1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2018-2019 Hisilicon Limited.
11 #include <arpa/inet.h>
12 #include <linux/pci_regs.h>
14 #include <rte_alarm.h>
15 #include <rte_atomic.h>
16 #include <rte_bus_pci.h>
17 #include <rte_byteorder.h>
18 #include <rte_common.h>
19 #include <rte_cycles.h>
22 #include <rte_ether.h>
23 #include <rte_ethdev_driver.h>
24 #include <rte_ethdev_pci.h>
25 #include <rte_interrupts.h>
31 #include "hns3_ethdev.h"
32 #include "hns3_logs.h"
33 #include "hns3_rxtx.h"
34 #include "hns3_regs.h"
35 #include "hns3_intr.h"
39 #define HNS3VF_KEEP_ALIVE_INTERVAL 2000000 /* us */
40 #define HNS3VF_SERVICE_INTERVAL 1000000 /* us */
42 #define HNS3VF_RESET_WAIT_MS 20
43 #define HNS3VF_RESET_WAIT_CNT 2000
45 /* Reset related Registers */
46 #define HNS3_GLOBAL_RESET_BIT 0
47 #define HNS3_CORE_RESET_BIT 1
48 #define HNS3_IMP_RESET_BIT 2
49 #define HNS3_FUN_RST_ING_B 0
51 enum hns3vf_evt_cause {
52 HNS3VF_VECTOR0_EVENT_RST,
53 HNS3VF_VECTOR0_EVENT_MBX,
54 HNS3VF_VECTOR0_EVENT_OTHER,
57 static enum hns3_reset_level hns3vf_get_reset_level(struct hns3_hw *hw,
59 static int hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
60 static int hns3vf_dev_configure_vlan(struct rte_eth_dev *dev);
62 /* set PCI bus mastering */
64 hns3vf_set_bus_master(const struct rte_pci_device *device, bool op)
68 rte_pci_read_config(device, ®, sizeof(reg), PCI_COMMAND);
71 /* set the master bit */
72 reg |= PCI_COMMAND_MASTER;
74 reg &= ~(PCI_COMMAND_MASTER);
76 rte_pci_write_config(device, ®, sizeof(reg), PCI_COMMAND);
80 * hns3vf_find_pci_capability - lookup a capability in the PCI capability list
81 * @cap: the capability
83 * Return the address of the given capability within the PCI capability list.
86 hns3vf_find_pci_capability(const struct rte_pci_device *device, int cap)
88 #define MAX_PCIE_CAPABILITY 48
94 rte_pci_read_config(device, &status, sizeof(status), PCI_STATUS);
95 if (!(status & PCI_STATUS_CAP_LIST))
98 ttl = MAX_PCIE_CAPABILITY;
99 rte_pci_read_config(device, &pos, sizeof(pos), PCI_CAPABILITY_LIST);
100 while (ttl-- && pos >= PCI_STD_HEADER_SIZEOF) {
101 rte_pci_read_config(device, &id, sizeof(id),
102 (pos + PCI_CAP_LIST_ID));
110 rte_pci_read_config(device, &pos, sizeof(pos),
111 (pos + PCI_CAP_LIST_NEXT));
117 hns3vf_enable_msix(const struct rte_pci_device *device, bool op)
122 pos = hns3vf_find_pci_capability(device, PCI_CAP_ID_MSIX);
124 rte_pci_read_config(device, &control, sizeof(control),
125 (pos + PCI_MSIX_FLAGS));
127 control |= PCI_MSIX_FLAGS_ENABLE;
129 control &= ~PCI_MSIX_FLAGS_ENABLE;
130 rte_pci_write_config(device, &control, sizeof(control),
131 (pos + PCI_MSIX_FLAGS));
138 hns3vf_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
139 __rte_unused uint32_t idx,
140 __rte_unused uint32_t pool)
142 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
143 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
146 rte_spinlock_lock(&hw->lock);
147 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
148 HNS3_MBX_MAC_VLAN_UC_ADD, mac_addr->addr_bytes,
149 RTE_ETHER_ADDR_LEN, false, NULL, 0);
150 rte_spinlock_unlock(&hw->lock);
152 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
154 hns3_err(hw, "Failed to add mac addr(%s) for vf: %d", mac_str,
162 hns3vf_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
164 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
165 /* index will be checked by upper level rte interface */
166 struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
167 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
170 rte_spinlock_lock(&hw->lock);
171 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
172 HNS3_MBX_MAC_VLAN_UC_REMOVE,
173 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
175 rte_spinlock_unlock(&hw->lock);
177 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
179 hns3_err(hw, "Failed to remove mac addr(%s) for vf: %d",
185 hns3vf_set_default_mac_addr(struct rte_eth_dev *dev,
186 struct rte_ether_addr *mac_addr)
188 #define HNS3_TWO_ETHER_ADDR_LEN (RTE_ETHER_ADDR_LEN * 2)
189 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
190 struct rte_ether_addr *old_addr;
191 uint8_t addr_bytes[HNS3_TWO_ETHER_ADDR_LEN]; /* for 2 MAC addresses */
192 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
196 * It has been guaranteed that input parameter named mac_addr is valid
197 * address in the rte layer of DPDK framework.
199 old_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
200 rte_spinlock_lock(&hw->lock);
201 memcpy(addr_bytes, mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN);
202 memcpy(&addr_bytes[RTE_ETHER_ADDR_LEN], old_addr->addr_bytes,
205 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
206 HNS3_MBX_MAC_VLAN_UC_MODIFY, addr_bytes,
207 HNS3_TWO_ETHER_ADDR_LEN, true, NULL, 0);
210 * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev
211 * driver. When user has configured a MAC address for VF device
212 * by "ip link set ..." command based on the PF device, the hns3
213 * PF kernel ethdev driver does not allow VF driver to request
214 * reconfiguring a different default MAC address, and return
215 * -EPREM to VF driver through mailbox.
218 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
220 hns3_warn(hw, "Has permanet mac addr(%s) for vf",
223 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
225 hns3_err(hw, "Failed to set mac addr(%s) for vf: %d",
230 rte_ether_addr_copy(mac_addr,
231 (struct rte_ether_addr *)hw->mac.mac_addr);
232 rte_spinlock_unlock(&hw->lock);
238 hns3vf_configure_mac_addr(struct hns3_adapter *hns, bool del)
240 struct hns3_hw *hw = &hns->hw;
241 struct rte_ether_addr *addr;
242 enum hns3_mbx_mac_vlan_subcode opcode;
243 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
248 opcode = HNS3_MBX_MAC_VLAN_UC_REMOVE;
250 opcode = HNS3_MBX_MAC_VLAN_UC_ADD;
251 for (i = 0; i < HNS3_VF_UC_MACADDR_NUM; i++) {
252 addr = &hw->data->mac_addrs[i];
253 if (!rte_is_valid_assigned_ether_addr(addr))
255 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, addr);
256 hns3_dbg(hw, "rm mac addr: %s", mac_str);
257 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST, opcode,
258 addr->addr_bytes, RTE_ETHER_ADDR_LEN,
261 hns3_err(hw, "Failed to remove mac addr for vf: %d",
270 hns3vf_add_mc_mac_addr(struct hns3_adapter *hns,
271 struct rte_ether_addr *mac_addr)
273 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
274 struct hns3_hw *hw = &hns->hw;
277 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
278 HNS3_MBX_MAC_VLAN_MC_ADD,
279 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
282 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
284 hns3_err(hw, "Failed to add mc mac addr(%s) for vf: %d",
292 hns3vf_remove_mc_mac_addr(struct hns3_adapter *hns,
293 struct rte_ether_addr *mac_addr)
295 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
296 struct hns3_hw *hw = &hns->hw;
299 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
300 HNS3_MBX_MAC_VLAN_MC_REMOVE,
301 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
304 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
306 hns3_err(hw, "Failed to remove mc mac addr(%s) for vf: %d",
314 hns3vf_set_mc_mac_addr_list(struct rte_eth_dev *dev,
315 struct rte_ether_addr *mc_addr_set,
318 struct hns3_adapter *hns = dev->data->dev_private;
319 struct hns3_hw *hw = &hns->hw;
320 struct rte_ether_addr *addr;
321 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
328 if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
329 hns3_err(hw, "Failed to set mc mac addr, nb_mc_addr(%d) "
330 "invalid. valid range: 0~%d",
331 nb_mc_addr, HNS3_MC_MACADDR_NUM);
335 set_addr_num = (int)nb_mc_addr;
336 for (i = 0; i < set_addr_num; i++) {
337 addr = &mc_addr_set[i];
338 if (!rte_is_multicast_ether_addr(addr)) {
339 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
342 "Failed to set mc mac addr, addr(%s) invalid.",
347 rte_spinlock_lock(&hw->lock);
348 cur_addr_num = hw->mc_addrs_num;
349 for (i = 0; i < cur_addr_num; i++) {
350 num = cur_addr_num - i - 1;
351 addr = &hw->mc_addrs[num];
352 ret = hns3vf_remove_mc_mac_addr(hns, addr);
354 rte_spinlock_unlock(&hw->lock);
361 for (i = 0; i < set_addr_num; i++) {
362 addr = &mc_addr_set[i];
363 ret = hns3vf_add_mc_mac_addr(hns, addr);
365 rte_spinlock_unlock(&hw->lock);
369 rte_ether_addr_copy(addr, &hw->mc_addrs[hw->mc_addrs_num]);
372 rte_spinlock_unlock(&hw->lock);
378 hns3vf_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
380 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
381 struct hns3_hw *hw = &hns->hw;
382 struct rte_ether_addr *addr;
387 for (i = 0; i < hw->mc_addrs_num; i++) {
388 addr = &hw->mc_addrs[i];
389 if (!rte_is_multicast_ether_addr(addr))
392 ret = hns3vf_remove_mc_mac_addr(hns, addr);
394 ret = hns3vf_add_mc_mac_addr(hns, addr);
397 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
399 hns3_err(hw, "Failed to %s mc mac addr: %s for vf: %d",
400 del ? "Remove" : "Restore", mac_str, ret);
407 hns3vf_set_promisc_mode(struct hns3_hw *hw, bool en_bc_pmc,
408 bool en_uc_pmc, bool en_mc_pmc)
410 struct hns3_mbx_vf_to_pf_cmd *req;
411 struct hns3_cmd_desc desc;
414 req = (struct hns3_mbx_vf_to_pf_cmd *)desc.data;
417 * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev driver,
418 * so there are some features for promiscuous/allmulticast mode in hns3
419 * VF PMD driver as below:
420 * 1. The promiscuous/allmulticast mode can be configured successfully
421 * only based on the trusted VF device. If based on the non trusted
422 * VF device, configuring promiscuous/allmulticast mode will fail.
423 * The hns3 VF device can be confiruged as trusted device by hns3 PF
424 * kernel ethdev driver on the host by the following command:
425 * "ip link set <eth num> vf <vf id> turst on"
426 * 2. After the promiscuous mode is configured successfully, hns3 VF PMD
427 * driver can receive the ingress and outgoing traffic. In the words,
428 * all the ingress packets, all the packets sent from the PF and
429 * other VFs on the same physical port.
430 * 3. Note: Because of the hardware constraints, By default vlan filter
431 * is enabled and couldn't be turned off based on VF device, so vlan
432 * filter is still effective even in promiscuous mode. If upper
433 * applications don't call rte_eth_dev_vlan_filter API function to
434 * set vlan based on VF device, hns3 VF PMD driver will can't receive
435 * the packets with vlan tag in promiscuoue mode.
437 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MBX_VF_TO_PF, false);
438 req->msg[0] = HNS3_MBX_SET_PROMISC_MODE;
439 req->msg[1] = en_bc_pmc ? 1 : 0;
440 req->msg[2] = en_uc_pmc ? 1 : 0;
441 req->msg[3] = en_mc_pmc ? 1 : 0;
443 ret = hns3_cmd_send(hw, &desc, 1);
445 hns3_err(hw, "Set promisc mode fail, ret = %d", ret);
451 hns3vf_dev_promiscuous_enable(struct rte_eth_dev *dev)
453 struct hns3_adapter *hns = dev->data->dev_private;
454 struct hns3_hw *hw = &hns->hw;
457 ret = hns3vf_set_promisc_mode(hw, true, true, true);
459 hns3_err(hw, "Failed to enable promiscuous mode, ret = %d",
465 hns3vf_dev_promiscuous_disable(struct rte_eth_dev *dev)
467 bool allmulti = dev->data->all_multicast ? true : false;
468 struct hns3_adapter *hns = dev->data->dev_private;
469 struct hns3_hw *hw = &hns->hw;
472 ret = hns3vf_set_promisc_mode(hw, true, false, allmulti);
474 hns3_err(hw, "Failed to disable promiscuous mode, ret = %d",
480 hns3vf_dev_allmulticast_enable(struct rte_eth_dev *dev)
482 struct hns3_adapter *hns = dev->data->dev_private;
483 struct hns3_hw *hw = &hns->hw;
486 if (dev->data->promiscuous)
489 ret = hns3vf_set_promisc_mode(hw, true, false, true);
491 hns3_err(hw, "Failed to enable allmulticast mode, ret = %d",
497 hns3vf_dev_allmulticast_disable(struct rte_eth_dev *dev)
499 struct hns3_adapter *hns = dev->data->dev_private;
500 struct hns3_hw *hw = &hns->hw;
503 if (dev->data->promiscuous)
506 ret = hns3vf_set_promisc_mode(hw, true, false, false);
508 hns3_err(hw, "Failed to disable allmulticast mode, ret = %d",
514 hns3vf_restore_promisc(struct hns3_adapter *hns)
516 struct hns3_hw *hw = &hns->hw;
517 bool allmulti = hw->data->all_multicast ? true : false;
519 if (hw->data->promiscuous)
520 return hns3vf_set_promisc_mode(hw, true, true, true);
522 return hns3vf_set_promisc_mode(hw, true, false, allmulti);
526 hns3vf_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id,
527 bool mmap, enum hns3_ring_type queue_type,
530 struct hns3_vf_bind_vector_msg bind_msg;
535 memset(&bind_msg, 0, sizeof(bind_msg));
536 code = mmap ? HNS3_MBX_MAP_RING_TO_VECTOR :
537 HNS3_MBX_UNMAP_RING_TO_VECTOR;
538 bind_msg.vector_id = vector_id;
540 if (queue_type == HNS3_RING_TYPE_RX)
541 bind_msg.param[0].int_gl_index = HNS3_RING_GL_RX;
543 bind_msg.param[0].int_gl_index = HNS3_RING_GL_TX;
545 bind_msg.param[0].ring_type = queue_type;
546 bind_msg.ring_num = 1;
547 bind_msg.param[0].tqp_index = queue_id;
548 op_str = mmap ? "Map" : "Unmap";
549 ret = hns3_send_mbx_msg(hw, code, 0, (uint8_t *)&bind_msg,
550 sizeof(bind_msg), false, NULL, 0);
552 hns3_err(hw, "%s TQP %d fail, vector_id is %d, ret is %d.",
553 op_str, queue_id, bind_msg.vector_id, ret);
559 hns3vf_init_ring_with_vector(struct hns3_hw *hw)
566 * In hns3 network engine, vector 0 is always the misc interrupt of this
567 * function, vector 1~N can be used respectively for the queues of the
568 * function. Tx and Rx queues with the same number share the interrupt
569 * vector. In the initialization clearing the all hardware mapping
570 * relationship configurations between queues and interrupt vectors is
571 * needed, so some error caused by the residual configurations, such as
572 * the unexpected Tx interrupt, can be avoid. Because of the hardware
573 * constraints in hns3 hardware engine, we have to implement clearing
574 * the mapping relationship configurations by binding all queues to the
575 * last interrupt vector and reserving the last interrupt vector. This
576 * method results in a decrease of the maximum queues when upper
577 * applications call the rte_eth_dev_configure API function to enable
580 vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
581 hw->intr_tqps_num = vec - 1; /* the last interrupt is reserved */
582 for (i = 0; i < hw->intr_tqps_num; i++) {
584 * Set gap limiter and rate limiter configuration of queue's
587 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
588 HNS3_TQP_INTR_GL_DEFAULT);
589 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
590 HNS3_TQP_INTR_GL_DEFAULT);
591 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
593 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
594 HNS3_RING_TYPE_TX, i);
596 PMD_INIT_LOG(ERR, "VF fail to unbind TX ring(%d) with "
597 "vector: %d, ret=%d", i, vec, ret);
601 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
602 HNS3_RING_TYPE_RX, i);
604 PMD_INIT_LOG(ERR, "VF fail to unbind RX ring(%d) with "
605 "vector: %d, ret=%d", i, vec, ret);
614 hns3vf_dev_configure(struct rte_eth_dev *dev)
616 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
617 struct hns3_rss_conf *rss_cfg = &hw->rss_info;
618 struct rte_eth_conf *conf = &dev->data->dev_conf;
619 enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
620 uint16_t nb_rx_q = dev->data->nb_rx_queues;
621 uint16_t nb_tx_q = dev->data->nb_tx_queues;
622 struct rte_eth_rss_conf rss_conf;
627 * Hardware does not support individually enable/disable/reset the Tx or
628 * Rx queue in hns3 network engine. Driver must enable/disable/reset Tx
629 * and Rx queues at the same time. When the numbers of Tx queues
630 * allocated by upper applications are not equal to the numbers of Rx
631 * queues, driver needs to setup fake Tx or Rx queues to adjust numbers
632 * of Tx/Rx queues. otherwise, network engine can not work as usual. But
633 * these fake queues are imperceptible, and can not be used by upper
636 ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
638 hns3_err(hw, "Failed to set rx/tx fake queues: %d", ret);
642 hw->adapter_state = HNS3_NIC_CONFIGURING;
643 if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
644 hns3_err(hw, "setting link speed/duplex not supported");
649 /* When RSS is not configured, redirect the packet queue 0 */
650 if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
651 rss_conf = conf->rx_adv_conf.rss_conf;
652 if (rss_conf.rss_key == NULL) {
653 rss_conf.rss_key = rss_cfg->key;
654 rss_conf.rss_key_len = HNS3_RSS_KEY_SIZE;
657 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
663 * If jumbo frames are enabled, MTU needs to be refreshed
664 * according to the maximum RX packet length.
666 if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
668 * Security of max_rx_pkt_len is guaranteed in dpdk frame.
669 * Maximum value of max_rx_pkt_len is HNS3_MAX_FRAME_LEN, so it
670 * can safely assign to "uint16_t" type variable.
672 mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(conf->rxmode.max_rx_pkt_len);
673 ret = hns3vf_dev_mtu_set(dev, mtu);
676 dev->data->mtu = mtu;
679 ret = hns3vf_dev_configure_vlan(dev);
683 hw->adapter_state = HNS3_NIC_CONFIGURED;
687 (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
688 hw->adapter_state = HNS3_NIC_INITIALIZED;
694 hns3vf_config_mtu(struct hns3_hw *hw, uint16_t mtu)
698 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MTU, 0, (const uint8_t *)&mtu,
699 sizeof(mtu), true, NULL, 0);
701 hns3_err(hw, "Failed to set mtu (%u) for vf: %d", mtu, ret);
707 hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
709 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
710 uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
714 * The hns3 PF/VF devices on the same port share the hardware MTU
715 * configuration. Currently, we send mailbox to inform hns3 PF kernel
716 * ethdev driver to finish hardware MTU configuration in hns3 VF PMD
717 * driver, there is no need to stop the port for hns3 VF device, and the
718 * MTU value issued by hns3 VF PMD driver must be less than or equal to
721 if (rte_atomic16_read(&hw->reset.resetting)) {
722 hns3_err(hw, "Failed to set mtu during resetting");
726 rte_spinlock_lock(&hw->lock);
727 ret = hns3vf_config_mtu(hw, mtu);
729 rte_spinlock_unlock(&hw->lock);
732 if (frame_size > RTE_ETHER_MAX_LEN)
733 dev->data->dev_conf.rxmode.offloads |=
734 DEV_RX_OFFLOAD_JUMBO_FRAME;
736 dev->data->dev_conf.rxmode.offloads &=
737 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
738 dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
739 rte_spinlock_unlock(&hw->lock);
745 hns3vf_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
747 struct hns3_adapter *hns = eth_dev->data->dev_private;
748 struct hns3_hw *hw = &hns->hw;
749 uint16_t q_num = hw->tqps_num;
752 * In interrupt mode, 'max_rx_queues' is set based on the number of
753 * MSI-X interrupt resources of the hardware.
755 if (hw->data->dev_conf.intr_conf.rxq == 1)
756 q_num = hw->intr_tqps_num;
758 info->max_rx_queues = q_num;
759 info->max_tx_queues = hw->tqps_num;
760 info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
761 info->min_rx_bufsize = hw->rx_buf_len;
762 info->max_mac_addrs = HNS3_VF_UC_MACADDR_NUM;
763 info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
765 info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
766 DEV_RX_OFFLOAD_UDP_CKSUM |
767 DEV_RX_OFFLOAD_TCP_CKSUM |
768 DEV_RX_OFFLOAD_SCTP_CKSUM |
769 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
770 DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
771 DEV_RX_OFFLOAD_KEEP_CRC |
772 DEV_RX_OFFLOAD_SCATTER |
773 DEV_RX_OFFLOAD_VLAN_STRIP |
774 DEV_RX_OFFLOAD_QINQ_STRIP |
775 DEV_RX_OFFLOAD_VLAN_FILTER |
776 DEV_RX_OFFLOAD_JUMBO_FRAME);
777 info->tx_queue_offload_capa = DEV_TX_OFFLOAD_MBUF_FAST_FREE;
778 info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
779 DEV_TX_OFFLOAD_IPV4_CKSUM |
780 DEV_TX_OFFLOAD_TCP_CKSUM |
781 DEV_TX_OFFLOAD_UDP_CKSUM |
782 DEV_TX_OFFLOAD_SCTP_CKSUM |
783 DEV_TX_OFFLOAD_VLAN_INSERT |
784 DEV_TX_OFFLOAD_QINQ_INSERT |
785 DEV_TX_OFFLOAD_MULTI_SEGS |
786 DEV_TX_OFFLOAD_TCP_TSO |
787 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
788 DEV_TX_OFFLOAD_GRE_TNL_TSO |
789 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
790 info->tx_queue_offload_capa);
792 info->rx_desc_lim = (struct rte_eth_desc_lim) {
793 .nb_max = HNS3_MAX_RING_DESC,
794 .nb_min = HNS3_MIN_RING_DESC,
795 .nb_align = HNS3_ALIGN_RING_DESC,
798 info->tx_desc_lim = (struct rte_eth_desc_lim) {
799 .nb_max = HNS3_MAX_RING_DESC,
800 .nb_min = HNS3_MIN_RING_DESC,
801 .nb_align = HNS3_ALIGN_RING_DESC,
804 info->vmdq_queue_num = 0;
806 info->reta_size = HNS3_RSS_IND_TBL_SIZE;
807 info->hash_key_size = HNS3_RSS_KEY_SIZE;
808 info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
809 info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
810 info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
816 hns3vf_clear_event_cause(struct hns3_hw *hw, uint32_t regclr)
818 hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
822 hns3vf_disable_irq0(struct hns3_hw *hw)
824 hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
828 hns3vf_enable_irq0(struct hns3_hw *hw)
830 hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
833 static enum hns3vf_evt_cause
834 hns3vf_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
836 struct hns3_hw *hw = &hns->hw;
837 enum hns3vf_evt_cause ret;
838 uint32_t cmdq_stat_reg;
839 uint32_t rst_ing_reg;
842 /* Fetch the events from their corresponding regs */
843 cmdq_stat_reg = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_STAT_REG);
845 if (BIT(HNS3_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
846 rst_ing_reg = hns3_read_dev(hw, HNS3_FUN_RST_ING);
847 hns3_warn(hw, "resetting reg: 0x%x", rst_ing_reg);
848 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
849 rte_atomic16_set(&hw->reset.disable_cmd, 1);
850 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
851 hns3_write_dev(hw, HNS3_VF_RST_ING, val | HNS3_VF_RST_ING_BIT);
852 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RST_INT_B);
854 hw->reset.stats.global_cnt++;
855 hns3_warn(hw, "Global reset detected, clear reset status");
857 hns3_schedule_delayed_reset(hns);
858 hns3_warn(hw, "Global reset detected, don't clear reset status");
861 ret = HNS3VF_VECTOR0_EVENT_RST;
865 /* Check for vector0 mailbox(=CMDQ RX) event source */
866 if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
867 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
868 ret = HNS3VF_VECTOR0_EVENT_MBX;
873 ret = HNS3VF_VECTOR0_EVENT_OTHER;
881 hns3vf_interrupt_handler(void *param)
883 struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
884 struct hns3_adapter *hns = dev->data->dev_private;
885 struct hns3_hw *hw = &hns->hw;
886 enum hns3vf_evt_cause event_cause;
889 if (hw->irq_thread_id == 0)
890 hw->irq_thread_id = pthread_self();
892 /* Disable interrupt */
893 hns3vf_disable_irq0(hw);
895 /* Read out interrupt causes */
896 event_cause = hns3vf_check_event_cause(hns, &clearval);
898 switch (event_cause) {
899 case HNS3VF_VECTOR0_EVENT_RST:
900 hns3_schedule_reset(hns);
902 case HNS3VF_VECTOR0_EVENT_MBX:
903 hns3_dev_handle_mbx_msg(hw);
909 /* Clear interrupt causes */
910 hns3vf_clear_event_cause(hw, clearval);
912 /* Enable interrupt */
913 hns3vf_enable_irq0(hw);
917 hns3vf_check_tqp_info(struct hns3_hw *hw)
921 tqps_num = hw->tqps_num;
922 if (tqps_num > HNS3_MAX_TQP_NUM_PER_FUNC || tqps_num == 0) {
923 PMD_INIT_LOG(ERR, "Get invalid tqps_num(%u) from PF. valid "
925 tqps_num, HNS3_MAX_TQP_NUM_PER_FUNC);
929 if (hw->rx_buf_len == 0)
930 hw->rx_buf_len = HNS3_DEFAULT_RX_BUF_LEN;
931 hw->alloc_rss_size = RTE_MIN(hw->rss_size_max, hw->tqps_num);
937 hns3vf_get_queue_info(struct hns3_hw *hw)
939 #define HNS3VF_TQPS_RSS_INFO_LEN 6
940 uint8_t resp_msg[HNS3VF_TQPS_RSS_INFO_LEN];
943 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QINFO, 0, NULL, 0, true,
944 resp_msg, HNS3VF_TQPS_RSS_INFO_LEN);
946 PMD_INIT_LOG(ERR, "Failed to get tqp info from PF: %d", ret);
950 memcpy(&hw->tqps_num, &resp_msg[0], sizeof(uint16_t));
951 memcpy(&hw->rss_size_max, &resp_msg[2], sizeof(uint16_t));
952 memcpy(&hw->rx_buf_len, &resp_msg[4], sizeof(uint16_t));
954 return hns3vf_check_tqp_info(hw);
958 hns3vf_get_queue_depth(struct hns3_hw *hw)
960 #define HNS3VF_TQPS_DEPTH_INFO_LEN 4
961 uint8_t resp_msg[HNS3VF_TQPS_DEPTH_INFO_LEN];
964 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QDEPTH, 0, NULL, 0, true,
965 resp_msg, HNS3VF_TQPS_DEPTH_INFO_LEN);
967 PMD_INIT_LOG(ERR, "Failed to get tqp depth info from PF: %d",
972 memcpy(&hw->num_tx_desc, &resp_msg[0], sizeof(uint16_t));
973 memcpy(&hw->num_rx_desc, &resp_msg[2], sizeof(uint16_t));
979 hns3vf_get_tc_info(struct hns3_hw *hw)
984 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_TCINFO, 0, NULL, 0,
985 true, &resp_msg, sizeof(resp_msg));
987 hns3_err(hw, "VF request to get TC info from PF failed %d",
992 hw->hw_tc_map = resp_msg;
998 hns3vf_get_host_mac_addr(struct hns3_hw *hw)
1000 uint8_t host_mac[RTE_ETHER_ADDR_LEN];
1003 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_MAC_ADDR, 0, NULL, 0,
1004 true, host_mac, RTE_ETHER_ADDR_LEN);
1006 hns3_err(hw, "Failed to get mac addr from PF: %d", ret);
1010 memcpy(hw->mac.mac_addr, host_mac, RTE_ETHER_ADDR_LEN);
1016 hns3vf_get_configuration(struct hns3_hw *hw)
1020 hw->mac.media_type = HNS3_MEDIA_TYPE_NONE;
1021 hw->rss_dis_flag = false;
1023 /* Get queue configuration from PF */
1024 ret = hns3vf_get_queue_info(hw);
1028 /* Get queue depth info from PF */
1029 ret = hns3vf_get_queue_depth(hw);
1033 /* Get user defined VF MAC addr from PF */
1034 ret = hns3vf_get_host_mac_addr(hw);
1038 /* Get tc configuration from PF */
1039 return hns3vf_get_tc_info(hw);
1043 hns3vf_set_tc_info(struct hns3_adapter *hns)
1045 struct hns3_hw *hw = &hns->hw;
1046 uint16_t nb_rx_q = hw->data->nb_rx_queues;
1047 uint16_t nb_tx_q = hw->data->nb_tx_queues;
1051 for (i = 0; i < HNS3_MAX_TC_NUM; i++)
1052 if (hw->hw_tc_map & BIT(i))
1055 if (nb_rx_q < hw->num_tc) {
1056 hns3_err(hw, "number of Rx queues(%d) is less than tcs(%d).",
1057 nb_rx_q, hw->num_tc);
1061 if (nb_tx_q < hw->num_tc) {
1062 hns3_err(hw, "number of Tx queues(%d) is less than tcs(%d).",
1063 nb_tx_q, hw->num_tc);
1067 hns3_set_rss_size(hw, nb_rx_q);
1068 hns3_tc_queue_mapping_cfg(hw, nb_tx_q);
1074 hns3vf_request_link_info(struct hns3_hw *hw)
1079 if (rte_atomic16_read(&hw->reset.resetting))
1081 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1082 &resp_msg, sizeof(resp_msg));
1084 hns3_err(hw, "Failed to fetch link status from PF: %d", ret);
1088 hns3vf_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
1090 #define HNS3VF_VLAN_MBX_MSG_LEN 5
1091 struct hns3_hw *hw = &hns->hw;
1092 uint8_t msg_data[HNS3VF_VLAN_MBX_MSG_LEN];
1093 uint16_t proto = htons(RTE_ETHER_TYPE_VLAN);
1094 uint8_t is_kill = on ? 0 : 1;
1096 msg_data[0] = is_kill;
1097 memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1098 memcpy(&msg_data[3], &proto, sizeof(proto));
1100 return hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_FILTER,
1101 msg_data, HNS3VF_VLAN_MBX_MSG_LEN, true, NULL,
1106 hns3vf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1108 struct hns3_adapter *hns = dev->data->dev_private;
1109 struct hns3_hw *hw = &hns->hw;
1112 if (rte_atomic16_read(&hw->reset.resetting)) {
1114 "vf set vlan id failed during resetting, vlan_id =%u",
1118 rte_spinlock_lock(&hw->lock);
1119 ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1120 rte_spinlock_unlock(&hw->lock);
1122 hns3_err(hw, "vf set vlan id failed, vlan_id =%u, ret =%d",
1129 hns3vf_en_hw_strip_rxvtag(struct hns3_hw *hw, bool enable)
1134 msg_data = enable ? 1 : 0;
1135 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_RX_OFF_CFG,
1136 &msg_data, sizeof(msg_data), false, NULL, 0);
1138 hns3_err(hw, "vf enable strip failed, ret =%d", ret);
1144 hns3vf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1146 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1147 struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1148 unsigned int tmp_mask;
1151 if (rte_atomic16_read(&hw->reset.resetting)) {
1152 hns3_err(hw, "vf set vlan offload failed during resetting, "
1153 "mask = 0x%x", mask);
1157 tmp_mask = (unsigned int)mask;
1158 /* Vlan stripping setting */
1159 if (tmp_mask & ETH_VLAN_STRIP_MASK) {
1160 rte_spinlock_lock(&hw->lock);
1161 /* Enable or disable VLAN stripping */
1162 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1163 ret = hns3vf_en_hw_strip_rxvtag(hw, true);
1165 ret = hns3vf_en_hw_strip_rxvtag(hw, false);
1166 rte_spinlock_unlock(&hw->lock);
1173 hns3vf_handle_all_vlan_table(struct hns3_adapter *hns, int on)
1175 struct rte_vlan_filter_conf *vfc;
1176 struct hns3_hw *hw = &hns->hw;
1183 vfc = &hw->data->vlan_filter_conf;
1184 for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1185 if (vfc->ids[i] == 0)
1190 * 64 means the num bits of ids, one bit corresponds to
1194 /* count trailing zeroes */
1195 vbit = ~ids & (ids - 1);
1196 /* clear least significant bit set */
1197 ids ^= (ids ^ (ids - 1)) ^ vbit;
1202 ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1205 "VF handle vlan table failed, ret =%d, on = %d",
1216 hns3vf_remove_all_vlan_table(struct hns3_adapter *hns)
1218 return hns3vf_handle_all_vlan_table(hns, 0);
1222 hns3vf_restore_vlan_conf(struct hns3_adapter *hns)
1224 struct hns3_hw *hw = &hns->hw;
1225 struct rte_eth_conf *dev_conf;
1229 dev_conf = &hw->data->dev_conf;
1230 en = dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP ? true
1232 ret = hns3vf_en_hw_strip_rxvtag(hw, en);
1234 hns3_err(hw, "VF restore vlan conf fail, en =%d, ret =%d", en,
1240 hns3vf_dev_configure_vlan(struct rte_eth_dev *dev)
1242 struct hns3_adapter *hns = dev->data->dev_private;
1243 struct rte_eth_dev_data *data = dev->data;
1244 struct hns3_hw *hw = &hns->hw;
1247 if (data->dev_conf.txmode.hw_vlan_reject_tagged ||
1248 data->dev_conf.txmode.hw_vlan_reject_untagged ||
1249 data->dev_conf.txmode.hw_vlan_insert_pvid) {
1250 hns3_warn(hw, "hw_vlan_reject_tagged, hw_vlan_reject_untagged "
1251 "or hw_vlan_insert_pvid is not support!");
1254 /* Apply vlan offload setting */
1255 ret = hns3vf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
1257 hns3_err(hw, "dev config vlan offload failed, ret =%d", ret);
1263 hns3vf_set_alive(struct hns3_hw *hw, bool alive)
1267 msg_data = alive ? 1 : 0;
1268 return hns3_send_mbx_msg(hw, HNS3_MBX_SET_ALIVE, 0, &msg_data,
1269 sizeof(msg_data), false, NULL, 0);
1273 hns3vf_keep_alive_handler(void *param)
1275 struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1276 struct hns3_adapter *hns = eth_dev->data->dev_private;
1277 struct hns3_hw *hw = &hns->hw;
1281 ret = hns3_send_mbx_msg(hw, HNS3_MBX_KEEP_ALIVE, 0, NULL, 0,
1282 false, &respmsg, sizeof(uint8_t));
1284 hns3_err(hw, "VF sends keeping alive cmd failed(=%d)",
1287 rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
1292 hns3vf_service_handler(void *param)
1294 struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1295 struct hns3_adapter *hns = eth_dev->data->dev_private;
1296 struct hns3_hw *hw = &hns->hw;
1299 * The query link status and reset processing are executed in the
1300 * interrupt thread.When the IMP reset occurs, IMP will not respond,
1301 * and the query operation will time out after 30ms. In the case of
1302 * multiple PF/VFs, each query failure timeout causes the IMP reset
1303 * interrupt to fail to respond within 100ms.
1304 * Before querying the link status, check whether there is a reset
1305 * pending, and if so, abandon the query.
1307 if (!hns3vf_is_reset_pending(hns))
1308 hns3vf_request_link_info(hw);
1310 hns3_warn(hw, "Cancel the query when reset is pending");
1312 rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler,
1317 hns3_query_vf_resource(struct hns3_hw *hw)
1319 struct hns3_vf_res_cmd *req;
1320 struct hns3_cmd_desc desc;
1324 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_VF_RSRC, true);
1325 ret = hns3_cmd_send(hw, &desc, 1);
1327 hns3_err(hw, "query vf resource failed, ret = %d", ret);
1331 req = (struct hns3_vf_res_cmd *)desc.data;
1332 num_msi = hns3_get_field(rte_le_to_cpu_16(req->vf_intr_vector_number),
1333 HNS3_VEC_NUM_M, HNS3_VEC_NUM_S);
1334 if (num_msi < HNS3_MIN_VECTOR_NUM) {
1335 hns3_err(hw, "Just %u msi resources, not enough for vf(min:%d)",
1336 num_msi, HNS3_MIN_VECTOR_NUM);
1340 hw->num_msi = (num_msi > hw->tqps_num + 1) ? hw->tqps_num + 1 : num_msi;
1346 hns3vf_init_hardware(struct hns3_adapter *hns)
1348 struct hns3_hw *hw = &hns->hw;
1349 uint16_t mtu = hw->data->mtu;
1352 ret = hns3vf_set_promisc_mode(hw, true, false, false);
1356 ret = hns3vf_config_mtu(hw, mtu);
1358 goto err_init_hardware;
1360 ret = hns3vf_vlan_filter_configure(hns, 0, 1);
1362 PMD_INIT_LOG(ERR, "Failed to initialize VLAN config: %d", ret);
1363 goto err_init_hardware;
1366 ret = hns3_config_gro(hw, false);
1368 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
1369 goto err_init_hardware;
1372 ret = hns3vf_set_alive(hw, true);
1374 PMD_INIT_LOG(ERR, "Failed to VF send alive to PF: %d", ret);
1375 goto err_init_hardware;
1378 hns3vf_request_link_info(hw);
1382 (void)hns3vf_set_promisc_mode(hw, false, false, false);
1387 hns3vf_clear_vport_list(struct hns3_hw *hw)
1389 return hns3_send_mbx_msg(hw, HNS3_MBX_HANDLE_VF_TBL,
1390 HNS3_MBX_VPORT_LIST_CLEAR, NULL, 0, false,
1395 hns3vf_init_vf(struct rte_eth_dev *eth_dev)
1397 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1398 struct hns3_adapter *hns = eth_dev->data->dev_private;
1399 struct hns3_hw *hw = &hns->hw;
1402 PMD_INIT_FUNC_TRACE();
1404 /* Get hardware io base address from pcie BAR2 IO space */
1405 hw->io_base = pci_dev->mem_resource[2].addr;
1407 /* Firmware command queue initialize */
1408 ret = hns3_cmd_init_queue(hw);
1410 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
1411 goto err_cmd_init_queue;
1414 /* Firmware command initialize */
1415 ret = hns3_cmd_init(hw);
1417 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
1421 /* Get VF resource */
1422 ret = hns3_query_vf_resource(hw);
1426 rte_spinlock_init(&hw->mbx_resp.lock);
1428 hns3vf_clear_event_cause(hw, 0);
1430 ret = rte_intr_callback_register(&pci_dev->intr_handle,
1431 hns3vf_interrupt_handler, eth_dev);
1433 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
1434 goto err_intr_callback_register;
1437 /* Enable interrupt */
1438 rte_intr_enable(&pci_dev->intr_handle);
1439 hns3vf_enable_irq0(hw);
1441 /* Get configuration from PF */
1442 ret = hns3vf_get_configuration(hw);
1444 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
1445 goto err_get_config;
1449 * The hns3 PF ethdev driver in kernel support setting VF MAC address
1450 * on the host by "ip link set ..." command. To avoid some incorrect
1451 * scenes, for example, hns3 VF PMD driver fails to receive and send
1452 * packets after user configure the MAC address by using the
1453 * "ip link set ..." command, hns3 VF PMD driver keep the same MAC
1454 * address strategy as the hns3 kernel ethdev driver in the
1455 * initialization. If user configure a MAC address by the ip command
1456 * for VF device, then hns3 VF PMD driver will start with it, otherwise
1457 * start with a random MAC address in the initialization.
1459 ret = rte_is_zero_ether_addr((struct rte_ether_addr *)hw->mac.mac_addr);
1461 rte_eth_random_addr(hw->mac.mac_addr);
1463 ret = hns3vf_clear_vport_list(hw);
1465 PMD_INIT_LOG(ERR, "Failed to clear tbl list: %d", ret);
1466 goto err_get_config;
1469 ret = hns3vf_init_hardware(hns);
1471 goto err_get_config;
1473 hns3_set_default_rss_args(hw);
1476 * In the initialization clearing the all hardware mapping relationship
1477 * configurations between queues and interrupt vectors is needed, so
1478 * some error caused by the residual configurations, such as the
1479 * unexpected interrupt, can be avoid.
1481 ret = hns3vf_init_ring_with_vector(hw);
1483 goto err_get_config;
1488 hns3vf_disable_irq0(hw);
1489 rte_intr_disable(&pci_dev->intr_handle);
1490 hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1492 err_intr_callback_register:
1494 hns3_cmd_uninit(hw);
1495 hns3_cmd_destroy_queue(hw);
1503 hns3vf_uninit_vf(struct rte_eth_dev *eth_dev)
1505 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1506 struct hns3_adapter *hns = eth_dev->data->dev_private;
1507 struct hns3_hw *hw = &hns->hw;
1509 PMD_INIT_FUNC_TRACE();
1511 hns3_rss_uninit(hns);
1512 (void)hns3vf_set_alive(hw, false);
1513 (void)hns3vf_set_promisc_mode(hw, false, false, false);
1514 hns3vf_disable_irq0(hw);
1515 rte_intr_disable(&pci_dev->intr_handle);
1516 hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1518 hns3_cmd_uninit(hw);
1519 hns3_cmd_destroy_queue(hw);
1524 hns3vf_do_stop(struct hns3_adapter *hns)
1526 struct hns3_hw *hw = &hns->hw;
1529 hw->mac.link_status = ETH_LINK_DOWN;
1531 if (rte_atomic16_read(&hw->reset.disable_cmd) == 0) {
1532 hns3vf_configure_mac_addr(hns, true);
1535 reset_queue = false;
1536 return hns3_stop_queues(hns, reset_queue);
1540 hns3vf_unmap_rx_interrupt(struct rte_eth_dev *dev)
1542 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1543 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1544 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1545 uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
1546 uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
1549 if (dev->data->dev_conf.intr_conf.rxq == 0)
1552 /* unmap the ring with vector */
1553 if (rte_intr_allow_others(intr_handle)) {
1554 vec = RTE_INTR_VEC_RXTX_OFFSET;
1555 base = RTE_INTR_VEC_RXTX_OFFSET;
1557 if (rte_intr_dp_is_en(intr_handle)) {
1558 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
1559 (void)hns3vf_bind_ring_with_vector(hw, vec, false,
1562 if (vec < base + intr_handle->nb_efd - 1)
1566 /* Clean datapath event and queue/vec mapping */
1567 rte_intr_efd_disable(intr_handle);
1568 if (intr_handle->intr_vec) {
1569 rte_free(intr_handle->intr_vec);
1570 intr_handle->intr_vec = NULL;
1575 hns3vf_dev_stop(struct rte_eth_dev *dev)
1577 struct hns3_adapter *hns = dev->data->dev_private;
1578 struct hns3_hw *hw = &hns->hw;
1580 PMD_INIT_FUNC_TRACE();
1582 hw->adapter_state = HNS3_NIC_STOPPING;
1583 hns3_set_rxtx_function(dev);
1585 /* Disable datapath on secondary process. */
1586 hns3_mp_req_stop_rxtx(dev);
1587 /* Prevent crashes when queues are still in use. */
1588 rte_delay_ms(hw->tqps_num);
1590 rte_spinlock_lock(&hw->lock);
1591 if (rte_atomic16_read(&hw->reset.resetting) == 0) {
1592 hns3vf_do_stop(hns);
1593 hns3_dev_release_mbufs(hns);
1594 hw->adapter_state = HNS3_NIC_CONFIGURED;
1596 rte_eal_alarm_cancel(hns3vf_service_handler, dev);
1597 rte_spinlock_unlock(&hw->lock);
1599 hns3vf_unmap_rx_interrupt(dev);
1603 hns3vf_dev_close(struct rte_eth_dev *eth_dev)
1605 struct hns3_adapter *hns = eth_dev->data->dev_private;
1606 struct hns3_hw *hw = &hns->hw;
1608 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1611 if (hw->adapter_state == HNS3_NIC_STARTED)
1612 hns3vf_dev_stop(eth_dev);
1614 hw->adapter_state = HNS3_NIC_CLOSING;
1615 hns3_reset_abort(hns);
1616 hw->adapter_state = HNS3_NIC_CLOSED;
1617 rte_eal_alarm_cancel(hns3vf_keep_alive_handler, eth_dev);
1618 hns3vf_configure_all_mc_mac_addr(hns, true);
1619 hns3vf_remove_all_vlan_table(hns);
1620 hns3vf_uninit_vf(eth_dev);
1621 hns3_free_all_queues(eth_dev);
1622 rte_free(hw->reset.wait_data);
1623 rte_free(eth_dev->process_private);
1624 eth_dev->process_private = NULL;
1625 hns3_mp_uninit_primary();
1626 hns3_warn(hw, "Close port %d finished", hw->data->port_id);
1630 hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
1631 __rte_unused int wait_to_complete)
1633 struct hns3_adapter *hns = eth_dev->data->dev_private;
1634 struct hns3_hw *hw = &hns->hw;
1635 struct hns3_mac *mac = &hw->mac;
1636 struct rte_eth_link new_link;
1638 memset(&new_link, 0, sizeof(new_link));
1639 switch (mac->link_speed) {
1640 case ETH_SPEED_NUM_10M:
1641 case ETH_SPEED_NUM_100M:
1642 case ETH_SPEED_NUM_1G:
1643 case ETH_SPEED_NUM_10G:
1644 case ETH_SPEED_NUM_25G:
1645 case ETH_SPEED_NUM_40G:
1646 case ETH_SPEED_NUM_50G:
1647 case ETH_SPEED_NUM_100G:
1648 new_link.link_speed = mac->link_speed;
1651 new_link.link_speed = ETH_SPEED_NUM_100M;
1655 new_link.link_duplex = mac->link_duplex;
1656 new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
1657 new_link.link_autoneg =
1658 !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
1660 return rte_eth_linkstatus_set(eth_dev, &new_link);
1664 hns3vf_do_start(struct hns3_adapter *hns, bool reset_queue)
1666 struct hns3_hw *hw = &hns->hw;
1669 ret = hns3vf_set_tc_info(hns);
1673 ret = hns3_start_queues(hns, reset_queue);
1675 hns3_err(hw, "Failed to start queues: %d", ret);
1681 hns3vf_map_rx_interrupt(struct rte_eth_dev *dev)
1683 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1684 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1685 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1686 uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
1687 uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
1688 uint32_t intr_vector;
1692 if (dev->data->dev_conf.intr_conf.rxq == 0)
1695 /* disable uio/vfio intr/eventfd mapping */
1696 rte_intr_disable(intr_handle);
1698 /* check and configure queue intr-vector mapping */
1699 if (rte_intr_cap_multiple(intr_handle) ||
1700 !RTE_ETH_DEV_SRIOV(dev).active) {
1701 intr_vector = hw->used_rx_queues;
1702 /* It creates event fd for each intr vector when MSIX is used */
1703 if (rte_intr_efd_enable(intr_handle, intr_vector))
1706 if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
1707 intr_handle->intr_vec =
1708 rte_zmalloc("intr_vec",
1709 hw->used_rx_queues * sizeof(int), 0);
1710 if (intr_handle->intr_vec == NULL) {
1711 hns3_err(hw, "Failed to allocate %d rx_queues"
1712 " intr_vec", hw->used_rx_queues);
1714 goto vf_alloc_intr_vec_error;
1718 if (rte_intr_allow_others(intr_handle)) {
1719 vec = RTE_INTR_VEC_RXTX_OFFSET;
1720 base = RTE_INTR_VEC_RXTX_OFFSET;
1722 if (rte_intr_dp_is_en(intr_handle)) {
1723 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
1724 ret = hns3vf_bind_ring_with_vector(hw, vec, true,
1728 goto vf_bind_vector_error;
1729 intr_handle->intr_vec[q_id] = vec;
1730 if (vec < base + intr_handle->nb_efd - 1)
1734 rte_intr_enable(intr_handle);
1737 vf_bind_vector_error:
1738 rte_intr_efd_disable(intr_handle);
1739 if (intr_handle->intr_vec) {
1740 free(intr_handle->intr_vec);
1741 intr_handle->intr_vec = NULL;
1744 vf_alloc_intr_vec_error:
1745 rte_intr_efd_disable(intr_handle);
1750 hns3vf_restore_filter(struct rte_eth_dev *dev)
1752 hns3_restore_rss_filter(dev);
1756 hns3vf_dev_start(struct rte_eth_dev *dev)
1758 struct hns3_adapter *hns = dev->data->dev_private;
1759 struct hns3_hw *hw = &hns->hw;
1762 PMD_INIT_FUNC_TRACE();
1763 if (rte_atomic16_read(&hw->reset.resetting))
1766 rte_spinlock_lock(&hw->lock);
1767 hw->adapter_state = HNS3_NIC_STARTING;
1768 ret = hns3vf_do_start(hns, true);
1770 hw->adapter_state = HNS3_NIC_CONFIGURED;
1771 rte_spinlock_unlock(&hw->lock);
1774 hw->adapter_state = HNS3_NIC_STARTED;
1775 rte_spinlock_unlock(&hw->lock);
1777 ret = hns3vf_map_rx_interrupt(dev);
1780 hns3_set_rxtx_function(dev);
1781 hns3_mp_req_start_rxtx(dev);
1782 rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler, dev);
1784 hns3vf_restore_filter(dev);
1790 is_vf_reset_done(struct hns3_hw *hw)
1792 #define HNS3_FUN_RST_ING_BITS \
1793 (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) | \
1794 BIT(HNS3_VECTOR0_CORERESET_INT_B) | \
1795 BIT(HNS3_VECTOR0_IMPRESET_INT_B) | \
1796 BIT(HNS3_VECTOR0_FUNCRESET_INT_B))
1800 if (hw->reset.level == HNS3_VF_RESET) {
1801 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
1802 if (val & HNS3_VF_RST_ING_BIT)
1805 val = hns3_read_dev(hw, HNS3_FUN_RST_ING);
1806 if (val & HNS3_FUN_RST_ING_BITS)
1813 hns3vf_is_reset_pending(struct hns3_adapter *hns)
1815 struct hns3_hw *hw = &hns->hw;
1816 enum hns3_reset_level reset;
1818 hns3vf_check_event_cause(hns, NULL);
1819 reset = hns3vf_get_reset_level(hw, &hw->reset.pending);
1820 if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
1821 hns3_warn(hw, "High level reset %d is pending", reset);
1828 hns3vf_wait_hardware_ready(struct hns3_adapter *hns)
1830 struct hns3_hw *hw = &hns->hw;
1831 struct hns3_wait_data *wait_data = hw->reset.wait_data;
1834 if (wait_data->result == HNS3_WAIT_SUCCESS) {
1836 * After vf reset is ready, the PF may not have completed
1837 * the reset processing. The vf sending mbox to PF may fail
1838 * during the pf reset, so it is better to add extra delay.
1840 if (hw->reset.level == HNS3_VF_FUNC_RESET ||
1841 hw->reset.level == HNS3_FLR_RESET)
1843 /* Reset retry process, no need to add extra delay. */
1844 if (hw->reset.attempts)
1846 if (wait_data->check_completion == NULL)
1849 wait_data->check_completion = NULL;
1850 wait_data->interval = 1 * MSEC_PER_SEC * USEC_PER_MSEC;
1851 wait_data->count = 1;
1852 wait_data->result = HNS3_WAIT_REQUEST;
1853 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback,
1855 hns3_warn(hw, "hardware is ready, delay 1 sec for PF reset complete");
1857 } else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
1858 gettimeofday(&tv, NULL);
1859 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
1860 tv.tv_sec, tv.tv_usec);
1862 } else if (wait_data->result == HNS3_WAIT_REQUEST)
1865 wait_data->hns = hns;
1866 wait_data->check_completion = is_vf_reset_done;
1867 wait_data->end_ms = (uint64_t)HNS3VF_RESET_WAIT_CNT *
1868 HNS3VF_RESET_WAIT_MS + get_timeofday_ms();
1869 wait_data->interval = HNS3VF_RESET_WAIT_MS * USEC_PER_MSEC;
1870 wait_data->count = HNS3VF_RESET_WAIT_CNT;
1871 wait_data->result = HNS3_WAIT_REQUEST;
1872 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
1877 hns3vf_prepare_reset(struct hns3_adapter *hns)
1879 struct hns3_hw *hw = &hns->hw;
1882 if (hw->reset.level == HNS3_VF_FUNC_RESET) {
1883 ret = hns3_send_mbx_msg(hw, HNS3_MBX_RESET, 0, NULL,
1886 rte_atomic16_set(&hw->reset.disable_cmd, 1);
1892 hns3vf_stop_service(struct hns3_adapter *hns)
1894 struct hns3_hw *hw = &hns->hw;
1895 struct rte_eth_dev *eth_dev;
1897 eth_dev = &rte_eth_devices[hw->data->port_id];
1898 if (hw->adapter_state == HNS3_NIC_STARTED)
1899 rte_eal_alarm_cancel(hns3vf_service_handler, eth_dev);
1900 hw->mac.link_status = ETH_LINK_DOWN;
1902 hns3_set_rxtx_function(eth_dev);
1904 /* Disable datapath on secondary process. */
1905 hns3_mp_req_stop_rxtx(eth_dev);
1906 rte_delay_ms(hw->tqps_num);
1908 rte_spinlock_lock(&hw->lock);
1909 if (hw->adapter_state == HNS3_NIC_STARTED ||
1910 hw->adapter_state == HNS3_NIC_STOPPING) {
1911 hns3vf_do_stop(hns);
1912 hw->reset.mbuf_deferred_free = true;
1914 hw->reset.mbuf_deferred_free = false;
1917 * It is cumbersome for hardware to pick-and-choose entries for deletion
1918 * from table space. Hence, for function reset software intervention is
1919 * required to delete the entries.
1921 if (rte_atomic16_read(&hw->reset.disable_cmd) == 0)
1922 hns3vf_configure_all_mc_mac_addr(hns, true);
1923 rte_spinlock_unlock(&hw->lock);
1929 hns3vf_start_service(struct hns3_adapter *hns)
1931 struct hns3_hw *hw = &hns->hw;
1932 struct rte_eth_dev *eth_dev;
1934 eth_dev = &rte_eth_devices[hw->data->port_id];
1935 hns3_set_rxtx_function(eth_dev);
1936 hns3_mp_req_start_rxtx(eth_dev);
1937 if (hw->adapter_state == HNS3_NIC_STARTED)
1938 hns3vf_service_handler(eth_dev);
1944 hns3vf_check_default_mac_change(struct hns3_hw *hw)
1946 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1947 struct rte_ether_addr *hw_mac;
1951 * The hns3 PF ethdev driver in kernel support setting VF MAC address
1952 * on the host by "ip link set ..." command. If the hns3 PF kernel
1953 * ethdev driver sets the MAC address for VF device after the
1954 * initialization of the related VF device, the PF driver will notify
1955 * VF driver to reset VF device to make the new MAC address effective
1956 * immediately. The hns3 VF PMD driver should check whether the MAC
1957 * address has been changed by the PF kernel ethdev driver, if changed
1958 * VF driver should configure hardware using the new MAC address in the
1959 * recovering hardware configuration stage of the reset process.
1961 ret = hns3vf_get_host_mac_addr(hw);
1965 hw_mac = (struct rte_ether_addr *)hw->mac.mac_addr;
1966 ret = rte_is_zero_ether_addr(hw_mac);
1968 rte_ether_addr_copy(&hw->data->mac_addrs[0], hw_mac);
1970 ret = rte_is_same_ether_addr(&hw->data->mac_addrs[0], hw_mac);
1972 rte_ether_addr_copy(hw_mac, &hw->data->mac_addrs[0]);
1973 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1974 &hw->data->mac_addrs[0]);
1975 hns3_warn(hw, "Default MAC address has been changed to:"
1976 " %s by the host PF kernel ethdev driver",
1985 hns3vf_restore_conf(struct hns3_adapter *hns)
1987 struct hns3_hw *hw = &hns->hw;
1990 ret = hns3vf_check_default_mac_change(hw);
1994 ret = hns3vf_configure_mac_addr(hns, false);
1998 ret = hns3vf_configure_all_mc_mac_addr(hns, false);
2002 ret = hns3vf_restore_promisc(hns);
2004 goto err_vlan_table;
2006 ret = hns3vf_restore_vlan_conf(hns);
2008 goto err_vlan_table;
2010 if (hw->adapter_state == HNS3_NIC_STARTED) {
2011 ret = hns3vf_do_start(hns, false);
2013 goto err_vlan_table;
2014 hns3_info(hw, "hns3vf dev restart successful!");
2015 } else if (hw->adapter_state == HNS3_NIC_STOPPING)
2016 hw->adapter_state = HNS3_NIC_CONFIGURED;
2020 hns3vf_configure_all_mc_mac_addr(hns, true);
2022 hns3vf_configure_mac_addr(hns, true);
2026 static enum hns3_reset_level
2027 hns3vf_get_reset_level(struct hns3_hw *hw, uint64_t *levels)
2029 enum hns3_reset_level reset_level;
2031 /* return the highest priority reset level amongst all */
2032 if (hns3_atomic_test_bit(HNS3_VF_RESET, levels))
2033 reset_level = HNS3_VF_RESET;
2034 else if (hns3_atomic_test_bit(HNS3_VF_FULL_RESET, levels))
2035 reset_level = HNS3_VF_FULL_RESET;
2036 else if (hns3_atomic_test_bit(HNS3_VF_PF_FUNC_RESET, levels))
2037 reset_level = HNS3_VF_PF_FUNC_RESET;
2038 else if (hns3_atomic_test_bit(HNS3_VF_FUNC_RESET, levels))
2039 reset_level = HNS3_VF_FUNC_RESET;
2040 else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
2041 reset_level = HNS3_FLR_RESET;
2043 reset_level = HNS3_NONE_RESET;
2045 if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
2046 return HNS3_NONE_RESET;
2052 hns3vf_reset_service(void *param)
2054 struct hns3_adapter *hns = (struct hns3_adapter *)param;
2055 struct hns3_hw *hw = &hns->hw;
2056 enum hns3_reset_level reset_level;
2057 struct timeval tv_delta;
2058 struct timeval tv_start;
2063 * The interrupt is not triggered within the delay time.
2064 * The interrupt may have been lost. It is necessary to handle
2065 * the interrupt to recover from the error.
2067 if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_DEFERRED) {
2068 rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_REQUESTED);
2069 hns3_err(hw, "Handling interrupts in delayed tasks");
2070 hns3vf_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
2071 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2072 if (reset_level == HNS3_NONE_RESET) {
2073 hns3_err(hw, "No reset level is set, try global reset");
2074 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
2077 rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_NONE);
2080 * Hardware reset has been notified, we now have to poll & check if
2081 * hardware has actually completed the reset sequence.
2083 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2084 if (reset_level != HNS3_NONE_RESET) {
2085 gettimeofday(&tv_start, NULL);
2086 hns3_reset_process(hns, reset_level);
2087 gettimeofday(&tv, NULL);
2088 timersub(&tv, &tv_start, &tv_delta);
2089 msec = tv_delta.tv_sec * MSEC_PER_SEC +
2090 tv_delta.tv_usec / USEC_PER_MSEC;
2091 if (msec > HNS3_RESET_PROCESS_MS)
2092 hns3_err(hw, "%d handle long time delta %" PRIx64
2093 " ms time=%ld.%.6ld",
2094 hw->reset.level, msec, tv.tv_sec, tv.tv_usec);
2099 hns3vf_reinit_dev(struct hns3_adapter *hns)
2101 struct rte_eth_dev *eth_dev = &rte_eth_devices[hns->hw.data->port_id];
2102 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2103 struct hns3_hw *hw = &hns->hw;
2106 if (hw->reset.level == HNS3_VF_FULL_RESET) {
2107 rte_intr_disable(&pci_dev->intr_handle);
2108 hns3vf_set_bus_master(pci_dev, true);
2111 /* Firmware command initialize */
2112 ret = hns3_cmd_init(hw);
2114 hns3_err(hw, "Failed to init cmd: %d", ret);
2118 if (hw->reset.level == HNS3_VF_FULL_RESET) {
2120 * UIO enables msix by writing the pcie configuration space
2121 * vfio_pci enables msix in rte_intr_enable.
2123 if (pci_dev->kdrv == RTE_KDRV_IGB_UIO ||
2124 pci_dev->kdrv == RTE_KDRV_UIO_GENERIC) {
2125 if (hns3vf_enable_msix(pci_dev, true))
2126 hns3_err(hw, "Failed to enable msix");
2129 rte_intr_enable(&pci_dev->intr_handle);
2132 ret = hns3_reset_all_queues(hns);
2134 hns3_err(hw, "Failed to reset all queues: %d", ret);
2138 ret = hns3vf_init_hardware(hns);
2140 hns3_err(hw, "Failed to init hardware: %d", ret);
2147 static const struct eth_dev_ops hns3vf_eth_dev_ops = {
2148 .dev_start = hns3vf_dev_start,
2149 .dev_stop = hns3vf_dev_stop,
2150 .dev_close = hns3vf_dev_close,
2151 .mtu_set = hns3vf_dev_mtu_set,
2152 .promiscuous_enable = hns3vf_dev_promiscuous_enable,
2153 .promiscuous_disable = hns3vf_dev_promiscuous_disable,
2154 .allmulticast_enable = hns3vf_dev_allmulticast_enable,
2155 .allmulticast_disable = hns3vf_dev_allmulticast_disable,
2156 .stats_get = hns3_stats_get,
2157 .stats_reset = hns3_stats_reset,
2158 .xstats_get = hns3_dev_xstats_get,
2159 .xstats_get_names = hns3_dev_xstats_get_names,
2160 .xstats_reset = hns3_dev_xstats_reset,
2161 .xstats_get_by_id = hns3_dev_xstats_get_by_id,
2162 .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
2163 .dev_infos_get = hns3vf_dev_infos_get,
2164 .rx_queue_setup = hns3_rx_queue_setup,
2165 .tx_queue_setup = hns3_tx_queue_setup,
2166 .rx_queue_release = hns3_dev_rx_queue_release,
2167 .tx_queue_release = hns3_dev_tx_queue_release,
2168 .rx_queue_intr_enable = hns3_dev_rx_queue_intr_enable,
2169 .rx_queue_intr_disable = hns3_dev_rx_queue_intr_disable,
2170 .dev_configure = hns3vf_dev_configure,
2171 .mac_addr_add = hns3vf_add_mac_addr,
2172 .mac_addr_remove = hns3vf_remove_mac_addr,
2173 .mac_addr_set = hns3vf_set_default_mac_addr,
2174 .set_mc_addr_list = hns3vf_set_mc_mac_addr_list,
2175 .link_update = hns3vf_dev_link_update,
2176 .rss_hash_update = hns3_dev_rss_hash_update,
2177 .rss_hash_conf_get = hns3_dev_rss_hash_conf_get,
2178 .reta_update = hns3_dev_rss_reta_update,
2179 .reta_query = hns3_dev_rss_reta_query,
2180 .filter_ctrl = hns3_dev_filter_ctrl,
2181 .vlan_filter_set = hns3vf_vlan_filter_set,
2182 .vlan_offload_set = hns3vf_vlan_offload_set,
2183 .get_reg = hns3_get_regs,
2184 .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
2187 static const struct hns3_reset_ops hns3vf_reset_ops = {
2188 .reset_service = hns3vf_reset_service,
2189 .stop_service = hns3vf_stop_service,
2190 .prepare_reset = hns3vf_prepare_reset,
2191 .wait_hardware_ready = hns3vf_wait_hardware_ready,
2192 .reinit_dev = hns3vf_reinit_dev,
2193 .restore_conf = hns3vf_restore_conf,
2194 .start_service = hns3vf_start_service,
2198 hns3vf_dev_init(struct rte_eth_dev *eth_dev)
2200 struct hns3_adapter *hns = eth_dev->data->dev_private;
2201 struct hns3_hw *hw = &hns->hw;
2204 PMD_INIT_FUNC_TRACE();
2206 eth_dev->process_private = (struct hns3_process_private *)
2207 rte_zmalloc_socket("hns3_filter_list",
2208 sizeof(struct hns3_process_private),
2209 RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
2210 if (eth_dev->process_private == NULL) {
2211 PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
2215 /* initialize flow filter lists */
2216 hns3_filterlist_init(eth_dev);
2218 hns3_set_rxtx_function(eth_dev);
2219 eth_dev->dev_ops = &hns3vf_eth_dev_ops;
2220 if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2221 hns3_mp_init_secondary();
2222 hw->secondary_cnt++;
2226 hns3_mp_init_primary();
2228 hw->adapter_state = HNS3_NIC_UNINITIALIZED;
2230 hw->data = eth_dev->data;
2232 ret = hns3_reset_init(hw);
2234 goto err_init_reset;
2235 hw->reset.ops = &hns3vf_reset_ops;
2237 ret = hns3vf_init_vf(eth_dev);
2239 PMD_INIT_LOG(ERR, "Failed to init vf: %d", ret);
2243 /* Allocate memory for storing MAC addresses */
2244 eth_dev->data->mac_addrs = rte_zmalloc("hns3vf-mac",
2245 sizeof(struct rte_ether_addr) *
2246 HNS3_VF_UC_MACADDR_NUM, 0);
2247 if (eth_dev->data->mac_addrs == NULL) {
2248 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
2249 "to store MAC addresses",
2250 sizeof(struct rte_ether_addr) *
2251 HNS3_VF_UC_MACADDR_NUM);
2253 goto err_rte_zmalloc;
2256 rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
2257 ð_dev->data->mac_addrs[0]);
2258 hw->adapter_state = HNS3_NIC_INITIALIZED;
2260 * Pass the information to the rte_eth_dev_close() that it should also
2261 * release the private port resources.
2263 eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
2265 if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_PENDING) {
2266 hns3_err(hw, "Reschedule reset service after dev_init");
2267 hns3_schedule_reset(hns);
2269 /* IMP will wait ready flag before reset */
2270 hns3_notify_reset_ready(hw, false);
2272 rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
2277 hns3vf_uninit_vf(eth_dev);
2280 rte_free(hw->reset.wait_data);
2283 eth_dev->dev_ops = NULL;
2284 eth_dev->rx_pkt_burst = NULL;
2285 eth_dev->tx_pkt_burst = NULL;
2286 eth_dev->tx_pkt_prepare = NULL;
2287 rte_free(eth_dev->process_private);
2288 eth_dev->process_private = NULL;
2294 hns3vf_dev_uninit(struct rte_eth_dev *eth_dev)
2296 struct hns3_adapter *hns = eth_dev->data->dev_private;
2297 struct hns3_hw *hw = &hns->hw;
2299 PMD_INIT_FUNC_TRACE();
2301 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2304 eth_dev->dev_ops = NULL;
2305 eth_dev->rx_pkt_burst = NULL;
2306 eth_dev->tx_pkt_burst = NULL;
2307 eth_dev->tx_pkt_prepare = NULL;
2309 if (hw->adapter_state < HNS3_NIC_CLOSING)
2310 hns3vf_dev_close(eth_dev);
2312 hw->adapter_state = HNS3_NIC_REMOVED;
2317 eth_hns3vf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2318 struct rte_pci_device *pci_dev)
2320 return rte_eth_dev_pci_generic_probe(pci_dev,
2321 sizeof(struct hns3_adapter),
2326 eth_hns3vf_pci_remove(struct rte_pci_device *pci_dev)
2328 return rte_eth_dev_pci_generic_remove(pci_dev, hns3vf_dev_uninit);
2331 static const struct rte_pci_id pci_id_hns3vf_map[] = {
2332 { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_VF) },
2333 { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_PFC_VF) },
2334 { .vendor_id = 0, /* sentinel */ },
2337 static struct rte_pci_driver rte_hns3vf_pmd = {
2338 .id_table = pci_id_hns3vf_map,
2339 .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
2340 .probe = eth_hns3vf_pci_probe,
2341 .remove = eth_hns3vf_pci_remove,
2344 RTE_PMD_REGISTER_PCI(net_hns3_vf, rte_hns3vf_pmd);
2345 RTE_PMD_REGISTER_PCI_TABLE(net_hns3_vf, pci_id_hns3vf_map);
2346 RTE_PMD_REGISTER_KMOD_DEP(net_hns3_vf, "* igb_uio | vfio-pci");