1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2018-2019 Hisilicon Limited.
11 #include <arpa/inet.h>
12 #include <linux/pci_regs.h>
14 #include <rte_alarm.h>
15 #include <rte_atomic.h>
16 #include <rte_bus_pci.h>
17 #include <rte_byteorder.h>
18 #include <rte_common.h>
19 #include <rte_cycles.h>
22 #include <rte_ether.h>
23 #include <rte_ethdev_driver.h>
24 #include <rte_ethdev_pci.h>
25 #include <rte_interrupts.h>
31 #include "hns3_ethdev.h"
32 #include "hns3_logs.h"
33 #include "hns3_rxtx.h"
34 #include "hns3_regs.h"
35 #include "hns3_intr.h"
39 #define HNS3VF_KEEP_ALIVE_INTERVAL 2000000 /* us */
40 #define HNS3VF_SERVICE_INTERVAL 1000000 /* us */
42 #define HNS3VF_RESET_WAIT_MS 20
43 #define HNS3VF_RESET_WAIT_CNT 2000
45 /* Reset related Registers */
46 #define HNS3_GLOBAL_RESET_BIT 0
47 #define HNS3_CORE_RESET_BIT 1
48 #define HNS3_IMP_RESET_BIT 2
49 #define HNS3_FUN_RST_ING_B 0
51 enum hns3vf_evt_cause {
52 HNS3VF_VECTOR0_EVENT_RST,
53 HNS3VF_VECTOR0_EVENT_MBX,
54 HNS3VF_VECTOR0_EVENT_OTHER,
57 static enum hns3_reset_level hns3vf_get_reset_level(struct hns3_hw *hw,
59 static int hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
60 static int hns3vf_dev_configure_vlan(struct rte_eth_dev *dev);
62 static int hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
63 struct rte_ether_addr *mac_addr);
64 static int hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
65 struct rte_ether_addr *mac_addr);
66 /* set PCI bus mastering */
68 hns3vf_set_bus_master(const struct rte_pci_device *device, bool op)
72 rte_pci_read_config(device, ®, sizeof(reg), PCI_COMMAND);
75 /* set the master bit */
76 reg |= PCI_COMMAND_MASTER;
78 reg &= ~(PCI_COMMAND_MASTER);
80 rte_pci_write_config(device, ®, sizeof(reg), PCI_COMMAND);
84 * hns3vf_find_pci_capability - lookup a capability in the PCI capability list
85 * @cap: the capability
87 * Return the address of the given capability within the PCI capability list.
90 hns3vf_find_pci_capability(const struct rte_pci_device *device, int cap)
92 #define MAX_PCIE_CAPABILITY 48
98 rte_pci_read_config(device, &status, sizeof(status), PCI_STATUS);
99 if (!(status & PCI_STATUS_CAP_LIST))
102 ttl = MAX_PCIE_CAPABILITY;
103 rte_pci_read_config(device, &pos, sizeof(pos), PCI_CAPABILITY_LIST);
104 while (ttl-- && pos >= PCI_STD_HEADER_SIZEOF) {
105 rte_pci_read_config(device, &id, sizeof(id),
106 (pos + PCI_CAP_LIST_ID));
114 rte_pci_read_config(device, &pos, sizeof(pos),
115 (pos + PCI_CAP_LIST_NEXT));
121 hns3vf_enable_msix(const struct rte_pci_device *device, bool op)
126 pos = hns3vf_find_pci_capability(device, PCI_CAP_ID_MSIX);
128 rte_pci_read_config(device, &control, sizeof(control),
129 (pos + PCI_MSIX_FLAGS));
131 control |= PCI_MSIX_FLAGS_ENABLE;
133 control &= ~PCI_MSIX_FLAGS_ENABLE;
134 rte_pci_write_config(device, &control, sizeof(control),
135 (pos + PCI_MSIX_FLAGS));
142 hns3vf_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
144 /* mac address was checked by upper level interface */
145 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
148 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
149 HNS3_MBX_MAC_VLAN_UC_ADD, mac_addr->addr_bytes,
150 RTE_ETHER_ADDR_LEN, false, NULL, 0);
152 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
154 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
161 hns3vf_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
163 /* mac address was checked by upper level interface */
164 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
167 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
168 HNS3_MBX_MAC_VLAN_UC_REMOVE,
169 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN,
172 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
174 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
181 hns3vf_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
183 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
184 struct rte_ether_addr *addr;
188 for (i = 0; i < hw->mc_addrs_num; i++) {
189 addr = &hw->mc_addrs[i];
190 /* Check if there are duplicate addresses */
191 if (rte_is_same_ether_addr(addr, mac_addr)) {
192 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
194 hns3_err(hw, "failed to add mc mac addr, same addrs"
195 "(%s) is added by the set_mc_mac_addr_list "
201 ret = hns3vf_add_mc_mac_addr(hw, mac_addr);
203 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
205 hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
212 hns3vf_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
213 __rte_unused uint32_t idx,
214 __rte_unused uint32_t pool)
216 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
217 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
220 rte_spinlock_lock(&hw->lock);
223 * In hns3 network engine adding UC and MC mac address with different
224 * commands with firmware. We need to determine whether the input
225 * address is a UC or a MC address to call different commands.
226 * By the way, it is recommended calling the API function named
227 * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
228 * using the rte_eth_dev_mac_addr_add API function to set MC mac address
229 * may affect the specifications of UC mac addresses.
231 if (rte_is_multicast_ether_addr(mac_addr))
232 ret = hns3vf_add_mc_addr_common(hw, mac_addr);
234 ret = hns3vf_add_uc_mac_addr(hw, mac_addr);
236 rte_spinlock_unlock(&hw->lock);
238 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
240 hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
248 hns3vf_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
250 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
251 /* index will be checked by upper level rte interface */
252 struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
253 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
256 rte_spinlock_lock(&hw->lock);
258 if (rte_is_multicast_ether_addr(mac_addr))
259 ret = hns3vf_remove_mc_mac_addr(hw, mac_addr);
261 ret = hns3vf_remove_uc_mac_addr(hw, mac_addr);
263 rte_spinlock_unlock(&hw->lock);
265 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
267 hns3_err(hw, "failed to remove mac addr(%s), ret = %d",
273 hns3vf_set_default_mac_addr(struct rte_eth_dev *dev,
274 struct rte_ether_addr *mac_addr)
276 #define HNS3_TWO_ETHER_ADDR_LEN (RTE_ETHER_ADDR_LEN * 2)
277 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
278 struct rte_ether_addr *old_addr;
279 uint8_t addr_bytes[HNS3_TWO_ETHER_ADDR_LEN]; /* for 2 MAC addresses */
280 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
284 * It has been guaranteed that input parameter named mac_addr is valid
285 * address in the rte layer of DPDK framework.
287 old_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
288 rte_spinlock_lock(&hw->lock);
289 memcpy(addr_bytes, mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN);
290 memcpy(&addr_bytes[RTE_ETHER_ADDR_LEN], old_addr->addr_bytes,
293 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
294 HNS3_MBX_MAC_VLAN_UC_MODIFY, addr_bytes,
295 HNS3_TWO_ETHER_ADDR_LEN, true, NULL, 0);
298 * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev
299 * driver. When user has configured a MAC address for VF device
300 * by "ip link set ..." command based on the PF device, the hns3
301 * PF kernel ethdev driver does not allow VF driver to request
302 * reconfiguring a different default MAC address, and return
303 * -EPREM to VF driver through mailbox.
306 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
308 hns3_warn(hw, "Has permanet mac addr(%s) for vf",
311 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
313 hns3_err(hw, "Failed to set mac addr(%s) for vf: %d",
318 rte_ether_addr_copy(mac_addr,
319 (struct rte_ether_addr *)hw->mac.mac_addr);
320 rte_spinlock_unlock(&hw->lock);
326 hns3vf_configure_mac_addr(struct hns3_adapter *hns, bool del)
328 struct hns3_hw *hw = &hns->hw;
329 struct rte_ether_addr *addr;
330 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
335 for (i = 0; i < HNS3_VF_UC_MACADDR_NUM; i++) {
336 addr = &hw->data->mac_addrs[i];
337 if (rte_is_zero_ether_addr(addr))
339 if (rte_is_multicast_ether_addr(addr))
340 ret = del ? hns3vf_remove_mc_mac_addr(hw, addr) :
341 hns3vf_add_mc_mac_addr(hw, addr);
343 ret = del ? hns3vf_remove_uc_mac_addr(hw, addr) :
344 hns3vf_add_uc_mac_addr(hw, addr);
348 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
350 hns3_err(hw, "failed to %s mac addr(%s) index:%d "
351 "ret = %d.", del ? "remove" : "restore",
359 hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
360 struct rte_ether_addr *mac_addr)
362 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
365 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
366 HNS3_MBX_MAC_VLAN_MC_ADD,
367 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
370 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
372 hns3_err(hw, "Failed to add mc mac addr(%s) for vf: %d",
380 hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
381 struct rte_ether_addr *mac_addr)
383 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
386 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
387 HNS3_MBX_MAC_VLAN_MC_REMOVE,
388 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
391 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
393 hns3_err(hw, "Failed to remove mc mac addr(%s) for vf: %d",
401 hns3vf_set_mc_addr_chk_param(struct hns3_hw *hw,
402 struct rte_ether_addr *mc_addr_set,
405 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
406 struct rte_ether_addr *addr;
410 if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
411 hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%d) "
412 "invalid. valid range: 0~%d",
413 nb_mc_addr, HNS3_MC_MACADDR_NUM);
417 /* Check if input mac addresses are valid */
418 for (i = 0; i < nb_mc_addr; i++) {
419 addr = &mc_addr_set[i];
420 if (!rte_is_multicast_ether_addr(addr)) {
421 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
424 "failed to set mc mac addr, addr(%s) invalid.",
429 /* Check if there are duplicate addresses */
430 for (j = i + 1; j < nb_mc_addr; j++) {
431 if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
432 rte_ether_format_addr(mac_str,
433 RTE_ETHER_ADDR_FMT_SIZE,
435 hns3_err(hw, "failed to set mc mac addr, "
436 "addrs invalid. two same addrs(%s).",
443 * Check if there are duplicate addresses between mac_addrs
446 for (j = 0; j < HNS3_VF_UC_MACADDR_NUM; j++) {
447 if (rte_is_same_ether_addr(addr,
448 &hw->data->mac_addrs[j])) {
449 rte_ether_format_addr(mac_str,
450 RTE_ETHER_ADDR_FMT_SIZE,
452 hns3_err(hw, "failed to set mc mac addr, "
453 "addrs invalid. addrs(%s) has already "
454 "configured in mac_addr add API",
465 hns3vf_set_mc_mac_addr_list(struct rte_eth_dev *dev,
466 struct rte_ether_addr *mc_addr_set,
469 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
470 struct rte_ether_addr *addr;
477 ret = hns3vf_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
481 rte_spinlock_lock(&hw->lock);
482 cur_addr_num = hw->mc_addrs_num;
483 for (i = 0; i < cur_addr_num; i++) {
484 num = cur_addr_num - i - 1;
485 addr = &hw->mc_addrs[num];
486 ret = hns3vf_remove_mc_mac_addr(hw, addr);
488 rte_spinlock_unlock(&hw->lock);
495 set_addr_num = (int)nb_mc_addr;
496 for (i = 0; i < set_addr_num; i++) {
497 addr = &mc_addr_set[i];
498 ret = hns3vf_add_mc_mac_addr(hw, addr);
500 rte_spinlock_unlock(&hw->lock);
504 rte_ether_addr_copy(addr, &hw->mc_addrs[hw->mc_addrs_num]);
507 rte_spinlock_unlock(&hw->lock);
513 hns3vf_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
515 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
516 struct hns3_hw *hw = &hns->hw;
517 struct rte_ether_addr *addr;
522 for (i = 0; i < hw->mc_addrs_num; i++) {
523 addr = &hw->mc_addrs[i];
524 if (!rte_is_multicast_ether_addr(addr))
527 ret = hns3vf_remove_mc_mac_addr(hw, addr);
529 ret = hns3vf_add_mc_mac_addr(hw, addr);
532 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
534 hns3_err(hw, "Failed to %s mc mac addr: %s for vf: %d",
535 del ? "Remove" : "Restore", mac_str, ret);
542 hns3vf_set_promisc_mode(struct hns3_hw *hw, bool en_bc_pmc,
543 bool en_uc_pmc, bool en_mc_pmc)
545 struct hns3_mbx_vf_to_pf_cmd *req;
546 struct hns3_cmd_desc desc;
549 req = (struct hns3_mbx_vf_to_pf_cmd *)desc.data;
552 * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev driver,
553 * so there are some features for promiscuous/allmulticast mode in hns3
554 * VF PMD driver as below:
555 * 1. The promiscuous/allmulticast mode can be configured successfully
556 * only based on the trusted VF device. If based on the non trusted
557 * VF device, configuring promiscuous/allmulticast mode will fail.
558 * The hns3 VF device can be confiruged as trusted device by hns3 PF
559 * kernel ethdev driver on the host by the following command:
560 * "ip link set <eth num> vf <vf id> turst on"
561 * 2. After the promiscuous mode is configured successfully, hns3 VF PMD
562 * driver can receive the ingress and outgoing traffic. In the words,
563 * all the ingress packets, all the packets sent from the PF and
564 * other VFs on the same physical port.
565 * 3. Note: Because of the hardware constraints, By default vlan filter
566 * is enabled and couldn't be turned off based on VF device, so vlan
567 * filter is still effective even in promiscuous mode. If upper
568 * applications don't call rte_eth_dev_vlan_filter API function to
569 * set vlan based on VF device, hns3 VF PMD driver will can't receive
570 * the packets with vlan tag in promiscuoue mode.
572 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MBX_VF_TO_PF, false);
573 req->msg[0] = HNS3_MBX_SET_PROMISC_MODE;
574 req->msg[1] = en_bc_pmc ? 1 : 0;
575 req->msg[2] = en_uc_pmc ? 1 : 0;
576 req->msg[3] = en_mc_pmc ? 1 : 0;
578 ret = hns3_cmd_send(hw, &desc, 1);
580 hns3_err(hw, "Set promisc mode fail, ret = %d", ret);
586 hns3vf_dev_promiscuous_enable(struct rte_eth_dev *dev)
588 struct hns3_adapter *hns = dev->data->dev_private;
589 struct hns3_hw *hw = &hns->hw;
592 ret = hns3vf_set_promisc_mode(hw, true, true, true);
594 hns3_err(hw, "Failed to enable promiscuous mode, ret = %d",
600 hns3vf_dev_promiscuous_disable(struct rte_eth_dev *dev)
602 bool allmulti = dev->data->all_multicast ? true : false;
603 struct hns3_adapter *hns = dev->data->dev_private;
604 struct hns3_hw *hw = &hns->hw;
607 ret = hns3vf_set_promisc_mode(hw, true, false, allmulti);
609 hns3_err(hw, "Failed to disable promiscuous mode, ret = %d",
615 hns3vf_dev_allmulticast_enable(struct rte_eth_dev *dev)
617 struct hns3_adapter *hns = dev->data->dev_private;
618 struct hns3_hw *hw = &hns->hw;
621 if (dev->data->promiscuous)
624 ret = hns3vf_set_promisc_mode(hw, true, false, true);
626 hns3_err(hw, "Failed to enable allmulticast mode, ret = %d",
632 hns3vf_dev_allmulticast_disable(struct rte_eth_dev *dev)
634 struct hns3_adapter *hns = dev->data->dev_private;
635 struct hns3_hw *hw = &hns->hw;
638 if (dev->data->promiscuous)
641 ret = hns3vf_set_promisc_mode(hw, true, false, false);
643 hns3_err(hw, "Failed to disable allmulticast mode, ret = %d",
649 hns3vf_restore_promisc(struct hns3_adapter *hns)
651 struct hns3_hw *hw = &hns->hw;
652 bool allmulti = hw->data->all_multicast ? true : false;
654 if (hw->data->promiscuous)
655 return hns3vf_set_promisc_mode(hw, true, true, true);
657 return hns3vf_set_promisc_mode(hw, true, false, allmulti);
661 hns3vf_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id,
662 bool mmap, enum hns3_ring_type queue_type,
665 struct hns3_vf_bind_vector_msg bind_msg;
670 memset(&bind_msg, 0, sizeof(bind_msg));
671 code = mmap ? HNS3_MBX_MAP_RING_TO_VECTOR :
672 HNS3_MBX_UNMAP_RING_TO_VECTOR;
673 bind_msg.vector_id = vector_id;
675 if (queue_type == HNS3_RING_TYPE_RX)
676 bind_msg.param[0].int_gl_index = HNS3_RING_GL_RX;
678 bind_msg.param[0].int_gl_index = HNS3_RING_GL_TX;
680 bind_msg.param[0].ring_type = queue_type;
681 bind_msg.ring_num = 1;
682 bind_msg.param[0].tqp_index = queue_id;
683 op_str = mmap ? "Map" : "Unmap";
684 ret = hns3_send_mbx_msg(hw, code, 0, (uint8_t *)&bind_msg,
685 sizeof(bind_msg), false, NULL, 0);
687 hns3_err(hw, "%s TQP %d fail, vector_id is %d, ret is %d.",
688 op_str, queue_id, bind_msg.vector_id, ret);
694 hns3vf_init_ring_with_vector(struct hns3_hw *hw)
701 * In hns3 network engine, vector 0 is always the misc interrupt of this
702 * function, vector 1~N can be used respectively for the queues of the
703 * function. Tx and Rx queues with the same number share the interrupt
704 * vector. In the initialization clearing the all hardware mapping
705 * relationship configurations between queues and interrupt vectors is
706 * needed, so some error caused by the residual configurations, such as
707 * the unexpected Tx interrupt, can be avoid.
709 vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
710 if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
711 vec = vec - 1; /* the last interrupt is reserved */
712 hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
713 for (i = 0; i < hw->intr_tqps_num; i++) {
715 * Set gap limiter/rate limiter/quanity limiter algorithm
716 * configuration for interrupt coalesce of queue's interrupt.
718 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
719 HNS3_TQP_INTR_GL_DEFAULT);
720 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
721 HNS3_TQP_INTR_GL_DEFAULT);
722 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
723 hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
725 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
726 HNS3_RING_TYPE_TX, i);
728 PMD_INIT_LOG(ERR, "VF fail to unbind TX ring(%d) with "
729 "vector: %d, ret=%d", i, vec, ret);
733 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
734 HNS3_RING_TYPE_RX, i);
736 PMD_INIT_LOG(ERR, "VF fail to unbind RX ring(%d) with "
737 "vector: %d, ret=%d", i, vec, ret);
746 hns3vf_dev_configure(struct rte_eth_dev *dev)
748 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
749 struct hns3_rss_conf *rss_cfg = &hw->rss_info;
750 struct rte_eth_conf *conf = &dev->data->dev_conf;
751 enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
752 uint16_t nb_rx_q = dev->data->nb_rx_queues;
753 uint16_t nb_tx_q = dev->data->nb_tx_queues;
754 struct rte_eth_rss_conf rss_conf;
760 * Hardware does not support individually enable/disable/reset the Tx or
761 * Rx queue in hns3 network engine. Driver must enable/disable/reset Tx
762 * and Rx queues at the same time. When the numbers of Tx queues
763 * allocated by upper applications are not equal to the numbers of Rx
764 * queues, driver needs to setup fake Tx or Rx queues to adjust numbers
765 * of Tx/Rx queues. otherwise, network engine can not work as usual. But
766 * these fake queues are imperceptible, and can not be used by upper
769 ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
771 hns3_err(hw, "Failed to set rx/tx fake queues: %d", ret);
775 hw->adapter_state = HNS3_NIC_CONFIGURING;
776 if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
777 hns3_err(hw, "setting link speed/duplex not supported");
782 /* When RSS is not configured, redirect the packet queue 0 */
783 if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
784 conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
785 rss_conf = conf->rx_adv_conf.rss_conf;
786 if (rss_conf.rss_key == NULL) {
787 rss_conf.rss_key = rss_cfg->key;
788 rss_conf.rss_key_len = HNS3_RSS_KEY_SIZE;
791 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
797 * If jumbo frames are enabled, MTU needs to be refreshed
798 * according to the maximum RX packet length.
800 if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
802 * Security of max_rx_pkt_len is guaranteed in dpdk frame.
803 * Maximum value of max_rx_pkt_len is HNS3_MAX_FRAME_LEN, so it
804 * can safely assign to "uint16_t" type variable.
806 mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(conf->rxmode.max_rx_pkt_len);
807 ret = hns3vf_dev_mtu_set(dev, mtu);
810 dev->data->mtu = mtu;
813 ret = hns3vf_dev_configure_vlan(dev);
817 /* config hardware GRO */
818 gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
819 ret = hns3_config_gro(hw, gro_en);
823 hw->adapter_state = HNS3_NIC_CONFIGURED;
827 (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
828 hw->adapter_state = HNS3_NIC_INITIALIZED;
834 hns3vf_config_mtu(struct hns3_hw *hw, uint16_t mtu)
838 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MTU, 0, (const uint8_t *)&mtu,
839 sizeof(mtu), true, NULL, 0);
841 hns3_err(hw, "Failed to set mtu (%u) for vf: %d", mtu, ret);
847 hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
849 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
850 uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
854 * The hns3 PF/VF devices on the same port share the hardware MTU
855 * configuration. Currently, we send mailbox to inform hns3 PF kernel
856 * ethdev driver to finish hardware MTU configuration in hns3 VF PMD
857 * driver, there is no need to stop the port for hns3 VF device, and the
858 * MTU value issued by hns3 VF PMD driver must be less than or equal to
861 if (rte_atomic16_read(&hw->reset.resetting)) {
862 hns3_err(hw, "Failed to set mtu during resetting");
866 rte_spinlock_lock(&hw->lock);
867 ret = hns3vf_config_mtu(hw, mtu);
869 rte_spinlock_unlock(&hw->lock);
872 if (frame_size > RTE_ETHER_MAX_LEN)
873 dev->data->dev_conf.rxmode.offloads |=
874 DEV_RX_OFFLOAD_JUMBO_FRAME;
876 dev->data->dev_conf.rxmode.offloads &=
877 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
878 dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
879 rte_spinlock_unlock(&hw->lock);
885 hns3vf_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
887 struct hns3_adapter *hns = eth_dev->data->dev_private;
888 struct hns3_hw *hw = &hns->hw;
889 uint16_t q_num = hw->tqps_num;
892 * In interrupt mode, 'max_rx_queues' is set based on the number of
893 * MSI-X interrupt resources of the hardware.
895 if (hw->data->dev_conf.intr_conf.rxq == 1)
896 q_num = hw->intr_tqps_num;
898 info->max_rx_queues = q_num;
899 info->max_tx_queues = hw->tqps_num;
900 info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
901 info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
902 info->max_mac_addrs = HNS3_VF_UC_MACADDR_NUM;
903 info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
904 info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
906 info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
907 DEV_RX_OFFLOAD_UDP_CKSUM |
908 DEV_RX_OFFLOAD_TCP_CKSUM |
909 DEV_RX_OFFLOAD_SCTP_CKSUM |
910 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
911 DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
912 DEV_RX_OFFLOAD_SCATTER |
913 DEV_RX_OFFLOAD_VLAN_STRIP |
914 DEV_RX_OFFLOAD_VLAN_FILTER |
915 DEV_RX_OFFLOAD_JUMBO_FRAME |
916 DEV_RX_OFFLOAD_RSS_HASH |
917 DEV_RX_OFFLOAD_TCP_LRO);
918 info->tx_queue_offload_capa = DEV_TX_OFFLOAD_MBUF_FAST_FREE;
919 info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
920 DEV_TX_OFFLOAD_IPV4_CKSUM |
921 DEV_TX_OFFLOAD_TCP_CKSUM |
922 DEV_TX_OFFLOAD_UDP_CKSUM |
923 DEV_TX_OFFLOAD_SCTP_CKSUM |
924 DEV_TX_OFFLOAD_MULTI_SEGS |
925 DEV_TX_OFFLOAD_TCP_TSO |
926 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
927 DEV_TX_OFFLOAD_GRE_TNL_TSO |
928 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
929 info->tx_queue_offload_capa |
930 hns3_txvlan_cap_get(hw));
932 info->rx_desc_lim = (struct rte_eth_desc_lim) {
933 .nb_max = HNS3_MAX_RING_DESC,
934 .nb_min = HNS3_MIN_RING_DESC,
935 .nb_align = HNS3_ALIGN_RING_DESC,
938 info->tx_desc_lim = (struct rte_eth_desc_lim) {
939 .nb_max = HNS3_MAX_RING_DESC,
940 .nb_min = HNS3_MIN_RING_DESC,
941 .nb_align = HNS3_ALIGN_RING_DESC,
942 .nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
943 .nb_mtu_seg_max = HNS3_MAX_NON_TSO_BD_PER_PKT,
946 info->default_rxconf = (struct rte_eth_rxconf) {
948 * If there are no available Rx buffer descriptors, incoming
949 * packets are always dropped by hardware based on hns3 network
955 info->vmdq_queue_num = 0;
957 info->reta_size = HNS3_RSS_IND_TBL_SIZE;
958 info->hash_key_size = HNS3_RSS_KEY_SIZE;
959 info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
960 info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
961 info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
967 hns3vf_clear_event_cause(struct hns3_hw *hw, uint32_t regclr)
969 hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
973 hns3vf_disable_irq0(struct hns3_hw *hw)
975 hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
979 hns3vf_enable_irq0(struct hns3_hw *hw)
981 hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
984 static enum hns3vf_evt_cause
985 hns3vf_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
987 struct hns3_hw *hw = &hns->hw;
988 enum hns3vf_evt_cause ret;
989 uint32_t cmdq_stat_reg;
990 uint32_t rst_ing_reg;
993 /* Fetch the events from their corresponding regs */
994 cmdq_stat_reg = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_STAT_REG);
996 if (BIT(HNS3_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
997 rst_ing_reg = hns3_read_dev(hw, HNS3_FUN_RST_ING);
998 hns3_warn(hw, "resetting reg: 0x%x", rst_ing_reg);
999 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
1000 rte_atomic16_set(&hw->reset.disable_cmd, 1);
1001 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
1002 hns3_write_dev(hw, HNS3_VF_RST_ING, val | HNS3_VF_RST_ING_BIT);
1003 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RST_INT_B);
1005 hw->reset.stats.global_cnt++;
1006 hns3_warn(hw, "Global reset detected, clear reset status");
1008 hns3_schedule_delayed_reset(hns);
1009 hns3_warn(hw, "Global reset detected, don't clear reset status");
1012 ret = HNS3VF_VECTOR0_EVENT_RST;
1016 /* Check for vector0 mailbox(=CMDQ RX) event source */
1017 if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1018 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
1019 ret = HNS3VF_VECTOR0_EVENT_MBX;
1024 ret = HNS3VF_VECTOR0_EVENT_OTHER;
1032 hns3vf_interrupt_handler(void *param)
1034 struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1035 struct hns3_adapter *hns = dev->data->dev_private;
1036 struct hns3_hw *hw = &hns->hw;
1037 enum hns3vf_evt_cause event_cause;
1040 if (hw->irq_thread_id == 0)
1041 hw->irq_thread_id = pthread_self();
1043 /* Disable interrupt */
1044 hns3vf_disable_irq0(hw);
1046 /* Read out interrupt causes */
1047 event_cause = hns3vf_check_event_cause(hns, &clearval);
1049 switch (event_cause) {
1050 case HNS3VF_VECTOR0_EVENT_RST:
1051 hns3_schedule_reset(hns);
1053 case HNS3VF_VECTOR0_EVENT_MBX:
1054 hns3_dev_handle_mbx_msg(hw);
1060 /* Clear interrupt causes */
1061 hns3vf_clear_event_cause(hw, clearval);
1063 /* Enable interrupt */
1064 hns3vf_enable_irq0(hw);
1068 hns3vf_set_default_dev_specifications(struct hns3_hw *hw)
1070 hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
1071 hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
1072 hw->rss_key_size = HNS3_RSS_KEY_SIZE;
1076 hns3vf_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
1078 struct hns3_dev_specs_0_cmd *req0;
1080 req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
1082 hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
1083 hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
1084 hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
1088 hns3vf_query_dev_specifications(struct hns3_hw *hw)
1090 struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
1094 for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
1095 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
1097 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1099 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
1101 ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
1105 hns3vf_parse_dev_specifications(hw, desc);
1111 hns3vf_get_capability(struct hns3_hw *hw)
1113 struct rte_pci_device *pci_dev;
1114 struct rte_eth_dev *eth_dev;
1118 eth_dev = &rte_eth_devices[hw->data->port_id];
1119 pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1121 /* Get PCI revision id */
1122 ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
1123 HNS3_PCI_REVISION_ID);
1124 if (ret != HNS3_PCI_REVISION_ID_LEN) {
1125 PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
1129 hw->revision = revision;
1131 if (revision < PCI_REVISION_ID_HIP09_A) {
1132 hns3vf_set_default_dev_specifications(hw);
1133 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
1134 hw->intr.coalesce_mode = HNS3_INTR_COALESCE_NON_QL;
1135 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
1139 ret = hns3vf_query_dev_specifications(hw);
1142 "failed to query dev specifications, ret = %d",
1147 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
1148 hw->intr.coalesce_mode = HNS3_INTR_COALESCE_QL;
1149 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
1155 hns3vf_check_tqp_info(struct hns3_hw *hw)
1159 tqps_num = hw->tqps_num;
1160 if (tqps_num > HNS3_MAX_TQP_NUM_PER_FUNC || tqps_num == 0) {
1161 PMD_INIT_LOG(ERR, "Get invalid tqps_num(%u) from PF. valid "
1163 tqps_num, HNS3_MAX_TQP_NUM_PER_FUNC);
1167 hw->alloc_rss_size = RTE_MIN(hw->rss_size_max, hw->tqps_num);
1172 hns3vf_get_port_base_vlan_filter_state(struct hns3_hw *hw)
1177 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN,
1178 HNS3_MBX_GET_PORT_BASE_VLAN_STATE, NULL, 0,
1179 true, &resp_msg, sizeof(resp_msg));
1181 if (ret == -ETIME) {
1183 * Getting current port based VLAN state from PF driver
1184 * will not affect VF driver's basic function. Because
1185 * the VF driver relies on hns3 PF kernel ether driver,
1186 * to avoid introducing compatibility issues with older
1187 * version of PF driver, no failure will be returned
1188 * when the return value is ETIME. This return value has
1189 * the following scenarios:
1190 * 1) Firmware didn't return the results in time
1191 * 2) the result return by firmware is timeout
1192 * 3) the older version of kernel side PF driver does
1193 * not support this mailbox message.
1194 * For scenarios 1 and 2, it is most likely that a
1195 * hardware error has occurred, or a hardware reset has
1196 * occurred. In this case, these errors will be caught
1197 * by other functions.
1199 PMD_INIT_LOG(WARNING,
1200 "failed to get PVID state for timeout, maybe "
1201 "kernel side PF driver doesn't support this "
1202 "mailbox message, or firmware didn't respond.");
1203 resp_msg = HNS3_PORT_BASE_VLAN_DISABLE;
1205 PMD_INIT_LOG(ERR, "failed to get port based VLAN state,"
1210 hw->port_base_vlan_cfg.state = resp_msg ?
1211 HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
1216 hns3vf_get_queue_info(struct hns3_hw *hw)
1218 #define HNS3VF_TQPS_RSS_INFO_LEN 6
1219 uint8_t resp_msg[HNS3VF_TQPS_RSS_INFO_LEN];
1222 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QINFO, 0, NULL, 0, true,
1223 resp_msg, HNS3VF_TQPS_RSS_INFO_LEN);
1225 PMD_INIT_LOG(ERR, "Failed to get tqp info from PF: %d", ret);
1229 memcpy(&hw->tqps_num, &resp_msg[0], sizeof(uint16_t));
1230 memcpy(&hw->rss_size_max, &resp_msg[2], sizeof(uint16_t));
1232 return hns3vf_check_tqp_info(hw);
1236 hns3vf_get_queue_depth(struct hns3_hw *hw)
1238 #define HNS3VF_TQPS_DEPTH_INFO_LEN 4
1239 uint8_t resp_msg[HNS3VF_TQPS_DEPTH_INFO_LEN];
1242 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QDEPTH, 0, NULL, 0, true,
1243 resp_msg, HNS3VF_TQPS_DEPTH_INFO_LEN);
1245 PMD_INIT_LOG(ERR, "Failed to get tqp depth info from PF: %d",
1250 memcpy(&hw->num_tx_desc, &resp_msg[0], sizeof(uint16_t));
1251 memcpy(&hw->num_rx_desc, &resp_msg[2], sizeof(uint16_t));
1257 hns3vf_get_tc_info(struct hns3_hw *hw)
1262 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_TCINFO, 0, NULL, 0,
1263 true, &resp_msg, sizeof(resp_msg));
1265 hns3_err(hw, "VF request to get TC info from PF failed %d",
1270 hw->hw_tc_map = resp_msg;
1276 hns3vf_get_host_mac_addr(struct hns3_hw *hw)
1278 uint8_t host_mac[RTE_ETHER_ADDR_LEN];
1281 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_MAC_ADDR, 0, NULL, 0,
1282 true, host_mac, RTE_ETHER_ADDR_LEN);
1284 hns3_err(hw, "Failed to get mac addr from PF: %d", ret);
1288 memcpy(hw->mac.mac_addr, host_mac, RTE_ETHER_ADDR_LEN);
1294 hns3vf_get_configuration(struct hns3_hw *hw)
1298 hw->mac.media_type = HNS3_MEDIA_TYPE_NONE;
1299 hw->rss_dis_flag = false;
1301 /* Get device capability */
1302 ret = hns3vf_get_capability(hw);
1304 PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
1308 /* Get queue configuration from PF */
1309 ret = hns3vf_get_queue_info(hw);
1313 /* Get queue depth info from PF */
1314 ret = hns3vf_get_queue_depth(hw);
1318 /* Get user defined VF MAC addr from PF */
1319 ret = hns3vf_get_host_mac_addr(hw);
1323 ret = hns3vf_get_port_base_vlan_filter_state(hw);
1327 /* Get tc configuration from PF */
1328 return hns3vf_get_tc_info(hw);
1332 hns3vf_set_tc_info(struct hns3_adapter *hns)
1334 struct hns3_hw *hw = &hns->hw;
1335 uint16_t nb_rx_q = hw->data->nb_rx_queues;
1336 uint16_t nb_tx_q = hw->data->nb_tx_queues;
1340 for (i = 0; i < HNS3_MAX_TC_NUM; i++)
1341 if (hw->hw_tc_map & BIT(i))
1344 if (nb_rx_q < hw->num_tc) {
1345 hns3_err(hw, "number of Rx queues(%d) is less than tcs(%d).",
1346 nb_rx_q, hw->num_tc);
1350 if (nb_tx_q < hw->num_tc) {
1351 hns3_err(hw, "number of Tx queues(%d) is less than tcs(%d).",
1352 nb_tx_q, hw->num_tc);
1356 hns3_set_rss_size(hw, nb_rx_q);
1357 hns3_tc_queue_mapping_cfg(hw, nb_tx_q);
1363 hns3vf_request_link_info(struct hns3_hw *hw)
1368 if (rte_atomic16_read(&hw->reset.resetting))
1370 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1371 &resp_msg, sizeof(resp_msg));
1373 hns3_err(hw, "Failed to fetch link status from PF: %d", ret);
1377 hns3vf_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
1379 #define HNS3VF_VLAN_MBX_MSG_LEN 5
1380 struct hns3_hw *hw = &hns->hw;
1381 uint8_t msg_data[HNS3VF_VLAN_MBX_MSG_LEN];
1382 uint16_t proto = htons(RTE_ETHER_TYPE_VLAN);
1383 uint8_t is_kill = on ? 0 : 1;
1385 msg_data[0] = is_kill;
1386 memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1387 memcpy(&msg_data[3], &proto, sizeof(proto));
1389 return hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_FILTER,
1390 msg_data, HNS3VF_VLAN_MBX_MSG_LEN, true, NULL,
1395 hns3vf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1397 struct hns3_adapter *hns = dev->data->dev_private;
1398 struct hns3_hw *hw = &hns->hw;
1401 if (rte_atomic16_read(&hw->reset.resetting)) {
1403 "vf set vlan id failed during resetting, vlan_id =%u",
1407 rte_spinlock_lock(&hw->lock);
1408 ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1409 rte_spinlock_unlock(&hw->lock);
1411 hns3_err(hw, "vf set vlan id failed, vlan_id =%u, ret =%d",
1418 hns3vf_en_hw_strip_rxvtag(struct hns3_hw *hw, bool enable)
1423 msg_data = enable ? 1 : 0;
1424 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_RX_OFF_CFG,
1425 &msg_data, sizeof(msg_data), false, NULL, 0);
1427 hns3_err(hw, "vf enable strip failed, ret =%d", ret);
1433 hns3vf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1435 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1436 struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1437 unsigned int tmp_mask;
1440 if (rte_atomic16_read(&hw->reset.resetting)) {
1441 hns3_err(hw, "vf set vlan offload failed during resetting, "
1442 "mask = 0x%x", mask);
1446 tmp_mask = (unsigned int)mask;
1447 /* Vlan stripping setting */
1448 if (tmp_mask & ETH_VLAN_STRIP_MASK) {
1449 rte_spinlock_lock(&hw->lock);
1450 /* Enable or disable VLAN stripping */
1451 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1452 ret = hns3vf_en_hw_strip_rxvtag(hw, true);
1454 ret = hns3vf_en_hw_strip_rxvtag(hw, false);
1455 rte_spinlock_unlock(&hw->lock);
1462 hns3vf_handle_all_vlan_table(struct hns3_adapter *hns, int on)
1464 struct rte_vlan_filter_conf *vfc;
1465 struct hns3_hw *hw = &hns->hw;
1472 vfc = &hw->data->vlan_filter_conf;
1473 for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1474 if (vfc->ids[i] == 0)
1479 * 64 means the num bits of ids, one bit corresponds to
1483 /* count trailing zeroes */
1484 vbit = ~ids & (ids - 1);
1485 /* clear least significant bit set */
1486 ids ^= (ids ^ (ids - 1)) ^ vbit;
1491 ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1494 "VF handle vlan table failed, ret =%d, on = %d",
1505 hns3vf_remove_all_vlan_table(struct hns3_adapter *hns)
1507 return hns3vf_handle_all_vlan_table(hns, 0);
1511 hns3vf_restore_vlan_conf(struct hns3_adapter *hns)
1513 struct hns3_hw *hw = &hns->hw;
1514 struct rte_eth_conf *dev_conf;
1518 dev_conf = &hw->data->dev_conf;
1519 en = dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP ? true
1521 ret = hns3vf_en_hw_strip_rxvtag(hw, en);
1523 hns3_err(hw, "VF restore vlan conf fail, en =%d, ret =%d", en,
1529 hns3vf_dev_configure_vlan(struct rte_eth_dev *dev)
1531 struct hns3_adapter *hns = dev->data->dev_private;
1532 struct rte_eth_dev_data *data = dev->data;
1533 struct hns3_hw *hw = &hns->hw;
1536 if (data->dev_conf.txmode.hw_vlan_reject_tagged ||
1537 data->dev_conf.txmode.hw_vlan_reject_untagged ||
1538 data->dev_conf.txmode.hw_vlan_insert_pvid) {
1539 hns3_warn(hw, "hw_vlan_reject_tagged, hw_vlan_reject_untagged "
1540 "or hw_vlan_insert_pvid is not support!");
1543 /* Apply vlan offload setting */
1544 ret = hns3vf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
1546 hns3_err(hw, "dev config vlan offload failed, ret =%d", ret);
1552 hns3vf_set_alive(struct hns3_hw *hw, bool alive)
1556 msg_data = alive ? 1 : 0;
1557 return hns3_send_mbx_msg(hw, HNS3_MBX_SET_ALIVE, 0, &msg_data,
1558 sizeof(msg_data), false, NULL, 0);
1562 hns3vf_keep_alive_handler(void *param)
1564 struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1565 struct hns3_adapter *hns = eth_dev->data->dev_private;
1566 struct hns3_hw *hw = &hns->hw;
1570 ret = hns3_send_mbx_msg(hw, HNS3_MBX_KEEP_ALIVE, 0, NULL, 0,
1571 false, &respmsg, sizeof(uint8_t));
1573 hns3_err(hw, "VF sends keeping alive cmd failed(=%d)",
1576 rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
1581 hns3vf_service_handler(void *param)
1583 struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1584 struct hns3_adapter *hns = eth_dev->data->dev_private;
1585 struct hns3_hw *hw = &hns->hw;
1588 * The query link status and reset processing are executed in the
1589 * interrupt thread.When the IMP reset occurs, IMP will not respond,
1590 * and the query operation will time out after 30ms. In the case of
1591 * multiple PF/VFs, each query failure timeout causes the IMP reset
1592 * interrupt to fail to respond within 100ms.
1593 * Before querying the link status, check whether there is a reset
1594 * pending, and if so, abandon the query.
1596 if (!hns3vf_is_reset_pending(hns))
1597 hns3vf_request_link_info(hw);
1599 hns3_warn(hw, "Cancel the query when reset is pending");
1601 rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler,
1606 hns3_query_vf_resource(struct hns3_hw *hw)
1608 struct hns3_vf_res_cmd *req;
1609 struct hns3_cmd_desc desc;
1613 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_VF_RSRC, true);
1614 ret = hns3_cmd_send(hw, &desc, 1);
1616 hns3_err(hw, "query vf resource failed, ret = %d", ret);
1620 req = (struct hns3_vf_res_cmd *)desc.data;
1621 num_msi = hns3_get_field(rte_le_to_cpu_16(req->vf_intr_vector_number),
1622 HNS3_VF_VEC_NUM_M, HNS3_VF_VEC_NUM_S);
1623 if (num_msi < HNS3_MIN_VECTOR_NUM) {
1624 hns3_err(hw, "Just %u msi resources, not enough for vf(min:%d)",
1625 num_msi, HNS3_MIN_VECTOR_NUM);
1629 hw->num_msi = num_msi;
1635 hns3vf_init_hardware(struct hns3_adapter *hns)
1637 struct hns3_hw *hw = &hns->hw;
1638 uint16_t mtu = hw->data->mtu;
1641 ret = hns3vf_set_promisc_mode(hw, true, false, false);
1645 ret = hns3vf_config_mtu(hw, mtu);
1647 goto err_init_hardware;
1649 ret = hns3vf_vlan_filter_configure(hns, 0, 1);
1651 PMD_INIT_LOG(ERR, "Failed to initialize VLAN config: %d", ret);
1652 goto err_init_hardware;
1655 ret = hns3_config_gro(hw, false);
1657 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
1658 goto err_init_hardware;
1662 * In the initialization clearing the all hardware mapping relationship
1663 * configurations between queues and interrupt vectors is needed, so
1664 * some error caused by the residual configurations, such as the
1665 * unexpected interrupt, can be avoid.
1667 ret = hns3vf_init_ring_with_vector(hw);
1669 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
1670 goto err_init_hardware;
1673 ret = hns3vf_set_alive(hw, true);
1675 PMD_INIT_LOG(ERR, "Failed to VF send alive to PF: %d", ret);
1676 goto err_init_hardware;
1679 hns3vf_request_link_info(hw);
1683 (void)hns3vf_set_promisc_mode(hw, false, false, false);
1688 hns3vf_clear_vport_list(struct hns3_hw *hw)
1690 return hns3_send_mbx_msg(hw, HNS3_MBX_HANDLE_VF_TBL,
1691 HNS3_MBX_VPORT_LIST_CLEAR, NULL, 0, false,
1696 hns3vf_init_vf(struct rte_eth_dev *eth_dev)
1698 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1699 struct hns3_adapter *hns = eth_dev->data->dev_private;
1700 struct hns3_hw *hw = &hns->hw;
1703 PMD_INIT_FUNC_TRACE();
1705 /* Get hardware io base address from pcie BAR2 IO space */
1706 hw->io_base = pci_dev->mem_resource[2].addr;
1708 /* Firmware command queue initialize */
1709 ret = hns3_cmd_init_queue(hw);
1711 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
1712 goto err_cmd_init_queue;
1715 /* Firmware command initialize */
1716 ret = hns3_cmd_init(hw);
1718 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
1722 /* Get VF resource */
1723 ret = hns3_query_vf_resource(hw);
1727 rte_spinlock_init(&hw->mbx_resp.lock);
1729 hns3vf_clear_event_cause(hw, 0);
1731 ret = rte_intr_callback_register(&pci_dev->intr_handle,
1732 hns3vf_interrupt_handler, eth_dev);
1734 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
1735 goto err_intr_callback_register;
1738 /* Enable interrupt */
1739 rte_intr_enable(&pci_dev->intr_handle);
1740 hns3vf_enable_irq0(hw);
1742 /* Get configuration from PF */
1743 ret = hns3vf_get_configuration(hw);
1745 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
1746 goto err_get_config;
1750 * The hns3 PF ethdev driver in kernel support setting VF MAC address
1751 * on the host by "ip link set ..." command. To avoid some incorrect
1752 * scenes, for example, hns3 VF PMD driver fails to receive and send
1753 * packets after user configure the MAC address by using the
1754 * "ip link set ..." command, hns3 VF PMD driver keep the same MAC
1755 * address strategy as the hns3 kernel ethdev driver in the
1756 * initialization. If user configure a MAC address by the ip command
1757 * for VF device, then hns3 VF PMD driver will start with it, otherwise
1758 * start with a random MAC address in the initialization.
1760 ret = rte_is_zero_ether_addr((struct rte_ether_addr *)hw->mac.mac_addr);
1762 rte_eth_random_addr(hw->mac.mac_addr);
1764 ret = hns3vf_clear_vport_list(hw);
1766 PMD_INIT_LOG(ERR, "Failed to clear tbl list: %d", ret);
1767 goto err_get_config;
1770 ret = hns3vf_init_hardware(hns);
1772 goto err_get_config;
1774 hns3_set_default_rss_args(hw);
1779 hns3vf_disable_irq0(hw);
1780 rte_intr_disable(&pci_dev->intr_handle);
1781 hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1783 err_intr_callback_register:
1785 hns3_cmd_uninit(hw);
1786 hns3_cmd_destroy_queue(hw);
1794 hns3vf_uninit_vf(struct rte_eth_dev *eth_dev)
1796 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1797 struct hns3_adapter *hns = eth_dev->data->dev_private;
1798 struct hns3_hw *hw = &hns->hw;
1800 PMD_INIT_FUNC_TRACE();
1802 hns3_rss_uninit(hns);
1803 (void)hns3_config_gro(hw, false);
1804 (void)hns3vf_set_alive(hw, false);
1805 (void)hns3vf_set_promisc_mode(hw, false, false, false);
1806 hns3vf_disable_irq0(hw);
1807 rte_intr_disable(&pci_dev->intr_handle);
1808 hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1810 hns3_cmd_uninit(hw);
1811 hns3_cmd_destroy_queue(hw);
1816 hns3vf_do_stop(struct hns3_adapter *hns)
1818 struct hns3_hw *hw = &hns->hw;
1821 hw->mac.link_status = ETH_LINK_DOWN;
1823 if (rte_atomic16_read(&hw->reset.disable_cmd) == 0) {
1824 hns3vf_configure_mac_addr(hns, true);
1827 reset_queue = false;
1828 return hns3_stop_queues(hns, reset_queue);
1832 hns3vf_unmap_rx_interrupt(struct rte_eth_dev *dev)
1834 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1835 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1836 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1837 uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
1838 uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
1841 if (dev->data->dev_conf.intr_conf.rxq == 0)
1844 /* unmap the ring with vector */
1845 if (rte_intr_allow_others(intr_handle)) {
1846 vec = RTE_INTR_VEC_RXTX_OFFSET;
1847 base = RTE_INTR_VEC_RXTX_OFFSET;
1849 if (rte_intr_dp_is_en(intr_handle)) {
1850 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
1851 (void)hns3vf_bind_ring_with_vector(hw, vec, false,
1854 if (vec < base + intr_handle->nb_efd - 1)
1858 /* Clean datapath event and queue/vec mapping */
1859 rte_intr_efd_disable(intr_handle);
1860 if (intr_handle->intr_vec) {
1861 rte_free(intr_handle->intr_vec);
1862 intr_handle->intr_vec = NULL;
1867 hns3vf_dev_stop(struct rte_eth_dev *dev)
1869 struct hns3_adapter *hns = dev->data->dev_private;
1870 struct hns3_hw *hw = &hns->hw;
1872 PMD_INIT_FUNC_TRACE();
1874 hw->adapter_state = HNS3_NIC_STOPPING;
1875 hns3_set_rxtx_function(dev);
1877 /* Disable datapath on secondary process. */
1878 hns3_mp_req_stop_rxtx(dev);
1879 /* Prevent crashes when queues are still in use. */
1880 rte_delay_ms(hw->tqps_num);
1882 rte_spinlock_lock(&hw->lock);
1883 if (rte_atomic16_read(&hw->reset.resetting) == 0) {
1884 hns3vf_do_stop(hns);
1885 hns3vf_unmap_rx_interrupt(dev);
1886 hns3_dev_release_mbufs(hns);
1887 hw->adapter_state = HNS3_NIC_CONFIGURED;
1889 rte_eal_alarm_cancel(hns3vf_service_handler, dev);
1890 rte_spinlock_unlock(&hw->lock);
1894 hns3vf_dev_close(struct rte_eth_dev *eth_dev)
1896 struct hns3_adapter *hns = eth_dev->data->dev_private;
1897 struct hns3_hw *hw = &hns->hw;
1899 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1902 if (hw->adapter_state == HNS3_NIC_STARTED)
1903 hns3vf_dev_stop(eth_dev);
1905 hw->adapter_state = HNS3_NIC_CLOSING;
1906 hns3_reset_abort(hns);
1907 hw->adapter_state = HNS3_NIC_CLOSED;
1908 rte_eal_alarm_cancel(hns3vf_keep_alive_handler, eth_dev);
1909 hns3vf_configure_all_mc_mac_addr(hns, true);
1910 hns3vf_remove_all_vlan_table(hns);
1911 hns3vf_uninit_vf(eth_dev);
1912 hns3_free_all_queues(eth_dev);
1913 rte_free(hw->reset.wait_data);
1914 rte_free(eth_dev->process_private);
1915 eth_dev->process_private = NULL;
1916 hns3_mp_uninit_primary();
1917 hns3_warn(hw, "Close port %d finished", hw->data->port_id);
1921 hns3vf_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
1924 struct hns3_adapter *hns = eth_dev->data->dev_private;
1925 struct hns3_hw *hw = &hns->hw;
1926 uint32_t version = hw->fw_version;
1929 ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
1930 hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
1931 HNS3_FW_VERSION_BYTE3_S),
1932 hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
1933 HNS3_FW_VERSION_BYTE2_S),
1934 hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
1935 HNS3_FW_VERSION_BYTE1_S),
1936 hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
1937 HNS3_FW_VERSION_BYTE0_S));
1938 ret += 1; /* add the size of '\0' */
1939 if (fw_size < (uint32_t)ret)
1946 hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
1947 __rte_unused int wait_to_complete)
1949 struct hns3_adapter *hns = eth_dev->data->dev_private;
1950 struct hns3_hw *hw = &hns->hw;
1951 struct hns3_mac *mac = &hw->mac;
1952 struct rte_eth_link new_link;
1954 memset(&new_link, 0, sizeof(new_link));
1955 switch (mac->link_speed) {
1956 case ETH_SPEED_NUM_10M:
1957 case ETH_SPEED_NUM_100M:
1958 case ETH_SPEED_NUM_1G:
1959 case ETH_SPEED_NUM_10G:
1960 case ETH_SPEED_NUM_25G:
1961 case ETH_SPEED_NUM_40G:
1962 case ETH_SPEED_NUM_50G:
1963 case ETH_SPEED_NUM_100G:
1964 case ETH_SPEED_NUM_200G:
1965 new_link.link_speed = mac->link_speed;
1968 new_link.link_speed = ETH_SPEED_NUM_100M;
1972 new_link.link_duplex = mac->link_duplex;
1973 new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
1974 new_link.link_autoneg =
1975 !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
1977 return rte_eth_linkstatus_set(eth_dev, &new_link);
1981 hns3vf_do_start(struct hns3_adapter *hns, bool reset_queue)
1983 struct hns3_hw *hw = &hns->hw;
1986 ret = hns3vf_set_tc_info(hns);
1990 ret = hns3_start_queues(hns, reset_queue);
1992 hns3_err(hw, "Failed to start queues: %d", ret);
1998 hns3vf_map_rx_interrupt(struct rte_eth_dev *dev)
2000 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2001 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2002 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2003 uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
2004 uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
2005 uint32_t intr_vector;
2009 if (dev->data->dev_conf.intr_conf.rxq == 0)
2012 /* disable uio/vfio intr/eventfd mapping */
2013 rte_intr_disable(intr_handle);
2015 /* check and configure queue intr-vector mapping */
2016 if (rte_intr_cap_multiple(intr_handle) ||
2017 !RTE_ETH_DEV_SRIOV(dev).active) {
2018 intr_vector = hw->used_rx_queues;
2019 /* It creates event fd for each intr vector when MSIX is used */
2020 if (rte_intr_efd_enable(intr_handle, intr_vector))
2023 if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
2024 intr_handle->intr_vec =
2025 rte_zmalloc("intr_vec",
2026 hw->used_rx_queues * sizeof(int), 0);
2027 if (intr_handle->intr_vec == NULL) {
2028 hns3_err(hw, "Failed to allocate %d rx_queues"
2029 " intr_vec", hw->used_rx_queues);
2031 goto vf_alloc_intr_vec_error;
2035 if (rte_intr_allow_others(intr_handle)) {
2036 vec = RTE_INTR_VEC_RXTX_OFFSET;
2037 base = RTE_INTR_VEC_RXTX_OFFSET;
2039 if (rte_intr_dp_is_en(intr_handle)) {
2040 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2041 ret = hns3vf_bind_ring_with_vector(hw, vec, true,
2045 goto vf_bind_vector_error;
2046 intr_handle->intr_vec[q_id] = vec;
2047 if (vec < base + intr_handle->nb_efd - 1)
2051 rte_intr_enable(intr_handle);
2054 vf_bind_vector_error:
2055 rte_intr_efd_disable(intr_handle);
2056 if (intr_handle->intr_vec) {
2057 free(intr_handle->intr_vec);
2058 intr_handle->intr_vec = NULL;
2061 vf_alloc_intr_vec_error:
2062 rte_intr_efd_disable(intr_handle);
2067 hns3vf_restore_rx_interrupt(struct hns3_hw *hw)
2069 struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
2070 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2071 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2075 if (dev->data->dev_conf.intr_conf.rxq == 0)
2078 if (rte_intr_dp_is_en(intr_handle)) {
2079 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2080 ret = hns3vf_bind_ring_with_vector(hw,
2081 intr_handle->intr_vec[q_id], true,
2082 HNS3_RING_TYPE_RX, q_id);
2092 hns3vf_restore_filter(struct rte_eth_dev *dev)
2094 hns3_restore_rss_filter(dev);
2098 hns3vf_dev_start(struct rte_eth_dev *dev)
2100 struct hns3_adapter *hns = dev->data->dev_private;
2101 struct hns3_hw *hw = &hns->hw;
2104 PMD_INIT_FUNC_TRACE();
2105 if (rte_atomic16_read(&hw->reset.resetting))
2108 rte_spinlock_lock(&hw->lock);
2109 hw->adapter_state = HNS3_NIC_STARTING;
2110 ret = hns3vf_do_start(hns, true);
2112 hw->adapter_state = HNS3_NIC_CONFIGURED;
2113 rte_spinlock_unlock(&hw->lock);
2116 ret = hns3vf_map_rx_interrupt(dev);
2118 hw->adapter_state = HNS3_NIC_CONFIGURED;
2119 rte_spinlock_unlock(&hw->lock);
2122 hw->adapter_state = HNS3_NIC_STARTED;
2123 rte_spinlock_unlock(&hw->lock);
2125 hns3_set_rxtx_function(dev);
2126 hns3_mp_req_start_rxtx(dev);
2127 rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler, dev);
2129 hns3vf_restore_filter(dev);
2131 /* Enable interrupt of all rx queues before enabling queues */
2132 hns3_dev_all_rx_queue_intr_enable(hw, true);
2134 * When finished the initialization, enable queues to receive/transmit
2137 hns3_enable_all_queues(hw, true);
2143 is_vf_reset_done(struct hns3_hw *hw)
2145 #define HNS3_FUN_RST_ING_BITS \
2146 (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) | \
2147 BIT(HNS3_VECTOR0_CORERESET_INT_B) | \
2148 BIT(HNS3_VECTOR0_IMPRESET_INT_B) | \
2149 BIT(HNS3_VECTOR0_FUNCRESET_INT_B))
2153 if (hw->reset.level == HNS3_VF_RESET) {
2154 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
2155 if (val & HNS3_VF_RST_ING_BIT)
2158 val = hns3_read_dev(hw, HNS3_FUN_RST_ING);
2159 if (val & HNS3_FUN_RST_ING_BITS)
2166 hns3vf_is_reset_pending(struct hns3_adapter *hns)
2168 struct hns3_hw *hw = &hns->hw;
2169 enum hns3_reset_level reset;
2171 hns3vf_check_event_cause(hns, NULL);
2172 reset = hns3vf_get_reset_level(hw, &hw->reset.pending);
2173 if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
2174 hns3_warn(hw, "High level reset %d is pending", reset);
2181 hns3vf_wait_hardware_ready(struct hns3_adapter *hns)
2183 struct hns3_hw *hw = &hns->hw;
2184 struct hns3_wait_data *wait_data = hw->reset.wait_data;
2187 if (wait_data->result == HNS3_WAIT_SUCCESS) {
2189 * After vf reset is ready, the PF may not have completed
2190 * the reset processing. The vf sending mbox to PF may fail
2191 * during the pf reset, so it is better to add extra delay.
2193 if (hw->reset.level == HNS3_VF_FUNC_RESET ||
2194 hw->reset.level == HNS3_FLR_RESET)
2196 /* Reset retry process, no need to add extra delay. */
2197 if (hw->reset.attempts)
2199 if (wait_data->check_completion == NULL)
2202 wait_data->check_completion = NULL;
2203 wait_data->interval = 1 * MSEC_PER_SEC * USEC_PER_MSEC;
2204 wait_data->count = 1;
2205 wait_data->result = HNS3_WAIT_REQUEST;
2206 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback,
2208 hns3_warn(hw, "hardware is ready, delay 1 sec for PF reset complete");
2210 } else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
2211 gettimeofday(&tv, NULL);
2212 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
2213 tv.tv_sec, tv.tv_usec);
2215 } else if (wait_data->result == HNS3_WAIT_REQUEST)
2218 wait_data->hns = hns;
2219 wait_data->check_completion = is_vf_reset_done;
2220 wait_data->end_ms = (uint64_t)HNS3VF_RESET_WAIT_CNT *
2221 HNS3VF_RESET_WAIT_MS + get_timeofday_ms();
2222 wait_data->interval = HNS3VF_RESET_WAIT_MS * USEC_PER_MSEC;
2223 wait_data->count = HNS3VF_RESET_WAIT_CNT;
2224 wait_data->result = HNS3_WAIT_REQUEST;
2225 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
2230 hns3vf_prepare_reset(struct hns3_adapter *hns)
2232 struct hns3_hw *hw = &hns->hw;
2235 if (hw->reset.level == HNS3_VF_FUNC_RESET) {
2236 ret = hns3_send_mbx_msg(hw, HNS3_MBX_RESET, 0, NULL,
2239 rte_atomic16_set(&hw->reset.disable_cmd, 1);
2245 hns3vf_stop_service(struct hns3_adapter *hns)
2247 struct hns3_hw *hw = &hns->hw;
2248 struct rte_eth_dev *eth_dev;
2250 eth_dev = &rte_eth_devices[hw->data->port_id];
2251 if (hw->adapter_state == HNS3_NIC_STARTED)
2252 rte_eal_alarm_cancel(hns3vf_service_handler, eth_dev);
2253 hw->mac.link_status = ETH_LINK_DOWN;
2255 hns3_set_rxtx_function(eth_dev);
2257 /* Disable datapath on secondary process. */
2258 hns3_mp_req_stop_rxtx(eth_dev);
2259 rte_delay_ms(hw->tqps_num);
2261 rte_spinlock_lock(&hw->lock);
2262 if (hw->adapter_state == HNS3_NIC_STARTED ||
2263 hw->adapter_state == HNS3_NIC_STOPPING) {
2264 hns3vf_do_stop(hns);
2265 hw->reset.mbuf_deferred_free = true;
2267 hw->reset.mbuf_deferred_free = false;
2270 * It is cumbersome for hardware to pick-and-choose entries for deletion
2271 * from table space. Hence, for function reset software intervention is
2272 * required to delete the entries.
2274 if (rte_atomic16_read(&hw->reset.disable_cmd) == 0)
2275 hns3vf_configure_all_mc_mac_addr(hns, true);
2276 rte_spinlock_unlock(&hw->lock);
2282 hns3vf_start_service(struct hns3_adapter *hns)
2284 struct hns3_hw *hw = &hns->hw;
2285 struct rte_eth_dev *eth_dev;
2287 eth_dev = &rte_eth_devices[hw->data->port_id];
2288 hns3_set_rxtx_function(eth_dev);
2289 hns3_mp_req_start_rxtx(eth_dev);
2290 if (hw->adapter_state == HNS3_NIC_STARTED) {
2291 hns3vf_service_handler(eth_dev);
2293 /* Enable interrupt of all rx queues before enabling queues */
2294 hns3_dev_all_rx_queue_intr_enable(hw, true);
2296 * When finished the initialization, enable queues to receive
2297 * and transmit packets.
2299 hns3_enable_all_queues(hw, true);
2306 hns3vf_check_default_mac_change(struct hns3_hw *hw)
2308 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2309 struct rte_ether_addr *hw_mac;
2313 * The hns3 PF ethdev driver in kernel support setting VF MAC address
2314 * on the host by "ip link set ..." command. If the hns3 PF kernel
2315 * ethdev driver sets the MAC address for VF device after the
2316 * initialization of the related VF device, the PF driver will notify
2317 * VF driver to reset VF device to make the new MAC address effective
2318 * immediately. The hns3 VF PMD driver should check whether the MAC
2319 * address has been changed by the PF kernel ethdev driver, if changed
2320 * VF driver should configure hardware using the new MAC address in the
2321 * recovering hardware configuration stage of the reset process.
2323 ret = hns3vf_get_host_mac_addr(hw);
2327 hw_mac = (struct rte_ether_addr *)hw->mac.mac_addr;
2328 ret = rte_is_zero_ether_addr(hw_mac);
2330 rte_ether_addr_copy(&hw->data->mac_addrs[0], hw_mac);
2332 ret = rte_is_same_ether_addr(&hw->data->mac_addrs[0], hw_mac);
2334 rte_ether_addr_copy(hw_mac, &hw->data->mac_addrs[0]);
2335 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2336 &hw->data->mac_addrs[0]);
2337 hns3_warn(hw, "Default MAC address has been changed to:"
2338 " %s by the host PF kernel ethdev driver",
2347 hns3vf_restore_conf(struct hns3_adapter *hns)
2349 struct hns3_hw *hw = &hns->hw;
2352 ret = hns3vf_check_default_mac_change(hw);
2356 ret = hns3vf_configure_mac_addr(hns, false);
2360 ret = hns3vf_configure_all_mc_mac_addr(hns, false);
2364 ret = hns3vf_restore_promisc(hns);
2366 goto err_vlan_table;
2368 ret = hns3vf_restore_vlan_conf(hns);
2370 goto err_vlan_table;
2372 ret = hns3vf_get_port_base_vlan_filter_state(hw);
2374 goto err_vlan_table;
2376 ret = hns3vf_restore_rx_interrupt(hw);
2378 goto err_vlan_table;
2380 ret = hns3_restore_gro_conf(hw);
2382 goto err_vlan_table;
2384 if (hw->adapter_state == HNS3_NIC_STARTED) {
2385 ret = hns3vf_do_start(hns, false);
2387 goto err_vlan_table;
2388 hns3_info(hw, "hns3vf dev restart successful!");
2389 } else if (hw->adapter_state == HNS3_NIC_STOPPING)
2390 hw->adapter_state = HNS3_NIC_CONFIGURED;
2394 hns3vf_configure_all_mc_mac_addr(hns, true);
2396 hns3vf_configure_mac_addr(hns, true);
2400 static enum hns3_reset_level
2401 hns3vf_get_reset_level(struct hns3_hw *hw, uint64_t *levels)
2403 enum hns3_reset_level reset_level;
2405 /* return the highest priority reset level amongst all */
2406 if (hns3_atomic_test_bit(HNS3_VF_RESET, levels))
2407 reset_level = HNS3_VF_RESET;
2408 else if (hns3_atomic_test_bit(HNS3_VF_FULL_RESET, levels))
2409 reset_level = HNS3_VF_FULL_RESET;
2410 else if (hns3_atomic_test_bit(HNS3_VF_PF_FUNC_RESET, levels))
2411 reset_level = HNS3_VF_PF_FUNC_RESET;
2412 else if (hns3_atomic_test_bit(HNS3_VF_FUNC_RESET, levels))
2413 reset_level = HNS3_VF_FUNC_RESET;
2414 else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
2415 reset_level = HNS3_FLR_RESET;
2417 reset_level = HNS3_NONE_RESET;
2419 if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
2420 return HNS3_NONE_RESET;
2426 hns3vf_reset_service(void *param)
2428 struct hns3_adapter *hns = (struct hns3_adapter *)param;
2429 struct hns3_hw *hw = &hns->hw;
2430 enum hns3_reset_level reset_level;
2431 struct timeval tv_delta;
2432 struct timeval tv_start;
2437 * The interrupt is not triggered within the delay time.
2438 * The interrupt may have been lost. It is necessary to handle
2439 * the interrupt to recover from the error.
2441 if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_DEFERRED) {
2442 rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_REQUESTED);
2443 hns3_err(hw, "Handling interrupts in delayed tasks");
2444 hns3vf_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
2445 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2446 if (reset_level == HNS3_NONE_RESET) {
2447 hns3_err(hw, "No reset level is set, try global reset");
2448 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
2451 rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_NONE);
2454 * Hardware reset has been notified, we now have to poll & check if
2455 * hardware has actually completed the reset sequence.
2457 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2458 if (reset_level != HNS3_NONE_RESET) {
2459 gettimeofday(&tv_start, NULL);
2460 hns3_reset_process(hns, reset_level);
2461 gettimeofday(&tv, NULL);
2462 timersub(&tv, &tv_start, &tv_delta);
2463 msec = tv_delta.tv_sec * MSEC_PER_SEC +
2464 tv_delta.tv_usec / USEC_PER_MSEC;
2465 if (msec > HNS3_RESET_PROCESS_MS)
2466 hns3_err(hw, "%d handle long time delta %" PRIx64
2467 " ms time=%ld.%.6ld",
2468 hw->reset.level, msec, tv.tv_sec, tv.tv_usec);
2473 hns3vf_reinit_dev(struct hns3_adapter *hns)
2475 struct rte_eth_dev *eth_dev = &rte_eth_devices[hns->hw.data->port_id];
2476 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2477 struct hns3_hw *hw = &hns->hw;
2480 if (hw->reset.level == HNS3_VF_FULL_RESET) {
2481 rte_intr_disable(&pci_dev->intr_handle);
2482 hns3vf_set_bus_master(pci_dev, true);
2485 /* Firmware command initialize */
2486 ret = hns3_cmd_init(hw);
2488 hns3_err(hw, "Failed to init cmd: %d", ret);
2492 if (hw->reset.level == HNS3_VF_FULL_RESET) {
2494 * UIO enables msix by writing the pcie configuration space
2495 * vfio_pci enables msix in rte_intr_enable.
2497 if (pci_dev->kdrv == RTE_PCI_KDRV_IGB_UIO ||
2498 pci_dev->kdrv == RTE_PCI_KDRV_UIO_GENERIC) {
2499 if (hns3vf_enable_msix(pci_dev, true))
2500 hns3_err(hw, "Failed to enable msix");
2503 rte_intr_enable(&pci_dev->intr_handle);
2506 ret = hns3_reset_all_queues(hns);
2508 hns3_err(hw, "Failed to reset all queues: %d", ret);
2512 ret = hns3vf_init_hardware(hns);
2514 hns3_err(hw, "Failed to init hardware: %d", ret);
2521 static const struct eth_dev_ops hns3vf_eth_dev_ops = {
2522 .dev_start = hns3vf_dev_start,
2523 .dev_stop = hns3vf_dev_stop,
2524 .dev_close = hns3vf_dev_close,
2525 .mtu_set = hns3vf_dev_mtu_set,
2526 .promiscuous_enable = hns3vf_dev_promiscuous_enable,
2527 .promiscuous_disable = hns3vf_dev_promiscuous_disable,
2528 .allmulticast_enable = hns3vf_dev_allmulticast_enable,
2529 .allmulticast_disable = hns3vf_dev_allmulticast_disable,
2530 .stats_get = hns3_stats_get,
2531 .stats_reset = hns3_stats_reset,
2532 .xstats_get = hns3_dev_xstats_get,
2533 .xstats_get_names = hns3_dev_xstats_get_names,
2534 .xstats_reset = hns3_dev_xstats_reset,
2535 .xstats_get_by_id = hns3_dev_xstats_get_by_id,
2536 .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
2537 .dev_infos_get = hns3vf_dev_infos_get,
2538 .fw_version_get = hns3vf_fw_version_get,
2539 .rx_queue_setup = hns3_rx_queue_setup,
2540 .tx_queue_setup = hns3_tx_queue_setup,
2541 .rx_queue_release = hns3_dev_rx_queue_release,
2542 .tx_queue_release = hns3_dev_tx_queue_release,
2543 .rx_queue_intr_enable = hns3_dev_rx_queue_intr_enable,
2544 .rx_queue_intr_disable = hns3_dev_rx_queue_intr_disable,
2545 .rxq_info_get = hns3_rxq_info_get,
2546 .txq_info_get = hns3_txq_info_get,
2547 .dev_configure = hns3vf_dev_configure,
2548 .mac_addr_add = hns3vf_add_mac_addr,
2549 .mac_addr_remove = hns3vf_remove_mac_addr,
2550 .mac_addr_set = hns3vf_set_default_mac_addr,
2551 .set_mc_addr_list = hns3vf_set_mc_mac_addr_list,
2552 .link_update = hns3vf_dev_link_update,
2553 .rss_hash_update = hns3_dev_rss_hash_update,
2554 .rss_hash_conf_get = hns3_dev_rss_hash_conf_get,
2555 .reta_update = hns3_dev_rss_reta_update,
2556 .reta_query = hns3_dev_rss_reta_query,
2557 .filter_ctrl = hns3_dev_filter_ctrl,
2558 .vlan_filter_set = hns3vf_vlan_filter_set,
2559 .vlan_offload_set = hns3vf_vlan_offload_set,
2560 .get_reg = hns3_get_regs,
2561 .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
2564 static const struct hns3_reset_ops hns3vf_reset_ops = {
2565 .reset_service = hns3vf_reset_service,
2566 .stop_service = hns3vf_stop_service,
2567 .prepare_reset = hns3vf_prepare_reset,
2568 .wait_hardware_ready = hns3vf_wait_hardware_ready,
2569 .reinit_dev = hns3vf_reinit_dev,
2570 .restore_conf = hns3vf_restore_conf,
2571 .start_service = hns3vf_start_service,
2575 hns3vf_dev_init(struct rte_eth_dev *eth_dev)
2577 struct hns3_adapter *hns = eth_dev->data->dev_private;
2578 struct hns3_hw *hw = &hns->hw;
2581 PMD_INIT_FUNC_TRACE();
2583 eth_dev->process_private = (struct hns3_process_private *)
2584 rte_zmalloc_socket("hns3_filter_list",
2585 sizeof(struct hns3_process_private),
2586 RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
2587 if (eth_dev->process_private == NULL) {
2588 PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
2592 /* initialize flow filter lists */
2593 hns3_filterlist_init(eth_dev);
2595 hns3_set_rxtx_function(eth_dev);
2596 eth_dev->dev_ops = &hns3vf_eth_dev_ops;
2597 if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2598 ret = hns3_mp_init_secondary();
2600 PMD_INIT_LOG(ERR, "Failed to init for secondary "
2601 "process, ret = %d", ret);
2602 goto err_mp_init_secondary;
2605 hw->secondary_cnt++;
2609 ret = hns3_mp_init_primary();
2612 "Failed to init for primary process, ret = %d",
2614 goto err_mp_init_primary;
2617 hw->adapter_state = HNS3_NIC_UNINITIALIZED;
2619 hw->data = eth_dev->data;
2621 ret = hns3_reset_init(hw);
2623 goto err_init_reset;
2624 hw->reset.ops = &hns3vf_reset_ops;
2626 ret = hns3vf_init_vf(eth_dev);
2628 PMD_INIT_LOG(ERR, "Failed to init vf: %d", ret);
2632 /* Allocate memory for storing MAC addresses */
2633 eth_dev->data->mac_addrs = rte_zmalloc("hns3vf-mac",
2634 sizeof(struct rte_ether_addr) *
2635 HNS3_VF_UC_MACADDR_NUM, 0);
2636 if (eth_dev->data->mac_addrs == NULL) {
2637 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
2638 "to store MAC addresses",
2639 sizeof(struct rte_ether_addr) *
2640 HNS3_VF_UC_MACADDR_NUM);
2642 goto err_rte_zmalloc;
2645 rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
2646 ð_dev->data->mac_addrs[0]);
2647 hw->adapter_state = HNS3_NIC_INITIALIZED;
2649 * Pass the information to the rte_eth_dev_close() that it should also
2650 * release the private port resources.
2652 eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
2654 if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_PENDING) {
2655 hns3_err(hw, "Reschedule reset service after dev_init");
2656 hns3_schedule_reset(hns);
2658 /* IMP will wait ready flag before reset */
2659 hns3_notify_reset_ready(hw, false);
2661 rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
2666 hns3vf_uninit_vf(eth_dev);
2669 rte_free(hw->reset.wait_data);
2672 hns3_mp_uninit_primary();
2674 err_mp_init_primary:
2675 err_mp_init_secondary:
2676 eth_dev->dev_ops = NULL;
2677 eth_dev->rx_pkt_burst = NULL;
2678 eth_dev->tx_pkt_burst = NULL;
2679 eth_dev->tx_pkt_prepare = NULL;
2680 rte_free(eth_dev->process_private);
2681 eth_dev->process_private = NULL;
2687 hns3vf_dev_uninit(struct rte_eth_dev *eth_dev)
2689 struct hns3_adapter *hns = eth_dev->data->dev_private;
2690 struct hns3_hw *hw = &hns->hw;
2692 PMD_INIT_FUNC_TRACE();
2694 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2697 eth_dev->dev_ops = NULL;
2698 eth_dev->rx_pkt_burst = NULL;
2699 eth_dev->tx_pkt_burst = NULL;
2700 eth_dev->tx_pkt_prepare = NULL;
2702 if (hw->adapter_state < HNS3_NIC_CLOSING)
2703 hns3vf_dev_close(eth_dev);
2705 hw->adapter_state = HNS3_NIC_REMOVED;
2710 eth_hns3vf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2711 struct rte_pci_device *pci_dev)
2713 return rte_eth_dev_pci_generic_probe(pci_dev,
2714 sizeof(struct hns3_adapter),
2719 eth_hns3vf_pci_remove(struct rte_pci_device *pci_dev)
2721 return rte_eth_dev_pci_generic_remove(pci_dev, hns3vf_dev_uninit);
2724 static const struct rte_pci_id pci_id_hns3vf_map[] = {
2725 { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_VF) },
2726 { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_PFC_VF) },
2727 { .vendor_id = 0, /* sentinel */ },
2730 static struct rte_pci_driver rte_hns3vf_pmd = {
2731 .id_table = pci_id_hns3vf_map,
2732 .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
2733 .probe = eth_hns3vf_pci_probe,
2734 .remove = eth_hns3vf_pci_remove,
2737 RTE_PMD_REGISTER_PCI(net_hns3_vf, rte_hns3vf_pmd);
2738 RTE_PMD_REGISTER_PCI_TABLE(net_hns3_vf, pci_id_hns3vf_map);
2739 RTE_PMD_REGISTER_KMOD_DEP(net_hns3_vf, "* igb_uio | vfio-pci");