net/hns3: add RSS hash offload to capabilities
[dpdk.git] / drivers / net / hns3 / hns3_ethdev_vf.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4
5 #include <errno.h>
6 #include <stdio.h>
7 #include <stdbool.h>
8 #include <string.h>
9 #include <inttypes.h>
10 #include <unistd.h>
11 #include <arpa/inet.h>
12 #include <linux/pci_regs.h>
13
14 #include <rte_alarm.h>
15 #include <rte_atomic.h>
16 #include <rte_bus_pci.h>
17 #include <rte_byteorder.h>
18 #include <rte_common.h>
19 #include <rte_cycles.h>
20 #include <rte_dev.h>
21 #include <rte_eal.h>
22 #include <rte_ether.h>
23 #include <rte_ethdev_driver.h>
24 #include <rte_ethdev_pci.h>
25 #include <rte_interrupts.h>
26 #include <rte_io.h>
27 #include <rte_log.h>
28 #include <rte_pci.h>
29 #include <rte_vfio.h>
30
31 #include "hns3_ethdev.h"
32 #include "hns3_logs.h"
33 #include "hns3_rxtx.h"
34 #include "hns3_regs.h"
35 #include "hns3_intr.h"
36 #include "hns3_dcb.h"
37 #include "hns3_mp.h"
38
39 #define HNS3VF_KEEP_ALIVE_INTERVAL      2000000 /* us */
40 #define HNS3VF_SERVICE_INTERVAL         1000000 /* us */
41
42 #define HNS3VF_RESET_WAIT_MS    20
43 #define HNS3VF_RESET_WAIT_CNT   2000
44
45 /* Reset related Registers */
46 #define HNS3_GLOBAL_RESET_BIT           0
47 #define HNS3_CORE_RESET_BIT             1
48 #define HNS3_IMP_RESET_BIT              2
49 #define HNS3_FUN_RST_ING_B              0
50
51 enum hns3vf_evt_cause {
52         HNS3VF_VECTOR0_EVENT_RST,
53         HNS3VF_VECTOR0_EVENT_MBX,
54         HNS3VF_VECTOR0_EVENT_OTHER,
55 };
56
57 static enum hns3_reset_level hns3vf_get_reset_level(struct hns3_hw *hw,
58                                                     uint64_t *levels);
59 static int hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
60 static int hns3vf_dev_configure_vlan(struct rte_eth_dev *dev);
61
62 static int hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
63                                   struct rte_ether_addr *mac_addr);
64 static int hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
65                                      struct rte_ether_addr *mac_addr);
66 /* set PCI bus mastering */
67 static void
68 hns3vf_set_bus_master(const struct rte_pci_device *device, bool op)
69 {
70         uint16_t reg;
71
72         rte_pci_read_config(device, &reg, sizeof(reg), PCI_COMMAND);
73
74         if (op)
75                 /* set the master bit */
76                 reg |= PCI_COMMAND_MASTER;
77         else
78                 reg &= ~(PCI_COMMAND_MASTER);
79
80         rte_pci_write_config(device, &reg, sizeof(reg), PCI_COMMAND);
81 }
82
83 /**
84  * hns3vf_find_pci_capability - lookup a capability in the PCI capability list
85  * @cap: the capability
86  *
87  * Return the address of the given capability within the PCI capability list.
88  */
89 static int
90 hns3vf_find_pci_capability(const struct rte_pci_device *device, int cap)
91 {
92 #define MAX_PCIE_CAPABILITY 48
93         uint16_t status;
94         uint8_t pos;
95         uint8_t id;
96         int ttl;
97
98         rte_pci_read_config(device, &status, sizeof(status), PCI_STATUS);
99         if (!(status & PCI_STATUS_CAP_LIST))
100                 return 0;
101
102         ttl = MAX_PCIE_CAPABILITY;
103         rte_pci_read_config(device, &pos, sizeof(pos), PCI_CAPABILITY_LIST);
104         while (ttl-- && pos >= PCI_STD_HEADER_SIZEOF) {
105                 rte_pci_read_config(device, &id, sizeof(id),
106                                     (pos + PCI_CAP_LIST_ID));
107
108                 if (id == 0xFF)
109                         break;
110
111                 if (id == cap)
112                         return (int)pos;
113
114                 rte_pci_read_config(device, &pos, sizeof(pos),
115                                     (pos + PCI_CAP_LIST_NEXT));
116         }
117         return 0;
118 }
119
120 static int
121 hns3vf_enable_msix(const struct rte_pci_device *device, bool op)
122 {
123         uint16_t control;
124         int pos;
125
126         pos = hns3vf_find_pci_capability(device, PCI_CAP_ID_MSIX);
127         if (pos) {
128                 rte_pci_read_config(device, &control, sizeof(control),
129                                     (pos + PCI_MSIX_FLAGS));
130                 if (op)
131                         control |= PCI_MSIX_FLAGS_ENABLE;
132                 else
133                         control &= ~PCI_MSIX_FLAGS_ENABLE;
134                 rte_pci_write_config(device, &control, sizeof(control),
135                                      (pos + PCI_MSIX_FLAGS));
136                 return 0;
137         }
138         return -ENXIO;
139 }
140
141 static int
142 hns3vf_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
143 {
144         /* mac address was checked by upper level interface */
145         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
146         int ret;
147
148         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
149                                 HNS3_MBX_MAC_VLAN_UC_ADD, mac_addr->addr_bytes,
150                                 RTE_ETHER_ADDR_LEN, false, NULL, 0);
151         if (ret) {
152                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
153                                       mac_addr);
154                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
155                          mac_str, ret);
156         }
157         return ret;
158 }
159
160 static int
161 hns3vf_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
162 {
163         /* mac address was checked by upper level interface */
164         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
165         int ret;
166
167         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
168                                 HNS3_MBX_MAC_VLAN_UC_REMOVE,
169                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN,
170                                 false, NULL, 0);
171         if (ret) {
172                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
173                                       mac_addr);
174                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
175                          mac_str, ret);
176         }
177         return ret;
178 }
179
180 static int
181 hns3vf_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
182 {
183         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
184         struct rte_ether_addr *addr;
185         int ret;
186         int i;
187
188         for (i = 0; i < hw->mc_addrs_num; i++) {
189                 addr = &hw->mc_addrs[i];
190                 /* Check if there are duplicate addresses */
191                 if (rte_is_same_ether_addr(addr, mac_addr)) {
192                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
193                                               addr);
194                         hns3_err(hw, "failed to add mc mac addr, same addrs"
195                                  "(%s) is added by the set_mc_mac_addr_list "
196                                  "API", mac_str);
197                         return -EINVAL;
198                 }
199         }
200
201         ret = hns3vf_add_mc_mac_addr(hw, mac_addr);
202         if (ret) {
203                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
204                                       mac_addr);
205                 hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
206                          mac_str, ret);
207         }
208         return ret;
209 }
210
211 static int
212 hns3vf_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
213                     __rte_unused uint32_t idx,
214                     __rte_unused uint32_t pool)
215 {
216         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
217         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
218         int ret;
219
220         rte_spinlock_lock(&hw->lock);
221
222         /*
223          * In hns3 network engine adding UC and MC mac address with different
224          * commands with firmware. We need to determine whether the input
225          * address is a UC or a MC address to call different commands.
226          * By the way, it is recommended calling the API function named
227          * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
228          * using the rte_eth_dev_mac_addr_add API function to set MC mac address
229          * may affect the specifications of UC mac addresses.
230          */
231         if (rte_is_multicast_ether_addr(mac_addr))
232                 ret = hns3vf_add_mc_addr_common(hw, mac_addr);
233         else
234                 ret = hns3vf_add_uc_mac_addr(hw, mac_addr);
235
236         rte_spinlock_unlock(&hw->lock);
237         if (ret) {
238                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
239                                       mac_addr);
240                 hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
241                          ret);
242         }
243
244         return ret;
245 }
246
247 static void
248 hns3vf_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
249 {
250         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
251         /* index will be checked by upper level rte interface */
252         struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
253         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
254         int ret;
255
256         rte_spinlock_lock(&hw->lock);
257
258         if (rte_is_multicast_ether_addr(mac_addr))
259                 ret = hns3vf_remove_mc_mac_addr(hw, mac_addr);
260         else
261                 ret = hns3vf_remove_uc_mac_addr(hw, mac_addr);
262
263         rte_spinlock_unlock(&hw->lock);
264         if (ret) {
265                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
266                                       mac_addr);
267                 hns3_err(hw, "failed to remove mac addr(%s), ret = %d",
268                          mac_str, ret);
269         }
270 }
271
272 static int
273 hns3vf_set_default_mac_addr(struct rte_eth_dev *dev,
274                             struct rte_ether_addr *mac_addr)
275 {
276 #define HNS3_TWO_ETHER_ADDR_LEN (RTE_ETHER_ADDR_LEN * 2)
277         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
278         struct rte_ether_addr *old_addr;
279         uint8_t addr_bytes[HNS3_TWO_ETHER_ADDR_LEN]; /* for 2 MAC addresses */
280         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
281         int ret;
282
283         /*
284          * It has been guaranteed that input parameter named mac_addr is valid
285          * address in the rte layer of DPDK framework.
286          */
287         old_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
288         rte_spinlock_lock(&hw->lock);
289         memcpy(addr_bytes, mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN);
290         memcpy(&addr_bytes[RTE_ETHER_ADDR_LEN], old_addr->addr_bytes,
291                RTE_ETHER_ADDR_LEN);
292
293         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
294                                 HNS3_MBX_MAC_VLAN_UC_MODIFY, addr_bytes,
295                                 HNS3_TWO_ETHER_ADDR_LEN, true, NULL, 0);
296         if (ret) {
297                 /*
298                  * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev
299                  * driver. When user has configured a MAC address for VF device
300                  * by "ip link set ..." command based on the PF device, the hns3
301                  * PF kernel ethdev driver does not allow VF driver to request
302                  * reconfiguring a different default MAC address, and return
303                  * -EPREM to VF driver through mailbox.
304                  */
305                 if (ret == -EPERM) {
306                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
307                                               old_addr);
308                         hns3_warn(hw, "Has permanet mac addr(%s) for vf",
309                                   mac_str);
310                 } else {
311                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
312                                               mac_addr);
313                         hns3_err(hw, "Failed to set mac addr(%s) for vf: %d",
314                                  mac_str, ret);
315                 }
316         }
317
318         rte_ether_addr_copy(mac_addr,
319                             (struct rte_ether_addr *)hw->mac.mac_addr);
320         rte_spinlock_unlock(&hw->lock);
321
322         return ret;
323 }
324
325 static int
326 hns3vf_configure_mac_addr(struct hns3_adapter *hns, bool del)
327 {
328         struct hns3_hw *hw = &hns->hw;
329         struct rte_ether_addr *addr;
330         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
331         int err = 0;
332         int ret;
333         int i;
334
335         for (i = 0; i < HNS3_VF_UC_MACADDR_NUM; i++) {
336                 addr = &hw->data->mac_addrs[i];
337                 if (rte_is_zero_ether_addr(addr))
338                         continue;
339                 if (rte_is_multicast_ether_addr(addr))
340                         ret = del ? hns3vf_remove_mc_mac_addr(hw, addr) :
341                               hns3vf_add_mc_mac_addr(hw, addr);
342                 else
343                         ret = del ? hns3vf_remove_uc_mac_addr(hw, addr) :
344                               hns3vf_add_uc_mac_addr(hw, addr);
345
346                 if (ret) {
347                         err = ret;
348                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
349                                               addr);
350                         hns3_err(hw, "failed to %s mac addr(%s) index:%d "
351                                  "ret = %d.", del ? "remove" : "restore",
352                                  mac_str, i, ret);
353                 }
354         }
355         return err;
356 }
357
358 static int
359 hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
360                        struct rte_ether_addr *mac_addr)
361 {
362         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
363         int ret;
364
365         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
366                                 HNS3_MBX_MAC_VLAN_MC_ADD,
367                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
368                                 NULL, 0);
369         if (ret) {
370                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
371                                       mac_addr);
372                 hns3_err(hw, "Failed to add mc mac addr(%s) for vf: %d",
373                          mac_str, ret);
374         }
375
376         return ret;
377 }
378
379 static int
380 hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
381                           struct rte_ether_addr *mac_addr)
382 {
383         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
384         int ret;
385
386         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
387                                 HNS3_MBX_MAC_VLAN_MC_REMOVE,
388                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
389                                 NULL, 0);
390         if (ret) {
391                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
392                                       mac_addr);
393                 hns3_err(hw, "Failed to remove mc mac addr(%s) for vf: %d",
394                          mac_str, ret);
395         }
396
397         return ret;
398 }
399
400 static int
401 hns3vf_set_mc_addr_chk_param(struct hns3_hw *hw,
402                              struct rte_ether_addr *mc_addr_set,
403                              uint32_t nb_mc_addr)
404 {
405         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
406         struct rte_ether_addr *addr;
407         uint32_t i;
408         uint32_t j;
409
410         if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
411                 hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%d) "
412                          "invalid. valid range: 0~%d",
413                          nb_mc_addr, HNS3_MC_MACADDR_NUM);
414                 return -EINVAL;
415         }
416
417         /* Check if input mac addresses are valid */
418         for (i = 0; i < nb_mc_addr; i++) {
419                 addr = &mc_addr_set[i];
420                 if (!rte_is_multicast_ether_addr(addr)) {
421                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
422                                               addr);
423                         hns3_err(hw,
424                                  "failed to set mc mac addr, addr(%s) invalid.",
425                                  mac_str);
426                         return -EINVAL;
427                 }
428
429                 /* Check if there are duplicate addresses */
430                 for (j = i + 1; j < nb_mc_addr; j++) {
431                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
432                                 rte_ether_format_addr(mac_str,
433                                                       RTE_ETHER_ADDR_FMT_SIZE,
434                                                       addr);
435                                 hns3_err(hw, "failed to set mc mac addr, "
436                                          "addrs invalid. two same addrs(%s).",
437                                          mac_str);
438                                 return -EINVAL;
439                         }
440                 }
441
442                 /*
443                  * Check if there are duplicate addresses between mac_addrs
444                  * and mc_addr_set
445                  */
446                 for (j = 0; j < HNS3_VF_UC_MACADDR_NUM; j++) {
447                         if (rte_is_same_ether_addr(addr,
448                                                    &hw->data->mac_addrs[j])) {
449                                 rte_ether_format_addr(mac_str,
450                                                       RTE_ETHER_ADDR_FMT_SIZE,
451                                                       addr);
452                                 hns3_err(hw, "failed to set mc mac addr, "
453                                          "addrs invalid. addrs(%s) has already "
454                                          "configured in mac_addr add API",
455                                          mac_str);
456                                 return -EINVAL;
457                         }
458                 }
459         }
460
461         return 0;
462 }
463
464 static int
465 hns3vf_set_mc_mac_addr_list(struct rte_eth_dev *dev,
466                             struct rte_ether_addr *mc_addr_set,
467                             uint32_t nb_mc_addr)
468 {
469         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
470         struct rte_ether_addr *addr;
471         int cur_addr_num;
472         int set_addr_num;
473         int num;
474         int ret;
475         int i;
476
477         ret = hns3vf_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
478         if (ret)
479                 return ret;
480
481         rte_spinlock_lock(&hw->lock);
482         cur_addr_num = hw->mc_addrs_num;
483         for (i = 0; i < cur_addr_num; i++) {
484                 num = cur_addr_num - i - 1;
485                 addr = &hw->mc_addrs[num];
486                 ret = hns3vf_remove_mc_mac_addr(hw, addr);
487                 if (ret) {
488                         rte_spinlock_unlock(&hw->lock);
489                         return ret;
490                 }
491
492                 hw->mc_addrs_num--;
493         }
494
495         set_addr_num = (int)nb_mc_addr;
496         for (i = 0; i < set_addr_num; i++) {
497                 addr = &mc_addr_set[i];
498                 ret = hns3vf_add_mc_mac_addr(hw, addr);
499                 if (ret) {
500                         rte_spinlock_unlock(&hw->lock);
501                         return ret;
502                 }
503
504                 rte_ether_addr_copy(addr, &hw->mc_addrs[hw->mc_addrs_num]);
505                 hw->mc_addrs_num++;
506         }
507         rte_spinlock_unlock(&hw->lock);
508
509         return 0;
510 }
511
512 static int
513 hns3vf_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
514 {
515         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
516         struct hns3_hw *hw = &hns->hw;
517         struct rte_ether_addr *addr;
518         int err = 0;
519         int ret;
520         int i;
521
522         for (i = 0; i < hw->mc_addrs_num; i++) {
523                 addr = &hw->mc_addrs[i];
524                 if (!rte_is_multicast_ether_addr(addr))
525                         continue;
526                 if (del)
527                         ret = hns3vf_remove_mc_mac_addr(hw, addr);
528                 else
529                         ret = hns3vf_add_mc_mac_addr(hw, addr);
530                 if (ret) {
531                         err = ret;
532                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
533                                               addr);
534                         hns3_err(hw, "Failed to %s mc mac addr: %s for vf: %d",
535                                  del ? "Remove" : "Restore", mac_str, ret);
536                 }
537         }
538         return err;
539 }
540
541 static int
542 hns3vf_set_promisc_mode(struct hns3_hw *hw, bool en_bc_pmc,
543                         bool en_uc_pmc, bool en_mc_pmc)
544 {
545         struct hns3_mbx_vf_to_pf_cmd *req;
546         struct hns3_cmd_desc desc;
547         int ret;
548
549         req = (struct hns3_mbx_vf_to_pf_cmd *)desc.data;
550
551         /*
552          * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev driver,
553          * so there are some features for promiscuous/allmulticast mode in hns3
554          * VF PMD driver as below:
555          * 1. The promiscuous/allmulticast mode can be configured successfully
556          *    only based on the trusted VF device. If based on the non trusted
557          *    VF device, configuring promiscuous/allmulticast mode will fail.
558          *    The hns3 VF device can be confiruged as trusted device by hns3 PF
559          *    kernel ethdev driver on the host by the following command:
560          *      "ip link set <eth num> vf <vf id> turst on"
561          * 2. After the promiscuous mode is configured successfully, hns3 VF PMD
562          *    driver can receive the ingress and outgoing traffic. In the words,
563          *    all the ingress packets, all the packets sent from the PF and
564          *    other VFs on the same physical port.
565          * 3. Note: Because of the hardware constraints, By default vlan filter
566          *    is enabled and couldn't be turned off based on VF device, so vlan
567          *    filter is still effective even in promiscuous mode. If upper
568          *    applications don't call rte_eth_dev_vlan_filter API function to
569          *    set vlan based on VF device, hns3 VF PMD driver will can't receive
570          *    the packets with vlan tag in promiscuoue mode.
571          */
572         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MBX_VF_TO_PF, false);
573         req->msg[0] = HNS3_MBX_SET_PROMISC_MODE;
574         req->msg[1] = en_bc_pmc ? 1 : 0;
575         req->msg[2] = en_uc_pmc ? 1 : 0;
576         req->msg[3] = en_mc_pmc ? 1 : 0;
577
578         ret = hns3_cmd_send(hw, &desc, 1);
579         if (ret)
580                 hns3_err(hw, "Set promisc mode fail, ret = %d", ret);
581
582         return ret;
583 }
584
585 static int
586 hns3vf_dev_promiscuous_enable(struct rte_eth_dev *dev)
587 {
588         struct hns3_adapter *hns = dev->data->dev_private;
589         struct hns3_hw *hw = &hns->hw;
590         int ret;
591
592         ret = hns3vf_set_promisc_mode(hw, true, true, true);
593         if (ret)
594                 hns3_err(hw, "Failed to enable promiscuous mode, ret = %d",
595                         ret);
596         return ret;
597 }
598
599 static int
600 hns3vf_dev_promiscuous_disable(struct rte_eth_dev *dev)
601 {
602         bool allmulti = dev->data->all_multicast ? true : false;
603         struct hns3_adapter *hns = dev->data->dev_private;
604         struct hns3_hw *hw = &hns->hw;
605         int ret;
606
607         ret = hns3vf_set_promisc_mode(hw, true, false, allmulti);
608         if (ret)
609                 hns3_err(hw, "Failed to disable promiscuous mode, ret = %d",
610                         ret);
611         return ret;
612 }
613
614 static int
615 hns3vf_dev_allmulticast_enable(struct rte_eth_dev *dev)
616 {
617         struct hns3_adapter *hns = dev->data->dev_private;
618         struct hns3_hw *hw = &hns->hw;
619         int ret;
620
621         if (dev->data->promiscuous)
622                 return 0;
623
624         ret = hns3vf_set_promisc_mode(hw, true, false, true);
625         if (ret)
626                 hns3_err(hw, "Failed to enable allmulticast mode, ret = %d",
627                         ret);
628         return ret;
629 }
630
631 static int
632 hns3vf_dev_allmulticast_disable(struct rte_eth_dev *dev)
633 {
634         struct hns3_adapter *hns = dev->data->dev_private;
635         struct hns3_hw *hw = &hns->hw;
636         int ret;
637
638         if (dev->data->promiscuous)
639                 return 0;
640
641         ret = hns3vf_set_promisc_mode(hw, true, false, false);
642         if (ret)
643                 hns3_err(hw, "Failed to disable allmulticast mode, ret = %d",
644                         ret);
645         return ret;
646 }
647
648 static int
649 hns3vf_restore_promisc(struct hns3_adapter *hns)
650 {
651         struct hns3_hw *hw = &hns->hw;
652         bool allmulti = hw->data->all_multicast ? true : false;
653
654         if (hw->data->promiscuous)
655                 return hns3vf_set_promisc_mode(hw, true, true, true);
656
657         return hns3vf_set_promisc_mode(hw, true, false, allmulti);
658 }
659
660 static int
661 hns3vf_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id,
662                              bool mmap, enum hns3_ring_type queue_type,
663                              uint16_t queue_id)
664 {
665         struct hns3_vf_bind_vector_msg bind_msg;
666         const char *op_str;
667         uint16_t code;
668         int ret;
669
670         memset(&bind_msg, 0, sizeof(bind_msg));
671         code = mmap ? HNS3_MBX_MAP_RING_TO_VECTOR :
672                 HNS3_MBX_UNMAP_RING_TO_VECTOR;
673         bind_msg.vector_id = vector_id;
674
675         if (queue_type == HNS3_RING_TYPE_RX)
676                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_RX;
677         else
678                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_TX;
679
680         bind_msg.param[0].ring_type = queue_type;
681         bind_msg.ring_num = 1;
682         bind_msg.param[0].tqp_index = queue_id;
683         op_str = mmap ? "Map" : "Unmap";
684         ret = hns3_send_mbx_msg(hw, code, 0, (uint8_t *)&bind_msg,
685                                 sizeof(bind_msg), false, NULL, 0);
686         if (ret)
687                 hns3_err(hw, "%s TQP %d fail, vector_id is %d, ret is %d.",
688                          op_str, queue_id, bind_msg.vector_id, ret);
689
690         return ret;
691 }
692
693 static int
694 hns3vf_init_ring_with_vector(struct hns3_hw *hw)
695 {
696         uint8_t vec;
697         int ret;
698         int i;
699
700         /*
701          * In hns3 network engine, vector 0 is always the misc interrupt of this
702          * function, vector 1~N can be used respectively for the queues of the
703          * function. Tx and Rx queues with the same number share the interrupt
704          * vector. In the initialization clearing the all hardware mapping
705          * relationship configurations between queues and interrupt vectors is
706          * needed, so some error caused by the residual configurations, such as
707          * the unexpected Tx interrupt, can be avoid. Because of the hardware
708          * constraints in hns3 hardware engine, we have to implement clearing
709          * the mapping relationship configurations by binding all queues to the
710          * last interrupt vector and reserving the last interrupt vector. This
711          * method results in a decrease of the maximum queues when upper
712          * applications call the rte_eth_dev_configure API function to enable
713          * Rx interrupt.
714          */
715         vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
716         hw->intr_tqps_num = vec - 1; /* the last interrupt is reserved */
717         for (i = 0; i < hw->intr_tqps_num; i++) {
718                 /*
719                  * Set gap limiter and rate limiter configuration of queue's
720                  * interrupt.
721                  */
722                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
723                                        HNS3_TQP_INTR_GL_DEFAULT);
724                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
725                                        HNS3_TQP_INTR_GL_DEFAULT);
726                 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
727
728                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
729                                                    HNS3_RING_TYPE_TX, i);
730                 if (ret) {
731                         PMD_INIT_LOG(ERR, "VF fail to unbind TX ring(%d) with "
732                                           "vector: %d, ret=%d", i, vec, ret);
733                         return ret;
734                 }
735
736                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
737                                                    HNS3_RING_TYPE_RX, i);
738                 if (ret) {
739                         PMD_INIT_LOG(ERR, "VF fail to unbind RX ring(%d) with "
740                                           "vector: %d, ret=%d", i, vec, ret);
741                         return ret;
742                 }
743         }
744
745         return 0;
746 }
747
748 static int
749 hns3vf_dev_configure(struct rte_eth_dev *dev)
750 {
751         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
752         struct hns3_rss_conf *rss_cfg = &hw->rss_info;
753         struct rte_eth_conf *conf = &dev->data->dev_conf;
754         enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
755         uint16_t nb_rx_q = dev->data->nb_rx_queues;
756         uint16_t nb_tx_q = dev->data->nb_tx_queues;
757         struct rte_eth_rss_conf rss_conf;
758         uint16_t mtu;
759         int ret;
760
761         /*
762          * Hardware does not support individually enable/disable/reset the Tx or
763          * Rx queue in hns3 network engine. Driver must enable/disable/reset Tx
764          * and Rx queues at the same time. When the numbers of Tx queues
765          * allocated by upper applications are not equal to the numbers of Rx
766          * queues, driver needs to setup fake Tx or Rx queues to adjust numbers
767          * of Tx/Rx queues. otherwise, network engine can not work as usual. But
768          * these fake queues are imperceptible, and can not be used by upper
769          * applications.
770          */
771         ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
772         if (ret) {
773                 hns3_err(hw, "Failed to set rx/tx fake queues: %d", ret);
774                 return ret;
775         }
776
777         hw->adapter_state = HNS3_NIC_CONFIGURING;
778         if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
779                 hns3_err(hw, "setting link speed/duplex not supported");
780                 ret = -EINVAL;
781                 goto cfg_err;
782         }
783
784         /* When RSS is not configured, redirect the packet queue 0 */
785         if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
786                 rss_conf = conf->rx_adv_conf.rss_conf;
787                 if (rss_conf.rss_key == NULL) {
788                         rss_conf.rss_key = rss_cfg->key;
789                         rss_conf.rss_key_len = HNS3_RSS_KEY_SIZE;
790                 }
791
792                 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
793                 if (ret)
794                         goto cfg_err;
795         }
796
797         /*
798          * If jumbo frames are enabled, MTU needs to be refreshed
799          * according to the maximum RX packet length.
800          */
801         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
802                 /*
803                  * Security of max_rx_pkt_len is guaranteed in dpdk frame.
804                  * Maximum value of max_rx_pkt_len is HNS3_MAX_FRAME_LEN, so it
805                  * can safely assign to "uint16_t" type variable.
806                  */
807                 mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(conf->rxmode.max_rx_pkt_len);
808                 ret = hns3vf_dev_mtu_set(dev, mtu);
809                 if (ret)
810                         goto cfg_err;
811                 dev->data->mtu = mtu;
812         }
813
814         ret = hns3vf_dev_configure_vlan(dev);
815         if (ret)
816                 goto cfg_err;
817
818         hw->adapter_state = HNS3_NIC_CONFIGURED;
819         return 0;
820
821 cfg_err:
822         (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
823         hw->adapter_state = HNS3_NIC_INITIALIZED;
824
825         return ret;
826 }
827
828 static int
829 hns3vf_config_mtu(struct hns3_hw *hw, uint16_t mtu)
830 {
831         int ret;
832
833         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MTU, 0, (const uint8_t *)&mtu,
834                                 sizeof(mtu), true, NULL, 0);
835         if (ret)
836                 hns3_err(hw, "Failed to set mtu (%u) for vf: %d", mtu, ret);
837
838         return ret;
839 }
840
841 static int
842 hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
843 {
844         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
845         uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
846         int ret;
847
848         /*
849          * The hns3 PF/VF devices on the same port share the hardware MTU
850          * configuration. Currently, we send mailbox to inform hns3 PF kernel
851          * ethdev driver to finish hardware MTU configuration in hns3 VF PMD
852          * driver, there is no need to stop the port for hns3 VF device, and the
853          * MTU value issued by hns3 VF PMD driver must be less than or equal to
854          * PF's MTU.
855          */
856         if (rte_atomic16_read(&hw->reset.resetting)) {
857                 hns3_err(hw, "Failed to set mtu during resetting");
858                 return -EIO;
859         }
860
861         rte_spinlock_lock(&hw->lock);
862         ret = hns3vf_config_mtu(hw, mtu);
863         if (ret) {
864                 rte_spinlock_unlock(&hw->lock);
865                 return ret;
866         }
867         if (frame_size > RTE_ETHER_MAX_LEN)
868                 dev->data->dev_conf.rxmode.offloads |=
869                                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
870         else
871                 dev->data->dev_conf.rxmode.offloads &=
872                                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
873         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
874         rte_spinlock_unlock(&hw->lock);
875
876         return 0;
877 }
878
879 static int
880 hns3vf_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
881 {
882         struct hns3_adapter *hns = eth_dev->data->dev_private;
883         struct hns3_hw *hw = &hns->hw;
884         uint16_t q_num = hw->tqps_num;
885
886         /*
887          * In interrupt mode, 'max_rx_queues' is set based on the number of
888          * MSI-X interrupt resources of the hardware.
889          */
890         if (hw->data->dev_conf.intr_conf.rxq == 1)
891                 q_num = hw->intr_tqps_num;
892
893         info->max_rx_queues = q_num;
894         info->max_tx_queues = hw->tqps_num;
895         info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
896         info->min_rx_bufsize = hw->rx_buf_len;
897         info->max_mac_addrs = HNS3_VF_UC_MACADDR_NUM;
898         info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
899
900         info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
901                                  DEV_RX_OFFLOAD_UDP_CKSUM |
902                                  DEV_RX_OFFLOAD_TCP_CKSUM |
903                                  DEV_RX_OFFLOAD_SCTP_CKSUM |
904                                  DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
905                                  DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
906                                  DEV_RX_OFFLOAD_KEEP_CRC |
907                                  DEV_RX_OFFLOAD_SCATTER |
908                                  DEV_RX_OFFLOAD_VLAN_STRIP |
909                                  DEV_RX_OFFLOAD_QINQ_STRIP |
910                                  DEV_RX_OFFLOAD_VLAN_FILTER |
911                                  DEV_RX_OFFLOAD_JUMBO_FRAME |
912                                  DEV_RX_OFFLOAD_RSS_HASH);
913         info->tx_queue_offload_capa = DEV_TX_OFFLOAD_MBUF_FAST_FREE;
914         info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
915                                  DEV_TX_OFFLOAD_IPV4_CKSUM |
916                                  DEV_TX_OFFLOAD_TCP_CKSUM |
917                                  DEV_TX_OFFLOAD_UDP_CKSUM |
918                                  DEV_TX_OFFLOAD_SCTP_CKSUM |
919                                  DEV_TX_OFFLOAD_VLAN_INSERT |
920                                  DEV_TX_OFFLOAD_QINQ_INSERT |
921                                  DEV_TX_OFFLOAD_MULTI_SEGS |
922                                  DEV_TX_OFFLOAD_TCP_TSO |
923                                  DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
924                                  DEV_TX_OFFLOAD_GRE_TNL_TSO |
925                                  DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
926                                  info->tx_queue_offload_capa);
927
928         info->rx_desc_lim = (struct rte_eth_desc_lim) {
929                 .nb_max = HNS3_MAX_RING_DESC,
930                 .nb_min = HNS3_MIN_RING_DESC,
931                 .nb_align = HNS3_ALIGN_RING_DESC,
932         };
933
934         info->tx_desc_lim = (struct rte_eth_desc_lim) {
935                 .nb_max = HNS3_MAX_RING_DESC,
936                 .nb_min = HNS3_MIN_RING_DESC,
937                 .nb_align = HNS3_ALIGN_RING_DESC,
938         };
939
940         info->vmdq_queue_num = 0;
941
942         info->reta_size = HNS3_RSS_IND_TBL_SIZE;
943         info->hash_key_size = HNS3_RSS_KEY_SIZE;
944         info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
945         info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
946         info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
947
948         return 0;
949 }
950
951 static void
952 hns3vf_clear_event_cause(struct hns3_hw *hw, uint32_t regclr)
953 {
954         hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
955 }
956
957 static void
958 hns3vf_disable_irq0(struct hns3_hw *hw)
959 {
960         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
961 }
962
963 static void
964 hns3vf_enable_irq0(struct hns3_hw *hw)
965 {
966         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
967 }
968
969 static enum hns3vf_evt_cause
970 hns3vf_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
971 {
972         struct hns3_hw *hw = &hns->hw;
973         enum hns3vf_evt_cause ret;
974         uint32_t cmdq_stat_reg;
975         uint32_t rst_ing_reg;
976         uint32_t val;
977
978         /* Fetch the events from their corresponding regs */
979         cmdq_stat_reg = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_STAT_REG);
980
981         if (BIT(HNS3_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
982                 rst_ing_reg = hns3_read_dev(hw, HNS3_FUN_RST_ING);
983                 hns3_warn(hw, "resetting reg: 0x%x", rst_ing_reg);
984                 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
985                 rte_atomic16_set(&hw->reset.disable_cmd, 1);
986                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
987                 hns3_write_dev(hw, HNS3_VF_RST_ING, val | HNS3_VF_RST_ING_BIT);
988                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RST_INT_B);
989                 if (clearval) {
990                         hw->reset.stats.global_cnt++;
991                         hns3_warn(hw, "Global reset detected, clear reset status");
992                 } else {
993                         hns3_schedule_delayed_reset(hns);
994                         hns3_warn(hw, "Global reset detected, don't clear reset status");
995                 }
996
997                 ret = HNS3VF_VECTOR0_EVENT_RST;
998                 goto out;
999         }
1000
1001         /* Check for vector0 mailbox(=CMDQ RX) event source */
1002         if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1003                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
1004                 ret = HNS3VF_VECTOR0_EVENT_MBX;
1005                 goto out;
1006         }
1007
1008         val = 0;
1009         ret = HNS3VF_VECTOR0_EVENT_OTHER;
1010 out:
1011         if (clearval)
1012                 *clearval = val;
1013         return ret;
1014 }
1015
1016 static void
1017 hns3vf_interrupt_handler(void *param)
1018 {
1019         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1020         struct hns3_adapter *hns = dev->data->dev_private;
1021         struct hns3_hw *hw = &hns->hw;
1022         enum hns3vf_evt_cause event_cause;
1023         uint32_t clearval;
1024
1025         if (hw->irq_thread_id == 0)
1026                 hw->irq_thread_id = pthread_self();
1027
1028         /* Disable interrupt */
1029         hns3vf_disable_irq0(hw);
1030
1031         /* Read out interrupt causes */
1032         event_cause = hns3vf_check_event_cause(hns, &clearval);
1033
1034         switch (event_cause) {
1035         case HNS3VF_VECTOR0_EVENT_RST:
1036                 hns3_schedule_reset(hns);
1037                 break;
1038         case HNS3VF_VECTOR0_EVENT_MBX:
1039                 hns3_dev_handle_mbx_msg(hw);
1040                 break;
1041         default:
1042                 break;
1043         }
1044
1045         /* Clear interrupt causes */
1046         hns3vf_clear_event_cause(hw, clearval);
1047
1048         /* Enable interrupt */
1049         hns3vf_enable_irq0(hw);
1050 }
1051
1052 static int
1053 hns3vf_check_tqp_info(struct hns3_hw *hw)
1054 {
1055         uint16_t tqps_num;
1056
1057         tqps_num = hw->tqps_num;
1058         if (tqps_num > HNS3_MAX_TQP_NUM_PER_FUNC || tqps_num == 0) {
1059                 PMD_INIT_LOG(ERR, "Get invalid tqps_num(%u) from PF. valid "
1060                                   "range: 1~%d",
1061                              tqps_num, HNS3_MAX_TQP_NUM_PER_FUNC);
1062                 return -EINVAL;
1063         }
1064
1065         if (hw->rx_buf_len == 0)
1066                 hw->rx_buf_len = HNS3_DEFAULT_RX_BUF_LEN;
1067         hw->alloc_rss_size = RTE_MIN(hw->rss_size_max, hw->tqps_num);
1068
1069         return 0;
1070 }
1071
1072 static int
1073 hns3vf_get_queue_info(struct hns3_hw *hw)
1074 {
1075 #define HNS3VF_TQPS_RSS_INFO_LEN        6
1076         uint8_t resp_msg[HNS3VF_TQPS_RSS_INFO_LEN];
1077         int ret;
1078
1079         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QINFO, 0, NULL, 0, true,
1080                                 resp_msg, HNS3VF_TQPS_RSS_INFO_LEN);
1081         if (ret) {
1082                 PMD_INIT_LOG(ERR, "Failed to get tqp info from PF: %d", ret);
1083                 return ret;
1084         }
1085
1086         memcpy(&hw->tqps_num, &resp_msg[0], sizeof(uint16_t));
1087         memcpy(&hw->rss_size_max, &resp_msg[2], sizeof(uint16_t));
1088         memcpy(&hw->rx_buf_len, &resp_msg[4], sizeof(uint16_t));
1089
1090         return hns3vf_check_tqp_info(hw);
1091 }
1092
1093 static int
1094 hns3vf_get_queue_depth(struct hns3_hw *hw)
1095 {
1096 #define HNS3VF_TQPS_DEPTH_INFO_LEN      4
1097         uint8_t resp_msg[HNS3VF_TQPS_DEPTH_INFO_LEN];
1098         int ret;
1099
1100         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QDEPTH, 0, NULL, 0, true,
1101                                 resp_msg, HNS3VF_TQPS_DEPTH_INFO_LEN);
1102         if (ret) {
1103                 PMD_INIT_LOG(ERR, "Failed to get tqp depth info from PF: %d",
1104                              ret);
1105                 return ret;
1106         }
1107
1108         memcpy(&hw->num_tx_desc, &resp_msg[0], sizeof(uint16_t));
1109         memcpy(&hw->num_rx_desc, &resp_msg[2], sizeof(uint16_t));
1110
1111         return 0;
1112 }
1113
1114 static int
1115 hns3vf_get_tc_info(struct hns3_hw *hw)
1116 {
1117         uint8_t resp_msg;
1118         int ret;
1119
1120         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_TCINFO, 0, NULL, 0,
1121                                 true, &resp_msg, sizeof(resp_msg));
1122         if (ret) {
1123                 hns3_err(hw, "VF request to get TC info from PF failed %d",
1124                          ret);
1125                 return ret;
1126         }
1127
1128         hw->hw_tc_map = resp_msg;
1129
1130         return 0;
1131 }
1132
1133 static int
1134 hns3vf_get_host_mac_addr(struct hns3_hw *hw)
1135 {
1136         uint8_t host_mac[RTE_ETHER_ADDR_LEN];
1137         int ret;
1138
1139         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_MAC_ADDR, 0, NULL, 0,
1140                                 true, host_mac, RTE_ETHER_ADDR_LEN);
1141         if (ret) {
1142                 hns3_err(hw, "Failed to get mac addr from PF: %d", ret);
1143                 return ret;
1144         }
1145
1146         memcpy(hw->mac.mac_addr, host_mac, RTE_ETHER_ADDR_LEN);
1147
1148         return 0;
1149 }
1150
1151 static int
1152 hns3vf_get_configuration(struct hns3_hw *hw)
1153 {
1154         int ret;
1155
1156         hw->mac.media_type = HNS3_MEDIA_TYPE_NONE;
1157         hw->rss_dis_flag = false;
1158
1159         /* Get queue configuration from PF */
1160         ret = hns3vf_get_queue_info(hw);
1161         if (ret)
1162                 return ret;
1163
1164         /* Get queue depth info from PF */
1165         ret = hns3vf_get_queue_depth(hw);
1166         if (ret)
1167                 return ret;
1168
1169         /* Get user defined VF MAC addr from PF */
1170         ret = hns3vf_get_host_mac_addr(hw);
1171         if (ret)
1172                 return ret;
1173
1174         /* Get tc configuration from PF */
1175         return hns3vf_get_tc_info(hw);
1176 }
1177
1178 static int
1179 hns3vf_set_tc_info(struct hns3_adapter *hns)
1180 {
1181         struct hns3_hw *hw = &hns->hw;
1182         uint16_t nb_rx_q = hw->data->nb_rx_queues;
1183         uint16_t nb_tx_q = hw->data->nb_tx_queues;
1184         uint8_t i;
1185
1186         hw->num_tc = 0;
1187         for (i = 0; i < HNS3_MAX_TC_NUM; i++)
1188                 if (hw->hw_tc_map & BIT(i))
1189                         hw->num_tc++;
1190
1191         if (nb_rx_q < hw->num_tc) {
1192                 hns3_err(hw, "number of Rx queues(%d) is less than tcs(%d).",
1193                          nb_rx_q, hw->num_tc);
1194                 return -EINVAL;
1195         }
1196
1197         if (nb_tx_q < hw->num_tc) {
1198                 hns3_err(hw, "number of Tx queues(%d) is less than tcs(%d).",
1199                          nb_tx_q, hw->num_tc);
1200                 return -EINVAL;
1201         }
1202
1203         hns3_set_rss_size(hw, nb_rx_q);
1204         hns3_tc_queue_mapping_cfg(hw, nb_tx_q);
1205
1206         return 0;
1207 }
1208
1209 static void
1210 hns3vf_request_link_info(struct hns3_hw *hw)
1211 {
1212         uint8_t resp_msg;
1213         int ret;
1214
1215         if (rte_atomic16_read(&hw->reset.resetting))
1216                 return;
1217         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1218                                 &resp_msg, sizeof(resp_msg));
1219         if (ret)
1220                 hns3_err(hw, "Failed to fetch link status from PF: %d", ret);
1221 }
1222
1223 static int
1224 hns3vf_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
1225 {
1226 #define HNS3VF_VLAN_MBX_MSG_LEN 5
1227         struct hns3_hw *hw = &hns->hw;
1228         uint8_t msg_data[HNS3VF_VLAN_MBX_MSG_LEN];
1229         uint16_t proto = htons(RTE_ETHER_TYPE_VLAN);
1230         uint8_t is_kill = on ? 0 : 1;
1231
1232         msg_data[0] = is_kill;
1233         memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1234         memcpy(&msg_data[3], &proto, sizeof(proto));
1235
1236         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_FILTER,
1237                                  msg_data, HNS3VF_VLAN_MBX_MSG_LEN, true, NULL,
1238                                  0);
1239 }
1240
1241 static int
1242 hns3vf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1243 {
1244         struct hns3_adapter *hns = dev->data->dev_private;
1245         struct hns3_hw *hw = &hns->hw;
1246         int ret;
1247
1248         if (rte_atomic16_read(&hw->reset.resetting)) {
1249                 hns3_err(hw,
1250                          "vf set vlan id failed during resetting, vlan_id =%u",
1251                          vlan_id);
1252                 return -EIO;
1253         }
1254         rte_spinlock_lock(&hw->lock);
1255         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1256         rte_spinlock_unlock(&hw->lock);
1257         if (ret)
1258                 hns3_err(hw, "vf set vlan id failed, vlan_id =%u, ret =%d",
1259                          vlan_id, ret);
1260
1261         return ret;
1262 }
1263
1264 static int
1265 hns3vf_en_hw_strip_rxvtag(struct hns3_hw *hw, bool enable)
1266 {
1267         uint8_t msg_data;
1268         int ret;
1269
1270         msg_data = enable ? 1 : 0;
1271         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_RX_OFF_CFG,
1272                                 &msg_data, sizeof(msg_data), false, NULL, 0);
1273         if (ret)
1274                 hns3_err(hw, "vf enable strip failed, ret =%d", ret);
1275
1276         return ret;
1277 }
1278
1279 static int
1280 hns3vf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1281 {
1282         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1283         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1284         unsigned int tmp_mask;
1285         int ret = 0;
1286
1287         if (rte_atomic16_read(&hw->reset.resetting)) {
1288                 hns3_err(hw, "vf set vlan offload failed during resetting, "
1289                              "mask = 0x%x", mask);
1290                 return -EIO;
1291         }
1292
1293         tmp_mask = (unsigned int)mask;
1294         /* Vlan stripping setting */
1295         if (tmp_mask & ETH_VLAN_STRIP_MASK) {
1296                 rte_spinlock_lock(&hw->lock);
1297                 /* Enable or disable VLAN stripping */
1298                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1299                         ret = hns3vf_en_hw_strip_rxvtag(hw, true);
1300                 else
1301                         ret = hns3vf_en_hw_strip_rxvtag(hw, false);
1302                 rte_spinlock_unlock(&hw->lock);
1303         }
1304
1305         return ret;
1306 }
1307
1308 static int
1309 hns3vf_handle_all_vlan_table(struct hns3_adapter *hns, int on)
1310 {
1311         struct rte_vlan_filter_conf *vfc;
1312         struct hns3_hw *hw = &hns->hw;
1313         uint16_t vlan_id;
1314         uint64_t vbit;
1315         uint64_t ids;
1316         int ret = 0;
1317         uint32_t i;
1318
1319         vfc = &hw->data->vlan_filter_conf;
1320         for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1321                 if (vfc->ids[i] == 0)
1322                         continue;
1323                 ids = vfc->ids[i];
1324                 while (ids) {
1325                         /*
1326                          * 64 means the num bits of ids, one bit corresponds to
1327                          * one vlan id
1328                          */
1329                         vlan_id = 64 * i;
1330                         /* count trailing zeroes */
1331                         vbit = ~ids & (ids - 1);
1332                         /* clear least significant bit set */
1333                         ids ^= (ids ^ (ids - 1)) ^ vbit;
1334                         for (; vbit;) {
1335                                 vbit >>= 1;
1336                                 vlan_id++;
1337                         }
1338                         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1339                         if (ret) {
1340                                 hns3_err(hw,
1341                                          "VF handle vlan table failed, ret =%d, on = %d",
1342                                          ret, on);
1343                                 return ret;
1344                         }
1345                 }
1346         }
1347
1348         return ret;
1349 }
1350
1351 static int
1352 hns3vf_remove_all_vlan_table(struct hns3_adapter *hns)
1353 {
1354         return hns3vf_handle_all_vlan_table(hns, 0);
1355 }
1356
1357 static int
1358 hns3vf_restore_vlan_conf(struct hns3_adapter *hns)
1359 {
1360         struct hns3_hw *hw = &hns->hw;
1361         struct rte_eth_conf *dev_conf;
1362         bool en;
1363         int ret;
1364
1365         dev_conf = &hw->data->dev_conf;
1366         en = dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP ? true
1367                                                                    : false;
1368         ret = hns3vf_en_hw_strip_rxvtag(hw, en);
1369         if (ret)
1370                 hns3_err(hw, "VF restore vlan conf fail, en =%d, ret =%d", en,
1371                          ret);
1372         return ret;
1373 }
1374
1375 static int
1376 hns3vf_dev_configure_vlan(struct rte_eth_dev *dev)
1377 {
1378         struct hns3_adapter *hns = dev->data->dev_private;
1379         struct rte_eth_dev_data *data = dev->data;
1380         struct hns3_hw *hw = &hns->hw;
1381         int ret;
1382
1383         if (data->dev_conf.txmode.hw_vlan_reject_tagged ||
1384             data->dev_conf.txmode.hw_vlan_reject_untagged ||
1385             data->dev_conf.txmode.hw_vlan_insert_pvid) {
1386                 hns3_warn(hw, "hw_vlan_reject_tagged, hw_vlan_reject_untagged "
1387                               "or hw_vlan_insert_pvid is not support!");
1388         }
1389
1390         /* Apply vlan offload setting */
1391         ret = hns3vf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
1392         if (ret)
1393                 hns3_err(hw, "dev config vlan offload failed, ret =%d", ret);
1394
1395         return ret;
1396 }
1397
1398 static int
1399 hns3vf_set_alive(struct hns3_hw *hw, bool alive)
1400 {
1401         uint8_t msg_data;
1402
1403         msg_data = alive ? 1 : 0;
1404         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_ALIVE, 0, &msg_data,
1405                                  sizeof(msg_data), false, NULL, 0);
1406 }
1407
1408 static void
1409 hns3vf_keep_alive_handler(void *param)
1410 {
1411         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1412         struct hns3_adapter *hns = eth_dev->data->dev_private;
1413         struct hns3_hw *hw = &hns->hw;
1414         uint8_t respmsg;
1415         int ret;
1416
1417         ret = hns3_send_mbx_msg(hw, HNS3_MBX_KEEP_ALIVE, 0, NULL, 0,
1418                                 false, &respmsg, sizeof(uint8_t));
1419         if (ret)
1420                 hns3_err(hw, "VF sends keeping alive cmd failed(=%d)",
1421                          ret);
1422
1423         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
1424                           eth_dev);
1425 }
1426
1427 static void
1428 hns3vf_service_handler(void *param)
1429 {
1430         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1431         struct hns3_adapter *hns = eth_dev->data->dev_private;
1432         struct hns3_hw *hw = &hns->hw;
1433
1434         /*
1435          * The query link status and reset processing are executed in the
1436          * interrupt thread.When the IMP reset occurs, IMP will not respond,
1437          * and the query operation will time out after 30ms. In the case of
1438          * multiple PF/VFs, each query failure timeout causes the IMP reset
1439          * interrupt to fail to respond within 100ms.
1440          * Before querying the link status, check whether there is a reset
1441          * pending, and if so, abandon the query.
1442          */
1443         if (!hns3vf_is_reset_pending(hns))
1444                 hns3vf_request_link_info(hw);
1445         else
1446                 hns3_warn(hw, "Cancel the query when reset is pending");
1447
1448         rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler,
1449                           eth_dev);
1450 }
1451
1452 static int
1453 hns3_query_vf_resource(struct hns3_hw *hw)
1454 {
1455         struct hns3_vf_res_cmd *req;
1456         struct hns3_cmd_desc desc;
1457         uint16_t num_msi;
1458         int ret;
1459
1460         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_VF_RSRC, true);
1461         ret = hns3_cmd_send(hw, &desc, 1);
1462         if (ret) {
1463                 hns3_err(hw, "query vf resource failed, ret = %d", ret);
1464                 return ret;
1465         }
1466
1467         req = (struct hns3_vf_res_cmd *)desc.data;
1468         num_msi = hns3_get_field(rte_le_to_cpu_16(req->vf_intr_vector_number),
1469                                  HNS3_VEC_NUM_M, HNS3_VEC_NUM_S);
1470         if (num_msi < HNS3_MIN_VECTOR_NUM) {
1471                 hns3_err(hw, "Just %u msi resources, not enough for vf(min:%d)",
1472                          num_msi, HNS3_MIN_VECTOR_NUM);
1473                 return -EINVAL;
1474         }
1475
1476         hw->num_msi = (num_msi > hw->tqps_num + 1) ? hw->tqps_num + 1 : num_msi;
1477
1478         return 0;
1479 }
1480
1481 static int
1482 hns3vf_init_hardware(struct hns3_adapter *hns)
1483 {
1484         struct hns3_hw *hw = &hns->hw;
1485         uint16_t mtu = hw->data->mtu;
1486         int ret;
1487
1488         ret = hns3vf_set_promisc_mode(hw, true, false, false);
1489         if (ret)
1490                 return ret;
1491
1492         ret = hns3vf_config_mtu(hw, mtu);
1493         if (ret)
1494                 goto err_init_hardware;
1495
1496         ret = hns3vf_vlan_filter_configure(hns, 0, 1);
1497         if (ret) {
1498                 PMD_INIT_LOG(ERR, "Failed to initialize VLAN config: %d", ret);
1499                 goto err_init_hardware;
1500         }
1501
1502         ret = hns3_config_gro(hw, false);
1503         if (ret) {
1504                 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
1505                 goto err_init_hardware;
1506         }
1507
1508         /*
1509          * In the initialization clearing the all hardware mapping relationship
1510          * configurations between queues and interrupt vectors is needed, so
1511          * some error caused by the residual configurations, such as the
1512          * unexpected interrupt, can be avoid.
1513          */
1514         ret = hns3vf_init_ring_with_vector(hw);
1515         if (ret) {
1516                 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
1517                 goto err_init_hardware;
1518         }
1519
1520         ret = hns3vf_set_alive(hw, true);
1521         if (ret) {
1522                 PMD_INIT_LOG(ERR, "Failed to VF send alive to PF: %d", ret);
1523                 goto err_init_hardware;
1524         }
1525
1526         hns3vf_request_link_info(hw);
1527         return 0;
1528
1529 err_init_hardware:
1530         (void)hns3vf_set_promisc_mode(hw, false, false, false);
1531         return ret;
1532 }
1533
1534 static int
1535 hns3vf_clear_vport_list(struct hns3_hw *hw)
1536 {
1537         return hns3_send_mbx_msg(hw, HNS3_MBX_HANDLE_VF_TBL,
1538                                  HNS3_MBX_VPORT_LIST_CLEAR, NULL, 0, false,
1539                                  NULL, 0);
1540 }
1541
1542 static int
1543 hns3vf_init_vf(struct rte_eth_dev *eth_dev)
1544 {
1545         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1546         struct hns3_adapter *hns = eth_dev->data->dev_private;
1547         struct hns3_hw *hw = &hns->hw;
1548         int ret;
1549
1550         PMD_INIT_FUNC_TRACE();
1551
1552         /* Get hardware io base address from pcie BAR2 IO space */
1553         hw->io_base = pci_dev->mem_resource[2].addr;
1554
1555         /* Firmware command queue initialize */
1556         ret = hns3_cmd_init_queue(hw);
1557         if (ret) {
1558                 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
1559                 goto err_cmd_init_queue;
1560         }
1561
1562         /* Firmware command initialize */
1563         ret = hns3_cmd_init(hw);
1564         if (ret) {
1565                 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
1566                 goto err_cmd_init;
1567         }
1568
1569         /* Get VF resource */
1570         ret = hns3_query_vf_resource(hw);
1571         if (ret)
1572                 goto err_cmd_init;
1573
1574         rte_spinlock_init(&hw->mbx_resp.lock);
1575
1576         hns3vf_clear_event_cause(hw, 0);
1577
1578         ret = rte_intr_callback_register(&pci_dev->intr_handle,
1579                                          hns3vf_interrupt_handler, eth_dev);
1580         if (ret) {
1581                 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
1582                 goto err_intr_callback_register;
1583         }
1584
1585         /* Enable interrupt */
1586         rte_intr_enable(&pci_dev->intr_handle);
1587         hns3vf_enable_irq0(hw);
1588
1589         /* Get configuration from PF */
1590         ret = hns3vf_get_configuration(hw);
1591         if (ret) {
1592                 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
1593                 goto err_get_config;
1594         }
1595
1596         /*
1597          * The hns3 PF ethdev driver in kernel support setting VF MAC address
1598          * on the host by "ip link set ..." command. To avoid some incorrect
1599          * scenes, for example, hns3 VF PMD driver fails to receive and send
1600          * packets after user configure the MAC address by using the
1601          * "ip link set ..." command, hns3 VF PMD driver keep the same MAC
1602          * address strategy as the hns3 kernel ethdev driver in the
1603          * initialization. If user configure a MAC address by the ip command
1604          * for VF device, then hns3 VF PMD driver will start with it, otherwise
1605          * start with a random MAC address in the initialization.
1606          */
1607         ret = rte_is_zero_ether_addr((struct rte_ether_addr *)hw->mac.mac_addr);
1608         if (ret)
1609                 rte_eth_random_addr(hw->mac.mac_addr);
1610
1611         ret = hns3vf_clear_vport_list(hw);
1612         if (ret) {
1613                 PMD_INIT_LOG(ERR, "Failed to clear tbl list: %d", ret);
1614                 goto err_get_config;
1615         }
1616
1617         ret = hns3vf_init_hardware(hns);
1618         if (ret)
1619                 goto err_get_config;
1620
1621         hns3_set_default_rss_args(hw);
1622
1623         return 0;
1624
1625 err_get_config:
1626         hns3vf_disable_irq0(hw);
1627         rte_intr_disable(&pci_dev->intr_handle);
1628         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1629                              eth_dev);
1630 err_intr_callback_register:
1631 err_cmd_init:
1632         hns3_cmd_uninit(hw);
1633         hns3_cmd_destroy_queue(hw);
1634 err_cmd_init_queue:
1635         hw->io_base = NULL;
1636
1637         return ret;
1638 }
1639
1640 static void
1641 hns3vf_uninit_vf(struct rte_eth_dev *eth_dev)
1642 {
1643         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1644         struct hns3_adapter *hns = eth_dev->data->dev_private;
1645         struct hns3_hw *hw = &hns->hw;
1646
1647         PMD_INIT_FUNC_TRACE();
1648
1649         hns3_rss_uninit(hns);
1650         (void)hns3vf_set_alive(hw, false);
1651         (void)hns3vf_set_promisc_mode(hw, false, false, false);
1652         hns3vf_disable_irq0(hw);
1653         rte_intr_disable(&pci_dev->intr_handle);
1654         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1655                              eth_dev);
1656         hns3_cmd_uninit(hw);
1657         hns3_cmd_destroy_queue(hw);
1658         hw->io_base = NULL;
1659 }
1660
1661 static int
1662 hns3vf_do_stop(struct hns3_adapter *hns)
1663 {
1664         struct hns3_hw *hw = &hns->hw;
1665         bool reset_queue;
1666
1667         hw->mac.link_status = ETH_LINK_DOWN;
1668
1669         if (rte_atomic16_read(&hw->reset.disable_cmd) == 0) {
1670                 hns3vf_configure_mac_addr(hns, true);
1671                 reset_queue = true;
1672         } else
1673                 reset_queue = false;
1674         return hns3_stop_queues(hns, reset_queue);
1675 }
1676
1677 static void
1678 hns3vf_unmap_rx_interrupt(struct rte_eth_dev *dev)
1679 {
1680         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1681         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1682         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1683         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
1684         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
1685         uint16_t q_id;
1686
1687         if (dev->data->dev_conf.intr_conf.rxq == 0)
1688                 return;
1689
1690         /* unmap the ring with vector */
1691         if (rte_intr_allow_others(intr_handle)) {
1692                 vec = RTE_INTR_VEC_RXTX_OFFSET;
1693                 base = RTE_INTR_VEC_RXTX_OFFSET;
1694         }
1695         if (rte_intr_dp_is_en(intr_handle)) {
1696                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
1697                         (void)hns3vf_bind_ring_with_vector(hw, vec, false,
1698                                                            HNS3_RING_TYPE_RX,
1699                                                            q_id);
1700                         if (vec < base + intr_handle->nb_efd - 1)
1701                                 vec++;
1702                 }
1703         }
1704         /* Clean datapath event and queue/vec mapping */
1705         rte_intr_efd_disable(intr_handle);
1706         if (intr_handle->intr_vec) {
1707                 rte_free(intr_handle->intr_vec);
1708                 intr_handle->intr_vec = NULL;
1709         }
1710 }
1711
1712 static void
1713 hns3vf_dev_stop(struct rte_eth_dev *dev)
1714 {
1715         struct hns3_adapter *hns = dev->data->dev_private;
1716         struct hns3_hw *hw = &hns->hw;
1717
1718         PMD_INIT_FUNC_TRACE();
1719
1720         hw->adapter_state = HNS3_NIC_STOPPING;
1721         hns3_set_rxtx_function(dev);
1722         rte_wmb();
1723         /* Disable datapath on secondary process. */
1724         hns3_mp_req_stop_rxtx(dev);
1725         /* Prevent crashes when queues are still in use. */
1726         rte_delay_ms(hw->tqps_num);
1727
1728         rte_spinlock_lock(&hw->lock);
1729         if (rte_atomic16_read(&hw->reset.resetting) == 0) {
1730                 hns3vf_do_stop(hns);
1731                 hns3vf_unmap_rx_interrupt(dev);
1732                 hns3_dev_release_mbufs(hns);
1733                 hw->adapter_state = HNS3_NIC_CONFIGURED;
1734         }
1735         rte_eal_alarm_cancel(hns3vf_service_handler, dev);
1736         rte_spinlock_unlock(&hw->lock);
1737 }
1738
1739 static void
1740 hns3vf_dev_close(struct rte_eth_dev *eth_dev)
1741 {
1742         struct hns3_adapter *hns = eth_dev->data->dev_private;
1743         struct hns3_hw *hw = &hns->hw;
1744
1745         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1746                 return;
1747
1748         if (hw->adapter_state == HNS3_NIC_STARTED)
1749                 hns3vf_dev_stop(eth_dev);
1750
1751         hw->adapter_state = HNS3_NIC_CLOSING;
1752         hns3_reset_abort(hns);
1753         hw->adapter_state = HNS3_NIC_CLOSED;
1754         rte_eal_alarm_cancel(hns3vf_keep_alive_handler, eth_dev);
1755         hns3vf_configure_all_mc_mac_addr(hns, true);
1756         hns3vf_remove_all_vlan_table(hns);
1757         hns3vf_uninit_vf(eth_dev);
1758         hns3_free_all_queues(eth_dev);
1759         rte_free(hw->reset.wait_data);
1760         rte_free(eth_dev->process_private);
1761         eth_dev->process_private = NULL;
1762         hns3_mp_uninit_primary();
1763         hns3_warn(hw, "Close port %d finished", hw->data->port_id);
1764 }
1765
1766 static int
1767 hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
1768                        __rte_unused int wait_to_complete)
1769 {
1770         struct hns3_adapter *hns = eth_dev->data->dev_private;
1771         struct hns3_hw *hw = &hns->hw;
1772         struct hns3_mac *mac = &hw->mac;
1773         struct rte_eth_link new_link;
1774
1775         memset(&new_link, 0, sizeof(new_link));
1776         switch (mac->link_speed) {
1777         case ETH_SPEED_NUM_10M:
1778         case ETH_SPEED_NUM_100M:
1779         case ETH_SPEED_NUM_1G:
1780         case ETH_SPEED_NUM_10G:
1781         case ETH_SPEED_NUM_25G:
1782         case ETH_SPEED_NUM_40G:
1783         case ETH_SPEED_NUM_50G:
1784         case ETH_SPEED_NUM_100G:
1785                 new_link.link_speed = mac->link_speed;
1786                 break;
1787         default:
1788                 new_link.link_speed = ETH_SPEED_NUM_100M;
1789                 break;
1790         }
1791
1792         new_link.link_duplex = mac->link_duplex;
1793         new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
1794         new_link.link_autoneg =
1795             !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
1796
1797         return rte_eth_linkstatus_set(eth_dev, &new_link);
1798 }
1799
1800 static int
1801 hns3vf_do_start(struct hns3_adapter *hns, bool reset_queue)
1802 {
1803         struct hns3_hw *hw = &hns->hw;
1804         int ret;
1805
1806         ret = hns3vf_set_tc_info(hns);
1807         if (ret)
1808                 return ret;
1809
1810         ret = hns3_start_queues(hns, reset_queue);
1811         if (ret)
1812                 hns3_err(hw, "Failed to start queues: %d", ret);
1813
1814         return ret;
1815 }
1816
1817 static int
1818 hns3vf_map_rx_interrupt(struct rte_eth_dev *dev)
1819 {
1820         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1821         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1822         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1823         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
1824         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
1825         uint32_t intr_vector;
1826         uint16_t q_id;
1827         int ret;
1828
1829         if (dev->data->dev_conf.intr_conf.rxq == 0)
1830                 return 0;
1831
1832         /* disable uio/vfio intr/eventfd mapping */
1833         rte_intr_disable(intr_handle);
1834
1835         /* check and configure queue intr-vector mapping */
1836         if (rte_intr_cap_multiple(intr_handle) ||
1837             !RTE_ETH_DEV_SRIOV(dev).active) {
1838                 intr_vector = hw->used_rx_queues;
1839                 /* It creates event fd for each intr vector when MSIX is used */
1840                 if (rte_intr_efd_enable(intr_handle, intr_vector))
1841                         return -EINVAL;
1842         }
1843         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
1844                 intr_handle->intr_vec =
1845                         rte_zmalloc("intr_vec",
1846                                     hw->used_rx_queues * sizeof(int), 0);
1847                 if (intr_handle->intr_vec == NULL) {
1848                         hns3_err(hw, "Failed to allocate %d rx_queues"
1849                                      " intr_vec", hw->used_rx_queues);
1850                         ret = -ENOMEM;
1851                         goto vf_alloc_intr_vec_error;
1852                 }
1853         }
1854
1855         if (rte_intr_allow_others(intr_handle)) {
1856                 vec = RTE_INTR_VEC_RXTX_OFFSET;
1857                 base = RTE_INTR_VEC_RXTX_OFFSET;
1858         }
1859         if (rte_intr_dp_is_en(intr_handle)) {
1860                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
1861                         ret = hns3vf_bind_ring_with_vector(hw, vec, true,
1862                                                            HNS3_RING_TYPE_RX,
1863                                                            q_id);
1864                         if (ret)
1865                                 goto vf_bind_vector_error;
1866                         intr_handle->intr_vec[q_id] = vec;
1867                         if (vec < base + intr_handle->nb_efd - 1)
1868                                 vec++;
1869                 }
1870         }
1871         rte_intr_enable(intr_handle);
1872         return 0;
1873
1874 vf_bind_vector_error:
1875         rte_intr_efd_disable(intr_handle);
1876         if (intr_handle->intr_vec) {
1877                 free(intr_handle->intr_vec);
1878                 intr_handle->intr_vec = NULL;
1879         }
1880         return ret;
1881 vf_alloc_intr_vec_error:
1882         rte_intr_efd_disable(intr_handle);
1883         return ret;
1884 }
1885
1886 static int
1887 hns3vf_restore_rx_interrupt(struct hns3_hw *hw)
1888 {
1889         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
1890         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1891         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1892         uint16_t q_id;
1893         int ret;
1894
1895         if (dev->data->dev_conf.intr_conf.rxq == 0)
1896                 return 0;
1897
1898         if (rte_intr_dp_is_en(intr_handle)) {
1899                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
1900                         ret = hns3vf_bind_ring_with_vector(hw,
1901                                         intr_handle->intr_vec[q_id], true,
1902                                         HNS3_RING_TYPE_RX, q_id);
1903                         if (ret)
1904                                 return ret;
1905                 }
1906         }
1907
1908         return 0;
1909 }
1910
1911 static void
1912 hns3vf_restore_filter(struct rte_eth_dev *dev)
1913 {
1914         hns3_restore_rss_filter(dev);
1915 }
1916
1917 static int
1918 hns3vf_dev_start(struct rte_eth_dev *dev)
1919 {
1920         struct hns3_adapter *hns = dev->data->dev_private;
1921         struct hns3_hw *hw = &hns->hw;
1922         int ret;
1923
1924         PMD_INIT_FUNC_TRACE();
1925         if (rte_atomic16_read(&hw->reset.resetting))
1926                 return -EBUSY;
1927
1928         rte_spinlock_lock(&hw->lock);
1929         hw->adapter_state = HNS3_NIC_STARTING;
1930         ret = hns3vf_do_start(hns, true);
1931         if (ret) {
1932                 hw->adapter_state = HNS3_NIC_CONFIGURED;
1933                 rte_spinlock_unlock(&hw->lock);
1934                 return ret;
1935         }
1936         ret = hns3vf_map_rx_interrupt(dev);
1937         if (ret) {
1938                 hw->adapter_state = HNS3_NIC_CONFIGURED;
1939                 rte_spinlock_unlock(&hw->lock);
1940                 return ret;
1941         }
1942         hw->adapter_state = HNS3_NIC_STARTED;
1943         rte_spinlock_unlock(&hw->lock);
1944
1945         hns3_set_rxtx_function(dev);
1946         hns3_mp_req_start_rxtx(dev);
1947         rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler, dev);
1948
1949         hns3vf_restore_filter(dev);
1950
1951         /* Enable interrupt of all rx queues before enabling queues */
1952         hns3_dev_all_rx_queue_intr_enable(hw, true);
1953         /*
1954          * When finished the initialization, enable queues to receive/transmit
1955          * packets.
1956          */
1957         hns3_enable_all_queues(hw, true);
1958
1959         return ret;
1960 }
1961
1962 static bool
1963 is_vf_reset_done(struct hns3_hw *hw)
1964 {
1965 #define HNS3_FUN_RST_ING_BITS \
1966         (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) | \
1967          BIT(HNS3_VECTOR0_CORERESET_INT_B) | \
1968          BIT(HNS3_VECTOR0_IMPRESET_INT_B) | \
1969          BIT(HNS3_VECTOR0_FUNCRESET_INT_B))
1970
1971         uint32_t val;
1972
1973         if (hw->reset.level == HNS3_VF_RESET) {
1974                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
1975                 if (val & HNS3_VF_RST_ING_BIT)
1976                         return false;
1977         } else {
1978                 val = hns3_read_dev(hw, HNS3_FUN_RST_ING);
1979                 if (val & HNS3_FUN_RST_ING_BITS)
1980                         return false;
1981         }
1982         return true;
1983 }
1984
1985 bool
1986 hns3vf_is_reset_pending(struct hns3_adapter *hns)
1987 {
1988         struct hns3_hw *hw = &hns->hw;
1989         enum hns3_reset_level reset;
1990
1991         hns3vf_check_event_cause(hns, NULL);
1992         reset = hns3vf_get_reset_level(hw, &hw->reset.pending);
1993         if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
1994                 hns3_warn(hw, "High level reset %d is pending", reset);
1995                 return true;
1996         }
1997         return false;
1998 }
1999
2000 static int
2001 hns3vf_wait_hardware_ready(struct hns3_adapter *hns)
2002 {
2003         struct hns3_hw *hw = &hns->hw;
2004         struct hns3_wait_data *wait_data = hw->reset.wait_data;
2005         struct timeval tv;
2006
2007         if (wait_data->result == HNS3_WAIT_SUCCESS) {
2008                 /*
2009                  * After vf reset is ready, the PF may not have completed
2010                  * the reset processing. The vf sending mbox to PF may fail
2011                  * during the pf reset, so it is better to add extra delay.
2012                  */
2013                 if (hw->reset.level == HNS3_VF_FUNC_RESET ||
2014                     hw->reset.level == HNS3_FLR_RESET)
2015                         return 0;
2016                 /* Reset retry process, no need to add extra delay. */
2017                 if (hw->reset.attempts)
2018                         return 0;
2019                 if (wait_data->check_completion == NULL)
2020                         return 0;
2021
2022                 wait_data->check_completion = NULL;
2023                 wait_data->interval = 1 * MSEC_PER_SEC * USEC_PER_MSEC;
2024                 wait_data->count = 1;
2025                 wait_data->result = HNS3_WAIT_REQUEST;
2026                 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback,
2027                                   wait_data);
2028                 hns3_warn(hw, "hardware is ready, delay 1 sec for PF reset complete");
2029                 return -EAGAIN;
2030         } else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
2031                 gettimeofday(&tv, NULL);
2032                 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
2033                           tv.tv_sec, tv.tv_usec);
2034                 return -ETIME;
2035         } else if (wait_data->result == HNS3_WAIT_REQUEST)
2036                 return -EAGAIN;
2037
2038         wait_data->hns = hns;
2039         wait_data->check_completion = is_vf_reset_done;
2040         wait_data->end_ms = (uint64_t)HNS3VF_RESET_WAIT_CNT *
2041                                       HNS3VF_RESET_WAIT_MS + get_timeofday_ms();
2042         wait_data->interval = HNS3VF_RESET_WAIT_MS * USEC_PER_MSEC;
2043         wait_data->count = HNS3VF_RESET_WAIT_CNT;
2044         wait_data->result = HNS3_WAIT_REQUEST;
2045         rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
2046         return -EAGAIN;
2047 }
2048
2049 static int
2050 hns3vf_prepare_reset(struct hns3_adapter *hns)
2051 {
2052         struct hns3_hw *hw = &hns->hw;
2053         int ret = 0;
2054
2055         if (hw->reset.level == HNS3_VF_FUNC_RESET) {
2056                 ret = hns3_send_mbx_msg(hw, HNS3_MBX_RESET, 0, NULL,
2057                                         0, true, NULL, 0);
2058         }
2059         rte_atomic16_set(&hw->reset.disable_cmd, 1);
2060
2061         return ret;
2062 }
2063
2064 static int
2065 hns3vf_stop_service(struct hns3_adapter *hns)
2066 {
2067         struct hns3_hw *hw = &hns->hw;
2068         struct rte_eth_dev *eth_dev;
2069
2070         eth_dev = &rte_eth_devices[hw->data->port_id];
2071         if (hw->adapter_state == HNS3_NIC_STARTED)
2072                 rte_eal_alarm_cancel(hns3vf_service_handler, eth_dev);
2073         hw->mac.link_status = ETH_LINK_DOWN;
2074
2075         hns3_set_rxtx_function(eth_dev);
2076         rte_wmb();
2077         /* Disable datapath on secondary process. */
2078         hns3_mp_req_stop_rxtx(eth_dev);
2079         rte_delay_ms(hw->tqps_num);
2080
2081         rte_spinlock_lock(&hw->lock);
2082         if (hw->adapter_state == HNS3_NIC_STARTED ||
2083             hw->adapter_state == HNS3_NIC_STOPPING) {
2084                 hns3vf_do_stop(hns);
2085                 hw->reset.mbuf_deferred_free = true;
2086         } else
2087                 hw->reset.mbuf_deferred_free = false;
2088
2089         /*
2090          * It is cumbersome for hardware to pick-and-choose entries for deletion
2091          * from table space. Hence, for function reset software intervention is
2092          * required to delete the entries.
2093          */
2094         if (rte_atomic16_read(&hw->reset.disable_cmd) == 0)
2095                 hns3vf_configure_all_mc_mac_addr(hns, true);
2096         rte_spinlock_unlock(&hw->lock);
2097
2098         return 0;
2099 }
2100
2101 static int
2102 hns3vf_start_service(struct hns3_adapter *hns)
2103 {
2104         struct hns3_hw *hw = &hns->hw;
2105         struct rte_eth_dev *eth_dev;
2106
2107         eth_dev = &rte_eth_devices[hw->data->port_id];
2108         hns3_set_rxtx_function(eth_dev);
2109         hns3_mp_req_start_rxtx(eth_dev);
2110         if (hw->adapter_state == HNS3_NIC_STARTED) {
2111                 hns3vf_service_handler(eth_dev);
2112
2113                 /* Enable interrupt of all rx queues before enabling queues */
2114                 hns3_dev_all_rx_queue_intr_enable(hw, true);
2115                 /*
2116                  * When finished the initialization, enable queues to receive
2117                  * and transmit packets.
2118                  */
2119                 hns3_enable_all_queues(hw, true);
2120         }
2121
2122         return 0;
2123 }
2124
2125 static int
2126 hns3vf_check_default_mac_change(struct hns3_hw *hw)
2127 {
2128         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2129         struct rte_ether_addr *hw_mac;
2130         int ret;
2131
2132         /*
2133          * The hns3 PF ethdev driver in kernel support setting VF MAC address
2134          * on the host by "ip link set ..." command. If the hns3 PF kernel
2135          * ethdev driver sets the MAC address for VF device after the
2136          * initialization of the related VF device, the PF driver will notify
2137          * VF driver to reset VF device to make the new MAC address effective
2138          * immediately. The hns3 VF PMD driver should check whether the MAC
2139          * address has been changed by the PF kernel ethdev driver, if changed
2140          * VF driver should configure hardware using the new MAC address in the
2141          * recovering hardware configuration stage of the reset process.
2142          */
2143         ret = hns3vf_get_host_mac_addr(hw);
2144         if (ret)
2145                 return ret;
2146
2147         hw_mac = (struct rte_ether_addr *)hw->mac.mac_addr;
2148         ret = rte_is_zero_ether_addr(hw_mac);
2149         if (ret) {
2150                 rte_ether_addr_copy(&hw->data->mac_addrs[0], hw_mac);
2151         } else {
2152                 ret = rte_is_same_ether_addr(&hw->data->mac_addrs[0], hw_mac);
2153                 if (!ret) {
2154                         rte_ether_addr_copy(hw_mac, &hw->data->mac_addrs[0]);
2155                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2156                                               &hw->data->mac_addrs[0]);
2157                         hns3_warn(hw, "Default MAC address has been changed to:"
2158                                   " %s by the host PF kernel ethdev driver",
2159                                   mac_str);
2160                 }
2161         }
2162
2163         return 0;
2164 }
2165
2166 static int
2167 hns3vf_restore_conf(struct hns3_adapter *hns)
2168 {
2169         struct hns3_hw *hw = &hns->hw;
2170         int ret;
2171
2172         ret = hns3vf_check_default_mac_change(hw);
2173         if (ret)
2174                 return ret;
2175
2176         ret = hns3vf_configure_mac_addr(hns, false);
2177         if (ret)
2178                 return ret;
2179
2180         ret = hns3vf_configure_all_mc_mac_addr(hns, false);
2181         if (ret)
2182                 goto err_mc_mac;
2183
2184         ret = hns3vf_restore_promisc(hns);
2185         if (ret)
2186                 goto err_vlan_table;
2187
2188         ret = hns3vf_restore_vlan_conf(hns);
2189         if (ret)
2190                 goto err_vlan_table;
2191
2192         ret = hns3vf_restore_rx_interrupt(hw);
2193         if (ret)
2194                 goto err_vlan_table;
2195
2196         if (hw->adapter_state == HNS3_NIC_STARTED) {
2197                 ret = hns3vf_do_start(hns, false);
2198                 if (ret)
2199                         goto err_vlan_table;
2200                 hns3_info(hw, "hns3vf dev restart successful!");
2201         } else if (hw->adapter_state == HNS3_NIC_STOPPING)
2202                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2203         return 0;
2204
2205 err_vlan_table:
2206         hns3vf_configure_all_mc_mac_addr(hns, true);
2207 err_mc_mac:
2208         hns3vf_configure_mac_addr(hns, true);
2209         return ret;
2210 }
2211
2212 static enum hns3_reset_level
2213 hns3vf_get_reset_level(struct hns3_hw *hw, uint64_t *levels)
2214 {
2215         enum hns3_reset_level reset_level;
2216
2217         /* return the highest priority reset level amongst all */
2218         if (hns3_atomic_test_bit(HNS3_VF_RESET, levels))
2219                 reset_level = HNS3_VF_RESET;
2220         else if (hns3_atomic_test_bit(HNS3_VF_FULL_RESET, levels))
2221                 reset_level = HNS3_VF_FULL_RESET;
2222         else if (hns3_atomic_test_bit(HNS3_VF_PF_FUNC_RESET, levels))
2223                 reset_level = HNS3_VF_PF_FUNC_RESET;
2224         else if (hns3_atomic_test_bit(HNS3_VF_FUNC_RESET, levels))
2225                 reset_level = HNS3_VF_FUNC_RESET;
2226         else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
2227                 reset_level = HNS3_FLR_RESET;
2228         else
2229                 reset_level = HNS3_NONE_RESET;
2230
2231         if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
2232                 return HNS3_NONE_RESET;
2233
2234         return reset_level;
2235 }
2236
2237 static void
2238 hns3vf_reset_service(void *param)
2239 {
2240         struct hns3_adapter *hns = (struct hns3_adapter *)param;
2241         struct hns3_hw *hw = &hns->hw;
2242         enum hns3_reset_level reset_level;
2243         struct timeval tv_delta;
2244         struct timeval tv_start;
2245         struct timeval tv;
2246         uint64_t msec;
2247
2248         /*
2249          * The interrupt is not triggered within the delay time.
2250          * The interrupt may have been lost. It is necessary to handle
2251          * the interrupt to recover from the error.
2252          */
2253         if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_DEFERRED) {
2254                 rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_REQUESTED);
2255                 hns3_err(hw, "Handling interrupts in delayed tasks");
2256                 hns3vf_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
2257                 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2258                 if (reset_level == HNS3_NONE_RESET) {
2259                         hns3_err(hw, "No reset level is set, try global reset");
2260                         hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
2261                 }
2262         }
2263         rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_NONE);
2264
2265         /*
2266          * Hardware reset has been notified, we now have to poll & check if
2267          * hardware has actually completed the reset sequence.
2268          */
2269         reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2270         if (reset_level != HNS3_NONE_RESET) {
2271                 gettimeofday(&tv_start, NULL);
2272                 hns3_reset_process(hns, reset_level);
2273                 gettimeofday(&tv, NULL);
2274                 timersub(&tv, &tv_start, &tv_delta);
2275                 msec = tv_delta.tv_sec * MSEC_PER_SEC +
2276                        tv_delta.tv_usec / USEC_PER_MSEC;
2277                 if (msec > HNS3_RESET_PROCESS_MS)
2278                         hns3_err(hw, "%d handle long time delta %" PRIx64
2279                                  " ms time=%ld.%.6ld",
2280                                  hw->reset.level, msec, tv.tv_sec, tv.tv_usec);
2281         }
2282 }
2283
2284 static int
2285 hns3vf_reinit_dev(struct hns3_adapter *hns)
2286 {
2287         struct rte_eth_dev *eth_dev = &rte_eth_devices[hns->hw.data->port_id];
2288         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2289         struct hns3_hw *hw = &hns->hw;
2290         int ret;
2291
2292         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2293                 rte_intr_disable(&pci_dev->intr_handle);
2294                 hns3vf_set_bus_master(pci_dev, true);
2295         }
2296
2297         /* Firmware command initialize */
2298         ret = hns3_cmd_init(hw);
2299         if (ret) {
2300                 hns3_err(hw, "Failed to init cmd: %d", ret);
2301                 return ret;
2302         }
2303
2304         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2305                 /*
2306                  * UIO enables msix by writing the pcie configuration space
2307                  * vfio_pci enables msix in rte_intr_enable.
2308                  */
2309                 if (pci_dev->kdrv == RTE_KDRV_IGB_UIO ||
2310                     pci_dev->kdrv == RTE_KDRV_UIO_GENERIC) {
2311                         if (hns3vf_enable_msix(pci_dev, true))
2312                                 hns3_err(hw, "Failed to enable msix");
2313                 }
2314
2315                 rte_intr_enable(&pci_dev->intr_handle);
2316         }
2317
2318         ret = hns3_reset_all_queues(hns);
2319         if (ret) {
2320                 hns3_err(hw, "Failed to reset all queues: %d", ret);
2321                 return ret;
2322         }
2323
2324         ret = hns3vf_init_hardware(hns);
2325         if (ret) {
2326                 hns3_err(hw, "Failed to init hardware: %d", ret);
2327                 return ret;
2328         }
2329
2330         return 0;
2331 }
2332
2333 static const struct eth_dev_ops hns3vf_eth_dev_ops = {
2334         .dev_start          = hns3vf_dev_start,
2335         .dev_stop           = hns3vf_dev_stop,
2336         .dev_close          = hns3vf_dev_close,
2337         .mtu_set            = hns3vf_dev_mtu_set,
2338         .promiscuous_enable = hns3vf_dev_promiscuous_enable,
2339         .promiscuous_disable = hns3vf_dev_promiscuous_disable,
2340         .allmulticast_enable = hns3vf_dev_allmulticast_enable,
2341         .allmulticast_disable = hns3vf_dev_allmulticast_disable,
2342         .stats_get          = hns3_stats_get,
2343         .stats_reset        = hns3_stats_reset,
2344         .xstats_get         = hns3_dev_xstats_get,
2345         .xstats_get_names   = hns3_dev_xstats_get_names,
2346         .xstats_reset       = hns3_dev_xstats_reset,
2347         .xstats_get_by_id   = hns3_dev_xstats_get_by_id,
2348         .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
2349         .dev_infos_get      = hns3vf_dev_infos_get,
2350         .rx_queue_setup     = hns3_rx_queue_setup,
2351         .tx_queue_setup     = hns3_tx_queue_setup,
2352         .rx_queue_release   = hns3_dev_rx_queue_release,
2353         .tx_queue_release   = hns3_dev_tx_queue_release,
2354         .rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
2355         .rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
2356         .dev_configure      = hns3vf_dev_configure,
2357         .mac_addr_add       = hns3vf_add_mac_addr,
2358         .mac_addr_remove    = hns3vf_remove_mac_addr,
2359         .mac_addr_set       = hns3vf_set_default_mac_addr,
2360         .set_mc_addr_list   = hns3vf_set_mc_mac_addr_list,
2361         .link_update        = hns3vf_dev_link_update,
2362         .rss_hash_update    = hns3_dev_rss_hash_update,
2363         .rss_hash_conf_get  = hns3_dev_rss_hash_conf_get,
2364         .reta_update        = hns3_dev_rss_reta_update,
2365         .reta_query         = hns3_dev_rss_reta_query,
2366         .filter_ctrl        = hns3_dev_filter_ctrl,
2367         .vlan_filter_set    = hns3vf_vlan_filter_set,
2368         .vlan_offload_set   = hns3vf_vlan_offload_set,
2369         .get_reg            = hns3_get_regs,
2370         .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
2371 };
2372
2373 static const struct hns3_reset_ops hns3vf_reset_ops = {
2374         .reset_service       = hns3vf_reset_service,
2375         .stop_service        = hns3vf_stop_service,
2376         .prepare_reset       = hns3vf_prepare_reset,
2377         .wait_hardware_ready = hns3vf_wait_hardware_ready,
2378         .reinit_dev          = hns3vf_reinit_dev,
2379         .restore_conf        = hns3vf_restore_conf,
2380         .start_service       = hns3vf_start_service,
2381 };
2382
2383 static int
2384 hns3vf_dev_init(struct rte_eth_dev *eth_dev)
2385 {
2386         struct hns3_adapter *hns = eth_dev->data->dev_private;
2387         struct hns3_hw *hw = &hns->hw;
2388         int ret;
2389
2390         PMD_INIT_FUNC_TRACE();
2391
2392         eth_dev->process_private = (struct hns3_process_private *)
2393             rte_zmalloc_socket("hns3_filter_list",
2394                                sizeof(struct hns3_process_private),
2395                                RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
2396         if (eth_dev->process_private == NULL) {
2397                 PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
2398                 return -ENOMEM;
2399         }
2400
2401         /* initialize flow filter lists */
2402         hns3_filterlist_init(eth_dev);
2403
2404         hns3_set_rxtx_function(eth_dev);
2405         eth_dev->dev_ops = &hns3vf_eth_dev_ops;
2406         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2407                 hns3_mp_init_secondary();
2408                 hw->secondary_cnt++;
2409                 return 0;
2410         }
2411
2412         hns3_mp_init_primary();
2413
2414         hw->adapter_state = HNS3_NIC_UNINITIALIZED;
2415         hns->is_vf = true;
2416         hw->data = eth_dev->data;
2417
2418         ret = hns3_reset_init(hw);
2419         if (ret)
2420                 goto err_init_reset;
2421         hw->reset.ops = &hns3vf_reset_ops;
2422
2423         ret = hns3vf_init_vf(eth_dev);
2424         if (ret) {
2425                 PMD_INIT_LOG(ERR, "Failed to init vf: %d", ret);
2426                 goto err_init_vf;
2427         }
2428
2429         /* Allocate memory for storing MAC addresses */
2430         eth_dev->data->mac_addrs = rte_zmalloc("hns3vf-mac",
2431                                                sizeof(struct rte_ether_addr) *
2432                                                HNS3_VF_UC_MACADDR_NUM, 0);
2433         if (eth_dev->data->mac_addrs == NULL) {
2434                 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
2435                              "to store MAC addresses",
2436                              sizeof(struct rte_ether_addr) *
2437                              HNS3_VF_UC_MACADDR_NUM);
2438                 ret = -ENOMEM;
2439                 goto err_rte_zmalloc;
2440         }
2441
2442         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
2443                             &eth_dev->data->mac_addrs[0]);
2444         hw->adapter_state = HNS3_NIC_INITIALIZED;
2445         /*
2446          * Pass the information to the rte_eth_dev_close() that it should also
2447          * release the private port resources.
2448          */
2449         eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
2450
2451         if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_PENDING) {
2452                 hns3_err(hw, "Reschedule reset service after dev_init");
2453                 hns3_schedule_reset(hns);
2454         } else {
2455                 /* IMP will wait ready flag before reset */
2456                 hns3_notify_reset_ready(hw, false);
2457         }
2458         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
2459                           eth_dev);
2460         return 0;
2461
2462 err_rte_zmalloc:
2463         hns3vf_uninit_vf(eth_dev);
2464
2465 err_init_vf:
2466         rte_free(hw->reset.wait_data);
2467
2468 err_init_reset:
2469         eth_dev->dev_ops = NULL;
2470         eth_dev->rx_pkt_burst = NULL;
2471         eth_dev->tx_pkt_burst = NULL;
2472         eth_dev->tx_pkt_prepare = NULL;
2473         rte_free(eth_dev->process_private);
2474         eth_dev->process_private = NULL;
2475
2476         return ret;
2477 }
2478
2479 static int
2480 hns3vf_dev_uninit(struct rte_eth_dev *eth_dev)
2481 {
2482         struct hns3_adapter *hns = eth_dev->data->dev_private;
2483         struct hns3_hw *hw = &hns->hw;
2484
2485         PMD_INIT_FUNC_TRACE();
2486
2487         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2488                 return -EPERM;
2489
2490         eth_dev->dev_ops = NULL;
2491         eth_dev->rx_pkt_burst = NULL;
2492         eth_dev->tx_pkt_burst = NULL;
2493         eth_dev->tx_pkt_prepare = NULL;
2494
2495         if (hw->adapter_state < HNS3_NIC_CLOSING)
2496                 hns3vf_dev_close(eth_dev);
2497
2498         hw->adapter_state = HNS3_NIC_REMOVED;
2499         return 0;
2500 }
2501
2502 static int
2503 eth_hns3vf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2504                      struct rte_pci_device *pci_dev)
2505 {
2506         return rte_eth_dev_pci_generic_probe(pci_dev,
2507                                              sizeof(struct hns3_adapter),
2508                                              hns3vf_dev_init);
2509 }
2510
2511 static int
2512 eth_hns3vf_pci_remove(struct rte_pci_device *pci_dev)
2513 {
2514         return rte_eth_dev_pci_generic_remove(pci_dev, hns3vf_dev_uninit);
2515 }
2516
2517 static const struct rte_pci_id pci_id_hns3vf_map[] = {
2518         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_VF) },
2519         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_PFC_VF) },
2520         { .vendor_id = 0, /* sentinel */ },
2521 };
2522
2523 static struct rte_pci_driver rte_hns3vf_pmd = {
2524         .id_table = pci_id_hns3vf_map,
2525         .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
2526         .probe = eth_hns3vf_pci_probe,
2527         .remove = eth_hns3vf_pci_remove,
2528 };
2529
2530 RTE_PMD_REGISTER_PCI(net_hns3_vf, rte_hns3vf_pmd);
2531 RTE_PMD_REGISTER_PCI_TABLE(net_hns3_vf, pci_id_hns3vf_map);
2532 RTE_PMD_REGISTER_KMOD_DEP(net_hns3_vf, "* igb_uio | vfio-pci");