net/hns3: fix queue state after reset
[dpdk.git] / drivers / net / hns3 / hns3_ethdev_vf.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4
5 #include <linux/pci_regs.h>
6 #include <rte_alarm.h>
7 #include <rte_ethdev_pci.h>
8 #include <rte_io.h>
9 #include <rte_pci.h>
10 #include <rte_vfio.h>
11
12 #include "hns3_ethdev.h"
13 #include "hns3_logs.h"
14 #include "hns3_rxtx.h"
15 #include "hns3_regs.h"
16 #include "hns3_intr.h"
17 #include "hns3_dcb.h"
18 #include "hns3_mp.h"
19
20 #define HNS3VF_KEEP_ALIVE_INTERVAL      2000000 /* us */
21 #define HNS3VF_SERVICE_INTERVAL         1000000 /* us */
22
23 #define HNS3VF_RESET_WAIT_MS    20
24 #define HNS3VF_RESET_WAIT_CNT   2000
25
26 /* Reset related Registers */
27 #define HNS3_GLOBAL_RESET_BIT           0
28 #define HNS3_CORE_RESET_BIT             1
29 #define HNS3_IMP_RESET_BIT              2
30 #define HNS3_FUN_RST_ING_B              0
31
32 enum hns3vf_evt_cause {
33         HNS3VF_VECTOR0_EVENT_RST,
34         HNS3VF_VECTOR0_EVENT_MBX,
35         HNS3VF_VECTOR0_EVENT_OTHER,
36 };
37
38 static enum hns3_reset_level hns3vf_get_reset_level(struct hns3_hw *hw,
39                                                     uint64_t *levels);
40 static int hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
41 static int hns3vf_dev_configure_vlan(struct rte_eth_dev *dev);
42
43 static int hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
44                                   struct rte_ether_addr *mac_addr);
45 static int hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
46                                      struct rte_ether_addr *mac_addr);
47 /* set PCI bus mastering */
48 static int
49 hns3vf_set_bus_master(const struct rte_pci_device *device, bool op)
50 {
51         uint16_t reg;
52         int ret;
53
54         ret = rte_pci_read_config(device, &reg, sizeof(reg), PCI_COMMAND);
55         if (ret < 0) {
56                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
57                              PCI_COMMAND);
58                 return ret;
59         }
60
61         if (op)
62                 /* set the master bit */
63                 reg |= PCI_COMMAND_MASTER;
64         else
65                 reg &= ~(PCI_COMMAND_MASTER);
66
67         return rte_pci_write_config(device, &reg, sizeof(reg), PCI_COMMAND);
68 }
69
70 /**
71  * hns3vf_find_pci_capability - lookup a capability in the PCI capability list
72  * @cap: the capability
73  *
74  * Return the address of the given capability within the PCI capability list.
75  */
76 static int
77 hns3vf_find_pci_capability(const struct rte_pci_device *device, int cap)
78 {
79 #define MAX_PCIE_CAPABILITY 48
80         uint16_t status;
81         uint8_t pos;
82         uint8_t id;
83         int ttl;
84         int ret;
85
86         ret = rte_pci_read_config(device, &status, sizeof(status), PCI_STATUS);
87         if (ret < 0) {
88                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x", PCI_STATUS);
89                 return 0;
90         }
91
92         if (!(status & PCI_STATUS_CAP_LIST))
93                 return 0;
94
95         ttl = MAX_PCIE_CAPABILITY;
96         ret = rte_pci_read_config(device, &pos, sizeof(pos),
97                                   PCI_CAPABILITY_LIST);
98         if (ret < 0) {
99                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
100                              PCI_CAPABILITY_LIST);
101                 return 0;
102         }
103
104         while (ttl-- && pos >= PCI_STD_HEADER_SIZEOF) {
105                 ret = rte_pci_read_config(device, &id, sizeof(id),
106                                           (pos + PCI_CAP_LIST_ID));
107                 if (ret < 0) {
108                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
109                                      (pos + PCI_CAP_LIST_ID));
110                         break;
111                 }
112
113                 if (id == 0xFF)
114                         break;
115
116                 if (id == cap)
117                         return (int)pos;
118
119                 ret = rte_pci_read_config(device, &pos, sizeof(pos),
120                                           (pos + PCI_CAP_LIST_NEXT));
121                 if (ret < 0) {
122                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
123                                      (pos + PCI_CAP_LIST_NEXT));
124                         break;
125                 }
126         }
127         return 0;
128 }
129
130 static int
131 hns3vf_enable_msix(const struct rte_pci_device *device, bool op)
132 {
133         uint16_t control;
134         int pos;
135         int ret;
136
137         pos = hns3vf_find_pci_capability(device, PCI_CAP_ID_MSIX);
138         if (pos) {
139                 ret = rte_pci_read_config(device, &control, sizeof(control),
140                                     (pos + PCI_MSIX_FLAGS));
141                 if (ret < 0) {
142                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
143                                      (pos + PCI_MSIX_FLAGS));
144                         return -ENXIO;
145                 }
146
147                 if (op)
148                         control |= PCI_MSIX_FLAGS_ENABLE;
149                 else
150                         control &= ~PCI_MSIX_FLAGS_ENABLE;
151                 ret = rte_pci_write_config(device, &control, sizeof(control),
152                                           (pos + PCI_MSIX_FLAGS));
153                 if (ret < 0) {
154                         PMD_INIT_LOG(ERR, "failed to write PCI offset 0x%x",
155                                     (pos + PCI_MSIX_FLAGS));
156                 }
157                 return 0;
158         }
159         return -ENXIO;
160 }
161
162 static int
163 hns3vf_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
164 {
165         /* mac address was checked by upper level interface */
166         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
167         int ret;
168
169         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
170                                 HNS3_MBX_MAC_VLAN_UC_ADD, mac_addr->addr_bytes,
171                                 RTE_ETHER_ADDR_LEN, false, NULL, 0);
172         if (ret) {
173                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
174                                       mac_addr);
175                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
176                          mac_str, ret);
177         }
178         return ret;
179 }
180
181 static int
182 hns3vf_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
183 {
184         /* mac address was checked by upper level interface */
185         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
186         int ret;
187
188         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
189                                 HNS3_MBX_MAC_VLAN_UC_REMOVE,
190                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN,
191                                 false, NULL, 0);
192         if (ret) {
193                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
194                                       mac_addr);
195                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
196                          mac_str, ret);
197         }
198         return ret;
199 }
200
201 static int
202 hns3vf_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
203 {
204         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
205         struct rte_ether_addr *addr;
206         int ret;
207         int i;
208
209         for (i = 0; i < hw->mc_addrs_num; i++) {
210                 addr = &hw->mc_addrs[i];
211                 /* Check if there are duplicate addresses */
212                 if (rte_is_same_ether_addr(addr, mac_addr)) {
213                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
214                                               addr);
215                         hns3_err(hw, "failed to add mc mac addr, same addrs"
216                                  "(%s) is added by the set_mc_mac_addr_list "
217                                  "API", mac_str);
218                         return -EINVAL;
219                 }
220         }
221
222         ret = hns3vf_add_mc_mac_addr(hw, mac_addr);
223         if (ret) {
224                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
225                                       mac_addr);
226                 hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
227                          mac_str, ret);
228         }
229         return ret;
230 }
231
232 static int
233 hns3vf_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
234                     __rte_unused uint32_t idx,
235                     __rte_unused uint32_t pool)
236 {
237         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
238         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
239         int ret;
240
241         rte_spinlock_lock(&hw->lock);
242
243         /*
244          * In hns3 network engine adding UC and MC mac address with different
245          * commands with firmware. We need to determine whether the input
246          * address is a UC or a MC address to call different commands.
247          * By the way, it is recommended calling the API function named
248          * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
249          * using the rte_eth_dev_mac_addr_add API function to set MC mac address
250          * may affect the specifications of UC mac addresses.
251          */
252         if (rte_is_multicast_ether_addr(mac_addr))
253                 ret = hns3vf_add_mc_addr_common(hw, mac_addr);
254         else
255                 ret = hns3vf_add_uc_mac_addr(hw, mac_addr);
256
257         rte_spinlock_unlock(&hw->lock);
258         if (ret) {
259                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
260                                       mac_addr);
261                 hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
262                          ret);
263         }
264
265         return ret;
266 }
267
268 static void
269 hns3vf_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
270 {
271         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
272         /* index will be checked by upper level rte interface */
273         struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
274         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
275         int ret;
276
277         rte_spinlock_lock(&hw->lock);
278
279         if (rte_is_multicast_ether_addr(mac_addr))
280                 ret = hns3vf_remove_mc_mac_addr(hw, mac_addr);
281         else
282                 ret = hns3vf_remove_uc_mac_addr(hw, mac_addr);
283
284         rte_spinlock_unlock(&hw->lock);
285         if (ret) {
286                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
287                                       mac_addr);
288                 hns3_err(hw, "failed to remove mac addr(%s), ret = %d",
289                          mac_str, ret);
290         }
291 }
292
293 static int
294 hns3vf_set_default_mac_addr(struct rte_eth_dev *dev,
295                             struct rte_ether_addr *mac_addr)
296 {
297 #define HNS3_TWO_ETHER_ADDR_LEN (RTE_ETHER_ADDR_LEN * 2)
298         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
299         struct rte_ether_addr *old_addr;
300         uint8_t addr_bytes[HNS3_TWO_ETHER_ADDR_LEN]; /* for 2 MAC addresses */
301         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
302         int ret;
303
304         /*
305          * It has been guaranteed that input parameter named mac_addr is valid
306          * address in the rte layer of DPDK framework.
307          */
308         old_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
309         rte_spinlock_lock(&hw->lock);
310         memcpy(addr_bytes, mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN);
311         memcpy(&addr_bytes[RTE_ETHER_ADDR_LEN], old_addr->addr_bytes,
312                RTE_ETHER_ADDR_LEN);
313
314         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
315                                 HNS3_MBX_MAC_VLAN_UC_MODIFY, addr_bytes,
316                                 HNS3_TWO_ETHER_ADDR_LEN, true, NULL, 0);
317         if (ret) {
318                 /*
319                  * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev
320                  * driver. When user has configured a MAC address for VF device
321                  * by "ip link set ..." command based on the PF device, the hns3
322                  * PF kernel ethdev driver does not allow VF driver to request
323                  * reconfiguring a different default MAC address, and return
324                  * -EPREM to VF driver through mailbox.
325                  */
326                 if (ret == -EPERM) {
327                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
328                                               old_addr);
329                         hns3_warn(hw, "Has permanet mac addr(%s) for vf",
330                                   mac_str);
331                 } else {
332                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
333                                               mac_addr);
334                         hns3_err(hw, "Failed to set mac addr(%s) for vf: %d",
335                                  mac_str, ret);
336                 }
337         }
338
339         rte_ether_addr_copy(mac_addr,
340                             (struct rte_ether_addr *)hw->mac.mac_addr);
341         rte_spinlock_unlock(&hw->lock);
342
343         return ret;
344 }
345
346 static int
347 hns3vf_configure_mac_addr(struct hns3_adapter *hns, bool del)
348 {
349         struct hns3_hw *hw = &hns->hw;
350         struct rte_ether_addr *addr;
351         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
352         int err = 0;
353         int ret;
354         int i;
355
356         for (i = 0; i < HNS3_VF_UC_MACADDR_NUM; i++) {
357                 addr = &hw->data->mac_addrs[i];
358                 if (rte_is_zero_ether_addr(addr))
359                         continue;
360                 if (rte_is_multicast_ether_addr(addr))
361                         ret = del ? hns3vf_remove_mc_mac_addr(hw, addr) :
362                               hns3vf_add_mc_mac_addr(hw, addr);
363                 else
364                         ret = del ? hns3vf_remove_uc_mac_addr(hw, addr) :
365                               hns3vf_add_uc_mac_addr(hw, addr);
366
367                 if (ret) {
368                         err = ret;
369                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
370                                               addr);
371                         hns3_err(hw, "failed to %s mac addr(%s) index:%d "
372                                  "ret = %d.", del ? "remove" : "restore",
373                                  mac_str, i, ret);
374                 }
375         }
376         return err;
377 }
378
379 static int
380 hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
381                        struct rte_ether_addr *mac_addr)
382 {
383         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
384         int ret;
385
386         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
387                                 HNS3_MBX_MAC_VLAN_MC_ADD,
388                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
389                                 NULL, 0);
390         if (ret) {
391                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
392                                       mac_addr);
393                 hns3_err(hw, "Failed to add mc mac addr(%s) for vf: %d",
394                          mac_str, ret);
395         }
396
397         return ret;
398 }
399
400 static int
401 hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
402                           struct rte_ether_addr *mac_addr)
403 {
404         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
405         int ret;
406
407         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
408                                 HNS3_MBX_MAC_VLAN_MC_REMOVE,
409                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
410                                 NULL, 0);
411         if (ret) {
412                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
413                                       mac_addr);
414                 hns3_err(hw, "Failed to remove mc mac addr(%s) for vf: %d",
415                          mac_str, ret);
416         }
417
418         return ret;
419 }
420
421 static int
422 hns3vf_set_mc_addr_chk_param(struct hns3_hw *hw,
423                              struct rte_ether_addr *mc_addr_set,
424                              uint32_t nb_mc_addr)
425 {
426         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
427         struct rte_ether_addr *addr;
428         uint32_t i;
429         uint32_t j;
430
431         if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
432                 hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%u) "
433                          "invalid. valid range: 0~%d",
434                          nb_mc_addr, HNS3_MC_MACADDR_NUM);
435                 return -EINVAL;
436         }
437
438         /* Check if input mac addresses are valid */
439         for (i = 0; i < nb_mc_addr; i++) {
440                 addr = &mc_addr_set[i];
441                 if (!rte_is_multicast_ether_addr(addr)) {
442                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
443                                               addr);
444                         hns3_err(hw,
445                                  "failed to set mc mac addr, addr(%s) invalid.",
446                                  mac_str);
447                         return -EINVAL;
448                 }
449
450                 /* Check if there are duplicate addresses */
451                 for (j = i + 1; j < nb_mc_addr; j++) {
452                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
453                                 rte_ether_format_addr(mac_str,
454                                                       RTE_ETHER_ADDR_FMT_SIZE,
455                                                       addr);
456                                 hns3_err(hw, "failed to set mc mac addr, "
457                                          "addrs invalid. two same addrs(%s).",
458                                          mac_str);
459                                 return -EINVAL;
460                         }
461                 }
462
463                 /*
464                  * Check if there are duplicate addresses between mac_addrs
465                  * and mc_addr_set
466                  */
467                 for (j = 0; j < HNS3_VF_UC_MACADDR_NUM; j++) {
468                         if (rte_is_same_ether_addr(addr,
469                                                    &hw->data->mac_addrs[j])) {
470                                 rte_ether_format_addr(mac_str,
471                                                       RTE_ETHER_ADDR_FMT_SIZE,
472                                                       addr);
473                                 hns3_err(hw, "failed to set mc mac addr, "
474                                          "addrs invalid. addrs(%s) has already "
475                                          "configured in mac_addr add API",
476                                          mac_str);
477                                 return -EINVAL;
478                         }
479                 }
480         }
481
482         return 0;
483 }
484
485 static int
486 hns3vf_set_mc_mac_addr_list(struct rte_eth_dev *dev,
487                             struct rte_ether_addr *mc_addr_set,
488                             uint32_t nb_mc_addr)
489 {
490         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
491         struct rte_ether_addr *addr;
492         int cur_addr_num;
493         int set_addr_num;
494         int num;
495         int ret;
496         int i;
497
498         ret = hns3vf_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
499         if (ret)
500                 return ret;
501
502         rte_spinlock_lock(&hw->lock);
503         cur_addr_num = hw->mc_addrs_num;
504         for (i = 0; i < cur_addr_num; i++) {
505                 num = cur_addr_num - i - 1;
506                 addr = &hw->mc_addrs[num];
507                 ret = hns3vf_remove_mc_mac_addr(hw, addr);
508                 if (ret) {
509                         rte_spinlock_unlock(&hw->lock);
510                         return ret;
511                 }
512
513                 hw->mc_addrs_num--;
514         }
515
516         set_addr_num = (int)nb_mc_addr;
517         for (i = 0; i < set_addr_num; i++) {
518                 addr = &mc_addr_set[i];
519                 ret = hns3vf_add_mc_mac_addr(hw, addr);
520                 if (ret) {
521                         rte_spinlock_unlock(&hw->lock);
522                         return ret;
523                 }
524
525                 rte_ether_addr_copy(addr, &hw->mc_addrs[hw->mc_addrs_num]);
526                 hw->mc_addrs_num++;
527         }
528         rte_spinlock_unlock(&hw->lock);
529
530         return 0;
531 }
532
533 static int
534 hns3vf_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
535 {
536         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
537         struct hns3_hw *hw = &hns->hw;
538         struct rte_ether_addr *addr;
539         int err = 0;
540         int ret;
541         int i;
542
543         for (i = 0; i < hw->mc_addrs_num; i++) {
544                 addr = &hw->mc_addrs[i];
545                 if (!rte_is_multicast_ether_addr(addr))
546                         continue;
547                 if (del)
548                         ret = hns3vf_remove_mc_mac_addr(hw, addr);
549                 else
550                         ret = hns3vf_add_mc_mac_addr(hw, addr);
551                 if (ret) {
552                         err = ret;
553                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
554                                               addr);
555                         hns3_err(hw, "Failed to %s mc mac addr: %s for vf: %d",
556                                  del ? "Remove" : "Restore", mac_str, ret);
557                 }
558         }
559         return err;
560 }
561
562 static int
563 hns3vf_set_promisc_mode(struct hns3_hw *hw, bool en_bc_pmc,
564                         bool en_uc_pmc, bool en_mc_pmc)
565 {
566         struct hns3_mbx_vf_to_pf_cmd *req;
567         struct hns3_cmd_desc desc;
568         int ret;
569
570         req = (struct hns3_mbx_vf_to_pf_cmd *)desc.data;
571
572         /*
573          * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev driver,
574          * so there are some features for promiscuous/allmulticast mode in hns3
575          * VF PMD driver as below:
576          * 1. The promiscuous/allmulticast mode can be configured successfully
577          *    only based on the trusted VF device. If based on the non trusted
578          *    VF device, configuring promiscuous/allmulticast mode will fail.
579          *    The hns3 VF device can be confiruged as trusted device by hns3 PF
580          *    kernel ethdev driver on the host by the following command:
581          *      "ip link set <eth num> vf <vf id> turst on"
582          * 2. After the promiscuous mode is configured successfully, hns3 VF PMD
583          *    driver can receive the ingress and outgoing traffic. In the words,
584          *    all the ingress packets, all the packets sent from the PF and
585          *    other VFs on the same physical port.
586          * 3. Note: Because of the hardware constraints, By default vlan filter
587          *    is enabled and couldn't be turned off based on VF device, so vlan
588          *    filter is still effective even in promiscuous mode. If upper
589          *    applications don't call rte_eth_dev_vlan_filter API function to
590          *    set vlan based on VF device, hns3 VF PMD driver will can't receive
591          *    the packets with vlan tag in promiscuoue mode.
592          */
593         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MBX_VF_TO_PF, false);
594         req->msg[0] = HNS3_MBX_SET_PROMISC_MODE;
595         req->msg[1] = en_bc_pmc ? 1 : 0;
596         req->msg[2] = en_uc_pmc ? 1 : 0;
597         req->msg[3] = en_mc_pmc ? 1 : 0;
598         req->msg[4] = hw->promisc_mode == HNS3_LIMIT_PROMISC_MODE ? 1 : 0;
599
600         ret = hns3_cmd_send(hw, &desc, 1);
601         if (ret)
602                 hns3_err(hw, "Set promisc mode fail, ret = %d", ret);
603
604         return ret;
605 }
606
607 static int
608 hns3vf_dev_promiscuous_enable(struct rte_eth_dev *dev)
609 {
610         struct hns3_adapter *hns = dev->data->dev_private;
611         struct hns3_hw *hw = &hns->hw;
612         int ret;
613
614         ret = hns3vf_set_promisc_mode(hw, true, true, true);
615         if (ret)
616                 hns3_err(hw, "Failed to enable promiscuous mode, ret = %d",
617                         ret);
618         return ret;
619 }
620
621 static int
622 hns3vf_dev_promiscuous_disable(struct rte_eth_dev *dev)
623 {
624         bool allmulti = dev->data->all_multicast ? true : false;
625         struct hns3_adapter *hns = dev->data->dev_private;
626         struct hns3_hw *hw = &hns->hw;
627         int ret;
628
629         ret = hns3vf_set_promisc_mode(hw, true, false, allmulti);
630         if (ret)
631                 hns3_err(hw, "Failed to disable promiscuous mode, ret = %d",
632                         ret);
633         return ret;
634 }
635
636 static int
637 hns3vf_dev_allmulticast_enable(struct rte_eth_dev *dev)
638 {
639         struct hns3_adapter *hns = dev->data->dev_private;
640         struct hns3_hw *hw = &hns->hw;
641         int ret;
642
643         if (dev->data->promiscuous)
644                 return 0;
645
646         ret = hns3vf_set_promisc_mode(hw, true, false, true);
647         if (ret)
648                 hns3_err(hw, "Failed to enable allmulticast mode, ret = %d",
649                         ret);
650         return ret;
651 }
652
653 static int
654 hns3vf_dev_allmulticast_disable(struct rte_eth_dev *dev)
655 {
656         struct hns3_adapter *hns = dev->data->dev_private;
657         struct hns3_hw *hw = &hns->hw;
658         int ret;
659
660         if (dev->data->promiscuous)
661                 return 0;
662
663         ret = hns3vf_set_promisc_mode(hw, true, false, false);
664         if (ret)
665                 hns3_err(hw, "Failed to disable allmulticast mode, ret = %d",
666                         ret);
667         return ret;
668 }
669
670 static int
671 hns3vf_restore_promisc(struct hns3_adapter *hns)
672 {
673         struct hns3_hw *hw = &hns->hw;
674         bool allmulti = hw->data->all_multicast ? true : false;
675
676         if (hw->data->promiscuous)
677                 return hns3vf_set_promisc_mode(hw, true, true, true);
678
679         return hns3vf_set_promisc_mode(hw, true, false, allmulti);
680 }
681
682 static int
683 hns3vf_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id,
684                              bool mmap, enum hns3_ring_type queue_type,
685                              uint16_t queue_id)
686 {
687         struct hns3_vf_bind_vector_msg bind_msg;
688         const char *op_str;
689         uint16_t code;
690         int ret;
691
692         memset(&bind_msg, 0, sizeof(bind_msg));
693         code = mmap ? HNS3_MBX_MAP_RING_TO_VECTOR :
694                 HNS3_MBX_UNMAP_RING_TO_VECTOR;
695         bind_msg.vector_id = vector_id;
696
697         if (queue_type == HNS3_RING_TYPE_RX)
698                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_RX;
699         else
700                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_TX;
701
702         bind_msg.param[0].ring_type = queue_type;
703         bind_msg.ring_num = 1;
704         bind_msg.param[0].tqp_index = queue_id;
705         op_str = mmap ? "Map" : "Unmap";
706         ret = hns3_send_mbx_msg(hw, code, 0, (uint8_t *)&bind_msg,
707                                 sizeof(bind_msg), false, NULL, 0);
708         if (ret)
709                 hns3_err(hw, "%s TQP %u fail, vector_id is %u, ret is %d.",
710                          op_str, queue_id, bind_msg.vector_id, ret);
711
712         return ret;
713 }
714
715 static int
716 hns3vf_init_ring_with_vector(struct hns3_hw *hw)
717 {
718         uint16_t vec;
719         int ret;
720         int i;
721
722         /*
723          * In hns3 network engine, vector 0 is always the misc interrupt of this
724          * function, vector 1~N can be used respectively for the queues of the
725          * function. Tx and Rx queues with the same number share the interrupt
726          * vector. In the initialization clearing the all hardware mapping
727          * relationship configurations between queues and interrupt vectors is
728          * needed, so some error caused by the residual configurations, such as
729          * the unexpected Tx interrupt, can be avoid.
730          */
731         vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
732         if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
733                 vec = vec - 1; /* the last interrupt is reserved */
734         hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
735         for (i = 0; i < hw->intr_tqps_num; i++) {
736                 /*
737                  * Set gap limiter/rate limiter/quanity limiter algorithm
738                  * configuration for interrupt coalesce of queue's interrupt.
739                  */
740                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
741                                        HNS3_TQP_INTR_GL_DEFAULT);
742                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
743                                        HNS3_TQP_INTR_GL_DEFAULT);
744                 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
745                 /*
746                  * QL(quantity limiter) is not used currently, just set 0 to
747                  * close it.
748                  */
749                 hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
750
751                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
752                                                    HNS3_RING_TYPE_TX, i);
753                 if (ret) {
754                         PMD_INIT_LOG(ERR, "VF fail to unbind TX ring(%d) with "
755                                           "vector: %u, ret=%d", i, vec, ret);
756                         return ret;
757                 }
758
759                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
760                                                    HNS3_RING_TYPE_RX, i);
761                 if (ret) {
762                         PMD_INIT_LOG(ERR, "VF fail to unbind RX ring(%d) with "
763                                           "vector: %u, ret=%d", i, vec, ret);
764                         return ret;
765                 }
766         }
767
768         return 0;
769 }
770
771 static int
772 hns3vf_dev_configure(struct rte_eth_dev *dev)
773 {
774         struct hns3_adapter *hns = dev->data->dev_private;
775         struct hns3_hw *hw = &hns->hw;
776         struct hns3_rss_conf *rss_cfg = &hw->rss_info;
777         struct rte_eth_conf *conf = &dev->data->dev_conf;
778         enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
779         uint16_t nb_rx_q = dev->data->nb_rx_queues;
780         uint16_t nb_tx_q = dev->data->nb_tx_queues;
781         struct rte_eth_rss_conf rss_conf;
782         uint16_t mtu;
783         bool gro_en;
784         int ret;
785
786         hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
787
788         /*
789          * Some versions of hardware network engine does not support
790          * individually enable/disable/reset the Tx or Rx queue. These devices
791          * must enable/disable/reset Tx and Rx queues at the same time. When the
792          * numbers of Tx queues allocated by upper applications are not equal to
793          * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
794          * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
795          * work as usual. But these fake queues are imperceptible, and can not
796          * be used by upper applications.
797          */
798         if (!hns3_dev_indep_txrx_supported(hw)) {
799                 ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
800                 if (ret) {
801                         hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.",
802                                  ret);
803                         return ret;
804                 }
805         }
806
807         hw->adapter_state = HNS3_NIC_CONFIGURING;
808         if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
809                 hns3_err(hw, "setting link speed/duplex not supported");
810                 ret = -EINVAL;
811                 goto cfg_err;
812         }
813
814         /* When RSS is not configured, redirect the packet queue 0 */
815         if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
816                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
817                 hw->rss_dis_flag = false;
818                 rss_conf = conf->rx_adv_conf.rss_conf;
819                 if (rss_conf.rss_key == NULL) {
820                         rss_conf.rss_key = rss_cfg->key;
821                         rss_conf.rss_key_len = HNS3_RSS_KEY_SIZE;
822                 }
823
824                 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
825                 if (ret)
826                         goto cfg_err;
827         }
828
829         /*
830          * If jumbo frames are enabled, MTU needs to be refreshed
831          * according to the maximum RX packet length.
832          */
833         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
834                 /*
835                  * Security of max_rx_pkt_len is guaranteed in dpdk frame.
836                  * Maximum value of max_rx_pkt_len is HNS3_MAX_FRAME_LEN, so it
837                  * can safely assign to "uint16_t" type variable.
838                  */
839                 mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(conf->rxmode.max_rx_pkt_len);
840                 ret = hns3vf_dev_mtu_set(dev, mtu);
841                 if (ret)
842                         goto cfg_err;
843                 dev->data->mtu = mtu;
844         }
845
846         ret = hns3vf_dev_configure_vlan(dev);
847         if (ret)
848                 goto cfg_err;
849
850         /* config hardware GRO */
851         gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
852         ret = hns3_config_gro(hw, gro_en);
853         if (ret)
854                 goto cfg_err;
855
856         hns->rx_simple_allowed = true;
857         hns->rx_vec_allowed = true;
858         hns->tx_simple_allowed = true;
859         hns->tx_vec_allowed = true;
860
861         hns3_init_rx_ptype_tble(dev);
862
863         hw->adapter_state = HNS3_NIC_CONFIGURED;
864         return 0;
865
866 cfg_err:
867         (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
868         hw->adapter_state = HNS3_NIC_INITIALIZED;
869
870         return ret;
871 }
872
873 static int
874 hns3vf_config_mtu(struct hns3_hw *hw, uint16_t mtu)
875 {
876         int ret;
877
878         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MTU, 0, (const uint8_t *)&mtu,
879                                 sizeof(mtu), true, NULL, 0);
880         if (ret)
881                 hns3_err(hw, "Failed to set mtu (%u) for vf: %d", mtu, ret);
882
883         return ret;
884 }
885
886 static int
887 hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
888 {
889         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
890         uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
891         int ret;
892
893         /*
894          * The hns3 PF/VF devices on the same port share the hardware MTU
895          * configuration. Currently, we send mailbox to inform hns3 PF kernel
896          * ethdev driver to finish hardware MTU configuration in hns3 VF PMD
897          * driver, there is no need to stop the port for hns3 VF device, and the
898          * MTU value issued by hns3 VF PMD driver must be less than or equal to
899          * PF's MTU.
900          */
901         if (rte_atomic16_read(&hw->reset.resetting)) {
902                 hns3_err(hw, "Failed to set mtu during resetting");
903                 return -EIO;
904         }
905
906         /*
907          * when Rx of scattered packets is off, we have some possibility of
908          * using vector Rx process function or simple Rx functions in hns3 PMD
909          * driver. If the input MTU is increased and the maximum length of
910          * received packets is greater than the length of a buffer for Rx
911          * packet, the hardware network engine needs to use multiple BDs and
912          * buffers to store these packets. This will cause problems when still
913          * using vector Rx process function or simple Rx function to receiving
914          * packets. So, when Rx of scattered packets is off and device is
915          * started, it is not permitted to increase MTU so that the maximum
916          * length of Rx packets is greater than Rx buffer length.
917          */
918         if (dev->data->dev_started && !dev->data->scattered_rx &&
919             frame_size > hw->rx_buf_len) {
920                 hns3_err(hw, "failed to set mtu because current is "
921                         "not scattered rx mode");
922                 return -EOPNOTSUPP;
923         }
924
925         rte_spinlock_lock(&hw->lock);
926         ret = hns3vf_config_mtu(hw, mtu);
927         if (ret) {
928                 rte_spinlock_unlock(&hw->lock);
929                 return ret;
930         }
931         if (frame_size > RTE_ETHER_MAX_LEN)
932                 dev->data->dev_conf.rxmode.offloads |=
933                                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
934         else
935                 dev->data->dev_conf.rxmode.offloads &=
936                                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
937         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
938         rte_spinlock_unlock(&hw->lock);
939
940         return 0;
941 }
942
943 static int
944 hns3vf_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
945 {
946         struct hns3_adapter *hns = eth_dev->data->dev_private;
947         struct hns3_hw *hw = &hns->hw;
948         uint16_t q_num = hw->tqps_num;
949
950         /*
951          * In interrupt mode, 'max_rx_queues' is set based on the number of
952          * MSI-X interrupt resources of the hardware.
953          */
954         if (hw->data->dev_conf.intr_conf.rxq == 1)
955                 q_num = hw->intr_tqps_num;
956
957         info->max_rx_queues = q_num;
958         info->max_tx_queues = hw->tqps_num;
959         info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
960         info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
961         info->max_mac_addrs = HNS3_VF_UC_MACADDR_NUM;
962         info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
963         info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
964
965         info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
966                                  DEV_RX_OFFLOAD_UDP_CKSUM |
967                                  DEV_RX_OFFLOAD_TCP_CKSUM |
968                                  DEV_RX_OFFLOAD_SCTP_CKSUM |
969                                  DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
970                                  DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
971                                  DEV_RX_OFFLOAD_SCATTER |
972                                  DEV_RX_OFFLOAD_VLAN_STRIP |
973                                  DEV_RX_OFFLOAD_VLAN_FILTER |
974                                  DEV_RX_OFFLOAD_JUMBO_FRAME |
975                                  DEV_RX_OFFLOAD_RSS_HASH |
976                                  DEV_RX_OFFLOAD_TCP_LRO);
977         info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
978                                  DEV_TX_OFFLOAD_IPV4_CKSUM |
979                                  DEV_TX_OFFLOAD_TCP_CKSUM |
980                                  DEV_TX_OFFLOAD_UDP_CKSUM |
981                                  DEV_TX_OFFLOAD_SCTP_CKSUM |
982                                  DEV_TX_OFFLOAD_MULTI_SEGS |
983                                  DEV_TX_OFFLOAD_TCP_TSO |
984                                  DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
985                                  DEV_TX_OFFLOAD_GRE_TNL_TSO |
986                                  DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
987                                  DEV_TX_OFFLOAD_MBUF_FAST_FREE |
988                                  hns3_txvlan_cap_get(hw));
989
990         if (hns3_dev_indep_txrx_supported(hw))
991                 info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
992                                  RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
993
994         info->rx_desc_lim = (struct rte_eth_desc_lim) {
995                 .nb_max = HNS3_MAX_RING_DESC,
996                 .nb_min = HNS3_MIN_RING_DESC,
997                 .nb_align = HNS3_ALIGN_RING_DESC,
998         };
999
1000         info->tx_desc_lim = (struct rte_eth_desc_lim) {
1001                 .nb_max = HNS3_MAX_RING_DESC,
1002                 .nb_min = HNS3_MIN_RING_DESC,
1003                 .nb_align = HNS3_ALIGN_RING_DESC,
1004                 .nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
1005                 .nb_mtu_seg_max = hw->max_non_tso_bd_num,
1006         };
1007
1008         info->default_rxconf = (struct rte_eth_rxconf) {
1009                 .rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
1010                 /*
1011                  * If there are no available Rx buffer descriptors, incoming
1012                  * packets are always dropped by hardware based on hns3 network
1013                  * engine.
1014                  */
1015                 .rx_drop_en = 1,
1016                 .offloads = 0,
1017         };
1018         info->default_txconf = (struct rte_eth_txconf) {
1019                 .tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
1020                 .offloads = 0,
1021         };
1022
1023         info->vmdq_queue_num = 0;
1024
1025         info->reta_size = HNS3_RSS_IND_TBL_SIZE;
1026         info->hash_key_size = HNS3_RSS_KEY_SIZE;
1027         info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
1028         info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1029         info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1030
1031         return 0;
1032 }
1033
1034 static void
1035 hns3vf_clear_event_cause(struct hns3_hw *hw, uint32_t regclr)
1036 {
1037         hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
1038 }
1039
1040 static void
1041 hns3vf_disable_irq0(struct hns3_hw *hw)
1042 {
1043         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
1044 }
1045
1046 static void
1047 hns3vf_enable_irq0(struct hns3_hw *hw)
1048 {
1049         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
1050 }
1051
1052 static enum hns3vf_evt_cause
1053 hns3vf_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
1054 {
1055         struct hns3_hw *hw = &hns->hw;
1056         enum hns3vf_evt_cause ret;
1057         uint32_t cmdq_stat_reg;
1058         uint32_t rst_ing_reg;
1059         uint32_t val;
1060
1061         /* Fetch the events from their corresponding regs */
1062         cmdq_stat_reg = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_STAT_REG);
1063
1064         if (BIT(HNS3_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1065                 rst_ing_reg = hns3_read_dev(hw, HNS3_FUN_RST_ING);
1066                 hns3_warn(hw, "resetting reg: 0x%x", rst_ing_reg);
1067                 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
1068                 rte_atomic16_set(&hw->reset.disable_cmd, 1);
1069                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
1070                 hns3_write_dev(hw, HNS3_VF_RST_ING, val | HNS3_VF_RST_ING_BIT);
1071                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RST_INT_B);
1072                 if (clearval) {
1073                         hw->reset.stats.global_cnt++;
1074                         hns3_warn(hw, "Global reset detected, clear reset status");
1075                 } else {
1076                         hns3_schedule_delayed_reset(hns);
1077                         hns3_warn(hw, "Global reset detected, don't clear reset status");
1078                 }
1079
1080                 ret = HNS3VF_VECTOR0_EVENT_RST;
1081                 goto out;
1082         }
1083
1084         /* Check for vector0 mailbox(=CMDQ RX) event source */
1085         if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1086                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
1087                 ret = HNS3VF_VECTOR0_EVENT_MBX;
1088                 goto out;
1089         }
1090
1091         val = 0;
1092         ret = HNS3VF_VECTOR0_EVENT_OTHER;
1093 out:
1094         if (clearval)
1095                 *clearval = val;
1096         return ret;
1097 }
1098
1099 static void
1100 hns3vf_interrupt_handler(void *param)
1101 {
1102         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1103         struct hns3_adapter *hns = dev->data->dev_private;
1104         struct hns3_hw *hw = &hns->hw;
1105         enum hns3vf_evt_cause event_cause;
1106         uint32_t clearval;
1107
1108         if (hw->irq_thread_id == 0)
1109                 hw->irq_thread_id = pthread_self();
1110
1111         /* Disable interrupt */
1112         hns3vf_disable_irq0(hw);
1113
1114         /* Read out interrupt causes */
1115         event_cause = hns3vf_check_event_cause(hns, &clearval);
1116
1117         switch (event_cause) {
1118         case HNS3VF_VECTOR0_EVENT_RST:
1119                 hns3_schedule_reset(hns);
1120                 break;
1121         case HNS3VF_VECTOR0_EVENT_MBX:
1122                 hns3_dev_handle_mbx_msg(hw);
1123                 break;
1124         default:
1125                 break;
1126         }
1127
1128         /* Clear interrupt causes */
1129         hns3vf_clear_event_cause(hw, clearval);
1130
1131         /* Enable interrupt */
1132         hns3vf_enable_irq0(hw);
1133 }
1134
1135 static void
1136 hns3vf_set_default_dev_specifications(struct hns3_hw *hw)
1137 {
1138         hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
1139         hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
1140         hw->rss_key_size = HNS3_RSS_KEY_SIZE;
1141         hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
1142 }
1143
1144 static void
1145 hns3vf_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
1146 {
1147         struct hns3_dev_specs_0_cmd *req0;
1148
1149         req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
1150
1151         hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
1152         hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
1153         hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
1154         hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
1155 }
1156
1157 static int
1158 hns3vf_query_dev_specifications(struct hns3_hw *hw)
1159 {
1160         struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
1161         int ret;
1162         int i;
1163
1164         for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
1165                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
1166                                           true);
1167                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1168         }
1169         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
1170
1171         ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
1172         if (ret)
1173                 return ret;
1174
1175         hns3vf_parse_dev_specifications(hw, desc);
1176
1177         return 0;
1178 }
1179
1180 static int
1181 hns3vf_get_capability(struct hns3_hw *hw)
1182 {
1183         struct rte_pci_device *pci_dev;
1184         struct rte_eth_dev *eth_dev;
1185         uint8_t revision;
1186         int ret;
1187
1188         eth_dev = &rte_eth_devices[hw->data->port_id];
1189         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1190
1191         /* Get PCI revision id */
1192         ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
1193                                   HNS3_PCI_REVISION_ID);
1194         if (ret != HNS3_PCI_REVISION_ID_LEN) {
1195                 PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
1196                              ret);
1197                 return -EIO;
1198         }
1199         hw->revision = revision;
1200
1201         if (revision < PCI_REVISION_ID_HIP09_A) {
1202                 hns3vf_set_default_dev_specifications(hw);
1203                 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
1204                 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
1205                 hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
1206                 hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
1207                 hw->rss_info.ipv6_sctp_offload_supported = false;
1208                 hw->promisc_mode = HNS3_UNLIMIT_PROMISC_MODE;
1209                 return 0;
1210         }
1211
1212         ret = hns3vf_query_dev_specifications(hw);
1213         if (ret) {
1214                 PMD_INIT_LOG(ERR,
1215                              "failed to query dev specifications, ret = %d",
1216                              ret);
1217                 return ret;
1218         }
1219
1220         hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
1221         hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
1222         hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
1223         hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
1224         hw->rss_info.ipv6_sctp_offload_supported = true;
1225         hw->promisc_mode = HNS3_LIMIT_PROMISC_MODE;
1226
1227         return 0;
1228 }
1229
1230 static int
1231 hns3vf_check_tqp_info(struct hns3_hw *hw)
1232 {
1233         if (hw->tqps_num == 0) {
1234                 PMD_INIT_LOG(ERR, "Get invalid tqps_num(0) from PF.");
1235                 return -EINVAL;
1236         }
1237
1238         if (hw->rss_size_max == 0) {
1239                 PMD_INIT_LOG(ERR, "Get invalid rss_size_max(0) from PF.");
1240                 return -EINVAL;
1241         }
1242
1243         hw->tqps_num = RTE_MIN(hw->rss_size_max, hw->tqps_num);
1244
1245         return 0;
1246 }
1247
1248 static int
1249 hns3vf_get_port_base_vlan_filter_state(struct hns3_hw *hw)
1250 {
1251         uint8_t resp_msg;
1252         int ret;
1253
1254         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN,
1255                                 HNS3_MBX_GET_PORT_BASE_VLAN_STATE, NULL, 0,
1256                                 true, &resp_msg, sizeof(resp_msg));
1257         if (ret) {
1258                 if (ret == -ETIME) {
1259                         /*
1260                          * Getting current port based VLAN state from PF driver
1261                          * will not affect VF driver's basic function. Because
1262                          * the VF driver relies on hns3 PF kernel ether driver,
1263                          * to avoid introducing compatibility issues with older
1264                          * version of PF driver, no failure will be returned
1265                          * when the return value is ETIME. This return value has
1266                          * the following scenarios:
1267                          * 1) Firmware didn't return the results in time
1268                          * 2) the result return by firmware is timeout
1269                          * 3) the older version of kernel side PF driver does
1270                          *    not support this mailbox message.
1271                          * For scenarios 1 and 2, it is most likely that a
1272                          * hardware error has occurred, or a hardware reset has
1273                          * occurred. In this case, these errors will be caught
1274                          * by other functions.
1275                          */
1276                         PMD_INIT_LOG(WARNING,
1277                                 "failed to get PVID state for timeout, maybe "
1278                                 "kernel side PF driver doesn't support this "
1279                                 "mailbox message, or firmware didn't respond.");
1280                         resp_msg = HNS3_PORT_BASE_VLAN_DISABLE;
1281                 } else {
1282                         PMD_INIT_LOG(ERR, "failed to get port based VLAN state,"
1283                                 " ret = %d", ret);
1284                         return ret;
1285                 }
1286         }
1287         hw->port_base_vlan_cfg.state = resp_msg ?
1288                 HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
1289         return 0;
1290 }
1291
1292 static int
1293 hns3vf_get_queue_info(struct hns3_hw *hw)
1294 {
1295 #define HNS3VF_TQPS_RSS_INFO_LEN        6
1296         uint8_t resp_msg[HNS3VF_TQPS_RSS_INFO_LEN];
1297         int ret;
1298
1299         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QINFO, 0, NULL, 0, true,
1300                                 resp_msg, HNS3VF_TQPS_RSS_INFO_LEN);
1301         if (ret) {
1302                 PMD_INIT_LOG(ERR, "Failed to get tqp info from PF: %d", ret);
1303                 return ret;
1304         }
1305
1306         memcpy(&hw->tqps_num, &resp_msg[0], sizeof(uint16_t));
1307         memcpy(&hw->rss_size_max, &resp_msg[2], sizeof(uint16_t));
1308
1309         return hns3vf_check_tqp_info(hw);
1310 }
1311
1312 static int
1313 hns3vf_get_queue_depth(struct hns3_hw *hw)
1314 {
1315 #define HNS3VF_TQPS_DEPTH_INFO_LEN      4
1316         uint8_t resp_msg[HNS3VF_TQPS_DEPTH_INFO_LEN];
1317         int ret;
1318
1319         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QDEPTH, 0, NULL, 0, true,
1320                                 resp_msg, HNS3VF_TQPS_DEPTH_INFO_LEN);
1321         if (ret) {
1322                 PMD_INIT_LOG(ERR, "Failed to get tqp depth info from PF: %d",
1323                              ret);
1324                 return ret;
1325         }
1326
1327         memcpy(&hw->num_tx_desc, &resp_msg[0], sizeof(uint16_t));
1328         memcpy(&hw->num_rx_desc, &resp_msg[2], sizeof(uint16_t));
1329
1330         return 0;
1331 }
1332
1333 static int
1334 hns3vf_get_tc_info(struct hns3_hw *hw)
1335 {
1336         uint8_t resp_msg;
1337         int ret;
1338         int i;
1339
1340         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_TCINFO, 0, NULL, 0,
1341                                 true, &resp_msg, sizeof(resp_msg));
1342         if (ret) {
1343                 hns3_err(hw, "VF request to get TC info from PF failed %d",
1344                          ret);
1345                 return ret;
1346         }
1347
1348         hw->hw_tc_map = resp_msg;
1349
1350         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
1351                 if (hw->hw_tc_map & BIT(i))
1352                         hw->num_tc++;
1353         }
1354
1355         return 0;
1356 }
1357
1358 static int
1359 hns3vf_get_host_mac_addr(struct hns3_hw *hw)
1360 {
1361         uint8_t host_mac[RTE_ETHER_ADDR_LEN];
1362         int ret;
1363
1364         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_MAC_ADDR, 0, NULL, 0,
1365                                 true, host_mac, RTE_ETHER_ADDR_LEN);
1366         if (ret) {
1367                 hns3_err(hw, "Failed to get mac addr from PF: %d", ret);
1368                 return ret;
1369         }
1370
1371         memcpy(hw->mac.mac_addr, host_mac, RTE_ETHER_ADDR_LEN);
1372
1373         return 0;
1374 }
1375
1376 static int
1377 hns3vf_get_configuration(struct hns3_hw *hw)
1378 {
1379         int ret;
1380
1381         hw->mac.media_type = HNS3_MEDIA_TYPE_NONE;
1382         hw->rss_dis_flag = false;
1383
1384         /* Get device capability */
1385         ret = hns3vf_get_capability(hw);
1386         if (ret) {
1387                 PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
1388                 return ret;
1389         }
1390
1391         /* Get queue configuration from PF */
1392         ret = hns3vf_get_queue_info(hw);
1393         if (ret)
1394                 return ret;
1395
1396         /* Get queue depth info from PF */
1397         ret = hns3vf_get_queue_depth(hw);
1398         if (ret)
1399                 return ret;
1400
1401         /* Get user defined VF MAC addr from PF */
1402         ret = hns3vf_get_host_mac_addr(hw);
1403         if (ret)
1404                 return ret;
1405
1406         ret = hns3vf_get_port_base_vlan_filter_state(hw);
1407         if (ret)
1408                 return ret;
1409
1410         /* Get tc configuration from PF */
1411         return hns3vf_get_tc_info(hw);
1412 }
1413
1414 static int
1415 hns3vf_set_tc_queue_mapping(struct hns3_adapter *hns, uint16_t nb_rx_q,
1416                             uint16_t nb_tx_q)
1417 {
1418         struct hns3_hw *hw = &hns->hw;
1419
1420         if (nb_rx_q < hw->num_tc) {
1421                 hns3_err(hw, "number of Rx queues(%u) is less than tcs(%u).",
1422                          nb_rx_q, hw->num_tc);
1423                 return -EINVAL;
1424         }
1425
1426         if (nb_tx_q < hw->num_tc) {
1427                 hns3_err(hw, "number of Tx queues(%u) is less than tcs(%u).",
1428                          nb_tx_q, hw->num_tc);
1429                 return -EINVAL;
1430         }
1431
1432         return hns3_queue_to_tc_mapping(hw, nb_rx_q, nb_tx_q);
1433 }
1434
1435 static void
1436 hns3vf_request_link_info(struct hns3_hw *hw)
1437 {
1438         uint8_t resp_msg;
1439         int ret;
1440
1441         if (rte_atomic16_read(&hw->reset.resetting))
1442                 return;
1443         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1444                                 &resp_msg, sizeof(resp_msg));
1445         if (ret)
1446                 hns3_err(hw, "Failed to fetch link status from PF: %d", ret);
1447 }
1448
1449 static int
1450 hns3vf_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
1451 {
1452 #define HNS3VF_VLAN_MBX_MSG_LEN 5
1453         struct hns3_hw *hw = &hns->hw;
1454         uint8_t msg_data[HNS3VF_VLAN_MBX_MSG_LEN];
1455         uint16_t proto = htons(RTE_ETHER_TYPE_VLAN);
1456         uint8_t is_kill = on ? 0 : 1;
1457
1458         msg_data[0] = is_kill;
1459         memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1460         memcpy(&msg_data[3], &proto, sizeof(proto));
1461
1462         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_FILTER,
1463                                  msg_data, HNS3VF_VLAN_MBX_MSG_LEN, true, NULL,
1464                                  0);
1465 }
1466
1467 static int
1468 hns3vf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1469 {
1470         struct hns3_adapter *hns = dev->data->dev_private;
1471         struct hns3_hw *hw = &hns->hw;
1472         int ret;
1473
1474         if (rte_atomic16_read(&hw->reset.resetting)) {
1475                 hns3_err(hw,
1476                          "vf set vlan id failed during resetting, vlan_id =%u",
1477                          vlan_id);
1478                 return -EIO;
1479         }
1480         rte_spinlock_lock(&hw->lock);
1481         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1482         rte_spinlock_unlock(&hw->lock);
1483         if (ret)
1484                 hns3_err(hw, "vf set vlan id failed, vlan_id =%u, ret =%d",
1485                          vlan_id, ret);
1486
1487         return ret;
1488 }
1489
1490 static int
1491 hns3vf_en_hw_strip_rxvtag(struct hns3_hw *hw, bool enable)
1492 {
1493         uint8_t msg_data;
1494         int ret;
1495
1496         msg_data = enable ? 1 : 0;
1497         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_RX_OFF_CFG,
1498                                 &msg_data, sizeof(msg_data), false, NULL, 0);
1499         if (ret)
1500                 hns3_err(hw, "vf enable strip failed, ret =%d", ret);
1501
1502         return ret;
1503 }
1504
1505 static int
1506 hns3vf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1507 {
1508         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1509         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1510         unsigned int tmp_mask;
1511         int ret = 0;
1512
1513         if (rte_atomic16_read(&hw->reset.resetting)) {
1514                 hns3_err(hw, "vf set vlan offload failed during resetting, "
1515                              "mask = 0x%x", mask);
1516                 return -EIO;
1517         }
1518
1519         tmp_mask = (unsigned int)mask;
1520         /* Vlan stripping setting */
1521         if (tmp_mask & ETH_VLAN_STRIP_MASK) {
1522                 rte_spinlock_lock(&hw->lock);
1523                 /* Enable or disable VLAN stripping */
1524                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1525                         ret = hns3vf_en_hw_strip_rxvtag(hw, true);
1526                 else
1527                         ret = hns3vf_en_hw_strip_rxvtag(hw, false);
1528                 rte_spinlock_unlock(&hw->lock);
1529         }
1530
1531         return ret;
1532 }
1533
1534 static int
1535 hns3vf_handle_all_vlan_table(struct hns3_adapter *hns, int on)
1536 {
1537         struct rte_vlan_filter_conf *vfc;
1538         struct hns3_hw *hw = &hns->hw;
1539         uint16_t vlan_id;
1540         uint64_t vbit;
1541         uint64_t ids;
1542         int ret = 0;
1543         uint32_t i;
1544
1545         vfc = &hw->data->vlan_filter_conf;
1546         for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1547                 if (vfc->ids[i] == 0)
1548                         continue;
1549                 ids = vfc->ids[i];
1550                 while (ids) {
1551                         /*
1552                          * 64 means the num bits of ids, one bit corresponds to
1553                          * one vlan id
1554                          */
1555                         vlan_id = 64 * i;
1556                         /* count trailing zeroes */
1557                         vbit = ~ids & (ids - 1);
1558                         /* clear least significant bit set */
1559                         ids ^= (ids ^ (ids - 1)) ^ vbit;
1560                         for (; vbit;) {
1561                                 vbit >>= 1;
1562                                 vlan_id++;
1563                         }
1564                         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1565                         if (ret) {
1566                                 hns3_err(hw,
1567                                          "VF handle vlan table failed, ret =%d, on = %d",
1568                                          ret, on);
1569                                 return ret;
1570                         }
1571                 }
1572         }
1573
1574         return ret;
1575 }
1576
1577 static int
1578 hns3vf_remove_all_vlan_table(struct hns3_adapter *hns)
1579 {
1580         return hns3vf_handle_all_vlan_table(hns, 0);
1581 }
1582
1583 static int
1584 hns3vf_restore_vlan_conf(struct hns3_adapter *hns)
1585 {
1586         struct hns3_hw *hw = &hns->hw;
1587         struct rte_eth_conf *dev_conf;
1588         bool en;
1589         int ret;
1590
1591         dev_conf = &hw->data->dev_conf;
1592         en = dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP ? true
1593                                                                    : false;
1594         ret = hns3vf_en_hw_strip_rxvtag(hw, en);
1595         if (ret)
1596                 hns3_err(hw, "VF restore vlan conf fail, en =%d, ret =%d", en,
1597                          ret);
1598         return ret;
1599 }
1600
1601 static int
1602 hns3vf_dev_configure_vlan(struct rte_eth_dev *dev)
1603 {
1604         struct hns3_adapter *hns = dev->data->dev_private;
1605         struct rte_eth_dev_data *data = dev->data;
1606         struct hns3_hw *hw = &hns->hw;
1607         int ret;
1608
1609         if (data->dev_conf.txmode.hw_vlan_reject_tagged ||
1610             data->dev_conf.txmode.hw_vlan_reject_untagged ||
1611             data->dev_conf.txmode.hw_vlan_insert_pvid) {
1612                 hns3_warn(hw, "hw_vlan_reject_tagged, hw_vlan_reject_untagged "
1613                               "or hw_vlan_insert_pvid is not support!");
1614         }
1615
1616         /* Apply vlan offload setting */
1617         ret = hns3vf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
1618         if (ret)
1619                 hns3_err(hw, "dev config vlan offload failed, ret =%d", ret);
1620
1621         return ret;
1622 }
1623
1624 static int
1625 hns3vf_set_alive(struct hns3_hw *hw, bool alive)
1626 {
1627         uint8_t msg_data;
1628
1629         msg_data = alive ? 1 : 0;
1630         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_ALIVE, 0, &msg_data,
1631                                  sizeof(msg_data), false, NULL, 0);
1632 }
1633
1634 static void
1635 hns3vf_keep_alive_handler(void *param)
1636 {
1637         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1638         struct hns3_adapter *hns = eth_dev->data->dev_private;
1639         struct hns3_hw *hw = &hns->hw;
1640         uint8_t respmsg;
1641         int ret;
1642
1643         ret = hns3_send_mbx_msg(hw, HNS3_MBX_KEEP_ALIVE, 0, NULL, 0,
1644                                 false, &respmsg, sizeof(uint8_t));
1645         if (ret)
1646                 hns3_err(hw, "VF sends keeping alive cmd failed(=%d)",
1647                          ret);
1648
1649         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
1650                           eth_dev);
1651 }
1652
1653 static void
1654 hns3vf_service_handler(void *param)
1655 {
1656         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1657         struct hns3_adapter *hns = eth_dev->data->dev_private;
1658         struct hns3_hw *hw = &hns->hw;
1659
1660         /*
1661          * The query link status and reset processing are executed in the
1662          * interrupt thread.When the IMP reset occurs, IMP will not respond,
1663          * and the query operation will time out after 30ms. In the case of
1664          * multiple PF/VFs, each query failure timeout causes the IMP reset
1665          * interrupt to fail to respond within 100ms.
1666          * Before querying the link status, check whether there is a reset
1667          * pending, and if so, abandon the query.
1668          */
1669         if (!hns3vf_is_reset_pending(hns))
1670                 hns3vf_request_link_info(hw);
1671         else
1672                 hns3_warn(hw, "Cancel the query when reset is pending");
1673
1674         rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler,
1675                           eth_dev);
1676 }
1677
1678 static int
1679 hns3_query_vf_resource(struct hns3_hw *hw)
1680 {
1681         struct hns3_vf_res_cmd *req;
1682         struct hns3_cmd_desc desc;
1683         uint16_t num_msi;
1684         int ret;
1685
1686         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_VF_RSRC, true);
1687         ret = hns3_cmd_send(hw, &desc, 1);
1688         if (ret) {
1689                 hns3_err(hw, "query vf resource failed, ret = %d", ret);
1690                 return ret;
1691         }
1692
1693         req = (struct hns3_vf_res_cmd *)desc.data;
1694         num_msi = hns3_get_field(rte_le_to_cpu_16(req->vf_intr_vector_number),
1695                                  HNS3_VF_VEC_NUM_M, HNS3_VF_VEC_NUM_S);
1696         if (num_msi < HNS3_MIN_VECTOR_NUM) {
1697                 hns3_err(hw, "Just %u msi resources, not enough for vf(min:%d)",
1698                          num_msi, HNS3_MIN_VECTOR_NUM);
1699                 return -EINVAL;
1700         }
1701
1702         hw->num_msi = num_msi;
1703
1704         return 0;
1705 }
1706
1707 static int
1708 hns3vf_init_hardware(struct hns3_adapter *hns)
1709 {
1710         struct hns3_hw *hw = &hns->hw;
1711         uint16_t mtu = hw->data->mtu;
1712         int ret;
1713
1714         ret = hns3vf_set_promisc_mode(hw, true, false, false);
1715         if (ret)
1716                 return ret;
1717
1718         ret = hns3vf_config_mtu(hw, mtu);
1719         if (ret)
1720                 goto err_init_hardware;
1721
1722         ret = hns3vf_vlan_filter_configure(hns, 0, 1);
1723         if (ret) {
1724                 PMD_INIT_LOG(ERR, "Failed to initialize VLAN config: %d", ret);
1725                 goto err_init_hardware;
1726         }
1727
1728         ret = hns3_config_gro(hw, false);
1729         if (ret) {
1730                 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
1731                 goto err_init_hardware;
1732         }
1733
1734         /*
1735          * In the initialization clearing the all hardware mapping relationship
1736          * configurations between queues and interrupt vectors is needed, so
1737          * some error caused by the residual configurations, such as the
1738          * unexpected interrupt, can be avoid.
1739          */
1740         ret = hns3vf_init_ring_with_vector(hw);
1741         if (ret) {
1742                 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
1743                 goto err_init_hardware;
1744         }
1745
1746         ret = hns3vf_set_alive(hw, true);
1747         if (ret) {
1748                 PMD_INIT_LOG(ERR, "Failed to VF send alive to PF: %d", ret);
1749                 goto err_init_hardware;
1750         }
1751
1752         hns3vf_request_link_info(hw);
1753         return 0;
1754
1755 err_init_hardware:
1756         (void)hns3vf_set_promisc_mode(hw, false, false, false);
1757         return ret;
1758 }
1759
1760 static int
1761 hns3vf_clear_vport_list(struct hns3_hw *hw)
1762 {
1763         return hns3_send_mbx_msg(hw, HNS3_MBX_HANDLE_VF_TBL,
1764                                  HNS3_MBX_VPORT_LIST_CLEAR, NULL, 0, false,
1765                                  NULL, 0);
1766 }
1767
1768 static int
1769 hns3vf_init_vf(struct rte_eth_dev *eth_dev)
1770 {
1771         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1772         struct hns3_adapter *hns = eth_dev->data->dev_private;
1773         struct hns3_hw *hw = &hns->hw;
1774         int ret;
1775
1776         PMD_INIT_FUNC_TRACE();
1777
1778         /* Get hardware io base address from pcie BAR2 IO space */
1779         hw->io_base = pci_dev->mem_resource[2].addr;
1780
1781         /* Firmware command queue initialize */
1782         ret = hns3_cmd_init_queue(hw);
1783         if (ret) {
1784                 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
1785                 goto err_cmd_init_queue;
1786         }
1787
1788         /* Firmware command initialize */
1789         ret = hns3_cmd_init(hw);
1790         if (ret) {
1791                 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
1792                 goto err_cmd_init;
1793         }
1794
1795         /* Get VF resource */
1796         ret = hns3_query_vf_resource(hw);
1797         if (ret)
1798                 goto err_cmd_init;
1799
1800         rte_spinlock_init(&hw->mbx_resp.lock);
1801
1802         hns3vf_clear_event_cause(hw, 0);
1803
1804         ret = rte_intr_callback_register(&pci_dev->intr_handle,
1805                                          hns3vf_interrupt_handler, eth_dev);
1806         if (ret) {
1807                 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
1808                 goto err_intr_callback_register;
1809         }
1810
1811         /* Enable interrupt */
1812         rte_intr_enable(&pci_dev->intr_handle);
1813         hns3vf_enable_irq0(hw);
1814
1815         /* Get configuration from PF */
1816         ret = hns3vf_get_configuration(hw);
1817         if (ret) {
1818                 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
1819                 goto err_get_config;
1820         }
1821
1822         ret = hns3_tqp_stats_init(hw);
1823         if (ret)
1824                 goto err_get_config;
1825
1826         ret = hns3vf_set_tc_queue_mapping(hns, hw->tqps_num, hw->tqps_num);
1827         if (ret) {
1828                 PMD_INIT_LOG(ERR, "failed to set tc info, ret = %d.", ret);
1829                 goto err_set_tc_queue;
1830         }
1831
1832         ret = hns3vf_clear_vport_list(hw);
1833         if (ret) {
1834                 PMD_INIT_LOG(ERR, "Failed to clear tbl list: %d", ret);
1835                 goto err_set_tc_queue;
1836         }
1837
1838         ret = hns3vf_init_hardware(hns);
1839         if (ret)
1840                 goto err_set_tc_queue;
1841
1842         hns3_set_default_rss_args(hw);
1843
1844         return 0;
1845
1846 err_set_tc_queue:
1847         hns3_tqp_stats_uninit(hw);
1848
1849 err_get_config:
1850         hns3vf_disable_irq0(hw);
1851         rte_intr_disable(&pci_dev->intr_handle);
1852         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1853                              eth_dev);
1854 err_intr_callback_register:
1855 err_cmd_init:
1856         hns3_cmd_uninit(hw);
1857         hns3_cmd_destroy_queue(hw);
1858 err_cmd_init_queue:
1859         hw->io_base = NULL;
1860
1861         return ret;
1862 }
1863
1864 static void
1865 hns3vf_uninit_vf(struct rte_eth_dev *eth_dev)
1866 {
1867         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1868         struct hns3_adapter *hns = eth_dev->data->dev_private;
1869         struct hns3_hw *hw = &hns->hw;
1870
1871         PMD_INIT_FUNC_TRACE();
1872
1873         hns3_rss_uninit(hns);
1874         (void)hns3_config_gro(hw, false);
1875         (void)hns3vf_set_alive(hw, false);
1876         (void)hns3vf_set_promisc_mode(hw, false, false, false);
1877         hns3_tqp_stats_uninit(hw);
1878         hns3vf_disable_irq0(hw);
1879         rte_intr_disable(&pci_dev->intr_handle);
1880         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1881                              eth_dev);
1882         hns3_cmd_uninit(hw);
1883         hns3_cmd_destroy_queue(hw);
1884         hw->io_base = NULL;
1885 }
1886
1887 static int
1888 hns3vf_do_stop(struct hns3_adapter *hns)
1889 {
1890         struct hns3_hw *hw = &hns->hw;
1891         int ret;
1892
1893         hw->mac.link_status = ETH_LINK_DOWN;
1894
1895         if (rte_atomic16_read(&hw->reset.disable_cmd) == 0) {
1896                 hns3vf_configure_mac_addr(hns, true);
1897                 ret = hns3_reset_all_tqps(hns);
1898                 if (ret) {
1899                         hns3_err(hw, "failed to reset all queues ret = %d",
1900                                  ret);
1901                         return ret;
1902                 }
1903         }
1904         return 0;
1905 }
1906
1907 static void
1908 hns3vf_unmap_rx_interrupt(struct rte_eth_dev *dev)
1909 {
1910         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1911         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1912         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1913         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
1914         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
1915         uint16_t q_id;
1916
1917         if (dev->data->dev_conf.intr_conf.rxq == 0)
1918                 return;
1919
1920         /* unmap the ring with vector */
1921         if (rte_intr_allow_others(intr_handle)) {
1922                 vec = RTE_INTR_VEC_RXTX_OFFSET;
1923                 base = RTE_INTR_VEC_RXTX_OFFSET;
1924         }
1925         if (rte_intr_dp_is_en(intr_handle)) {
1926                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
1927                         (void)hns3vf_bind_ring_with_vector(hw, vec, false,
1928                                                            HNS3_RING_TYPE_RX,
1929                                                            q_id);
1930                         if (vec < base + intr_handle->nb_efd - 1)
1931                                 vec++;
1932                 }
1933         }
1934         /* Clean datapath event and queue/vec mapping */
1935         rte_intr_efd_disable(intr_handle);
1936         if (intr_handle->intr_vec) {
1937                 rte_free(intr_handle->intr_vec);
1938                 intr_handle->intr_vec = NULL;
1939         }
1940 }
1941
1942 static int
1943 hns3vf_dev_stop(struct rte_eth_dev *dev)
1944 {
1945         struct hns3_adapter *hns = dev->data->dev_private;
1946         struct hns3_hw *hw = &hns->hw;
1947
1948         PMD_INIT_FUNC_TRACE();
1949         dev->data->dev_started = 0;
1950
1951         hw->adapter_state = HNS3_NIC_STOPPING;
1952         hns3_set_rxtx_function(dev);
1953         rte_wmb();
1954         /* Disable datapath on secondary process. */
1955         hns3_mp_req_stop_rxtx(dev);
1956         /* Prevent crashes when queues are still in use. */
1957         rte_delay_ms(hw->tqps_num);
1958
1959         rte_spinlock_lock(&hw->lock);
1960         if (rte_atomic16_read(&hw->reset.resetting) == 0) {
1961                 hns3_stop_tqps(hw);
1962                 hns3vf_do_stop(hns);
1963                 hns3vf_unmap_rx_interrupt(dev);
1964                 hns3_dev_release_mbufs(hns);
1965                 hw->adapter_state = HNS3_NIC_CONFIGURED;
1966         }
1967         hns3_rx_scattered_reset(dev);
1968         rte_eal_alarm_cancel(hns3vf_service_handler, dev);
1969         rte_spinlock_unlock(&hw->lock);
1970
1971         return 0;
1972 }
1973
1974 static int
1975 hns3vf_dev_close(struct rte_eth_dev *eth_dev)
1976 {
1977         struct hns3_adapter *hns = eth_dev->data->dev_private;
1978         struct hns3_hw *hw = &hns->hw;
1979         int ret = 0;
1980
1981         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1982                 return 0;
1983
1984         if (hw->adapter_state == HNS3_NIC_STARTED)
1985                 ret = hns3vf_dev_stop(eth_dev);
1986
1987         hw->adapter_state = HNS3_NIC_CLOSING;
1988         hns3_reset_abort(hns);
1989         hw->adapter_state = HNS3_NIC_CLOSED;
1990         rte_eal_alarm_cancel(hns3vf_keep_alive_handler, eth_dev);
1991         hns3vf_configure_all_mc_mac_addr(hns, true);
1992         hns3vf_remove_all_vlan_table(hns);
1993         hns3vf_uninit_vf(eth_dev);
1994         hns3_free_all_queues(eth_dev);
1995         rte_free(hw->reset.wait_data);
1996         rte_free(eth_dev->process_private);
1997         eth_dev->process_private = NULL;
1998         hns3_mp_uninit_primary();
1999         hns3_warn(hw, "Close port %u finished", hw->data->port_id);
2000
2001         return ret;
2002 }
2003
2004 static int
2005 hns3vf_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2006                       size_t fw_size)
2007 {
2008         struct hns3_adapter *hns = eth_dev->data->dev_private;
2009         struct hns3_hw *hw = &hns->hw;
2010         uint32_t version = hw->fw_version;
2011         int ret;
2012
2013         ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2014                        hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2015                                       HNS3_FW_VERSION_BYTE3_S),
2016                        hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2017                                       HNS3_FW_VERSION_BYTE2_S),
2018                        hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2019                                       HNS3_FW_VERSION_BYTE1_S),
2020                        hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2021                                       HNS3_FW_VERSION_BYTE0_S));
2022         ret += 1; /* add the size of '\0' */
2023         if (fw_size < (uint32_t)ret)
2024                 return ret;
2025         else
2026                 return 0;
2027 }
2028
2029 static int
2030 hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
2031                        __rte_unused int wait_to_complete)
2032 {
2033         struct hns3_adapter *hns = eth_dev->data->dev_private;
2034         struct hns3_hw *hw = &hns->hw;
2035         struct hns3_mac *mac = &hw->mac;
2036         struct rte_eth_link new_link;
2037
2038         memset(&new_link, 0, sizeof(new_link));
2039         switch (mac->link_speed) {
2040         case ETH_SPEED_NUM_10M:
2041         case ETH_SPEED_NUM_100M:
2042         case ETH_SPEED_NUM_1G:
2043         case ETH_SPEED_NUM_10G:
2044         case ETH_SPEED_NUM_25G:
2045         case ETH_SPEED_NUM_40G:
2046         case ETH_SPEED_NUM_50G:
2047         case ETH_SPEED_NUM_100G:
2048         case ETH_SPEED_NUM_200G:
2049                 new_link.link_speed = mac->link_speed;
2050                 break;
2051         default:
2052                 new_link.link_speed = ETH_SPEED_NUM_100M;
2053                 break;
2054         }
2055
2056         new_link.link_duplex = mac->link_duplex;
2057         new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2058         new_link.link_autoneg =
2059             !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2060
2061         return rte_eth_linkstatus_set(eth_dev, &new_link);
2062 }
2063
2064 static int
2065 hns3vf_do_start(struct hns3_adapter *hns, bool reset_queue)
2066 {
2067         struct hns3_hw *hw = &hns->hw;
2068         uint16_t nb_rx_q = hw->data->nb_rx_queues;
2069         uint16_t nb_tx_q = hw->data->nb_tx_queues;
2070         int ret;
2071
2072         ret = hns3vf_set_tc_queue_mapping(hns, nb_rx_q, nb_tx_q);
2073         if (ret)
2074                 return ret;
2075
2076         ret = hns3_init_queues(hns, reset_queue);
2077         if (ret)
2078                 hns3_err(hw, "failed to init queues, ret = %d.", ret);
2079
2080         return ret;
2081 }
2082
2083 static int
2084 hns3vf_map_rx_interrupt(struct rte_eth_dev *dev)
2085 {
2086         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2087         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2088         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2089         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
2090         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
2091         uint32_t intr_vector;
2092         uint16_t q_id;
2093         int ret;
2094
2095         if (dev->data->dev_conf.intr_conf.rxq == 0)
2096                 return 0;
2097
2098         /* disable uio/vfio intr/eventfd mapping */
2099         rte_intr_disable(intr_handle);
2100
2101         /* check and configure queue intr-vector mapping */
2102         if (rte_intr_cap_multiple(intr_handle) ||
2103             !RTE_ETH_DEV_SRIOV(dev).active) {
2104                 intr_vector = hw->used_rx_queues;
2105                 /* It creates event fd for each intr vector when MSIX is used */
2106                 if (rte_intr_efd_enable(intr_handle, intr_vector))
2107                         return -EINVAL;
2108         }
2109         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
2110                 intr_handle->intr_vec =
2111                         rte_zmalloc("intr_vec",
2112                                     hw->used_rx_queues * sizeof(int), 0);
2113                 if (intr_handle->intr_vec == NULL) {
2114                         hns3_err(hw, "Failed to allocate %u rx_queues"
2115                                      " intr_vec", hw->used_rx_queues);
2116                         ret = -ENOMEM;
2117                         goto vf_alloc_intr_vec_error;
2118                 }
2119         }
2120
2121         if (rte_intr_allow_others(intr_handle)) {
2122                 vec = RTE_INTR_VEC_RXTX_OFFSET;
2123                 base = RTE_INTR_VEC_RXTX_OFFSET;
2124         }
2125         if (rte_intr_dp_is_en(intr_handle)) {
2126                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2127                         ret = hns3vf_bind_ring_with_vector(hw, vec, true,
2128                                                            HNS3_RING_TYPE_RX,
2129                                                            q_id);
2130                         if (ret)
2131                                 goto vf_bind_vector_error;
2132                         intr_handle->intr_vec[q_id] = vec;
2133                         if (vec < base + intr_handle->nb_efd - 1)
2134                                 vec++;
2135                 }
2136         }
2137         rte_intr_enable(intr_handle);
2138         return 0;
2139
2140 vf_bind_vector_error:
2141         rte_intr_efd_disable(intr_handle);
2142         if (intr_handle->intr_vec) {
2143                 free(intr_handle->intr_vec);
2144                 intr_handle->intr_vec = NULL;
2145         }
2146         return ret;
2147 vf_alloc_intr_vec_error:
2148         rte_intr_efd_disable(intr_handle);
2149         return ret;
2150 }
2151
2152 static int
2153 hns3vf_restore_rx_interrupt(struct hns3_hw *hw)
2154 {
2155         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
2156         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2157         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2158         uint16_t q_id;
2159         int ret;
2160
2161         if (dev->data->dev_conf.intr_conf.rxq == 0)
2162                 return 0;
2163
2164         if (rte_intr_dp_is_en(intr_handle)) {
2165                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2166                         ret = hns3vf_bind_ring_with_vector(hw,
2167                                         intr_handle->intr_vec[q_id], true,
2168                                         HNS3_RING_TYPE_RX, q_id);
2169                         if (ret)
2170                                 return ret;
2171                 }
2172         }
2173
2174         return 0;
2175 }
2176
2177 static void
2178 hns3vf_restore_filter(struct rte_eth_dev *dev)
2179 {
2180         hns3_restore_rss_filter(dev);
2181 }
2182
2183 static int
2184 hns3vf_dev_start(struct rte_eth_dev *dev)
2185 {
2186         struct hns3_adapter *hns = dev->data->dev_private;
2187         struct hns3_hw *hw = &hns->hw;
2188         int ret;
2189
2190         PMD_INIT_FUNC_TRACE();
2191         if (rte_atomic16_read(&hw->reset.resetting))
2192                 return -EBUSY;
2193
2194         rte_spinlock_lock(&hw->lock);
2195         hw->adapter_state = HNS3_NIC_STARTING;
2196         ret = hns3vf_do_start(hns, true);
2197         if (ret) {
2198                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2199                 rte_spinlock_unlock(&hw->lock);
2200                 return ret;
2201         }
2202         ret = hns3vf_map_rx_interrupt(dev);
2203         if (ret) {
2204                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2205                 rte_spinlock_unlock(&hw->lock);
2206                 return ret;
2207         }
2208
2209         /*
2210          * There are three register used to control the status of a TQP
2211          * (contains a pair of Tx queue and Rx queue) in the new version network
2212          * engine. One is used to control the enabling of Tx queue, the other is
2213          * used to control the enabling of Rx queue, and the last is the master
2214          * switch used to control the enabling of the tqp. The Tx register and
2215          * TQP register must be enabled at the same time to enable a Tx queue.
2216          * The same applies to the Rx queue. For the older network enginem, this
2217          * function only refresh the enabled flag, and it is used to update the
2218          * status of queue in the dpdk framework.
2219          */
2220         ret = hns3_start_all_txqs(dev);
2221         if (ret) {
2222                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2223                 rte_spinlock_unlock(&hw->lock);
2224                 return ret;
2225         }
2226
2227         ret = hns3_start_all_rxqs(dev);
2228         if (ret) {
2229                 hns3_stop_all_txqs(dev);
2230                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2231                 rte_spinlock_unlock(&hw->lock);
2232                 return ret;
2233         }
2234
2235         hw->adapter_state = HNS3_NIC_STARTED;
2236         rte_spinlock_unlock(&hw->lock);
2237
2238         hns3_rx_scattered_calc(dev);
2239         hns3_set_rxtx_function(dev);
2240         hns3_mp_req_start_rxtx(dev);
2241         rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler, dev);
2242
2243         hns3vf_restore_filter(dev);
2244
2245         /* Enable interrupt of all rx queues before enabling queues */
2246         hns3_dev_all_rx_queue_intr_enable(hw, true);
2247
2248         /*
2249          * After finished the initialization, start all tqps to receive/transmit
2250          * packets and refresh all queue status.
2251          */
2252         hns3_start_tqps(hw);
2253
2254         return ret;
2255 }
2256
2257 static bool
2258 is_vf_reset_done(struct hns3_hw *hw)
2259 {
2260 #define HNS3_FUN_RST_ING_BITS \
2261         (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) | \
2262          BIT(HNS3_VECTOR0_CORERESET_INT_B) | \
2263          BIT(HNS3_VECTOR0_IMPRESET_INT_B) | \
2264          BIT(HNS3_VECTOR0_FUNCRESET_INT_B))
2265
2266         uint32_t val;
2267
2268         if (hw->reset.level == HNS3_VF_RESET) {
2269                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
2270                 if (val & HNS3_VF_RST_ING_BIT)
2271                         return false;
2272         } else {
2273                 val = hns3_read_dev(hw, HNS3_FUN_RST_ING);
2274                 if (val & HNS3_FUN_RST_ING_BITS)
2275                         return false;
2276         }
2277         return true;
2278 }
2279
2280 bool
2281 hns3vf_is_reset_pending(struct hns3_adapter *hns)
2282 {
2283         struct hns3_hw *hw = &hns->hw;
2284         enum hns3_reset_level reset;
2285
2286         /*
2287          * According to the protocol of PCIe, FLR to a PF device resets the PF
2288          * state as well as the SR-IOV extended capability including VF Enable
2289          * which means that VFs no longer exist.
2290          *
2291          * HNS3_VF_FULL_RESET means PF device is in FLR reset. when PF device
2292          * is in FLR stage, the register state of VF device is not reliable,
2293          * so register states detection can not be carried out. In this case,
2294          * we just ignore the register states and return false to indicate that
2295          * there are no other reset states that need to be processed by driver.
2296          */
2297         if (hw->reset.level == HNS3_VF_FULL_RESET)
2298                 return false;
2299
2300         /* Check the registers to confirm whether there is reset pending */
2301         hns3vf_check_event_cause(hns, NULL);
2302         reset = hns3vf_get_reset_level(hw, &hw->reset.pending);
2303         if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
2304                 hns3_warn(hw, "High level reset %d is pending", reset);
2305                 return true;
2306         }
2307         return false;
2308 }
2309
2310 static int
2311 hns3vf_wait_hardware_ready(struct hns3_adapter *hns)
2312 {
2313         struct hns3_hw *hw = &hns->hw;
2314         struct hns3_wait_data *wait_data = hw->reset.wait_data;
2315         struct timeval tv;
2316
2317         if (wait_data->result == HNS3_WAIT_SUCCESS) {
2318                 /*
2319                  * After vf reset is ready, the PF may not have completed
2320                  * the reset processing. The vf sending mbox to PF may fail
2321                  * during the pf reset, so it is better to add extra delay.
2322                  */
2323                 if (hw->reset.level == HNS3_VF_FUNC_RESET ||
2324                     hw->reset.level == HNS3_FLR_RESET)
2325                         return 0;
2326                 /* Reset retry process, no need to add extra delay. */
2327                 if (hw->reset.attempts)
2328                         return 0;
2329                 if (wait_data->check_completion == NULL)
2330                         return 0;
2331
2332                 wait_data->check_completion = NULL;
2333                 wait_data->interval = 1 * MSEC_PER_SEC * USEC_PER_MSEC;
2334                 wait_data->count = 1;
2335                 wait_data->result = HNS3_WAIT_REQUEST;
2336                 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback,
2337                                   wait_data);
2338                 hns3_warn(hw, "hardware is ready, delay 1 sec for PF reset complete");
2339                 return -EAGAIN;
2340         } else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
2341                 gettimeofday(&tv, NULL);
2342                 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
2343                           tv.tv_sec, tv.tv_usec);
2344                 return -ETIME;
2345         } else if (wait_data->result == HNS3_WAIT_REQUEST)
2346                 return -EAGAIN;
2347
2348         wait_data->hns = hns;
2349         wait_data->check_completion = is_vf_reset_done;
2350         wait_data->end_ms = (uint64_t)HNS3VF_RESET_WAIT_CNT *
2351                                       HNS3VF_RESET_WAIT_MS + get_timeofday_ms();
2352         wait_data->interval = HNS3VF_RESET_WAIT_MS * USEC_PER_MSEC;
2353         wait_data->count = HNS3VF_RESET_WAIT_CNT;
2354         wait_data->result = HNS3_WAIT_REQUEST;
2355         rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
2356         return -EAGAIN;
2357 }
2358
2359 static int
2360 hns3vf_prepare_reset(struct hns3_adapter *hns)
2361 {
2362         struct hns3_hw *hw = &hns->hw;
2363         int ret = 0;
2364
2365         if (hw->reset.level == HNS3_VF_FUNC_RESET) {
2366                 ret = hns3_send_mbx_msg(hw, HNS3_MBX_RESET, 0, NULL,
2367                                         0, true, NULL, 0);
2368         }
2369         rte_atomic16_set(&hw->reset.disable_cmd, 1);
2370
2371         return ret;
2372 }
2373
2374 static int
2375 hns3vf_stop_service(struct hns3_adapter *hns)
2376 {
2377         struct hns3_hw *hw = &hns->hw;
2378         struct rte_eth_dev *eth_dev;
2379
2380         eth_dev = &rte_eth_devices[hw->data->port_id];
2381         if (hw->adapter_state == HNS3_NIC_STARTED)
2382                 rte_eal_alarm_cancel(hns3vf_service_handler, eth_dev);
2383         hw->mac.link_status = ETH_LINK_DOWN;
2384
2385         hns3_set_rxtx_function(eth_dev);
2386         rte_wmb();
2387         /* Disable datapath on secondary process. */
2388         hns3_mp_req_stop_rxtx(eth_dev);
2389         rte_delay_ms(hw->tqps_num);
2390
2391         rte_spinlock_lock(&hw->lock);
2392         if (hw->adapter_state == HNS3_NIC_STARTED ||
2393             hw->adapter_state == HNS3_NIC_STOPPING) {
2394                 hns3_enable_all_queues(hw, false);
2395                 hns3vf_do_stop(hns);
2396                 hw->reset.mbuf_deferred_free = true;
2397         } else
2398                 hw->reset.mbuf_deferred_free = false;
2399
2400         /*
2401          * It is cumbersome for hardware to pick-and-choose entries for deletion
2402          * from table space. Hence, for function reset software intervention is
2403          * required to delete the entries.
2404          */
2405         if (rte_atomic16_read(&hw->reset.disable_cmd) == 0)
2406                 hns3vf_configure_all_mc_mac_addr(hns, true);
2407         rte_spinlock_unlock(&hw->lock);
2408
2409         return 0;
2410 }
2411
2412 static int
2413 hns3vf_start_service(struct hns3_adapter *hns)
2414 {
2415         struct hns3_hw *hw = &hns->hw;
2416         struct rte_eth_dev *eth_dev;
2417
2418         eth_dev = &rte_eth_devices[hw->data->port_id];
2419         hns3_set_rxtx_function(eth_dev);
2420         hns3_mp_req_start_rxtx(eth_dev);
2421         if (hw->adapter_state == HNS3_NIC_STARTED) {
2422                 hns3vf_service_handler(eth_dev);
2423
2424                 /* Enable interrupt of all rx queues before enabling queues */
2425                 hns3_dev_all_rx_queue_intr_enable(hw, true);
2426                 /*
2427                  * Enable state of each rxq and txq will be recovered after
2428                  * reset, so we need to restore them before enable all tqps;
2429                  */
2430                 hns3_restore_tqp_enable_state(hw);
2431                 /*
2432                  * When finished the initialization, enable queues to receive
2433                  * and transmit packets.
2434                  */
2435                 hns3_enable_all_queues(hw, true);
2436         }
2437
2438         return 0;
2439 }
2440
2441 static int
2442 hns3vf_check_default_mac_change(struct hns3_hw *hw)
2443 {
2444         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2445         struct rte_ether_addr *hw_mac;
2446         int ret;
2447
2448         /*
2449          * The hns3 PF ethdev driver in kernel support setting VF MAC address
2450          * on the host by "ip link set ..." command. If the hns3 PF kernel
2451          * ethdev driver sets the MAC address for VF device after the
2452          * initialization of the related VF device, the PF driver will notify
2453          * VF driver to reset VF device to make the new MAC address effective
2454          * immediately. The hns3 VF PMD driver should check whether the MAC
2455          * address has been changed by the PF kernel ethdev driver, if changed
2456          * VF driver should configure hardware using the new MAC address in the
2457          * recovering hardware configuration stage of the reset process.
2458          */
2459         ret = hns3vf_get_host_mac_addr(hw);
2460         if (ret)
2461                 return ret;
2462
2463         hw_mac = (struct rte_ether_addr *)hw->mac.mac_addr;
2464         ret = rte_is_zero_ether_addr(hw_mac);
2465         if (ret) {
2466                 rte_ether_addr_copy(&hw->data->mac_addrs[0], hw_mac);
2467         } else {
2468                 ret = rte_is_same_ether_addr(&hw->data->mac_addrs[0], hw_mac);
2469                 if (!ret) {
2470                         rte_ether_addr_copy(hw_mac, &hw->data->mac_addrs[0]);
2471                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2472                                               &hw->data->mac_addrs[0]);
2473                         hns3_warn(hw, "Default MAC address has been changed to:"
2474                                   " %s by the host PF kernel ethdev driver",
2475                                   mac_str);
2476                 }
2477         }
2478
2479         return 0;
2480 }
2481
2482 static int
2483 hns3vf_restore_conf(struct hns3_adapter *hns)
2484 {
2485         struct hns3_hw *hw = &hns->hw;
2486         int ret;
2487
2488         ret = hns3vf_check_default_mac_change(hw);
2489         if (ret)
2490                 return ret;
2491
2492         ret = hns3vf_configure_mac_addr(hns, false);
2493         if (ret)
2494                 return ret;
2495
2496         ret = hns3vf_configure_all_mc_mac_addr(hns, false);
2497         if (ret)
2498                 goto err_mc_mac;
2499
2500         ret = hns3vf_restore_promisc(hns);
2501         if (ret)
2502                 goto err_vlan_table;
2503
2504         ret = hns3vf_restore_vlan_conf(hns);
2505         if (ret)
2506                 goto err_vlan_table;
2507
2508         ret = hns3vf_get_port_base_vlan_filter_state(hw);
2509         if (ret)
2510                 goto err_vlan_table;
2511
2512         ret = hns3vf_restore_rx_interrupt(hw);
2513         if (ret)
2514                 goto err_vlan_table;
2515
2516         ret = hns3_restore_gro_conf(hw);
2517         if (ret)
2518                 goto err_vlan_table;
2519
2520         if (hw->adapter_state == HNS3_NIC_STARTED) {
2521                 ret = hns3vf_do_start(hns, false);
2522                 if (ret)
2523                         goto err_vlan_table;
2524                 hns3_info(hw, "hns3vf dev restart successful!");
2525         } else if (hw->adapter_state == HNS3_NIC_STOPPING)
2526                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2527         return 0;
2528
2529 err_vlan_table:
2530         hns3vf_configure_all_mc_mac_addr(hns, true);
2531 err_mc_mac:
2532         hns3vf_configure_mac_addr(hns, true);
2533         return ret;
2534 }
2535
2536 static enum hns3_reset_level
2537 hns3vf_get_reset_level(struct hns3_hw *hw, uint64_t *levels)
2538 {
2539         enum hns3_reset_level reset_level;
2540
2541         /* return the highest priority reset level amongst all */
2542         if (hns3_atomic_test_bit(HNS3_VF_RESET, levels))
2543                 reset_level = HNS3_VF_RESET;
2544         else if (hns3_atomic_test_bit(HNS3_VF_FULL_RESET, levels))
2545                 reset_level = HNS3_VF_FULL_RESET;
2546         else if (hns3_atomic_test_bit(HNS3_VF_PF_FUNC_RESET, levels))
2547                 reset_level = HNS3_VF_PF_FUNC_RESET;
2548         else if (hns3_atomic_test_bit(HNS3_VF_FUNC_RESET, levels))
2549                 reset_level = HNS3_VF_FUNC_RESET;
2550         else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
2551                 reset_level = HNS3_FLR_RESET;
2552         else
2553                 reset_level = HNS3_NONE_RESET;
2554
2555         if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
2556                 return HNS3_NONE_RESET;
2557
2558         return reset_level;
2559 }
2560
2561 static void
2562 hns3vf_reset_service(void *param)
2563 {
2564         struct hns3_adapter *hns = (struct hns3_adapter *)param;
2565         struct hns3_hw *hw = &hns->hw;
2566         enum hns3_reset_level reset_level;
2567         struct timeval tv_delta;
2568         struct timeval tv_start;
2569         struct timeval tv;
2570         uint64_t msec;
2571
2572         /*
2573          * The interrupt is not triggered within the delay time.
2574          * The interrupt may have been lost. It is necessary to handle
2575          * the interrupt to recover from the error.
2576          */
2577         if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_DEFERRED) {
2578                 rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_REQUESTED);
2579                 hns3_err(hw, "Handling interrupts in delayed tasks");
2580                 hns3vf_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
2581                 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2582                 if (reset_level == HNS3_NONE_RESET) {
2583                         hns3_err(hw, "No reset level is set, try global reset");
2584                         hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
2585                 }
2586         }
2587         rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_NONE);
2588
2589         /*
2590          * Hardware reset has been notified, we now have to poll & check if
2591          * hardware has actually completed the reset sequence.
2592          */
2593         reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2594         if (reset_level != HNS3_NONE_RESET) {
2595                 gettimeofday(&tv_start, NULL);
2596                 hns3_reset_process(hns, reset_level);
2597                 gettimeofday(&tv, NULL);
2598                 timersub(&tv, &tv_start, &tv_delta);
2599                 msec = tv_delta.tv_sec * MSEC_PER_SEC +
2600                        tv_delta.tv_usec / USEC_PER_MSEC;
2601                 if (msec > HNS3_RESET_PROCESS_MS)
2602                         hns3_err(hw, "%d handle long time delta %" PRIx64
2603                                  " ms time=%ld.%.6ld",
2604                                  hw->reset.level, msec, tv.tv_sec, tv.tv_usec);
2605         }
2606 }
2607
2608 static int
2609 hns3vf_reinit_dev(struct hns3_adapter *hns)
2610 {
2611         struct rte_eth_dev *eth_dev = &rte_eth_devices[hns->hw.data->port_id];
2612         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2613         struct hns3_hw *hw = &hns->hw;
2614         int ret;
2615
2616         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2617                 rte_intr_disable(&pci_dev->intr_handle);
2618                 ret = hns3vf_set_bus_master(pci_dev, true);
2619                 if (ret < 0) {
2620                         hns3_err(hw, "failed to set pci bus, ret = %d", ret);
2621                         return ret;
2622                 }
2623         }
2624
2625         /* Firmware command initialize */
2626         ret = hns3_cmd_init(hw);
2627         if (ret) {
2628                 hns3_err(hw, "Failed to init cmd: %d", ret);
2629                 return ret;
2630         }
2631
2632         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2633                 /*
2634                  * UIO enables msix by writing the pcie configuration space
2635                  * vfio_pci enables msix in rte_intr_enable.
2636                  */
2637                 if (pci_dev->kdrv == RTE_PCI_KDRV_IGB_UIO ||
2638                     pci_dev->kdrv == RTE_PCI_KDRV_UIO_GENERIC) {
2639                         if (hns3vf_enable_msix(pci_dev, true))
2640                                 hns3_err(hw, "Failed to enable msix");
2641                 }
2642
2643                 rte_intr_enable(&pci_dev->intr_handle);
2644         }
2645
2646         ret = hns3_reset_all_tqps(hns);
2647         if (ret) {
2648                 hns3_err(hw, "Failed to reset all queues: %d", ret);
2649                 return ret;
2650         }
2651
2652         ret = hns3vf_init_hardware(hns);
2653         if (ret) {
2654                 hns3_err(hw, "Failed to init hardware: %d", ret);
2655                 return ret;
2656         }
2657
2658         return 0;
2659 }
2660
2661 static const struct eth_dev_ops hns3vf_eth_dev_ops = {
2662         .dev_configure      = hns3vf_dev_configure,
2663         .dev_start          = hns3vf_dev_start,
2664         .dev_stop           = hns3vf_dev_stop,
2665         .dev_close          = hns3vf_dev_close,
2666         .mtu_set            = hns3vf_dev_mtu_set,
2667         .promiscuous_enable = hns3vf_dev_promiscuous_enable,
2668         .promiscuous_disable = hns3vf_dev_promiscuous_disable,
2669         .allmulticast_enable = hns3vf_dev_allmulticast_enable,
2670         .allmulticast_disable = hns3vf_dev_allmulticast_disable,
2671         .stats_get          = hns3_stats_get,
2672         .stats_reset        = hns3_stats_reset,
2673         .xstats_get         = hns3_dev_xstats_get,
2674         .xstats_get_names   = hns3_dev_xstats_get_names,
2675         .xstats_reset       = hns3_dev_xstats_reset,
2676         .xstats_get_by_id   = hns3_dev_xstats_get_by_id,
2677         .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
2678         .dev_infos_get      = hns3vf_dev_infos_get,
2679         .fw_version_get     = hns3vf_fw_version_get,
2680         .rx_queue_setup     = hns3_rx_queue_setup,
2681         .tx_queue_setup     = hns3_tx_queue_setup,
2682         .rx_queue_release   = hns3_dev_rx_queue_release,
2683         .tx_queue_release   = hns3_dev_tx_queue_release,
2684         .rx_queue_start     = hns3_dev_rx_queue_start,
2685         .rx_queue_stop      = hns3_dev_rx_queue_stop,
2686         .tx_queue_start     = hns3_dev_tx_queue_start,
2687         .tx_queue_stop      = hns3_dev_tx_queue_stop,
2688         .rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
2689         .rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
2690         .rxq_info_get       = hns3_rxq_info_get,
2691         .txq_info_get       = hns3_txq_info_get,
2692         .rx_burst_mode_get  = hns3_rx_burst_mode_get,
2693         .tx_burst_mode_get  = hns3_tx_burst_mode_get,
2694         .mac_addr_add       = hns3vf_add_mac_addr,
2695         .mac_addr_remove    = hns3vf_remove_mac_addr,
2696         .mac_addr_set       = hns3vf_set_default_mac_addr,
2697         .set_mc_addr_list   = hns3vf_set_mc_mac_addr_list,
2698         .link_update        = hns3vf_dev_link_update,
2699         .rss_hash_update    = hns3_dev_rss_hash_update,
2700         .rss_hash_conf_get  = hns3_dev_rss_hash_conf_get,
2701         .reta_update        = hns3_dev_rss_reta_update,
2702         .reta_query         = hns3_dev_rss_reta_query,
2703         .filter_ctrl        = hns3_dev_filter_ctrl,
2704         .vlan_filter_set    = hns3vf_vlan_filter_set,
2705         .vlan_offload_set   = hns3vf_vlan_offload_set,
2706         .get_reg            = hns3_get_regs,
2707         .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
2708 };
2709
2710 static const struct hns3_reset_ops hns3vf_reset_ops = {
2711         .reset_service       = hns3vf_reset_service,
2712         .stop_service        = hns3vf_stop_service,
2713         .prepare_reset       = hns3vf_prepare_reset,
2714         .wait_hardware_ready = hns3vf_wait_hardware_ready,
2715         .reinit_dev          = hns3vf_reinit_dev,
2716         .restore_conf        = hns3vf_restore_conf,
2717         .start_service       = hns3vf_start_service,
2718 };
2719
2720 static int
2721 hns3vf_dev_init(struct rte_eth_dev *eth_dev)
2722 {
2723         struct hns3_adapter *hns = eth_dev->data->dev_private;
2724         struct hns3_hw *hw = &hns->hw;
2725         int ret;
2726
2727         PMD_INIT_FUNC_TRACE();
2728
2729         eth_dev->process_private = (struct hns3_process_private *)
2730             rte_zmalloc_socket("hns3_filter_list",
2731                                sizeof(struct hns3_process_private),
2732                                RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
2733         if (eth_dev->process_private == NULL) {
2734                 PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
2735                 return -ENOMEM;
2736         }
2737
2738         /* initialize flow filter lists */
2739         hns3_filterlist_init(eth_dev);
2740
2741         hns3_set_rxtx_function(eth_dev);
2742         eth_dev->dev_ops = &hns3vf_eth_dev_ops;
2743         eth_dev->rx_queue_count = hns3_rx_queue_count;
2744         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2745                 ret = hns3_mp_init_secondary();
2746                 if (ret) {
2747                         PMD_INIT_LOG(ERR, "Failed to init for secondary "
2748                                           "process, ret = %d", ret);
2749                         goto err_mp_init_secondary;
2750                 }
2751
2752                 hw->secondary_cnt++;
2753                 return 0;
2754         }
2755
2756         eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2757
2758         ret = hns3_mp_init_primary();
2759         if (ret) {
2760                 PMD_INIT_LOG(ERR,
2761                              "Failed to init for primary process, ret = %d",
2762                              ret);
2763                 goto err_mp_init_primary;
2764         }
2765
2766         hw->adapter_state = HNS3_NIC_UNINITIALIZED;
2767         hns->is_vf = true;
2768         hw->data = eth_dev->data;
2769
2770         ret = hns3_reset_init(hw);
2771         if (ret)
2772                 goto err_init_reset;
2773         hw->reset.ops = &hns3vf_reset_ops;
2774
2775         ret = hns3vf_init_vf(eth_dev);
2776         if (ret) {
2777                 PMD_INIT_LOG(ERR, "Failed to init vf: %d", ret);
2778                 goto err_init_vf;
2779         }
2780
2781         /* Allocate memory for storing MAC addresses */
2782         eth_dev->data->mac_addrs = rte_zmalloc("hns3vf-mac",
2783                                                sizeof(struct rte_ether_addr) *
2784                                                HNS3_VF_UC_MACADDR_NUM, 0);
2785         if (eth_dev->data->mac_addrs == NULL) {
2786                 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
2787                              "to store MAC addresses",
2788                              sizeof(struct rte_ether_addr) *
2789                              HNS3_VF_UC_MACADDR_NUM);
2790                 ret = -ENOMEM;
2791                 goto err_rte_zmalloc;
2792         }
2793
2794         /*
2795          * The hns3 PF ethdev driver in kernel support setting VF MAC address
2796          * on the host by "ip link set ..." command. To avoid some incorrect
2797          * scenes, for example, hns3 VF PMD driver fails to receive and send
2798          * packets after user configure the MAC address by using the
2799          * "ip link set ..." command, hns3 VF PMD driver keep the same MAC
2800          * address strategy as the hns3 kernel ethdev driver in the
2801          * initialization. If user configure a MAC address by the ip command
2802          * for VF device, then hns3 VF PMD driver will start with it, otherwise
2803          * start with a random MAC address in the initialization.
2804          */
2805         if (rte_is_zero_ether_addr((struct rte_ether_addr *)hw->mac.mac_addr))
2806                 rte_eth_random_addr(hw->mac.mac_addr);
2807         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
2808                             &eth_dev->data->mac_addrs[0]);
2809
2810         hw->adapter_state = HNS3_NIC_INITIALIZED;
2811
2812         if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_PENDING) {
2813                 hns3_err(hw, "Reschedule reset service after dev_init");
2814                 hns3_schedule_reset(hns);
2815         } else {
2816                 /* IMP will wait ready flag before reset */
2817                 hns3_notify_reset_ready(hw, false);
2818         }
2819         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
2820                           eth_dev);
2821         return 0;
2822
2823 err_rte_zmalloc:
2824         hns3vf_uninit_vf(eth_dev);
2825
2826 err_init_vf:
2827         rte_free(hw->reset.wait_data);
2828
2829 err_init_reset:
2830         hns3_mp_uninit_primary();
2831
2832 err_mp_init_primary:
2833 err_mp_init_secondary:
2834         eth_dev->dev_ops = NULL;
2835         eth_dev->rx_pkt_burst = NULL;
2836         eth_dev->tx_pkt_burst = NULL;
2837         eth_dev->tx_pkt_prepare = NULL;
2838         rte_free(eth_dev->process_private);
2839         eth_dev->process_private = NULL;
2840
2841         return ret;
2842 }
2843
2844 static int
2845 hns3vf_dev_uninit(struct rte_eth_dev *eth_dev)
2846 {
2847         struct hns3_adapter *hns = eth_dev->data->dev_private;
2848         struct hns3_hw *hw = &hns->hw;
2849
2850         PMD_INIT_FUNC_TRACE();
2851
2852         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2853                 return -EPERM;
2854
2855         if (hw->adapter_state < HNS3_NIC_CLOSING)
2856                 hns3vf_dev_close(eth_dev);
2857
2858         hw->adapter_state = HNS3_NIC_REMOVED;
2859         return 0;
2860 }
2861
2862 static int
2863 eth_hns3vf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2864                      struct rte_pci_device *pci_dev)
2865 {
2866         return rte_eth_dev_pci_generic_probe(pci_dev,
2867                                              sizeof(struct hns3_adapter),
2868                                              hns3vf_dev_init);
2869 }
2870
2871 static int
2872 eth_hns3vf_pci_remove(struct rte_pci_device *pci_dev)
2873 {
2874         return rte_eth_dev_pci_generic_remove(pci_dev, hns3vf_dev_uninit);
2875 }
2876
2877 static const struct rte_pci_id pci_id_hns3vf_map[] = {
2878         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_VF) },
2879         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_PFC_VF) },
2880         { .vendor_id = 0, }, /* sentinel */
2881 };
2882
2883 static struct rte_pci_driver rte_hns3vf_pmd = {
2884         .id_table = pci_id_hns3vf_map,
2885         .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
2886         .probe = eth_hns3vf_pci_probe,
2887         .remove = eth_hns3vf_pci_remove,
2888 };
2889
2890 RTE_PMD_REGISTER_PCI(net_hns3_vf, rte_hns3vf_pmd);
2891 RTE_PMD_REGISTER_PCI_TABLE(net_hns3_vf, pci_id_hns3vf_map);
2892 RTE_PMD_REGISTER_KMOD_DEP(net_hns3_vf, "* igb_uio | vfio-pci");