte_intr_allow_others(intr_handle)) {
1270                 vec = RTE_INTR_VEC_RXTX_OFFSET;
1271                 base = RTE_INTR_VEC_RXTX_OFFSET;
1272         }
1273         if (rte_intr_dp_is_en(intr_handle)) {
1274                 for (q_id = 0; q_id < dev->data->nb_rx_queues; q_id++) {
1275                         (void)hns3vf_bind_ring_with_vector(dev, vec, false,
1276                                                            q_id);
1277                         if (vec < base + intr_handle->nb_efd - 1)
1278                                 vec++;
1279                 }
1280         }
1281         /* Clean datapath event and queue/vec mapping */
1282         rte_intr_efd_disable(intr_handle);
1283         if (intr_handle->intr_vec) {
1284                 rte_free(intr_handle->intr_vec);
1285                 intr_handle->intr_vec = NULL;
1286         }
1287 }
1288
1289 static void
1290 hns3vf_dev_stop(struct rte_eth_dev *dev)
1291 {
1292         struct hns3_adapter *hns = dev->data->dev_private;
1293         struct hns3_hw *hw = &hns->hw;
1294
1295         PMD_INIT_FUNC_TRACE();
1296
1297         hw->adapter_state = HNS3_NIC_STOPPING;
1298         hns3_set_rxtx_function(dev);
1299         rte_wmb();
1300         /* Disable datapath on secondary process. */
1301         hns3_mp_req_stop_rxtx(dev);
1302         /* Prevent crashes when queues are still in use. */
1303         rte_delay_ms(hw->tqps_num);
1304
1305         rte_spinlock_lock(&hw->lock);
1306         if (rte_atomic16_read(&hw->reset.resetting) == 0) {
1307                 hns3vf_do_stop(hns);
1308                 hns3_dev_release_mbufs(hns);
1309                 hw->adapter_state = HNS3_NIC_CONFIGURED;
1310         }
1311         rte_eal_alarm_cancel(hns3vf_service_handler, dev);
1312         rte_spinlock_unlock(&hw->lock);
1313
1314         hns3vf_unmap_rx_interrupt(dev);
1315 }
1316
1317 static void
1318 hns3vf_dev_close(struct rte_eth_dev *eth_dev)
1319 {
1320         struct hns3_adapter *hns = eth_dev->data->dev_private;
1321         struct hns3_hw *hw = &hns->hw;
1322
1323         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1324                 return;
1325
1326         if (hw->adapter_state == HNS3_NIC_STARTED)
1327                 hns3vf_dev_stop(eth_dev);
1328
1329         hw->adapter_state = HNS3_NIC_CLOSING;
1330         hns3_reset_abort(hns);
1331         hw->adapter_state = HNS3_NIC_CLOSED;
1332         rte_eal_alarm_cancel(hns3vf_keep_alive_handler, eth_dev);
1333         hns3vf_configure_all_mc_mac_addr(hns, true);
1334         hns3vf_remove_all_vlan_table(hns);
1335         hns3vf_uninit_vf(eth_dev);
1336         hns3_free_all_queues(eth_dev);
1337         rte_free(hw->reset.wait_data);
1338         rte_free(eth_dev->process_private);
1339         eth_dev->process_private = NULL;
1340         hns3_mp_uninit_primary();
1341         hns3_warn(hw, "Close port %d finished", hw->data->port_id);
1342 }
1343
1344 static int
1345 hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
1346                        __rte_unused int wait_to_complete)
1347 {
1348         struct hns3_adapter *hns = eth_dev->data->dev_private;
1349         struct hns3_hw *hw = &hns->hw;
1350         struct hns3_mac *mac = &hw->mac;
1351         struct rte_eth_link new_link;
1352
1353         memset(&new_link, 0, sizeof(new_link));
1354         switch (mac->link_speed) {
1355         case ETH_SPEED_NUM_10M:
1356         case ETH_SPEED_NUM_100M:
1357         case ETH_SPEED_NUM_1G:
1358         case ETH_SPEED_NUM_10G:
1359         case ETH_SPEED_NUM_25G:
1360         case ETH_SPEED_NUM_40G:
1361         case ETH_SPEED_NUM_50G:
1362         case ETH_SPEED_NUM_100G:
1363                 new_link.link_speed = mac->link_speed;
1364                 break;
1365         default:
1366                 new_link.link_speed = ETH_SPEED_NUM_100M;
1367                 break;
1368         }
1369
1370         new_link.link_duplex = mac->link_duplex;
1371         new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
1372         new_link.link_autoneg =
1373             !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
1374
1375         return rte_eth_linkstatus_set(eth_dev, &new_link);
1376 }
1377
1378 static int
1379 hns3vf_do_start(struct hns3_adapter *hns, bool reset_queue)
1380 {
1381         struct hns3_hw *hw = &hns->hw;
1382         int ret;
1383
1384         hns3vf_set_tc_info(hns);
1385
1386         ret = hns3_start_queues(hns, reset_queue);
1387         if (ret) {
1388                 hns3_err(hw, "Failed to start queues: %d", ret);
1389                 return ret;
1390         }
1391
1392         return 0;
1393 }
1394
1395 static int
1396 hns3vf_map_rx_interrupt(struct rte_eth_dev *dev)
1397 {
1398         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1399         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1400         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1401         uint32_t intr_vector;
1402         uint8_t base = 0;
1403         uint8_t vec = 0;
1404         uint16_t q_id;
1405         int ret;
1406
1407         if (dev->data->dev_conf.intr_conf.rxq == 0)
1408                 return 0;
1409
1410         /* disable uio/vfio intr/eventfd mapping */
1411         rte_intr_disable(intr_handle);
1412
1413         /* check and configure queue intr-vector mapping */
1414         if (rte_intr_cap_multiple(intr_handle) ||
1415                 !RTE_ETH_DEV_SRIOV(dev).active) {
1416                 intr_vector = dev->data->nb_rx_queues;
1417                 /* It creates event fd for each intr vector when MSIX is used */
1418                 if (rte_intr_efd_enable(intr_handle, intr_vector))
1419                         return -EINVAL;
1420         }
1421         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
1422                 intr_handle->intr_vec =
1423                         rte_zmalloc("intr_vec",
1424                                     dev->data->nb_rx_queues * sizeof(int), 0);
1425                 if (intr_handle->intr_vec == NULL) {
1426                         hns3_err(hw, "Failed to allocate %d rx_queues"
1427                                      " intr_vec", dev->data->nb_rx_queues);
1428                         ret = -ENOMEM;
1429                         goto vf_alloc_intr_vec_error;
1430                 }
1431         }
1432
1433         if (rte_intr_allow_others(intr_handle)) {
1434                 vec = RTE_INTR_VEC_RXTX_OFFSET;
1435                 base = RTE_INTR_VEC_RXTX_OFFSET;
1436         }
1437         if (rte_intr_dp_is_en(intr_handle)) {
1438                 for (q_id = 0; q_id < dev->data->nb_rx_queues; q_id++) {
1439                         ret = hns3vf_bind_ring_with_vector(dev, vec, true,
1440                                                            q_id);
1441                         if (ret)
1442                                 goto vf_bind_vector_error;
1443                         intr_handle->intr_vec[q_id] = vec;
1444                         if (vec < base + intr_handle->nb_efd - 1)
1445                                 vec++;
1446                 }
1447         }
1448         rte_intr_enable(intr_handle);
1449         return 0;
1450
1451 vf_bind_vector_error:
1452         rte_intr_efd_disable(intr_handle);
1453         if (intr_handle->intr_vec) {
1454                 free(intr_handle->intr_vec);
1455                 intr_handle->intr_vec = NULL;
1456         }
1457         return ret;
1458 vf_alloc_intr_vec_error:
1459         rte_intr_efd_disable(intr_handle);
1460         return ret;
1461 }
1462
1463 static int
1464 hns3vf_dev_start(struct rte_eth_dev *dev)
1465 {
1466         struct hns3_adapter *hns = dev->data->dev_private;
1467         struct hns3_hw *hw = &hns->hw;
1468         int ret;
1469
1470         PMD_INIT_FUNC_TRACE();
1471         if (rte_atomic16_read(&hw->reset.resetting))
1472                 return -EBUSY;
1473
1474         rte_spinlock_lock(&hw->lock);
1475         hw->adapter_state = HNS3_NIC_STARTING;
1476         ret = hns3vf_do_start(hns, true);
1477         if (ret) {
1478                 hw->adapter_state = HNS3_NIC_CONFIGURED;
1479                 rte_spinlock_unlock(&hw->lock);
1480                 return ret;
1481         }
1482         hw->adapter_state = HNS3_NIC_STARTED;
1483         rte_spinlock_unlock(&hw->lock);
1484
1485         ret = hns3vf_map_rx_interrupt(dev);
1486         if (ret)
1487                 return ret;
1488         hns3_set_rxtx_function(dev);
1489         hns3_mp_req_start_rxtx(dev);
1490         rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler, dev);
1491         return ret;
1492 }
1493
1494 static bool
1495 is_vf_reset_done(struct hns3_hw *hw)
1496 {
1497 #define HNS3_FUN_RST_ING_BITS \
1498         (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) | \
1499          BIT(HNS3_VECTOR0_CORERESET_INT_B) | \
1500          BIT(HNS3_VECTOR0_IMPRESET_INT_B) | \
1501          BIT(HNS3_VECTOR0_FUNCRESET_INT_B))
1502
1503         uint32_t val;
1504
1505         if (hw->reset.level == HNS3_VF_RESET) {
1506                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
1507                 if (val & HNS3_VF_RST_ING_BIT)
1508                         return false;
1509         } else {
1510                 val = hns3_read_dev(hw, HNS3_FUN_RST_ING);
1511                 if (val & HNS3_FUN_RST_ING_BITS)
1512                         return false;
1513         }
1514         return true;
1515 }
1516
1517 bool
1518 hns3vf_is_reset_pending(struct hns3_adapter *hns)
1519 {
1520         struct hns3_hw *hw = &hns->hw;
1521         enum hns3_reset_level reset;
1522
1523         hns3vf_check_event_cause(hns, NULL);
1524         reset = hns3vf_get_reset_level(hw, &hw->reset.pending);
1525         if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
1526                 hns3_warn(hw, "High level reset %d is pending", reset);
1527                 return true;
1528         }
1529         return false;
1530 }
1531
1532 static int
1533 hns3vf_wait_hardware_ready(struct hns3_adapter *hns)
1534 {
1535         struct hns3_hw *hw = &hns->hw;
1536         struct hns3_wait_data *wait_data = hw->reset.wait_data;
1537         struct timeval tv;
1538
1539         if (wait_data->result == HNS3_WAIT_SUCCESS) {
1540                 /*
1541                  * After vf reset is ready, the PF may not have completed
1542                  * the reset processing. The vf sending mbox to PF may fail
1543                  * during the pf reset, so it is better to add extra delay.
1544                  */
1545                 if (hw->reset.level == HNS3_VF_FUNC_RESET ||
1546                     hw->reset.level == HNS3_FLR_RESET)
1547                         return 0;
1548                 /* Reset retry process, no need to add extra delay. */
1549                 if (hw->reset.attempts)
1550                         return 0;
1551                 if (wait_data->check_completion == NULL)
1552                         return 0;
1553
1554                 wait_data->check_completion = NULL;
1555                 wait_data->interval = 1 * MSEC_PER_SEC * USEC_PER_MSEC;
1556                 wait_data->count = 1;
1557                 wait_data->result = HNS3_WAIT_REQUEST;
1558                 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback,
1559                                   wait_data);
1560                 hns3_warn(hw, "hardware is ready, delay 1 sec for PF reset complete");
1561                 return -EAGAIN;
1562         } else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
1563                 gettimeofday(&tv, NULL);
1564                 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
1565                           tv.tv_sec, tv.tv_usec);
1566                 return -ETIME;
1567         } else if (wait_data->result == HNS3_WAIT_REQUEST)
1568                 return -EAGAIN;
1569
1570         wait_data->hns = hns;
1571         wait_data->check_completion = is_vf_reset_done;
1572         wait_data->end_ms = (uint64_t)HNS3VF_RESET_WAIT_CNT *
1573                                       HNS3VF_RESET_WAIT_MS + get_timeofday_ms();
1574         wait_data->interval = HNS3VF_RESET_WAIT_MS * USEC_PER_MSEC;
1575         wait_data->count = HNS3VF_RESET_WAIT_CNT;
1576         wait_data->result = HNS3_WAIT_REQUEST;
1577         rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
1578         return -EAGAIN;
1579 }
1580
1581 static int
1582 hns3vf_prepare_reset(struct hns3_adapter *hns)
1583 {
1584         struct hns3_hw *hw = &hns->hw;
1585         int ret = 0;
1586
1587         if (hw->reset.level == HNS3_VF_FUNC_RESET) {
1588                 ret = hns3_send_mbx_msg(hw, HNS3_MBX_RESET, 0, NULL,
1589                                         0, true, NULL, 0);
1590         }
1591         rte_atomic16_set(&hw->reset.disable_cmd, 1);
1592
1593         return ret;
1594 }
1595
1596 static int
1597 hns3vf_stop_service(struct hns3_adapter *hns)
1598 {
1599         struct hns3_hw *hw = &hns->hw;
1600         struct rte_eth_dev *eth_dev;
1601
1602         eth_dev = &rte_eth_devices[hw->data->port_id];
1603         rte_eal_alarm_cancel(hns3vf_service_handler, eth_dev);
1604         hw->mac.link_status = ETH_LINK_DOWN;
1605
1606         hns3_set_rxtx_function(eth_dev);
1607         rte_wmb();
1608         /* Disable datapath on secondary process. */
1609         hns3_mp_req_stop_rxtx(eth_dev);
1610         rte_delay_ms(hw->tqps_num);
1611
1612         rte_spinlock_lock(&hw->lock);
1613         if (hw->adapter_state == HNS3_NIC_STARTED ||
1614             hw->adapter_state == HNS3_NIC_STOPPING) {
1615                 hns3vf_do_stop(hns);
1616                 hw->reset.mbuf_deferred_free = true;
1617         } else
1618                 hw->reset.mbuf_deferred_free = false;
1619
1620         /*
1621          * It is cumbersome for hardware to pick-and-choose entries for deletion
1622          * from table space. Hence, for function reset software intervention is
1623          * required to delete the entries.
1624          */
1625         if (rte_atomic16_read(&hw->reset.disable_cmd) == 0)
1626                 hns3vf_configure_all_mc_mac_addr(hns, true);
1627         rte_spinlock_unlock(&hw->lock);
1628
1629         return 0;
1630 }
1631
1632 static int
1633 hns3vf_start_service(struct hns3_adapter *hns)
1634 {
1635         struct hns3_hw *hw = &hns->hw;
1636         struct rte_eth_dev *eth_dev;
1637
1638         eth_dev = &rte_eth_devices[hw->data->port_id];
1639         hns3_set_rxtx_function(eth_dev);
1640         hns3_mp_req_start_rxtx(eth_dev);
1641
1642         hns3vf_service_handler(eth_dev);
1643         return 0;
1644 }
1645
1646 static int
1647 hns3vf_restore_conf(struct hns3_adapter *hns)
1648 {
1649         struct hns3_hw *hw = &hns->hw;
1650         int ret;
1651
1652         ret = hns3vf_configure_mac_addr(hns, false);
1653         if (ret)
1654                 return ret;
1655
1656         ret = hns3vf_configure_all_mc_mac_addr(hns, false);
1657         if (ret)
1658                 goto err_mc_mac;
1659
1660         ret = hns3vf_restore_vlan_conf(hns);
1661         if (ret)
1662                 goto err_vlan_table;
1663
1664         if (hw->adapter_state == HNS3_NIC_STARTED) {
1665                 ret = hns3vf_do_start(hns, false);
1666                 if (ret)
1667                         goto err_vlan_table;
1668                 hns3_info(hw, "hns3vf dev restart successful!");
1669         } else if (hw->adapter_state == HNS3_NIC_STOPPING)
1670                 hw->adapter_state = HNS3_NIC_CONFIGURED;
1671         return 0;
1672
1673 err_vlan_table:
1674         hns3vf_configure_all_mc_mac_addr(hns, true);
1675 err_mc_mac:
1676         hns3vf_configure_mac_addr(hns, true);
1677         return ret;
1678 }
1679
1680 static enum hns3_reset_level
1681 hns3vf_get_reset_level(struct hns3_hw *hw, uint64_t *levels)
1682 {
1683         enum hns3_reset_level reset_level;
1684
1685         /* return the highest priority reset level amongst all */
1686         if (hns3_atomic_test_bit(HNS3_VF_RESET, levels))
1687                 reset_level = HNS3_VF_RESET;
1688         else if (hns3_atomic_test_bit(HNS3_VF_FULL_RESET, levels))
1689                 reset_level = HNS3_VF_FULL_RESET;
1690         else if (hns3_atomic_test_bit(HNS3_VF_PF_FUNC_RESET, levels))
1691                 reset_level = HNS3_VF_PF_FUNC_RESET;
1692         else if (hns3_atomic_test_bit(HNS3_VF_FUNC_RESET, levels))
1693                 reset_level = HNS3_VF_FUNC_RESET;
1694         else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
1695                 reset_level = HNS3_FLR_RESET;
1696         else
1697                 reset_level = HNS3_NONE_RESET;
1698
1699         if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
1700                 return HNS3_NONE_RESET;
1701
1702         return reset_level;
1703 }
1704
1705 static void
1706 hns3vf_reset_service(void *param)
1707 {
1708         struct hns3_adapter *hns = (struct hns3_adapter *)param;
1709         struct hns3_hw *hw = &hns->hw;
1710         enum hns3_reset_level reset_level;
1711         struct timeval tv_delta;
1712         struct timeval tv_start;
1713         struct timeval tv;
1714         uint64_t msec;
1715
1716         /*
1717          * The interrupt is not triggered within the delay time.
1718          * The interrupt may have been lost. It is necessary to handle
1719          * the interrupt to recover from the error.
1720          */
1721         if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_DEFERRED) {
1722                 rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_REQUESTED);
1723                 hns3_err(hw, "Handling interrupts in delayed tasks");
1724                 hns3vf_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
1725                 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
1726                 if (reset_level == HNS3_NONE_RESET) {
1727                         hns3_err(hw, "No reset level is set, try global reset");
1728                         hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
1729                 }
1730         }
1731         rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_NONE);
1732
1733         /*
1734          * Hardware reset has been notified, we now have to poll & check if
1735          * hardware has actually completed the reset sequence.
1736          */
1737         reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
1738         if (reset_level != HNS3_NONE_RESET) {
1739                 gettimeofday(&tv_start, NULL);
1740                 hns3_reset_process(hns, reset_level);
1741                 gettimeofday(&tv, NULL);
1742                 timersub(&tv, &tv_start, &tv_delta);
1743                 msec = tv_delta.tv_sec * MSEC_PER_SEC +
1744                        tv_delta.tv_usec / USEC_PER_MSEC;
1745                 if (msec > HNS3_RESET_PROCESS_MS)
1746                         hns3_err(hw, "%d handle long time delta %" PRIx64
1747                                  " ms time=%ld.%.6ld",
1748                                  hw->reset.level, msec, tv.tv_sec, tv.tv_usec);
1749         }
1750 }
1751
1752 static int
1753 hns3vf_reinit_dev(struct hns3_adapter *hns)
1754 {
1755         struct rte_eth_dev *eth_dev = &rte_eth_devices[hns->hw.data->port_id];
1756         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1757         struct hns3_hw *hw = &hns->hw;
1758         int ret;
1759
1760         if (hw->reset.level == HNS3_VF_FULL_RESET) {
1761                 rte_intr_disable(&pci_dev->intr_handle);
1762                 hns3vf_set_bus_master(pci_dev, true);
1763         }
1764
1765         /* Firmware command initialize */
1766         ret = hns3_cmd_init(hw);
1767         if (ret) {
1768                 hns3_err(hw, "Failed to init cmd: %d", ret);
1769                 goto err_cmd_init;
1770         }
1771
1772         if (hw->reset.level == HNS3_VF_FULL_RESET) {
1773                 /*
1774                  * UIO enables msix by writing the pcie configuration space
1775                  * vfio_pci enables msix in rte_intr_enable.
1776                  */
1777                 if (pci_dev->kdrv == RTE_KDRV_IGB_UIO ||
1778                     pci_dev->kdrv == RTE_KDRV_UIO_GENERIC) {
1779                         if (hns3vf_enable_msix(pci_dev, true))
1780                                 hns3_err(hw, "Failed to enable msix");
1781                 }
1782
1783                 rte_intr_enable(&pci_dev->intr_handle);
1784         }
1785
1786         ret = hns3_reset_all_queues(hns);
1787         if (ret) {
1788                 hns3_err(hw, "Failed to reset all queues: %d", ret);
1789                 goto err_init;
1790         }
1791
1792         ret = hns3vf_init_hardware(hns);
1793         if (ret) {
1794                 hns3_err(hw, "Failed to init hardware: %d", ret);
1795                 goto err_init;
1796         }
1797
1798         return 0;
1799
1800 err_cmd_init:
1801         hns3vf_set_bus_master(pci_dev, false);
1802 err_init:
1803         hns3_cmd_uninit(hw);
1804         return ret;
1805 }
1806
1807 static const struct eth_dev_ops hns3vf_eth_dev_ops = {
1808         .dev_start          = hns3vf_dev_start,
1809         .dev_stop           = hns3vf_dev_stop,
1810         .dev_close          = hns3vf_dev_close,
1811         .mtu_set            = hns3vf_dev_mtu_set,
1812         .stats_get          = hns3_stats_get,
1813         .stats_reset        = hns3_stats_reset,
1814         .xstats_get         = hns3_dev_xstats_get,
1815         .xstats_get_names   = hns3_dev_xstats_get_names,
1816         .xstats_reset       = hns3_dev_xstats_reset,
1817         .xstats_get_by_id   = hns3_dev_xstats_get_by_id,
1818         .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
1819         .dev_infos_get      = hns3vf_dev_infos_get,
1820         .rx_queue_setup     = hns3_rx_queue_setup,
1821         .tx_queue_setup     = hns3_tx_queue_setup,
1822         .rx_queue_release   = hns3_dev_rx_queue_release,
1823         .tx_queue_release   = hns3_dev_tx_queue_release,
1824         .rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
1825         .rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
1826         .dev_configure      = hns3vf_dev_configure,
1827         .mac_addr_add       = hns3vf_add_mac_addr,
1828         .mac_addr_remove    = hns3vf_remove_mac_addr,
1829         .mac_addr_set       = hns3vf_set_default_mac_addr,
1830         .set_mc_addr_list   = hns3vf_set_mc_mac_addr_list,
1831         .link_update        = hns3vf_dev_link_update,
1832         .rss_hash_update    = hns3_dev_rss_hash_update,
1833         .rss_hash_conf_get  = hns3_dev_rss_hash_conf_get,
1834         .reta_update        = hns3_dev_rss_reta_update,
1835         .reta_query         = hns3_dev_rss_reta_query,
1836         .filter_ctrl        = hns3_dev_filter_ctrl,
1837         .vlan_filter_set    = hns3vf_vlan_filter_set,
1838         .vlan_offload_set   = hns3vf_vlan_offload_set,
1839         .get_reg            = hns3_get_regs,
1840         .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
1841 };
1842
1843 static const struct hns3_reset_ops hns3vf_reset_ops = {
1844         .reset_service       = hns3vf_reset_service,
1845         .stop_service        = hns3vf_stop_service,
1846         .prepare_reset       = hns3vf_prepare_reset,
1847         .wait_hardware_ready = hns3vf_wait_hardware_ready,
1848         .reinit_dev          = hns3vf_reinit_dev,
1849         .restore_conf        = hns3vf_restore_conf,
1850         .start_service       = hns3vf_start_service,
1851 };
1852
1853 static int
1854 hns3vf_dev_init(struct rte_eth_dev *eth_dev)
1855 {
1856         struct hns3_adapter *hns = eth_dev->data->dev_private;
1857         struct hns3_hw *hw = &hns->hw;
1858         int ret;
1859
1860         PMD_INIT_FUNC_TRACE();
1861
1862         eth_dev->process_private = (struct hns3_process_private *)
1863             rte_zmalloc_socket("hns3_filter_list",
1864                                sizeof(struct hns3_process_private),
1865                                RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
1866         if (eth_dev->process_private == NULL) {
1867                 PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
1868                 return -ENOMEM;
1869         }
1870
1871         /* initialize flow filter lists */
1872         hns3_filterlist_init(eth_dev);
1873
1874         hns3_set_rxtx_function(eth_dev);
1875         eth_dev->dev_ops = &hns3vf_eth_dev_ops;
1876         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1877                 hns3_mp_init_secondary();
1878                 hw->secondary_cnt++;
1879                 return 0;
1880         }
1881
1882         hns3_mp_init_primary();
1883
1884         hw->adapter_state = HNS3_NIC_UNINITIALIZED;
1885         hns->is_vf = true;
1886         hw->data = eth_dev->data;
1887
1888         ret = hns3_reset_init(hw);
1889         if (ret)
1890                 goto err_init_reset;
1891         hw->reset.ops = &hns3vf_reset_ops;
1892
1893         ret = hns3vf_init_vf(eth_dev);
1894         if (ret) {
1895                 PMD_INIT_LOG(ERR, "Failed to init vf: %d", ret);
1896                 goto err_init_vf;
1897         }
1898
1899         /* Allocate memory for storing MAC addresses */
1900         eth_dev->data->mac_addrs = rte_zmalloc("hns3vf-mac",
1901                                                sizeof(struct rte_ether_addr) *
1902                                                HNS3_VF_UC_MACADDR_NUM, 0);
1903         if (eth_dev->data->mac_addrs == NULL) {
1904                 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
1905                              "to store MAC addresses",
1906                              sizeof(struct rte_ether_addr) *
1907                              HNS3_VF_UC_MACADDR_NUM);
1908                 ret = -ENOMEM;
1909                 goto err_rte_zmalloc;
1910         }
1911
1912         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
1913                             &eth_dev->data->mac_addrs[0]);
1914         hw->adapter_state = HNS3_NIC_INITIALIZED;
1915         /*
1916          * Pass the information to the rte_eth_dev_close() that it should also
1917          * release the private port resources.
1918          */
1919         eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
1920
1921         if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_PENDING) {
1922                 hns3_err(hw, "Reschedule reset service after dev_init");
1923                 hns3_schedule_reset(hns);
1924         } else {
1925                 /* IMP will wait ready flag before reset */
1926                 hns3_notify_reset_ready(hw, false);
1927         }
1928         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
1929                           eth_dev);
1930         return 0;
1931
1932 err_rte_zmalloc:
1933         hns3vf_uninit_vf(eth_dev);
1934
1935 err_init_vf:
1936         rte_free(hw->reset.wait_data);
1937
1938 err_init_reset:
1939         eth_dev->dev_ops = NULL;
1940         eth_dev->rx_pkt_burst = NULL;
1941         eth_dev->tx_pkt_burst = NULL;
1942         eth_dev->tx_pkt_prepare = NULL;
1943         rte_free(eth_dev->process_private);
1944         eth_dev->process_private = NULL;
1945
1946         return ret;
1947 }
1948
1949 static int
1950 hns3vf_dev_uninit(struct rte_eth_dev *eth_dev)
1951 {
1952         struct hns3_adapter *hns = eth_dev->data->dev_private;
1953         struct hns3_hw *hw = &hns->hw;
1954
1955         PMD_INIT_FUNC_TRACE();
1956
1957         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1958                 return -EPERM;
1959
1960         eth_dev->dev_ops = NULL;
1961         eth_dev->rx_pkt_burst = NULL;
1962         eth_dev->tx_pkt_burst = NULL;
1963         eth_dev->tx_pkt_prepare = NULL;
1964
1965         if (hw->adapter_state < HNS3_NIC_CLOSING)
1966                 hns3vf_dev_close(eth_dev);
1967
1968         hw->adapter_state = HNS3_NIC_REMOVED;
1969         return 0;
1970 }
1971
1972 static int
1973 eth_hns3vf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1974                      struct rte_pci_device *pci_dev)
1975 {
1976         return rte_eth_dev_pci_generic_probe(pci_dev,
1977                                              sizeof(struct hns3_adapter),
1978                                              hns3vf_dev_init);
1979 }
1980
1981 static int
1982 eth_hns3vf_pci_remove(struct rte_pci_device *pci_dev)
1983 {
1984         return rte_eth_dev_pci_generic_remove(pci_dev, hns3vf_dev_uninit);
1985 }
1986
1987 static const struct rte_pci_id pci_id_hns3vf_map[] = {
1988         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_VF) },
1989         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_PFC_VF) },
1990         { .vendor_id = 0, /* sentinel */ },
1991 };
1992
1993 static struct rte_pci_driver rte_hns3vf_pmd = {
1994         .id_table = pci_id_hns3vf_map,
1995         .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
1996         .probe = eth_hns3vf_pci_probe,
1997         .remove = eth_hns3vf_pci_remove,
1998 };
1999
2000 RTE_PMD_REGISTER_PCI(net_hns3_vf, rte_hns3vf_pmd);
2001 RTE_PMD_REGISTER_PCI_TABLE(net_hns3_vf, pci_id_hns3vf_map);
2002 RTE_PMD_REGISTER_KMOD_DEP(net_hns3_vf, "* igb_uio | vfio-pci");