1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2018-2019 Hisilicon Limited.
11 #include <arpa/inet.h>
12 #include <linux/pci_regs.h>
14 #include <rte_alarm.h>
15 #include <rte_atomic.h>
16 #include <rte_bus_pci.h>
17 #include <rte_byteorder.h>
18 #include <rte_common.h>
19 #include <rte_cycles.h>
22 #include <rte_ether.h>
23 #include <rte_ethdev_driver.h>
24 #include <rte_ethdev_pci.h>
25 #include <rte_interrupts.h>
31 #include "hns3_ethdev.h"
32 #include "hns3_logs.h"
33 #include "hns3_rxtx.h"
34 #include "hns3_regs.h"
35 #include "hns3_intr.h"
39 #define HNS3VF_KEEP_ALIVE_INTERVAL 2000000 /* us */
40 #define HNS3VF_SERVICE_INTERVAL 1000000 /* us */
42 #define HNS3VF_RESET_WAIT_MS 20
43 #define HNS3VF_RESET_WAIT_CNT 2000
45 /* Reset related Registers */
46 #define HNS3_GLOBAL_RESET_BIT 0
47 #define HNS3_CORE_RESET_BIT 1
48 #define HNS3_IMP_RESET_BIT 2
49 #define HNS3_FUN_RST_ING_B 0
51 enum hns3vf_evt_cause {
52 HNS3VF_VECTOR0_EVENT_RST,
53 HNS3VF_VECTOR0_EVENT_MBX,
54 HNS3VF_VECTOR0_EVENT_OTHER,
57 static enum hns3_reset_level hns3vf_get_reset_level(struct hns3_hw *hw,
59 static int hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
60 static int hns3vf_dev_configure_vlan(struct rte_eth_dev *dev);
62 /* set PCI bus mastering */
64 hns3vf_set_bus_master(const struct rte_pci_device *device, bool op)
68 rte_pci_read_config(device, ®, sizeof(reg), PCI_COMMAND);
71 /* set the master bit */
72 reg |= PCI_COMMAND_MASTER;
74 reg &= ~(PCI_COMMAND_MASTER);
76 rte_pci_write_config(device, ®, sizeof(reg), PCI_COMMAND);
80 * hns3vf_find_pci_capability - lookup a capability in the PCI capability list
81 * @cap: the capability
83 * Return the address of the given capability within the PCI capability list.
86 hns3vf_find_pci_capability(const struct rte_pci_device *device, int cap)
88 #define MAX_PCIE_CAPABILITY 48
94 rte_pci_read_config(device, &status, sizeof(status), PCI_STATUS);
95 if (!(status & PCI_STATUS_CAP_LIST))
98 ttl = MAX_PCIE_CAPABILITY;
99 rte_pci_read_config(device, &pos, sizeof(pos), PCI_CAPABILITY_LIST);
100 while (ttl-- && pos >= PCI_STD_HEADER_SIZEOF) {
101 rte_pci_read_config(device, &id, sizeof(id),
102 (pos + PCI_CAP_LIST_ID));
110 rte_pci_read_config(device, &pos, sizeof(pos),
111 (pos + PCI_CAP_LIST_NEXT));
117 hns3vf_enable_msix(const struct rte_pci_device *device, bool op)
122 pos = hns3vf_find_pci_capability(device, PCI_CAP_ID_MSIX);
124 rte_pci_read_config(device, &control, sizeof(control),
125 (pos + PCI_MSIX_FLAGS));
127 control |= PCI_MSIX_FLAGS_ENABLE;
129 control &= ~PCI_MSIX_FLAGS_ENABLE;
130 rte_pci_write_config(device, &control, sizeof(control),
131 (pos + PCI_MSIX_FLAGS));
138 hns3vf_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
139 __attribute__ ((unused)) uint32_t idx,
140 __attribute__ ((unused)) uint32_t pool)
142 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
143 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
146 rte_spinlock_lock(&hw->lock);
147 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
148 HNS3_MBX_MAC_VLAN_UC_ADD, mac_addr->addr_bytes,
149 RTE_ETHER_ADDR_LEN, false, NULL, 0);
150 rte_spinlock_unlock(&hw->lock);
152 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
154 hns3_err(hw, "Failed to add mac addr(%s) for vf: %d", mac_str,
162 hns3vf_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
164 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
165 /* index will be checked by upper level rte interface */
166 struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
167 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
170 rte_spinlock_lock(&hw->lock);
171 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
172 HNS3_MBX_MAC_VLAN_UC_REMOVE,
173 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
175 rte_spinlock_unlock(&hw->lock);
177 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
179 hns3_err(hw, "Failed to remove mac addr(%s) for vf: %d",
185 hns3vf_set_default_mac_addr(struct rte_eth_dev *dev,
186 struct rte_ether_addr *mac_addr)
188 #define HNS3_TWO_ETHER_ADDR_LEN (RTE_ETHER_ADDR_LEN * 2)
189 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
190 struct rte_ether_addr *old_addr;
191 uint8_t addr_bytes[HNS3_TWO_ETHER_ADDR_LEN]; /* for 2 MAC addresses */
192 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
195 if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
196 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
198 hns3_err(hw, "Failed to set mac addr, addr(%s) invalid.",
203 old_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
204 rte_spinlock_lock(&hw->lock);
205 memcpy(addr_bytes, mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN);
206 memcpy(&addr_bytes[RTE_ETHER_ADDR_LEN], old_addr->addr_bytes,
209 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
210 HNS3_MBX_MAC_VLAN_UC_MODIFY, addr_bytes,
211 HNS3_TWO_ETHER_ADDR_LEN, true, NULL, 0);
214 * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev
215 * driver. When user has configured a MAC address for VF device
216 * by "ip link set ..." command based on the PF device, the hns3
217 * PF kernel ethdev driver does not allow VF driver to request
218 * reconfiguring a different default MAC address, and return
219 * -EPREM to VF driver through mailbox.
222 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
224 hns3_warn(hw, "Has permanet mac addr(%s) for vf",
227 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
229 hns3_err(hw, "Failed to set mac addr(%s) for vf: %d",
234 rte_ether_addr_copy(mac_addr,
235 (struct rte_ether_addr *)hw->mac.mac_addr);
236 rte_spinlock_unlock(&hw->lock);
242 hns3vf_configure_mac_addr(struct hns3_adapter *hns, bool del)
244 struct hns3_hw *hw = &hns->hw;
245 struct rte_ether_addr *addr;
246 enum hns3_mbx_mac_vlan_subcode opcode;
247 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
252 opcode = HNS3_MBX_MAC_VLAN_UC_REMOVE;
254 opcode = HNS3_MBX_MAC_VLAN_UC_ADD;
255 for (i = 0; i < HNS3_VF_UC_MACADDR_NUM; i++) {
256 addr = &hw->data->mac_addrs[i];
257 if (!rte_is_valid_assigned_ether_addr(addr))
259 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE, addr);
260 hns3_dbg(hw, "rm mac addr: %s", mac_str);
261 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST, opcode,
262 addr->addr_bytes, RTE_ETHER_ADDR_LEN,
265 hns3_err(hw, "Failed to remove mac addr for vf: %d",
274 hns3vf_add_mc_mac_addr(struct hns3_adapter *hns,
275 struct rte_ether_addr *mac_addr)
277 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
278 struct hns3_hw *hw = &hns->hw;
281 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
282 HNS3_MBX_MAC_VLAN_MC_ADD,
283 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
286 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
288 hns3_err(hw, "Failed to add mc mac addr(%s) for vf: %d",
297 hns3vf_remove_mc_mac_addr(struct hns3_adapter *hns,
298 struct rte_ether_addr *mac_addr)
300 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
301 struct hns3_hw *hw = &hns->hw;
304 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
305 HNS3_MBX_MAC_VLAN_MC_REMOVE,
306 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
309 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
311 hns3_err(hw, "Failed to remove mc mac addr(%s) for vf: %d",
320 hns3vf_set_mc_mac_addr_list(struct rte_eth_dev *dev,
321 struct rte_ether_addr *mc_addr_set,
324 struct hns3_adapter *hns = dev->data->dev_private;
325 struct hns3_hw *hw = &hns->hw;
326 struct rte_ether_addr *addr;
327 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
334 if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
335 hns3_err(hw, "Failed to set mc mac addr, nb_mc_addr(%d) "
336 "invalid. valid range: 0~%d",
337 nb_mc_addr, HNS3_MC_MACADDR_NUM);
341 set_addr_num = (int)nb_mc_addr;
342 for (i = 0; i < set_addr_num; i++) {
343 addr = &mc_addr_set[i];
344 if (!rte_is_multicast_ether_addr(addr)) {
345 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
348 "Failed to set mc mac addr, addr(%s) invalid.",
353 rte_spinlock_lock(&hw->lock);
354 cur_addr_num = hw->mc_addrs_num;
355 for (i = 0; i < cur_addr_num; i++) {
356 num = cur_addr_num - i - 1;
357 addr = &hw->mc_addrs[num];
358 ret = hns3vf_remove_mc_mac_addr(hns, addr);
360 rte_spinlock_unlock(&hw->lock);
367 for (i = 0; i < set_addr_num; i++) {
368 addr = &mc_addr_set[i];
369 ret = hns3vf_add_mc_mac_addr(hns, addr);
371 rte_spinlock_unlock(&hw->lock);
375 rte_ether_addr_copy(addr, &hw->mc_addrs[hw->mc_addrs_num]);
378 rte_spinlock_unlock(&hw->lock);
384 hns3vf_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
386 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
387 struct hns3_hw *hw = &hns->hw;
388 struct rte_ether_addr *addr;
393 for (i = 0; i < hw->mc_addrs_num; i++) {
394 addr = &hw->mc_addrs[i];
395 if (!rte_is_multicast_ether_addr(addr))
398 ret = hns3vf_remove_mc_mac_addr(hns, addr);
400 ret = hns3vf_add_mc_mac_addr(hns, addr);
403 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
405 hns3_err(hw, "Failed to %s mc mac addr: %s for vf: %d",
406 del ? "Remove" : "Restore", mac_str, ret);
413 hns3vf_set_promisc_mode(struct hns3_hw *hw, bool en_bc_pmc,
414 bool en_uc_pmc, bool en_mc_pmc)
416 struct hns3_mbx_vf_to_pf_cmd *req;
417 struct hns3_cmd_desc desc;
420 req = (struct hns3_mbx_vf_to_pf_cmd *)desc.data;
423 * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev driver,
424 * so there are some features for promiscuous/allmulticast mode in hns3
425 * VF PMD driver as below:
426 * 1. The promiscuous/allmulticast mode can be configured successfully
427 * only based on the trusted VF device. If based on the non trusted
428 * VF device, configuring promiscuous/allmulticast mode will fail.
429 * The hns3 VF device can be confiruged as trusted device by hns3 PF
430 * kernel ethdev driver on the host by the following command:
431 * "ip link set <eth num> vf <vf id> turst on"
432 * 2. After the promiscuous mode is configured successfully, hns3 VF PMD
433 * driver can receive the ingress and outgoing traffic. In the words,
434 * all the ingress packets, all the packets sent from the PF and
435 * other VFs on the same physical port.
436 * 3. Note: Because of the hardware constraints, By default vlan filter
437 * is enabled and couldn't be turned off based on VF device, so vlan
438 * filter is still effective even in promiscuous mode. If upper
439 * applications don't call rte_eth_dev_vlan_filter API function to
440 * set vlan based on VF device, hns3 VF PMD driver will can't receive
441 * the packets with vlan tag in promiscuoue mode.
443 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MBX_VF_TO_PF, false);
444 req->msg[0] = HNS3_MBX_SET_PROMISC_MODE;
445 req->msg[1] = en_bc_pmc ? 1 : 0;
446 req->msg[2] = en_uc_pmc ? 1 : 0;
447 req->msg[3] = en_mc_pmc ? 1 : 0;
449 ret = hns3_cmd_send(hw, &desc, 1);
451 hns3_err(hw, "Set promisc mode fail, ret = %d", ret);
457 hns3vf_dev_promiscuous_enable(struct rte_eth_dev *dev)
459 struct hns3_adapter *hns = dev->data->dev_private;
460 struct hns3_hw *hw = &hns->hw;
463 ret = hns3vf_set_promisc_mode(hw, true, true, true);
465 hns3_err(hw, "Failed to enable promiscuous mode, ret = %d",
471 hns3vf_dev_promiscuous_disable(struct rte_eth_dev *dev)
473 bool allmulti = dev->data->all_multicast ? true : false;
474 struct hns3_adapter *hns = dev->data->dev_private;
475 struct hns3_hw *hw = &hns->hw;
478 ret = hns3vf_set_promisc_mode(hw, true, false, allmulti);
480 hns3_err(hw, "Failed to disable promiscuous mode, ret = %d",
486 hns3vf_dev_allmulticast_enable(struct rte_eth_dev *dev)
488 struct hns3_adapter *hns = dev->data->dev_private;
489 struct hns3_hw *hw = &hns->hw;
492 if (dev->data->promiscuous)
495 ret = hns3vf_set_promisc_mode(hw, true, false, true);
497 hns3_err(hw, "Failed to enable allmulticast mode, ret = %d",
503 hns3vf_dev_allmulticast_disable(struct rte_eth_dev *dev)
505 struct hns3_adapter *hns = dev->data->dev_private;
506 struct hns3_hw *hw = &hns->hw;
509 if (dev->data->promiscuous)
512 ret = hns3vf_set_promisc_mode(hw, true, false, false);
514 hns3_err(hw, "Failed to disable allmulticast mode, ret = %d",
520 hns3vf_restore_promisc(struct hns3_adapter *hns)
522 struct hns3_hw *hw = &hns->hw;
523 bool allmulti = hw->data->all_multicast ? true : false;
525 if (hw->data->promiscuous)
526 return hns3vf_set_promisc_mode(hw, true, true, true);
528 return hns3vf_set_promisc_mode(hw, true, false, allmulti);
532 hns3vf_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id,
533 bool mmap, enum hns3_ring_type queue_type,
536 struct hns3_vf_bind_vector_msg bind_msg;
541 memset(&bind_msg, 0, sizeof(bind_msg));
542 code = mmap ? HNS3_MBX_MAP_RING_TO_VECTOR :
543 HNS3_MBX_UNMAP_RING_TO_VECTOR;
544 bind_msg.vector_id = vector_id;
546 if (queue_type == HNS3_RING_TYPE_RX)
547 bind_msg.param[0].int_gl_index = HNS3_RING_GL_RX;
549 bind_msg.param[0].int_gl_index = HNS3_RING_GL_TX;
551 bind_msg.param[0].ring_type = queue_type;
552 bind_msg.ring_num = 1;
553 bind_msg.param[0].tqp_index = queue_id;
554 op_str = mmap ? "Map" : "Unmap";
555 ret = hns3_send_mbx_msg(hw, code, 0, (uint8_t *)&bind_msg,
556 sizeof(bind_msg), false, NULL, 0);
558 hns3_err(hw, "%s TQP %d fail, vector_id is %d, ret is %d.",
559 op_str, queue_id, bind_msg.vector_id, ret);
567 hns3vf_init_ring_with_vector(struct hns3_hw *hw)
574 * In hns3 network engine, vector 0 is always the misc interrupt of this
575 * function, vector 1~N can be used respectively for the queues of the
576 * function. Tx and Rx queues with the same number share the interrupt
577 * vector. In the initialization clearing the all hardware mapping
578 * relationship configurations between queues and interrupt vectors is
579 * needed, so some error caused by the residual configurations, such as
580 * the unexpected Tx interrupt, can be avoid. Because of the hardware
581 * constraints in hns3 hardware engine, we have to implement clearing
582 * the mapping relationship configurations by binding all queues to the
583 * last interrupt vector and reserving the last interrupt vector. This
584 * method results in a decrease of the maximum queues when upper
585 * applications call the rte_eth_dev_configure API function to enable
588 vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
589 hw->intr_tqps_num = vec - 1; /* the last interrupt is reserved */
590 for (i = 0; i < hw->intr_tqps_num; i++) {
592 * Set gap limiter and rate limiter configuration of queue's
595 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
596 HNS3_TQP_INTR_GL_DEFAULT);
597 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
598 HNS3_TQP_INTR_GL_DEFAULT);
599 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
601 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
602 HNS3_RING_TYPE_TX, i);
604 PMD_INIT_LOG(ERR, "VF fail to unbind TX ring(%d) with "
605 "vector: %d, ret=%d", i, vec, ret);
609 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
610 HNS3_RING_TYPE_RX, i);
612 PMD_INIT_LOG(ERR, "VF fail to unbind RX ring(%d) with "
613 "vector: %d, ret=%d", i, vec, ret);
622 hns3vf_dev_configure(struct rte_eth_dev *dev)
624 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
625 struct hns3_rss_conf *rss_cfg = &hw->rss_info;
626 struct rte_eth_conf *conf = &dev->data->dev_conf;
627 enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
628 uint16_t nb_rx_q = dev->data->nb_rx_queues;
629 uint16_t nb_tx_q = dev->data->nb_tx_queues;
630 struct rte_eth_rss_conf rss_conf;
635 * Hardware does not support individually enable/disable/reset the Tx or
636 * Rx queue in hns3 network engine. Driver must enable/disable/reset Tx
637 * and Rx queues at the same time. When the numbers of Tx queues
638 * allocated by upper applications are not equal to the numbers of Rx
639 * queues, driver needs to setup fake Tx or Rx queues to adjust numbers
640 * of Tx/Rx queues. otherwise, network engine can not work as usual. But
641 * these fake queues are imperceptible, and can not be used by upper
644 ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
646 hns3_err(hw, "Failed to set rx/tx fake queues: %d", ret);
650 hw->adapter_state = HNS3_NIC_CONFIGURING;
651 if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
652 hns3_err(hw, "setting link speed/duplex not supported");
657 /* When RSS is not configured, redirect the packet queue 0 */
658 if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
659 rss_conf = conf->rx_adv_conf.rss_conf;
660 if (rss_conf.rss_key == NULL) {
661 rss_conf.rss_key = rss_cfg->key;
662 rss_conf.rss_key_len = HNS3_RSS_KEY_SIZE;
665 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
671 * If jumbo frames are enabled, MTU needs to be refreshed
672 * according to the maximum RX packet length.
674 if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
676 * Security of max_rx_pkt_len is guaranteed in dpdk frame.
677 * Maximum value of max_rx_pkt_len is HNS3_MAX_FRAME_LEN, so it
678 * can safely assign to "uint16_t" type variable.
680 mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(conf->rxmode.max_rx_pkt_len);
681 ret = hns3vf_dev_mtu_set(dev, mtu);
684 dev->data->mtu = mtu;
687 ret = hns3vf_dev_configure_vlan(dev);
691 hw->adapter_state = HNS3_NIC_CONFIGURED;
695 (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
696 hw->adapter_state = HNS3_NIC_INITIALIZED;
702 hns3vf_config_mtu(struct hns3_hw *hw, uint16_t mtu)
706 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MTU, 0, (const uint8_t *)&mtu,
707 sizeof(mtu), true, NULL, 0);
709 hns3_err(hw, "Failed to set mtu (%u) for vf: %d", mtu, ret);
715 hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
717 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
718 uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
722 * The hns3 PF/VF devices on the same port share the hardware MTU
723 * configuration. Currently, we send mailbox to inform hns3 PF kernel
724 * ethdev driver to finish hardware MTU configuration in hns3 VF PMD
725 * driver, there is no need to stop the port for hns3 VF device, and the
726 * MTU value issued by hns3 VF PMD driver must be less than or equal to
729 if (rte_atomic16_read(&hw->reset.resetting)) {
730 hns3_err(hw, "Failed to set mtu during resetting");
734 rte_spinlock_lock(&hw->lock);
735 ret = hns3vf_config_mtu(hw, mtu);
737 rte_spinlock_unlock(&hw->lock);
740 if (frame_size > RTE_ETHER_MAX_LEN)
741 dev->data->dev_conf.rxmode.offloads |=
742 DEV_RX_OFFLOAD_JUMBO_FRAME;
744 dev->data->dev_conf.rxmode.offloads &=
745 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
746 dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
747 rte_spinlock_unlock(&hw->lock);
753 hns3vf_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
755 struct hns3_adapter *hns = eth_dev->data->dev_private;
756 struct hns3_hw *hw = &hns->hw;
757 uint16_t q_num = hw->tqps_num;
760 * In interrupt mode, 'max_rx_queues' is set based on the number of
761 * MSI-X interrupt resources of the hardware.
763 if (hw->data->dev_conf.intr_conf.rxq == 1)
764 q_num = hw->intr_tqps_num;
766 info->max_rx_queues = q_num;
767 info->max_tx_queues = hw->tqps_num;
768 info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
769 info->min_rx_bufsize = hw->rx_buf_len;
770 info->max_mac_addrs = HNS3_VF_UC_MACADDR_NUM;
771 info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
773 info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
774 DEV_RX_OFFLOAD_UDP_CKSUM |
775 DEV_RX_OFFLOAD_TCP_CKSUM |
776 DEV_RX_OFFLOAD_SCTP_CKSUM |
777 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
778 DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
779 DEV_RX_OFFLOAD_KEEP_CRC |
780 DEV_RX_OFFLOAD_SCATTER |
781 DEV_RX_OFFLOAD_VLAN_STRIP |
782 DEV_RX_OFFLOAD_QINQ_STRIP |
783 DEV_RX_OFFLOAD_VLAN_FILTER |
784 DEV_RX_OFFLOAD_JUMBO_FRAME);
785 info->tx_queue_offload_capa = DEV_TX_OFFLOAD_MBUF_FAST_FREE;
786 info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
787 DEV_TX_OFFLOAD_IPV4_CKSUM |
788 DEV_TX_OFFLOAD_TCP_CKSUM |
789 DEV_TX_OFFLOAD_UDP_CKSUM |
790 DEV_TX_OFFLOAD_SCTP_CKSUM |
791 DEV_TX_OFFLOAD_VLAN_INSERT |
792 DEV_TX_OFFLOAD_QINQ_INSERT |
793 DEV_TX_OFFLOAD_MULTI_SEGS |
794 DEV_TX_OFFLOAD_TCP_TSO |
795 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
796 DEV_TX_OFFLOAD_GRE_TNL_TSO |
797 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
798 info->tx_queue_offload_capa);
800 info->rx_desc_lim = (struct rte_eth_desc_lim) {
801 .nb_max = HNS3_MAX_RING_DESC,
802 .nb_min = HNS3_MIN_RING_DESC,
803 .nb_align = HNS3_ALIGN_RING_DESC,
806 info->tx_desc_lim = (struct rte_eth_desc_lim) {
807 .nb_max = HNS3_MAX_RING_DESC,
808 .nb_min = HNS3_MIN_RING_DESC,
809 .nb_align = HNS3_ALIGN_RING_DESC,
812 info->vmdq_queue_num = 0;
814 info->reta_size = HNS3_RSS_IND_TBL_SIZE;
815 info->hash_key_size = HNS3_RSS_KEY_SIZE;
816 info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
817 info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
818 info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
824 hns3vf_clear_event_cause(struct hns3_hw *hw, uint32_t regclr)
826 hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
830 hns3vf_disable_irq0(struct hns3_hw *hw)
832 hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
836 hns3vf_enable_irq0(struct hns3_hw *hw)
838 hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
841 static enum hns3vf_evt_cause
842 hns3vf_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
844 struct hns3_hw *hw = &hns->hw;
845 enum hns3vf_evt_cause ret;
846 uint32_t cmdq_stat_reg;
847 uint32_t rst_ing_reg;
850 /* Fetch the events from their corresponding regs */
851 cmdq_stat_reg = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_STAT_REG);
853 if (BIT(HNS3_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
854 rst_ing_reg = hns3_read_dev(hw, HNS3_FUN_RST_ING);
855 hns3_warn(hw, "resetting reg: 0x%x", rst_ing_reg);
856 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
857 rte_atomic16_set(&hw->reset.disable_cmd, 1);
858 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
859 hns3_write_dev(hw, HNS3_VF_RST_ING, val | HNS3_VF_RST_ING_BIT);
860 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RST_INT_B);
862 hw->reset.stats.global_cnt++;
863 hns3_warn(hw, "Global reset detected, clear reset status");
865 hns3_schedule_delayed_reset(hns);
866 hns3_warn(hw, "Global reset detected, don't clear reset status");
869 ret = HNS3VF_VECTOR0_EVENT_RST;
873 /* Check for vector0 mailbox(=CMDQ RX) event source */
874 if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
875 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
876 ret = HNS3VF_VECTOR0_EVENT_MBX;
881 ret = HNS3VF_VECTOR0_EVENT_OTHER;
889 hns3vf_interrupt_handler(void *param)
891 struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
892 struct hns3_adapter *hns = dev->data->dev_private;
893 struct hns3_hw *hw = &hns->hw;
894 enum hns3vf_evt_cause event_cause;
897 if (hw->irq_thread_id == 0)
898 hw->irq_thread_id = pthread_self();
900 /* Disable interrupt */
901 hns3vf_disable_irq0(hw);
903 /* Read out interrupt causes */
904 event_cause = hns3vf_check_event_cause(hns, &clearval);
906 switch (event_cause) {
907 case HNS3VF_VECTOR0_EVENT_RST:
908 hns3_schedule_reset(hns);
910 case HNS3VF_VECTOR0_EVENT_MBX:
911 hns3_dev_handle_mbx_msg(hw);
917 /* Clear interrupt causes */
918 hns3vf_clear_event_cause(hw, clearval);
920 /* Enable interrupt */
921 hns3vf_enable_irq0(hw);
925 hns3vf_check_tqp_info(struct hns3_hw *hw)
929 tqps_num = hw->tqps_num;
930 if (tqps_num > HNS3_MAX_TQP_NUM_PER_FUNC || tqps_num == 0) {
931 PMD_INIT_LOG(ERR, "Get invalid tqps_num(%u) from PF. valid "
933 tqps_num, HNS3_MAX_TQP_NUM_PER_FUNC);
937 if (hw->rx_buf_len == 0)
938 hw->rx_buf_len = HNS3_DEFAULT_RX_BUF_LEN;
939 hw->alloc_rss_size = RTE_MIN(hw->rss_size_max, hw->tqps_num);
945 hns3vf_get_queue_info(struct hns3_hw *hw)
947 #define HNS3VF_TQPS_RSS_INFO_LEN 6
948 uint8_t resp_msg[HNS3VF_TQPS_RSS_INFO_LEN];
951 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QINFO, 0, NULL, 0, true,
952 resp_msg, HNS3VF_TQPS_RSS_INFO_LEN);
954 PMD_INIT_LOG(ERR, "Failed to get tqp info from PF: %d", ret);
958 memcpy(&hw->tqps_num, &resp_msg[0], sizeof(uint16_t));
959 memcpy(&hw->rss_size_max, &resp_msg[2], sizeof(uint16_t));
960 memcpy(&hw->rx_buf_len, &resp_msg[4], sizeof(uint16_t));
962 return hns3vf_check_tqp_info(hw);
966 hns3vf_get_queue_depth(struct hns3_hw *hw)
968 #define HNS3VF_TQPS_DEPTH_INFO_LEN 4
969 uint8_t resp_msg[HNS3VF_TQPS_DEPTH_INFO_LEN];
972 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QDEPTH, 0, NULL, 0, true,
973 resp_msg, HNS3VF_TQPS_DEPTH_INFO_LEN);
975 PMD_INIT_LOG(ERR, "Failed to get tqp depth info from PF: %d",
980 memcpy(&hw->num_tx_desc, &resp_msg[0], sizeof(uint16_t));
981 memcpy(&hw->num_rx_desc, &resp_msg[2], sizeof(uint16_t));
987 hns3vf_get_tc_info(struct hns3_hw *hw)
992 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_TCINFO, 0, NULL, 0,
993 true, &resp_msg, sizeof(resp_msg));
995 hns3_err(hw, "VF request to get TC info from PF failed %d",
1000 hw->hw_tc_map = resp_msg;
1006 hns3vf_get_host_mac_addr(struct hns3_hw *hw)
1008 uint8_t host_mac[RTE_ETHER_ADDR_LEN];
1011 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_MAC_ADDR, 0, NULL, 0,
1012 true, host_mac, RTE_ETHER_ADDR_LEN);
1014 hns3_err(hw, "Failed to get mac addr from PF: %d", ret);
1018 memcpy(hw->mac.mac_addr, host_mac, RTE_ETHER_ADDR_LEN);
1024 hns3vf_get_configuration(struct hns3_hw *hw)
1028 hw->mac.media_type = HNS3_MEDIA_TYPE_NONE;
1030 /* Get queue configuration from PF */
1031 ret = hns3vf_get_queue_info(hw);
1035 /* Get queue depth info from PF */
1036 ret = hns3vf_get_queue_depth(hw);
1040 /* Get user defined VF MAC addr from PF */
1041 ret = hns3vf_get_host_mac_addr(hw);
1045 /* Get tc configuration from PF */
1046 return hns3vf_get_tc_info(hw);
1050 hns3vf_set_tc_info(struct hns3_adapter *hns)
1052 struct hns3_hw *hw = &hns->hw;
1053 uint16_t nb_rx_q = hw->data->nb_rx_queues;
1054 uint16_t nb_tx_q = hw->data->nb_tx_queues;
1058 for (i = 0; i < HNS3_MAX_TC_NUM; i++)
1059 if (hw->hw_tc_map & BIT(i))
1062 if (nb_rx_q < hw->num_tc) {
1063 hns3_err(hw, "number of Rx queues(%d) is less than tcs(%d).",
1064 nb_rx_q, hw->num_tc);
1068 if (nb_tx_q < hw->num_tc) {
1069 hns3_err(hw, "number of Tx queues(%d) is less than tcs(%d).",
1070 nb_tx_q, hw->num_tc);
1074 hns3_set_rss_size(hw, nb_rx_q);
1075 hns3_tc_queue_mapping_cfg(hw, nb_tx_q);
1081 hns3vf_request_link_info(struct hns3_hw *hw)
1086 if (rte_atomic16_read(&hw->reset.resetting))
1088 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1089 &resp_msg, sizeof(resp_msg));
1091 hns3_err(hw, "Failed to fetch link status from PF: %d", ret);
1095 hns3vf_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
1097 #define HNS3VF_VLAN_MBX_MSG_LEN 5
1098 struct hns3_hw *hw = &hns->hw;
1099 uint8_t msg_data[HNS3VF_VLAN_MBX_MSG_LEN];
1100 uint16_t proto = htons(RTE_ETHER_TYPE_VLAN);
1101 uint8_t is_kill = on ? 0 : 1;
1103 msg_data[0] = is_kill;
1104 memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1105 memcpy(&msg_data[3], &proto, sizeof(proto));
1107 return hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_FILTER,
1108 msg_data, HNS3VF_VLAN_MBX_MSG_LEN, true, NULL,
1113 hns3vf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1115 struct hns3_adapter *hns = dev->data->dev_private;
1116 struct hns3_hw *hw = &hns->hw;
1119 if (rte_atomic16_read(&hw->reset.resetting)) {
1121 "vf set vlan id failed during resetting, vlan_id =%u",
1125 rte_spinlock_lock(&hw->lock);
1126 ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1127 rte_spinlock_unlock(&hw->lock);
1129 hns3_err(hw, "vf set vlan id failed, vlan_id =%u, ret =%d",
1136 hns3vf_en_hw_strip_rxvtag(struct hns3_hw *hw, bool enable)
1141 msg_data = enable ? 1 : 0;
1142 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_RX_OFF_CFG,
1143 &msg_data, sizeof(msg_data), false, NULL, 0);
1145 hns3_err(hw, "vf enable strip failed, ret =%d", ret);
1151 hns3vf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1153 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1154 struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1155 unsigned int tmp_mask;
1157 tmp_mask = (unsigned int)mask;
1158 /* Vlan stripping setting */
1159 if (tmp_mask & ETH_VLAN_STRIP_MASK) {
1160 rte_spinlock_lock(&hw->lock);
1161 /* Enable or disable VLAN stripping */
1162 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1163 hns3vf_en_hw_strip_rxvtag(hw, true);
1165 hns3vf_en_hw_strip_rxvtag(hw, false);
1166 rte_spinlock_unlock(&hw->lock);
1173 hns3vf_handle_all_vlan_table(struct hns3_adapter *hns, int on)
1175 struct rte_vlan_filter_conf *vfc;
1176 struct hns3_hw *hw = &hns->hw;
1183 vfc = &hw->data->vlan_filter_conf;
1184 for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1185 if (vfc->ids[i] == 0)
1190 * 64 means the num bits of ids, one bit corresponds to
1194 /* count trailing zeroes */
1195 vbit = ~ids & (ids - 1);
1196 /* clear least significant bit set */
1197 ids ^= (ids ^ (ids - 1)) ^ vbit;
1202 ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1205 "VF handle vlan table failed, ret =%d, on = %d",
1216 hns3vf_remove_all_vlan_table(struct hns3_adapter *hns)
1218 return hns3vf_handle_all_vlan_table(hns, 0);
1222 hns3vf_restore_vlan_conf(struct hns3_adapter *hns)
1224 struct hns3_hw *hw = &hns->hw;
1225 struct rte_eth_conf *dev_conf;
1229 dev_conf = &hw->data->dev_conf;
1230 en = dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP ? true
1232 ret = hns3vf_en_hw_strip_rxvtag(hw, en);
1234 hns3_err(hw, "VF restore vlan conf fail, en =%d, ret =%d", en,
1240 hns3vf_dev_configure_vlan(struct rte_eth_dev *dev)
1242 struct hns3_adapter *hns = dev->data->dev_private;
1243 struct rte_eth_dev_data *data = dev->data;
1244 struct hns3_hw *hw = &hns->hw;
1247 if (data->dev_conf.txmode.hw_vlan_reject_tagged ||
1248 data->dev_conf.txmode.hw_vlan_reject_untagged ||
1249 data->dev_conf.txmode.hw_vlan_insert_pvid) {
1250 hns3_warn(hw, "hw_vlan_reject_tagged, hw_vlan_reject_untagged "
1251 "or hw_vlan_insert_pvid is not support!");
1254 /* Apply vlan offload setting */
1255 ret = hns3vf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
1257 hns3_err(hw, "dev config vlan offload failed, ret =%d", ret);
1263 hns3vf_set_alive(struct hns3_hw *hw, bool alive)
1267 msg_data = alive ? 1 : 0;
1268 return hns3_send_mbx_msg(hw, HNS3_MBX_SET_ALIVE, 0, &msg_data,
1269 sizeof(msg_data), false, NULL, 0);
1273 hns3vf_keep_alive_handler(void *param)
1275 struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1276 struct hns3_adapter *hns = eth_dev->data->dev_private;
1277 struct hns3_hw *hw = &hns->hw;
1281 ret = hns3_send_mbx_msg(hw, HNS3_MBX_KEEP_ALIVE, 0, NULL, 0,
1282 false, &respmsg, sizeof(uint8_t));
1284 hns3_err(hw, "VF sends keeping alive cmd failed(=%d)",
1287 rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
1292 hns3vf_service_handler(void *param)
1294 struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1295 struct hns3_adapter *hns = eth_dev->data->dev_private;
1296 struct hns3_hw *hw = &hns->hw;
1299 * The query link status and reset processing are executed in the
1300 * interrupt thread.When the IMP reset occurs, IMP will not respond,
1301 * and the query operation will time out after 30ms. In the case of
1302 * multiple PF/VFs, each query failure timeout causes the IMP reset
1303 * interrupt to fail to respond within 100ms.
1304 * Before querying the link status, check whether there is a reset
1305 * pending, and if so, abandon the query.
1307 if (!hns3vf_is_reset_pending(hns))
1308 hns3vf_request_link_info(hw);
1310 hns3_warn(hw, "Cancel the query when reset is pending");
1312 rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler,
1317 hns3_query_vf_resource(struct hns3_hw *hw)
1319 struct hns3_vf_res_cmd *req;
1320 struct hns3_cmd_desc desc;
1324 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_VF_RSRC, true);
1325 ret = hns3_cmd_send(hw, &desc, 1);
1327 hns3_err(hw, "query vf resource failed, ret = %d", ret);
1331 req = (struct hns3_vf_res_cmd *)desc.data;
1332 num_msi = hns3_get_field(rte_le_to_cpu_16(req->vf_intr_vector_number),
1333 HNS3_VEC_NUM_M, HNS3_VEC_NUM_S);
1334 if (num_msi < HNS3_MIN_VECTOR_NUM) {
1335 hns3_err(hw, "Just %u msi resources, not enough for vf(min:%d)",
1336 num_msi, HNS3_MIN_VECTOR_NUM);
1340 hw->num_msi = (num_msi > hw->tqps_num + 1) ? hw->tqps_num + 1 : num_msi;
1346 hns3vf_init_hardware(struct hns3_adapter *hns)
1348 struct hns3_hw *hw = &hns->hw;
1349 uint16_t mtu = hw->data->mtu;
1352 ret = hns3vf_set_promisc_mode(hw, true, false, false);
1356 ret = hns3vf_config_mtu(hw, mtu);
1358 goto err_init_hardware;
1360 ret = hns3vf_vlan_filter_configure(hns, 0, 1);
1362 PMD_INIT_LOG(ERR, "Failed to initialize VLAN config: %d", ret);
1363 goto err_init_hardware;
1366 ret = hns3_config_gro(hw, false);
1368 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
1369 goto err_init_hardware;
1372 ret = hns3vf_set_alive(hw, true);
1374 PMD_INIT_LOG(ERR, "Failed to VF send alive to PF: %d", ret);
1375 goto err_init_hardware;
1378 hns3vf_request_link_info(hw);
1382 (void)hns3vf_set_promisc_mode(hw, false, false, false);
1387 hns3vf_clear_vport_list(struct hns3_hw *hw)
1389 return hns3_send_mbx_msg(hw, HNS3_MBX_HANDLE_VF_TBL,
1390 HNS3_MBX_VPORT_LIST_CLEAR, NULL, 0, false,
1395 hns3vf_init_vf(struct rte_eth_dev *eth_dev)
1397 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1398 struct hns3_adapter *hns = eth_dev->data->dev_private;
1399 struct hns3_hw *hw = &hns->hw;
1402 PMD_INIT_FUNC_TRACE();
1404 /* Get hardware io base address from pcie BAR2 IO space */
1405 hw->io_base = pci_dev->mem_resource[2].addr;
1407 /* Firmware command queue initialize */
1408 ret = hns3_cmd_init_queue(hw);
1410 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
1411 goto err_cmd_init_queue;
1414 /* Firmware command initialize */
1415 ret = hns3_cmd_init(hw);
1417 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
1421 /* Get VF resource */
1422 ret = hns3_query_vf_resource(hw);
1426 rte_spinlock_init(&hw->mbx_resp.lock);
1428 hns3vf_clear_event_cause(hw, 0);
1430 ret = rte_intr_callback_register(&pci_dev->intr_handle,
1431 hns3vf_interrupt_handler, eth_dev);
1433 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
1434 goto err_intr_callback_register;
1437 /* Enable interrupt */
1438 rte_intr_enable(&pci_dev->intr_handle);
1439 hns3vf_enable_irq0(hw);
1441 /* Get configuration from PF */
1442 ret = hns3vf_get_configuration(hw);
1444 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
1445 goto err_get_config;
1449 * The hns3 PF ethdev driver in kernel support setting VF MAC address
1450 * on the host by "ip link set ..." command. To avoid some incorrect
1451 * scenes, for example, hns3 VF PMD driver fails to receive and send
1452 * packets after user configure the MAC address by using the
1453 * "ip link set ..." command, hns3 VF PMD driver keep the same MAC
1454 * address strategy as the hns3 kernel ethdev driver in the
1455 * initialization. If user configure a MAC address by the ip command
1456 * for VF device, then hns3 VF PMD driver will start with it, otherwise
1457 * start with a random MAC address in the initialization.
1459 ret = rte_is_zero_ether_addr((struct rte_ether_addr *)hw->mac.mac_addr);
1461 rte_eth_random_addr(hw->mac.mac_addr);
1463 ret = hns3vf_clear_vport_list(hw);
1465 PMD_INIT_LOG(ERR, "Failed to clear tbl list: %d", ret);
1466 goto err_get_config;
1469 ret = hns3vf_init_hardware(hns);
1471 goto err_get_config;
1473 hns3_set_default_rss_args(hw);
1476 * In the initialization clearing the all hardware mapping relationship
1477 * configurations between queues and interrupt vectors is needed, so
1478 * some error caused by the residual configurations, such as the
1479 * unexpected interrupt, can be avoid.
1481 ret = hns3vf_init_ring_with_vector(hw);
1483 goto err_get_config;
1488 hns3vf_disable_irq0(hw);
1489 rte_intr_disable(&pci_dev->intr_handle);
1490 hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1492 err_intr_callback_register:
1493 hns3_cmd_uninit(hw);
1496 hns3_cmd_destroy_queue(hw);
1505 hns3vf_uninit_vf(struct rte_eth_dev *eth_dev)
1507 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1508 struct hns3_adapter *hns = eth_dev->data->dev_private;
1509 struct hns3_hw *hw = &hns->hw;
1511 PMD_INIT_FUNC_TRACE();
1513 hns3_rss_uninit(hns);
1514 (void)hns3vf_set_alive(hw, false);
1515 (void)hns3vf_set_promisc_mode(hw, false, false, false);
1516 hns3vf_disable_irq0(hw);
1517 rte_intr_disable(&pci_dev->intr_handle);
1518 hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1520 hns3_cmd_uninit(hw);
1521 hns3_cmd_destroy_queue(hw);
1526 hns3vf_do_stop(struct hns3_adapter *hns)
1528 struct hns3_hw *hw = &hns->hw;
1531 hw->mac.link_status = ETH_LINK_DOWN;
1533 if (rte_atomic16_read(&hw->reset.disable_cmd) == 0) {
1534 hns3vf_configure_mac_addr(hns, true);
1537 reset_queue = false;
1538 return hns3_stop_queues(hns, reset_queue);
1542 hns3vf_unmap_rx_interrupt(struct rte_eth_dev *dev)
1544 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1545 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1546 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1551 if (dev->data->dev_conf.intr_conf.rxq == 0)
1554 /* unmap the ring with vector */
1555 if (rte_intr_allow_others(intr_handle)) {
1556 vec = RTE_INTR_VEC_RXTX_OFFSET;
1557 base = RTE_INTR_VEC_RXTX_OFFSET;
1559 if (rte_intr_dp_is_en(intr_handle)) {
1560 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
1561 (void)hns3vf_bind_ring_with_vector(hw, vec, false,
1564 if (vec < base + intr_handle->nb_efd - 1)
1568 /* Clean datapath event and queue/vec mapping */
1569 rte_intr_efd_disable(intr_handle);
1570 if (intr_handle->intr_vec) {
1571 rte_free(intr_handle->intr_vec);
1572 intr_handle->intr_vec = NULL;
1577 hns3vf_dev_stop(struct rte_eth_dev *dev)
1579 struct hns3_adapter *hns = dev->data->dev_private;
1580 struct hns3_hw *hw = &hns->hw;
1582 PMD_INIT_FUNC_TRACE();
1584 hw->adapter_state = HNS3_NIC_STOPPING;
1585 hns3_set_rxtx_function(dev);
1587 /* Disable datapath on secondary process. */
1588 hns3_mp_req_stop_rxtx(dev);
1589 /* Prevent crashes when queues are still in use. */
1590 rte_delay_ms(hw->tqps_num);
1592 rte_spinlock_lock(&hw->lock);
1593 if (rte_atomic16_read(&hw->reset.resetting) == 0) {
1594 hns3vf_do_stop(hns);
1595 hns3_dev_release_mbufs(hns);
1596 hw->adapter_state = HNS3_NIC_CONFIGURED;
1598 rte_eal_alarm_cancel(hns3vf_service_handler, dev);
1599 rte_spinlock_unlock(&hw->lock);
1601 hns3vf_unmap_rx_interrupt(dev);
1605 hns3vf_dev_close(struct rte_eth_dev *eth_dev)
1607 struct hns3_adapter *hns = eth_dev->data->dev_private;
1608 struct hns3_hw *hw = &hns->hw;
1610 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1613 if (hw->adapter_state == HNS3_NIC_STARTED)
1614 hns3vf_dev_stop(eth_dev);
1616 hw->adapter_state = HNS3_NIC_CLOSING;
1617 hns3_reset_abort(hns);
1618 hw->adapter_state = HNS3_NIC_CLOSED;
1619 rte_eal_alarm_cancel(hns3vf_keep_alive_handler, eth_dev);
1620 hns3vf_configure_all_mc_mac_addr(hns, true);
1621 hns3vf_remove_all_vlan_table(hns);
1622 hns3vf_uninit_vf(eth_dev);
1623 hns3_free_all_queues(eth_dev);
1624 rte_free(hw->reset.wait_data);
1625 rte_free(eth_dev->process_private);
1626 eth_dev->process_private = NULL;
1627 hns3_mp_uninit_primary();
1628 hns3_warn(hw, "Close port %d finished", hw->data->port_id);
1632 hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
1633 __rte_unused int wait_to_complete)
1635 struct hns3_adapter *hns = eth_dev->data->dev_private;
1636 struct hns3_hw *hw = &hns->hw;
1637 struct hns3_mac *mac = &hw->mac;
1638 struct rte_eth_link new_link;
1640 memset(&new_link, 0, sizeof(new_link));
1641 switch (mac->link_speed) {
1642 case ETH_SPEED_NUM_10M:
1643 case ETH_SPEED_NUM_100M:
1644 case ETH_SPEED_NUM_1G:
1645 case ETH_SPEED_NUM_10G:
1646 case ETH_SPEED_NUM_25G:
1647 case ETH_SPEED_NUM_40G:
1648 case ETH_SPEED_NUM_50G:
1649 case ETH_SPEED_NUM_100G:
1650 new_link.link_speed = mac->link_speed;
1653 new_link.link_speed = ETH_SPEED_NUM_100M;
1657 new_link.link_duplex = mac->link_duplex;
1658 new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
1659 new_link.link_autoneg =
1660 !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
1662 return rte_eth_linkstatus_set(eth_dev, &new_link);
1666 hns3vf_do_start(struct hns3_adapter *hns, bool reset_queue)
1668 struct hns3_hw *hw = &hns->hw;
1671 ret = hns3vf_set_tc_info(hns);
1675 ret = hns3_start_queues(hns, reset_queue);
1677 hns3_err(hw, "Failed to start queues: %d", ret);
1685 hns3vf_map_rx_interrupt(struct rte_eth_dev *dev)
1687 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1688 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1689 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1690 uint32_t intr_vector;
1696 if (dev->data->dev_conf.intr_conf.rxq == 0)
1699 /* disable uio/vfio intr/eventfd mapping */
1700 rte_intr_disable(intr_handle);
1702 /* check and configure queue intr-vector mapping */
1703 if (rte_intr_cap_multiple(intr_handle) ||
1704 !RTE_ETH_DEV_SRIOV(dev).active) {
1705 intr_vector = hw->used_rx_queues;
1706 /* It creates event fd for each intr vector when MSIX is used */
1707 if (rte_intr_efd_enable(intr_handle, intr_vector))
1710 if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
1711 intr_handle->intr_vec =
1712 rte_zmalloc("intr_vec",
1713 hw->used_rx_queues * sizeof(int), 0);
1714 if (intr_handle->intr_vec == NULL) {
1715 hns3_err(hw, "Failed to allocate %d rx_queues"
1716 " intr_vec", hw->used_rx_queues);
1718 goto vf_alloc_intr_vec_error;
1722 if (rte_intr_allow_others(intr_handle)) {
1723 vec = RTE_INTR_VEC_RXTX_OFFSET;
1724 base = RTE_INTR_VEC_RXTX_OFFSET;
1726 if (rte_intr_dp_is_en(intr_handle)) {
1727 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
1728 ret = hns3vf_bind_ring_with_vector(hw, vec, true,
1732 goto vf_bind_vector_error;
1733 intr_handle->intr_vec[q_id] = vec;
1734 if (vec < base + intr_handle->nb_efd - 1)
1738 rte_intr_enable(intr_handle);
1741 vf_bind_vector_error:
1742 rte_intr_efd_disable(intr_handle);
1743 if (intr_handle->intr_vec) {
1744 free(intr_handle->intr_vec);
1745 intr_handle->intr_vec = NULL;
1748 vf_alloc_intr_vec_error:
1749 rte_intr_efd_disable(intr_handle);
1754 hns3vf_dev_start(struct rte_eth_dev *dev)
1756 struct hns3_adapter *hns = dev->data->dev_private;
1757 struct hns3_hw *hw = &hns->hw;
1760 PMD_INIT_FUNC_TRACE();
1761 if (rte_atomic16_read(&hw->reset.resetting))
1764 rte_spinlock_lock(&hw->lock);
1765 hw->adapter_state = HNS3_NIC_STARTING;
1766 ret = hns3vf_do_start(hns, true);
1768 hw->adapter_state = HNS3_NIC_CONFIGURED;
1769 rte_spinlock_unlock(&hw->lock);
1772 hw->adapter_state = HNS3_NIC_STARTED;
1773 rte_spinlock_unlock(&hw->lock);
1775 ret = hns3vf_map_rx_interrupt(dev);
1778 hns3_set_rxtx_function(dev);
1779 hns3_mp_req_start_rxtx(dev);
1780 rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler, dev);
1786 is_vf_reset_done(struct hns3_hw *hw)
1788 #define HNS3_FUN_RST_ING_BITS \
1789 (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) | \
1790 BIT(HNS3_VECTOR0_CORERESET_INT_B) | \
1791 BIT(HNS3_VECTOR0_IMPRESET_INT_B) | \
1792 BIT(HNS3_VECTOR0_FUNCRESET_INT_B))
1796 if (hw->reset.level == HNS3_VF_RESET) {
1797 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
1798 if (val & HNS3_VF_RST_ING_BIT)
1801 val = hns3_read_dev(hw, HNS3_FUN_RST_ING);
1802 if (val & HNS3_FUN_RST_ING_BITS)
1809 hns3vf_is_reset_pending(struct hns3_adapter *hns)
1811 struct hns3_hw *hw = &hns->hw;
1812 enum hns3_reset_level reset;
1814 hns3vf_check_event_cause(hns, NULL);
1815 reset = hns3vf_get_reset_level(hw, &hw->reset.pending);
1816 if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
1817 hns3_warn(hw, "High level reset %d is pending", reset);
1824 hns3vf_wait_hardware_ready(struct hns3_adapter *hns)
1826 struct hns3_hw *hw = &hns->hw;
1827 struct hns3_wait_data *wait_data = hw->reset.wait_data;
1830 if (wait_data->result == HNS3_WAIT_SUCCESS) {
1832 * After vf reset is ready, the PF may not have completed
1833 * the reset processing. The vf sending mbox to PF may fail
1834 * during the pf reset, so it is better to add extra delay.
1836 if (hw->reset.level == HNS3_VF_FUNC_RESET ||
1837 hw->reset.level == HNS3_FLR_RESET)
1839 /* Reset retry process, no need to add extra delay. */
1840 if (hw->reset.attempts)
1842 if (wait_data->check_completion == NULL)
1845 wait_data->check_completion = NULL;
1846 wait_data->interval = 1 * MSEC_PER_SEC * USEC_PER_MSEC;
1847 wait_data->count = 1;
1848 wait_data->result = HNS3_WAIT_REQUEST;
1849 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback,
1851 hns3_warn(hw, "hardware is ready, delay 1 sec for PF reset complete");
1853 } else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
1854 gettimeofday(&tv, NULL);
1855 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
1856 tv.tv_sec, tv.tv_usec);
1858 } else if (wait_data->result == HNS3_WAIT_REQUEST)
1861 wait_data->hns = hns;
1862 wait_data->check_completion = is_vf_reset_done;
1863 wait_data->end_ms = (uint64_t)HNS3VF_RESET_WAIT_CNT *
1864 HNS3VF_RESET_WAIT_MS + get_timeofday_ms();
1865 wait_data->interval = HNS3VF_RESET_WAIT_MS * USEC_PER_MSEC;
1866 wait_data->count = HNS3VF_RESET_WAIT_CNT;
1867 wait_data->result = HNS3_WAIT_REQUEST;
1868 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
1873 hns3vf_prepare_reset(struct hns3_adapter *hns)
1875 struct hns3_hw *hw = &hns->hw;
1878 if (hw->reset.level == HNS3_VF_FUNC_RESET) {
1879 ret = hns3_send_mbx_msg(hw, HNS3_MBX_RESET, 0, NULL,
1882 rte_atomic16_set(&hw->reset.disable_cmd, 1);
1888 hns3vf_stop_service(struct hns3_adapter *hns)
1890 struct hns3_hw *hw = &hns->hw;
1891 struct rte_eth_dev *eth_dev;
1893 eth_dev = &rte_eth_devices[hw->data->port_id];
1894 if (hw->adapter_state == HNS3_NIC_STARTED)
1895 rte_eal_alarm_cancel(hns3vf_service_handler, eth_dev);
1896 hw->mac.link_status = ETH_LINK_DOWN;
1898 hns3_set_rxtx_function(eth_dev);
1900 /* Disable datapath on secondary process. */
1901 hns3_mp_req_stop_rxtx(eth_dev);
1902 rte_delay_ms(hw->tqps_num);
1904 rte_spinlock_lock(&hw->lock);
1905 if (hw->adapter_state == HNS3_NIC_STARTED ||
1906 hw->adapter_state == HNS3_NIC_STOPPING) {
1907 hns3vf_do_stop(hns);
1908 hw->reset.mbuf_deferred_free = true;
1910 hw->reset.mbuf_deferred_free = false;
1913 * It is cumbersome for hardware to pick-and-choose entries for deletion
1914 * from table space. Hence, for function reset software intervention is
1915 * required to delete the entries.
1917 if (rte_atomic16_read(&hw->reset.disable_cmd) == 0)
1918 hns3vf_configure_all_mc_mac_addr(hns, true);
1919 rte_spinlock_unlock(&hw->lock);
1925 hns3vf_start_service(struct hns3_adapter *hns)
1927 struct hns3_hw *hw = &hns->hw;
1928 struct rte_eth_dev *eth_dev;
1930 eth_dev = &rte_eth_devices[hw->data->port_id];
1931 hns3_set_rxtx_function(eth_dev);
1932 hns3_mp_req_start_rxtx(eth_dev);
1933 if (hw->adapter_state == HNS3_NIC_STARTED)
1934 hns3vf_service_handler(eth_dev);
1940 hns3vf_check_default_mac_change(struct hns3_hw *hw)
1942 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
1943 struct rte_ether_addr *hw_mac;
1947 * The hns3 PF ethdev driver in kernel support setting VF MAC address
1948 * on the host by "ip link set ..." command. If the hns3 PF kernel
1949 * ethdev driver sets the MAC address for VF device after the
1950 * initialization of the related VF device, the PF driver will notify
1951 * VF driver to reset VF device to make the new MAC address effective
1952 * immediately. The hns3 VF PMD driver should check whether the MAC
1953 * address has been changed by the PF kernel ethdev driver, if changed
1954 * VF driver should configure hardware using the new MAC address in the
1955 * recovering hardware configuration stage of the reset process.
1957 ret = hns3vf_get_host_mac_addr(hw);
1961 hw_mac = (struct rte_ether_addr *)hw->mac.mac_addr;
1962 ret = rte_is_zero_ether_addr(hw_mac);
1964 rte_ether_addr_copy(&hw->data->mac_addrs[0], hw_mac);
1966 ret = rte_is_same_ether_addr(&hw->data->mac_addrs[0], hw_mac);
1968 rte_ether_addr_copy(hw_mac, &hw->data->mac_addrs[0]);
1969 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
1970 &hw->data->mac_addrs[0]);
1971 hns3_warn(hw, "Default MAC address has been changed to:"
1972 " %s by the host PF kernel ethdev driver",
1981 hns3vf_restore_conf(struct hns3_adapter *hns)
1983 struct hns3_hw *hw = &hns->hw;
1986 ret = hns3vf_check_default_mac_change(hw);
1990 ret = hns3vf_configure_mac_addr(hns, false);
1994 ret = hns3vf_configure_all_mc_mac_addr(hns, false);
1998 ret = hns3vf_restore_promisc(hns);
2000 goto err_vlan_table;
2002 ret = hns3vf_restore_vlan_conf(hns);
2004 goto err_vlan_table;
2006 if (hw->adapter_state == HNS3_NIC_STARTED) {
2007 ret = hns3vf_do_start(hns, false);
2009 goto err_vlan_table;
2010 hns3_info(hw, "hns3vf dev restart successful!");
2011 } else if (hw->adapter_state == HNS3_NIC_STOPPING)
2012 hw->adapter_state = HNS3_NIC_CONFIGURED;
2016 hns3vf_configure_all_mc_mac_addr(hns, true);
2018 hns3vf_configure_mac_addr(hns, true);
2022 static enum hns3_reset_level
2023 hns3vf_get_reset_level(struct hns3_hw *hw, uint64_t *levels)
2025 enum hns3_reset_level reset_level;
2027 /* return the highest priority reset level amongst all */
2028 if (hns3_atomic_test_bit(HNS3_VF_RESET, levels))
2029 reset_level = HNS3_VF_RESET;
2030 else if (hns3_atomic_test_bit(HNS3_VF_FULL_RESET, levels))
2031 reset_level = HNS3_VF_FULL_RESET;
2032 else if (hns3_atomic_test_bit(HNS3_VF_PF_FUNC_RESET, levels))
2033 reset_level = HNS3_VF_PF_FUNC_RESET;
2034 else if (hns3_atomic_test_bit(HNS3_VF_FUNC_RESET, levels))
2035 reset_level = HNS3_VF_FUNC_RESET;
2036 else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
2037 reset_level = HNS3_FLR_RESET;
2039 reset_level = HNS3_NONE_RESET;
2041 if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
2042 return HNS3_NONE_RESET;
2048 hns3vf_reset_service(void *param)
2050 struct hns3_adapter *hns = (struct hns3_adapter *)param;
2051 struct hns3_hw *hw = &hns->hw;
2052 enum hns3_reset_level reset_level;
2053 struct timeval tv_delta;
2054 struct timeval tv_start;
2059 * The interrupt is not triggered within the delay time.
2060 * The interrupt may have been lost. It is necessary to handle
2061 * the interrupt to recover from the error.
2063 if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_DEFERRED) {
2064 rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_REQUESTED);
2065 hns3_err(hw, "Handling interrupts in delayed tasks");
2066 hns3vf_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
2067 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2068 if (reset_level == HNS3_NONE_RESET) {
2069 hns3_err(hw, "No reset level is set, try global reset");
2070 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
2073 rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_NONE);
2076 * Hardware reset has been notified, we now have to poll & check if
2077 * hardware has actually completed the reset sequence.
2079 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2080 if (reset_level != HNS3_NONE_RESET) {
2081 gettimeofday(&tv_start, NULL);
2082 hns3_reset_process(hns, reset_level);
2083 gettimeofday(&tv, NULL);
2084 timersub(&tv, &tv_start, &tv_delta);
2085 msec = tv_delta.tv_sec * MSEC_PER_SEC +
2086 tv_delta.tv_usec / USEC_PER_MSEC;
2087 if (msec > HNS3_RESET_PROCESS_MS)
2088 hns3_err(hw, "%d handle long time delta %" PRIx64
2089 " ms time=%ld.%.6ld",
2090 hw->reset.level, msec, tv.tv_sec, tv.tv_usec);
2095 hns3vf_reinit_dev(struct hns3_adapter *hns)
2097 struct rte_eth_dev *eth_dev = &rte_eth_devices[hns->hw.data->port_id];
2098 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2099 struct hns3_hw *hw = &hns->hw;
2102 if (hw->reset.level == HNS3_VF_FULL_RESET) {
2103 rte_intr_disable(&pci_dev->intr_handle);
2104 hns3vf_set_bus_master(pci_dev, true);
2107 /* Firmware command initialize */
2108 ret = hns3_cmd_init(hw);
2110 hns3_err(hw, "Failed to init cmd: %d", ret);
2114 if (hw->reset.level == HNS3_VF_FULL_RESET) {
2116 * UIO enables msix by writing the pcie configuration space
2117 * vfio_pci enables msix in rte_intr_enable.
2119 if (pci_dev->kdrv == RTE_KDRV_IGB_UIO ||
2120 pci_dev->kdrv == RTE_KDRV_UIO_GENERIC) {
2121 if (hns3vf_enable_msix(pci_dev, true))
2122 hns3_err(hw, "Failed to enable msix");
2125 rte_intr_enable(&pci_dev->intr_handle);
2128 ret = hns3_reset_all_queues(hns);
2130 hns3_err(hw, "Failed to reset all queues: %d", ret);
2134 ret = hns3vf_init_hardware(hns);
2136 hns3_err(hw, "Failed to init hardware: %d", ret);
2143 hns3vf_set_bus_master(pci_dev, false);
2145 hns3_cmd_uninit(hw);
2149 static const struct eth_dev_ops hns3vf_eth_dev_ops = {
2150 .dev_start = hns3vf_dev_start,
2151 .dev_stop = hns3vf_dev_stop,
2152 .dev_close = hns3vf_dev_close,
2153 .mtu_set = hns3vf_dev_mtu_set,
2154 .promiscuous_enable = hns3vf_dev_promiscuous_enable,
2155 .promiscuous_disable = hns3vf_dev_promiscuous_disable,
2156 .allmulticast_enable = hns3vf_dev_allmulticast_enable,
2157 .allmulticast_disable = hns3vf_dev_allmulticast_disable,
2158 .stats_get = hns3_stats_get,
2159 .stats_reset = hns3_stats_reset,
2160 .xstats_get = hns3_dev_xstats_get,
2161 .xstats_get_names = hns3_dev_xstats_get_names,
2162 .xstats_reset = hns3_dev_xstats_reset,
2163 .xstats_get_by_id = hns3_dev_xstats_get_by_id,
2164 .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
2165 .dev_infos_get = hns3vf_dev_infos_get,
2166 .rx_queue_setup = hns3_rx_queue_setup,
2167 .tx_queue_setup = hns3_tx_queue_setup,
2168 .rx_queue_release = hns3_dev_rx_queue_release,
2169 .tx_queue_release = hns3_dev_tx_queue_release,
2170 .rx_queue_intr_enable = hns3_dev_rx_queue_intr_enable,
2171 .rx_queue_intr_disable = hns3_dev_rx_queue_intr_disable,
2172 .dev_configure = hns3vf_dev_configure,
2173 .mac_addr_add = hns3vf_add_mac_addr,
2174 .mac_addr_remove = hns3vf_remove_mac_addr,
2175 .mac_addr_set = hns3vf_set_default_mac_addr,
2176 .set_mc_addr_list = hns3vf_set_mc_mac_addr_list,
2177 .link_update = hns3vf_dev_link_update,
2178 .rss_hash_update = hns3_dev_rss_hash_update,
2179 .rss_hash_conf_get = hns3_dev_rss_hash_conf_get,
2180 .reta_update = hns3_dev_rss_reta_update,
2181 .reta_query = hns3_dev_rss_reta_query,
2182 .filter_ctrl = hns3_dev_filter_ctrl,
2183 .vlan_filter_set = hns3vf_vlan_filter_set,
2184 .vlan_offload_set = hns3vf_vlan_offload_set,
2185 .get_reg = hns3_get_regs,
2186 .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
2189 static const struct hns3_reset_ops hns3vf_reset_ops = {
2190 .reset_service = hns3vf_reset_service,
2191 .stop_service = hns3vf_stop_service,
2192 .prepare_reset = hns3vf_prepare_reset,
2193 .wait_hardware_ready = hns3vf_wait_hardware_ready,
2194 .reinit_dev = hns3vf_reinit_dev,
2195 .restore_conf = hns3vf_restore_conf,
2196 .start_service = hns3vf_start_service,
2200 hns3vf_dev_init(struct rte_eth_dev *eth_dev)
2202 struct hns3_adapter *hns = eth_dev->data->dev_private;
2203 struct hns3_hw *hw = &hns->hw;
2206 PMD_INIT_FUNC_TRACE();
2208 eth_dev->process_private = (struct hns3_process_private *)
2209 rte_zmalloc_socket("hns3_filter_list",
2210 sizeof(struct hns3_process_private),
2211 RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
2212 if (eth_dev->process_private == NULL) {
2213 PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
2217 /* initialize flow filter lists */
2218 hns3_filterlist_init(eth_dev);
2220 hns3_set_rxtx_function(eth_dev);
2221 eth_dev->dev_ops = &hns3vf_eth_dev_ops;
2222 if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2223 hns3_mp_init_secondary();
2224 hw->secondary_cnt++;
2228 hns3_mp_init_primary();
2230 hw->adapter_state = HNS3_NIC_UNINITIALIZED;
2232 hw->data = eth_dev->data;
2234 ret = hns3_reset_init(hw);
2236 goto err_init_reset;
2237 hw->reset.ops = &hns3vf_reset_ops;
2239 ret = hns3vf_init_vf(eth_dev);
2241 PMD_INIT_LOG(ERR, "Failed to init vf: %d", ret);
2245 /* Allocate memory for storing MAC addresses */
2246 eth_dev->data->mac_addrs = rte_zmalloc("hns3vf-mac",
2247 sizeof(struct rte_ether_addr) *
2248 HNS3_VF_UC_MACADDR_NUM, 0);
2249 if (eth_dev->data->mac_addrs == NULL) {
2250 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
2251 "to store MAC addresses",
2252 sizeof(struct rte_ether_addr) *
2253 HNS3_VF_UC_MACADDR_NUM);
2255 goto err_rte_zmalloc;
2258 rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
2259 ð_dev->data->mac_addrs[0]);
2260 hw->adapter_state = HNS3_NIC_INITIALIZED;
2262 * Pass the information to the rte_eth_dev_close() that it should also
2263 * release the private port resources.
2265 eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
2267 if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_PENDING) {
2268 hns3_err(hw, "Reschedule reset service after dev_init");
2269 hns3_schedule_reset(hns);
2271 /* IMP will wait ready flag before reset */
2272 hns3_notify_reset_ready(hw, false);
2274 rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
2279 hns3vf_uninit_vf(eth_dev);
2282 rte_free(hw->reset.wait_data);
2285 eth_dev->dev_ops = NULL;
2286 eth_dev->rx_pkt_burst = NULL;
2287 eth_dev->tx_pkt_burst = NULL;
2288 eth_dev->tx_pkt_prepare = NULL;
2289 rte_free(eth_dev->process_private);
2290 eth_dev->process_private = NULL;
2296 hns3vf_dev_uninit(struct rte_eth_dev *eth_dev)
2298 struct hns3_adapter *hns = eth_dev->data->dev_private;
2299 struct hns3_hw *hw = &hns->hw;
2301 PMD_INIT_FUNC_TRACE();
2303 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2306 eth_dev->dev_ops = NULL;
2307 eth_dev->rx_pkt_burst = NULL;
2308 eth_dev->tx_pkt_burst = NULL;
2309 eth_dev->tx_pkt_prepare = NULL;
2311 if (hw->adapter_state < HNS3_NIC_CLOSING)
2312 hns3vf_dev_close(eth_dev);
2314 hw->adapter_state = HNS3_NIC_REMOVED;
2319 eth_hns3vf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2320 struct rte_pci_device *pci_dev)
2322 return rte_eth_dev_pci_generic_probe(pci_dev,
2323 sizeof(struct hns3_adapter),
2328 eth_hns3vf_pci_remove(struct rte_pci_device *pci_dev)
2330 return rte_eth_dev_pci_generic_remove(pci_dev, hns3vf_dev_uninit);
2333 static const struct rte_pci_id pci_id_hns3vf_map[] = {
2334 { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_VF) },
2335 { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_PFC_VF) },
2336 { .vendor_id = 0, /* sentinel */ },
2339 static struct rte_pci_driver rte_hns3vf_pmd = {
2340 .id_table = pci_id_hns3vf_map,
2341 .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
2342 .probe = eth_hns3vf_pci_probe,
2343 .remove = eth_hns3vf_pci_remove,
2346 RTE_PMD_REGISTER_PCI(net_hns3_vf, rte_hns3vf_pmd);
2347 RTE_PMD_REGISTER_PCI_TABLE(net_hns3_vf, pci_id_hns3vf_map);
2348 RTE_PMD_REGISTER_KMOD_DEP(net_hns3_vf, "* igb_uio | vfio-pci");