net/hns3: get device specifications from firmware
[dpdk.git] / drivers / net / hns3 / hns3_ethdev_vf.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4
5 #include <errno.h>
6 #include <stdio.h>
7 #include <stdbool.h>
8 #include <string.h>
9 #include <inttypes.h>
10 #include <unistd.h>
11 #include <arpa/inet.h>
12 #include <linux/pci_regs.h>
13
14 #include <rte_alarm.h>
15 #include <rte_atomic.h>
16 #include <rte_bus_pci.h>
17 #include <rte_byteorder.h>
18 #include <rte_common.h>
19 #include <rte_cycles.h>
20 #include <rte_dev.h>
21 #include <rte_eal.h>
22 #include <rte_ether.h>
23 #include <rte_ethdev_driver.h>
24 #include <rte_ethdev_pci.h>
25 #include <rte_interrupts.h>
26 #include <rte_io.h>
27 #include <rte_log.h>
28 #include <rte_pci.h>
29 #include <rte_vfio.h>
30
31 #include "hns3_ethdev.h"
32 #include "hns3_logs.h"
33 #include "hns3_rxtx.h"
34 #include "hns3_regs.h"
35 #include "hns3_intr.h"
36 #include "hns3_dcb.h"
37 #include "hns3_mp.h"
38
39 #define HNS3VF_KEEP_ALIVE_INTERVAL      2000000 /* us */
40 #define HNS3VF_SERVICE_INTERVAL         1000000 /* us */
41
42 #define HNS3VF_RESET_WAIT_MS    20
43 #define HNS3VF_RESET_WAIT_CNT   2000
44
45 /* Reset related Registers */
46 #define HNS3_GLOBAL_RESET_BIT           0
47 #define HNS3_CORE_RESET_BIT             1
48 #define HNS3_IMP_RESET_BIT              2
49 #define HNS3_FUN_RST_ING_B              0
50
51 enum hns3vf_evt_cause {
52         HNS3VF_VECTOR0_EVENT_RST,
53         HNS3VF_VECTOR0_EVENT_MBX,
54         HNS3VF_VECTOR0_EVENT_OTHER,
55 };
56
57 static enum hns3_reset_level hns3vf_get_reset_level(struct hns3_hw *hw,
58                                                     uint64_t *levels);
59 static int hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
60 static int hns3vf_dev_configure_vlan(struct rte_eth_dev *dev);
61
62 static int hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
63                                   struct rte_ether_addr *mac_addr);
64 static int hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
65                                      struct rte_ether_addr *mac_addr);
66 /* set PCI bus mastering */
67 static void
68 hns3vf_set_bus_master(const struct rte_pci_device *device, bool op)
69 {
70         uint16_t reg;
71
72         rte_pci_read_config(device, &reg, sizeof(reg), PCI_COMMAND);
73
74         if (op)
75                 /* set the master bit */
76                 reg |= PCI_COMMAND_MASTER;
77         else
78                 reg &= ~(PCI_COMMAND_MASTER);
79
80         rte_pci_write_config(device, &reg, sizeof(reg), PCI_COMMAND);
81 }
82
83 /**
84  * hns3vf_find_pci_capability - lookup a capability in the PCI capability list
85  * @cap: the capability
86  *
87  * Return the address of the given capability within the PCI capability list.
88  */
89 static int
90 hns3vf_find_pci_capability(const struct rte_pci_device *device, int cap)
91 {
92 #define MAX_PCIE_CAPABILITY 48
93         uint16_t status;
94         uint8_t pos;
95         uint8_t id;
96         int ttl;
97
98         rte_pci_read_config(device, &status, sizeof(status), PCI_STATUS);
99         if (!(status & PCI_STATUS_CAP_LIST))
100                 return 0;
101
102         ttl = MAX_PCIE_CAPABILITY;
103         rte_pci_read_config(device, &pos, sizeof(pos), PCI_CAPABILITY_LIST);
104         while (ttl-- && pos >= PCI_STD_HEADER_SIZEOF) {
105                 rte_pci_read_config(device, &id, sizeof(id),
106                                     (pos + PCI_CAP_LIST_ID));
107
108                 if (id == 0xFF)
109                         break;
110
111                 if (id == cap)
112                         return (int)pos;
113
114                 rte_pci_read_config(device, &pos, sizeof(pos),
115                                     (pos + PCI_CAP_LIST_NEXT));
116         }
117         return 0;
118 }
119
120 static int
121 hns3vf_enable_msix(const struct rte_pci_device *device, bool op)
122 {
123         uint16_t control;
124         int pos;
125
126         pos = hns3vf_find_pci_capability(device, PCI_CAP_ID_MSIX);
127         if (pos) {
128                 rte_pci_read_config(device, &control, sizeof(control),
129                                     (pos + PCI_MSIX_FLAGS));
130                 if (op)
131                         control |= PCI_MSIX_FLAGS_ENABLE;
132                 else
133                         control &= ~PCI_MSIX_FLAGS_ENABLE;
134                 rte_pci_write_config(device, &control, sizeof(control),
135                                      (pos + PCI_MSIX_FLAGS));
136                 return 0;
137         }
138         return -ENXIO;
139 }
140
141 static int
142 hns3vf_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
143 {
144         /* mac address was checked by upper level interface */
145         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
146         int ret;
147
148         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
149                                 HNS3_MBX_MAC_VLAN_UC_ADD, mac_addr->addr_bytes,
150                                 RTE_ETHER_ADDR_LEN, false, NULL, 0);
151         if (ret) {
152                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
153                                       mac_addr);
154                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
155                          mac_str, ret);
156         }
157         return ret;
158 }
159
160 static int
161 hns3vf_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
162 {
163         /* mac address was checked by upper level interface */
164         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
165         int ret;
166
167         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
168                                 HNS3_MBX_MAC_VLAN_UC_REMOVE,
169                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN,
170                                 false, NULL, 0);
171         if (ret) {
172                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
173                                       mac_addr);
174                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
175                          mac_str, ret);
176         }
177         return ret;
178 }
179
180 static int
181 hns3vf_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
182 {
183         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
184         struct rte_ether_addr *addr;
185         int ret;
186         int i;
187
188         for (i = 0; i < hw->mc_addrs_num; i++) {
189                 addr = &hw->mc_addrs[i];
190                 /* Check if there are duplicate addresses */
191                 if (rte_is_same_ether_addr(addr, mac_addr)) {
192                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
193                                               addr);
194                         hns3_err(hw, "failed to add mc mac addr, same addrs"
195                                  "(%s) is added by the set_mc_mac_addr_list "
196                                  "API", mac_str);
197                         return -EINVAL;
198                 }
199         }
200
201         ret = hns3vf_add_mc_mac_addr(hw, mac_addr);
202         if (ret) {
203                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
204                                       mac_addr);
205                 hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
206                          mac_str, ret);
207         }
208         return ret;
209 }
210
211 static int
212 hns3vf_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
213                     __rte_unused uint32_t idx,
214                     __rte_unused uint32_t pool)
215 {
216         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
217         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
218         int ret;
219
220         rte_spinlock_lock(&hw->lock);
221
222         /*
223          * In hns3 network engine adding UC and MC mac address with different
224          * commands with firmware. We need to determine whether the input
225          * address is a UC or a MC address to call different commands.
226          * By the way, it is recommended calling the API function named
227          * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
228          * using the rte_eth_dev_mac_addr_add API function to set MC mac address
229          * may affect the specifications of UC mac addresses.
230          */
231         if (rte_is_multicast_ether_addr(mac_addr))
232                 ret = hns3vf_add_mc_addr_common(hw, mac_addr);
233         else
234                 ret = hns3vf_add_uc_mac_addr(hw, mac_addr);
235
236         rte_spinlock_unlock(&hw->lock);
237         if (ret) {
238                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
239                                       mac_addr);
240                 hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
241                          ret);
242         }
243
244         return ret;
245 }
246
247 static void
248 hns3vf_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
249 {
250         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
251         /* index will be checked by upper level rte interface */
252         struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
253         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
254         int ret;
255
256         rte_spinlock_lock(&hw->lock);
257
258         if (rte_is_multicast_ether_addr(mac_addr))
259                 ret = hns3vf_remove_mc_mac_addr(hw, mac_addr);
260         else
261                 ret = hns3vf_remove_uc_mac_addr(hw, mac_addr);
262
263         rte_spinlock_unlock(&hw->lock);
264         if (ret) {
265                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
266                                       mac_addr);
267                 hns3_err(hw, "failed to remove mac addr(%s), ret = %d",
268                          mac_str, ret);
269         }
270 }
271
272 static int
273 hns3vf_set_default_mac_addr(struct rte_eth_dev *dev,
274                             struct rte_ether_addr *mac_addr)
275 {
276 #define HNS3_TWO_ETHER_ADDR_LEN (RTE_ETHER_ADDR_LEN * 2)
277         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
278         struct rte_ether_addr *old_addr;
279         uint8_t addr_bytes[HNS3_TWO_ETHER_ADDR_LEN]; /* for 2 MAC addresses */
280         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
281         int ret;
282
283         /*
284          * It has been guaranteed that input parameter named mac_addr is valid
285          * address in the rte layer of DPDK framework.
286          */
287         old_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
288         rte_spinlock_lock(&hw->lock);
289         memcpy(addr_bytes, mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN);
290         memcpy(&addr_bytes[RTE_ETHER_ADDR_LEN], old_addr->addr_bytes,
291                RTE_ETHER_ADDR_LEN);
292
293         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
294                                 HNS3_MBX_MAC_VLAN_UC_MODIFY, addr_bytes,
295                                 HNS3_TWO_ETHER_ADDR_LEN, true, NULL, 0);
296         if (ret) {
297                 /*
298                  * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev
299                  * driver. When user has configured a MAC address for VF device
300                  * by "ip link set ..." command based on the PF device, the hns3
301                  * PF kernel ethdev driver does not allow VF driver to request
302                  * reconfiguring a different default MAC address, and return
303                  * -EPREM to VF driver through mailbox.
304                  */
305                 if (ret == -EPERM) {
306                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
307                                               old_addr);
308                         hns3_warn(hw, "Has permanet mac addr(%s) for vf",
309                                   mac_str);
310                 } else {
311                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
312                                               mac_addr);
313                         hns3_err(hw, "Failed to set mac addr(%s) for vf: %d",
314                                  mac_str, ret);
315                 }
316         }
317
318         rte_ether_addr_copy(mac_addr,
319                             (struct rte_ether_addr *)hw->mac.mac_addr);
320         rte_spinlock_unlock(&hw->lock);
321
322         return ret;
323 }
324
325 static int
326 hns3vf_configure_mac_addr(struct hns3_adapter *hns, bool del)
327 {
328         struct hns3_hw *hw = &hns->hw;
329         struct rte_ether_addr *addr;
330         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
331         int err = 0;
332         int ret;
333         int i;
334
335         for (i = 0; i < HNS3_VF_UC_MACADDR_NUM; i++) {
336                 addr = &hw->data->mac_addrs[i];
337                 if (rte_is_zero_ether_addr(addr))
338                         continue;
339                 if (rte_is_multicast_ether_addr(addr))
340                         ret = del ? hns3vf_remove_mc_mac_addr(hw, addr) :
341                               hns3vf_add_mc_mac_addr(hw, addr);
342                 else
343                         ret = del ? hns3vf_remove_uc_mac_addr(hw, addr) :
344                               hns3vf_add_uc_mac_addr(hw, addr);
345
346                 if (ret) {
347                         err = ret;
348                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
349                                               addr);
350                         hns3_err(hw, "failed to %s mac addr(%s) index:%d "
351                                  "ret = %d.", del ? "remove" : "restore",
352                                  mac_str, i, ret);
353                 }
354         }
355         return err;
356 }
357
358 static int
359 hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
360                        struct rte_ether_addr *mac_addr)
361 {
362         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
363         int ret;
364
365         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
366                                 HNS3_MBX_MAC_VLAN_MC_ADD,
367                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
368                                 NULL, 0);
369         if (ret) {
370                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
371                                       mac_addr);
372                 hns3_err(hw, "Failed to add mc mac addr(%s) for vf: %d",
373                          mac_str, ret);
374         }
375
376         return ret;
377 }
378
379 static int
380 hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
381                           struct rte_ether_addr *mac_addr)
382 {
383         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
384         int ret;
385
386         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
387                                 HNS3_MBX_MAC_VLAN_MC_REMOVE,
388                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
389                                 NULL, 0);
390         if (ret) {
391                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
392                                       mac_addr);
393                 hns3_err(hw, "Failed to remove mc mac addr(%s) for vf: %d",
394                          mac_str, ret);
395         }
396
397         return ret;
398 }
399
400 static int
401 hns3vf_set_mc_addr_chk_param(struct hns3_hw *hw,
402                              struct rte_ether_addr *mc_addr_set,
403                              uint32_t nb_mc_addr)
404 {
405         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
406         struct rte_ether_addr *addr;
407         uint32_t i;
408         uint32_t j;
409
410         if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
411                 hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%d) "
412                          "invalid. valid range: 0~%d",
413                          nb_mc_addr, HNS3_MC_MACADDR_NUM);
414                 return -EINVAL;
415         }
416
417         /* Check if input mac addresses are valid */
418         for (i = 0; i < nb_mc_addr; i++) {
419                 addr = &mc_addr_set[i];
420                 if (!rte_is_multicast_ether_addr(addr)) {
421                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
422                                               addr);
423                         hns3_err(hw,
424                                  "failed to set mc mac addr, addr(%s) invalid.",
425                                  mac_str);
426                         return -EINVAL;
427                 }
428
429                 /* Check if there are duplicate addresses */
430                 for (j = i + 1; j < nb_mc_addr; j++) {
431                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
432                                 rte_ether_format_addr(mac_str,
433                                                       RTE_ETHER_ADDR_FMT_SIZE,
434                                                       addr);
435                                 hns3_err(hw, "failed to set mc mac addr, "
436                                          "addrs invalid. two same addrs(%s).",
437                                          mac_str);
438                                 return -EINVAL;
439                         }
440                 }
441
442                 /*
443                  * Check if there are duplicate addresses between mac_addrs
444                  * and mc_addr_set
445                  */
446                 for (j = 0; j < HNS3_VF_UC_MACADDR_NUM; j++) {
447                         if (rte_is_same_ether_addr(addr,
448                                                    &hw->data->mac_addrs[j])) {
449                                 rte_ether_format_addr(mac_str,
450                                                       RTE_ETHER_ADDR_FMT_SIZE,
451                                                       addr);
452                                 hns3_err(hw, "failed to set mc mac addr, "
453                                          "addrs invalid. addrs(%s) has already "
454                                          "configured in mac_addr add API",
455                                          mac_str);
456                                 return -EINVAL;
457                         }
458                 }
459         }
460
461         return 0;
462 }
463
464 static int
465 hns3vf_set_mc_mac_addr_list(struct rte_eth_dev *dev,
466                             struct rte_ether_addr *mc_addr_set,
467                             uint32_t nb_mc_addr)
468 {
469         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
470         struct rte_ether_addr *addr;
471         int cur_addr_num;
472         int set_addr_num;
473         int num;
474         int ret;
475         int i;
476
477         ret = hns3vf_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
478         if (ret)
479                 return ret;
480
481         rte_spinlock_lock(&hw->lock);
482         cur_addr_num = hw->mc_addrs_num;
483         for (i = 0; i < cur_addr_num; i++) {
484                 num = cur_addr_num - i - 1;
485                 addr = &hw->mc_addrs[num];
486                 ret = hns3vf_remove_mc_mac_addr(hw, addr);
487                 if (ret) {
488                         rte_spinlock_unlock(&hw->lock);
489                         return ret;
490                 }
491
492                 hw->mc_addrs_num--;
493         }
494
495         set_addr_num = (int)nb_mc_addr;
496         for (i = 0; i < set_addr_num; i++) {
497                 addr = &mc_addr_set[i];
498                 ret = hns3vf_add_mc_mac_addr(hw, addr);
499                 if (ret) {
500                         rte_spinlock_unlock(&hw->lock);
501                         return ret;
502                 }
503
504                 rte_ether_addr_copy(addr, &hw->mc_addrs[hw->mc_addrs_num]);
505                 hw->mc_addrs_num++;
506         }
507         rte_spinlock_unlock(&hw->lock);
508
509         return 0;
510 }
511
512 static int
513 hns3vf_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
514 {
515         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
516         struct hns3_hw *hw = &hns->hw;
517         struct rte_ether_addr *addr;
518         int err = 0;
519         int ret;
520         int i;
521
522         for (i = 0; i < hw->mc_addrs_num; i++) {
523                 addr = &hw->mc_addrs[i];
524                 if (!rte_is_multicast_ether_addr(addr))
525                         continue;
526                 if (del)
527                         ret = hns3vf_remove_mc_mac_addr(hw, addr);
528                 else
529                         ret = hns3vf_add_mc_mac_addr(hw, addr);
530                 if (ret) {
531                         err = ret;
532                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
533                                               addr);
534                         hns3_err(hw, "Failed to %s mc mac addr: %s for vf: %d",
535                                  del ? "Remove" : "Restore", mac_str, ret);
536                 }
537         }
538         return err;
539 }
540
541 static int
542 hns3vf_set_promisc_mode(struct hns3_hw *hw, bool en_bc_pmc,
543                         bool en_uc_pmc, bool en_mc_pmc)
544 {
545         struct hns3_mbx_vf_to_pf_cmd *req;
546         struct hns3_cmd_desc desc;
547         int ret;
548
549         req = (struct hns3_mbx_vf_to_pf_cmd *)desc.data;
550
551         /*
552          * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev driver,
553          * so there are some features for promiscuous/allmulticast mode in hns3
554          * VF PMD driver as below:
555          * 1. The promiscuous/allmulticast mode can be configured successfully
556          *    only based on the trusted VF device. If based on the non trusted
557          *    VF device, configuring promiscuous/allmulticast mode will fail.
558          *    The hns3 VF device can be confiruged as trusted device by hns3 PF
559          *    kernel ethdev driver on the host by the following command:
560          *      "ip link set <eth num> vf <vf id> turst on"
561          * 2. After the promiscuous mode is configured successfully, hns3 VF PMD
562          *    driver can receive the ingress and outgoing traffic. In the words,
563          *    all the ingress packets, all the packets sent from the PF and
564          *    other VFs on the same physical port.
565          * 3. Note: Because of the hardware constraints, By default vlan filter
566          *    is enabled and couldn't be turned off based on VF device, so vlan
567          *    filter is still effective even in promiscuous mode. If upper
568          *    applications don't call rte_eth_dev_vlan_filter API function to
569          *    set vlan based on VF device, hns3 VF PMD driver will can't receive
570          *    the packets with vlan tag in promiscuoue mode.
571          */
572         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MBX_VF_TO_PF, false);
573         req->msg[0] = HNS3_MBX_SET_PROMISC_MODE;
574         req->msg[1] = en_bc_pmc ? 1 : 0;
575         req->msg[2] = en_uc_pmc ? 1 : 0;
576         req->msg[3] = en_mc_pmc ? 1 : 0;
577
578         ret = hns3_cmd_send(hw, &desc, 1);
579         if (ret)
580                 hns3_err(hw, "Set promisc mode fail, ret = %d", ret);
581
582         return ret;
583 }
584
585 static int
586 hns3vf_dev_promiscuous_enable(struct rte_eth_dev *dev)
587 {
588         struct hns3_adapter *hns = dev->data->dev_private;
589         struct hns3_hw *hw = &hns->hw;
590         int ret;
591
592         ret = hns3vf_set_promisc_mode(hw, true, true, true);
593         if (ret)
594                 hns3_err(hw, "Failed to enable promiscuous mode, ret = %d",
595                         ret);
596         return ret;
597 }
598
599 static int
600 hns3vf_dev_promiscuous_disable(struct rte_eth_dev *dev)
601 {
602         bool allmulti = dev->data->all_multicast ? true : false;
603         struct hns3_adapter *hns = dev->data->dev_private;
604         struct hns3_hw *hw = &hns->hw;
605         int ret;
606
607         ret = hns3vf_set_promisc_mode(hw, true, false, allmulti);
608         if (ret)
609                 hns3_err(hw, "Failed to disable promiscuous mode, ret = %d",
610                         ret);
611         return ret;
612 }
613
614 static int
615 hns3vf_dev_allmulticast_enable(struct rte_eth_dev *dev)
616 {
617         struct hns3_adapter *hns = dev->data->dev_private;
618         struct hns3_hw *hw = &hns->hw;
619         int ret;
620
621         if (dev->data->promiscuous)
622                 return 0;
623
624         ret = hns3vf_set_promisc_mode(hw, true, false, true);
625         if (ret)
626                 hns3_err(hw, "Failed to enable allmulticast mode, ret = %d",
627                         ret);
628         return ret;
629 }
630
631 static int
632 hns3vf_dev_allmulticast_disable(struct rte_eth_dev *dev)
633 {
634         struct hns3_adapter *hns = dev->data->dev_private;
635         struct hns3_hw *hw = &hns->hw;
636         int ret;
637
638         if (dev->data->promiscuous)
639                 return 0;
640
641         ret = hns3vf_set_promisc_mode(hw, true, false, false);
642         if (ret)
643                 hns3_err(hw, "Failed to disable allmulticast mode, ret = %d",
644                         ret);
645         return ret;
646 }
647
648 static int
649 hns3vf_restore_promisc(struct hns3_adapter *hns)
650 {
651         struct hns3_hw *hw = &hns->hw;
652         bool allmulti = hw->data->all_multicast ? true : false;
653
654         if (hw->data->promiscuous)
655                 return hns3vf_set_promisc_mode(hw, true, true, true);
656
657         return hns3vf_set_promisc_mode(hw, true, false, allmulti);
658 }
659
660 static int
661 hns3vf_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id,
662                              bool mmap, enum hns3_ring_type queue_type,
663                              uint16_t queue_id)
664 {
665         struct hns3_vf_bind_vector_msg bind_msg;
666         const char *op_str;
667         uint16_t code;
668         int ret;
669
670         memset(&bind_msg, 0, sizeof(bind_msg));
671         code = mmap ? HNS3_MBX_MAP_RING_TO_VECTOR :
672                 HNS3_MBX_UNMAP_RING_TO_VECTOR;
673         bind_msg.vector_id = vector_id;
674
675         if (queue_type == HNS3_RING_TYPE_RX)
676                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_RX;
677         else
678                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_TX;
679
680         bind_msg.param[0].ring_type = queue_type;
681         bind_msg.ring_num = 1;
682         bind_msg.param[0].tqp_index = queue_id;
683         op_str = mmap ? "Map" : "Unmap";
684         ret = hns3_send_mbx_msg(hw, code, 0, (uint8_t *)&bind_msg,
685                                 sizeof(bind_msg), false, NULL, 0);
686         if (ret)
687                 hns3_err(hw, "%s TQP %d fail, vector_id is %d, ret is %d.",
688                          op_str, queue_id, bind_msg.vector_id, ret);
689
690         return ret;
691 }
692
693 static int
694 hns3vf_init_ring_with_vector(struct hns3_hw *hw)
695 {
696         uint8_t vec;
697         int ret;
698         int i;
699
700         /*
701          * In hns3 network engine, vector 0 is always the misc interrupt of this
702          * function, vector 1~N can be used respectively for the queues of the
703          * function. Tx and Rx queues with the same number share the interrupt
704          * vector. In the initialization clearing the all hardware mapping
705          * relationship configurations between queues and interrupt vectors is
706          * needed, so some error caused by the residual configurations, such as
707          * the unexpected Tx interrupt, can be avoid. Because of the hardware
708          * constraints in hns3 hardware engine, we have to implement clearing
709          * the mapping relationship configurations by binding all queues to the
710          * last interrupt vector and reserving the last interrupt vector. This
711          * method results in a decrease of the maximum queues when upper
712          * applications call the rte_eth_dev_configure API function to enable
713          * Rx interrupt.
714          */
715         vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
716         /* vec - 1: the last interrupt is reserved */
717         hw->intr_tqps_num = vec > hw->tqps_num ? hw->tqps_num : vec - 1;
718         for (i = 0; i < hw->intr_tqps_num; i++) {
719                 /*
720                  * Set gap limiter and rate limiter configuration of queue's
721                  * interrupt.
722                  */
723                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
724                                        HNS3_TQP_INTR_GL_DEFAULT);
725                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
726                                        HNS3_TQP_INTR_GL_DEFAULT);
727                 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
728
729                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
730                                                    HNS3_RING_TYPE_TX, i);
731                 if (ret) {
732                         PMD_INIT_LOG(ERR, "VF fail to unbind TX ring(%d) with "
733                                           "vector: %d, ret=%d", i, vec, ret);
734                         return ret;
735                 }
736
737                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
738                                                    HNS3_RING_TYPE_RX, i);
739                 if (ret) {
740                         PMD_INIT_LOG(ERR, "VF fail to unbind RX ring(%d) with "
741                                           "vector: %d, ret=%d", i, vec, ret);
742                         return ret;
743                 }
744         }
745
746         return 0;
747 }
748
749 static int
750 hns3vf_dev_configure(struct rte_eth_dev *dev)
751 {
752         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
753         struct hns3_rss_conf *rss_cfg = &hw->rss_info;
754         struct rte_eth_conf *conf = &dev->data->dev_conf;
755         enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
756         uint16_t nb_rx_q = dev->data->nb_rx_queues;
757         uint16_t nb_tx_q = dev->data->nb_tx_queues;
758         struct rte_eth_rss_conf rss_conf;
759         uint16_t mtu;
760         bool gro_en;
761         int ret;
762
763         /*
764          * Hardware does not support individually enable/disable/reset the Tx or
765          * Rx queue in hns3 network engine. Driver must enable/disable/reset Tx
766          * and Rx queues at the same time. When the numbers of Tx queues
767          * allocated by upper applications are not equal to the numbers of Rx
768          * queues, driver needs to setup fake Tx or Rx queues to adjust numbers
769          * of Tx/Rx queues. otherwise, network engine can not work as usual. But
770          * these fake queues are imperceptible, and can not be used by upper
771          * applications.
772          */
773         ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
774         if (ret) {
775                 hns3_err(hw, "Failed to set rx/tx fake queues: %d", ret);
776                 return ret;
777         }
778
779         hw->adapter_state = HNS3_NIC_CONFIGURING;
780         if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
781                 hns3_err(hw, "setting link speed/duplex not supported");
782                 ret = -EINVAL;
783                 goto cfg_err;
784         }
785
786         /* When RSS is not configured, redirect the packet queue 0 */
787         if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
788                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
789                 rss_conf = conf->rx_adv_conf.rss_conf;
790                 if (rss_conf.rss_key == NULL) {
791                         rss_conf.rss_key = rss_cfg->key;
792                         rss_conf.rss_key_len = HNS3_RSS_KEY_SIZE;
793                 }
794
795                 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
796                 if (ret)
797                         goto cfg_err;
798         }
799
800         /*
801          * If jumbo frames are enabled, MTU needs to be refreshed
802          * according to the maximum RX packet length.
803          */
804         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
805                 /*
806                  * Security of max_rx_pkt_len is guaranteed in dpdk frame.
807                  * Maximum value of max_rx_pkt_len is HNS3_MAX_FRAME_LEN, so it
808                  * can safely assign to "uint16_t" type variable.
809                  */
810                 mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(conf->rxmode.max_rx_pkt_len);
811                 ret = hns3vf_dev_mtu_set(dev, mtu);
812                 if (ret)
813                         goto cfg_err;
814                 dev->data->mtu = mtu;
815         }
816
817         ret = hns3vf_dev_configure_vlan(dev);
818         if (ret)
819                 goto cfg_err;
820
821         /* config hardware GRO */
822         gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
823         ret = hns3_config_gro(hw, gro_en);
824         if (ret)
825                 goto cfg_err;
826
827         hw->adapter_state = HNS3_NIC_CONFIGURED;
828         return 0;
829
830 cfg_err:
831         (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
832         hw->adapter_state = HNS3_NIC_INITIALIZED;
833
834         return ret;
835 }
836
837 static int
838 hns3vf_config_mtu(struct hns3_hw *hw, uint16_t mtu)
839 {
840         int ret;
841
842         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MTU, 0, (const uint8_t *)&mtu,
843                                 sizeof(mtu), true, NULL, 0);
844         if (ret)
845                 hns3_err(hw, "Failed to set mtu (%u) for vf: %d", mtu, ret);
846
847         return ret;
848 }
849
850 static int
851 hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
852 {
853         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
854         uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
855         int ret;
856
857         /*
858          * The hns3 PF/VF devices on the same port share the hardware MTU
859          * configuration. Currently, we send mailbox to inform hns3 PF kernel
860          * ethdev driver to finish hardware MTU configuration in hns3 VF PMD
861          * driver, there is no need to stop the port for hns3 VF device, and the
862          * MTU value issued by hns3 VF PMD driver must be less than or equal to
863          * PF's MTU.
864          */
865         if (rte_atomic16_read(&hw->reset.resetting)) {
866                 hns3_err(hw, "Failed to set mtu during resetting");
867                 return -EIO;
868         }
869
870         rte_spinlock_lock(&hw->lock);
871         ret = hns3vf_config_mtu(hw, mtu);
872         if (ret) {
873                 rte_spinlock_unlock(&hw->lock);
874                 return ret;
875         }
876         if (frame_size > RTE_ETHER_MAX_LEN)
877                 dev->data->dev_conf.rxmode.offloads |=
878                                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
879         else
880                 dev->data->dev_conf.rxmode.offloads &=
881                                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
882         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
883         rte_spinlock_unlock(&hw->lock);
884
885         return 0;
886 }
887
888 static int
889 hns3vf_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
890 {
891         struct hns3_adapter *hns = eth_dev->data->dev_private;
892         struct hns3_hw *hw = &hns->hw;
893         uint16_t q_num = hw->tqps_num;
894
895         /*
896          * In interrupt mode, 'max_rx_queues' is set based on the number of
897          * MSI-X interrupt resources of the hardware.
898          */
899         if (hw->data->dev_conf.intr_conf.rxq == 1)
900                 q_num = hw->intr_tqps_num;
901
902         info->max_rx_queues = q_num;
903         info->max_tx_queues = hw->tqps_num;
904         info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
905         info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
906         info->max_mac_addrs = HNS3_VF_UC_MACADDR_NUM;
907         info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
908         info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
909
910         info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
911                                  DEV_RX_OFFLOAD_UDP_CKSUM |
912                                  DEV_RX_OFFLOAD_TCP_CKSUM |
913                                  DEV_RX_OFFLOAD_SCTP_CKSUM |
914                                  DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
915                                  DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
916                                  DEV_RX_OFFLOAD_SCATTER |
917                                  DEV_RX_OFFLOAD_VLAN_STRIP |
918                                  DEV_RX_OFFLOAD_VLAN_FILTER |
919                                  DEV_RX_OFFLOAD_JUMBO_FRAME |
920                                  DEV_RX_OFFLOAD_RSS_HASH |
921                                  DEV_RX_OFFLOAD_TCP_LRO);
922         info->tx_queue_offload_capa = DEV_TX_OFFLOAD_MBUF_FAST_FREE;
923         info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
924                                  DEV_TX_OFFLOAD_IPV4_CKSUM |
925                                  DEV_TX_OFFLOAD_TCP_CKSUM |
926                                  DEV_TX_OFFLOAD_UDP_CKSUM |
927                                  DEV_TX_OFFLOAD_SCTP_CKSUM |
928                                  DEV_TX_OFFLOAD_MULTI_SEGS |
929                                  DEV_TX_OFFLOAD_TCP_TSO |
930                                  DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
931                                  DEV_TX_OFFLOAD_GRE_TNL_TSO |
932                                  DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
933                                  info->tx_queue_offload_capa |
934                                  hns3_txvlan_cap_get(hw));
935
936         info->rx_desc_lim = (struct rte_eth_desc_lim) {
937                 .nb_max = HNS3_MAX_RING_DESC,
938                 .nb_min = HNS3_MIN_RING_DESC,
939                 .nb_align = HNS3_ALIGN_RING_DESC,
940         };
941
942         info->tx_desc_lim = (struct rte_eth_desc_lim) {
943                 .nb_max = HNS3_MAX_RING_DESC,
944                 .nb_min = HNS3_MIN_RING_DESC,
945                 .nb_align = HNS3_ALIGN_RING_DESC,
946                 .nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
947                 .nb_mtu_seg_max = HNS3_MAX_NON_TSO_BD_PER_PKT,
948         };
949
950         info->default_rxconf = (struct rte_eth_rxconf) {
951                 /*
952                  * If there are no available Rx buffer descriptors, incoming
953                  * packets are always dropped by hardware based on hns3 network
954                  * engine.
955                  */
956                 .rx_drop_en = 1,
957         };
958
959         info->vmdq_queue_num = 0;
960
961         info->reta_size = HNS3_RSS_IND_TBL_SIZE;
962         info->hash_key_size = HNS3_RSS_KEY_SIZE;
963         info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
964         info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
965         info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
966
967         return 0;
968 }
969
970 static void
971 hns3vf_clear_event_cause(struct hns3_hw *hw, uint32_t regclr)
972 {
973         hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
974 }
975
976 static void
977 hns3vf_disable_irq0(struct hns3_hw *hw)
978 {
979         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
980 }
981
982 static void
983 hns3vf_enable_irq0(struct hns3_hw *hw)
984 {
985         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
986 }
987
988 static enum hns3vf_evt_cause
989 hns3vf_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
990 {
991         struct hns3_hw *hw = &hns->hw;
992         enum hns3vf_evt_cause ret;
993         uint32_t cmdq_stat_reg;
994         uint32_t rst_ing_reg;
995         uint32_t val;
996
997         /* Fetch the events from their corresponding regs */
998         cmdq_stat_reg = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_STAT_REG);
999
1000         if (BIT(HNS3_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1001                 rst_ing_reg = hns3_read_dev(hw, HNS3_FUN_RST_ING);
1002                 hns3_warn(hw, "resetting reg: 0x%x", rst_ing_reg);
1003                 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
1004                 rte_atomic16_set(&hw->reset.disable_cmd, 1);
1005                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
1006                 hns3_write_dev(hw, HNS3_VF_RST_ING, val | HNS3_VF_RST_ING_BIT);
1007                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RST_INT_B);
1008                 if (clearval) {
1009                         hw->reset.stats.global_cnt++;
1010                         hns3_warn(hw, "Global reset detected, clear reset status");
1011                 } else {
1012                         hns3_schedule_delayed_reset(hns);
1013                         hns3_warn(hw, "Global reset detected, don't clear reset status");
1014                 }
1015
1016                 ret = HNS3VF_VECTOR0_EVENT_RST;
1017                 goto out;
1018         }
1019
1020         /* Check for vector0 mailbox(=CMDQ RX) event source */
1021         if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1022                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
1023                 ret = HNS3VF_VECTOR0_EVENT_MBX;
1024                 goto out;
1025         }
1026
1027         val = 0;
1028         ret = HNS3VF_VECTOR0_EVENT_OTHER;
1029 out:
1030         if (clearval)
1031                 *clearval = val;
1032         return ret;
1033 }
1034
1035 static void
1036 hns3vf_interrupt_handler(void *param)
1037 {
1038         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1039         struct hns3_adapter *hns = dev->data->dev_private;
1040         struct hns3_hw *hw = &hns->hw;
1041         enum hns3vf_evt_cause event_cause;
1042         uint32_t clearval;
1043
1044         if (hw->irq_thread_id == 0)
1045                 hw->irq_thread_id = pthread_self();
1046
1047         /* Disable interrupt */
1048         hns3vf_disable_irq0(hw);
1049
1050         /* Read out interrupt causes */
1051         event_cause = hns3vf_check_event_cause(hns, &clearval);
1052
1053         switch (event_cause) {
1054         case HNS3VF_VECTOR0_EVENT_RST:
1055                 hns3_schedule_reset(hns);
1056                 break;
1057         case HNS3VF_VECTOR0_EVENT_MBX:
1058                 hns3_dev_handle_mbx_msg(hw);
1059                 break;
1060         default:
1061                 break;
1062         }
1063
1064         /* Clear interrupt causes */
1065         hns3vf_clear_event_cause(hw, clearval);
1066
1067         /* Enable interrupt */
1068         hns3vf_enable_irq0(hw);
1069 }
1070
1071 static void
1072 hns3vf_set_default_dev_specifications(struct hns3_hw *hw)
1073 {
1074         hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
1075         hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
1076         hw->rss_key_size = HNS3_RSS_KEY_SIZE;
1077 }
1078
1079 static void
1080 hns3vf_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
1081 {
1082         struct hns3_dev_specs_0_cmd *req0;
1083
1084         req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
1085
1086         hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
1087         hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
1088         hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
1089 }
1090
1091 static int
1092 hns3vf_query_dev_specifications(struct hns3_hw *hw)
1093 {
1094         struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
1095         int ret;
1096         int i;
1097
1098         for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
1099                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
1100                                           true);
1101                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1102         }
1103         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
1104
1105         ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
1106         if (ret)
1107                 return ret;
1108
1109         hns3vf_parse_dev_specifications(hw, desc);
1110
1111         return 0;
1112 }
1113
1114 static int
1115 hns3vf_get_capability(struct hns3_hw *hw)
1116 {
1117         struct rte_pci_device *pci_dev;
1118         struct rte_eth_dev *eth_dev;
1119         uint8_t revision;
1120         int ret;
1121
1122         eth_dev = &rte_eth_devices[hw->data->port_id];
1123         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1124
1125         /* Get PCI revision id */
1126         ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
1127                                   HNS3_PCI_REVISION_ID);
1128         if (ret != HNS3_PCI_REVISION_ID_LEN) {
1129                 PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
1130                              ret);
1131                 return -EIO;
1132         }
1133         hw->revision = revision;
1134
1135         if (revision < PCI_REVISION_ID_HIP09_A) {
1136                 hns3vf_set_default_dev_specifications(hw);
1137                 return 0;
1138         }
1139
1140         ret = hns3vf_query_dev_specifications(hw);
1141         if (ret) {
1142                 PMD_INIT_LOG(ERR,
1143                              "failed to query dev specifications, ret = %d",
1144                              ret);
1145                 return ret;
1146         }
1147
1148         return 0;
1149 }
1150
1151 static int
1152 hns3vf_check_tqp_info(struct hns3_hw *hw)
1153 {
1154         uint16_t tqps_num;
1155
1156         tqps_num = hw->tqps_num;
1157         if (tqps_num > HNS3_MAX_TQP_NUM_PER_FUNC || tqps_num == 0) {
1158                 PMD_INIT_LOG(ERR, "Get invalid tqps_num(%u) from PF. valid "
1159                                   "range: 1~%d",
1160                              tqps_num, HNS3_MAX_TQP_NUM_PER_FUNC);
1161                 return -EINVAL;
1162         }
1163
1164         hw->alloc_rss_size = RTE_MIN(hw->rss_size_max, hw->tqps_num);
1165
1166         return 0;
1167 }
1168 static int
1169 hns3vf_get_port_base_vlan_filter_state(struct hns3_hw *hw)
1170 {
1171         uint8_t resp_msg;
1172         int ret;
1173
1174         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN,
1175                                 HNS3_MBX_GET_PORT_BASE_VLAN_STATE, NULL, 0,
1176                                 true, &resp_msg, sizeof(resp_msg));
1177         if (ret) {
1178                 if (ret == -ETIME) {
1179                         /*
1180                          * Getting current port based VLAN state from PF driver
1181                          * will not affect VF driver's basic function. Because
1182                          * the VF driver relies on hns3 PF kernel ether driver,
1183                          * to avoid introducing compatibility issues with older
1184                          * version of PF driver, no failure will be returned
1185                          * when the return value is ETIME. This return value has
1186                          * the following scenarios:
1187                          * 1) Firmware didn't return the results in time
1188                          * 2) the result return by firmware is timeout
1189                          * 3) the older version of kernel side PF driver does
1190                          *    not support this mailbox message.
1191                          * For scenarios 1 and 2, it is most likely that a
1192                          * hardware error has occurred, or a hardware reset has
1193                          * occurred. In this case, these errors will be caught
1194                          * by other functions.
1195                          */
1196                         PMD_INIT_LOG(WARNING,
1197                                 "failed to get PVID state for timeout, maybe "
1198                                 "kernel side PF driver doesn't support this "
1199                                 "mailbox message, or firmware didn't respond.");
1200                         resp_msg = HNS3_PORT_BASE_VLAN_DISABLE;
1201                 } else {
1202                         PMD_INIT_LOG(ERR, "failed to get port based VLAN state,"
1203                                 " ret = %d", ret);
1204                         return ret;
1205                 }
1206         }
1207         hw->port_base_vlan_cfg.state = resp_msg ?
1208                 HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
1209         return 0;
1210 }
1211
1212 static int
1213 hns3vf_get_queue_info(struct hns3_hw *hw)
1214 {
1215 #define HNS3VF_TQPS_RSS_INFO_LEN        6
1216         uint8_t resp_msg[HNS3VF_TQPS_RSS_INFO_LEN];
1217         int ret;
1218
1219         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QINFO, 0, NULL, 0, true,
1220                                 resp_msg, HNS3VF_TQPS_RSS_INFO_LEN);
1221         if (ret) {
1222                 PMD_INIT_LOG(ERR, "Failed to get tqp info from PF: %d", ret);
1223                 return ret;
1224         }
1225
1226         memcpy(&hw->tqps_num, &resp_msg[0], sizeof(uint16_t));
1227         memcpy(&hw->rss_size_max, &resp_msg[2], sizeof(uint16_t));
1228
1229         return hns3vf_check_tqp_info(hw);
1230 }
1231
1232 static int
1233 hns3vf_get_queue_depth(struct hns3_hw *hw)
1234 {
1235 #define HNS3VF_TQPS_DEPTH_INFO_LEN      4
1236         uint8_t resp_msg[HNS3VF_TQPS_DEPTH_INFO_LEN];
1237         int ret;
1238
1239         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QDEPTH, 0, NULL, 0, true,
1240                                 resp_msg, HNS3VF_TQPS_DEPTH_INFO_LEN);
1241         if (ret) {
1242                 PMD_INIT_LOG(ERR, "Failed to get tqp depth info from PF: %d",
1243                              ret);
1244                 return ret;
1245         }
1246
1247         memcpy(&hw->num_tx_desc, &resp_msg[0], sizeof(uint16_t));
1248         memcpy(&hw->num_rx_desc, &resp_msg[2], sizeof(uint16_t));
1249
1250         return 0;
1251 }
1252
1253 static int
1254 hns3vf_get_tc_info(struct hns3_hw *hw)
1255 {
1256         uint8_t resp_msg;
1257         int ret;
1258
1259         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_TCINFO, 0, NULL, 0,
1260                                 true, &resp_msg, sizeof(resp_msg));
1261         if (ret) {
1262                 hns3_err(hw, "VF request to get TC info from PF failed %d",
1263                          ret);
1264                 return ret;
1265         }
1266
1267         hw->hw_tc_map = resp_msg;
1268
1269         return 0;
1270 }
1271
1272 static int
1273 hns3vf_get_host_mac_addr(struct hns3_hw *hw)
1274 {
1275         uint8_t host_mac[RTE_ETHER_ADDR_LEN];
1276         int ret;
1277
1278         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_MAC_ADDR, 0, NULL, 0,
1279                                 true, host_mac, RTE_ETHER_ADDR_LEN);
1280         if (ret) {
1281                 hns3_err(hw, "Failed to get mac addr from PF: %d", ret);
1282                 return ret;
1283         }
1284
1285         memcpy(hw->mac.mac_addr, host_mac, RTE_ETHER_ADDR_LEN);
1286
1287         return 0;
1288 }
1289
1290 static int
1291 hns3vf_get_configuration(struct hns3_hw *hw)
1292 {
1293         int ret;
1294
1295         hw->mac.media_type = HNS3_MEDIA_TYPE_NONE;
1296         hw->rss_dis_flag = false;
1297
1298         /* Get device capability */
1299         ret = hns3vf_get_capability(hw);
1300         if (ret) {
1301                 PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
1302                 return ret;
1303         }
1304
1305         /* Get queue configuration from PF */
1306         ret = hns3vf_get_queue_info(hw);
1307         if (ret)
1308                 return ret;
1309
1310         /* Get queue depth info from PF */
1311         ret = hns3vf_get_queue_depth(hw);
1312         if (ret)
1313                 return ret;
1314
1315         /* Get user defined VF MAC addr from PF */
1316         ret = hns3vf_get_host_mac_addr(hw);
1317         if (ret)
1318                 return ret;
1319
1320         ret = hns3vf_get_port_base_vlan_filter_state(hw);
1321         if (ret)
1322                 return ret;
1323
1324         /* Get tc configuration from PF */
1325         return hns3vf_get_tc_info(hw);
1326 }
1327
1328 static int
1329 hns3vf_set_tc_info(struct hns3_adapter *hns)
1330 {
1331         struct hns3_hw *hw = &hns->hw;
1332         uint16_t nb_rx_q = hw->data->nb_rx_queues;
1333         uint16_t nb_tx_q = hw->data->nb_tx_queues;
1334         uint8_t i;
1335
1336         hw->num_tc = 0;
1337         for (i = 0; i < HNS3_MAX_TC_NUM; i++)
1338                 if (hw->hw_tc_map & BIT(i))
1339                         hw->num_tc++;
1340
1341         if (nb_rx_q < hw->num_tc) {
1342                 hns3_err(hw, "number of Rx queues(%d) is less than tcs(%d).",
1343                          nb_rx_q, hw->num_tc);
1344                 return -EINVAL;
1345         }
1346
1347         if (nb_tx_q < hw->num_tc) {
1348                 hns3_err(hw, "number of Tx queues(%d) is less than tcs(%d).",
1349                          nb_tx_q, hw->num_tc);
1350                 return -EINVAL;
1351         }
1352
1353         hns3_set_rss_size(hw, nb_rx_q);
1354         hns3_tc_queue_mapping_cfg(hw, nb_tx_q);
1355
1356         return 0;
1357 }
1358
1359 static void
1360 hns3vf_request_link_info(struct hns3_hw *hw)
1361 {
1362         uint8_t resp_msg;
1363         int ret;
1364
1365         if (rte_atomic16_read(&hw->reset.resetting))
1366                 return;
1367         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1368                                 &resp_msg, sizeof(resp_msg));
1369         if (ret)
1370                 hns3_err(hw, "Failed to fetch link status from PF: %d", ret);
1371 }
1372
1373 static int
1374 hns3vf_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
1375 {
1376 #define HNS3VF_VLAN_MBX_MSG_LEN 5
1377         struct hns3_hw *hw = &hns->hw;
1378         uint8_t msg_data[HNS3VF_VLAN_MBX_MSG_LEN];
1379         uint16_t proto = htons(RTE_ETHER_TYPE_VLAN);
1380         uint8_t is_kill = on ? 0 : 1;
1381
1382         msg_data[0] = is_kill;
1383         memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1384         memcpy(&msg_data[3], &proto, sizeof(proto));
1385
1386         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_FILTER,
1387                                  msg_data, HNS3VF_VLAN_MBX_MSG_LEN, true, NULL,
1388                                  0);
1389 }
1390
1391 static int
1392 hns3vf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1393 {
1394         struct hns3_adapter *hns = dev->data->dev_private;
1395         struct hns3_hw *hw = &hns->hw;
1396         int ret;
1397
1398         if (rte_atomic16_read(&hw->reset.resetting)) {
1399                 hns3_err(hw,
1400                          "vf set vlan id failed during resetting, vlan_id =%u",
1401                          vlan_id);
1402                 return -EIO;
1403         }
1404         rte_spinlock_lock(&hw->lock);
1405         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1406         rte_spinlock_unlock(&hw->lock);
1407         if (ret)
1408                 hns3_err(hw, "vf set vlan id failed, vlan_id =%u, ret =%d",
1409                          vlan_id, ret);
1410
1411         return ret;
1412 }
1413
1414 static int
1415 hns3vf_en_hw_strip_rxvtag(struct hns3_hw *hw, bool enable)
1416 {
1417         uint8_t msg_data;
1418         int ret;
1419
1420         msg_data = enable ? 1 : 0;
1421         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_RX_OFF_CFG,
1422                                 &msg_data, sizeof(msg_data), false, NULL, 0);
1423         if (ret)
1424                 hns3_err(hw, "vf enable strip failed, ret =%d", ret);
1425
1426         return ret;
1427 }
1428
1429 static int
1430 hns3vf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1431 {
1432         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1433         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1434         unsigned int tmp_mask;
1435         int ret = 0;
1436
1437         if (rte_atomic16_read(&hw->reset.resetting)) {
1438                 hns3_err(hw, "vf set vlan offload failed during resetting, "
1439                              "mask = 0x%x", mask);
1440                 return -EIO;
1441         }
1442
1443         tmp_mask = (unsigned int)mask;
1444         /* Vlan stripping setting */
1445         if (tmp_mask & ETH_VLAN_STRIP_MASK) {
1446                 rte_spinlock_lock(&hw->lock);
1447                 /* Enable or disable VLAN stripping */
1448                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1449                         ret = hns3vf_en_hw_strip_rxvtag(hw, true);
1450                 else
1451                         ret = hns3vf_en_hw_strip_rxvtag(hw, false);
1452                 rte_spinlock_unlock(&hw->lock);
1453         }
1454
1455         return ret;
1456 }
1457
1458 static int
1459 hns3vf_handle_all_vlan_table(struct hns3_adapter *hns, int on)
1460 {
1461         struct rte_vlan_filter_conf *vfc;
1462         struct hns3_hw *hw = &hns->hw;
1463         uint16_t vlan_id;
1464         uint64_t vbit;
1465         uint64_t ids;
1466         int ret = 0;
1467         uint32_t i;
1468
1469         vfc = &hw->data->vlan_filter_conf;
1470         for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1471                 if (vfc->ids[i] == 0)
1472                         continue;
1473                 ids = vfc->ids[i];
1474                 while (ids) {
1475                         /*
1476                          * 64 means the num bits of ids, one bit corresponds to
1477                          * one vlan id
1478                          */
1479                         vlan_id = 64 * i;
1480                         /* count trailing zeroes */
1481                         vbit = ~ids & (ids - 1);
1482                         /* clear least significant bit set */
1483                         ids ^= (ids ^ (ids - 1)) ^ vbit;
1484                         for (; vbit;) {
1485                                 vbit >>= 1;
1486                                 vlan_id++;
1487                         }
1488                         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1489                         if (ret) {
1490                                 hns3_err(hw,
1491                                          "VF handle vlan table failed, ret =%d, on = %d",
1492                                          ret, on);
1493                                 return ret;
1494                         }
1495                 }
1496         }
1497
1498         return ret;
1499 }
1500
1501 static int
1502 hns3vf_remove_all_vlan_table(struct hns3_adapter *hns)
1503 {
1504         return hns3vf_handle_all_vlan_table(hns, 0);
1505 }
1506
1507 static int
1508 hns3vf_restore_vlan_conf(struct hns3_adapter *hns)
1509 {
1510         struct hns3_hw *hw = &hns->hw;
1511         struct rte_eth_conf *dev_conf;
1512         bool en;
1513         int ret;
1514
1515         dev_conf = &hw->data->dev_conf;
1516         en = dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP ? true
1517                                                                    : false;
1518         ret = hns3vf_en_hw_strip_rxvtag(hw, en);
1519         if (ret)
1520                 hns3_err(hw, "VF restore vlan conf fail, en =%d, ret =%d", en,
1521                          ret);
1522         return ret;
1523 }
1524
1525 static int
1526 hns3vf_dev_configure_vlan(struct rte_eth_dev *dev)
1527 {
1528         struct hns3_adapter *hns = dev->data->dev_private;
1529         struct rte_eth_dev_data *data = dev->data;
1530         struct hns3_hw *hw = &hns->hw;
1531         int ret;
1532
1533         if (data->dev_conf.txmode.hw_vlan_reject_tagged ||
1534             data->dev_conf.txmode.hw_vlan_reject_untagged ||
1535             data->dev_conf.txmode.hw_vlan_insert_pvid) {
1536                 hns3_warn(hw, "hw_vlan_reject_tagged, hw_vlan_reject_untagged "
1537                               "or hw_vlan_insert_pvid is not support!");
1538         }
1539
1540         /* Apply vlan offload setting */
1541         ret = hns3vf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
1542         if (ret)
1543                 hns3_err(hw, "dev config vlan offload failed, ret =%d", ret);
1544
1545         return ret;
1546 }
1547
1548 static int
1549 hns3vf_set_alive(struct hns3_hw *hw, bool alive)
1550 {
1551         uint8_t msg_data;
1552
1553         msg_data = alive ? 1 : 0;
1554         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_ALIVE, 0, &msg_data,
1555                                  sizeof(msg_data), false, NULL, 0);
1556 }
1557
1558 static void
1559 hns3vf_keep_alive_handler(void *param)
1560 {
1561         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1562         struct hns3_adapter *hns = eth_dev->data->dev_private;
1563         struct hns3_hw *hw = &hns->hw;
1564         uint8_t respmsg;
1565         int ret;
1566
1567         ret = hns3_send_mbx_msg(hw, HNS3_MBX_KEEP_ALIVE, 0, NULL, 0,
1568                                 false, &respmsg, sizeof(uint8_t));
1569         if (ret)
1570                 hns3_err(hw, "VF sends keeping alive cmd failed(=%d)",
1571                          ret);
1572
1573         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
1574                           eth_dev);
1575 }
1576
1577 static void
1578 hns3vf_service_handler(void *param)
1579 {
1580         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1581         struct hns3_adapter *hns = eth_dev->data->dev_private;
1582         struct hns3_hw *hw = &hns->hw;
1583
1584         /*
1585          * The query link status and reset processing are executed in the
1586          * interrupt thread.When the IMP reset occurs, IMP will not respond,
1587          * and the query operation will time out after 30ms. In the case of
1588          * multiple PF/VFs, each query failure timeout causes the IMP reset
1589          * interrupt to fail to respond within 100ms.
1590          * Before querying the link status, check whether there is a reset
1591          * pending, and if so, abandon the query.
1592          */
1593         if (!hns3vf_is_reset_pending(hns))
1594                 hns3vf_request_link_info(hw);
1595         else
1596                 hns3_warn(hw, "Cancel the query when reset is pending");
1597
1598         rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler,
1599                           eth_dev);
1600 }
1601
1602 static int
1603 hns3_query_vf_resource(struct hns3_hw *hw)
1604 {
1605         struct hns3_vf_res_cmd *req;
1606         struct hns3_cmd_desc desc;
1607         uint16_t num_msi;
1608         int ret;
1609
1610         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_VF_RSRC, true);
1611         ret = hns3_cmd_send(hw, &desc, 1);
1612         if (ret) {
1613                 hns3_err(hw, "query vf resource failed, ret = %d", ret);
1614                 return ret;
1615         }
1616
1617         req = (struct hns3_vf_res_cmd *)desc.data;
1618         num_msi = hns3_get_field(rte_le_to_cpu_16(req->vf_intr_vector_number),
1619                                  HNS3_VEC_NUM_M, HNS3_VEC_NUM_S);
1620         if (num_msi < HNS3_MIN_VECTOR_NUM) {
1621                 hns3_err(hw, "Just %u msi resources, not enough for vf(min:%d)",
1622                          num_msi, HNS3_MIN_VECTOR_NUM);
1623                 return -EINVAL;
1624         }
1625
1626         hw->num_msi = num_msi;
1627
1628         return 0;
1629 }
1630
1631 static int
1632 hns3vf_init_hardware(struct hns3_adapter *hns)
1633 {
1634         struct hns3_hw *hw = &hns->hw;
1635         uint16_t mtu = hw->data->mtu;
1636         int ret;
1637
1638         ret = hns3vf_set_promisc_mode(hw, true, false, false);
1639         if (ret)
1640                 return ret;
1641
1642         ret = hns3vf_config_mtu(hw, mtu);
1643         if (ret)
1644                 goto err_init_hardware;
1645
1646         ret = hns3vf_vlan_filter_configure(hns, 0, 1);
1647         if (ret) {
1648                 PMD_INIT_LOG(ERR, "Failed to initialize VLAN config: %d", ret);
1649                 goto err_init_hardware;
1650         }
1651
1652         ret = hns3_config_gro(hw, false);
1653         if (ret) {
1654                 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
1655                 goto err_init_hardware;
1656         }
1657
1658         /*
1659          * In the initialization clearing the all hardware mapping relationship
1660          * configurations between queues and interrupt vectors is needed, so
1661          * some error caused by the residual configurations, such as the
1662          * unexpected interrupt, can be avoid.
1663          */
1664         ret = hns3vf_init_ring_with_vector(hw);
1665         if (ret) {
1666                 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
1667                 goto err_init_hardware;
1668         }
1669
1670         ret = hns3vf_set_alive(hw, true);
1671         if (ret) {
1672                 PMD_INIT_LOG(ERR, "Failed to VF send alive to PF: %d", ret);
1673                 goto err_init_hardware;
1674         }
1675
1676         hns3vf_request_link_info(hw);
1677         return 0;
1678
1679 err_init_hardware:
1680         (void)hns3vf_set_promisc_mode(hw, false, false, false);
1681         return ret;
1682 }
1683
1684 static int
1685 hns3vf_clear_vport_list(struct hns3_hw *hw)
1686 {
1687         return hns3_send_mbx_msg(hw, HNS3_MBX_HANDLE_VF_TBL,
1688                                  HNS3_MBX_VPORT_LIST_CLEAR, NULL, 0, false,
1689                                  NULL, 0);
1690 }
1691
1692 static int
1693 hns3vf_init_vf(struct rte_eth_dev *eth_dev)
1694 {
1695         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1696         struct hns3_adapter *hns = eth_dev->data->dev_private;
1697         struct hns3_hw *hw = &hns->hw;
1698         int ret;
1699
1700         PMD_INIT_FUNC_TRACE();
1701
1702         /* Get hardware io base address from pcie BAR2 IO space */
1703         hw->io_base = pci_dev->mem_resource[2].addr;
1704
1705         /* Firmware command queue initialize */
1706         ret = hns3_cmd_init_queue(hw);
1707         if (ret) {
1708                 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
1709                 goto err_cmd_init_queue;
1710         }
1711
1712         /* Firmware command initialize */
1713         ret = hns3_cmd_init(hw);
1714         if (ret) {
1715                 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
1716                 goto err_cmd_init;
1717         }
1718
1719         /* Get VF resource */
1720         ret = hns3_query_vf_resource(hw);
1721         if (ret)
1722                 goto err_cmd_init;
1723
1724         rte_spinlock_init(&hw->mbx_resp.lock);
1725
1726         hns3vf_clear_event_cause(hw, 0);
1727
1728         ret = rte_intr_callback_register(&pci_dev->intr_handle,
1729                                          hns3vf_interrupt_handler, eth_dev);
1730         if (ret) {
1731                 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
1732                 goto err_intr_callback_register;
1733         }
1734
1735         /* Enable interrupt */
1736         rte_intr_enable(&pci_dev->intr_handle);
1737         hns3vf_enable_irq0(hw);
1738
1739         /* Get configuration from PF */
1740         ret = hns3vf_get_configuration(hw);
1741         if (ret) {
1742                 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
1743                 goto err_get_config;
1744         }
1745
1746         /*
1747          * The hns3 PF ethdev driver in kernel support setting VF MAC address
1748          * on the host by "ip link set ..." command. To avoid some incorrect
1749          * scenes, for example, hns3 VF PMD driver fails to receive and send
1750          * packets after user configure the MAC address by using the
1751          * "ip link set ..." command, hns3 VF PMD driver keep the same MAC
1752          * address strategy as the hns3 kernel ethdev driver in the
1753          * initialization. If user configure a MAC address by the ip command
1754          * for VF device, then hns3 VF PMD driver will start with it, otherwise
1755          * start with a random MAC address in the initialization.
1756          */
1757         ret = rte_is_zero_ether_addr((struct rte_ether_addr *)hw->mac.mac_addr);
1758         if (ret)
1759                 rte_eth_random_addr(hw->mac.mac_addr);
1760
1761         ret = hns3vf_clear_vport_list(hw);
1762         if (ret) {
1763                 PMD_INIT_LOG(ERR, "Failed to clear tbl list: %d", ret);
1764                 goto err_get_config;
1765         }
1766
1767         ret = hns3vf_init_hardware(hns);
1768         if (ret)
1769                 goto err_get_config;
1770
1771         hns3_set_default_rss_args(hw);
1772
1773         return 0;
1774
1775 err_get_config:
1776         hns3vf_disable_irq0(hw);
1777         rte_intr_disable(&pci_dev->intr_handle);
1778         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1779                              eth_dev);
1780 err_intr_callback_register:
1781 err_cmd_init:
1782         hns3_cmd_uninit(hw);
1783         hns3_cmd_destroy_queue(hw);
1784 err_cmd_init_queue:
1785         hw->io_base = NULL;
1786
1787         return ret;
1788 }
1789
1790 static void
1791 hns3vf_uninit_vf(struct rte_eth_dev *eth_dev)
1792 {
1793         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1794         struct hns3_adapter *hns = eth_dev->data->dev_private;
1795         struct hns3_hw *hw = &hns->hw;
1796
1797         PMD_INIT_FUNC_TRACE();
1798
1799         hns3_rss_uninit(hns);
1800         (void)hns3_config_gro(hw, false);
1801         (void)hns3vf_set_alive(hw, false);
1802         (void)hns3vf_set_promisc_mode(hw, false, false, false);
1803         hns3vf_disable_irq0(hw);
1804         rte_intr_disable(&pci_dev->intr_handle);
1805         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1806                              eth_dev);
1807         hns3_cmd_uninit(hw);
1808         hns3_cmd_destroy_queue(hw);
1809         hw->io_base = NULL;
1810 }
1811
1812 static int
1813 hns3vf_do_stop(struct hns3_adapter *hns)
1814 {
1815         struct hns3_hw *hw = &hns->hw;
1816         bool reset_queue;
1817
1818         hw->mac.link_status = ETH_LINK_DOWN;
1819
1820         if (rte_atomic16_read(&hw->reset.disable_cmd) == 0) {
1821                 hns3vf_configure_mac_addr(hns, true);
1822                 reset_queue = true;
1823         } else
1824                 reset_queue = false;
1825         return hns3_stop_queues(hns, reset_queue);
1826 }
1827
1828 static void
1829 hns3vf_unmap_rx_interrupt(struct rte_eth_dev *dev)
1830 {
1831         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1832         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1833         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1834         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
1835         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
1836         uint16_t q_id;
1837
1838         if (dev->data->dev_conf.intr_conf.rxq == 0)
1839                 return;
1840
1841         /* unmap the ring with vector */
1842         if (rte_intr_allow_others(intr_handle)) {
1843                 vec = RTE_INTR_VEC_RXTX_OFFSET;
1844                 base = RTE_INTR_VEC_RXTX_OFFSET;
1845         }
1846         if (rte_intr_dp_is_en(intr_handle)) {
1847                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
1848                         (void)hns3vf_bind_ring_with_vector(hw, vec, false,
1849                                                            HNS3_RING_TYPE_RX,
1850                                                            q_id);
1851                         if (vec < base + intr_handle->nb_efd - 1)
1852                                 vec++;
1853                 }
1854         }
1855         /* Clean datapath event and queue/vec mapping */
1856         rte_intr_efd_disable(intr_handle);
1857         if (intr_handle->intr_vec) {
1858                 rte_free(intr_handle->intr_vec);
1859                 intr_handle->intr_vec = NULL;
1860         }
1861 }
1862
1863 static void
1864 hns3vf_dev_stop(struct rte_eth_dev *dev)
1865 {
1866         struct hns3_adapter *hns = dev->data->dev_private;
1867         struct hns3_hw *hw = &hns->hw;
1868
1869         PMD_INIT_FUNC_TRACE();
1870
1871         hw->adapter_state = HNS3_NIC_STOPPING;
1872         hns3_set_rxtx_function(dev);
1873         rte_wmb();
1874         /* Disable datapath on secondary process. */
1875         hns3_mp_req_stop_rxtx(dev);
1876         /* Prevent crashes when queues are still in use. */
1877         rte_delay_ms(hw->tqps_num);
1878
1879         rte_spinlock_lock(&hw->lock);
1880         if (rte_atomic16_read(&hw->reset.resetting) == 0) {
1881                 hns3vf_do_stop(hns);
1882                 hns3vf_unmap_rx_interrupt(dev);
1883                 hns3_dev_release_mbufs(hns);
1884                 hw->adapter_state = HNS3_NIC_CONFIGURED;
1885         }
1886         rte_eal_alarm_cancel(hns3vf_service_handler, dev);
1887         rte_spinlock_unlock(&hw->lock);
1888 }
1889
1890 static void
1891 hns3vf_dev_close(struct rte_eth_dev *eth_dev)
1892 {
1893         struct hns3_adapter *hns = eth_dev->data->dev_private;
1894         struct hns3_hw *hw = &hns->hw;
1895
1896         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1897                 return;
1898
1899         if (hw->adapter_state == HNS3_NIC_STARTED)
1900                 hns3vf_dev_stop(eth_dev);
1901
1902         hw->adapter_state = HNS3_NIC_CLOSING;
1903         hns3_reset_abort(hns);
1904         hw->adapter_state = HNS3_NIC_CLOSED;
1905         rte_eal_alarm_cancel(hns3vf_keep_alive_handler, eth_dev);
1906         hns3vf_configure_all_mc_mac_addr(hns, true);
1907         hns3vf_remove_all_vlan_table(hns);
1908         hns3vf_uninit_vf(eth_dev);
1909         hns3_free_all_queues(eth_dev);
1910         rte_free(hw->reset.wait_data);
1911         rte_free(eth_dev->process_private);
1912         eth_dev->process_private = NULL;
1913         hns3_mp_uninit_primary();
1914         hns3_warn(hw, "Close port %d finished", hw->data->port_id);
1915 }
1916
1917 static int
1918 hns3vf_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
1919                       size_t fw_size)
1920 {
1921         struct hns3_adapter *hns = eth_dev->data->dev_private;
1922         struct hns3_hw *hw = &hns->hw;
1923         uint32_t version = hw->fw_version;
1924         int ret;
1925
1926         ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
1927                        hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
1928                                       HNS3_FW_VERSION_BYTE3_S),
1929                        hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
1930                                       HNS3_FW_VERSION_BYTE2_S),
1931                        hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
1932                                       HNS3_FW_VERSION_BYTE1_S),
1933                        hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
1934                                       HNS3_FW_VERSION_BYTE0_S));
1935         ret += 1; /* add the size of '\0' */
1936         if (fw_size < (uint32_t)ret)
1937                 return ret;
1938         else
1939                 return 0;
1940 }
1941
1942 static int
1943 hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
1944                        __rte_unused int wait_to_complete)
1945 {
1946         struct hns3_adapter *hns = eth_dev->data->dev_private;
1947         struct hns3_hw *hw = &hns->hw;
1948         struct hns3_mac *mac = &hw->mac;
1949         struct rte_eth_link new_link;
1950
1951         memset(&new_link, 0, sizeof(new_link));
1952         switch (mac->link_speed) {
1953         case ETH_SPEED_NUM_10M:
1954         case ETH_SPEED_NUM_100M:
1955         case ETH_SPEED_NUM_1G:
1956         case ETH_SPEED_NUM_10G:
1957         case ETH_SPEED_NUM_25G:
1958         case ETH_SPEED_NUM_40G:
1959         case ETH_SPEED_NUM_50G:
1960         case ETH_SPEED_NUM_100G:
1961         case ETH_SPEED_NUM_200G:
1962                 new_link.link_speed = mac->link_speed;
1963                 break;
1964         default:
1965                 new_link.link_speed = ETH_SPEED_NUM_100M;
1966                 break;
1967         }
1968
1969         new_link.link_duplex = mac->link_duplex;
1970         new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
1971         new_link.link_autoneg =
1972             !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
1973
1974         return rte_eth_linkstatus_set(eth_dev, &new_link);
1975 }
1976
1977 static int
1978 hns3vf_do_start(struct hns3_adapter *hns, bool reset_queue)
1979 {
1980         struct hns3_hw *hw = &hns->hw;
1981         int ret;
1982
1983         ret = hns3vf_set_tc_info(hns);
1984         if (ret)
1985                 return ret;
1986
1987         ret = hns3_start_queues(hns, reset_queue);
1988         if (ret)
1989                 hns3_err(hw, "Failed to start queues: %d", ret);
1990
1991         return ret;
1992 }
1993
1994 static int
1995 hns3vf_map_rx_interrupt(struct rte_eth_dev *dev)
1996 {
1997         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1998         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1999         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2000         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
2001         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
2002         uint32_t intr_vector;
2003         uint16_t q_id;
2004         int ret;
2005
2006         if (dev->data->dev_conf.intr_conf.rxq == 0)
2007                 return 0;
2008
2009         /* disable uio/vfio intr/eventfd mapping */
2010         rte_intr_disable(intr_handle);
2011
2012         /* check and configure queue intr-vector mapping */
2013         if (rte_intr_cap_multiple(intr_handle) ||
2014             !RTE_ETH_DEV_SRIOV(dev).active) {
2015                 intr_vector = hw->used_rx_queues;
2016                 /* It creates event fd for each intr vector when MSIX is used */
2017                 if (rte_intr_efd_enable(intr_handle, intr_vector))
2018                         return -EINVAL;
2019         }
2020         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
2021                 intr_handle->intr_vec =
2022                         rte_zmalloc("intr_vec",
2023                                     hw->used_rx_queues * sizeof(int), 0);
2024                 if (intr_handle->intr_vec == NULL) {
2025                         hns3_err(hw, "Failed to allocate %d rx_queues"
2026                                      " intr_vec", hw->used_rx_queues);
2027                         ret = -ENOMEM;
2028                         goto vf_alloc_intr_vec_error;
2029                 }
2030         }
2031
2032         if (rte_intr_allow_others(intr_handle)) {
2033                 vec = RTE_INTR_VEC_RXTX_OFFSET;
2034                 base = RTE_INTR_VEC_RXTX_OFFSET;
2035         }
2036         if (rte_intr_dp_is_en(intr_handle)) {
2037                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2038                         ret = hns3vf_bind_ring_with_vector(hw, vec, true,
2039                                                            HNS3_RING_TYPE_RX,
2040                                                            q_id);
2041                         if (ret)
2042                                 goto vf_bind_vector_error;
2043                         intr_handle->intr_vec[q_id] = vec;
2044                         if (vec < base + intr_handle->nb_efd - 1)
2045                                 vec++;
2046                 }
2047         }
2048         rte_intr_enable(intr_handle);
2049         return 0;
2050
2051 vf_bind_vector_error:
2052         rte_intr_efd_disable(intr_handle);
2053         if (intr_handle->intr_vec) {
2054                 free(intr_handle->intr_vec);
2055                 intr_handle->intr_vec = NULL;
2056         }
2057         return ret;
2058 vf_alloc_intr_vec_error:
2059         rte_intr_efd_disable(intr_handle);
2060         return ret;
2061 }
2062
2063 static int
2064 hns3vf_restore_rx_interrupt(struct hns3_hw *hw)
2065 {
2066         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
2067         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2068         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2069         uint16_t q_id;
2070         int ret;
2071
2072         if (dev->data->dev_conf.intr_conf.rxq == 0)
2073                 return 0;
2074
2075         if (rte_intr_dp_is_en(intr_handle)) {
2076                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2077                         ret = hns3vf_bind_ring_with_vector(hw,
2078                                         intr_handle->intr_vec[q_id], true,
2079                                         HNS3_RING_TYPE_RX, q_id);
2080                         if (ret)
2081                                 return ret;
2082                 }
2083         }
2084
2085         return 0;
2086 }
2087
2088 static void
2089 hns3vf_restore_filter(struct rte_eth_dev *dev)
2090 {
2091         hns3_restore_rss_filter(dev);
2092 }
2093
2094 static int
2095 hns3vf_dev_start(struct rte_eth_dev *dev)
2096 {
2097         struct hns3_adapter *hns = dev->data->dev_private;
2098         struct hns3_hw *hw = &hns->hw;
2099         int ret;
2100
2101         PMD_INIT_FUNC_TRACE();
2102         if (rte_atomic16_read(&hw->reset.resetting))
2103                 return -EBUSY;
2104
2105         rte_spinlock_lock(&hw->lock);
2106         hw->adapter_state = HNS3_NIC_STARTING;
2107         ret = hns3vf_do_start(hns, true);
2108         if (ret) {
2109                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2110                 rte_spinlock_unlock(&hw->lock);
2111                 return ret;
2112         }
2113         ret = hns3vf_map_rx_interrupt(dev);
2114         if (ret) {
2115                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2116                 rte_spinlock_unlock(&hw->lock);
2117                 return ret;
2118         }
2119         hw->adapter_state = HNS3_NIC_STARTED;
2120         rte_spinlock_unlock(&hw->lock);
2121
2122         hns3_set_rxtx_function(dev);
2123         hns3_mp_req_start_rxtx(dev);
2124         rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler, dev);
2125
2126         hns3vf_restore_filter(dev);
2127
2128         /* Enable interrupt of all rx queues before enabling queues */
2129         hns3_dev_all_rx_queue_intr_enable(hw, true);
2130         /*
2131          * When finished the initialization, enable queues to receive/transmit
2132          * packets.
2133          */
2134         hns3_enable_all_queues(hw, true);
2135
2136         return ret;
2137 }
2138
2139 static bool
2140 is_vf_reset_done(struct hns3_hw *hw)
2141 {
2142 #define HNS3_FUN_RST_ING_BITS \
2143         (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) | \
2144          BIT(HNS3_VECTOR0_CORERESET_INT_B) | \
2145          BIT(HNS3_VECTOR0_IMPRESET_INT_B) | \
2146          BIT(HNS3_VECTOR0_FUNCRESET_INT_B))
2147
2148         uint32_t val;
2149
2150         if (hw->reset.level == HNS3_VF_RESET) {
2151                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
2152                 if (val & HNS3_VF_RST_ING_BIT)
2153                         return false;
2154         } else {
2155                 val = hns3_read_dev(hw, HNS3_FUN_RST_ING);
2156                 if (val & HNS3_FUN_RST_ING_BITS)
2157                         return false;
2158         }
2159         return true;
2160 }
2161
2162 bool
2163 hns3vf_is_reset_pending(struct hns3_adapter *hns)
2164 {
2165         struct hns3_hw *hw = &hns->hw;
2166         enum hns3_reset_level reset;
2167
2168         hns3vf_check_event_cause(hns, NULL);
2169         reset = hns3vf_get_reset_level(hw, &hw->reset.pending);
2170         if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
2171                 hns3_warn(hw, "High level reset %d is pending", reset);
2172                 return true;
2173         }
2174         return false;
2175 }
2176
2177 static int
2178 hns3vf_wait_hardware_ready(struct hns3_adapter *hns)
2179 {
2180         struct hns3_hw *hw = &hns->hw;
2181         struct hns3_wait_data *wait_data = hw->reset.wait_data;
2182         struct timeval tv;
2183
2184         if (wait_data->result == HNS3_WAIT_SUCCESS) {
2185                 /*
2186                  * After vf reset is ready, the PF may not have completed
2187                  * the reset processing. The vf sending mbox to PF may fail
2188                  * during the pf reset, so it is better to add extra delay.
2189                  */
2190                 if (hw->reset.level == HNS3_VF_FUNC_RESET ||
2191                     hw->reset.level == HNS3_FLR_RESET)
2192                         return 0;
2193                 /* Reset retry process, no need to add extra delay. */
2194                 if (hw->reset.attempts)
2195                         return 0;
2196                 if (wait_data->check_completion == NULL)
2197                         return 0;
2198
2199                 wait_data->check_completion = NULL;
2200                 wait_data->interval = 1 * MSEC_PER_SEC * USEC_PER_MSEC;
2201                 wait_data->count = 1;
2202                 wait_data->result = HNS3_WAIT_REQUEST;
2203                 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback,
2204                                   wait_data);
2205                 hns3_warn(hw, "hardware is ready, delay 1 sec for PF reset complete");
2206                 return -EAGAIN;
2207         } else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
2208                 gettimeofday(&tv, NULL);
2209                 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
2210                           tv.tv_sec, tv.tv_usec);
2211                 return -ETIME;
2212         } else if (wait_data->result == HNS3_WAIT_REQUEST)
2213                 return -EAGAIN;
2214
2215         wait_data->hns = hns;
2216         wait_data->check_completion = is_vf_reset_done;
2217         wait_data->end_ms = (uint64_t)HNS3VF_RESET_WAIT_CNT *
2218                                       HNS3VF_RESET_WAIT_MS + get_timeofday_ms();
2219         wait_data->interval = HNS3VF_RESET_WAIT_MS * USEC_PER_MSEC;
2220         wait_data->count = HNS3VF_RESET_WAIT_CNT;
2221         wait_data->result = HNS3_WAIT_REQUEST;
2222         rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
2223         return -EAGAIN;
2224 }
2225
2226 static int
2227 hns3vf_prepare_reset(struct hns3_adapter *hns)
2228 {
2229         struct hns3_hw *hw = &hns->hw;
2230         int ret = 0;
2231
2232         if (hw->reset.level == HNS3_VF_FUNC_RESET) {
2233                 ret = hns3_send_mbx_msg(hw, HNS3_MBX_RESET, 0, NULL,
2234                                         0, true, NULL, 0);
2235         }
2236         rte_atomic16_set(&hw->reset.disable_cmd, 1);
2237
2238         return ret;
2239 }
2240
2241 static int
2242 hns3vf_stop_service(struct hns3_adapter *hns)
2243 {
2244         struct hns3_hw *hw = &hns->hw;
2245         struct rte_eth_dev *eth_dev;
2246
2247         eth_dev = &rte_eth_devices[hw->data->port_id];
2248         if (hw->adapter_state == HNS3_NIC_STARTED)
2249                 rte_eal_alarm_cancel(hns3vf_service_handler, eth_dev);
2250         hw->mac.link_status = ETH_LINK_DOWN;
2251
2252         hns3_set_rxtx_function(eth_dev);
2253         rte_wmb();
2254         /* Disable datapath on secondary process. */
2255         hns3_mp_req_stop_rxtx(eth_dev);
2256         rte_delay_ms(hw->tqps_num);
2257
2258         rte_spinlock_lock(&hw->lock);
2259         if (hw->adapter_state == HNS3_NIC_STARTED ||
2260             hw->adapter_state == HNS3_NIC_STOPPING) {
2261                 hns3vf_do_stop(hns);
2262                 hw->reset.mbuf_deferred_free = true;
2263         } else
2264                 hw->reset.mbuf_deferred_free = false;
2265
2266         /*
2267          * It is cumbersome for hardware to pick-and-choose entries for deletion
2268          * from table space. Hence, for function reset software intervention is
2269          * required to delete the entries.
2270          */
2271         if (rte_atomic16_read(&hw->reset.disable_cmd) == 0)
2272                 hns3vf_configure_all_mc_mac_addr(hns, true);
2273         rte_spinlock_unlock(&hw->lock);
2274
2275         return 0;
2276 }
2277
2278 static int
2279 hns3vf_start_service(struct hns3_adapter *hns)
2280 {
2281         struct hns3_hw *hw = &hns->hw;
2282         struct rte_eth_dev *eth_dev;
2283
2284         eth_dev = &rte_eth_devices[hw->data->port_id];
2285         hns3_set_rxtx_function(eth_dev);
2286         hns3_mp_req_start_rxtx(eth_dev);
2287         if (hw->adapter_state == HNS3_NIC_STARTED) {
2288                 hns3vf_service_handler(eth_dev);
2289
2290                 /* Enable interrupt of all rx queues before enabling queues */
2291                 hns3_dev_all_rx_queue_intr_enable(hw, true);
2292                 /*
2293                  * When finished the initialization, enable queues to receive
2294                  * and transmit packets.
2295                  */
2296                 hns3_enable_all_queues(hw, true);
2297         }
2298
2299         return 0;
2300 }
2301
2302 static int
2303 hns3vf_check_default_mac_change(struct hns3_hw *hw)
2304 {
2305         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2306         struct rte_ether_addr *hw_mac;
2307         int ret;
2308
2309         /*
2310          * The hns3 PF ethdev driver in kernel support setting VF MAC address
2311          * on the host by "ip link set ..." command. If the hns3 PF kernel
2312          * ethdev driver sets the MAC address for VF device after the
2313          * initialization of the related VF device, the PF driver will notify
2314          * VF driver to reset VF device to make the new MAC address effective
2315          * immediately. The hns3 VF PMD driver should check whether the MAC
2316          * address has been changed by the PF kernel ethdev driver, if changed
2317          * VF driver should configure hardware using the new MAC address in the
2318          * recovering hardware configuration stage of the reset process.
2319          */
2320         ret = hns3vf_get_host_mac_addr(hw);
2321         if (ret)
2322                 return ret;
2323
2324         hw_mac = (struct rte_ether_addr *)hw->mac.mac_addr;
2325         ret = rte_is_zero_ether_addr(hw_mac);
2326         if (ret) {
2327                 rte_ether_addr_copy(&hw->data->mac_addrs[0], hw_mac);
2328         } else {
2329                 ret = rte_is_same_ether_addr(&hw->data->mac_addrs[0], hw_mac);
2330                 if (!ret) {
2331                         rte_ether_addr_copy(hw_mac, &hw->data->mac_addrs[0]);
2332                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2333                                               &hw->data->mac_addrs[0]);
2334                         hns3_warn(hw, "Default MAC address has been changed to:"
2335                                   " %s by the host PF kernel ethdev driver",
2336                                   mac_str);
2337                 }
2338         }
2339
2340         return 0;
2341 }
2342
2343 static int
2344 hns3vf_restore_conf(struct hns3_adapter *hns)
2345 {
2346         struct hns3_hw *hw = &hns->hw;
2347         int ret;
2348
2349         ret = hns3vf_check_default_mac_change(hw);
2350         if (ret)
2351                 return ret;
2352
2353         ret = hns3vf_configure_mac_addr(hns, false);
2354         if (ret)
2355                 return ret;
2356
2357         ret = hns3vf_configure_all_mc_mac_addr(hns, false);
2358         if (ret)
2359                 goto err_mc_mac;
2360
2361         ret = hns3vf_restore_promisc(hns);
2362         if (ret)
2363                 goto err_vlan_table;
2364
2365         ret = hns3vf_restore_vlan_conf(hns);
2366         if (ret)
2367                 goto err_vlan_table;
2368
2369         ret = hns3vf_get_port_base_vlan_filter_state(hw);
2370         if (ret)
2371                 goto err_vlan_table;
2372
2373         ret = hns3vf_restore_rx_interrupt(hw);
2374         if (ret)
2375                 goto err_vlan_table;
2376
2377         ret = hns3_restore_gro_conf(hw);
2378         if (ret)
2379                 goto err_vlan_table;
2380
2381         if (hw->adapter_state == HNS3_NIC_STARTED) {
2382                 ret = hns3vf_do_start(hns, false);
2383                 if (ret)
2384                         goto err_vlan_table;
2385                 hns3_info(hw, "hns3vf dev restart successful!");
2386         } else if (hw->adapter_state == HNS3_NIC_STOPPING)
2387                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2388         return 0;
2389
2390 err_vlan_table:
2391         hns3vf_configure_all_mc_mac_addr(hns, true);
2392 err_mc_mac:
2393         hns3vf_configure_mac_addr(hns, true);
2394         return ret;
2395 }
2396
2397 static enum hns3_reset_level
2398 hns3vf_get_reset_level(struct hns3_hw *hw, uint64_t *levels)
2399 {
2400         enum hns3_reset_level reset_level;
2401
2402         /* return the highest priority reset level amongst all */
2403         if (hns3_atomic_test_bit(HNS3_VF_RESET, levels))
2404                 reset_level = HNS3_VF_RESET;
2405         else if (hns3_atomic_test_bit(HNS3_VF_FULL_RESET, levels))
2406                 reset_level = HNS3_VF_FULL_RESET;
2407         else if (hns3_atomic_test_bit(HNS3_VF_PF_FUNC_RESET, levels))
2408                 reset_level = HNS3_VF_PF_FUNC_RESET;
2409         else if (hns3_atomic_test_bit(HNS3_VF_FUNC_RESET, levels))
2410                 reset_level = HNS3_VF_FUNC_RESET;
2411         else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
2412                 reset_level = HNS3_FLR_RESET;
2413         else
2414                 reset_level = HNS3_NONE_RESET;
2415
2416         if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
2417                 return HNS3_NONE_RESET;
2418
2419         return reset_level;
2420 }
2421
2422 static void
2423 hns3vf_reset_service(void *param)
2424 {
2425         struct hns3_adapter *hns = (struct hns3_adapter *)param;
2426         struct hns3_hw *hw = &hns->hw;
2427         enum hns3_reset_level reset_level;
2428         struct timeval tv_delta;
2429         struct timeval tv_start;
2430         struct timeval tv;
2431         uint64_t msec;
2432
2433         /*
2434          * The interrupt is not triggered within the delay time.
2435          * The interrupt may have been lost. It is necessary to handle
2436          * the interrupt to recover from the error.
2437          */
2438         if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_DEFERRED) {
2439                 rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_REQUESTED);
2440                 hns3_err(hw, "Handling interrupts in delayed tasks");
2441                 hns3vf_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
2442                 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2443                 if (reset_level == HNS3_NONE_RESET) {
2444                         hns3_err(hw, "No reset level is set, try global reset");
2445                         hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
2446                 }
2447         }
2448         rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_NONE);
2449
2450         /*
2451          * Hardware reset has been notified, we now have to poll & check if
2452          * hardware has actually completed the reset sequence.
2453          */
2454         reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2455         if (reset_level != HNS3_NONE_RESET) {
2456                 gettimeofday(&tv_start, NULL);
2457                 hns3_reset_process(hns, reset_level);
2458                 gettimeofday(&tv, NULL);
2459                 timersub(&tv, &tv_start, &tv_delta);
2460                 msec = tv_delta.tv_sec * MSEC_PER_SEC +
2461                        tv_delta.tv_usec / USEC_PER_MSEC;
2462                 if (msec > HNS3_RESET_PROCESS_MS)
2463                         hns3_err(hw, "%d handle long time delta %" PRIx64
2464                                  " ms time=%ld.%.6ld",
2465                                  hw->reset.level, msec, tv.tv_sec, tv.tv_usec);
2466         }
2467 }
2468
2469 static int
2470 hns3vf_reinit_dev(struct hns3_adapter *hns)
2471 {
2472         struct rte_eth_dev *eth_dev = &rte_eth_devices[hns->hw.data->port_id];
2473         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2474         struct hns3_hw *hw = &hns->hw;
2475         int ret;
2476
2477         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2478                 rte_intr_disable(&pci_dev->intr_handle);
2479                 hns3vf_set_bus_master(pci_dev, true);
2480         }
2481
2482         /* Firmware command initialize */
2483         ret = hns3_cmd_init(hw);
2484         if (ret) {
2485                 hns3_err(hw, "Failed to init cmd: %d", ret);
2486                 return ret;
2487         }
2488
2489         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2490                 /*
2491                  * UIO enables msix by writing the pcie configuration space
2492                  * vfio_pci enables msix in rte_intr_enable.
2493                  */
2494                 if (pci_dev->kdrv == RTE_PCI_KDRV_IGB_UIO ||
2495                     pci_dev->kdrv == RTE_PCI_KDRV_UIO_GENERIC) {
2496                         if (hns3vf_enable_msix(pci_dev, true))
2497                                 hns3_err(hw, "Failed to enable msix");
2498                 }
2499
2500                 rte_intr_enable(&pci_dev->intr_handle);
2501         }
2502
2503         ret = hns3_reset_all_queues(hns);
2504         if (ret) {
2505                 hns3_err(hw, "Failed to reset all queues: %d", ret);
2506                 return ret;
2507         }
2508
2509         ret = hns3vf_init_hardware(hns);
2510         if (ret) {
2511                 hns3_err(hw, "Failed to init hardware: %d", ret);
2512                 return ret;
2513         }
2514
2515         return 0;
2516 }
2517
2518 static const struct eth_dev_ops hns3vf_eth_dev_ops = {
2519         .dev_start          = hns3vf_dev_start,
2520         .dev_stop           = hns3vf_dev_stop,
2521         .dev_close          = hns3vf_dev_close,
2522         .mtu_set            = hns3vf_dev_mtu_set,
2523         .promiscuous_enable = hns3vf_dev_promiscuous_enable,
2524         .promiscuous_disable = hns3vf_dev_promiscuous_disable,
2525         .allmulticast_enable = hns3vf_dev_allmulticast_enable,
2526         .allmulticast_disable = hns3vf_dev_allmulticast_disable,
2527         .stats_get          = hns3_stats_get,
2528         .stats_reset        = hns3_stats_reset,
2529         .xstats_get         = hns3_dev_xstats_get,
2530         .xstats_get_names   = hns3_dev_xstats_get_names,
2531         .xstats_reset       = hns3_dev_xstats_reset,
2532         .xstats_get_by_id   = hns3_dev_xstats_get_by_id,
2533         .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
2534         .dev_infos_get      = hns3vf_dev_infos_get,
2535         .fw_version_get     = hns3vf_fw_version_get,
2536         .rx_queue_setup     = hns3_rx_queue_setup,
2537         .tx_queue_setup     = hns3_tx_queue_setup,
2538         .rx_queue_release   = hns3_dev_rx_queue_release,
2539         .tx_queue_release   = hns3_dev_tx_queue_release,
2540         .rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
2541         .rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
2542         .rxq_info_get       = hns3_rxq_info_get,
2543         .txq_info_get       = hns3_txq_info_get,
2544         .dev_configure      = hns3vf_dev_configure,
2545         .mac_addr_add       = hns3vf_add_mac_addr,
2546         .mac_addr_remove    = hns3vf_remove_mac_addr,
2547         .mac_addr_set       = hns3vf_set_default_mac_addr,
2548         .set_mc_addr_list   = hns3vf_set_mc_mac_addr_list,
2549         .link_update        = hns3vf_dev_link_update,
2550         .rss_hash_update    = hns3_dev_rss_hash_update,
2551         .rss_hash_conf_get  = hns3_dev_rss_hash_conf_get,
2552         .reta_update        = hns3_dev_rss_reta_update,
2553         .reta_query         = hns3_dev_rss_reta_query,
2554         .filter_ctrl        = hns3_dev_filter_ctrl,
2555         .vlan_filter_set    = hns3vf_vlan_filter_set,
2556         .vlan_offload_set   = hns3vf_vlan_offload_set,
2557         .get_reg            = hns3_get_regs,
2558         .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
2559 };
2560
2561 static const struct hns3_reset_ops hns3vf_reset_ops = {
2562         .reset_service       = hns3vf_reset_service,
2563         .stop_service        = hns3vf_stop_service,
2564         .prepare_reset       = hns3vf_prepare_reset,
2565         .wait_hardware_ready = hns3vf_wait_hardware_ready,
2566         .reinit_dev          = hns3vf_reinit_dev,
2567         .restore_conf        = hns3vf_restore_conf,
2568         .start_service       = hns3vf_start_service,
2569 };
2570
2571 static int
2572 hns3vf_dev_init(struct rte_eth_dev *eth_dev)
2573 {
2574         struct hns3_adapter *hns = eth_dev->data->dev_private;
2575         struct hns3_hw *hw = &hns->hw;
2576         int ret;
2577
2578         PMD_INIT_FUNC_TRACE();
2579
2580         eth_dev->process_private = (struct hns3_process_private *)
2581             rte_zmalloc_socket("hns3_filter_list",
2582                                sizeof(struct hns3_process_private),
2583                                RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
2584         if (eth_dev->process_private == NULL) {
2585                 PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
2586                 return -ENOMEM;
2587         }
2588
2589         /* initialize flow filter lists */
2590         hns3_filterlist_init(eth_dev);
2591
2592         hns3_set_rxtx_function(eth_dev);
2593         eth_dev->dev_ops = &hns3vf_eth_dev_ops;
2594         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2595                 ret = hns3_mp_init_secondary();
2596                 if (ret) {
2597                         PMD_INIT_LOG(ERR, "Failed to init for secondary "
2598                                           "process, ret = %d", ret);
2599                         goto err_mp_init_secondary;
2600                 }
2601
2602                 hw->secondary_cnt++;
2603                 return 0;
2604         }
2605
2606         ret = hns3_mp_init_primary();
2607         if (ret) {
2608                 PMD_INIT_LOG(ERR,
2609                              "Failed to init for primary process, ret = %d",
2610                              ret);
2611                 goto err_mp_init_primary;
2612         }
2613
2614         hw->adapter_state = HNS3_NIC_UNINITIALIZED;
2615         hns->is_vf = true;
2616         hw->data = eth_dev->data;
2617
2618         ret = hns3_reset_init(hw);
2619         if (ret)
2620                 goto err_init_reset;
2621         hw->reset.ops = &hns3vf_reset_ops;
2622
2623         ret = hns3vf_init_vf(eth_dev);
2624         if (ret) {
2625                 PMD_INIT_LOG(ERR, "Failed to init vf: %d", ret);
2626                 goto err_init_vf;
2627         }
2628
2629         /* Allocate memory for storing MAC addresses */
2630         eth_dev->data->mac_addrs = rte_zmalloc("hns3vf-mac",
2631                                                sizeof(struct rte_ether_addr) *
2632                                                HNS3_VF_UC_MACADDR_NUM, 0);
2633         if (eth_dev->data->mac_addrs == NULL) {
2634                 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
2635                              "to store MAC addresses",
2636                              sizeof(struct rte_ether_addr) *
2637                              HNS3_VF_UC_MACADDR_NUM);
2638                 ret = -ENOMEM;
2639                 goto err_rte_zmalloc;
2640         }
2641
2642         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
2643                             &eth_dev->data->mac_addrs[0]);
2644         hw->adapter_state = HNS3_NIC_INITIALIZED;
2645         /*
2646          * Pass the information to the rte_eth_dev_close() that it should also
2647          * release the private port resources.
2648          */
2649         eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
2650
2651         if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_PENDING) {
2652                 hns3_err(hw, "Reschedule reset service after dev_init");
2653                 hns3_schedule_reset(hns);
2654         } else {
2655                 /* IMP will wait ready flag before reset */
2656                 hns3_notify_reset_ready(hw, false);
2657         }
2658         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
2659                           eth_dev);
2660         return 0;
2661
2662 err_rte_zmalloc:
2663         hns3vf_uninit_vf(eth_dev);
2664
2665 err_init_vf:
2666         rte_free(hw->reset.wait_data);
2667
2668 err_init_reset:
2669         hns3_mp_uninit_primary();
2670
2671 err_mp_init_primary:
2672 err_mp_init_secondary:
2673         eth_dev->dev_ops = NULL;
2674         eth_dev->rx_pkt_burst = NULL;
2675         eth_dev->tx_pkt_burst = NULL;
2676         eth_dev->tx_pkt_prepare = NULL;
2677         rte_free(eth_dev->process_private);
2678         eth_dev->process_private = NULL;
2679
2680         return ret;
2681 }
2682
2683 static int
2684 hns3vf_dev_uninit(struct rte_eth_dev *eth_dev)
2685 {
2686         struct hns3_adapter *hns = eth_dev->data->dev_private;
2687         struct hns3_hw *hw = &hns->hw;
2688
2689         PMD_INIT_FUNC_TRACE();
2690
2691         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2692                 return -EPERM;
2693
2694         eth_dev->dev_ops = NULL;
2695         eth_dev->rx_pkt_burst = NULL;
2696         eth_dev->tx_pkt_burst = NULL;
2697         eth_dev->tx_pkt_prepare = NULL;
2698
2699         if (hw->adapter_state < HNS3_NIC_CLOSING)
2700                 hns3vf_dev_close(eth_dev);
2701
2702         hw->adapter_state = HNS3_NIC_REMOVED;
2703         return 0;
2704 }
2705
2706 static int
2707 eth_hns3vf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2708                      struct rte_pci_device *pci_dev)
2709 {
2710         return rte_eth_dev_pci_generic_probe(pci_dev,
2711                                              sizeof(struct hns3_adapter),
2712                                              hns3vf_dev_init);
2713 }
2714
2715 static int
2716 eth_hns3vf_pci_remove(struct rte_pci_device *pci_dev)
2717 {
2718         return rte_eth_dev_pci_generic_remove(pci_dev, hns3vf_dev_uninit);
2719 }
2720
2721 static const struct rte_pci_id pci_id_hns3vf_map[] = {
2722         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_VF) },
2723         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_PFC_VF) },
2724         { .vendor_id = 0, /* sentinel */ },
2725 };
2726
2727 static struct rte_pci_driver rte_hns3vf_pmd = {
2728         .id_table = pci_id_hns3vf_map,
2729         .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
2730         .probe = eth_hns3vf_pci_probe,
2731         .remove = eth_hns3vf_pci_remove,
2732 };
2733
2734 RTE_PMD_REGISTER_PCI(net_hns3_vf, rte_hns3vf_pmd);
2735 RTE_PMD_REGISTER_PCI_TABLE(net_hns3_vf, pci_id_hns3vf_map);
2736 RTE_PMD_REGISTER_KMOD_DEP(net_hns3_vf, "* igb_uio | vfio-pci");