net/hns3: fix Rx/Tx queue numbers check
[dpdk.git] / drivers / net / hns3 / hns3_ethdev_vf.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2021 HiSilicon Limited.
3  */
4
5 #include <linux/pci_regs.h>
6 #include <rte_alarm.h>
7 #include <ethdev_pci.h>
8 #include <rte_io.h>
9 #include <rte_pci.h>
10 #include <rte_vfio.h>
11
12 #include "hns3_ethdev.h"
13 #include "hns3_logs.h"
14 #include "hns3_rxtx.h"
15 #include "hns3_regs.h"
16 #include "hns3_intr.h"
17 #include "hns3_dcb.h"
18 #include "hns3_mp.h"
19
20 #define HNS3VF_KEEP_ALIVE_INTERVAL      2000000 /* us */
21 #define HNS3VF_SERVICE_INTERVAL         1000000 /* us */
22
23 #define HNS3VF_RESET_WAIT_MS    20
24 #define HNS3VF_RESET_WAIT_CNT   2000
25
26 /* Reset related Registers */
27 #define HNS3_GLOBAL_RESET_BIT           0
28 #define HNS3_CORE_RESET_BIT             1
29 #define HNS3_IMP_RESET_BIT              2
30 #define HNS3_FUN_RST_ING_B              0
31
32 enum hns3vf_evt_cause {
33         HNS3VF_VECTOR0_EVENT_RST,
34         HNS3VF_VECTOR0_EVENT_MBX,
35         HNS3VF_VECTOR0_EVENT_OTHER,
36 };
37
38 static enum hns3_reset_level hns3vf_get_reset_level(struct hns3_hw *hw,
39                                                     uint64_t *levels);
40 static int hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
41 static int hns3vf_dev_configure_vlan(struct rte_eth_dev *dev);
42
43 static int hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
44                                   struct rte_ether_addr *mac_addr);
45 static int hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
46                                      struct rte_ether_addr *mac_addr);
47 static int hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
48                                    __rte_unused int wait_to_complete);
49
50 /* set PCI bus mastering */
51 static int
52 hns3vf_set_bus_master(const struct rte_pci_device *device, bool op)
53 {
54         uint16_t reg;
55         int ret;
56
57         ret = rte_pci_read_config(device, &reg, sizeof(reg), PCI_COMMAND);
58         if (ret < 0) {
59                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
60                              PCI_COMMAND);
61                 return ret;
62         }
63
64         if (op)
65                 /* set the master bit */
66                 reg |= PCI_COMMAND_MASTER;
67         else
68                 reg &= ~(PCI_COMMAND_MASTER);
69
70         return rte_pci_write_config(device, &reg, sizeof(reg), PCI_COMMAND);
71 }
72
73 /**
74  * hns3vf_find_pci_capability - lookup a capability in the PCI capability list
75  * @cap: the capability
76  *
77  * Return the address of the given capability within the PCI capability list.
78  */
79 static int
80 hns3vf_find_pci_capability(const struct rte_pci_device *device, int cap)
81 {
82 #define MAX_PCIE_CAPABILITY 48
83         uint16_t status;
84         uint8_t pos;
85         uint8_t id;
86         int ttl;
87         int ret;
88
89         ret = rte_pci_read_config(device, &status, sizeof(status), PCI_STATUS);
90         if (ret < 0) {
91                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x", PCI_STATUS);
92                 return 0;
93         }
94
95         if (!(status & PCI_STATUS_CAP_LIST))
96                 return 0;
97
98         ttl = MAX_PCIE_CAPABILITY;
99         ret = rte_pci_read_config(device, &pos, sizeof(pos),
100                                   PCI_CAPABILITY_LIST);
101         if (ret < 0) {
102                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
103                              PCI_CAPABILITY_LIST);
104                 return 0;
105         }
106
107         while (ttl-- && pos >= PCI_STD_HEADER_SIZEOF) {
108                 ret = rte_pci_read_config(device, &id, sizeof(id),
109                                           (pos + PCI_CAP_LIST_ID));
110                 if (ret < 0) {
111                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
112                                      (pos + PCI_CAP_LIST_ID));
113                         break;
114                 }
115
116                 if (id == 0xFF)
117                         break;
118
119                 if (id == cap)
120                         return (int)pos;
121
122                 ret = rte_pci_read_config(device, &pos, sizeof(pos),
123                                           (pos + PCI_CAP_LIST_NEXT));
124                 if (ret < 0) {
125                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
126                                      (pos + PCI_CAP_LIST_NEXT));
127                         break;
128                 }
129         }
130         return 0;
131 }
132
133 static int
134 hns3vf_enable_msix(const struct rte_pci_device *device, bool op)
135 {
136         uint16_t control;
137         int pos;
138         int ret;
139
140         pos = hns3vf_find_pci_capability(device, PCI_CAP_ID_MSIX);
141         if (pos) {
142                 ret = rte_pci_read_config(device, &control, sizeof(control),
143                                     (pos + PCI_MSIX_FLAGS));
144                 if (ret < 0) {
145                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
146                                      (pos + PCI_MSIX_FLAGS));
147                         return -ENXIO;
148                 }
149
150                 if (op)
151                         control |= PCI_MSIX_FLAGS_ENABLE;
152                 else
153                         control &= ~PCI_MSIX_FLAGS_ENABLE;
154                 ret = rte_pci_write_config(device, &control, sizeof(control),
155                                           (pos + PCI_MSIX_FLAGS));
156                 if (ret < 0) {
157                         PMD_INIT_LOG(ERR, "failed to write PCI offset 0x%x",
158                                     (pos + PCI_MSIX_FLAGS));
159                         return -ENXIO;
160                 }
161
162                 return 0;
163         }
164
165         return -ENXIO;
166 }
167
168 static int
169 hns3vf_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
170 {
171         /* mac address was checked by upper level interface */
172         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
173         int ret;
174
175         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
176                                 HNS3_MBX_MAC_VLAN_UC_ADD, mac_addr->addr_bytes,
177                                 RTE_ETHER_ADDR_LEN, false, NULL, 0);
178         if (ret) {
179                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
180                                       mac_addr);
181                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
182                          mac_str, ret);
183         }
184         return ret;
185 }
186
187 static int
188 hns3vf_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
189 {
190         /* mac address was checked by upper level interface */
191         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
192         int ret;
193
194         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
195                                 HNS3_MBX_MAC_VLAN_UC_REMOVE,
196                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN,
197                                 false, NULL, 0);
198         if (ret) {
199                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
200                                       mac_addr);
201                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
202                          mac_str, ret);
203         }
204         return ret;
205 }
206
207 static int
208 hns3vf_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
209 {
210         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
211         struct rte_ether_addr *addr;
212         int ret;
213         int i;
214
215         for (i = 0; i < hw->mc_addrs_num; i++) {
216                 addr = &hw->mc_addrs[i];
217                 /* Check if there are duplicate addresses */
218                 if (rte_is_same_ether_addr(addr, mac_addr)) {
219                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
220                                               addr);
221                         hns3_err(hw, "failed to add mc mac addr, same addrs"
222                                  "(%s) is added by the set_mc_mac_addr_list "
223                                  "API", mac_str);
224                         return -EINVAL;
225                 }
226         }
227
228         ret = hns3vf_add_mc_mac_addr(hw, mac_addr);
229         if (ret) {
230                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
231                                       mac_addr);
232                 hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
233                          mac_str, ret);
234         }
235         return ret;
236 }
237
238 static int
239 hns3vf_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
240                     __rte_unused uint32_t idx,
241                     __rte_unused uint32_t pool)
242 {
243         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
244         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
245         int ret;
246
247         rte_spinlock_lock(&hw->lock);
248
249         /*
250          * In hns3 network engine adding UC and MC mac address with different
251          * commands with firmware. We need to determine whether the input
252          * address is a UC or a MC address to call different commands.
253          * By the way, it is recommended calling the API function named
254          * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
255          * using the rte_eth_dev_mac_addr_add API function to set MC mac address
256          * may affect the specifications of UC mac addresses.
257          */
258         if (rte_is_multicast_ether_addr(mac_addr))
259                 ret = hns3vf_add_mc_addr_common(hw, mac_addr);
260         else
261                 ret = hns3vf_add_uc_mac_addr(hw, mac_addr);
262
263         rte_spinlock_unlock(&hw->lock);
264         if (ret) {
265                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
266                                       mac_addr);
267                 hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
268                          ret);
269         }
270
271         return ret;
272 }
273
274 static void
275 hns3vf_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
276 {
277         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
278         /* index will be checked by upper level rte interface */
279         struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
280         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
281         int ret;
282
283         rte_spinlock_lock(&hw->lock);
284
285         if (rte_is_multicast_ether_addr(mac_addr))
286                 ret = hns3vf_remove_mc_mac_addr(hw, mac_addr);
287         else
288                 ret = hns3vf_remove_uc_mac_addr(hw, mac_addr);
289
290         rte_spinlock_unlock(&hw->lock);
291         if (ret) {
292                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
293                                       mac_addr);
294                 hns3_err(hw, "failed to remove mac addr(%s), ret = %d",
295                          mac_str, ret);
296         }
297 }
298
299 static int
300 hns3vf_set_default_mac_addr(struct rte_eth_dev *dev,
301                             struct rte_ether_addr *mac_addr)
302 {
303 #define HNS3_TWO_ETHER_ADDR_LEN (RTE_ETHER_ADDR_LEN * 2)
304         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
305         struct rte_ether_addr *old_addr;
306         uint8_t addr_bytes[HNS3_TWO_ETHER_ADDR_LEN]; /* for 2 MAC addresses */
307         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
308         int ret;
309
310         /*
311          * It has been guaranteed that input parameter named mac_addr is valid
312          * address in the rte layer of DPDK framework.
313          */
314         old_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
315         rte_spinlock_lock(&hw->lock);
316         memcpy(addr_bytes, mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN);
317         memcpy(&addr_bytes[RTE_ETHER_ADDR_LEN], old_addr->addr_bytes,
318                RTE_ETHER_ADDR_LEN);
319
320         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
321                                 HNS3_MBX_MAC_VLAN_UC_MODIFY, addr_bytes,
322                                 HNS3_TWO_ETHER_ADDR_LEN, true, NULL, 0);
323         if (ret) {
324                 /*
325                  * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev
326                  * driver. When user has configured a MAC address for VF device
327                  * by "ip link set ..." command based on the PF device, the hns3
328                  * PF kernel ethdev driver does not allow VF driver to request
329                  * reconfiguring a different default MAC address, and return
330                  * -EPREM to VF driver through mailbox.
331                  */
332                 if (ret == -EPERM) {
333                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
334                                               old_addr);
335                         hns3_warn(hw, "Has permanet mac addr(%s) for vf",
336                                   mac_str);
337                 } else {
338                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
339                                               mac_addr);
340                         hns3_err(hw, "Failed to set mac addr(%s) for vf: %d",
341                                  mac_str, ret);
342                 }
343         }
344
345         rte_ether_addr_copy(mac_addr,
346                             (struct rte_ether_addr *)hw->mac.mac_addr);
347         rte_spinlock_unlock(&hw->lock);
348
349         return ret;
350 }
351
352 static int
353 hns3vf_configure_mac_addr(struct hns3_adapter *hns, bool del)
354 {
355         struct hns3_hw *hw = &hns->hw;
356         struct rte_ether_addr *addr;
357         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
358         int err = 0;
359         int ret;
360         int i;
361
362         for (i = 0; i < HNS3_VF_UC_MACADDR_NUM; i++) {
363                 addr = &hw->data->mac_addrs[i];
364                 if (rte_is_zero_ether_addr(addr))
365                         continue;
366                 if (rte_is_multicast_ether_addr(addr))
367                         ret = del ? hns3vf_remove_mc_mac_addr(hw, addr) :
368                               hns3vf_add_mc_mac_addr(hw, addr);
369                 else
370                         ret = del ? hns3vf_remove_uc_mac_addr(hw, addr) :
371                               hns3vf_add_uc_mac_addr(hw, addr);
372
373                 if (ret) {
374                         err = ret;
375                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
376                                               addr);
377                         hns3_err(hw, "failed to %s mac addr(%s) index:%d "
378                                  "ret = %d.", del ? "remove" : "restore",
379                                  mac_str, i, ret);
380                 }
381         }
382         return err;
383 }
384
385 static int
386 hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
387                        struct rte_ether_addr *mac_addr)
388 {
389         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
390         int ret;
391
392         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
393                                 HNS3_MBX_MAC_VLAN_MC_ADD,
394                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
395                                 NULL, 0);
396         if (ret) {
397                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
398                                       mac_addr);
399                 hns3_err(hw, "Failed to add mc mac addr(%s) for vf: %d",
400                          mac_str, ret);
401         }
402
403         return ret;
404 }
405
406 static int
407 hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
408                           struct rte_ether_addr *mac_addr)
409 {
410         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
411         int ret;
412
413         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
414                                 HNS3_MBX_MAC_VLAN_MC_REMOVE,
415                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
416                                 NULL, 0);
417         if (ret) {
418                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
419                                       mac_addr);
420                 hns3_err(hw, "Failed to remove mc mac addr(%s) for vf: %d",
421                          mac_str, ret);
422         }
423
424         return ret;
425 }
426
427 static int
428 hns3vf_set_mc_addr_chk_param(struct hns3_hw *hw,
429                              struct rte_ether_addr *mc_addr_set,
430                              uint32_t nb_mc_addr)
431 {
432         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
433         struct rte_ether_addr *addr;
434         uint32_t i;
435         uint32_t j;
436
437         if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
438                 hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%u) "
439                          "invalid. valid range: 0~%d",
440                          nb_mc_addr, HNS3_MC_MACADDR_NUM);
441                 return -EINVAL;
442         }
443
444         /* Check if input mac addresses are valid */
445         for (i = 0; i < nb_mc_addr; i++) {
446                 addr = &mc_addr_set[i];
447                 if (!rte_is_multicast_ether_addr(addr)) {
448                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
449                                               addr);
450                         hns3_err(hw,
451                                  "failed to set mc mac addr, addr(%s) invalid.",
452                                  mac_str);
453                         return -EINVAL;
454                 }
455
456                 /* Check if there are duplicate addresses */
457                 for (j = i + 1; j < nb_mc_addr; j++) {
458                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
459                                 hns3_ether_format_addr(mac_str,
460                                                       RTE_ETHER_ADDR_FMT_SIZE,
461                                                       addr);
462                                 hns3_err(hw, "failed to set mc mac addr, "
463                                          "addrs invalid. two same addrs(%s).",
464                                          mac_str);
465                                 return -EINVAL;
466                         }
467                 }
468
469                 /*
470                  * Check if there are duplicate addresses between mac_addrs
471                  * and mc_addr_set
472                  */
473                 for (j = 0; j < HNS3_VF_UC_MACADDR_NUM; j++) {
474                         if (rte_is_same_ether_addr(addr,
475                                                    &hw->data->mac_addrs[j])) {
476                                 hns3_ether_format_addr(mac_str,
477                                                       RTE_ETHER_ADDR_FMT_SIZE,
478                                                       addr);
479                                 hns3_err(hw, "failed to set mc mac addr, "
480                                          "addrs invalid. addrs(%s) has already "
481                                          "configured in mac_addr add API",
482                                          mac_str);
483                                 return -EINVAL;
484                         }
485                 }
486         }
487
488         return 0;
489 }
490
491 static int
492 hns3vf_set_mc_mac_addr_list(struct rte_eth_dev *dev,
493                             struct rte_ether_addr *mc_addr_set,
494                             uint32_t nb_mc_addr)
495 {
496         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
497         struct rte_ether_addr *addr;
498         int cur_addr_num;
499         int set_addr_num;
500         int num;
501         int ret;
502         int i;
503
504         ret = hns3vf_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
505         if (ret)
506                 return ret;
507
508         rte_spinlock_lock(&hw->lock);
509         cur_addr_num = hw->mc_addrs_num;
510         for (i = 0; i < cur_addr_num; i++) {
511                 num = cur_addr_num - i - 1;
512                 addr = &hw->mc_addrs[num];
513                 ret = hns3vf_remove_mc_mac_addr(hw, addr);
514                 if (ret) {
515                         rte_spinlock_unlock(&hw->lock);
516                         return ret;
517                 }
518
519                 hw->mc_addrs_num--;
520         }
521
522         set_addr_num = (int)nb_mc_addr;
523         for (i = 0; i < set_addr_num; i++) {
524                 addr = &mc_addr_set[i];
525                 ret = hns3vf_add_mc_mac_addr(hw, addr);
526                 if (ret) {
527                         rte_spinlock_unlock(&hw->lock);
528                         return ret;
529                 }
530
531                 rte_ether_addr_copy(addr, &hw->mc_addrs[hw->mc_addrs_num]);
532                 hw->mc_addrs_num++;
533         }
534         rte_spinlock_unlock(&hw->lock);
535
536         return 0;
537 }
538
539 static int
540 hns3vf_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
541 {
542         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
543         struct hns3_hw *hw = &hns->hw;
544         struct rte_ether_addr *addr;
545         int err = 0;
546         int ret;
547         int i;
548
549         for (i = 0; i < hw->mc_addrs_num; i++) {
550                 addr = &hw->mc_addrs[i];
551                 if (!rte_is_multicast_ether_addr(addr))
552                         continue;
553                 if (del)
554                         ret = hns3vf_remove_mc_mac_addr(hw, addr);
555                 else
556                         ret = hns3vf_add_mc_mac_addr(hw, addr);
557                 if (ret) {
558                         err = ret;
559                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
560                                               addr);
561                         hns3_err(hw, "Failed to %s mc mac addr: %s for vf: %d",
562                                  del ? "Remove" : "Restore", mac_str, ret);
563                 }
564         }
565         return err;
566 }
567
568 static int
569 hns3vf_set_promisc_mode(struct hns3_hw *hw, bool en_bc_pmc,
570                         bool en_uc_pmc, bool en_mc_pmc)
571 {
572         struct hns3_mbx_vf_to_pf_cmd *req;
573         struct hns3_cmd_desc desc;
574         int ret;
575
576         req = (struct hns3_mbx_vf_to_pf_cmd *)desc.data;
577
578         /*
579          * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev driver,
580          * so there are some features for promiscuous/allmulticast mode in hns3
581          * VF PMD driver as below:
582          * 1. The promiscuous/allmulticast mode can be configured successfully
583          *    only based on the trusted VF device. If based on the non trusted
584          *    VF device, configuring promiscuous/allmulticast mode will fail.
585          *    The hns3 VF device can be confiruged as trusted device by hns3 PF
586          *    kernel ethdev driver on the host by the following command:
587          *      "ip link set <eth num> vf <vf id> turst on"
588          * 2. After the promiscuous mode is configured successfully, hns3 VF PMD
589          *    driver can receive the ingress and outgoing traffic. In the words,
590          *    all the ingress packets, all the packets sent from the PF and
591          *    other VFs on the same physical port.
592          * 3. Note: Because of the hardware constraints, By default vlan filter
593          *    is enabled and couldn't be turned off based on VF device, so vlan
594          *    filter is still effective even in promiscuous mode. If upper
595          *    applications don't call rte_eth_dev_vlan_filter API function to
596          *    set vlan based on VF device, hns3 VF PMD driver will can't receive
597          *    the packets with vlan tag in promiscuoue mode.
598          */
599         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MBX_VF_TO_PF, false);
600         req->msg[0] = HNS3_MBX_SET_PROMISC_MODE;
601         req->msg[1] = en_bc_pmc ? 1 : 0;
602         req->msg[2] = en_uc_pmc ? 1 : 0;
603         req->msg[3] = en_mc_pmc ? 1 : 0;
604         req->msg[4] = hw->promisc_mode == HNS3_LIMIT_PROMISC_MODE ? 1 : 0;
605
606         ret = hns3_cmd_send(hw, &desc, 1);
607         if (ret)
608                 hns3_err(hw, "Set promisc mode fail, ret = %d", ret);
609
610         return ret;
611 }
612
613 static int
614 hns3vf_dev_promiscuous_enable(struct rte_eth_dev *dev)
615 {
616         struct hns3_adapter *hns = dev->data->dev_private;
617         struct hns3_hw *hw = &hns->hw;
618         int ret;
619
620         ret = hns3vf_set_promisc_mode(hw, true, true, true);
621         if (ret)
622                 hns3_err(hw, "Failed to enable promiscuous mode, ret = %d",
623                         ret);
624         return ret;
625 }
626
627 static int
628 hns3vf_dev_promiscuous_disable(struct rte_eth_dev *dev)
629 {
630         bool allmulti = dev->data->all_multicast ? true : false;
631         struct hns3_adapter *hns = dev->data->dev_private;
632         struct hns3_hw *hw = &hns->hw;
633         int ret;
634
635         ret = hns3vf_set_promisc_mode(hw, true, false, allmulti);
636         if (ret)
637                 hns3_err(hw, "Failed to disable promiscuous mode, ret = %d",
638                         ret);
639         return ret;
640 }
641
642 static int
643 hns3vf_dev_allmulticast_enable(struct rte_eth_dev *dev)
644 {
645         struct hns3_adapter *hns = dev->data->dev_private;
646         struct hns3_hw *hw = &hns->hw;
647         int ret;
648
649         if (dev->data->promiscuous)
650                 return 0;
651
652         ret = hns3vf_set_promisc_mode(hw, true, false, true);
653         if (ret)
654                 hns3_err(hw, "Failed to enable allmulticast mode, ret = %d",
655                         ret);
656         return ret;
657 }
658
659 static int
660 hns3vf_dev_allmulticast_disable(struct rte_eth_dev *dev)
661 {
662         struct hns3_adapter *hns = dev->data->dev_private;
663         struct hns3_hw *hw = &hns->hw;
664         int ret;
665
666         if (dev->data->promiscuous)
667                 return 0;
668
669         ret = hns3vf_set_promisc_mode(hw, true, false, false);
670         if (ret)
671                 hns3_err(hw, "Failed to disable allmulticast mode, ret = %d",
672                         ret);
673         return ret;
674 }
675
676 static int
677 hns3vf_restore_promisc(struct hns3_adapter *hns)
678 {
679         struct hns3_hw *hw = &hns->hw;
680         bool allmulti = hw->data->all_multicast ? true : false;
681
682         if (hw->data->promiscuous)
683                 return hns3vf_set_promisc_mode(hw, true, true, true);
684
685         return hns3vf_set_promisc_mode(hw, true, false, allmulti);
686 }
687
688 static int
689 hns3vf_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id,
690                              bool mmap, enum hns3_ring_type queue_type,
691                              uint16_t queue_id)
692 {
693         struct hns3_vf_bind_vector_msg bind_msg;
694         const char *op_str;
695         uint16_t code;
696         int ret;
697
698         memset(&bind_msg, 0, sizeof(bind_msg));
699         code = mmap ? HNS3_MBX_MAP_RING_TO_VECTOR :
700                 HNS3_MBX_UNMAP_RING_TO_VECTOR;
701         bind_msg.vector_id = vector_id;
702
703         if (queue_type == HNS3_RING_TYPE_RX)
704                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_RX;
705         else
706                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_TX;
707
708         bind_msg.param[0].ring_type = queue_type;
709         bind_msg.ring_num = 1;
710         bind_msg.param[0].tqp_index = queue_id;
711         op_str = mmap ? "Map" : "Unmap";
712         ret = hns3_send_mbx_msg(hw, code, 0, (uint8_t *)&bind_msg,
713                                 sizeof(bind_msg), false, NULL, 0);
714         if (ret)
715                 hns3_err(hw, "%s TQP %u fail, vector_id is %u, ret is %d.",
716                          op_str, queue_id, bind_msg.vector_id, ret);
717
718         return ret;
719 }
720
721 static int
722 hns3vf_init_ring_with_vector(struct hns3_hw *hw)
723 {
724         uint16_t vec;
725         int ret;
726         int i;
727
728         /*
729          * In hns3 network engine, vector 0 is always the misc interrupt of this
730          * function, vector 1~N can be used respectively for the queues of the
731          * function. Tx and Rx queues with the same number share the interrupt
732          * vector. In the initialization clearing the all hardware mapping
733          * relationship configurations between queues and interrupt vectors is
734          * needed, so some error caused by the residual configurations, such as
735          * the unexpected Tx interrupt, can be avoid.
736          */
737         vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
738         if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
739                 vec = vec - 1; /* the last interrupt is reserved */
740         hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
741         for (i = 0; i < hw->intr_tqps_num; i++) {
742                 /*
743                  * Set gap limiter/rate limiter/quanity limiter algorithm
744                  * configuration for interrupt coalesce of queue's interrupt.
745                  */
746                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
747                                        HNS3_TQP_INTR_GL_DEFAULT);
748                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
749                                        HNS3_TQP_INTR_GL_DEFAULT);
750                 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
751                 /*
752                  * QL(quantity limiter) is not used currently, just set 0 to
753                  * close it.
754                  */
755                 hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
756
757                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
758                                                    HNS3_RING_TYPE_TX, i);
759                 if (ret) {
760                         PMD_INIT_LOG(ERR, "VF fail to unbind TX ring(%d) with "
761                                           "vector: %u, ret=%d", i, vec, ret);
762                         return ret;
763                 }
764
765                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
766                                                    HNS3_RING_TYPE_RX, i);
767                 if (ret) {
768                         PMD_INIT_LOG(ERR, "VF fail to unbind RX ring(%d) with "
769                                           "vector: %u, ret=%d", i, vec, ret);
770                         return ret;
771                 }
772         }
773
774         return 0;
775 }
776
777 static int
778 hns3vf_dev_configure(struct rte_eth_dev *dev)
779 {
780         struct hns3_adapter *hns = dev->data->dev_private;
781         struct hns3_hw *hw = &hns->hw;
782         struct rte_eth_conf *conf = &dev->data->dev_conf;
783         enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
784         uint16_t nb_rx_q = dev->data->nb_rx_queues;
785         uint16_t nb_tx_q = dev->data->nb_tx_queues;
786         struct rte_eth_rss_conf rss_conf;
787         uint32_t max_rx_pkt_len;
788         uint16_t mtu;
789         bool gro_en;
790         int ret;
791
792         hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
793
794         /*
795          * Some versions of hardware network engine does not support
796          * individually enable/disable/reset the Tx or Rx queue. These devices
797          * must enable/disable/reset Tx and Rx queues at the same time. When the
798          * numbers of Tx queues allocated by upper applications are not equal to
799          * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
800          * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
801          * work as usual. But these fake queues are imperceptible, and can not
802          * be used by upper applications.
803          */
804         if (!hns3_dev_indep_txrx_supported(hw)) {
805                 ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
806                 if (ret) {
807                         hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.",
808                                  ret);
809                         return ret;
810                 }
811         }
812
813         hw->adapter_state = HNS3_NIC_CONFIGURING;
814         if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
815                 hns3_err(hw, "setting link speed/duplex not supported");
816                 ret = -EINVAL;
817                 goto cfg_err;
818         }
819
820         /* When RSS is not configured, redirect the packet queue 0 */
821         if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
822                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
823                 hw->rss_dis_flag = false;
824                 rss_conf = conf->rx_adv_conf.rss_conf;
825                 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
826                 if (ret)
827                         goto cfg_err;
828         }
829
830         /*
831          * If jumbo frames are enabled, MTU needs to be refreshed
832          * according to the maximum RX packet length.
833          */
834         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
835                 max_rx_pkt_len = conf->rxmode.max_rx_pkt_len;
836                 if (max_rx_pkt_len > HNS3_MAX_FRAME_LEN ||
837                     max_rx_pkt_len <= HNS3_DEFAULT_FRAME_LEN) {
838                         hns3_err(hw, "maximum Rx packet length must be greater "
839                                  "than %u and less than %u when jumbo frame enabled.",
840                                  (uint16_t)HNS3_DEFAULT_FRAME_LEN,
841                                  (uint16_t)HNS3_MAX_FRAME_LEN);
842                         ret = -EINVAL;
843                         goto cfg_err;
844                 }
845
846                 mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(max_rx_pkt_len);
847                 ret = hns3vf_dev_mtu_set(dev, mtu);
848                 if (ret)
849                         goto cfg_err;
850                 dev->data->mtu = mtu;
851         }
852
853         ret = hns3vf_dev_configure_vlan(dev);
854         if (ret)
855                 goto cfg_err;
856
857         /* config hardware GRO */
858         gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
859         ret = hns3_config_gro(hw, gro_en);
860         if (ret)
861                 goto cfg_err;
862
863         hns3_init_rx_ptype_tble(dev);
864
865         hw->adapter_state = HNS3_NIC_CONFIGURED;
866         return 0;
867
868 cfg_err:
869         (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
870         hw->adapter_state = HNS3_NIC_INITIALIZED;
871
872         return ret;
873 }
874
875 static int
876 hns3vf_config_mtu(struct hns3_hw *hw, uint16_t mtu)
877 {
878         int ret;
879
880         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MTU, 0, (const uint8_t *)&mtu,
881                                 sizeof(mtu), true, NULL, 0);
882         if (ret)
883                 hns3_err(hw, "Failed to set mtu (%u) for vf: %d", mtu, ret);
884
885         return ret;
886 }
887
888 static int
889 hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
890 {
891         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
892         uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
893         int ret;
894
895         /*
896          * The hns3 PF/VF devices on the same port share the hardware MTU
897          * configuration. Currently, we send mailbox to inform hns3 PF kernel
898          * ethdev driver to finish hardware MTU configuration in hns3 VF PMD
899          * driver, there is no need to stop the port for hns3 VF device, and the
900          * MTU value issued by hns3 VF PMD driver must be less than or equal to
901          * PF's MTU.
902          */
903         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
904                 hns3_err(hw, "Failed to set mtu during resetting");
905                 return -EIO;
906         }
907
908         /*
909          * when Rx of scattered packets is off, we have some possibility of
910          * using vector Rx process function or simple Rx functions in hns3 PMD
911          * driver. If the input MTU is increased and the maximum length of
912          * received packets is greater than the length of a buffer for Rx
913          * packet, the hardware network engine needs to use multiple BDs and
914          * buffers to store these packets. This will cause problems when still
915          * using vector Rx process function or simple Rx function to receiving
916          * packets. So, when Rx of scattered packets is off and device is
917          * started, it is not permitted to increase MTU so that the maximum
918          * length of Rx packets is greater than Rx buffer length.
919          */
920         if (dev->data->dev_started && !dev->data->scattered_rx &&
921             frame_size > hw->rx_buf_len) {
922                 hns3_err(hw, "failed to set mtu because current is "
923                         "not scattered rx mode");
924                 return -EOPNOTSUPP;
925         }
926
927         rte_spinlock_lock(&hw->lock);
928         ret = hns3vf_config_mtu(hw, mtu);
929         if (ret) {
930                 rte_spinlock_unlock(&hw->lock);
931                 return ret;
932         }
933         if (mtu > RTE_ETHER_MTU)
934                 dev->data->dev_conf.rxmode.offloads |=
935                                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
936         else
937                 dev->data->dev_conf.rxmode.offloads &=
938                                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
939         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
940         rte_spinlock_unlock(&hw->lock);
941
942         return 0;
943 }
944
945 static int
946 hns3vf_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
947 {
948         struct hns3_adapter *hns = eth_dev->data->dev_private;
949         struct hns3_hw *hw = &hns->hw;
950         uint16_t q_num = hw->tqps_num;
951
952         /*
953          * In interrupt mode, 'max_rx_queues' is set based on the number of
954          * MSI-X interrupt resources of the hardware.
955          */
956         if (hw->data->dev_conf.intr_conf.rxq == 1)
957                 q_num = hw->intr_tqps_num;
958
959         info->max_rx_queues = q_num;
960         info->max_tx_queues = hw->tqps_num;
961         info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
962         info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
963         info->max_mac_addrs = HNS3_VF_UC_MACADDR_NUM;
964         info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
965         info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
966
967         info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
968                                  DEV_RX_OFFLOAD_UDP_CKSUM |
969                                  DEV_RX_OFFLOAD_TCP_CKSUM |
970                                  DEV_RX_OFFLOAD_SCTP_CKSUM |
971                                  DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
972                                  DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
973                                  DEV_RX_OFFLOAD_SCATTER |
974                                  DEV_RX_OFFLOAD_VLAN_STRIP |
975                                  DEV_RX_OFFLOAD_VLAN_FILTER |
976                                  DEV_RX_OFFLOAD_JUMBO_FRAME |
977                                  DEV_RX_OFFLOAD_RSS_HASH |
978                                  DEV_RX_OFFLOAD_TCP_LRO);
979         info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
980                                  DEV_TX_OFFLOAD_IPV4_CKSUM |
981                                  DEV_TX_OFFLOAD_TCP_CKSUM |
982                                  DEV_TX_OFFLOAD_UDP_CKSUM |
983                                  DEV_TX_OFFLOAD_SCTP_CKSUM |
984                                  DEV_TX_OFFLOAD_MULTI_SEGS |
985                                  DEV_TX_OFFLOAD_TCP_TSO |
986                                  DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
987                                  DEV_TX_OFFLOAD_GRE_TNL_TSO |
988                                  DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
989                                  DEV_TX_OFFLOAD_MBUF_FAST_FREE |
990                                  hns3_txvlan_cap_get(hw));
991
992         if (hns3_dev_outer_udp_cksum_supported(hw))
993                 info->tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_UDP_CKSUM;
994
995         if (hns3_dev_indep_txrx_supported(hw))
996                 info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
997                                  RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
998
999         info->rx_desc_lim = (struct rte_eth_desc_lim) {
1000                 .nb_max = HNS3_MAX_RING_DESC,
1001                 .nb_min = HNS3_MIN_RING_DESC,
1002                 .nb_align = HNS3_ALIGN_RING_DESC,
1003         };
1004
1005         info->tx_desc_lim = (struct rte_eth_desc_lim) {
1006                 .nb_max = HNS3_MAX_RING_DESC,
1007                 .nb_min = HNS3_MIN_RING_DESC,
1008                 .nb_align = HNS3_ALIGN_RING_DESC,
1009                 .nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
1010                 .nb_mtu_seg_max = hw->max_non_tso_bd_num,
1011         };
1012
1013         info->default_rxconf = (struct rte_eth_rxconf) {
1014                 .rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
1015                 /*
1016                  * If there are no available Rx buffer descriptors, incoming
1017                  * packets are always dropped by hardware based on hns3 network
1018                  * engine.
1019                  */
1020                 .rx_drop_en = 1,
1021                 .offloads = 0,
1022         };
1023         info->default_txconf = (struct rte_eth_txconf) {
1024                 .tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
1025                 .offloads = 0,
1026         };
1027
1028         info->reta_size = hw->rss_ind_tbl_size;
1029         info->hash_key_size = HNS3_RSS_KEY_SIZE;
1030         info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
1031
1032         info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
1033         info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
1034         info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
1035         info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
1036         info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1037         info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1038
1039         return 0;
1040 }
1041
1042 static void
1043 hns3vf_clear_event_cause(struct hns3_hw *hw, uint32_t regclr)
1044 {
1045         hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
1046 }
1047
1048 static void
1049 hns3vf_disable_irq0(struct hns3_hw *hw)
1050 {
1051         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
1052 }
1053
1054 static void
1055 hns3vf_enable_irq0(struct hns3_hw *hw)
1056 {
1057         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
1058 }
1059
1060 static enum hns3vf_evt_cause
1061 hns3vf_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
1062 {
1063         struct hns3_hw *hw = &hns->hw;
1064         enum hns3vf_evt_cause ret;
1065         uint32_t cmdq_stat_reg;
1066         uint32_t rst_ing_reg;
1067         uint32_t val;
1068
1069         /* Fetch the events from their corresponding regs */
1070         cmdq_stat_reg = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_STAT_REG);
1071         if (BIT(HNS3_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1072                 rst_ing_reg = hns3_read_dev(hw, HNS3_FUN_RST_ING);
1073                 hns3_warn(hw, "resetting reg: 0x%x", rst_ing_reg);
1074                 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
1075                 __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
1076                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
1077                 hns3_write_dev(hw, HNS3_VF_RST_ING, val | HNS3_VF_RST_ING_BIT);
1078                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RST_INT_B);
1079                 if (clearval) {
1080                         hw->reset.stats.global_cnt++;
1081                         hns3_warn(hw, "Global reset detected, clear reset status");
1082                 } else {
1083                         hns3_schedule_delayed_reset(hns);
1084                         hns3_warn(hw, "Global reset detected, don't clear reset status");
1085                 }
1086
1087                 ret = HNS3VF_VECTOR0_EVENT_RST;
1088                 goto out;
1089         }
1090
1091         /* Check for vector0 mailbox(=CMDQ RX) event source */
1092         if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1093                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
1094                 ret = HNS3VF_VECTOR0_EVENT_MBX;
1095                 goto out;
1096         }
1097
1098         val = 0;
1099         ret = HNS3VF_VECTOR0_EVENT_OTHER;
1100 out:
1101         if (clearval)
1102                 *clearval = val;
1103         return ret;
1104 }
1105
1106 static void
1107 hns3vf_interrupt_handler(void *param)
1108 {
1109         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1110         struct hns3_adapter *hns = dev->data->dev_private;
1111         struct hns3_hw *hw = &hns->hw;
1112         enum hns3vf_evt_cause event_cause;
1113         uint32_t clearval;
1114
1115         /* Disable interrupt */
1116         hns3vf_disable_irq0(hw);
1117
1118         /* Read out interrupt causes */
1119         event_cause = hns3vf_check_event_cause(hns, &clearval);
1120
1121         switch (event_cause) {
1122         case HNS3VF_VECTOR0_EVENT_RST:
1123                 hns3_schedule_reset(hns);
1124                 break;
1125         case HNS3VF_VECTOR0_EVENT_MBX:
1126                 hns3_dev_handle_mbx_msg(hw);
1127                 break;
1128         default:
1129                 break;
1130         }
1131
1132         /* Clear interrupt causes */
1133         hns3vf_clear_event_cause(hw, clearval);
1134
1135         /* Enable interrupt */
1136         hns3vf_enable_irq0(hw);
1137 }
1138
1139 static void
1140 hns3vf_set_default_dev_specifications(struct hns3_hw *hw)
1141 {
1142         hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
1143         hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
1144         hw->rss_key_size = HNS3_RSS_KEY_SIZE;
1145         hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
1146 }
1147
1148 static void
1149 hns3vf_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
1150 {
1151         struct hns3_dev_specs_0_cmd *req0;
1152
1153         req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
1154
1155         hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
1156         hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
1157         hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
1158         hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
1159 }
1160
1161 static int
1162 hns3vf_check_dev_specifications(struct hns3_hw *hw)
1163 {
1164         if (hw->rss_ind_tbl_size == 0 ||
1165             hw->rss_ind_tbl_size > HNS3_RSS_IND_TBL_SIZE_MAX) {
1166                 hns3_warn(hw, "the size of hash lookup table configured (%u)"
1167                               " exceeds the maximum(%u)", hw->rss_ind_tbl_size,
1168                               HNS3_RSS_IND_TBL_SIZE_MAX);
1169                 return -EINVAL;
1170         }
1171
1172         return 0;
1173 }
1174
1175 static int
1176 hns3vf_query_dev_specifications(struct hns3_hw *hw)
1177 {
1178         struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
1179         int ret;
1180         int i;
1181
1182         for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
1183                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
1184                                           true);
1185                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1186         }
1187         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
1188
1189         ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
1190         if (ret)
1191                 return ret;
1192
1193         hns3vf_parse_dev_specifications(hw, desc);
1194
1195         return hns3vf_check_dev_specifications(hw);
1196 }
1197
1198 void
1199 hns3vf_update_push_lsc_cap(struct hns3_hw *hw, bool supported)
1200 {
1201         uint16_t val = supported ? HNS3_PF_PUSH_LSC_CAP_SUPPORTED :
1202                                    HNS3_PF_PUSH_LSC_CAP_NOT_SUPPORTED;
1203         uint16_t exp = HNS3_PF_PUSH_LSC_CAP_UNKNOWN;
1204         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1205
1206         if (vf->pf_push_lsc_cap == HNS3_PF_PUSH_LSC_CAP_UNKNOWN)
1207                 __atomic_compare_exchange(&vf->pf_push_lsc_cap, &exp, &val, 0,
1208                                           __ATOMIC_ACQUIRE, __ATOMIC_ACQUIRE);
1209 }
1210
1211 static void
1212 hns3vf_get_push_lsc_cap(struct hns3_hw *hw)
1213 {
1214 #define HNS3_CHECK_PUSH_LSC_CAP_TIMEOUT_MS      500
1215
1216         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
1217         int32_t remain_ms = HNS3_CHECK_PUSH_LSC_CAP_TIMEOUT_MS;
1218         uint16_t val = HNS3_PF_PUSH_LSC_CAP_NOT_SUPPORTED;
1219         uint16_t exp = HNS3_PF_PUSH_LSC_CAP_UNKNOWN;
1220         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1221
1222         __atomic_store_n(&vf->pf_push_lsc_cap, HNS3_PF_PUSH_LSC_CAP_UNKNOWN,
1223                          __ATOMIC_RELEASE);
1224
1225         (void)hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1226                                 NULL, 0);
1227
1228         while (remain_ms > 0) {
1229                 rte_delay_ms(HNS3_POLL_RESPONE_MS);
1230                 if (__atomic_load_n(&vf->pf_push_lsc_cap, __ATOMIC_ACQUIRE) !=
1231                         HNS3_PF_PUSH_LSC_CAP_UNKNOWN)
1232                         break;
1233                 remain_ms--;
1234         }
1235
1236         /*
1237          * When exit above loop, the pf_push_lsc_cap could be one of the three
1238          * state: unknown (means pf not ack), not_supported, supported.
1239          * Here config it as 'not_supported' when it's 'unknown' state.
1240          */
1241         __atomic_compare_exchange(&vf->pf_push_lsc_cap, &exp, &val, 0,
1242                                   __ATOMIC_ACQUIRE, __ATOMIC_ACQUIRE);
1243
1244         if (__atomic_load_n(&vf->pf_push_lsc_cap, __ATOMIC_ACQUIRE) ==
1245                 HNS3_PF_PUSH_LSC_CAP_SUPPORTED) {
1246                 hns3_info(hw, "detect PF support push link status change!");
1247         } else {
1248                 /*
1249                  * Framework already set RTE_ETH_DEV_INTR_LSC bit because driver
1250                  * declared RTE_PCI_DRV_INTR_LSC in drv_flags. So here cleared
1251                  * the RTE_ETH_DEV_INTR_LSC capability.
1252                  */
1253                 dev->data->dev_flags &= ~RTE_ETH_DEV_INTR_LSC;
1254         }
1255 }
1256
1257 static int
1258 hns3vf_get_capability(struct hns3_hw *hw)
1259 {
1260         struct rte_pci_device *pci_dev;
1261         struct rte_eth_dev *eth_dev;
1262         uint8_t revision;
1263         int ret;
1264
1265         eth_dev = &rte_eth_devices[hw->data->port_id];
1266         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1267
1268         /* Get PCI revision id */
1269         ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
1270                                   HNS3_PCI_REVISION_ID);
1271         if (ret != HNS3_PCI_REVISION_ID_LEN) {
1272                 PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
1273                              ret);
1274                 return -EIO;
1275         }
1276         hw->revision = revision;
1277
1278         if (revision < PCI_REVISION_ID_HIP09_A) {
1279                 hns3vf_set_default_dev_specifications(hw);
1280                 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
1281                 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
1282                 hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
1283                 hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE1;
1284                 hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
1285                 hw->rss_info.ipv6_sctp_offload_supported = false;
1286                 hw->promisc_mode = HNS3_UNLIMIT_PROMISC_MODE;
1287                 return 0;
1288         }
1289
1290         ret = hns3vf_query_dev_specifications(hw);
1291         if (ret) {
1292                 PMD_INIT_LOG(ERR,
1293                              "failed to query dev specifications, ret = %d",
1294                              ret);
1295                 return ret;
1296         }
1297
1298         hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
1299         hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
1300         hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
1301         hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE2;
1302         hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
1303         hw->rss_info.ipv6_sctp_offload_supported = true;
1304         hw->promisc_mode = HNS3_LIMIT_PROMISC_MODE;
1305
1306         return 0;
1307 }
1308
1309 static int
1310 hns3vf_check_tqp_info(struct hns3_hw *hw)
1311 {
1312         if (hw->tqps_num == 0) {
1313                 PMD_INIT_LOG(ERR, "Get invalid tqps_num(0) from PF.");
1314                 return -EINVAL;
1315         }
1316
1317         if (hw->rss_size_max == 0) {
1318                 PMD_INIT_LOG(ERR, "Get invalid rss_size_max(0) from PF.");
1319                 return -EINVAL;
1320         }
1321
1322         hw->tqps_num = RTE_MIN(hw->rss_size_max, hw->tqps_num);
1323
1324         return 0;
1325 }
1326
1327 static int
1328 hns3vf_get_port_base_vlan_filter_state(struct hns3_hw *hw)
1329 {
1330         uint8_t resp_msg;
1331         int ret;
1332
1333         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN,
1334                                 HNS3_MBX_GET_PORT_BASE_VLAN_STATE, NULL, 0,
1335                                 true, &resp_msg, sizeof(resp_msg));
1336         if (ret) {
1337                 if (ret == -ETIME) {
1338                         /*
1339                          * Getting current port based VLAN state from PF driver
1340                          * will not affect VF driver's basic function. Because
1341                          * the VF driver relies on hns3 PF kernel ether driver,
1342                          * to avoid introducing compatibility issues with older
1343                          * version of PF driver, no failure will be returned
1344                          * when the return value is ETIME. This return value has
1345                          * the following scenarios:
1346                          * 1) Firmware didn't return the results in time
1347                          * 2) the result return by firmware is timeout
1348                          * 3) the older version of kernel side PF driver does
1349                          *    not support this mailbox message.
1350                          * For scenarios 1 and 2, it is most likely that a
1351                          * hardware error has occurred, or a hardware reset has
1352                          * occurred. In this case, these errors will be caught
1353                          * by other functions.
1354                          */
1355                         PMD_INIT_LOG(WARNING,
1356                                 "failed to get PVID state for timeout, maybe "
1357                                 "kernel side PF driver doesn't support this "
1358                                 "mailbox message, or firmware didn't respond.");
1359                         resp_msg = HNS3_PORT_BASE_VLAN_DISABLE;
1360                 } else {
1361                         PMD_INIT_LOG(ERR, "failed to get port based VLAN state,"
1362                                 " ret = %d", ret);
1363                         return ret;
1364                 }
1365         }
1366         hw->port_base_vlan_cfg.state = resp_msg ?
1367                 HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
1368         return 0;
1369 }
1370
1371 static int
1372 hns3vf_get_queue_info(struct hns3_hw *hw)
1373 {
1374 #define HNS3VF_TQPS_RSS_INFO_LEN        6
1375         uint8_t resp_msg[HNS3VF_TQPS_RSS_INFO_LEN];
1376         int ret;
1377
1378         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QINFO, 0, NULL, 0, true,
1379                                 resp_msg, HNS3VF_TQPS_RSS_INFO_LEN);
1380         if (ret) {
1381                 PMD_INIT_LOG(ERR, "Failed to get tqp info from PF: %d", ret);
1382                 return ret;
1383         }
1384
1385         memcpy(&hw->tqps_num, &resp_msg[0], sizeof(uint16_t));
1386         memcpy(&hw->rss_size_max, &resp_msg[2], sizeof(uint16_t));
1387
1388         return hns3vf_check_tqp_info(hw);
1389 }
1390
1391 static int
1392 hns3vf_get_queue_depth(struct hns3_hw *hw)
1393 {
1394 #define HNS3VF_TQPS_DEPTH_INFO_LEN      4
1395         uint8_t resp_msg[HNS3VF_TQPS_DEPTH_INFO_LEN];
1396         int ret;
1397
1398         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QDEPTH, 0, NULL, 0, true,
1399                                 resp_msg, HNS3VF_TQPS_DEPTH_INFO_LEN);
1400         if (ret) {
1401                 PMD_INIT_LOG(ERR, "Failed to get tqp depth info from PF: %d",
1402                              ret);
1403                 return ret;
1404         }
1405
1406         memcpy(&hw->num_tx_desc, &resp_msg[0], sizeof(uint16_t));
1407         memcpy(&hw->num_rx_desc, &resp_msg[2], sizeof(uint16_t));
1408
1409         return 0;
1410 }
1411
1412 static int
1413 hns3vf_get_tc_info(struct hns3_hw *hw)
1414 {
1415         uint8_t resp_msg;
1416         int ret;
1417         uint32_t i;
1418
1419         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_TCINFO, 0, NULL, 0,
1420                                 true, &resp_msg, sizeof(resp_msg));
1421         if (ret) {
1422                 hns3_err(hw, "VF request to get TC info from PF failed %d",
1423                          ret);
1424                 return ret;
1425         }
1426
1427         hw->hw_tc_map = resp_msg;
1428
1429         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
1430                 if (hw->hw_tc_map & BIT(i))
1431                         hw->num_tc++;
1432         }
1433
1434         return 0;
1435 }
1436
1437 static int
1438 hns3vf_get_host_mac_addr(struct hns3_hw *hw)
1439 {
1440         uint8_t host_mac[RTE_ETHER_ADDR_LEN];
1441         int ret;
1442
1443         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_MAC_ADDR, 0, NULL, 0,
1444                                 true, host_mac, RTE_ETHER_ADDR_LEN);
1445         if (ret) {
1446                 hns3_err(hw, "Failed to get mac addr from PF: %d", ret);
1447                 return ret;
1448         }
1449
1450         memcpy(hw->mac.mac_addr, host_mac, RTE_ETHER_ADDR_LEN);
1451
1452         return 0;
1453 }
1454
1455 static int
1456 hns3vf_get_configuration(struct hns3_hw *hw)
1457 {
1458         int ret;
1459
1460         hw->mac.media_type = HNS3_MEDIA_TYPE_NONE;
1461         hw->rss_dis_flag = false;
1462
1463         /* Get device capability */
1464         ret = hns3vf_get_capability(hw);
1465         if (ret) {
1466                 PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
1467                 return ret;
1468         }
1469
1470         hns3vf_get_push_lsc_cap(hw);
1471
1472         /* Get queue configuration from PF */
1473         ret = hns3vf_get_queue_info(hw);
1474         if (ret)
1475                 return ret;
1476
1477         /* Get queue depth info from PF */
1478         ret = hns3vf_get_queue_depth(hw);
1479         if (ret)
1480                 return ret;
1481
1482         /* Get user defined VF MAC addr from PF */
1483         ret = hns3vf_get_host_mac_addr(hw);
1484         if (ret)
1485                 return ret;
1486
1487         ret = hns3vf_get_port_base_vlan_filter_state(hw);
1488         if (ret)
1489                 return ret;
1490
1491         /* Get tc configuration from PF */
1492         return hns3vf_get_tc_info(hw);
1493 }
1494
1495 static int
1496 hns3vf_set_tc_queue_mapping(struct hns3_adapter *hns, uint16_t nb_rx_q,
1497                             uint16_t nb_tx_q)
1498 {
1499         struct hns3_hw *hw = &hns->hw;
1500
1501         return hns3_queue_to_tc_mapping(hw, nb_rx_q, nb_tx_q);
1502 }
1503
1504 static void
1505 hns3vf_request_link_info(struct hns3_hw *hw)
1506 {
1507         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1508         bool send_req;
1509         int ret;
1510
1511         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
1512                 return;
1513
1514         send_req = vf->pf_push_lsc_cap == HNS3_PF_PUSH_LSC_CAP_NOT_SUPPORTED ||
1515                    vf->req_link_info_cnt > 0;
1516         if (!send_req)
1517                 return;
1518
1519         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1520                                 NULL, 0);
1521         if (ret) {
1522                 hns3_err(hw, "failed to fetch link status, ret = %d", ret);
1523                 return;
1524         }
1525
1526         if (vf->req_link_info_cnt > 0)
1527                 vf->req_link_info_cnt--;
1528 }
1529
1530 void
1531 hns3vf_update_link_status(struct hns3_hw *hw, uint8_t link_status,
1532                           uint32_t link_speed, uint8_t link_duplex)
1533 {
1534         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
1535         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1536         struct hns3_mac *mac = &hw->mac;
1537         int ret;
1538
1539         /*
1540          * PF kernel driver may push link status when VF driver is in resetting,
1541          * driver will stop polling job in this case, after resetting done
1542          * driver will start polling job again.
1543          * When polling job started, driver will get initial link status by
1544          * sending request to PF kernel driver, then could update link status by
1545          * process PF kernel driver's link status mailbox message.
1546          */
1547         if (!__atomic_load_n(&vf->poll_job_started, __ATOMIC_RELAXED))
1548                 return;
1549
1550         if (hw->adapter_state != HNS3_NIC_STARTED)
1551                 return;
1552
1553         mac->link_status = link_status;
1554         mac->link_speed = link_speed;
1555         mac->link_duplex = link_duplex;
1556         ret = hns3vf_dev_link_update(dev, 0);
1557         if (ret == 0 && dev->data->dev_conf.intr_conf.lsc != 0)
1558                 hns3_start_report_lse(dev);
1559 }
1560
1561 static int
1562 hns3vf_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
1563 {
1564 #define HNS3VF_VLAN_MBX_MSG_LEN 5
1565         struct hns3_hw *hw = &hns->hw;
1566         uint8_t msg_data[HNS3VF_VLAN_MBX_MSG_LEN];
1567         uint16_t proto = htons(RTE_ETHER_TYPE_VLAN);
1568         uint8_t is_kill = on ? 0 : 1;
1569
1570         msg_data[0] = is_kill;
1571         memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1572         memcpy(&msg_data[3], &proto, sizeof(proto));
1573
1574         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_FILTER,
1575                                  msg_data, HNS3VF_VLAN_MBX_MSG_LEN, true, NULL,
1576                                  0);
1577 }
1578
1579 static int
1580 hns3vf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1581 {
1582         struct hns3_adapter *hns = dev->data->dev_private;
1583         struct hns3_hw *hw = &hns->hw;
1584         int ret;
1585
1586         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
1587                 hns3_err(hw,
1588                          "vf set vlan id failed during resetting, vlan_id =%u",
1589                          vlan_id);
1590                 return -EIO;
1591         }
1592         rte_spinlock_lock(&hw->lock);
1593         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1594         rte_spinlock_unlock(&hw->lock);
1595         if (ret)
1596                 hns3_err(hw, "vf set vlan id failed, vlan_id =%u, ret =%d",
1597                          vlan_id, ret);
1598
1599         return ret;
1600 }
1601
1602 static int
1603 hns3vf_en_hw_strip_rxvtag(struct hns3_hw *hw, bool enable)
1604 {
1605         uint8_t msg_data;
1606         int ret;
1607
1608         msg_data = enable ? 1 : 0;
1609         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_RX_OFF_CFG,
1610                                 &msg_data, sizeof(msg_data), false, NULL, 0);
1611         if (ret)
1612                 hns3_err(hw, "vf enable strip failed, ret =%d", ret);
1613
1614         return ret;
1615 }
1616
1617 static int
1618 hns3vf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1619 {
1620         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1621         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1622         unsigned int tmp_mask;
1623         int ret = 0;
1624
1625         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
1626                 hns3_err(hw, "vf set vlan offload failed during resetting, "
1627                              "mask = 0x%x", mask);
1628                 return -EIO;
1629         }
1630
1631         tmp_mask = (unsigned int)mask;
1632         /* Vlan stripping setting */
1633         if (tmp_mask & ETH_VLAN_STRIP_MASK) {
1634                 rte_spinlock_lock(&hw->lock);
1635                 /* Enable or disable VLAN stripping */
1636                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1637                         ret = hns3vf_en_hw_strip_rxvtag(hw, true);
1638                 else
1639                         ret = hns3vf_en_hw_strip_rxvtag(hw, false);
1640                 rte_spinlock_unlock(&hw->lock);
1641         }
1642
1643         return ret;
1644 }
1645
1646 static int
1647 hns3vf_handle_all_vlan_table(struct hns3_adapter *hns, int on)
1648 {
1649         struct rte_vlan_filter_conf *vfc;
1650         struct hns3_hw *hw = &hns->hw;
1651         uint16_t vlan_id;
1652         uint64_t vbit;
1653         uint64_t ids;
1654         int ret = 0;
1655         uint32_t i;
1656
1657         vfc = &hw->data->vlan_filter_conf;
1658         for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1659                 if (vfc->ids[i] == 0)
1660                         continue;
1661                 ids = vfc->ids[i];
1662                 while (ids) {
1663                         /*
1664                          * 64 means the num bits of ids, one bit corresponds to
1665                          * one vlan id
1666                          */
1667                         vlan_id = 64 * i;
1668                         /* count trailing zeroes */
1669                         vbit = ~ids & (ids - 1);
1670                         /* clear least significant bit set */
1671                         ids ^= (ids ^ (ids - 1)) ^ vbit;
1672                         for (; vbit;) {
1673                                 vbit >>= 1;
1674                                 vlan_id++;
1675                         }
1676                         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1677                         if (ret) {
1678                                 hns3_err(hw,
1679                                          "VF handle vlan table failed, ret =%d, on = %d",
1680                                          ret, on);
1681                                 return ret;
1682                         }
1683                 }
1684         }
1685
1686         return ret;
1687 }
1688
1689 static int
1690 hns3vf_remove_all_vlan_table(struct hns3_adapter *hns)
1691 {
1692         return hns3vf_handle_all_vlan_table(hns, 0);
1693 }
1694
1695 static int
1696 hns3vf_restore_vlan_conf(struct hns3_adapter *hns)
1697 {
1698         struct hns3_hw *hw = &hns->hw;
1699         struct rte_eth_conf *dev_conf;
1700         bool en;
1701         int ret;
1702
1703         dev_conf = &hw->data->dev_conf;
1704         en = dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP ? true
1705                                                                    : false;
1706         ret = hns3vf_en_hw_strip_rxvtag(hw, en);
1707         if (ret)
1708                 hns3_err(hw, "VF restore vlan conf fail, en =%d, ret =%d", en,
1709                          ret);
1710         return ret;
1711 }
1712
1713 static int
1714 hns3vf_dev_configure_vlan(struct rte_eth_dev *dev)
1715 {
1716         struct hns3_adapter *hns = dev->data->dev_private;
1717         struct rte_eth_dev_data *data = dev->data;
1718         struct hns3_hw *hw = &hns->hw;
1719         int ret;
1720
1721         if (data->dev_conf.txmode.hw_vlan_reject_tagged ||
1722             data->dev_conf.txmode.hw_vlan_reject_untagged ||
1723             data->dev_conf.txmode.hw_vlan_insert_pvid) {
1724                 hns3_warn(hw, "hw_vlan_reject_tagged, hw_vlan_reject_untagged "
1725                               "or hw_vlan_insert_pvid is not support!");
1726         }
1727
1728         /* Apply vlan offload setting */
1729         ret = hns3vf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
1730         if (ret)
1731                 hns3_err(hw, "dev config vlan offload failed, ret =%d", ret);
1732
1733         return ret;
1734 }
1735
1736 static int
1737 hns3vf_set_alive(struct hns3_hw *hw, bool alive)
1738 {
1739         uint8_t msg_data;
1740
1741         msg_data = alive ? 1 : 0;
1742         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_ALIVE, 0, &msg_data,
1743                                  sizeof(msg_data), false, NULL, 0);
1744 }
1745
1746 static void
1747 hns3vf_keep_alive_handler(void *param)
1748 {
1749         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1750         struct hns3_adapter *hns = eth_dev->data->dev_private;
1751         struct hns3_hw *hw = &hns->hw;
1752         int ret;
1753
1754         ret = hns3_send_mbx_msg(hw, HNS3_MBX_KEEP_ALIVE, 0, NULL, 0,
1755                                 false, NULL, 0);
1756         if (ret)
1757                 hns3_err(hw, "VF sends keeping alive cmd failed(=%d)",
1758                          ret);
1759
1760         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
1761                           eth_dev);
1762 }
1763
1764 static void
1765 hns3vf_service_handler(void *param)
1766 {
1767         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1768         struct hns3_adapter *hns = eth_dev->data->dev_private;
1769         struct hns3_hw *hw = &hns->hw;
1770
1771         /*
1772          * The query link status and reset processing are executed in the
1773          * interrupt thread. When the IMP reset occurs, IMP will not respond,
1774          * and the query operation will timeout after 30ms. In the case of
1775          * multiple PF/VFs, each query failure timeout causes the IMP reset
1776          * interrupt to fail to respond within 100ms.
1777          * Before querying the link status, check whether there is a reset
1778          * pending, and if so, abandon the query.
1779          */
1780         if (!hns3vf_is_reset_pending(hns))
1781                 hns3vf_request_link_info(hw);
1782         else
1783                 hns3_warn(hw, "Cancel the query when reset is pending");
1784
1785         rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler,
1786                           eth_dev);
1787 }
1788
1789 static void
1790 hns3vf_start_poll_job(struct rte_eth_dev *dev)
1791 {
1792 #define HNS3_REQUEST_LINK_INFO_REMAINS_CNT      3
1793
1794         struct hns3_vf *vf = HNS3_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1795
1796         if (vf->pf_push_lsc_cap == HNS3_PF_PUSH_LSC_CAP_SUPPORTED)
1797                 vf->req_link_info_cnt = HNS3_REQUEST_LINK_INFO_REMAINS_CNT;
1798
1799         __atomic_store_n(&vf->poll_job_started, 1, __ATOMIC_RELAXED);
1800
1801         hns3vf_service_handler(dev);
1802 }
1803
1804 static void
1805 hns3vf_stop_poll_job(struct rte_eth_dev *dev)
1806 {
1807         struct hns3_vf *vf = HNS3_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1808
1809         rte_eal_alarm_cancel(hns3vf_service_handler, dev);
1810
1811         __atomic_store_n(&vf->poll_job_started, 0, __ATOMIC_RELAXED);
1812 }
1813
1814 static int
1815 hns3_query_vf_resource(struct hns3_hw *hw)
1816 {
1817         struct hns3_vf_res_cmd *req;
1818         struct hns3_cmd_desc desc;
1819         uint16_t num_msi;
1820         int ret;
1821
1822         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_VF_RSRC, true);
1823         ret = hns3_cmd_send(hw, &desc, 1);
1824         if (ret) {
1825                 hns3_err(hw, "query vf resource failed, ret = %d", ret);
1826                 return ret;
1827         }
1828
1829         req = (struct hns3_vf_res_cmd *)desc.data;
1830         num_msi = hns3_get_field(rte_le_to_cpu_16(req->vf_intr_vector_number),
1831                                  HNS3_VF_VEC_NUM_M, HNS3_VF_VEC_NUM_S);
1832         if (num_msi < HNS3_MIN_VECTOR_NUM) {
1833                 hns3_err(hw, "Just %u msi resources, not enough for vf(min:%d)",
1834                          num_msi, HNS3_MIN_VECTOR_NUM);
1835                 return -EINVAL;
1836         }
1837
1838         hw->num_msi = num_msi;
1839
1840         return 0;
1841 }
1842
1843 static int
1844 hns3vf_init_hardware(struct hns3_adapter *hns)
1845 {
1846         struct hns3_hw *hw = &hns->hw;
1847         uint16_t mtu = hw->data->mtu;
1848         int ret;
1849
1850         ret = hns3vf_set_promisc_mode(hw, true, false, false);
1851         if (ret)
1852                 return ret;
1853
1854         ret = hns3vf_config_mtu(hw, mtu);
1855         if (ret)
1856                 goto err_init_hardware;
1857
1858         ret = hns3vf_vlan_filter_configure(hns, 0, 1);
1859         if (ret) {
1860                 PMD_INIT_LOG(ERR, "Failed to initialize VLAN config: %d", ret);
1861                 goto err_init_hardware;
1862         }
1863
1864         ret = hns3_config_gro(hw, false);
1865         if (ret) {
1866                 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
1867                 goto err_init_hardware;
1868         }
1869
1870         /*
1871          * In the initialization clearing the all hardware mapping relationship
1872          * configurations between queues and interrupt vectors is needed, so
1873          * some error caused by the residual configurations, such as the
1874          * unexpected interrupt, can be avoid.
1875          */
1876         ret = hns3vf_init_ring_with_vector(hw);
1877         if (ret) {
1878                 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
1879                 goto err_init_hardware;
1880         }
1881
1882         return 0;
1883
1884 err_init_hardware:
1885         (void)hns3vf_set_promisc_mode(hw, false, false, false);
1886         return ret;
1887 }
1888
1889 static int
1890 hns3vf_clear_vport_list(struct hns3_hw *hw)
1891 {
1892         return hns3_send_mbx_msg(hw, HNS3_MBX_HANDLE_VF_TBL,
1893                                  HNS3_MBX_VPORT_LIST_CLEAR, NULL, 0, false,
1894                                  NULL, 0);
1895 }
1896
1897 static int
1898 hns3vf_init_vf(struct rte_eth_dev *eth_dev)
1899 {
1900         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1901         struct hns3_adapter *hns = eth_dev->data->dev_private;
1902         struct hns3_hw *hw = &hns->hw;
1903         int ret;
1904
1905         PMD_INIT_FUNC_TRACE();
1906
1907         /* Get hardware io base address from pcie BAR2 IO space */
1908         hw->io_base = pci_dev->mem_resource[2].addr;
1909
1910         /* Firmware command queue initialize */
1911         ret = hns3_cmd_init_queue(hw);
1912         if (ret) {
1913                 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
1914                 goto err_cmd_init_queue;
1915         }
1916
1917         /* Firmware command initialize */
1918         ret = hns3_cmd_init(hw);
1919         if (ret) {
1920                 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
1921                 goto err_cmd_init;
1922         }
1923
1924         /* Get VF resource */
1925         ret = hns3_query_vf_resource(hw);
1926         if (ret)
1927                 goto err_cmd_init;
1928
1929         rte_spinlock_init(&hw->mbx_resp.lock);
1930
1931         hns3vf_clear_event_cause(hw, 0);
1932
1933         ret = rte_intr_callback_register(&pci_dev->intr_handle,
1934                                          hns3vf_interrupt_handler, eth_dev);
1935         if (ret) {
1936                 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
1937                 goto err_intr_callback_register;
1938         }
1939
1940         /* Enable interrupt */
1941         rte_intr_enable(&pci_dev->intr_handle);
1942         hns3vf_enable_irq0(hw);
1943
1944         /* Get configuration from PF */
1945         ret = hns3vf_get_configuration(hw);
1946         if (ret) {
1947                 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
1948                 goto err_get_config;
1949         }
1950
1951         ret = hns3_tqp_stats_init(hw);
1952         if (ret)
1953                 goto err_get_config;
1954
1955         /* Hardware statistics of imissed registers cleared. */
1956         ret = hns3_update_imissed_stats(hw, true);
1957         if (ret) {
1958                 hns3_err(hw, "clear imissed stats failed, ret = %d", ret);
1959                 goto err_set_tc_queue;
1960         }
1961
1962         ret = hns3vf_set_tc_queue_mapping(hns, hw->tqps_num, hw->tqps_num);
1963         if (ret) {
1964                 PMD_INIT_LOG(ERR, "failed to set tc info, ret = %d.", ret);
1965                 goto err_set_tc_queue;
1966         }
1967
1968         ret = hns3vf_clear_vport_list(hw);
1969         if (ret) {
1970                 PMD_INIT_LOG(ERR, "Failed to clear tbl list: %d", ret);
1971                 goto err_set_tc_queue;
1972         }
1973
1974         ret = hns3vf_init_hardware(hns);
1975         if (ret)
1976                 goto err_set_tc_queue;
1977
1978         hns3_rss_set_default_args(hw);
1979
1980         ret = hns3vf_set_alive(hw, true);
1981         if (ret) {
1982                 PMD_INIT_LOG(ERR, "Failed to VF send alive to PF: %d", ret);
1983                 goto err_set_tc_queue;
1984         }
1985
1986         return 0;
1987
1988 err_set_tc_queue:
1989         hns3_tqp_stats_uninit(hw);
1990
1991 err_get_config:
1992         hns3vf_disable_irq0(hw);
1993         rte_intr_disable(&pci_dev->intr_handle);
1994         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1995                              eth_dev);
1996 err_intr_callback_register:
1997 err_cmd_init:
1998         hns3_cmd_uninit(hw);
1999         hns3_cmd_destroy_queue(hw);
2000 err_cmd_init_queue:
2001         hw->io_base = NULL;
2002
2003         return ret;
2004 }
2005
2006 static void
2007 hns3vf_uninit_vf(struct rte_eth_dev *eth_dev)
2008 {
2009         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2010         struct hns3_adapter *hns = eth_dev->data->dev_private;
2011         struct hns3_hw *hw = &hns->hw;
2012
2013         PMD_INIT_FUNC_TRACE();
2014
2015         hns3_rss_uninit(hns);
2016         (void)hns3_config_gro(hw, false);
2017         (void)hns3vf_set_alive(hw, false);
2018         (void)hns3vf_set_promisc_mode(hw, false, false, false);
2019         hns3_tqp_stats_uninit(hw);
2020         hns3vf_disable_irq0(hw);
2021         rte_intr_disable(&pci_dev->intr_handle);
2022         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
2023                              eth_dev);
2024         hns3_cmd_uninit(hw);
2025         hns3_cmd_destroy_queue(hw);
2026         hw->io_base = NULL;
2027 }
2028
2029 static int
2030 hns3vf_do_stop(struct hns3_adapter *hns)
2031 {
2032         struct hns3_hw *hw = &hns->hw;
2033         int ret;
2034
2035         hw->mac.link_status = ETH_LINK_DOWN;
2036
2037         /*
2038          * The "hns3vf_do_stop" function will also be called by .stop_service to
2039          * prepare reset. At the time of global or IMP reset, the command cannot
2040          * be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be
2041          * accessed during the reset process. So the mbuf can not be released
2042          * during reset and is required to be released after the reset is
2043          * completed.
2044          */
2045         if (__atomic_load_n(&hw->reset.resetting,  __ATOMIC_RELAXED) == 0)
2046                 hns3_dev_release_mbufs(hns);
2047
2048         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) {
2049                 hns3vf_configure_mac_addr(hns, true);
2050                 ret = hns3_reset_all_tqps(hns);
2051                 if (ret) {
2052                         hns3_err(hw, "failed to reset all queues ret = %d",
2053                                  ret);
2054                         return ret;
2055                 }
2056         }
2057         return 0;
2058 }
2059
2060 static void
2061 hns3vf_unmap_rx_interrupt(struct rte_eth_dev *dev)
2062 {
2063         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2064         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2065         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2066         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
2067         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
2068         uint16_t q_id;
2069
2070         if (dev->data->dev_conf.intr_conf.rxq == 0)
2071                 return;
2072
2073         /* unmap the ring with vector */
2074         if (rte_intr_allow_others(intr_handle)) {
2075                 vec = RTE_INTR_VEC_RXTX_OFFSET;
2076                 base = RTE_INTR_VEC_RXTX_OFFSET;
2077         }
2078         if (rte_intr_dp_is_en(intr_handle)) {
2079                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2080                         (void)hns3vf_bind_ring_with_vector(hw, vec, false,
2081                                                            HNS3_RING_TYPE_RX,
2082                                                            q_id);
2083                         if (vec < base + intr_handle->nb_efd - 1)
2084                                 vec++;
2085                 }
2086         }
2087         /* Clean datapath event and queue/vec mapping */
2088         rte_intr_efd_disable(intr_handle);
2089         if (intr_handle->intr_vec) {
2090                 rte_free(intr_handle->intr_vec);
2091                 intr_handle->intr_vec = NULL;
2092         }
2093 }
2094
2095 static int
2096 hns3vf_dev_stop(struct rte_eth_dev *dev)
2097 {
2098         struct hns3_adapter *hns = dev->data->dev_private;
2099         struct hns3_hw *hw = &hns->hw;
2100
2101         PMD_INIT_FUNC_TRACE();
2102         dev->data->dev_started = 0;
2103
2104         hw->adapter_state = HNS3_NIC_STOPPING;
2105         hns3_set_rxtx_function(dev);
2106         rte_wmb();
2107         /* Disable datapath on secondary process. */
2108         hns3_mp_req_stop_rxtx(dev);
2109         /* Prevent crashes when queues are still in use. */
2110         rte_delay_ms(hw->tqps_num);
2111
2112         rte_spinlock_lock(&hw->lock);
2113         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
2114                 hns3_stop_tqps(hw);
2115                 hns3vf_do_stop(hns);
2116                 hns3vf_unmap_rx_interrupt(dev);
2117                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2118         }
2119         hns3_rx_scattered_reset(dev);
2120         hns3vf_stop_poll_job(dev);
2121         hns3_stop_report_lse(dev);
2122         rte_spinlock_unlock(&hw->lock);
2123
2124         return 0;
2125 }
2126
2127 static int
2128 hns3vf_dev_close(struct rte_eth_dev *eth_dev)
2129 {
2130         struct hns3_adapter *hns = eth_dev->data->dev_private;
2131         struct hns3_hw *hw = &hns->hw;
2132         int ret = 0;
2133
2134         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2135                 rte_free(eth_dev->process_private);
2136                 eth_dev->process_private = NULL;
2137                 return 0;
2138         }
2139
2140         if (hw->adapter_state == HNS3_NIC_STARTED)
2141                 ret = hns3vf_dev_stop(eth_dev);
2142
2143         hw->adapter_state = HNS3_NIC_CLOSING;
2144         hns3_reset_abort(hns);
2145         hw->adapter_state = HNS3_NIC_CLOSED;
2146         rte_eal_alarm_cancel(hns3vf_keep_alive_handler, eth_dev);
2147         hns3vf_configure_all_mc_mac_addr(hns, true);
2148         hns3vf_remove_all_vlan_table(hns);
2149         hns3vf_uninit_vf(eth_dev);
2150         hns3_free_all_queues(eth_dev);
2151         rte_free(hw->reset.wait_data);
2152         rte_free(eth_dev->process_private);
2153         eth_dev->process_private = NULL;
2154         hns3_mp_uninit_primary();
2155         hns3_warn(hw, "Close port %u finished", hw->data->port_id);
2156
2157         return ret;
2158 }
2159
2160 static int
2161 hns3vf_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2162                       size_t fw_size)
2163 {
2164         struct hns3_adapter *hns = eth_dev->data->dev_private;
2165         struct hns3_hw *hw = &hns->hw;
2166         uint32_t version = hw->fw_version;
2167         int ret;
2168
2169         ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2170                        hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2171                                       HNS3_FW_VERSION_BYTE3_S),
2172                        hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2173                                       HNS3_FW_VERSION_BYTE2_S),
2174                        hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2175                                       HNS3_FW_VERSION_BYTE1_S),
2176                        hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2177                                       HNS3_FW_VERSION_BYTE0_S));
2178         if (ret < 0)
2179                 return -EINVAL;
2180
2181         ret += 1; /* add the size of '\0' */
2182         if (fw_size < (size_t)ret)
2183                 return ret;
2184         else
2185                 return 0;
2186 }
2187
2188 static int
2189 hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
2190                        __rte_unused int wait_to_complete)
2191 {
2192         struct hns3_adapter *hns = eth_dev->data->dev_private;
2193         struct hns3_hw *hw = &hns->hw;
2194         struct hns3_mac *mac = &hw->mac;
2195         struct rte_eth_link new_link;
2196
2197         memset(&new_link, 0, sizeof(new_link));
2198         switch (mac->link_speed) {
2199         case ETH_SPEED_NUM_10M:
2200         case ETH_SPEED_NUM_100M:
2201         case ETH_SPEED_NUM_1G:
2202         case ETH_SPEED_NUM_10G:
2203         case ETH_SPEED_NUM_25G:
2204         case ETH_SPEED_NUM_40G:
2205         case ETH_SPEED_NUM_50G:
2206         case ETH_SPEED_NUM_100G:
2207         case ETH_SPEED_NUM_200G:
2208                 new_link.link_speed = mac->link_speed;
2209                 break;
2210         default:
2211                 if (mac->link_status)
2212                         new_link.link_speed = ETH_SPEED_NUM_UNKNOWN;
2213                 else
2214                         new_link.link_speed = ETH_SPEED_NUM_NONE;
2215                 break;
2216         }
2217
2218         new_link.link_duplex = mac->link_duplex;
2219         new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2220         new_link.link_autoneg =
2221             !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2222
2223         return rte_eth_linkstatus_set(eth_dev, &new_link);
2224 }
2225
2226 static int
2227 hns3vf_do_start(struct hns3_adapter *hns, bool reset_queue)
2228 {
2229         struct hns3_hw *hw = &hns->hw;
2230         uint16_t nb_rx_q = hw->data->nb_rx_queues;
2231         uint16_t nb_tx_q = hw->data->nb_tx_queues;
2232         int ret;
2233
2234         ret = hns3vf_set_tc_queue_mapping(hns, nb_rx_q, nb_tx_q);
2235         if (ret)
2236                 return ret;
2237
2238         hns3_enable_rxd_adv_layout(hw);
2239
2240         ret = hns3_init_queues(hns, reset_queue);
2241         if (ret)
2242                 hns3_err(hw, "failed to init queues, ret = %d.", ret);
2243
2244         return ret;
2245 }
2246
2247 static int
2248 hns3vf_map_rx_interrupt(struct rte_eth_dev *dev)
2249 {
2250         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2251         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2252         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2253         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
2254         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
2255         uint32_t intr_vector;
2256         uint16_t q_id;
2257         int ret;
2258
2259         /*
2260          * hns3 needs a separate interrupt to be used as event interrupt which
2261          * could not be shared with task queue pair, so KERNEL drivers need
2262          * support multiple interrupt vectors.
2263          */
2264         if (dev->data->dev_conf.intr_conf.rxq == 0 ||
2265             !rte_intr_cap_multiple(intr_handle))
2266                 return 0;
2267
2268         rte_intr_disable(intr_handle);
2269         intr_vector = hw->used_rx_queues;
2270         /* It creates event fd for each intr vector when MSIX is used */
2271         if (rte_intr_efd_enable(intr_handle, intr_vector))
2272                 return -EINVAL;
2273
2274         if (intr_handle->intr_vec == NULL) {
2275                 intr_handle->intr_vec =
2276                         rte_zmalloc("intr_vec",
2277                                     hw->used_rx_queues * sizeof(int), 0);
2278                 if (intr_handle->intr_vec == NULL) {
2279                         hns3_err(hw, "Failed to allocate %u rx_queues"
2280                                      " intr_vec", hw->used_rx_queues);
2281                         ret = -ENOMEM;
2282                         goto vf_alloc_intr_vec_error;
2283                 }
2284         }
2285
2286         if (rte_intr_allow_others(intr_handle)) {
2287                 vec = RTE_INTR_VEC_RXTX_OFFSET;
2288                 base = RTE_INTR_VEC_RXTX_OFFSET;
2289         }
2290
2291         for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2292                 ret = hns3vf_bind_ring_with_vector(hw, vec, true,
2293                                                    HNS3_RING_TYPE_RX, q_id);
2294                 if (ret)
2295                         goto vf_bind_vector_error;
2296                 intr_handle->intr_vec[q_id] = vec;
2297                 /*
2298                  * If there are not enough efds (e.g. not enough interrupt),
2299                  * remaining queues will be bond to the last interrupt.
2300                  */
2301                 if (vec < base + intr_handle->nb_efd - 1)
2302                         vec++;
2303         }
2304         rte_intr_enable(intr_handle);
2305         return 0;
2306
2307 vf_bind_vector_error:
2308         free(intr_handle->intr_vec);
2309         intr_handle->intr_vec = NULL;
2310 vf_alloc_intr_vec_error:
2311         rte_intr_efd_disable(intr_handle);
2312         return ret;
2313 }
2314
2315 static int
2316 hns3vf_restore_rx_interrupt(struct hns3_hw *hw)
2317 {
2318         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
2319         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2320         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2321         uint16_t q_id;
2322         int ret;
2323
2324         if (dev->data->dev_conf.intr_conf.rxq == 0)
2325                 return 0;
2326
2327         if (rte_intr_dp_is_en(intr_handle)) {
2328                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2329                         ret = hns3vf_bind_ring_with_vector(hw,
2330                                         intr_handle->intr_vec[q_id], true,
2331                                         HNS3_RING_TYPE_RX, q_id);
2332                         if (ret)
2333                                 return ret;
2334                 }
2335         }
2336
2337         return 0;
2338 }
2339
2340 static void
2341 hns3vf_restore_filter(struct rte_eth_dev *dev)
2342 {
2343         hns3_restore_rss_filter(dev);
2344 }
2345
2346 static int
2347 hns3vf_dev_start(struct rte_eth_dev *dev)
2348 {
2349         struct hns3_adapter *hns = dev->data->dev_private;
2350         struct hns3_hw *hw = &hns->hw;
2351         int ret;
2352
2353         PMD_INIT_FUNC_TRACE();
2354         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
2355                 return -EBUSY;
2356
2357         rte_spinlock_lock(&hw->lock);
2358         hw->adapter_state = HNS3_NIC_STARTING;
2359         ret = hns3vf_do_start(hns, true);
2360         if (ret) {
2361                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2362                 rte_spinlock_unlock(&hw->lock);
2363                 return ret;
2364         }
2365         ret = hns3vf_map_rx_interrupt(dev);
2366         if (ret)
2367                 goto map_rx_inter_err;
2368
2369         /*
2370          * There are three register used to control the status of a TQP
2371          * (contains a pair of Tx queue and Rx queue) in the new version network
2372          * engine. One is used to control the enabling of Tx queue, the other is
2373          * used to control the enabling of Rx queue, and the last is the master
2374          * switch used to control the enabling of the tqp. The Tx register and
2375          * TQP register must be enabled at the same time to enable a Tx queue.
2376          * The same applies to the Rx queue. For the older network enginem, this
2377          * function only refresh the enabled flag, and it is used to update the
2378          * status of queue in the dpdk framework.
2379          */
2380         ret = hns3_start_all_txqs(dev);
2381         if (ret)
2382                 goto map_rx_inter_err;
2383
2384         ret = hns3_start_all_rxqs(dev);
2385         if (ret)
2386                 goto start_all_rxqs_fail;
2387
2388         hw->adapter_state = HNS3_NIC_STARTED;
2389         rte_spinlock_unlock(&hw->lock);
2390
2391         hns3_rx_scattered_calc(dev);
2392         hns3_set_rxtx_function(dev);
2393         hns3_mp_req_start_rxtx(dev);
2394
2395         hns3vf_restore_filter(dev);
2396
2397         /* Enable interrupt of all rx queues before enabling queues */
2398         hns3_dev_all_rx_queue_intr_enable(hw, true);
2399         hns3_start_tqps(hw);
2400
2401         if (dev->data->dev_conf.intr_conf.lsc != 0)
2402                 hns3vf_dev_link_update(dev, 0);
2403         hns3vf_start_poll_job(dev);
2404
2405         return ret;
2406
2407 start_all_rxqs_fail:
2408         hns3_stop_all_txqs(dev);
2409 map_rx_inter_err:
2410         (void)hns3vf_do_stop(hns);
2411         hw->adapter_state = HNS3_NIC_CONFIGURED;
2412         rte_spinlock_unlock(&hw->lock);
2413
2414         return ret;
2415 }
2416
2417 static bool
2418 is_vf_reset_done(struct hns3_hw *hw)
2419 {
2420 #define HNS3_FUN_RST_ING_BITS \
2421         (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) | \
2422          BIT(HNS3_VECTOR0_CORERESET_INT_B) | \
2423          BIT(HNS3_VECTOR0_IMPRESET_INT_B) | \
2424          BIT(HNS3_VECTOR0_FUNCRESET_INT_B))
2425
2426         uint32_t val;
2427
2428         if (hw->reset.level == HNS3_VF_RESET) {
2429                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
2430                 if (val & HNS3_VF_RST_ING_BIT)
2431                         return false;
2432         } else {
2433                 val = hns3_read_dev(hw, HNS3_FUN_RST_ING);
2434                 if (val & HNS3_FUN_RST_ING_BITS)
2435                         return false;
2436         }
2437         return true;
2438 }
2439
2440 bool
2441 hns3vf_is_reset_pending(struct hns3_adapter *hns)
2442 {
2443         struct hns3_hw *hw = &hns->hw;
2444         enum hns3_reset_level reset;
2445
2446         /*
2447          * According to the protocol of PCIe, FLR to a PF device resets the PF
2448          * state as well as the SR-IOV extended capability including VF Enable
2449          * which means that VFs no longer exist.
2450          *
2451          * HNS3_VF_FULL_RESET means PF device is in FLR reset. when PF device
2452          * is in FLR stage, the register state of VF device is not reliable,
2453          * so register states detection can not be carried out. In this case,
2454          * we just ignore the register states and return false to indicate that
2455          * there are no other reset states that need to be processed by driver.
2456          */
2457         if (hw->reset.level == HNS3_VF_FULL_RESET)
2458                 return false;
2459
2460         /* Check the registers to confirm whether there is reset pending */
2461         hns3vf_check_event_cause(hns, NULL);
2462         reset = hns3vf_get_reset_level(hw, &hw->reset.pending);
2463         if (hw->reset.level != HNS3_NONE_RESET && reset != HNS3_NONE_RESET &&
2464             hw->reset.level < reset) {
2465                 hns3_warn(hw, "High level reset %d is pending", reset);
2466                 return true;
2467         }
2468         return false;
2469 }
2470
2471 static int
2472 hns3vf_wait_hardware_ready(struct hns3_adapter *hns)
2473 {
2474         struct hns3_hw *hw = &hns->hw;
2475         struct hns3_wait_data *wait_data = hw->reset.wait_data;
2476         struct timeval tv;
2477
2478         if (wait_data->result == HNS3_WAIT_SUCCESS) {
2479                 /*
2480                  * After vf reset is ready, the PF may not have completed
2481                  * the reset processing. The vf sending mbox to PF may fail
2482                  * during the pf reset, so it is better to add extra delay.
2483                  */
2484                 if (hw->reset.level == HNS3_VF_FUNC_RESET ||
2485                     hw->reset.level == HNS3_FLR_RESET)
2486                         return 0;
2487                 /* Reset retry process, no need to add extra delay. */
2488                 if (hw->reset.attempts)
2489                         return 0;
2490                 if (wait_data->check_completion == NULL)
2491                         return 0;
2492
2493                 wait_data->check_completion = NULL;
2494                 wait_data->interval = 1 * MSEC_PER_SEC * USEC_PER_MSEC;
2495                 wait_data->count = 1;
2496                 wait_data->result = HNS3_WAIT_REQUEST;
2497                 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback,
2498                                   wait_data);
2499                 hns3_warn(hw, "hardware is ready, delay 1 sec for PF reset complete");
2500                 return -EAGAIN;
2501         } else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
2502                 hns3_clock_gettime(&tv);
2503                 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
2504                           tv.tv_sec, tv.tv_usec);
2505                 return -ETIME;
2506         } else if (wait_data->result == HNS3_WAIT_REQUEST)
2507                 return -EAGAIN;
2508
2509         wait_data->hns = hns;
2510         wait_data->check_completion = is_vf_reset_done;
2511         wait_data->end_ms = (uint64_t)HNS3VF_RESET_WAIT_CNT *
2512                                 HNS3VF_RESET_WAIT_MS + hns3_clock_gettime_ms();
2513         wait_data->interval = HNS3VF_RESET_WAIT_MS * USEC_PER_MSEC;
2514         wait_data->count = HNS3VF_RESET_WAIT_CNT;
2515         wait_data->result = HNS3_WAIT_REQUEST;
2516         rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
2517         return -EAGAIN;
2518 }
2519
2520 static int
2521 hns3vf_prepare_reset(struct hns3_adapter *hns)
2522 {
2523         struct hns3_hw *hw = &hns->hw;
2524         int ret;
2525
2526         if (hw->reset.level == HNS3_VF_FUNC_RESET) {
2527                 ret = hns3_send_mbx_msg(hw, HNS3_MBX_RESET, 0, NULL,
2528                                         0, true, NULL, 0);
2529                 if (ret)
2530                         return ret;
2531         }
2532         __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
2533
2534         return 0;
2535 }
2536
2537 static int
2538 hns3vf_stop_service(struct hns3_adapter *hns)
2539 {
2540         struct hns3_hw *hw = &hns->hw;
2541         struct rte_eth_dev *eth_dev;
2542
2543         eth_dev = &rte_eth_devices[hw->data->port_id];
2544         if (hw->adapter_state == HNS3_NIC_STARTED) {
2545                 /*
2546                  * Make sure call update link status before hns3vf_stop_poll_job
2547                  * because update link status depend on polling job exist.
2548                  */
2549                 hns3vf_update_link_status(hw, ETH_LINK_DOWN, hw->mac.link_speed,
2550                                           hw->mac.link_duplex);
2551                 hns3vf_stop_poll_job(eth_dev);
2552         }
2553         hw->mac.link_status = ETH_LINK_DOWN;
2554
2555         hns3_set_rxtx_function(eth_dev);
2556         rte_wmb();
2557         /* Disable datapath on secondary process. */
2558         hns3_mp_req_stop_rxtx(eth_dev);
2559         rte_delay_ms(hw->tqps_num);
2560
2561         rte_spinlock_lock(&hw->lock);
2562         if (hw->adapter_state == HNS3_NIC_STARTED ||
2563             hw->adapter_state == HNS3_NIC_STOPPING) {
2564                 hns3_enable_all_queues(hw, false);
2565                 hns3vf_do_stop(hns);
2566                 hw->reset.mbuf_deferred_free = true;
2567         } else
2568                 hw->reset.mbuf_deferred_free = false;
2569
2570         /*
2571          * It is cumbersome for hardware to pick-and-choose entries for deletion
2572          * from table space. Hence, for function reset software intervention is
2573          * required to delete the entries.
2574          */
2575         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0)
2576                 hns3vf_configure_all_mc_mac_addr(hns, true);
2577         rte_spinlock_unlock(&hw->lock);
2578
2579         return 0;
2580 }
2581
2582 static int
2583 hns3vf_start_service(struct hns3_adapter *hns)
2584 {
2585         struct hns3_hw *hw = &hns->hw;
2586         struct rte_eth_dev *eth_dev;
2587
2588         eth_dev = &rte_eth_devices[hw->data->port_id];
2589         hns3_set_rxtx_function(eth_dev);
2590         hns3_mp_req_start_rxtx(eth_dev);
2591         if (hw->adapter_state == HNS3_NIC_STARTED) {
2592                 hns3vf_start_poll_job(eth_dev);
2593
2594                 /* Enable interrupt of all rx queues before enabling queues */
2595                 hns3_dev_all_rx_queue_intr_enable(hw, true);
2596                 /*
2597                  * Enable state of each rxq and txq will be recovered after
2598                  * reset, so we need to restore them before enable all tqps;
2599                  */
2600                 hns3_restore_tqp_enable_state(hw);
2601                 /*
2602                  * When finished the initialization, enable queues to receive
2603                  * and transmit packets.
2604                  */
2605                 hns3_enable_all_queues(hw, true);
2606         }
2607
2608         return 0;
2609 }
2610
2611 static int
2612 hns3vf_check_default_mac_change(struct hns3_hw *hw)
2613 {
2614         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2615         struct rte_ether_addr *hw_mac;
2616         int ret;
2617
2618         /*
2619          * The hns3 PF ethdev driver in kernel support setting VF MAC address
2620          * on the host by "ip link set ..." command. If the hns3 PF kernel
2621          * ethdev driver sets the MAC address for VF device after the
2622          * initialization of the related VF device, the PF driver will notify
2623          * VF driver to reset VF device to make the new MAC address effective
2624          * immediately. The hns3 VF PMD driver should check whether the MAC
2625          * address has been changed by the PF kernel ethdev driver, if changed
2626          * VF driver should configure hardware using the new MAC address in the
2627          * recovering hardware configuration stage of the reset process.
2628          */
2629         ret = hns3vf_get_host_mac_addr(hw);
2630         if (ret)
2631                 return ret;
2632
2633         hw_mac = (struct rte_ether_addr *)hw->mac.mac_addr;
2634         ret = rte_is_zero_ether_addr(hw_mac);
2635         if (ret) {
2636                 rte_ether_addr_copy(&hw->data->mac_addrs[0], hw_mac);
2637         } else {
2638                 ret = rte_is_same_ether_addr(&hw->data->mac_addrs[0], hw_mac);
2639                 if (!ret) {
2640                         rte_ether_addr_copy(hw_mac, &hw->data->mac_addrs[0]);
2641                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2642                                               &hw->data->mac_addrs[0]);
2643                         hns3_warn(hw, "Default MAC address has been changed to:"
2644                                   " %s by the host PF kernel ethdev driver",
2645                                   mac_str);
2646                 }
2647         }
2648
2649         return 0;
2650 }
2651
2652 static int
2653 hns3vf_restore_conf(struct hns3_adapter *hns)
2654 {
2655         struct hns3_hw *hw = &hns->hw;
2656         int ret;
2657
2658         ret = hns3vf_check_default_mac_change(hw);
2659         if (ret)
2660                 return ret;
2661
2662         ret = hns3vf_configure_mac_addr(hns, false);
2663         if (ret)
2664                 return ret;
2665
2666         ret = hns3vf_configure_all_mc_mac_addr(hns, false);
2667         if (ret)
2668                 goto err_mc_mac;
2669
2670         ret = hns3vf_restore_promisc(hns);
2671         if (ret)
2672                 goto err_vlan_table;
2673
2674         ret = hns3vf_restore_vlan_conf(hns);
2675         if (ret)
2676                 goto err_vlan_table;
2677
2678         ret = hns3vf_get_port_base_vlan_filter_state(hw);
2679         if (ret)
2680                 goto err_vlan_table;
2681
2682         ret = hns3vf_restore_rx_interrupt(hw);
2683         if (ret)
2684                 goto err_vlan_table;
2685
2686         ret = hns3_restore_gro_conf(hw);
2687         if (ret)
2688                 goto err_vlan_table;
2689
2690         if (hw->adapter_state == HNS3_NIC_STARTED) {
2691                 ret = hns3vf_do_start(hns, false);
2692                 if (ret)
2693                         goto err_vlan_table;
2694                 hns3_info(hw, "hns3vf dev restart successful!");
2695         } else if (hw->adapter_state == HNS3_NIC_STOPPING)
2696                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2697
2698         ret = hns3vf_set_alive(hw, true);
2699         if (ret) {
2700                 hns3_err(hw, "failed to VF send alive to PF: %d", ret);
2701                 goto err_vlan_table;
2702         }
2703
2704         return 0;
2705
2706 err_vlan_table:
2707         hns3vf_configure_all_mc_mac_addr(hns, true);
2708 err_mc_mac:
2709         hns3vf_configure_mac_addr(hns, true);
2710         return ret;
2711 }
2712
2713 static enum hns3_reset_level
2714 hns3vf_get_reset_level(struct hns3_hw *hw, uint64_t *levels)
2715 {
2716         enum hns3_reset_level reset_level;
2717
2718         /* return the highest priority reset level amongst all */
2719         if (hns3_atomic_test_bit(HNS3_VF_RESET, levels))
2720                 reset_level = HNS3_VF_RESET;
2721         else if (hns3_atomic_test_bit(HNS3_VF_FULL_RESET, levels))
2722                 reset_level = HNS3_VF_FULL_RESET;
2723         else if (hns3_atomic_test_bit(HNS3_VF_PF_FUNC_RESET, levels))
2724                 reset_level = HNS3_VF_PF_FUNC_RESET;
2725         else if (hns3_atomic_test_bit(HNS3_VF_FUNC_RESET, levels))
2726                 reset_level = HNS3_VF_FUNC_RESET;
2727         else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
2728                 reset_level = HNS3_FLR_RESET;
2729         else
2730                 reset_level = HNS3_NONE_RESET;
2731
2732         if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
2733                 return HNS3_NONE_RESET;
2734
2735         return reset_level;
2736 }
2737
2738 static void
2739 hns3vf_reset_service(void *param)
2740 {
2741         struct hns3_adapter *hns = (struct hns3_adapter *)param;
2742         struct hns3_hw *hw = &hns->hw;
2743         enum hns3_reset_level reset_level;
2744         struct timeval tv_delta;
2745         struct timeval tv_start;
2746         struct timeval tv;
2747         uint64_t msec;
2748
2749         /*
2750          * The interrupt is not triggered within the delay time.
2751          * The interrupt may have been lost. It is necessary to handle
2752          * the interrupt to recover from the error.
2753          */
2754         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
2755                             SCHEDULE_DEFERRED) {
2756                 __atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED,
2757                                  __ATOMIC_RELAXED);
2758                 hns3_err(hw, "Handling interrupts in delayed tasks");
2759                 hns3vf_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
2760                 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2761                 if (reset_level == HNS3_NONE_RESET) {
2762                         hns3_err(hw, "No reset level is set, try global reset");
2763                         hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
2764                 }
2765         }
2766         __atomic_store_n(&hw->reset.schedule, SCHEDULE_NONE, __ATOMIC_RELAXED);
2767
2768         /*
2769          * Hardware reset has been notified, we now have to poll & check if
2770          * hardware has actually completed the reset sequence.
2771          */
2772         reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2773         if (reset_level != HNS3_NONE_RESET) {
2774                 hns3_clock_gettime(&tv_start);
2775                 hns3_reset_process(hns, reset_level);
2776                 hns3_clock_gettime(&tv);
2777                 timersub(&tv, &tv_start, &tv_delta);
2778                 msec = hns3_clock_calctime_ms(&tv_delta);
2779                 if (msec > HNS3_RESET_PROCESS_MS)
2780                         hns3_err(hw, "%d handle long time delta %" PRIu64
2781                                  " ms time=%ld.%.6ld",
2782                                  hw->reset.level, msec, tv.tv_sec, tv.tv_usec);
2783         }
2784 }
2785
2786 static int
2787 hns3vf_reinit_dev(struct hns3_adapter *hns)
2788 {
2789         struct rte_eth_dev *eth_dev = &rte_eth_devices[hns->hw.data->port_id];
2790         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2791         struct hns3_hw *hw = &hns->hw;
2792         int ret;
2793
2794         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2795                 rte_intr_disable(&pci_dev->intr_handle);
2796                 ret = hns3vf_set_bus_master(pci_dev, true);
2797                 if (ret < 0) {
2798                         hns3_err(hw, "failed to set pci bus, ret = %d", ret);
2799                         return ret;
2800                 }
2801         }
2802
2803         /* Firmware command initialize */
2804         ret = hns3_cmd_init(hw);
2805         if (ret) {
2806                 hns3_err(hw, "Failed to init cmd: %d", ret);
2807                 return ret;
2808         }
2809
2810         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2811                 /*
2812                  * UIO enables msix by writing the pcie configuration space
2813                  * vfio_pci enables msix in rte_intr_enable.
2814                  */
2815                 if (pci_dev->kdrv == RTE_PCI_KDRV_IGB_UIO ||
2816                     pci_dev->kdrv == RTE_PCI_KDRV_UIO_GENERIC) {
2817                         if (hns3vf_enable_msix(pci_dev, true))
2818                                 hns3_err(hw, "Failed to enable msix");
2819                 }
2820
2821                 rte_intr_enable(&pci_dev->intr_handle);
2822         }
2823
2824         ret = hns3_reset_all_tqps(hns);
2825         if (ret) {
2826                 hns3_err(hw, "Failed to reset all queues: %d", ret);
2827                 return ret;
2828         }
2829
2830         ret = hns3vf_init_hardware(hns);
2831         if (ret) {
2832                 hns3_err(hw, "Failed to init hardware: %d", ret);
2833                 return ret;
2834         }
2835
2836         return 0;
2837 }
2838
2839 static const struct eth_dev_ops hns3vf_eth_dev_ops = {
2840         .dev_configure      = hns3vf_dev_configure,
2841         .dev_start          = hns3vf_dev_start,
2842         .dev_stop           = hns3vf_dev_stop,
2843         .dev_close          = hns3vf_dev_close,
2844         .mtu_set            = hns3vf_dev_mtu_set,
2845         .promiscuous_enable = hns3vf_dev_promiscuous_enable,
2846         .promiscuous_disable = hns3vf_dev_promiscuous_disable,
2847         .allmulticast_enable = hns3vf_dev_allmulticast_enable,
2848         .allmulticast_disable = hns3vf_dev_allmulticast_disable,
2849         .stats_get          = hns3_stats_get,
2850         .stats_reset        = hns3_stats_reset,
2851         .xstats_get         = hns3_dev_xstats_get,
2852         .xstats_get_names   = hns3_dev_xstats_get_names,
2853         .xstats_reset       = hns3_dev_xstats_reset,
2854         .xstats_get_by_id   = hns3_dev_xstats_get_by_id,
2855         .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
2856         .dev_infos_get      = hns3vf_dev_infos_get,
2857         .fw_version_get     = hns3vf_fw_version_get,
2858         .rx_queue_setup     = hns3_rx_queue_setup,
2859         .tx_queue_setup     = hns3_tx_queue_setup,
2860         .rx_queue_release   = hns3_dev_rx_queue_release,
2861         .tx_queue_release   = hns3_dev_tx_queue_release,
2862         .rx_queue_start     = hns3_dev_rx_queue_start,
2863         .rx_queue_stop      = hns3_dev_rx_queue_stop,
2864         .tx_queue_start     = hns3_dev_tx_queue_start,
2865         .tx_queue_stop      = hns3_dev_tx_queue_stop,
2866         .rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
2867         .rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
2868         .rxq_info_get       = hns3_rxq_info_get,
2869         .txq_info_get       = hns3_txq_info_get,
2870         .rx_burst_mode_get  = hns3_rx_burst_mode_get,
2871         .tx_burst_mode_get  = hns3_tx_burst_mode_get,
2872         .mac_addr_add       = hns3vf_add_mac_addr,
2873         .mac_addr_remove    = hns3vf_remove_mac_addr,
2874         .mac_addr_set       = hns3vf_set_default_mac_addr,
2875         .set_mc_addr_list   = hns3vf_set_mc_mac_addr_list,
2876         .link_update        = hns3vf_dev_link_update,
2877         .rss_hash_update    = hns3_dev_rss_hash_update,
2878         .rss_hash_conf_get  = hns3_dev_rss_hash_conf_get,
2879         .reta_update        = hns3_dev_rss_reta_update,
2880         .reta_query         = hns3_dev_rss_reta_query,
2881         .flow_ops_get       = hns3_dev_flow_ops_get,
2882         .vlan_filter_set    = hns3vf_vlan_filter_set,
2883         .vlan_offload_set   = hns3vf_vlan_offload_set,
2884         .get_reg            = hns3_get_regs,
2885         .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
2886         .tx_done_cleanup    = hns3_tx_done_cleanup,
2887 };
2888
2889 static const struct hns3_reset_ops hns3vf_reset_ops = {
2890         .reset_service       = hns3vf_reset_service,
2891         .stop_service        = hns3vf_stop_service,
2892         .prepare_reset       = hns3vf_prepare_reset,
2893         .wait_hardware_ready = hns3vf_wait_hardware_ready,
2894         .reinit_dev          = hns3vf_reinit_dev,
2895         .restore_conf        = hns3vf_restore_conf,
2896         .start_service       = hns3vf_start_service,
2897 };
2898
2899 static int
2900 hns3vf_dev_init(struct rte_eth_dev *eth_dev)
2901 {
2902         struct hns3_adapter *hns = eth_dev->data->dev_private;
2903         struct hns3_hw *hw = &hns->hw;
2904         int ret;
2905
2906         PMD_INIT_FUNC_TRACE();
2907
2908         eth_dev->process_private = (struct hns3_process_private *)
2909             rte_zmalloc_socket("hns3_filter_list",
2910                                sizeof(struct hns3_process_private),
2911                                RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
2912         if (eth_dev->process_private == NULL) {
2913                 PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
2914                 return -ENOMEM;
2915         }
2916
2917         hns3_flow_init(eth_dev);
2918
2919         hns3_set_rxtx_function(eth_dev);
2920         eth_dev->dev_ops = &hns3vf_eth_dev_ops;
2921         eth_dev->rx_queue_count = hns3_rx_queue_count;
2922         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2923                 ret = hns3_mp_init_secondary();
2924                 if (ret) {
2925                         PMD_INIT_LOG(ERR, "Failed to init for secondary "
2926                                           "process, ret = %d", ret);
2927                         goto err_mp_init_secondary;
2928                 }
2929
2930                 hw->secondary_cnt++;
2931                 return 0;
2932         }
2933
2934         ret = hns3_mp_init_primary();
2935         if (ret) {
2936                 PMD_INIT_LOG(ERR,
2937                              "Failed to init for primary process, ret = %d",
2938                              ret);
2939                 goto err_mp_init_primary;
2940         }
2941
2942         hw->adapter_state = HNS3_NIC_UNINITIALIZED;
2943         hns->is_vf = true;
2944         hw->data = eth_dev->data;
2945         hns3_parse_devargs(eth_dev);
2946
2947         ret = hns3_reset_init(hw);
2948         if (ret)
2949                 goto err_init_reset;
2950         hw->reset.ops = &hns3vf_reset_ops;
2951
2952         ret = hns3vf_init_vf(eth_dev);
2953         if (ret) {
2954                 PMD_INIT_LOG(ERR, "Failed to init vf: %d", ret);
2955                 goto err_init_vf;
2956         }
2957
2958         /* Allocate memory for storing MAC addresses */
2959         eth_dev->data->mac_addrs = rte_zmalloc("hns3vf-mac",
2960                                                sizeof(struct rte_ether_addr) *
2961                                                HNS3_VF_UC_MACADDR_NUM, 0);
2962         if (eth_dev->data->mac_addrs == NULL) {
2963                 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
2964                              "to store MAC addresses",
2965                              sizeof(struct rte_ether_addr) *
2966                              HNS3_VF_UC_MACADDR_NUM);
2967                 ret = -ENOMEM;
2968                 goto err_rte_zmalloc;
2969         }
2970
2971         /*
2972          * The hns3 PF ethdev driver in kernel support setting VF MAC address
2973          * on the host by "ip link set ..." command. To avoid some incorrect
2974          * scenes, for example, hns3 VF PMD driver fails to receive and send
2975          * packets after user configure the MAC address by using the
2976          * "ip link set ..." command, hns3 VF PMD driver keep the same MAC
2977          * address strategy as the hns3 kernel ethdev driver in the
2978          * initialization. If user configure a MAC address by the ip command
2979          * for VF device, then hns3 VF PMD driver will start with it, otherwise
2980          * start with a random MAC address in the initialization.
2981          */
2982         if (rte_is_zero_ether_addr((struct rte_ether_addr *)hw->mac.mac_addr))
2983                 rte_eth_random_addr(hw->mac.mac_addr);
2984         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
2985                             &eth_dev->data->mac_addrs[0]);
2986
2987         hw->adapter_state = HNS3_NIC_INITIALIZED;
2988
2989         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
2990                             SCHEDULE_PENDING) {
2991                 hns3_err(hw, "Reschedule reset service after dev_init");
2992                 hns3_schedule_reset(hns);
2993         } else {
2994                 /* IMP will wait ready flag before reset */
2995                 hns3_notify_reset_ready(hw, false);
2996         }
2997         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
2998                           eth_dev);
2999         return 0;
3000
3001 err_rte_zmalloc:
3002         hns3vf_uninit_vf(eth_dev);
3003
3004 err_init_vf:
3005         rte_free(hw->reset.wait_data);
3006
3007 err_init_reset:
3008         hns3_mp_uninit_primary();
3009
3010 err_mp_init_primary:
3011 err_mp_init_secondary:
3012         eth_dev->dev_ops = NULL;
3013         eth_dev->rx_pkt_burst = NULL;
3014         eth_dev->rx_descriptor_status = NULL;
3015         eth_dev->tx_pkt_burst = NULL;
3016         eth_dev->tx_pkt_prepare = NULL;
3017         eth_dev->tx_descriptor_status = NULL;
3018         rte_free(eth_dev->process_private);
3019         eth_dev->process_private = NULL;
3020
3021         return ret;
3022 }
3023
3024 static int
3025 hns3vf_dev_uninit(struct rte_eth_dev *eth_dev)
3026 {
3027         struct hns3_adapter *hns = eth_dev->data->dev_private;
3028         struct hns3_hw *hw = &hns->hw;
3029
3030         PMD_INIT_FUNC_TRACE();
3031
3032         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
3033                 rte_free(eth_dev->process_private);
3034                 eth_dev->process_private = NULL;
3035                 return 0;
3036         }
3037
3038         if (hw->adapter_state < HNS3_NIC_CLOSING)
3039                 hns3vf_dev_close(eth_dev);
3040
3041         hw->adapter_state = HNS3_NIC_REMOVED;
3042         return 0;
3043 }
3044
3045 static int
3046 eth_hns3vf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3047                      struct rte_pci_device *pci_dev)
3048 {
3049         return rte_eth_dev_pci_generic_probe(pci_dev,
3050                                              sizeof(struct hns3_adapter),
3051                                              hns3vf_dev_init);
3052 }
3053
3054 static int
3055 eth_hns3vf_pci_remove(struct rte_pci_device *pci_dev)
3056 {
3057         return rte_eth_dev_pci_generic_remove(pci_dev, hns3vf_dev_uninit);
3058 }
3059
3060 static const struct rte_pci_id pci_id_hns3vf_map[] = {
3061         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_VF) },
3062         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_PFC_VF) },
3063         { .vendor_id = 0, }, /* sentinel */
3064 };
3065
3066 static struct rte_pci_driver rte_hns3vf_pmd = {
3067         .id_table = pci_id_hns3vf_map,
3068         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
3069         .probe = eth_hns3vf_pci_probe,
3070         .remove = eth_hns3vf_pci_remove,
3071 };
3072
3073 RTE_PMD_REGISTER_PCI(net_hns3_vf, rte_hns3vf_pmd);
3074 RTE_PMD_REGISTER_PCI_TABLE(net_hns3_vf, pci_id_hns3vf_map);
3075 RTE_PMD_REGISTER_KMOD_DEP(net_hns3_vf, "* igb_uio | vfio-pci");
3076 RTE_PMD_REGISTER_PARAM_STRING(net_hns3_vf,
3077                 HNS3_DEVARG_RX_FUNC_HINT "=vec|sve|simple|common "
3078                 HNS3_DEVARG_TX_FUNC_HINT "=vec|sve|simple|common "
3079                 HNS3_DEVARG_DEV_CAPS_MASK "=<1-65535> ");