net/hns3: fix flow rule list in multi-process
[dpdk.git] / drivers / net / hns3 / hns3_ethdev_vf.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2021 HiSilicon Limited.
3  */
4
5 #include <linux/pci_regs.h>
6 #include <rte_alarm.h>
7 #include <ethdev_pci.h>
8 #include <rte_io.h>
9 #include <rte_pci.h>
10 #include <rte_vfio.h>
11
12 #include "hns3_ethdev.h"
13 #include "hns3_logs.h"
14 #include "hns3_rxtx.h"
15 #include "hns3_regs.h"
16 #include "hns3_intr.h"
17 #include "hns3_dcb.h"
18 #include "hns3_mp.h"
19
20 #define HNS3VF_KEEP_ALIVE_INTERVAL      2000000 /* us */
21 #define HNS3VF_SERVICE_INTERVAL         1000000 /* us */
22
23 #define HNS3VF_RESET_WAIT_MS    20
24 #define HNS3VF_RESET_WAIT_CNT   2000
25
26 /* Reset related Registers */
27 #define HNS3_GLOBAL_RESET_BIT           0
28 #define HNS3_CORE_RESET_BIT             1
29 #define HNS3_IMP_RESET_BIT              2
30 #define HNS3_FUN_RST_ING_B              0
31
32 enum hns3vf_evt_cause {
33         HNS3VF_VECTOR0_EVENT_RST,
34         HNS3VF_VECTOR0_EVENT_MBX,
35         HNS3VF_VECTOR0_EVENT_OTHER,
36 };
37
38 static enum hns3_reset_level hns3vf_get_reset_level(struct hns3_hw *hw,
39                                                     uint64_t *levels);
40 static int hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
41 static int hns3vf_dev_configure_vlan(struct rte_eth_dev *dev);
42
43 static int hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
44                                   struct rte_ether_addr *mac_addr);
45 static int hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
46                                      struct rte_ether_addr *mac_addr);
47 static int hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
48                                    __rte_unused int wait_to_complete);
49
50 /* set PCI bus mastering */
51 static int
52 hns3vf_set_bus_master(const struct rte_pci_device *device, bool op)
53 {
54         uint16_t reg;
55         int ret;
56
57         ret = rte_pci_read_config(device, &reg, sizeof(reg), PCI_COMMAND);
58         if (ret < 0) {
59                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
60                              PCI_COMMAND);
61                 return ret;
62         }
63
64         if (op)
65                 /* set the master bit */
66                 reg |= PCI_COMMAND_MASTER;
67         else
68                 reg &= ~(PCI_COMMAND_MASTER);
69
70         return rte_pci_write_config(device, &reg, sizeof(reg), PCI_COMMAND);
71 }
72
73 /**
74  * hns3vf_find_pci_capability - lookup a capability in the PCI capability list
75  * @cap: the capability
76  *
77  * Return the address of the given capability within the PCI capability list.
78  */
79 static int
80 hns3vf_find_pci_capability(const struct rte_pci_device *device, int cap)
81 {
82 #define MAX_PCIE_CAPABILITY 48
83         uint16_t status;
84         uint8_t pos;
85         uint8_t id;
86         int ttl;
87         int ret;
88
89         ret = rte_pci_read_config(device, &status, sizeof(status), PCI_STATUS);
90         if (ret < 0) {
91                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x", PCI_STATUS);
92                 return 0;
93         }
94
95         if (!(status & PCI_STATUS_CAP_LIST))
96                 return 0;
97
98         ttl = MAX_PCIE_CAPABILITY;
99         ret = rte_pci_read_config(device, &pos, sizeof(pos),
100                                   PCI_CAPABILITY_LIST);
101         if (ret < 0) {
102                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
103                              PCI_CAPABILITY_LIST);
104                 return 0;
105         }
106
107         while (ttl-- && pos >= PCI_STD_HEADER_SIZEOF) {
108                 ret = rte_pci_read_config(device, &id, sizeof(id),
109                                           (pos + PCI_CAP_LIST_ID));
110                 if (ret < 0) {
111                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
112                                      (pos + PCI_CAP_LIST_ID));
113                         break;
114                 }
115
116                 if (id == 0xFF)
117                         break;
118
119                 if (id == cap)
120                         return (int)pos;
121
122                 ret = rte_pci_read_config(device, &pos, sizeof(pos),
123                                           (pos + PCI_CAP_LIST_NEXT));
124                 if (ret < 0) {
125                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
126                                      (pos + PCI_CAP_LIST_NEXT));
127                         break;
128                 }
129         }
130         return 0;
131 }
132
133 static int
134 hns3vf_enable_msix(const struct rte_pci_device *device, bool op)
135 {
136         uint16_t control;
137         int pos;
138         int ret;
139
140         pos = hns3vf_find_pci_capability(device, PCI_CAP_ID_MSIX);
141         if (pos) {
142                 ret = rte_pci_read_config(device, &control, sizeof(control),
143                                     (pos + PCI_MSIX_FLAGS));
144                 if (ret < 0) {
145                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
146                                      (pos + PCI_MSIX_FLAGS));
147                         return -ENXIO;
148                 }
149
150                 if (op)
151                         control |= PCI_MSIX_FLAGS_ENABLE;
152                 else
153                         control &= ~PCI_MSIX_FLAGS_ENABLE;
154                 ret = rte_pci_write_config(device, &control, sizeof(control),
155                                           (pos + PCI_MSIX_FLAGS));
156                 if (ret < 0) {
157                         PMD_INIT_LOG(ERR, "failed to write PCI offset 0x%x",
158                                     (pos + PCI_MSIX_FLAGS));
159                         return -ENXIO;
160                 }
161
162                 return 0;
163         }
164
165         return -ENXIO;
166 }
167
168 static int
169 hns3vf_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
170 {
171         /* mac address was checked by upper level interface */
172         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
173         int ret;
174
175         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
176                                 HNS3_MBX_MAC_VLAN_UC_ADD, mac_addr->addr_bytes,
177                                 RTE_ETHER_ADDR_LEN, false, NULL, 0);
178         if (ret) {
179                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
180                                       mac_addr);
181                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
182                          mac_str, ret);
183         }
184         return ret;
185 }
186
187 static int
188 hns3vf_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
189 {
190         /* mac address was checked by upper level interface */
191         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
192         int ret;
193
194         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
195                                 HNS3_MBX_MAC_VLAN_UC_REMOVE,
196                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN,
197                                 false, NULL, 0);
198         if (ret) {
199                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
200                                       mac_addr);
201                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
202                          mac_str, ret);
203         }
204         return ret;
205 }
206
207 static int
208 hns3vf_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
209 {
210         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
211         struct rte_ether_addr *addr;
212         int ret;
213         int i;
214
215         for (i = 0; i < hw->mc_addrs_num; i++) {
216                 addr = &hw->mc_addrs[i];
217                 /* Check if there are duplicate addresses */
218                 if (rte_is_same_ether_addr(addr, mac_addr)) {
219                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
220                                               addr);
221                         hns3_err(hw, "failed to add mc mac addr, same addrs"
222                                  "(%s) is added by the set_mc_mac_addr_list "
223                                  "API", mac_str);
224                         return -EINVAL;
225                 }
226         }
227
228         ret = hns3vf_add_mc_mac_addr(hw, mac_addr);
229         if (ret) {
230                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
231                                       mac_addr);
232                 hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
233                          mac_str, ret);
234         }
235         return ret;
236 }
237
238 static int
239 hns3vf_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
240                     __rte_unused uint32_t idx,
241                     __rte_unused uint32_t pool)
242 {
243         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
244         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
245         int ret;
246
247         rte_spinlock_lock(&hw->lock);
248
249         /*
250          * In hns3 network engine adding UC and MC mac address with different
251          * commands with firmware. We need to determine whether the input
252          * address is a UC or a MC address to call different commands.
253          * By the way, it is recommended calling the API function named
254          * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
255          * using the rte_eth_dev_mac_addr_add API function to set MC mac address
256          * may affect the specifications of UC mac addresses.
257          */
258         if (rte_is_multicast_ether_addr(mac_addr))
259                 ret = hns3vf_add_mc_addr_common(hw, mac_addr);
260         else
261                 ret = hns3vf_add_uc_mac_addr(hw, mac_addr);
262
263         rte_spinlock_unlock(&hw->lock);
264         if (ret) {
265                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
266                                       mac_addr);
267                 hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
268                          ret);
269         }
270
271         return ret;
272 }
273
274 static void
275 hns3vf_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
276 {
277         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
278         /* index will be checked by upper level rte interface */
279         struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
280         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
281         int ret;
282
283         rte_spinlock_lock(&hw->lock);
284
285         if (rte_is_multicast_ether_addr(mac_addr))
286                 ret = hns3vf_remove_mc_mac_addr(hw, mac_addr);
287         else
288                 ret = hns3vf_remove_uc_mac_addr(hw, mac_addr);
289
290         rte_spinlock_unlock(&hw->lock);
291         if (ret) {
292                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
293                                       mac_addr);
294                 hns3_err(hw, "failed to remove mac addr(%s), ret = %d",
295                          mac_str, ret);
296         }
297 }
298
299 static int
300 hns3vf_set_default_mac_addr(struct rte_eth_dev *dev,
301                             struct rte_ether_addr *mac_addr)
302 {
303 #define HNS3_TWO_ETHER_ADDR_LEN (RTE_ETHER_ADDR_LEN * 2)
304         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
305         struct rte_ether_addr *old_addr;
306         uint8_t addr_bytes[HNS3_TWO_ETHER_ADDR_LEN]; /* for 2 MAC addresses */
307         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
308         int ret;
309
310         /*
311          * It has been guaranteed that input parameter named mac_addr is valid
312          * address in the rte layer of DPDK framework.
313          */
314         old_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
315         rte_spinlock_lock(&hw->lock);
316         memcpy(addr_bytes, mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN);
317         memcpy(&addr_bytes[RTE_ETHER_ADDR_LEN], old_addr->addr_bytes,
318                RTE_ETHER_ADDR_LEN);
319
320         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
321                                 HNS3_MBX_MAC_VLAN_UC_MODIFY, addr_bytes,
322                                 HNS3_TWO_ETHER_ADDR_LEN, true, NULL, 0);
323         if (ret) {
324                 /*
325                  * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev
326                  * driver. When user has configured a MAC address for VF device
327                  * by "ip link set ..." command based on the PF device, the hns3
328                  * PF kernel ethdev driver does not allow VF driver to request
329                  * reconfiguring a different default MAC address, and return
330                  * -EPREM to VF driver through mailbox.
331                  */
332                 if (ret == -EPERM) {
333                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
334                                               old_addr);
335                         hns3_warn(hw, "Has permanet mac addr(%s) for vf",
336                                   mac_str);
337                 } else {
338                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
339                                               mac_addr);
340                         hns3_err(hw, "Failed to set mac addr(%s) for vf: %d",
341                                  mac_str, ret);
342                 }
343         }
344
345         rte_ether_addr_copy(mac_addr,
346                             (struct rte_ether_addr *)hw->mac.mac_addr);
347         rte_spinlock_unlock(&hw->lock);
348
349         return ret;
350 }
351
352 static int
353 hns3vf_configure_mac_addr(struct hns3_adapter *hns, bool del)
354 {
355         struct hns3_hw *hw = &hns->hw;
356         struct rte_ether_addr *addr;
357         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
358         int err = 0;
359         int ret;
360         int i;
361
362         for (i = 0; i < HNS3_VF_UC_MACADDR_NUM; i++) {
363                 addr = &hw->data->mac_addrs[i];
364                 if (rte_is_zero_ether_addr(addr))
365                         continue;
366                 if (rte_is_multicast_ether_addr(addr))
367                         ret = del ? hns3vf_remove_mc_mac_addr(hw, addr) :
368                               hns3vf_add_mc_mac_addr(hw, addr);
369                 else
370                         ret = del ? hns3vf_remove_uc_mac_addr(hw, addr) :
371                               hns3vf_add_uc_mac_addr(hw, addr);
372
373                 if (ret) {
374                         err = ret;
375                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
376                                               addr);
377                         hns3_err(hw, "failed to %s mac addr(%s) index:%d "
378                                  "ret = %d.", del ? "remove" : "restore",
379                                  mac_str, i, ret);
380                 }
381         }
382         return err;
383 }
384
385 static int
386 hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
387                        struct rte_ether_addr *mac_addr)
388 {
389         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
390         int ret;
391
392         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
393                                 HNS3_MBX_MAC_VLAN_MC_ADD,
394                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
395                                 NULL, 0);
396         if (ret) {
397                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
398                                       mac_addr);
399                 hns3_err(hw, "Failed to add mc mac addr(%s) for vf: %d",
400                          mac_str, ret);
401         }
402
403         return ret;
404 }
405
406 static int
407 hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
408                           struct rte_ether_addr *mac_addr)
409 {
410         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
411         int ret;
412
413         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
414                                 HNS3_MBX_MAC_VLAN_MC_REMOVE,
415                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
416                                 NULL, 0);
417         if (ret) {
418                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
419                                       mac_addr);
420                 hns3_err(hw, "Failed to remove mc mac addr(%s) for vf: %d",
421                          mac_str, ret);
422         }
423
424         return ret;
425 }
426
427 static int
428 hns3vf_set_mc_addr_chk_param(struct hns3_hw *hw,
429                              struct rte_ether_addr *mc_addr_set,
430                              uint32_t nb_mc_addr)
431 {
432         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
433         struct rte_ether_addr *addr;
434         uint32_t i;
435         uint32_t j;
436
437         if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
438                 hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%u) "
439                          "invalid. valid range: 0~%d",
440                          nb_mc_addr, HNS3_MC_MACADDR_NUM);
441                 return -EINVAL;
442         }
443
444         /* Check if input mac addresses are valid */
445         for (i = 0; i < nb_mc_addr; i++) {
446                 addr = &mc_addr_set[i];
447                 if (!rte_is_multicast_ether_addr(addr)) {
448                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
449                                               addr);
450                         hns3_err(hw,
451                                  "failed to set mc mac addr, addr(%s) invalid.",
452                                  mac_str);
453                         return -EINVAL;
454                 }
455
456                 /* Check if there are duplicate addresses */
457                 for (j = i + 1; j < nb_mc_addr; j++) {
458                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
459                                 hns3_ether_format_addr(mac_str,
460                                                       RTE_ETHER_ADDR_FMT_SIZE,
461                                                       addr);
462                                 hns3_err(hw, "failed to set mc mac addr, "
463                                          "addrs invalid. two same addrs(%s).",
464                                          mac_str);
465                                 return -EINVAL;
466                         }
467                 }
468
469                 /*
470                  * Check if there are duplicate addresses between mac_addrs
471                  * and mc_addr_set
472                  */
473                 for (j = 0; j < HNS3_VF_UC_MACADDR_NUM; j++) {
474                         if (rte_is_same_ether_addr(addr,
475                                                    &hw->data->mac_addrs[j])) {
476                                 hns3_ether_format_addr(mac_str,
477                                                       RTE_ETHER_ADDR_FMT_SIZE,
478                                                       addr);
479                                 hns3_err(hw, "failed to set mc mac addr, "
480                                          "addrs invalid. addrs(%s) has already "
481                                          "configured in mac_addr add API",
482                                          mac_str);
483                                 return -EINVAL;
484                         }
485                 }
486         }
487
488         return 0;
489 }
490
491 static int
492 hns3vf_set_mc_mac_addr_list(struct rte_eth_dev *dev,
493                             struct rte_ether_addr *mc_addr_set,
494                             uint32_t nb_mc_addr)
495 {
496         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
497         struct rte_ether_addr *addr;
498         int cur_addr_num;
499         int set_addr_num;
500         int num;
501         int ret;
502         int i;
503
504         ret = hns3vf_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
505         if (ret)
506                 return ret;
507
508         rte_spinlock_lock(&hw->lock);
509         cur_addr_num = hw->mc_addrs_num;
510         for (i = 0; i < cur_addr_num; i++) {
511                 num = cur_addr_num - i - 1;
512                 addr = &hw->mc_addrs[num];
513                 ret = hns3vf_remove_mc_mac_addr(hw, addr);
514                 if (ret) {
515                         rte_spinlock_unlock(&hw->lock);
516                         return ret;
517                 }
518
519                 hw->mc_addrs_num--;
520         }
521
522         set_addr_num = (int)nb_mc_addr;
523         for (i = 0; i < set_addr_num; i++) {
524                 addr = &mc_addr_set[i];
525                 ret = hns3vf_add_mc_mac_addr(hw, addr);
526                 if (ret) {
527                         rte_spinlock_unlock(&hw->lock);
528                         return ret;
529                 }
530
531                 rte_ether_addr_copy(addr, &hw->mc_addrs[hw->mc_addrs_num]);
532                 hw->mc_addrs_num++;
533         }
534         rte_spinlock_unlock(&hw->lock);
535
536         return 0;
537 }
538
539 static int
540 hns3vf_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
541 {
542         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
543         struct hns3_hw *hw = &hns->hw;
544         struct rte_ether_addr *addr;
545         int err = 0;
546         int ret;
547         int i;
548
549         for (i = 0; i < hw->mc_addrs_num; i++) {
550                 addr = &hw->mc_addrs[i];
551                 if (!rte_is_multicast_ether_addr(addr))
552                         continue;
553                 if (del)
554                         ret = hns3vf_remove_mc_mac_addr(hw, addr);
555                 else
556                         ret = hns3vf_add_mc_mac_addr(hw, addr);
557                 if (ret) {
558                         err = ret;
559                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
560                                               addr);
561                         hns3_err(hw, "Failed to %s mc mac addr: %s for vf: %d",
562                                  del ? "Remove" : "Restore", mac_str, ret);
563                 }
564         }
565         return err;
566 }
567
568 static int
569 hns3vf_set_promisc_mode(struct hns3_hw *hw, bool en_bc_pmc,
570                         bool en_uc_pmc, bool en_mc_pmc)
571 {
572         struct hns3_mbx_vf_to_pf_cmd *req;
573         struct hns3_cmd_desc desc;
574         int ret;
575
576         req = (struct hns3_mbx_vf_to_pf_cmd *)desc.data;
577
578         /*
579          * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev driver,
580          * so there are some features for promiscuous/allmulticast mode in hns3
581          * VF PMD driver as below:
582          * 1. The promiscuous/allmulticast mode can be configured successfully
583          *    only based on the trusted VF device. If based on the non trusted
584          *    VF device, configuring promiscuous/allmulticast mode will fail.
585          *    The hns3 VF device can be confiruged as trusted device by hns3 PF
586          *    kernel ethdev driver on the host by the following command:
587          *      "ip link set <eth num> vf <vf id> turst on"
588          * 2. After the promiscuous mode is configured successfully, hns3 VF PMD
589          *    driver can receive the ingress and outgoing traffic. In the words,
590          *    all the ingress packets, all the packets sent from the PF and
591          *    other VFs on the same physical port.
592          * 3. Note: Because of the hardware constraints, By default vlan filter
593          *    is enabled and couldn't be turned off based on VF device, so vlan
594          *    filter is still effective even in promiscuous mode. If upper
595          *    applications don't call rte_eth_dev_vlan_filter API function to
596          *    set vlan based on VF device, hns3 VF PMD driver will can't receive
597          *    the packets with vlan tag in promiscuoue mode.
598          */
599         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MBX_VF_TO_PF, false);
600         req->msg[0] = HNS3_MBX_SET_PROMISC_MODE;
601         req->msg[1] = en_bc_pmc ? 1 : 0;
602         req->msg[2] = en_uc_pmc ? 1 : 0;
603         req->msg[3] = en_mc_pmc ? 1 : 0;
604         req->msg[4] = hw->promisc_mode == HNS3_LIMIT_PROMISC_MODE ? 1 : 0;
605
606         ret = hns3_cmd_send(hw, &desc, 1);
607         if (ret)
608                 hns3_err(hw, "Set promisc mode fail, ret = %d", ret);
609
610         return ret;
611 }
612
613 static int
614 hns3vf_dev_promiscuous_enable(struct rte_eth_dev *dev)
615 {
616         struct hns3_adapter *hns = dev->data->dev_private;
617         struct hns3_hw *hw = &hns->hw;
618         int ret;
619
620         ret = hns3vf_set_promisc_mode(hw, true, true, true);
621         if (ret)
622                 hns3_err(hw, "Failed to enable promiscuous mode, ret = %d",
623                         ret);
624         return ret;
625 }
626
627 static int
628 hns3vf_dev_promiscuous_disable(struct rte_eth_dev *dev)
629 {
630         bool allmulti = dev->data->all_multicast ? true : false;
631         struct hns3_adapter *hns = dev->data->dev_private;
632         struct hns3_hw *hw = &hns->hw;
633         int ret;
634
635         ret = hns3vf_set_promisc_mode(hw, true, false, allmulti);
636         if (ret)
637                 hns3_err(hw, "Failed to disable promiscuous mode, ret = %d",
638                         ret);
639         return ret;
640 }
641
642 static int
643 hns3vf_dev_allmulticast_enable(struct rte_eth_dev *dev)
644 {
645         struct hns3_adapter *hns = dev->data->dev_private;
646         struct hns3_hw *hw = &hns->hw;
647         int ret;
648
649         if (dev->data->promiscuous)
650                 return 0;
651
652         ret = hns3vf_set_promisc_mode(hw, true, false, true);
653         if (ret)
654                 hns3_err(hw, "Failed to enable allmulticast mode, ret = %d",
655                         ret);
656         return ret;
657 }
658
659 static int
660 hns3vf_dev_allmulticast_disable(struct rte_eth_dev *dev)
661 {
662         struct hns3_adapter *hns = dev->data->dev_private;
663         struct hns3_hw *hw = &hns->hw;
664         int ret;
665
666         if (dev->data->promiscuous)
667                 return 0;
668
669         ret = hns3vf_set_promisc_mode(hw, true, false, false);
670         if (ret)
671                 hns3_err(hw, "Failed to disable allmulticast mode, ret = %d",
672                         ret);
673         return ret;
674 }
675
676 static int
677 hns3vf_restore_promisc(struct hns3_adapter *hns)
678 {
679         struct hns3_hw *hw = &hns->hw;
680         bool allmulti = hw->data->all_multicast ? true : false;
681
682         if (hw->data->promiscuous)
683                 return hns3vf_set_promisc_mode(hw, true, true, true);
684
685         return hns3vf_set_promisc_mode(hw, true, false, allmulti);
686 }
687
688 static int
689 hns3vf_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id,
690                              bool mmap, enum hns3_ring_type queue_type,
691                              uint16_t queue_id)
692 {
693         struct hns3_vf_bind_vector_msg bind_msg;
694         const char *op_str;
695         uint16_t code;
696         int ret;
697
698         memset(&bind_msg, 0, sizeof(bind_msg));
699         code = mmap ? HNS3_MBX_MAP_RING_TO_VECTOR :
700                 HNS3_MBX_UNMAP_RING_TO_VECTOR;
701         bind_msg.vector_id = vector_id;
702
703         if (queue_type == HNS3_RING_TYPE_RX)
704                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_RX;
705         else
706                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_TX;
707
708         bind_msg.param[0].ring_type = queue_type;
709         bind_msg.ring_num = 1;
710         bind_msg.param[0].tqp_index = queue_id;
711         op_str = mmap ? "Map" : "Unmap";
712         ret = hns3_send_mbx_msg(hw, code, 0, (uint8_t *)&bind_msg,
713                                 sizeof(bind_msg), false, NULL, 0);
714         if (ret)
715                 hns3_err(hw, "%s TQP %u fail, vector_id is %u, ret is %d.",
716                          op_str, queue_id, bind_msg.vector_id, ret);
717
718         return ret;
719 }
720
721 static int
722 hns3vf_init_ring_with_vector(struct hns3_hw *hw)
723 {
724         uint16_t vec;
725         int ret;
726         int i;
727
728         /*
729          * In hns3 network engine, vector 0 is always the misc interrupt of this
730          * function, vector 1~N can be used respectively for the queues of the
731          * function. Tx and Rx queues with the same number share the interrupt
732          * vector. In the initialization clearing the all hardware mapping
733          * relationship configurations between queues and interrupt vectors is
734          * needed, so some error caused by the residual configurations, such as
735          * the unexpected Tx interrupt, can be avoid.
736          */
737         vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
738         if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
739                 vec = vec - 1; /* the last interrupt is reserved */
740         hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
741         for (i = 0; i < hw->intr_tqps_num; i++) {
742                 /*
743                  * Set gap limiter/rate limiter/quanity limiter algorithm
744                  * configuration for interrupt coalesce of queue's interrupt.
745                  */
746                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
747                                        HNS3_TQP_INTR_GL_DEFAULT);
748                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
749                                        HNS3_TQP_INTR_GL_DEFAULT);
750                 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
751                 /*
752                  * QL(quantity limiter) is not used currently, just set 0 to
753                  * close it.
754                  */
755                 hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
756
757                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
758                                                    HNS3_RING_TYPE_TX, i);
759                 if (ret) {
760                         PMD_INIT_LOG(ERR, "VF fail to unbind TX ring(%d) with "
761                                           "vector: %u, ret=%d", i, vec, ret);
762                         return ret;
763                 }
764
765                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
766                                                    HNS3_RING_TYPE_RX, i);
767                 if (ret) {
768                         PMD_INIT_LOG(ERR, "VF fail to unbind RX ring(%d) with "
769                                           "vector: %u, ret=%d", i, vec, ret);
770                         return ret;
771                 }
772         }
773
774         return 0;
775 }
776
777 static int
778 hns3vf_dev_configure(struct rte_eth_dev *dev)
779 {
780         struct hns3_adapter *hns = dev->data->dev_private;
781         struct hns3_hw *hw = &hns->hw;
782         struct rte_eth_conf *conf = &dev->data->dev_conf;
783         enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
784         uint16_t nb_rx_q = dev->data->nb_rx_queues;
785         uint16_t nb_tx_q = dev->data->nb_tx_queues;
786         struct rte_eth_rss_conf rss_conf;
787         uint32_t max_rx_pkt_len;
788         uint16_t mtu;
789         bool gro_en;
790         int ret;
791
792         hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
793
794         /*
795          * Some versions of hardware network engine does not support
796          * individually enable/disable/reset the Tx or Rx queue. These devices
797          * must enable/disable/reset Tx and Rx queues at the same time. When the
798          * numbers of Tx queues allocated by upper applications are not equal to
799          * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
800          * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
801          * work as usual. But these fake queues are imperceptible, and can not
802          * be used by upper applications.
803          */
804         ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
805         if (ret) {
806                 hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.", ret);
807                 hw->cfg_max_queues = 0;
808                 return ret;
809         }
810
811         hw->adapter_state = HNS3_NIC_CONFIGURING;
812         if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
813                 hns3_err(hw, "setting link speed/duplex not supported");
814                 ret = -EINVAL;
815                 goto cfg_err;
816         }
817
818         /* When RSS is not configured, redirect the packet queue 0 */
819         if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
820                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
821                 hw->rss_dis_flag = false;
822                 rss_conf = conf->rx_adv_conf.rss_conf;
823                 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
824                 if (ret)
825                         goto cfg_err;
826         }
827
828         /*
829          * If jumbo frames are enabled, MTU needs to be refreshed
830          * according to the maximum RX packet length.
831          */
832         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
833                 max_rx_pkt_len = conf->rxmode.max_rx_pkt_len;
834                 if (max_rx_pkt_len > HNS3_MAX_FRAME_LEN ||
835                     max_rx_pkt_len <= HNS3_DEFAULT_FRAME_LEN) {
836                         hns3_err(hw, "maximum Rx packet length must be greater "
837                                  "than %u and less than %u when jumbo frame enabled.",
838                                  (uint16_t)HNS3_DEFAULT_FRAME_LEN,
839                                  (uint16_t)HNS3_MAX_FRAME_LEN);
840                         ret = -EINVAL;
841                         goto cfg_err;
842                 }
843
844                 mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(max_rx_pkt_len);
845                 ret = hns3vf_dev_mtu_set(dev, mtu);
846                 if (ret)
847                         goto cfg_err;
848                 dev->data->mtu = mtu;
849         }
850
851         ret = hns3vf_dev_configure_vlan(dev);
852         if (ret)
853                 goto cfg_err;
854
855         /* config hardware GRO */
856         gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
857         ret = hns3_config_gro(hw, gro_en);
858         if (ret)
859                 goto cfg_err;
860
861         hns3_init_rx_ptype_tble(dev);
862
863         hw->adapter_state = HNS3_NIC_CONFIGURED;
864         return 0;
865
866 cfg_err:
867         hw->cfg_max_queues = 0;
868         (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
869         hw->adapter_state = HNS3_NIC_INITIALIZED;
870
871         return ret;
872 }
873
874 static int
875 hns3vf_config_mtu(struct hns3_hw *hw, uint16_t mtu)
876 {
877         int ret;
878
879         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MTU, 0, (const uint8_t *)&mtu,
880                                 sizeof(mtu), true, NULL, 0);
881         if (ret)
882                 hns3_err(hw, "Failed to set mtu (%u) for vf: %d", mtu, ret);
883
884         return ret;
885 }
886
887 static int
888 hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
889 {
890         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
891         uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
892         int ret;
893
894         /*
895          * The hns3 PF/VF devices on the same port share the hardware MTU
896          * configuration. Currently, we send mailbox to inform hns3 PF kernel
897          * ethdev driver to finish hardware MTU configuration in hns3 VF PMD
898          * driver, there is no need to stop the port for hns3 VF device, and the
899          * MTU value issued by hns3 VF PMD driver must be less than or equal to
900          * PF's MTU.
901          */
902         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
903                 hns3_err(hw, "Failed to set mtu during resetting");
904                 return -EIO;
905         }
906
907         /*
908          * when Rx of scattered packets is off, we have some possibility of
909          * using vector Rx process function or simple Rx functions in hns3 PMD
910          * driver. If the input MTU is increased and the maximum length of
911          * received packets is greater than the length of a buffer for Rx
912          * packet, the hardware network engine needs to use multiple BDs and
913          * buffers to store these packets. This will cause problems when still
914          * using vector Rx process function or simple Rx function to receiving
915          * packets. So, when Rx of scattered packets is off and device is
916          * started, it is not permitted to increase MTU so that the maximum
917          * length of Rx packets is greater than Rx buffer length.
918          */
919         if (dev->data->dev_started && !dev->data->scattered_rx &&
920             frame_size > hw->rx_buf_len) {
921                 hns3_err(hw, "failed to set mtu because current is "
922                         "not scattered rx mode");
923                 return -EOPNOTSUPP;
924         }
925
926         rte_spinlock_lock(&hw->lock);
927         ret = hns3vf_config_mtu(hw, mtu);
928         if (ret) {
929                 rte_spinlock_unlock(&hw->lock);
930                 return ret;
931         }
932         if (mtu > RTE_ETHER_MTU)
933                 dev->data->dev_conf.rxmode.offloads |=
934                                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
935         else
936                 dev->data->dev_conf.rxmode.offloads &=
937                                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
938         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
939         rte_spinlock_unlock(&hw->lock);
940
941         return 0;
942 }
943
944 static int
945 hns3vf_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
946 {
947         struct hns3_adapter *hns = eth_dev->data->dev_private;
948         struct hns3_hw *hw = &hns->hw;
949         uint16_t q_num = hw->tqps_num;
950
951         /*
952          * In interrupt mode, 'max_rx_queues' is set based on the number of
953          * MSI-X interrupt resources of the hardware.
954          */
955         if (hw->data->dev_conf.intr_conf.rxq == 1)
956                 q_num = hw->intr_tqps_num;
957
958         info->max_rx_queues = q_num;
959         info->max_tx_queues = hw->tqps_num;
960         info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
961         info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
962         info->max_mac_addrs = HNS3_VF_UC_MACADDR_NUM;
963         info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
964         info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
965
966         info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
967                                  DEV_RX_OFFLOAD_UDP_CKSUM |
968                                  DEV_RX_OFFLOAD_TCP_CKSUM |
969                                  DEV_RX_OFFLOAD_SCTP_CKSUM |
970                                  DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
971                                  DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
972                                  DEV_RX_OFFLOAD_SCATTER |
973                                  DEV_RX_OFFLOAD_VLAN_STRIP |
974                                  DEV_RX_OFFLOAD_VLAN_FILTER |
975                                  DEV_RX_OFFLOAD_JUMBO_FRAME |
976                                  DEV_RX_OFFLOAD_RSS_HASH |
977                                  DEV_RX_OFFLOAD_TCP_LRO);
978         info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
979                                  DEV_TX_OFFLOAD_IPV4_CKSUM |
980                                  DEV_TX_OFFLOAD_TCP_CKSUM |
981                                  DEV_TX_OFFLOAD_UDP_CKSUM |
982                                  DEV_TX_OFFLOAD_SCTP_CKSUM |
983                                  DEV_TX_OFFLOAD_MULTI_SEGS |
984                                  DEV_TX_OFFLOAD_TCP_TSO |
985                                  DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
986                                  DEV_TX_OFFLOAD_GRE_TNL_TSO |
987                                  DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
988                                  DEV_TX_OFFLOAD_MBUF_FAST_FREE |
989                                  hns3_txvlan_cap_get(hw));
990
991         if (hns3_dev_outer_udp_cksum_supported(hw))
992                 info->tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_UDP_CKSUM;
993
994         if (hns3_dev_indep_txrx_supported(hw))
995                 info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
996                                  RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
997
998         info->rx_desc_lim = (struct rte_eth_desc_lim) {
999                 .nb_max = HNS3_MAX_RING_DESC,
1000                 .nb_min = HNS3_MIN_RING_DESC,
1001                 .nb_align = HNS3_ALIGN_RING_DESC,
1002         };
1003
1004         info->tx_desc_lim = (struct rte_eth_desc_lim) {
1005                 .nb_max = HNS3_MAX_RING_DESC,
1006                 .nb_min = HNS3_MIN_RING_DESC,
1007                 .nb_align = HNS3_ALIGN_RING_DESC,
1008                 .nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
1009                 .nb_mtu_seg_max = hw->max_non_tso_bd_num,
1010         };
1011
1012         info->default_rxconf = (struct rte_eth_rxconf) {
1013                 .rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
1014                 /*
1015                  * If there are no available Rx buffer descriptors, incoming
1016                  * packets are always dropped by hardware based on hns3 network
1017                  * engine.
1018                  */
1019                 .rx_drop_en = 1,
1020                 .offloads = 0,
1021         };
1022         info->default_txconf = (struct rte_eth_txconf) {
1023                 .tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
1024                 .offloads = 0,
1025         };
1026
1027         info->reta_size = hw->rss_ind_tbl_size;
1028         info->hash_key_size = HNS3_RSS_KEY_SIZE;
1029         info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
1030
1031         info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
1032         info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
1033         info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
1034         info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
1035         info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1036         info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1037
1038         return 0;
1039 }
1040
1041 static void
1042 hns3vf_clear_event_cause(struct hns3_hw *hw, uint32_t regclr)
1043 {
1044         hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
1045 }
1046
1047 static void
1048 hns3vf_disable_irq0(struct hns3_hw *hw)
1049 {
1050         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
1051 }
1052
1053 static void
1054 hns3vf_enable_irq0(struct hns3_hw *hw)
1055 {
1056         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
1057 }
1058
1059 static enum hns3vf_evt_cause
1060 hns3vf_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
1061 {
1062         struct hns3_hw *hw = &hns->hw;
1063         enum hns3vf_evt_cause ret;
1064         uint32_t cmdq_stat_reg;
1065         uint32_t rst_ing_reg;
1066         uint32_t val;
1067
1068         /* Fetch the events from their corresponding regs */
1069         cmdq_stat_reg = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_STAT_REG);
1070         if (BIT(HNS3_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1071                 rst_ing_reg = hns3_read_dev(hw, HNS3_FUN_RST_ING);
1072                 hns3_warn(hw, "resetting reg: 0x%x", rst_ing_reg);
1073                 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
1074                 __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
1075                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
1076                 hns3_write_dev(hw, HNS3_VF_RST_ING, val | HNS3_VF_RST_ING_BIT);
1077                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RST_INT_B);
1078                 if (clearval) {
1079                         hw->reset.stats.global_cnt++;
1080                         hns3_warn(hw, "Global reset detected, clear reset status");
1081                 } else {
1082                         hns3_schedule_delayed_reset(hns);
1083                         hns3_warn(hw, "Global reset detected, don't clear reset status");
1084                 }
1085
1086                 ret = HNS3VF_VECTOR0_EVENT_RST;
1087                 goto out;
1088         }
1089
1090         /* Check for vector0 mailbox(=CMDQ RX) event source */
1091         if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1092                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
1093                 ret = HNS3VF_VECTOR0_EVENT_MBX;
1094                 goto out;
1095         }
1096
1097         val = 0;
1098         ret = HNS3VF_VECTOR0_EVENT_OTHER;
1099 out:
1100         if (clearval)
1101                 *clearval = val;
1102         return ret;
1103 }
1104
1105 static void
1106 hns3vf_interrupt_handler(void *param)
1107 {
1108         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1109         struct hns3_adapter *hns = dev->data->dev_private;
1110         struct hns3_hw *hw = &hns->hw;
1111         enum hns3vf_evt_cause event_cause;
1112         uint32_t clearval;
1113
1114         /* Disable interrupt */
1115         hns3vf_disable_irq0(hw);
1116
1117         /* Read out interrupt causes */
1118         event_cause = hns3vf_check_event_cause(hns, &clearval);
1119         /* Clear interrupt causes */
1120         hns3vf_clear_event_cause(hw, clearval);
1121
1122         switch (event_cause) {
1123         case HNS3VF_VECTOR0_EVENT_RST:
1124                 hns3_schedule_reset(hns);
1125                 break;
1126         case HNS3VF_VECTOR0_EVENT_MBX:
1127                 hns3_dev_handle_mbx_msg(hw);
1128                 break;
1129         default:
1130                 break;
1131         }
1132
1133         /* Enable interrupt */
1134         hns3vf_enable_irq0(hw);
1135 }
1136
1137 static void
1138 hns3vf_set_default_dev_specifications(struct hns3_hw *hw)
1139 {
1140         hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
1141         hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
1142         hw->rss_key_size = HNS3_RSS_KEY_SIZE;
1143         hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
1144 }
1145
1146 static void
1147 hns3vf_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
1148 {
1149         struct hns3_dev_specs_0_cmd *req0;
1150
1151         req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
1152
1153         hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
1154         hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
1155         hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
1156         hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
1157 }
1158
1159 static int
1160 hns3vf_check_dev_specifications(struct hns3_hw *hw)
1161 {
1162         if (hw->rss_ind_tbl_size == 0 ||
1163             hw->rss_ind_tbl_size > HNS3_RSS_IND_TBL_SIZE_MAX) {
1164                 hns3_warn(hw, "the size of hash lookup table configured (%u)"
1165                               " exceeds the maximum(%u)", hw->rss_ind_tbl_size,
1166                               HNS3_RSS_IND_TBL_SIZE_MAX);
1167                 return -EINVAL;
1168         }
1169
1170         return 0;
1171 }
1172
1173 static int
1174 hns3vf_query_dev_specifications(struct hns3_hw *hw)
1175 {
1176         struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
1177         int ret;
1178         int i;
1179
1180         for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
1181                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
1182                                           true);
1183                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1184         }
1185         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
1186
1187         ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
1188         if (ret)
1189                 return ret;
1190
1191         hns3vf_parse_dev_specifications(hw, desc);
1192
1193         return hns3vf_check_dev_specifications(hw);
1194 }
1195
1196 void
1197 hns3vf_update_push_lsc_cap(struct hns3_hw *hw, bool supported)
1198 {
1199         uint16_t val = supported ? HNS3_PF_PUSH_LSC_CAP_SUPPORTED :
1200                                    HNS3_PF_PUSH_LSC_CAP_NOT_SUPPORTED;
1201         uint16_t exp = HNS3_PF_PUSH_LSC_CAP_UNKNOWN;
1202         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1203
1204         if (vf->pf_push_lsc_cap == HNS3_PF_PUSH_LSC_CAP_UNKNOWN)
1205                 __atomic_compare_exchange(&vf->pf_push_lsc_cap, &exp, &val, 0,
1206                                           __ATOMIC_ACQUIRE, __ATOMIC_ACQUIRE);
1207 }
1208
1209 static void
1210 hns3vf_get_push_lsc_cap(struct hns3_hw *hw)
1211 {
1212 #define HNS3_CHECK_PUSH_LSC_CAP_TIMEOUT_MS      500
1213
1214         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
1215         int32_t remain_ms = HNS3_CHECK_PUSH_LSC_CAP_TIMEOUT_MS;
1216         uint16_t val = HNS3_PF_PUSH_LSC_CAP_NOT_SUPPORTED;
1217         uint16_t exp = HNS3_PF_PUSH_LSC_CAP_UNKNOWN;
1218         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1219
1220         __atomic_store_n(&vf->pf_push_lsc_cap, HNS3_PF_PUSH_LSC_CAP_UNKNOWN,
1221                          __ATOMIC_RELEASE);
1222
1223         (void)hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1224                                 NULL, 0);
1225
1226         while (remain_ms > 0) {
1227                 rte_delay_ms(HNS3_POLL_RESPONE_MS);
1228                 if (__atomic_load_n(&vf->pf_push_lsc_cap, __ATOMIC_ACQUIRE) !=
1229                         HNS3_PF_PUSH_LSC_CAP_UNKNOWN)
1230                         break;
1231                 remain_ms--;
1232         }
1233
1234         /*
1235          * When exit above loop, the pf_push_lsc_cap could be one of the three
1236          * state: unknown (means pf not ack), not_supported, supported.
1237          * Here config it as 'not_supported' when it's 'unknown' state.
1238          */
1239         __atomic_compare_exchange(&vf->pf_push_lsc_cap, &exp, &val, 0,
1240                                   __ATOMIC_ACQUIRE, __ATOMIC_ACQUIRE);
1241
1242         if (__atomic_load_n(&vf->pf_push_lsc_cap, __ATOMIC_ACQUIRE) ==
1243                 HNS3_PF_PUSH_LSC_CAP_SUPPORTED) {
1244                 hns3_info(hw, "detect PF support push link status change!");
1245         } else {
1246                 /*
1247                  * Framework already set RTE_ETH_DEV_INTR_LSC bit because driver
1248                  * declared RTE_PCI_DRV_INTR_LSC in drv_flags. So here cleared
1249                  * the RTE_ETH_DEV_INTR_LSC capability.
1250                  */
1251                 dev->data->dev_flags &= ~RTE_ETH_DEV_INTR_LSC;
1252         }
1253 }
1254
1255 static int
1256 hns3vf_get_capability(struct hns3_hw *hw)
1257 {
1258         struct rte_pci_device *pci_dev;
1259         struct rte_eth_dev *eth_dev;
1260         uint8_t revision;
1261         int ret;
1262
1263         eth_dev = &rte_eth_devices[hw->data->port_id];
1264         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1265
1266         /* Get PCI revision id */
1267         ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
1268                                   HNS3_PCI_REVISION_ID);
1269         if (ret != HNS3_PCI_REVISION_ID_LEN) {
1270                 PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
1271                              ret);
1272                 return -EIO;
1273         }
1274         hw->revision = revision;
1275
1276         if (revision < PCI_REVISION_ID_HIP09_A) {
1277                 hns3vf_set_default_dev_specifications(hw);
1278                 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
1279                 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
1280                 hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
1281                 hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE1;
1282                 hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
1283                 hw->rss_info.ipv6_sctp_offload_supported = false;
1284                 hw->promisc_mode = HNS3_UNLIMIT_PROMISC_MODE;
1285                 return 0;
1286         }
1287
1288         ret = hns3vf_query_dev_specifications(hw);
1289         if (ret) {
1290                 PMD_INIT_LOG(ERR,
1291                              "failed to query dev specifications, ret = %d",
1292                              ret);
1293                 return ret;
1294         }
1295
1296         hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
1297         hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
1298         hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
1299         hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE2;
1300         hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
1301         hw->rss_info.ipv6_sctp_offload_supported = true;
1302         hw->promisc_mode = HNS3_LIMIT_PROMISC_MODE;
1303
1304         return 0;
1305 }
1306
1307 static int
1308 hns3vf_check_tqp_info(struct hns3_hw *hw)
1309 {
1310         if (hw->tqps_num == 0) {
1311                 PMD_INIT_LOG(ERR, "Get invalid tqps_num(0) from PF.");
1312                 return -EINVAL;
1313         }
1314
1315         if (hw->rss_size_max == 0) {
1316                 PMD_INIT_LOG(ERR, "Get invalid rss_size_max(0) from PF.");
1317                 return -EINVAL;
1318         }
1319
1320         hw->tqps_num = RTE_MIN(hw->rss_size_max, hw->tqps_num);
1321
1322         return 0;
1323 }
1324
1325 static int
1326 hns3vf_get_port_base_vlan_filter_state(struct hns3_hw *hw)
1327 {
1328         uint8_t resp_msg;
1329         int ret;
1330
1331         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN,
1332                                 HNS3_MBX_GET_PORT_BASE_VLAN_STATE, NULL, 0,
1333                                 true, &resp_msg, sizeof(resp_msg));
1334         if (ret) {
1335                 if (ret == -ETIME) {
1336                         /*
1337                          * Getting current port based VLAN state from PF driver
1338                          * will not affect VF driver's basic function. Because
1339                          * the VF driver relies on hns3 PF kernel ether driver,
1340                          * to avoid introducing compatibility issues with older
1341                          * version of PF driver, no failure will be returned
1342                          * when the return value is ETIME. This return value has
1343                          * the following scenarios:
1344                          * 1) Firmware didn't return the results in time
1345                          * 2) the result return by firmware is timeout
1346                          * 3) the older version of kernel side PF driver does
1347                          *    not support this mailbox message.
1348                          * For scenarios 1 and 2, it is most likely that a
1349                          * hardware error has occurred, or a hardware reset has
1350                          * occurred. In this case, these errors will be caught
1351                          * by other functions.
1352                          */
1353                         PMD_INIT_LOG(WARNING,
1354                                 "failed to get PVID state for timeout, maybe "
1355                                 "kernel side PF driver doesn't support this "
1356                                 "mailbox message, or firmware didn't respond.");
1357                         resp_msg = HNS3_PORT_BASE_VLAN_DISABLE;
1358                 } else {
1359                         PMD_INIT_LOG(ERR, "failed to get port based VLAN state,"
1360                                 " ret = %d", ret);
1361                         return ret;
1362                 }
1363         }
1364         hw->port_base_vlan_cfg.state = resp_msg ?
1365                 HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
1366         return 0;
1367 }
1368
1369 static int
1370 hns3vf_get_queue_info(struct hns3_hw *hw)
1371 {
1372 #define HNS3VF_TQPS_RSS_INFO_LEN        6
1373         uint8_t resp_msg[HNS3VF_TQPS_RSS_INFO_LEN];
1374         int ret;
1375
1376         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QINFO, 0, NULL, 0, true,
1377                                 resp_msg, HNS3VF_TQPS_RSS_INFO_LEN);
1378         if (ret) {
1379                 PMD_INIT_LOG(ERR, "Failed to get tqp info from PF: %d", ret);
1380                 return ret;
1381         }
1382
1383         memcpy(&hw->tqps_num, &resp_msg[0], sizeof(uint16_t));
1384         memcpy(&hw->rss_size_max, &resp_msg[2], sizeof(uint16_t));
1385
1386         return hns3vf_check_tqp_info(hw);
1387 }
1388
1389 static int
1390 hns3vf_get_queue_depth(struct hns3_hw *hw)
1391 {
1392 #define HNS3VF_TQPS_DEPTH_INFO_LEN      4
1393         uint8_t resp_msg[HNS3VF_TQPS_DEPTH_INFO_LEN];
1394         int ret;
1395
1396         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QDEPTH, 0, NULL, 0, true,
1397                                 resp_msg, HNS3VF_TQPS_DEPTH_INFO_LEN);
1398         if (ret) {
1399                 PMD_INIT_LOG(ERR, "Failed to get tqp depth info from PF: %d",
1400                              ret);
1401                 return ret;
1402         }
1403
1404         memcpy(&hw->num_tx_desc, &resp_msg[0], sizeof(uint16_t));
1405         memcpy(&hw->num_rx_desc, &resp_msg[2], sizeof(uint16_t));
1406
1407         return 0;
1408 }
1409
1410 static void
1411 hns3vf_update_caps(struct hns3_hw *hw, uint32_t caps)
1412 {
1413         if (hns3_get_bit(caps, HNS3VF_CAPS_VLAN_FLT_MOD_B))
1414                 hns3_set_bit(hw->capability,
1415                                 HNS3_DEV_SUPPORT_VF_VLAN_FLT_MOD_B, 1);
1416 }
1417
1418 static int
1419 hns3vf_get_num_tc(struct hns3_hw *hw)
1420 {
1421         uint8_t num_tc = 0;
1422         uint32_t i;
1423
1424         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
1425                 if (hw->hw_tc_map & BIT(i))
1426                         num_tc++;
1427         }
1428         return num_tc;
1429 }
1430
1431 static int
1432 hns3vf_get_basic_info(struct hns3_hw *hw)
1433 {
1434         uint8_t resp_msg[HNS3_MBX_MAX_RESP_DATA_SIZE];
1435         struct hns3_basic_info *basic_info;
1436         int ret;
1437
1438         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_BASIC_INFO, 0, NULL, 0,
1439                                 true, resp_msg, sizeof(resp_msg));
1440         if (ret) {
1441                 hns3_err(hw, "failed to get basic info from PF, ret = %d.",
1442                                 ret);
1443                 return ret;
1444         }
1445
1446         basic_info = (struct hns3_basic_info *)resp_msg;
1447         hw->hw_tc_map = basic_info->hw_tc_map;
1448         hw->num_tc = hns3vf_get_num_tc(hw);
1449         hw->pf_vf_if_version = basic_info->pf_vf_if_version;
1450         hns3vf_update_caps(hw, basic_info->caps);
1451
1452         return 0;
1453 }
1454
1455 static int
1456 hns3vf_get_host_mac_addr(struct hns3_hw *hw)
1457 {
1458         uint8_t host_mac[RTE_ETHER_ADDR_LEN];
1459         int ret;
1460
1461         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_MAC_ADDR, 0, NULL, 0,
1462                                 true, host_mac, RTE_ETHER_ADDR_LEN);
1463         if (ret) {
1464                 hns3_err(hw, "Failed to get mac addr from PF: %d", ret);
1465                 return ret;
1466         }
1467
1468         memcpy(hw->mac.mac_addr, host_mac, RTE_ETHER_ADDR_LEN);
1469
1470         return 0;
1471 }
1472
1473 static int
1474 hns3vf_get_configuration(struct hns3_hw *hw)
1475 {
1476         int ret;
1477
1478         hw->mac.media_type = HNS3_MEDIA_TYPE_NONE;
1479         hw->rss_dis_flag = false;
1480
1481         /* Get device capability */
1482         ret = hns3vf_get_capability(hw);
1483         if (ret) {
1484                 PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
1485                 return ret;
1486         }
1487
1488         hns3vf_get_push_lsc_cap(hw);
1489
1490         /* Get basic info from PF */
1491         ret = hns3vf_get_basic_info(hw);
1492         if (ret)
1493                 return ret;
1494
1495         /* Get queue configuration from PF */
1496         ret = hns3vf_get_queue_info(hw);
1497         if (ret)
1498                 return ret;
1499
1500         /* Get queue depth info from PF */
1501         ret = hns3vf_get_queue_depth(hw);
1502         if (ret)
1503                 return ret;
1504
1505         /* Get user defined VF MAC addr from PF */
1506         ret = hns3vf_get_host_mac_addr(hw);
1507         if (ret)
1508                 return ret;
1509
1510         return hns3vf_get_port_base_vlan_filter_state(hw);
1511 }
1512
1513 static int
1514 hns3vf_set_tc_queue_mapping(struct hns3_adapter *hns, uint16_t nb_rx_q,
1515                             uint16_t nb_tx_q)
1516 {
1517         struct hns3_hw *hw = &hns->hw;
1518
1519         return hns3_queue_to_tc_mapping(hw, nb_rx_q, nb_tx_q);
1520 }
1521
1522 static void
1523 hns3vf_request_link_info(struct hns3_hw *hw)
1524 {
1525         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1526         bool send_req;
1527         int ret;
1528
1529         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
1530                 return;
1531
1532         send_req = vf->pf_push_lsc_cap == HNS3_PF_PUSH_LSC_CAP_NOT_SUPPORTED ||
1533                    vf->req_link_info_cnt > 0;
1534         if (!send_req)
1535                 return;
1536
1537         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1538                                 NULL, 0);
1539         if (ret) {
1540                 hns3_err(hw, "failed to fetch link status, ret = %d", ret);
1541                 return;
1542         }
1543
1544         if (vf->req_link_info_cnt > 0)
1545                 vf->req_link_info_cnt--;
1546 }
1547
1548 void
1549 hns3vf_update_link_status(struct hns3_hw *hw, uint8_t link_status,
1550                           uint32_t link_speed, uint8_t link_duplex)
1551 {
1552         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
1553         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1554         struct hns3_mac *mac = &hw->mac;
1555         int ret;
1556
1557         /*
1558          * PF kernel driver may push link status when VF driver is in resetting,
1559          * driver will stop polling job in this case, after resetting done
1560          * driver will start polling job again.
1561          * When polling job started, driver will get initial link status by
1562          * sending request to PF kernel driver, then could update link status by
1563          * process PF kernel driver's link status mailbox message.
1564          */
1565         if (!__atomic_load_n(&vf->poll_job_started, __ATOMIC_RELAXED))
1566                 return;
1567
1568         if (hw->adapter_state != HNS3_NIC_STARTED)
1569                 return;
1570
1571         mac->link_status = link_status;
1572         mac->link_speed = link_speed;
1573         mac->link_duplex = link_duplex;
1574         ret = hns3vf_dev_link_update(dev, 0);
1575         if (ret == 0 && dev->data->dev_conf.intr_conf.lsc != 0)
1576                 hns3_start_report_lse(dev);
1577 }
1578
1579 static int
1580 hns3vf_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
1581 {
1582 #define HNS3VF_VLAN_MBX_MSG_LEN 5
1583         struct hns3_hw *hw = &hns->hw;
1584         uint8_t msg_data[HNS3VF_VLAN_MBX_MSG_LEN];
1585         uint16_t proto = htons(RTE_ETHER_TYPE_VLAN);
1586         uint8_t is_kill = on ? 0 : 1;
1587
1588         msg_data[0] = is_kill;
1589         memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1590         memcpy(&msg_data[3], &proto, sizeof(proto));
1591
1592         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_FILTER,
1593                                  msg_data, HNS3VF_VLAN_MBX_MSG_LEN, true, NULL,
1594                                  0);
1595 }
1596
1597 static int
1598 hns3vf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1599 {
1600         struct hns3_adapter *hns = dev->data->dev_private;
1601         struct hns3_hw *hw = &hns->hw;
1602         int ret;
1603
1604         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
1605                 hns3_err(hw,
1606                          "vf set vlan id failed during resetting, vlan_id =%u",
1607                          vlan_id);
1608                 return -EIO;
1609         }
1610         rte_spinlock_lock(&hw->lock);
1611         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1612         rte_spinlock_unlock(&hw->lock);
1613         if (ret)
1614                 hns3_err(hw, "vf set vlan id failed, vlan_id =%u, ret =%d",
1615                          vlan_id, ret);
1616
1617         return ret;
1618 }
1619
1620 static int
1621 hns3vf_en_vlan_filter(struct hns3_hw *hw, bool enable)
1622 {
1623         uint8_t msg_data;
1624         int ret;
1625
1626         if (!hns3_dev_vf_vlan_flt_supported(hw))
1627                 return 0;
1628
1629         msg_data = enable ? 1 : 0;
1630         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN,
1631                         HNS3_MBX_ENABLE_VLAN_FILTER, &msg_data,
1632                         sizeof(msg_data), true, NULL, 0);
1633         if (ret)
1634                 hns3_err(hw, "%s vlan filter failed, ret = %d.",
1635                                 enable ? "enable" : "disable", ret);
1636
1637         return ret;
1638 }
1639
1640 static int
1641 hns3vf_en_hw_strip_rxvtag(struct hns3_hw *hw, bool enable)
1642 {
1643         uint8_t msg_data;
1644         int ret;
1645
1646         msg_data = enable ? 1 : 0;
1647         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_RX_OFF_CFG,
1648                                 &msg_data, sizeof(msg_data), false, NULL, 0);
1649         if (ret)
1650                 hns3_err(hw, "vf %s strip failed, ret = %d.",
1651                                 enable ? "enable" : "disable", ret);
1652
1653         return ret;
1654 }
1655
1656 static int
1657 hns3vf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1658 {
1659         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1660         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1661         unsigned int tmp_mask;
1662         int ret = 0;
1663
1664         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
1665                 hns3_err(hw, "vf set vlan offload failed during resetting, "
1666                              "mask = 0x%x", mask);
1667                 return -EIO;
1668         }
1669
1670         tmp_mask = (unsigned int)mask;
1671
1672         if (tmp_mask & ETH_VLAN_FILTER_MASK) {
1673                 rte_spinlock_lock(&hw->lock);
1674                 /* Enable or disable VLAN filter */
1675                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
1676                         ret = hns3vf_en_vlan_filter(hw, true);
1677                 else
1678                         ret = hns3vf_en_vlan_filter(hw, false);
1679                 rte_spinlock_unlock(&hw->lock);
1680                 if (ret)
1681                         return ret;
1682         }
1683
1684         /* Vlan stripping setting */
1685         if (tmp_mask & ETH_VLAN_STRIP_MASK) {
1686                 rte_spinlock_lock(&hw->lock);
1687                 /* Enable or disable VLAN stripping */
1688                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1689                         ret = hns3vf_en_hw_strip_rxvtag(hw, true);
1690                 else
1691                         ret = hns3vf_en_hw_strip_rxvtag(hw, false);
1692                 rte_spinlock_unlock(&hw->lock);
1693         }
1694
1695         return ret;
1696 }
1697
1698 static int
1699 hns3vf_handle_all_vlan_table(struct hns3_adapter *hns, int on)
1700 {
1701         struct rte_vlan_filter_conf *vfc;
1702         struct hns3_hw *hw = &hns->hw;
1703         uint16_t vlan_id;
1704         uint64_t vbit;
1705         uint64_t ids;
1706         int ret = 0;
1707         uint32_t i;
1708
1709         vfc = &hw->data->vlan_filter_conf;
1710         for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1711                 if (vfc->ids[i] == 0)
1712                         continue;
1713                 ids = vfc->ids[i];
1714                 while (ids) {
1715                         /*
1716                          * 64 means the num bits of ids, one bit corresponds to
1717                          * one vlan id
1718                          */
1719                         vlan_id = 64 * i;
1720                         /* count trailing zeroes */
1721                         vbit = ~ids & (ids - 1);
1722                         /* clear least significant bit set */
1723                         ids ^= (ids ^ (ids - 1)) ^ vbit;
1724                         for (; vbit;) {
1725                                 vbit >>= 1;
1726                                 vlan_id++;
1727                         }
1728                         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1729                         if (ret) {
1730                                 hns3_err(hw,
1731                                          "VF handle vlan table failed, ret =%d, on = %d",
1732                                          ret, on);
1733                                 return ret;
1734                         }
1735                 }
1736         }
1737
1738         return ret;
1739 }
1740
1741 static int
1742 hns3vf_remove_all_vlan_table(struct hns3_adapter *hns)
1743 {
1744         return hns3vf_handle_all_vlan_table(hns, 0);
1745 }
1746
1747 static int
1748 hns3vf_restore_vlan_conf(struct hns3_adapter *hns)
1749 {
1750         struct hns3_hw *hw = &hns->hw;
1751         struct rte_eth_conf *dev_conf;
1752         bool en;
1753         int ret;
1754
1755         dev_conf = &hw->data->dev_conf;
1756         en = dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP ? true
1757                                                                    : false;
1758         ret = hns3vf_en_hw_strip_rxvtag(hw, en);
1759         if (ret)
1760                 hns3_err(hw, "VF restore vlan conf fail, en =%d, ret =%d", en,
1761                          ret);
1762         return ret;
1763 }
1764
1765 static int
1766 hns3vf_dev_configure_vlan(struct rte_eth_dev *dev)
1767 {
1768         struct hns3_adapter *hns = dev->data->dev_private;
1769         struct rte_eth_dev_data *data = dev->data;
1770         struct hns3_hw *hw = &hns->hw;
1771         int ret;
1772
1773         if (data->dev_conf.txmode.hw_vlan_reject_tagged ||
1774             data->dev_conf.txmode.hw_vlan_reject_untagged ||
1775             data->dev_conf.txmode.hw_vlan_insert_pvid) {
1776                 hns3_warn(hw, "hw_vlan_reject_tagged, hw_vlan_reject_untagged "
1777                               "or hw_vlan_insert_pvid is not support!");
1778         }
1779
1780         /* Apply vlan offload setting */
1781         ret = hns3vf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK |
1782                                         ETH_VLAN_FILTER_MASK);
1783         if (ret)
1784                 hns3_err(hw, "dev config vlan offload failed, ret = %d.", ret);
1785
1786         return ret;
1787 }
1788
1789 static int
1790 hns3vf_set_alive(struct hns3_hw *hw, bool alive)
1791 {
1792         uint8_t msg_data;
1793
1794         msg_data = alive ? 1 : 0;
1795         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_ALIVE, 0, &msg_data,
1796                                  sizeof(msg_data), false, NULL, 0);
1797 }
1798
1799 static void
1800 hns3vf_keep_alive_handler(void *param)
1801 {
1802         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1803         struct hns3_adapter *hns = eth_dev->data->dev_private;
1804         struct hns3_hw *hw = &hns->hw;
1805         int ret;
1806
1807         ret = hns3_send_mbx_msg(hw, HNS3_MBX_KEEP_ALIVE, 0, NULL, 0,
1808                                 false, NULL, 0);
1809         if (ret)
1810                 hns3_err(hw, "VF sends keeping alive cmd failed(=%d)",
1811                          ret);
1812
1813         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
1814                           eth_dev);
1815 }
1816
1817 static void
1818 hns3vf_service_handler(void *param)
1819 {
1820         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1821         struct hns3_adapter *hns = eth_dev->data->dev_private;
1822         struct hns3_hw *hw = &hns->hw;
1823
1824         /*
1825          * The query link status and reset processing are executed in the
1826          * interrupt thread. When the IMP reset occurs, IMP will not respond,
1827          * and the query operation will timeout after 30ms. In the case of
1828          * multiple PF/VFs, each query failure timeout causes the IMP reset
1829          * interrupt to fail to respond within 100ms.
1830          * Before querying the link status, check whether there is a reset
1831          * pending, and if so, abandon the query.
1832          */
1833         if (!hns3vf_is_reset_pending(hns))
1834                 hns3vf_request_link_info(hw);
1835         else
1836                 hns3_warn(hw, "Cancel the query when reset is pending");
1837
1838         rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler,
1839                           eth_dev);
1840 }
1841
1842 static void
1843 hns3vf_start_poll_job(struct rte_eth_dev *dev)
1844 {
1845 #define HNS3_REQUEST_LINK_INFO_REMAINS_CNT      3
1846
1847         struct hns3_vf *vf = HNS3_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1848
1849         if (vf->pf_push_lsc_cap == HNS3_PF_PUSH_LSC_CAP_SUPPORTED)
1850                 vf->req_link_info_cnt = HNS3_REQUEST_LINK_INFO_REMAINS_CNT;
1851
1852         __atomic_store_n(&vf->poll_job_started, 1, __ATOMIC_RELAXED);
1853
1854         hns3vf_service_handler(dev);
1855 }
1856
1857 static void
1858 hns3vf_stop_poll_job(struct rte_eth_dev *dev)
1859 {
1860         struct hns3_vf *vf = HNS3_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1861
1862         rte_eal_alarm_cancel(hns3vf_service_handler, dev);
1863
1864         __atomic_store_n(&vf->poll_job_started, 0, __ATOMIC_RELAXED);
1865 }
1866
1867 static int
1868 hns3_query_vf_resource(struct hns3_hw *hw)
1869 {
1870         struct hns3_vf_res_cmd *req;
1871         struct hns3_cmd_desc desc;
1872         uint16_t num_msi;
1873         int ret;
1874
1875         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_VF_RSRC, true);
1876         ret = hns3_cmd_send(hw, &desc, 1);
1877         if (ret) {
1878                 hns3_err(hw, "query vf resource failed, ret = %d", ret);
1879                 return ret;
1880         }
1881
1882         req = (struct hns3_vf_res_cmd *)desc.data;
1883         num_msi = hns3_get_field(rte_le_to_cpu_16(req->vf_intr_vector_number),
1884                                  HNS3_VF_VEC_NUM_M, HNS3_VF_VEC_NUM_S);
1885         if (num_msi < HNS3_MIN_VECTOR_NUM) {
1886                 hns3_err(hw, "Just %u msi resources, not enough for vf(min:%d)",
1887                          num_msi, HNS3_MIN_VECTOR_NUM);
1888                 return -EINVAL;
1889         }
1890
1891         hw->num_msi = num_msi;
1892
1893         return 0;
1894 }
1895
1896 static int
1897 hns3vf_init_hardware(struct hns3_adapter *hns)
1898 {
1899         struct hns3_hw *hw = &hns->hw;
1900         uint16_t mtu = hw->data->mtu;
1901         int ret;
1902
1903         ret = hns3vf_set_promisc_mode(hw, true, false, false);
1904         if (ret)
1905                 return ret;
1906
1907         ret = hns3vf_config_mtu(hw, mtu);
1908         if (ret)
1909                 goto err_init_hardware;
1910
1911         ret = hns3vf_vlan_filter_configure(hns, 0, 1);
1912         if (ret) {
1913                 PMD_INIT_LOG(ERR, "Failed to initialize VLAN config: %d", ret);
1914                 goto err_init_hardware;
1915         }
1916
1917         ret = hns3_config_gro(hw, false);
1918         if (ret) {
1919                 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
1920                 goto err_init_hardware;
1921         }
1922
1923         /*
1924          * In the initialization clearing the all hardware mapping relationship
1925          * configurations between queues and interrupt vectors is needed, so
1926          * some error caused by the residual configurations, such as the
1927          * unexpected interrupt, can be avoid.
1928          */
1929         ret = hns3vf_init_ring_with_vector(hw);
1930         if (ret) {
1931                 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
1932                 goto err_init_hardware;
1933         }
1934
1935         return 0;
1936
1937 err_init_hardware:
1938         (void)hns3vf_set_promisc_mode(hw, false, false, false);
1939         return ret;
1940 }
1941
1942 static int
1943 hns3vf_clear_vport_list(struct hns3_hw *hw)
1944 {
1945         return hns3_send_mbx_msg(hw, HNS3_MBX_HANDLE_VF_TBL,
1946                                  HNS3_MBX_VPORT_LIST_CLEAR, NULL, 0, false,
1947                                  NULL, 0);
1948 }
1949
1950 static int
1951 hns3vf_init_vf(struct rte_eth_dev *eth_dev)
1952 {
1953         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1954         struct hns3_adapter *hns = eth_dev->data->dev_private;
1955         struct hns3_hw *hw = &hns->hw;
1956         int ret;
1957
1958         PMD_INIT_FUNC_TRACE();
1959
1960         /* Get hardware io base address from pcie BAR2 IO space */
1961         hw->io_base = pci_dev->mem_resource[2].addr;
1962
1963         /* Firmware command queue initialize */
1964         ret = hns3_cmd_init_queue(hw);
1965         if (ret) {
1966                 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
1967                 goto err_cmd_init_queue;
1968         }
1969
1970         /* Firmware command initialize */
1971         ret = hns3_cmd_init(hw);
1972         if (ret) {
1973                 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
1974                 goto err_cmd_init;
1975         }
1976
1977         hns3_tx_push_init(eth_dev);
1978
1979         /* Get VF resource */
1980         ret = hns3_query_vf_resource(hw);
1981         if (ret)
1982                 goto err_cmd_init;
1983
1984         rte_spinlock_init(&hw->mbx_resp.lock);
1985
1986         hns3vf_clear_event_cause(hw, 0);
1987
1988         ret = rte_intr_callback_register(&pci_dev->intr_handle,
1989                                          hns3vf_interrupt_handler, eth_dev);
1990         if (ret) {
1991                 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
1992                 goto err_intr_callback_register;
1993         }
1994
1995         /* Enable interrupt */
1996         rte_intr_enable(&pci_dev->intr_handle);
1997         hns3vf_enable_irq0(hw);
1998
1999         /* Get configuration from PF */
2000         ret = hns3vf_get_configuration(hw);
2001         if (ret) {
2002                 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
2003                 goto err_get_config;
2004         }
2005
2006         ret = hns3_tqp_stats_init(hw);
2007         if (ret)
2008                 goto err_get_config;
2009
2010         /* Hardware statistics of imissed registers cleared. */
2011         ret = hns3_update_imissed_stats(hw, true);
2012         if (ret) {
2013                 hns3_err(hw, "clear imissed stats failed, ret = %d", ret);
2014                 goto err_set_tc_queue;
2015         }
2016
2017         ret = hns3vf_set_tc_queue_mapping(hns, hw->tqps_num, hw->tqps_num);
2018         if (ret) {
2019                 PMD_INIT_LOG(ERR, "failed to set tc info, ret = %d.", ret);
2020                 goto err_set_tc_queue;
2021         }
2022
2023         ret = hns3vf_clear_vport_list(hw);
2024         if (ret) {
2025                 PMD_INIT_LOG(ERR, "Failed to clear tbl list: %d", ret);
2026                 goto err_set_tc_queue;
2027         }
2028
2029         ret = hns3vf_init_hardware(hns);
2030         if (ret)
2031                 goto err_set_tc_queue;
2032
2033         hns3_rss_set_default_args(hw);
2034
2035         ret = hns3vf_set_alive(hw, true);
2036         if (ret) {
2037                 PMD_INIT_LOG(ERR, "Failed to VF send alive to PF: %d", ret);
2038                 goto err_set_tc_queue;
2039         }
2040
2041         return 0;
2042
2043 err_set_tc_queue:
2044         hns3_tqp_stats_uninit(hw);
2045
2046 err_get_config:
2047         hns3vf_disable_irq0(hw);
2048         rte_intr_disable(&pci_dev->intr_handle);
2049         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
2050                              eth_dev);
2051 err_intr_callback_register:
2052 err_cmd_init:
2053         hns3_cmd_uninit(hw);
2054         hns3_cmd_destroy_queue(hw);
2055 err_cmd_init_queue:
2056         hw->io_base = NULL;
2057
2058         return ret;
2059 }
2060
2061 static void
2062 hns3vf_uninit_vf(struct rte_eth_dev *eth_dev)
2063 {
2064         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2065         struct hns3_adapter *hns = eth_dev->data->dev_private;
2066         struct hns3_hw *hw = &hns->hw;
2067
2068         PMD_INIT_FUNC_TRACE();
2069
2070         hns3_rss_uninit(hns);
2071         (void)hns3_config_gro(hw, false);
2072         (void)hns3vf_set_alive(hw, false);
2073         (void)hns3vf_set_promisc_mode(hw, false, false, false);
2074         hns3_flow_uninit(eth_dev);
2075         hns3_tqp_stats_uninit(hw);
2076         hns3vf_disable_irq0(hw);
2077         rte_intr_disable(&pci_dev->intr_handle);
2078         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
2079                              eth_dev);
2080         hns3_cmd_uninit(hw);
2081         hns3_cmd_destroy_queue(hw);
2082         hw->io_base = NULL;
2083 }
2084
2085 static int
2086 hns3vf_do_stop(struct hns3_adapter *hns)
2087 {
2088         struct hns3_hw *hw = &hns->hw;
2089         int ret;
2090
2091         hw->mac.link_status = ETH_LINK_DOWN;
2092
2093         /*
2094          * The "hns3vf_do_stop" function will also be called by .stop_service to
2095          * prepare reset. At the time of global or IMP reset, the command cannot
2096          * be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be
2097          * accessed during the reset process. So the mbuf can not be released
2098          * during reset and is required to be released after the reset is
2099          * completed.
2100          */
2101         if (__atomic_load_n(&hw->reset.resetting,  __ATOMIC_RELAXED) == 0)
2102                 hns3_dev_release_mbufs(hns);
2103
2104         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) {
2105                 hns3vf_configure_mac_addr(hns, true);
2106                 ret = hns3_reset_all_tqps(hns);
2107                 if (ret) {
2108                         hns3_err(hw, "failed to reset all queues ret = %d",
2109                                  ret);
2110                         return ret;
2111                 }
2112         }
2113         return 0;
2114 }
2115
2116 static void
2117 hns3vf_unmap_rx_interrupt(struct rte_eth_dev *dev)
2118 {
2119         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2120         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2121         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2122         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
2123         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
2124         uint16_t q_id;
2125
2126         if (dev->data->dev_conf.intr_conf.rxq == 0)
2127                 return;
2128
2129         /* unmap the ring with vector */
2130         if (rte_intr_allow_others(intr_handle)) {
2131                 vec = RTE_INTR_VEC_RXTX_OFFSET;
2132                 base = RTE_INTR_VEC_RXTX_OFFSET;
2133         }
2134         if (rte_intr_dp_is_en(intr_handle)) {
2135                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2136                         (void)hns3vf_bind_ring_with_vector(hw, vec, false,
2137                                                            HNS3_RING_TYPE_RX,
2138                                                            q_id);
2139                         if (vec < base + intr_handle->nb_efd - 1)
2140                                 vec++;
2141                 }
2142         }
2143         /* Clean datapath event and queue/vec mapping */
2144         rte_intr_efd_disable(intr_handle);
2145         if (intr_handle->intr_vec) {
2146                 rte_free(intr_handle->intr_vec);
2147                 intr_handle->intr_vec = NULL;
2148         }
2149 }
2150
2151 static int
2152 hns3vf_dev_stop(struct rte_eth_dev *dev)
2153 {
2154         struct hns3_adapter *hns = dev->data->dev_private;
2155         struct hns3_hw *hw = &hns->hw;
2156
2157         PMD_INIT_FUNC_TRACE();
2158         dev->data->dev_started = 0;
2159
2160         hw->adapter_state = HNS3_NIC_STOPPING;
2161         hns3_set_rxtx_function(dev);
2162         rte_wmb();
2163         /* Disable datapath on secondary process. */
2164         hns3_mp_req_stop_rxtx(dev);
2165         /* Prevent crashes when queues are still in use. */
2166         rte_delay_ms(hw->cfg_max_queues);
2167
2168         rte_spinlock_lock(&hw->lock);
2169         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
2170                 hns3_stop_tqps(hw);
2171                 hns3vf_do_stop(hns);
2172                 hns3vf_unmap_rx_interrupt(dev);
2173                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2174         }
2175         hns3_rx_scattered_reset(dev);
2176         hns3vf_stop_poll_job(dev);
2177         hns3_stop_report_lse(dev);
2178         rte_spinlock_unlock(&hw->lock);
2179
2180         return 0;
2181 }
2182
2183 static int
2184 hns3vf_dev_close(struct rte_eth_dev *eth_dev)
2185 {
2186         struct hns3_adapter *hns = eth_dev->data->dev_private;
2187         struct hns3_hw *hw = &hns->hw;
2188         int ret = 0;
2189
2190         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2191                 return 0;
2192
2193         if (hw->adapter_state == HNS3_NIC_STARTED)
2194                 ret = hns3vf_dev_stop(eth_dev);
2195
2196         hw->adapter_state = HNS3_NIC_CLOSING;
2197         hns3_reset_abort(hns);
2198         hw->adapter_state = HNS3_NIC_CLOSED;
2199         rte_eal_alarm_cancel(hns3vf_keep_alive_handler, eth_dev);
2200         hns3vf_configure_all_mc_mac_addr(hns, true);
2201         hns3vf_remove_all_vlan_table(hns);
2202         hns3vf_uninit_vf(eth_dev);
2203         hns3_free_all_queues(eth_dev);
2204         rte_free(hw->reset.wait_data);
2205         hns3_mp_uninit_primary();
2206         hns3_warn(hw, "Close port %u finished", hw->data->port_id);
2207
2208         return ret;
2209 }
2210
2211 static int
2212 hns3vf_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2213                       size_t fw_size)
2214 {
2215         struct hns3_adapter *hns = eth_dev->data->dev_private;
2216         struct hns3_hw *hw = &hns->hw;
2217         uint32_t version = hw->fw_version;
2218         int ret;
2219
2220         ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2221                        hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2222                                       HNS3_FW_VERSION_BYTE3_S),
2223                        hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2224                                       HNS3_FW_VERSION_BYTE2_S),
2225                        hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2226                                       HNS3_FW_VERSION_BYTE1_S),
2227                        hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2228                                       HNS3_FW_VERSION_BYTE0_S));
2229         if (ret < 0)
2230                 return -EINVAL;
2231
2232         ret += 1; /* add the size of '\0' */
2233         if (fw_size < (size_t)ret)
2234                 return ret;
2235         else
2236                 return 0;
2237 }
2238
2239 static int
2240 hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
2241                        __rte_unused int wait_to_complete)
2242 {
2243         struct hns3_adapter *hns = eth_dev->data->dev_private;
2244         struct hns3_hw *hw = &hns->hw;
2245         struct hns3_mac *mac = &hw->mac;
2246         struct rte_eth_link new_link;
2247
2248         memset(&new_link, 0, sizeof(new_link));
2249         switch (mac->link_speed) {
2250         case ETH_SPEED_NUM_10M:
2251         case ETH_SPEED_NUM_100M:
2252         case ETH_SPEED_NUM_1G:
2253         case ETH_SPEED_NUM_10G:
2254         case ETH_SPEED_NUM_25G:
2255         case ETH_SPEED_NUM_40G:
2256         case ETH_SPEED_NUM_50G:
2257         case ETH_SPEED_NUM_100G:
2258         case ETH_SPEED_NUM_200G:
2259                 if (mac->link_status)
2260                         new_link.link_speed = mac->link_speed;
2261                 break;
2262         default:
2263                 if (mac->link_status)
2264                         new_link.link_speed = ETH_SPEED_NUM_UNKNOWN;
2265                 break;
2266         }
2267
2268         if (!mac->link_status)
2269                 new_link.link_speed = ETH_SPEED_NUM_NONE;
2270
2271         new_link.link_duplex = mac->link_duplex;
2272         new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2273         new_link.link_autoneg =
2274             !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2275
2276         return rte_eth_linkstatus_set(eth_dev, &new_link);
2277 }
2278
2279 static int
2280 hns3vf_do_start(struct hns3_adapter *hns, bool reset_queue)
2281 {
2282         struct hns3_hw *hw = &hns->hw;
2283         uint16_t nb_rx_q = hw->data->nb_rx_queues;
2284         uint16_t nb_tx_q = hw->data->nb_tx_queues;
2285         int ret;
2286
2287         ret = hns3vf_set_tc_queue_mapping(hns, nb_rx_q, nb_tx_q);
2288         if (ret)
2289                 return ret;
2290
2291         hns3_enable_rxd_adv_layout(hw);
2292
2293         ret = hns3_init_queues(hns, reset_queue);
2294         if (ret)
2295                 hns3_err(hw, "failed to init queues, ret = %d.", ret);
2296
2297         return ret;
2298 }
2299
2300 static int
2301 hns3vf_map_rx_interrupt(struct rte_eth_dev *dev)
2302 {
2303         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2304         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2305         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2306         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
2307         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
2308         uint32_t intr_vector;
2309         uint16_t q_id;
2310         int ret;
2311
2312         /*
2313          * hns3 needs a separate interrupt to be used as event interrupt which
2314          * could not be shared with task queue pair, so KERNEL drivers need
2315          * support multiple interrupt vectors.
2316          */
2317         if (dev->data->dev_conf.intr_conf.rxq == 0 ||
2318             !rte_intr_cap_multiple(intr_handle))
2319                 return 0;
2320
2321         rte_intr_disable(intr_handle);
2322         intr_vector = hw->used_rx_queues;
2323         /* It creates event fd for each intr vector when MSIX is used */
2324         if (rte_intr_efd_enable(intr_handle, intr_vector))
2325                 return -EINVAL;
2326
2327         if (intr_handle->intr_vec == NULL) {
2328                 intr_handle->intr_vec =
2329                         rte_zmalloc("intr_vec",
2330                                     hw->used_rx_queues * sizeof(int), 0);
2331                 if (intr_handle->intr_vec == NULL) {
2332                         hns3_err(hw, "Failed to allocate %u rx_queues"
2333                                      " intr_vec", hw->used_rx_queues);
2334                         ret = -ENOMEM;
2335                         goto vf_alloc_intr_vec_error;
2336                 }
2337         }
2338
2339         if (rte_intr_allow_others(intr_handle)) {
2340                 vec = RTE_INTR_VEC_RXTX_OFFSET;
2341                 base = RTE_INTR_VEC_RXTX_OFFSET;
2342         }
2343
2344         for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2345                 ret = hns3vf_bind_ring_with_vector(hw, vec, true,
2346                                                    HNS3_RING_TYPE_RX, q_id);
2347                 if (ret)
2348                         goto vf_bind_vector_error;
2349                 intr_handle->intr_vec[q_id] = vec;
2350                 /*
2351                  * If there are not enough efds (e.g. not enough interrupt),
2352                  * remaining queues will be bond to the last interrupt.
2353                  */
2354                 if (vec < base + intr_handle->nb_efd - 1)
2355                         vec++;
2356         }
2357         rte_intr_enable(intr_handle);
2358         return 0;
2359
2360 vf_bind_vector_error:
2361         free(intr_handle->intr_vec);
2362         intr_handle->intr_vec = NULL;
2363 vf_alloc_intr_vec_error:
2364         rte_intr_efd_disable(intr_handle);
2365         return ret;
2366 }
2367
2368 static int
2369 hns3vf_restore_rx_interrupt(struct hns3_hw *hw)
2370 {
2371         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
2372         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2373         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2374         uint16_t q_id;
2375         int ret;
2376
2377         if (dev->data->dev_conf.intr_conf.rxq == 0)
2378                 return 0;
2379
2380         if (rte_intr_dp_is_en(intr_handle)) {
2381                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2382                         ret = hns3vf_bind_ring_with_vector(hw,
2383                                         intr_handle->intr_vec[q_id], true,
2384                                         HNS3_RING_TYPE_RX, q_id);
2385                         if (ret)
2386                                 return ret;
2387                 }
2388         }
2389
2390         return 0;
2391 }
2392
2393 static void
2394 hns3vf_restore_filter(struct rte_eth_dev *dev)
2395 {
2396         hns3_restore_rss_filter(dev);
2397 }
2398
2399 static int
2400 hns3vf_dev_start(struct rte_eth_dev *dev)
2401 {
2402         struct hns3_adapter *hns = dev->data->dev_private;
2403         struct hns3_hw *hw = &hns->hw;
2404         int ret;
2405
2406         PMD_INIT_FUNC_TRACE();
2407         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
2408                 return -EBUSY;
2409
2410         rte_spinlock_lock(&hw->lock);
2411         hw->adapter_state = HNS3_NIC_STARTING;
2412         ret = hns3vf_do_start(hns, true);
2413         if (ret) {
2414                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2415                 rte_spinlock_unlock(&hw->lock);
2416                 return ret;
2417         }
2418         ret = hns3vf_map_rx_interrupt(dev);
2419         if (ret)
2420                 goto map_rx_inter_err;
2421
2422         /*
2423          * There are three register used to control the status of a TQP
2424          * (contains a pair of Tx queue and Rx queue) in the new version network
2425          * engine. One is used to control the enabling of Tx queue, the other is
2426          * used to control the enabling of Rx queue, and the last is the master
2427          * switch used to control the enabling of the tqp. The Tx register and
2428          * TQP register must be enabled at the same time to enable a Tx queue.
2429          * The same applies to the Rx queue. For the older network enginem, this
2430          * function only refresh the enabled flag, and it is used to update the
2431          * status of queue in the dpdk framework.
2432          */
2433         ret = hns3_start_all_txqs(dev);
2434         if (ret)
2435                 goto map_rx_inter_err;
2436
2437         ret = hns3_start_all_rxqs(dev);
2438         if (ret)
2439                 goto start_all_rxqs_fail;
2440
2441         hw->adapter_state = HNS3_NIC_STARTED;
2442         rte_spinlock_unlock(&hw->lock);
2443
2444         hns3_rx_scattered_calc(dev);
2445         hns3_set_rxtx_function(dev);
2446         hns3_mp_req_start_rxtx(dev);
2447
2448         hns3vf_restore_filter(dev);
2449
2450         /* Enable interrupt of all rx queues before enabling queues */
2451         hns3_dev_all_rx_queue_intr_enable(hw, true);
2452         hns3_start_tqps(hw);
2453
2454         if (dev->data->dev_conf.intr_conf.lsc != 0)
2455                 hns3vf_dev_link_update(dev, 0);
2456         hns3vf_start_poll_job(dev);
2457
2458         return ret;
2459
2460 start_all_rxqs_fail:
2461         hns3_stop_all_txqs(dev);
2462 map_rx_inter_err:
2463         (void)hns3vf_do_stop(hns);
2464         hw->adapter_state = HNS3_NIC_CONFIGURED;
2465         rte_spinlock_unlock(&hw->lock);
2466
2467         return ret;
2468 }
2469
2470 static bool
2471 is_vf_reset_done(struct hns3_hw *hw)
2472 {
2473 #define HNS3_FUN_RST_ING_BITS \
2474         (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) | \
2475          BIT(HNS3_VECTOR0_CORERESET_INT_B) | \
2476          BIT(HNS3_VECTOR0_IMPRESET_INT_B) | \
2477          BIT(HNS3_VECTOR0_FUNCRESET_INT_B))
2478
2479         uint32_t val;
2480
2481         if (hw->reset.level == HNS3_VF_RESET) {
2482                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
2483                 if (val & HNS3_VF_RST_ING_BIT)
2484                         return false;
2485         } else {
2486                 val = hns3_read_dev(hw, HNS3_FUN_RST_ING);
2487                 if (val & HNS3_FUN_RST_ING_BITS)
2488                         return false;
2489         }
2490         return true;
2491 }
2492
2493 bool
2494 hns3vf_is_reset_pending(struct hns3_adapter *hns)
2495 {
2496         struct hns3_hw *hw = &hns->hw;
2497         enum hns3_reset_level reset;
2498
2499         /*
2500          * According to the protocol of PCIe, FLR to a PF device resets the PF
2501          * state as well as the SR-IOV extended capability including VF Enable
2502          * which means that VFs no longer exist.
2503          *
2504          * HNS3_VF_FULL_RESET means PF device is in FLR reset. when PF device
2505          * is in FLR stage, the register state of VF device is not reliable,
2506          * so register states detection can not be carried out. In this case,
2507          * we just ignore the register states and return false to indicate that
2508          * there are no other reset states that need to be processed by driver.
2509          */
2510         if (hw->reset.level == HNS3_VF_FULL_RESET)
2511                 return false;
2512
2513         /* Check the registers to confirm whether there is reset pending */
2514         hns3vf_check_event_cause(hns, NULL);
2515         reset = hns3vf_get_reset_level(hw, &hw->reset.pending);
2516         if (hw->reset.level != HNS3_NONE_RESET && reset != HNS3_NONE_RESET &&
2517             hw->reset.level < reset) {
2518                 hns3_warn(hw, "High level reset %d is pending", reset);
2519                 return true;
2520         }
2521         return false;
2522 }
2523
2524 static int
2525 hns3vf_wait_hardware_ready(struct hns3_adapter *hns)
2526 {
2527         struct hns3_hw *hw = &hns->hw;
2528         struct hns3_wait_data *wait_data = hw->reset.wait_data;
2529         struct timeval tv;
2530
2531         if (wait_data->result == HNS3_WAIT_SUCCESS) {
2532                 /*
2533                  * After vf reset is ready, the PF may not have completed
2534                  * the reset processing. The vf sending mbox to PF may fail
2535                  * during the pf reset, so it is better to add extra delay.
2536                  */
2537                 if (hw->reset.level == HNS3_VF_FUNC_RESET ||
2538                     hw->reset.level == HNS3_FLR_RESET)
2539                         return 0;
2540                 /* Reset retry process, no need to add extra delay. */
2541                 if (hw->reset.attempts)
2542                         return 0;
2543                 if (wait_data->check_completion == NULL)
2544                         return 0;
2545
2546                 wait_data->check_completion = NULL;
2547                 wait_data->interval = 1 * MSEC_PER_SEC * USEC_PER_MSEC;
2548                 wait_data->count = 1;
2549                 wait_data->result = HNS3_WAIT_REQUEST;
2550                 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback,
2551                                   wait_data);
2552                 hns3_warn(hw, "hardware is ready, delay 1 sec for PF reset complete");
2553                 return -EAGAIN;
2554         } else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
2555                 hns3_clock_gettime(&tv);
2556                 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
2557                           tv.tv_sec, tv.tv_usec);
2558                 return -ETIME;
2559         } else if (wait_data->result == HNS3_WAIT_REQUEST)
2560                 return -EAGAIN;
2561
2562         wait_data->hns = hns;
2563         wait_data->check_completion = is_vf_reset_done;
2564         wait_data->end_ms = (uint64_t)HNS3VF_RESET_WAIT_CNT *
2565                                 HNS3VF_RESET_WAIT_MS + hns3_clock_gettime_ms();
2566         wait_data->interval = HNS3VF_RESET_WAIT_MS * USEC_PER_MSEC;
2567         wait_data->count = HNS3VF_RESET_WAIT_CNT;
2568         wait_data->result = HNS3_WAIT_REQUEST;
2569         rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
2570         return -EAGAIN;
2571 }
2572
2573 static int
2574 hns3vf_prepare_reset(struct hns3_adapter *hns)
2575 {
2576         struct hns3_hw *hw = &hns->hw;
2577         int ret;
2578
2579         if (hw->reset.level == HNS3_VF_FUNC_RESET) {
2580                 ret = hns3_send_mbx_msg(hw, HNS3_MBX_RESET, 0, NULL,
2581                                         0, true, NULL, 0);
2582                 if (ret)
2583                         return ret;
2584         }
2585         __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
2586
2587         return 0;
2588 }
2589
2590 static int
2591 hns3vf_stop_service(struct hns3_adapter *hns)
2592 {
2593         struct hns3_hw *hw = &hns->hw;
2594         struct rte_eth_dev *eth_dev;
2595
2596         eth_dev = &rte_eth_devices[hw->data->port_id];
2597         if (hw->adapter_state == HNS3_NIC_STARTED) {
2598                 /*
2599                  * Make sure call update link status before hns3vf_stop_poll_job
2600                  * because update link status depend on polling job exist.
2601                  */
2602                 hns3vf_update_link_status(hw, ETH_LINK_DOWN, hw->mac.link_speed,
2603                                           hw->mac.link_duplex);
2604                 hns3vf_stop_poll_job(eth_dev);
2605         }
2606         hw->mac.link_status = ETH_LINK_DOWN;
2607
2608         hns3_set_rxtx_function(eth_dev);
2609         rte_wmb();
2610         /* Disable datapath on secondary process. */
2611         hns3_mp_req_stop_rxtx(eth_dev);
2612         rte_delay_ms(hw->cfg_max_queues);
2613
2614         rte_spinlock_lock(&hw->lock);
2615         if (hw->adapter_state == HNS3_NIC_STARTED ||
2616             hw->adapter_state == HNS3_NIC_STOPPING) {
2617                 hns3_enable_all_queues(hw, false);
2618                 hns3vf_do_stop(hns);
2619                 hw->reset.mbuf_deferred_free = true;
2620         } else
2621                 hw->reset.mbuf_deferred_free = false;
2622
2623         /*
2624          * It is cumbersome for hardware to pick-and-choose entries for deletion
2625          * from table space. Hence, for function reset software intervention is
2626          * required to delete the entries.
2627          */
2628         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0)
2629                 hns3vf_configure_all_mc_mac_addr(hns, true);
2630         rte_spinlock_unlock(&hw->lock);
2631
2632         return 0;
2633 }
2634
2635 static int
2636 hns3vf_start_service(struct hns3_adapter *hns)
2637 {
2638         struct hns3_hw *hw = &hns->hw;
2639         struct rte_eth_dev *eth_dev;
2640
2641         eth_dev = &rte_eth_devices[hw->data->port_id];
2642         hns3_set_rxtx_function(eth_dev);
2643         hns3_mp_req_start_rxtx(eth_dev);
2644         if (hw->adapter_state == HNS3_NIC_STARTED) {
2645                 hns3vf_start_poll_job(eth_dev);
2646
2647                 /* Enable interrupt of all rx queues before enabling queues */
2648                 hns3_dev_all_rx_queue_intr_enable(hw, true);
2649                 /*
2650                  * Enable state of each rxq and txq will be recovered after
2651                  * reset, so we need to restore them before enable all tqps;
2652                  */
2653                 hns3_restore_tqp_enable_state(hw);
2654                 /*
2655                  * When finished the initialization, enable queues to receive
2656                  * and transmit packets.
2657                  */
2658                 hns3_enable_all_queues(hw, true);
2659         }
2660
2661         return 0;
2662 }
2663
2664 static int
2665 hns3vf_check_default_mac_change(struct hns3_hw *hw)
2666 {
2667         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2668         struct rte_ether_addr *hw_mac;
2669         int ret;
2670
2671         /*
2672          * The hns3 PF ethdev driver in kernel support setting VF MAC address
2673          * on the host by "ip link set ..." command. If the hns3 PF kernel
2674          * ethdev driver sets the MAC address for VF device after the
2675          * initialization of the related VF device, the PF driver will notify
2676          * VF driver to reset VF device to make the new MAC address effective
2677          * immediately. The hns3 VF PMD driver should check whether the MAC
2678          * address has been changed by the PF kernel ethdev driver, if changed
2679          * VF driver should configure hardware using the new MAC address in the
2680          * recovering hardware configuration stage of the reset process.
2681          */
2682         ret = hns3vf_get_host_mac_addr(hw);
2683         if (ret)
2684                 return ret;
2685
2686         hw_mac = (struct rte_ether_addr *)hw->mac.mac_addr;
2687         ret = rte_is_zero_ether_addr(hw_mac);
2688         if (ret) {
2689                 rte_ether_addr_copy(&hw->data->mac_addrs[0], hw_mac);
2690         } else {
2691                 ret = rte_is_same_ether_addr(&hw->data->mac_addrs[0], hw_mac);
2692                 if (!ret) {
2693                         rte_ether_addr_copy(hw_mac, &hw->data->mac_addrs[0]);
2694                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2695                                               &hw->data->mac_addrs[0]);
2696                         hns3_warn(hw, "Default MAC address has been changed to:"
2697                                   " %s by the host PF kernel ethdev driver",
2698                                   mac_str);
2699                 }
2700         }
2701
2702         return 0;
2703 }
2704
2705 static int
2706 hns3vf_restore_conf(struct hns3_adapter *hns)
2707 {
2708         struct hns3_hw *hw = &hns->hw;
2709         int ret;
2710
2711         ret = hns3vf_check_default_mac_change(hw);
2712         if (ret)
2713                 return ret;
2714
2715         ret = hns3vf_configure_mac_addr(hns, false);
2716         if (ret)
2717                 return ret;
2718
2719         ret = hns3vf_configure_all_mc_mac_addr(hns, false);
2720         if (ret)
2721                 goto err_mc_mac;
2722
2723         ret = hns3vf_restore_promisc(hns);
2724         if (ret)
2725                 goto err_vlan_table;
2726
2727         ret = hns3vf_restore_vlan_conf(hns);
2728         if (ret)
2729                 goto err_vlan_table;
2730
2731         ret = hns3vf_get_port_base_vlan_filter_state(hw);
2732         if (ret)
2733                 goto err_vlan_table;
2734
2735         ret = hns3vf_restore_rx_interrupt(hw);
2736         if (ret)
2737                 goto err_vlan_table;
2738
2739         ret = hns3_restore_gro_conf(hw);
2740         if (ret)
2741                 goto err_vlan_table;
2742
2743         if (hw->adapter_state == HNS3_NIC_STARTED) {
2744                 ret = hns3vf_do_start(hns, false);
2745                 if (ret)
2746                         goto err_vlan_table;
2747                 hns3_info(hw, "hns3vf dev restart successful!");
2748         } else if (hw->adapter_state == HNS3_NIC_STOPPING)
2749                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2750
2751         ret = hns3vf_set_alive(hw, true);
2752         if (ret) {
2753                 hns3_err(hw, "failed to VF send alive to PF: %d", ret);
2754                 goto err_vlan_table;
2755         }
2756
2757         return 0;
2758
2759 err_vlan_table:
2760         hns3vf_configure_all_mc_mac_addr(hns, true);
2761 err_mc_mac:
2762         hns3vf_configure_mac_addr(hns, true);
2763         return ret;
2764 }
2765
2766 static enum hns3_reset_level
2767 hns3vf_get_reset_level(struct hns3_hw *hw, uint64_t *levels)
2768 {
2769         enum hns3_reset_level reset_level;
2770
2771         /* return the highest priority reset level amongst all */
2772         if (hns3_atomic_test_bit(HNS3_VF_RESET, levels))
2773                 reset_level = HNS3_VF_RESET;
2774         else if (hns3_atomic_test_bit(HNS3_VF_FULL_RESET, levels))
2775                 reset_level = HNS3_VF_FULL_RESET;
2776         else if (hns3_atomic_test_bit(HNS3_VF_PF_FUNC_RESET, levels))
2777                 reset_level = HNS3_VF_PF_FUNC_RESET;
2778         else if (hns3_atomic_test_bit(HNS3_VF_FUNC_RESET, levels))
2779                 reset_level = HNS3_VF_FUNC_RESET;
2780         else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
2781                 reset_level = HNS3_FLR_RESET;
2782         else
2783                 reset_level = HNS3_NONE_RESET;
2784
2785         if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
2786                 return HNS3_NONE_RESET;
2787
2788         return reset_level;
2789 }
2790
2791 static void
2792 hns3vf_reset_service(void *param)
2793 {
2794         struct hns3_adapter *hns = (struct hns3_adapter *)param;
2795         struct hns3_hw *hw = &hns->hw;
2796         enum hns3_reset_level reset_level;
2797         struct timeval tv_delta;
2798         struct timeval tv_start;
2799         struct timeval tv;
2800         uint64_t msec;
2801
2802         /*
2803          * The interrupt is not triggered within the delay time.
2804          * The interrupt may have been lost. It is necessary to handle
2805          * the interrupt to recover from the error.
2806          */
2807         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
2808                             SCHEDULE_DEFERRED) {
2809                 __atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED,
2810                                  __ATOMIC_RELAXED);
2811                 hns3_err(hw, "Handling interrupts in delayed tasks");
2812                 hns3vf_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
2813                 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2814                 if (reset_level == HNS3_NONE_RESET) {
2815                         hns3_err(hw, "No reset level is set, try global reset");
2816                         hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
2817                 }
2818         }
2819         __atomic_store_n(&hw->reset.schedule, SCHEDULE_NONE, __ATOMIC_RELAXED);
2820
2821         /*
2822          * Hardware reset has been notified, we now have to poll & check if
2823          * hardware has actually completed the reset sequence.
2824          */
2825         reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2826         if (reset_level != HNS3_NONE_RESET) {
2827                 hns3_clock_gettime(&tv_start);
2828                 hns3_reset_process(hns, reset_level);
2829                 hns3_clock_gettime(&tv);
2830                 timersub(&tv, &tv_start, &tv_delta);
2831                 msec = hns3_clock_calctime_ms(&tv_delta);
2832                 if (msec > HNS3_RESET_PROCESS_MS)
2833                         hns3_err(hw, "%d handle long time delta %" PRIu64
2834                                  " ms time=%ld.%.6ld",
2835                                  hw->reset.level, msec, tv.tv_sec, tv.tv_usec);
2836         }
2837 }
2838
2839 static int
2840 hns3vf_reinit_dev(struct hns3_adapter *hns)
2841 {
2842         struct rte_eth_dev *eth_dev = &rte_eth_devices[hns->hw.data->port_id];
2843         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2844         struct hns3_hw *hw = &hns->hw;
2845         int ret;
2846
2847         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2848                 rte_intr_disable(&pci_dev->intr_handle);
2849                 ret = hns3vf_set_bus_master(pci_dev, true);
2850                 if (ret < 0) {
2851                         hns3_err(hw, "failed to set pci bus, ret = %d", ret);
2852                         return ret;
2853                 }
2854         }
2855
2856         /* Firmware command initialize */
2857         ret = hns3_cmd_init(hw);
2858         if (ret) {
2859                 hns3_err(hw, "Failed to init cmd: %d", ret);
2860                 return ret;
2861         }
2862
2863         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2864                 /*
2865                  * UIO enables msix by writing the pcie configuration space
2866                  * vfio_pci enables msix in rte_intr_enable.
2867                  */
2868                 if (pci_dev->kdrv == RTE_PCI_KDRV_IGB_UIO ||
2869                     pci_dev->kdrv == RTE_PCI_KDRV_UIO_GENERIC) {
2870                         if (hns3vf_enable_msix(pci_dev, true))
2871                                 hns3_err(hw, "Failed to enable msix");
2872                 }
2873
2874                 rte_intr_enable(&pci_dev->intr_handle);
2875         }
2876
2877         ret = hns3_reset_all_tqps(hns);
2878         if (ret) {
2879                 hns3_err(hw, "Failed to reset all queues: %d", ret);
2880                 return ret;
2881         }
2882
2883         ret = hns3vf_init_hardware(hns);
2884         if (ret) {
2885                 hns3_err(hw, "Failed to init hardware: %d", ret);
2886                 return ret;
2887         }
2888
2889         return 0;
2890 }
2891
2892 static const struct eth_dev_ops hns3vf_eth_dev_ops = {
2893         .dev_configure      = hns3vf_dev_configure,
2894         .dev_start          = hns3vf_dev_start,
2895         .dev_stop           = hns3vf_dev_stop,
2896         .dev_close          = hns3vf_dev_close,
2897         .mtu_set            = hns3vf_dev_mtu_set,
2898         .promiscuous_enable = hns3vf_dev_promiscuous_enable,
2899         .promiscuous_disable = hns3vf_dev_promiscuous_disable,
2900         .allmulticast_enable = hns3vf_dev_allmulticast_enable,
2901         .allmulticast_disable = hns3vf_dev_allmulticast_disable,
2902         .stats_get          = hns3_stats_get,
2903         .stats_reset        = hns3_stats_reset,
2904         .xstats_get         = hns3_dev_xstats_get,
2905         .xstats_get_names   = hns3_dev_xstats_get_names,
2906         .xstats_reset       = hns3_dev_xstats_reset,
2907         .xstats_get_by_id   = hns3_dev_xstats_get_by_id,
2908         .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
2909         .dev_infos_get      = hns3vf_dev_infos_get,
2910         .fw_version_get     = hns3vf_fw_version_get,
2911         .rx_queue_setup     = hns3_rx_queue_setup,
2912         .tx_queue_setup     = hns3_tx_queue_setup,
2913         .rx_queue_release   = hns3_dev_rx_queue_release,
2914         .tx_queue_release   = hns3_dev_tx_queue_release,
2915         .rx_queue_start     = hns3_dev_rx_queue_start,
2916         .rx_queue_stop      = hns3_dev_rx_queue_stop,
2917         .tx_queue_start     = hns3_dev_tx_queue_start,
2918         .tx_queue_stop      = hns3_dev_tx_queue_stop,
2919         .rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
2920         .rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
2921         .rxq_info_get       = hns3_rxq_info_get,
2922         .txq_info_get       = hns3_txq_info_get,
2923         .rx_burst_mode_get  = hns3_rx_burst_mode_get,
2924         .tx_burst_mode_get  = hns3_tx_burst_mode_get,
2925         .mac_addr_add       = hns3vf_add_mac_addr,
2926         .mac_addr_remove    = hns3vf_remove_mac_addr,
2927         .mac_addr_set       = hns3vf_set_default_mac_addr,
2928         .set_mc_addr_list   = hns3vf_set_mc_mac_addr_list,
2929         .link_update        = hns3vf_dev_link_update,
2930         .rss_hash_update    = hns3_dev_rss_hash_update,
2931         .rss_hash_conf_get  = hns3_dev_rss_hash_conf_get,
2932         .reta_update        = hns3_dev_rss_reta_update,
2933         .reta_query         = hns3_dev_rss_reta_query,
2934         .flow_ops_get       = hns3_dev_flow_ops_get,
2935         .vlan_filter_set    = hns3vf_vlan_filter_set,
2936         .vlan_offload_set   = hns3vf_vlan_offload_set,
2937         .get_reg            = hns3_get_regs,
2938         .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
2939         .tx_done_cleanup    = hns3_tx_done_cleanup,
2940 };
2941
2942 static const struct hns3_reset_ops hns3vf_reset_ops = {
2943         .reset_service       = hns3vf_reset_service,
2944         .stop_service        = hns3vf_stop_service,
2945         .prepare_reset       = hns3vf_prepare_reset,
2946         .wait_hardware_ready = hns3vf_wait_hardware_ready,
2947         .reinit_dev          = hns3vf_reinit_dev,
2948         .restore_conf        = hns3vf_restore_conf,
2949         .start_service       = hns3vf_start_service,
2950 };
2951
2952 static int
2953 hns3vf_dev_init(struct rte_eth_dev *eth_dev)
2954 {
2955         struct hns3_adapter *hns = eth_dev->data->dev_private;
2956         struct hns3_hw *hw = &hns->hw;
2957         int ret;
2958
2959         PMD_INIT_FUNC_TRACE();
2960
2961         hns3_flow_init(eth_dev);
2962
2963         hns3_set_rxtx_function(eth_dev);
2964         eth_dev->dev_ops = &hns3vf_eth_dev_ops;
2965         eth_dev->rx_queue_count = hns3_rx_queue_count;
2966         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2967                 ret = hns3_mp_init_secondary();
2968                 if (ret) {
2969                         PMD_INIT_LOG(ERR, "Failed to init for secondary "
2970                                           "process, ret = %d", ret);
2971                         goto err_mp_init_secondary;
2972                 }
2973                 hw->secondary_cnt++;
2974                 hns3_tx_push_init(eth_dev);
2975                 return 0;
2976         }
2977
2978         ret = hns3_mp_init_primary();
2979         if (ret) {
2980                 PMD_INIT_LOG(ERR,
2981                              "Failed to init for primary process, ret = %d",
2982                              ret);
2983                 goto err_mp_init_primary;
2984         }
2985
2986         hw->adapter_state = HNS3_NIC_UNINITIALIZED;
2987         hns->is_vf = true;
2988         hw->data = eth_dev->data;
2989         hns3_parse_devargs(eth_dev);
2990
2991         ret = hns3_reset_init(hw);
2992         if (ret)
2993                 goto err_init_reset;
2994         hw->reset.ops = &hns3vf_reset_ops;
2995
2996         ret = hns3vf_init_vf(eth_dev);
2997         if (ret) {
2998                 PMD_INIT_LOG(ERR, "Failed to init vf: %d", ret);
2999                 goto err_init_vf;
3000         }
3001
3002         /* Allocate memory for storing MAC addresses */
3003         eth_dev->data->mac_addrs = rte_zmalloc("hns3vf-mac",
3004                                                sizeof(struct rte_ether_addr) *
3005                                                HNS3_VF_UC_MACADDR_NUM, 0);
3006         if (eth_dev->data->mac_addrs == NULL) {
3007                 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
3008                              "to store MAC addresses",
3009                              sizeof(struct rte_ether_addr) *
3010                              HNS3_VF_UC_MACADDR_NUM);
3011                 ret = -ENOMEM;
3012                 goto err_rte_zmalloc;
3013         }
3014
3015         /*
3016          * The hns3 PF ethdev driver in kernel support setting VF MAC address
3017          * on the host by "ip link set ..." command. To avoid some incorrect
3018          * scenes, for example, hns3 VF PMD driver fails to receive and send
3019          * packets after user configure the MAC address by using the
3020          * "ip link set ..." command, hns3 VF PMD driver keep the same MAC
3021          * address strategy as the hns3 kernel ethdev driver in the
3022          * initialization. If user configure a MAC address by the ip command
3023          * for VF device, then hns3 VF PMD driver will start with it, otherwise
3024          * start with a random MAC address in the initialization.
3025          */
3026         if (rte_is_zero_ether_addr((struct rte_ether_addr *)hw->mac.mac_addr))
3027                 rte_eth_random_addr(hw->mac.mac_addr);
3028         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
3029                             &eth_dev->data->mac_addrs[0]);
3030
3031         hw->adapter_state = HNS3_NIC_INITIALIZED;
3032
3033         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
3034                             SCHEDULE_PENDING) {
3035                 hns3_err(hw, "Reschedule reset service after dev_init");
3036                 hns3_schedule_reset(hns);
3037         } else {
3038                 /* IMP will wait ready flag before reset */
3039                 hns3_notify_reset_ready(hw, false);
3040         }
3041         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
3042                           eth_dev);
3043         return 0;
3044
3045 err_rte_zmalloc:
3046         hns3vf_uninit_vf(eth_dev);
3047
3048 err_init_vf:
3049         rte_free(hw->reset.wait_data);
3050
3051 err_init_reset:
3052         hns3_mp_uninit_primary();
3053
3054 err_mp_init_primary:
3055 err_mp_init_secondary:
3056         eth_dev->dev_ops = NULL;
3057         eth_dev->rx_pkt_burst = NULL;
3058         eth_dev->rx_descriptor_status = NULL;
3059         eth_dev->tx_pkt_burst = NULL;
3060         eth_dev->tx_pkt_prepare = NULL;
3061         eth_dev->tx_descriptor_status = NULL;
3062
3063         return ret;
3064 }
3065
3066 static int
3067 hns3vf_dev_uninit(struct rte_eth_dev *eth_dev)
3068 {
3069         struct hns3_adapter *hns = eth_dev->data->dev_private;
3070         struct hns3_hw *hw = &hns->hw;
3071
3072         PMD_INIT_FUNC_TRACE();
3073
3074         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3075                 return 0;
3076
3077         if (hw->adapter_state < HNS3_NIC_CLOSING)
3078                 hns3vf_dev_close(eth_dev);
3079
3080         hw->adapter_state = HNS3_NIC_REMOVED;
3081         return 0;
3082 }
3083
3084 static int
3085 eth_hns3vf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3086                      struct rte_pci_device *pci_dev)
3087 {
3088         return rte_eth_dev_pci_generic_probe(pci_dev,
3089                                              sizeof(struct hns3_adapter),
3090                                              hns3vf_dev_init);
3091 }
3092
3093 static int
3094 eth_hns3vf_pci_remove(struct rte_pci_device *pci_dev)
3095 {
3096         return rte_eth_dev_pci_generic_remove(pci_dev, hns3vf_dev_uninit);
3097 }
3098
3099 static const struct rte_pci_id pci_id_hns3vf_map[] = {
3100         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_VF) },
3101         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_PFC_VF) },
3102         { .vendor_id = 0, }, /* sentinel */
3103 };
3104
3105 static struct rte_pci_driver rte_hns3vf_pmd = {
3106         .id_table = pci_id_hns3vf_map,
3107         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
3108         .probe = eth_hns3vf_pci_probe,
3109         .remove = eth_hns3vf_pci_remove,
3110 };
3111
3112 RTE_PMD_REGISTER_PCI(net_hns3_vf, rte_hns3vf_pmd);
3113 RTE_PMD_REGISTER_PCI_TABLE(net_hns3_vf, pci_id_hns3vf_map);
3114 RTE_PMD_REGISTER_KMOD_DEP(net_hns3_vf, "* igb_uio | vfio-pci");
3115 RTE_PMD_REGISTER_PARAM_STRING(net_hns3_vf,
3116                 HNS3_DEVARG_RX_FUNC_HINT "=vec|sve|simple|common "
3117                 HNS3_DEVARG_TX_FUNC_HINT "=vec|sve|simple|common "
3118                 HNS3_DEVARG_DEV_CAPS_MASK "=<1-65535> ");