1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2018-2019 Hisilicon Limited.
5 #include <linux/pci_regs.h>
7 #include <ethdev_pci.h>
12 #include "hns3_ethdev.h"
13 #include "hns3_logs.h"
14 #include "hns3_rxtx.h"
15 #include "hns3_regs.h"
16 #include "hns3_intr.h"
20 #define HNS3VF_KEEP_ALIVE_INTERVAL 2000000 /* us */
21 #define HNS3VF_SERVICE_INTERVAL 1000000 /* us */
23 #define HNS3VF_RESET_WAIT_MS 20
24 #define HNS3VF_RESET_WAIT_CNT 2000
26 /* Reset related Registers */
27 #define HNS3_GLOBAL_RESET_BIT 0
28 #define HNS3_CORE_RESET_BIT 1
29 #define HNS3_IMP_RESET_BIT 2
30 #define HNS3_FUN_RST_ING_B 0
32 enum hns3vf_evt_cause {
33 HNS3VF_VECTOR0_EVENT_RST,
34 HNS3VF_VECTOR0_EVENT_MBX,
35 HNS3VF_VECTOR0_EVENT_OTHER,
38 static enum hns3_reset_level hns3vf_get_reset_level(struct hns3_hw *hw,
40 static int hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
41 static int hns3vf_dev_configure_vlan(struct rte_eth_dev *dev);
43 static int hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
44 struct rte_ether_addr *mac_addr);
45 static int hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
46 struct rte_ether_addr *mac_addr);
47 /* set PCI bus mastering */
49 hns3vf_set_bus_master(const struct rte_pci_device *device, bool op)
54 ret = rte_pci_read_config(device, ®, sizeof(reg), PCI_COMMAND);
56 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
62 /* set the master bit */
63 reg |= PCI_COMMAND_MASTER;
65 reg &= ~(PCI_COMMAND_MASTER);
67 return rte_pci_write_config(device, ®, sizeof(reg), PCI_COMMAND);
71 * hns3vf_find_pci_capability - lookup a capability in the PCI capability list
72 * @cap: the capability
74 * Return the address of the given capability within the PCI capability list.
77 hns3vf_find_pci_capability(const struct rte_pci_device *device, int cap)
79 #define MAX_PCIE_CAPABILITY 48
86 ret = rte_pci_read_config(device, &status, sizeof(status), PCI_STATUS);
88 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x", PCI_STATUS);
92 if (!(status & PCI_STATUS_CAP_LIST))
95 ttl = MAX_PCIE_CAPABILITY;
96 ret = rte_pci_read_config(device, &pos, sizeof(pos),
99 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
100 PCI_CAPABILITY_LIST);
104 while (ttl-- && pos >= PCI_STD_HEADER_SIZEOF) {
105 ret = rte_pci_read_config(device, &id, sizeof(id),
106 (pos + PCI_CAP_LIST_ID));
108 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
109 (pos + PCI_CAP_LIST_ID));
119 ret = rte_pci_read_config(device, &pos, sizeof(pos),
120 (pos + PCI_CAP_LIST_NEXT));
122 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
123 (pos + PCI_CAP_LIST_NEXT));
131 hns3vf_enable_msix(const struct rte_pci_device *device, bool op)
137 pos = hns3vf_find_pci_capability(device, PCI_CAP_ID_MSIX);
139 ret = rte_pci_read_config(device, &control, sizeof(control),
140 (pos + PCI_MSIX_FLAGS));
142 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
143 (pos + PCI_MSIX_FLAGS));
148 control |= PCI_MSIX_FLAGS_ENABLE;
150 control &= ~PCI_MSIX_FLAGS_ENABLE;
151 ret = rte_pci_write_config(device, &control, sizeof(control),
152 (pos + PCI_MSIX_FLAGS));
154 PMD_INIT_LOG(ERR, "failed to write PCI offset 0x%x",
155 (pos + PCI_MSIX_FLAGS));
163 hns3vf_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
165 /* mac address was checked by upper level interface */
166 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
169 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
170 HNS3_MBX_MAC_VLAN_UC_ADD, mac_addr->addr_bytes,
171 RTE_ETHER_ADDR_LEN, false, NULL, 0);
173 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
175 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
182 hns3vf_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
184 /* mac address was checked by upper level interface */
185 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
188 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
189 HNS3_MBX_MAC_VLAN_UC_REMOVE,
190 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN,
193 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
195 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
202 hns3vf_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
204 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
205 struct rte_ether_addr *addr;
209 for (i = 0; i < hw->mc_addrs_num; i++) {
210 addr = &hw->mc_addrs[i];
211 /* Check if there are duplicate addresses */
212 if (rte_is_same_ether_addr(addr, mac_addr)) {
213 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
215 hns3_err(hw, "failed to add mc mac addr, same addrs"
216 "(%s) is added by the set_mc_mac_addr_list "
222 ret = hns3vf_add_mc_mac_addr(hw, mac_addr);
224 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
226 hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
233 hns3vf_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
234 __rte_unused uint32_t idx,
235 __rte_unused uint32_t pool)
237 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
238 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
241 rte_spinlock_lock(&hw->lock);
244 * In hns3 network engine adding UC and MC mac address with different
245 * commands with firmware. We need to determine whether the input
246 * address is a UC or a MC address to call different commands.
247 * By the way, it is recommended calling the API function named
248 * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
249 * using the rte_eth_dev_mac_addr_add API function to set MC mac address
250 * may affect the specifications of UC mac addresses.
252 if (rte_is_multicast_ether_addr(mac_addr))
253 ret = hns3vf_add_mc_addr_common(hw, mac_addr);
255 ret = hns3vf_add_uc_mac_addr(hw, mac_addr);
257 rte_spinlock_unlock(&hw->lock);
259 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
261 hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
269 hns3vf_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
271 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
272 /* index will be checked by upper level rte interface */
273 struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
274 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
277 rte_spinlock_lock(&hw->lock);
279 if (rte_is_multicast_ether_addr(mac_addr))
280 ret = hns3vf_remove_mc_mac_addr(hw, mac_addr);
282 ret = hns3vf_remove_uc_mac_addr(hw, mac_addr);
284 rte_spinlock_unlock(&hw->lock);
286 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
288 hns3_err(hw, "failed to remove mac addr(%s), ret = %d",
294 hns3vf_set_default_mac_addr(struct rte_eth_dev *dev,
295 struct rte_ether_addr *mac_addr)
297 #define HNS3_TWO_ETHER_ADDR_LEN (RTE_ETHER_ADDR_LEN * 2)
298 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
299 struct rte_ether_addr *old_addr;
300 uint8_t addr_bytes[HNS3_TWO_ETHER_ADDR_LEN]; /* for 2 MAC addresses */
301 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
305 * It has been guaranteed that input parameter named mac_addr is valid
306 * address in the rte layer of DPDK framework.
308 old_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
309 rte_spinlock_lock(&hw->lock);
310 memcpy(addr_bytes, mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN);
311 memcpy(&addr_bytes[RTE_ETHER_ADDR_LEN], old_addr->addr_bytes,
314 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
315 HNS3_MBX_MAC_VLAN_UC_MODIFY, addr_bytes,
316 HNS3_TWO_ETHER_ADDR_LEN, true, NULL, 0);
319 * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev
320 * driver. When user has configured a MAC address for VF device
321 * by "ip link set ..." command based on the PF device, the hns3
322 * PF kernel ethdev driver does not allow VF driver to request
323 * reconfiguring a different default MAC address, and return
324 * -EPREM to VF driver through mailbox.
327 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
329 hns3_warn(hw, "Has permanet mac addr(%s) for vf",
332 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
334 hns3_err(hw, "Failed to set mac addr(%s) for vf: %d",
339 rte_ether_addr_copy(mac_addr,
340 (struct rte_ether_addr *)hw->mac.mac_addr);
341 rte_spinlock_unlock(&hw->lock);
347 hns3vf_configure_mac_addr(struct hns3_adapter *hns, bool del)
349 struct hns3_hw *hw = &hns->hw;
350 struct rte_ether_addr *addr;
351 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
356 for (i = 0; i < HNS3_VF_UC_MACADDR_NUM; i++) {
357 addr = &hw->data->mac_addrs[i];
358 if (rte_is_zero_ether_addr(addr))
360 if (rte_is_multicast_ether_addr(addr))
361 ret = del ? hns3vf_remove_mc_mac_addr(hw, addr) :
362 hns3vf_add_mc_mac_addr(hw, addr);
364 ret = del ? hns3vf_remove_uc_mac_addr(hw, addr) :
365 hns3vf_add_uc_mac_addr(hw, addr);
369 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
371 hns3_err(hw, "failed to %s mac addr(%s) index:%d "
372 "ret = %d.", del ? "remove" : "restore",
380 hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
381 struct rte_ether_addr *mac_addr)
383 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
386 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
387 HNS3_MBX_MAC_VLAN_MC_ADD,
388 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
391 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
393 hns3_err(hw, "Failed to add mc mac addr(%s) for vf: %d",
401 hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
402 struct rte_ether_addr *mac_addr)
404 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
407 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
408 HNS3_MBX_MAC_VLAN_MC_REMOVE,
409 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
412 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
414 hns3_err(hw, "Failed to remove mc mac addr(%s) for vf: %d",
422 hns3vf_set_mc_addr_chk_param(struct hns3_hw *hw,
423 struct rte_ether_addr *mc_addr_set,
426 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
427 struct rte_ether_addr *addr;
431 if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
432 hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%u) "
433 "invalid. valid range: 0~%d",
434 nb_mc_addr, HNS3_MC_MACADDR_NUM);
438 /* Check if input mac addresses are valid */
439 for (i = 0; i < nb_mc_addr; i++) {
440 addr = &mc_addr_set[i];
441 if (!rte_is_multicast_ether_addr(addr)) {
442 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
445 "failed to set mc mac addr, addr(%s) invalid.",
450 /* Check if there are duplicate addresses */
451 for (j = i + 1; j < nb_mc_addr; j++) {
452 if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
453 hns3_ether_format_addr(mac_str,
454 RTE_ETHER_ADDR_FMT_SIZE,
456 hns3_err(hw, "failed to set mc mac addr, "
457 "addrs invalid. two same addrs(%s).",
464 * Check if there are duplicate addresses between mac_addrs
467 for (j = 0; j < HNS3_VF_UC_MACADDR_NUM; j++) {
468 if (rte_is_same_ether_addr(addr,
469 &hw->data->mac_addrs[j])) {
470 hns3_ether_format_addr(mac_str,
471 RTE_ETHER_ADDR_FMT_SIZE,
473 hns3_err(hw, "failed to set mc mac addr, "
474 "addrs invalid. addrs(%s) has already "
475 "configured in mac_addr add API",
486 hns3vf_set_mc_mac_addr_list(struct rte_eth_dev *dev,
487 struct rte_ether_addr *mc_addr_set,
490 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
491 struct rte_ether_addr *addr;
498 ret = hns3vf_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
502 rte_spinlock_lock(&hw->lock);
503 cur_addr_num = hw->mc_addrs_num;
504 for (i = 0; i < cur_addr_num; i++) {
505 num = cur_addr_num - i - 1;
506 addr = &hw->mc_addrs[num];
507 ret = hns3vf_remove_mc_mac_addr(hw, addr);
509 rte_spinlock_unlock(&hw->lock);
516 set_addr_num = (int)nb_mc_addr;
517 for (i = 0; i < set_addr_num; i++) {
518 addr = &mc_addr_set[i];
519 ret = hns3vf_add_mc_mac_addr(hw, addr);
521 rte_spinlock_unlock(&hw->lock);
525 rte_ether_addr_copy(addr, &hw->mc_addrs[hw->mc_addrs_num]);
528 rte_spinlock_unlock(&hw->lock);
534 hns3vf_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
536 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
537 struct hns3_hw *hw = &hns->hw;
538 struct rte_ether_addr *addr;
543 for (i = 0; i < hw->mc_addrs_num; i++) {
544 addr = &hw->mc_addrs[i];
545 if (!rte_is_multicast_ether_addr(addr))
548 ret = hns3vf_remove_mc_mac_addr(hw, addr);
550 ret = hns3vf_add_mc_mac_addr(hw, addr);
553 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
555 hns3_err(hw, "Failed to %s mc mac addr: %s for vf: %d",
556 del ? "Remove" : "Restore", mac_str, ret);
563 hns3vf_set_promisc_mode(struct hns3_hw *hw, bool en_bc_pmc,
564 bool en_uc_pmc, bool en_mc_pmc)
566 struct hns3_mbx_vf_to_pf_cmd *req;
567 struct hns3_cmd_desc desc;
570 req = (struct hns3_mbx_vf_to_pf_cmd *)desc.data;
573 * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev driver,
574 * so there are some features for promiscuous/allmulticast mode in hns3
575 * VF PMD driver as below:
576 * 1. The promiscuous/allmulticast mode can be configured successfully
577 * only based on the trusted VF device. If based on the non trusted
578 * VF device, configuring promiscuous/allmulticast mode will fail.
579 * The hns3 VF device can be confiruged as trusted device by hns3 PF
580 * kernel ethdev driver on the host by the following command:
581 * "ip link set <eth num> vf <vf id> turst on"
582 * 2. After the promiscuous mode is configured successfully, hns3 VF PMD
583 * driver can receive the ingress and outgoing traffic. In the words,
584 * all the ingress packets, all the packets sent from the PF and
585 * other VFs on the same physical port.
586 * 3. Note: Because of the hardware constraints, By default vlan filter
587 * is enabled and couldn't be turned off based on VF device, so vlan
588 * filter is still effective even in promiscuous mode. If upper
589 * applications don't call rte_eth_dev_vlan_filter API function to
590 * set vlan based on VF device, hns3 VF PMD driver will can't receive
591 * the packets with vlan tag in promiscuoue mode.
593 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MBX_VF_TO_PF, false);
594 req->msg[0] = HNS3_MBX_SET_PROMISC_MODE;
595 req->msg[1] = en_bc_pmc ? 1 : 0;
596 req->msg[2] = en_uc_pmc ? 1 : 0;
597 req->msg[3] = en_mc_pmc ? 1 : 0;
598 req->msg[4] = hw->promisc_mode == HNS3_LIMIT_PROMISC_MODE ? 1 : 0;
600 ret = hns3_cmd_send(hw, &desc, 1);
602 hns3_err(hw, "Set promisc mode fail, ret = %d", ret);
608 hns3vf_dev_promiscuous_enable(struct rte_eth_dev *dev)
610 struct hns3_adapter *hns = dev->data->dev_private;
611 struct hns3_hw *hw = &hns->hw;
614 ret = hns3vf_set_promisc_mode(hw, true, true, true);
616 hns3_err(hw, "Failed to enable promiscuous mode, ret = %d",
622 hns3vf_dev_promiscuous_disable(struct rte_eth_dev *dev)
624 bool allmulti = dev->data->all_multicast ? true : false;
625 struct hns3_adapter *hns = dev->data->dev_private;
626 struct hns3_hw *hw = &hns->hw;
629 ret = hns3vf_set_promisc_mode(hw, true, false, allmulti);
631 hns3_err(hw, "Failed to disable promiscuous mode, ret = %d",
637 hns3vf_dev_allmulticast_enable(struct rte_eth_dev *dev)
639 struct hns3_adapter *hns = dev->data->dev_private;
640 struct hns3_hw *hw = &hns->hw;
643 if (dev->data->promiscuous)
646 ret = hns3vf_set_promisc_mode(hw, true, false, true);
648 hns3_err(hw, "Failed to enable allmulticast mode, ret = %d",
654 hns3vf_dev_allmulticast_disable(struct rte_eth_dev *dev)
656 struct hns3_adapter *hns = dev->data->dev_private;
657 struct hns3_hw *hw = &hns->hw;
660 if (dev->data->promiscuous)
663 ret = hns3vf_set_promisc_mode(hw, true, false, false);
665 hns3_err(hw, "Failed to disable allmulticast mode, ret = %d",
671 hns3vf_restore_promisc(struct hns3_adapter *hns)
673 struct hns3_hw *hw = &hns->hw;
674 bool allmulti = hw->data->all_multicast ? true : false;
676 if (hw->data->promiscuous)
677 return hns3vf_set_promisc_mode(hw, true, true, true);
679 return hns3vf_set_promisc_mode(hw, true, false, allmulti);
683 hns3vf_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id,
684 bool mmap, enum hns3_ring_type queue_type,
687 struct hns3_vf_bind_vector_msg bind_msg;
692 memset(&bind_msg, 0, sizeof(bind_msg));
693 code = mmap ? HNS3_MBX_MAP_RING_TO_VECTOR :
694 HNS3_MBX_UNMAP_RING_TO_VECTOR;
695 bind_msg.vector_id = vector_id;
697 if (queue_type == HNS3_RING_TYPE_RX)
698 bind_msg.param[0].int_gl_index = HNS3_RING_GL_RX;
700 bind_msg.param[0].int_gl_index = HNS3_RING_GL_TX;
702 bind_msg.param[0].ring_type = queue_type;
703 bind_msg.ring_num = 1;
704 bind_msg.param[0].tqp_index = queue_id;
705 op_str = mmap ? "Map" : "Unmap";
706 ret = hns3_send_mbx_msg(hw, code, 0, (uint8_t *)&bind_msg,
707 sizeof(bind_msg), false, NULL, 0);
709 hns3_err(hw, "%s TQP %u fail, vector_id is %u, ret is %d.",
710 op_str, queue_id, bind_msg.vector_id, ret);
716 hns3vf_init_ring_with_vector(struct hns3_hw *hw)
723 * In hns3 network engine, vector 0 is always the misc interrupt of this
724 * function, vector 1~N can be used respectively for the queues of the
725 * function. Tx and Rx queues with the same number share the interrupt
726 * vector. In the initialization clearing the all hardware mapping
727 * relationship configurations between queues and interrupt vectors is
728 * needed, so some error caused by the residual configurations, such as
729 * the unexpected Tx interrupt, can be avoid.
731 vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
732 if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
733 vec = vec - 1; /* the last interrupt is reserved */
734 hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
735 for (i = 0; i < hw->intr_tqps_num; i++) {
737 * Set gap limiter/rate limiter/quanity limiter algorithm
738 * configuration for interrupt coalesce of queue's interrupt.
740 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
741 HNS3_TQP_INTR_GL_DEFAULT);
742 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
743 HNS3_TQP_INTR_GL_DEFAULT);
744 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
746 * QL(quantity limiter) is not used currently, just set 0 to
749 hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
751 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
752 HNS3_RING_TYPE_TX, i);
754 PMD_INIT_LOG(ERR, "VF fail to unbind TX ring(%d) with "
755 "vector: %u, ret=%d", i, vec, ret);
759 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
760 HNS3_RING_TYPE_RX, i);
762 PMD_INIT_LOG(ERR, "VF fail to unbind RX ring(%d) with "
763 "vector: %u, ret=%d", i, vec, ret);
772 hns3vf_dev_configure(struct rte_eth_dev *dev)
774 struct hns3_adapter *hns = dev->data->dev_private;
775 struct hns3_hw *hw = &hns->hw;
776 struct rte_eth_conf *conf = &dev->data->dev_conf;
777 enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
778 uint16_t nb_rx_q = dev->data->nb_rx_queues;
779 uint16_t nb_tx_q = dev->data->nb_tx_queues;
780 struct rte_eth_rss_conf rss_conf;
781 uint32_t max_rx_pkt_len;
786 hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
789 * Some versions of hardware network engine does not support
790 * individually enable/disable/reset the Tx or Rx queue. These devices
791 * must enable/disable/reset Tx and Rx queues at the same time. When the
792 * numbers of Tx queues allocated by upper applications are not equal to
793 * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
794 * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
795 * work as usual. But these fake queues are imperceptible, and can not
796 * be used by upper applications.
798 if (!hns3_dev_indep_txrx_supported(hw)) {
799 ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
801 hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.",
807 hw->adapter_state = HNS3_NIC_CONFIGURING;
808 if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
809 hns3_err(hw, "setting link speed/duplex not supported");
814 /* When RSS is not configured, redirect the packet queue 0 */
815 if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
816 conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
817 hw->rss_dis_flag = false;
818 rss_conf = conf->rx_adv_conf.rss_conf;
819 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
825 * If jumbo frames are enabled, MTU needs to be refreshed
826 * according to the maximum RX packet length.
828 if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
829 max_rx_pkt_len = conf->rxmode.max_rx_pkt_len;
830 if (max_rx_pkt_len > HNS3_MAX_FRAME_LEN ||
831 max_rx_pkt_len <= HNS3_DEFAULT_FRAME_LEN) {
832 hns3_err(hw, "maximum Rx packet length must be greater "
833 "than %u and less than %u when jumbo frame enabled.",
834 (uint16_t)HNS3_DEFAULT_FRAME_LEN,
835 (uint16_t)HNS3_MAX_FRAME_LEN);
840 mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(max_rx_pkt_len);
841 ret = hns3vf_dev_mtu_set(dev, mtu);
844 dev->data->mtu = mtu;
847 ret = hns3vf_dev_configure_vlan(dev);
851 /* config hardware GRO */
852 gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
853 ret = hns3_config_gro(hw, gro_en);
857 hns->rx_simple_allowed = true;
858 hns->rx_vec_allowed = true;
859 hns->tx_simple_allowed = true;
860 hns->tx_vec_allowed = true;
862 hns3_init_rx_ptype_tble(dev);
864 hw->adapter_state = HNS3_NIC_CONFIGURED;
868 (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
869 hw->adapter_state = HNS3_NIC_INITIALIZED;
875 hns3vf_config_mtu(struct hns3_hw *hw, uint16_t mtu)
879 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MTU, 0, (const uint8_t *)&mtu,
880 sizeof(mtu), true, NULL, 0);
882 hns3_err(hw, "Failed to set mtu (%u) for vf: %d", mtu, ret);
888 hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
890 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
891 uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
895 * The hns3 PF/VF devices on the same port share the hardware MTU
896 * configuration. Currently, we send mailbox to inform hns3 PF kernel
897 * ethdev driver to finish hardware MTU configuration in hns3 VF PMD
898 * driver, there is no need to stop the port for hns3 VF device, and the
899 * MTU value issued by hns3 VF PMD driver must be less than or equal to
902 if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
903 hns3_err(hw, "Failed to set mtu during resetting");
908 * when Rx of scattered packets is off, we have some possibility of
909 * using vector Rx process function or simple Rx functions in hns3 PMD
910 * driver. If the input MTU is increased and the maximum length of
911 * received packets is greater than the length of a buffer for Rx
912 * packet, the hardware network engine needs to use multiple BDs and
913 * buffers to store these packets. This will cause problems when still
914 * using vector Rx process function or simple Rx function to receiving
915 * packets. So, when Rx of scattered packets is off and device is
916 * started, it is not permitted to increase MTU so that the maximum
917 * length of Rx packets is greater than Rx buffer length.
919 if (dev->data->dev_started && !dev->data->scattered_rx &&
920 frame_size > hw->rx_buf_len) {
921 hns3_err(hw, "failed to set mtu because current is "
922 "not scattered rx mode");
926 rte_spinlock_lock(&hw->lock);
927 ret = hns3vf_config_mtu(hw, mtu);
929 rte_spinlock_unlock(&hw->lock);
932 if (mtu > RTE_ETHER_MTU)
933 dev->data->dev_conf.rxmode.offloads |=
934 DEV_RX_OFFLOAD_JUMBO_FRAME;
936 dev->data->dev_conf.rxmode.offloads &=
937 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
938 dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
939 rte_spinlock_unlock(&hw->lock);
945 hns3vf_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
947 struct hns3_adapter *hns = eth_dev->data->dev_private;
948 struct hns3_hw *hw = &hns->hw;
949 uint16_t q_num = hw->tqps_num;
952 * In interrupt mode, 'max_rx_queues' is set based on the number of
953 * MSI-X interrupt resources of the hardware.
955 if (hw->data->dev_conf.intr_conf.rxq == 1)
956 q_num = hw->intr_tqps_num;
958 info->max_rx_queues = q_num;
959 info->max_tx_queues = hw->tqps_num;
960 info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
961 info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
962 info->max_mac_addrs = HNS3_VF_UC_MACADDR_NUM;
963 info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
964 info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
966 info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
967 DEV_RX_OFFLOAD_UDP_CKSUM |
968 DEV_RX_OFFLOAD_TCP_CKSUM |
969 DEV_RX_OFFLOAD_SCTP_CKSUM |
970 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
971 DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
972 DEV_RX_OFFLOAD_SCATTER |
973 DEV_RX_OFFLOAD_VLAN_STRIP |
974 DEV_RX_OFFLOAD_VLAN_FILTER |
975 DEV_RX_OFFLOAD_JUMBO_FRAME |
976 DEV_RX_OFFLOAD_RSS_HASH |
977 DEV_RX_OFFLOAD_TCP_LRO);
978 info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
979 DEV_TX_OFFLOAD_IPV4_CKSUM |
980 DEV_TX_OFFLOAD_TCP_CKSUM |
981 DEV_TX_OFFLOAD_UDP_CKSUM |
982 DEV_TX_OFFLOAD_SCTP_CKSUM |
983 DEV_TX_OFFLOAD_MULTI_SEGS |
984 DEV_TX_OFFLOAD_TCP_TSO |
985 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
986 DEV_TX_OFFLOAD_GRE_TNL_TSO |
987 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
988 DEV_TX_OFFLOAD_MBUF_FAST_FREE |
989 hns3_txvlan_cap_get(hw));
991 if (hns3_dev_indep_txrx_supported(hw))
992 info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
993 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
995 info->rx_desc_lim = (struct rte_eth_desc_lim) {
996 .nb_max = HNS3_MAX_RING_DESC,
997 .nb_min = HNS3_MIN_RING_DESC,
998 .nb_align = HNS3_ALIGN_RING_DESC,
1001 info->tx_desc_lim = (struct rte_eth_desc_lim) {
1002 .nb_max = HNS3_MAX_RING_DESC,
1003 .nb_min = HNS3_MIN_RING_DESC,
1004 .nb_align = HNS3_ALIGN_RING_DESC,
1005 .nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
1006 .nb_mtu_seg_max = hw->max_non_tso_bd_num,
1009 info->default_rxconf = (struct rte_eth_rxconf) {
1010 .rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
1012 * If there are no available Rx buffer descriptors, incoming
1013 * packets are always dropped by hardware based on hns3 network
1019 info->default_txconf = (struct rte_eth_txconf) {
1020 .tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
1024 info->vmdq_queue_num = 0;
1026 info->reta_size = hw->rss_ind_tbl_size;
1027 info->hash_key_size = HNS3_RSS_KEY_SIZE;
1028 info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
1029 info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1030 info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1036 hns3vf_clear_event_cause(struct hns3_hw *hw, uint32_t regclr)
1038 hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
1042 hns3vf_disable_irq0(struct hns3_hw *hw)
1044 hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
1048 hns3vf_enable_irq0(struct hns3_hw *hw)
1050 hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
1053 static enum hns3vf_evt_cause
1054 hns3vf_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
1056 struct hns3_hw *hw = &hns->hw;
1057 enum hns3vf_evt_cause ret;
1058 uint32_t cmdq_stat_reg;
1059 uint32_t rst_ing_reg;
1062 /* Fetch the events from their corresponding regs */
1063 cmdq_stat_reg = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_STAT_REG);
1065 if (BIT(HNS3_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1066 rst_ing_reg = hns3_read_dev(hw, HNS3_FUN_RST_ING);
1067 hns3_warn(hw, "resetting reg: 0x%x", rst_ing_reg);
1068 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
1069 __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
1070 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
1071 hns3_write_dev(hw, HNS3_VF_RST_ING, val | HNS3_VF_RST_ING_BIT);
1072 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RST_INT_B);
1074 hw->reset.stats.global_cnt++;
1075 hns3_warn(hw, "Global reset detected, clear reset status");
1077 hns3_schedule_delayed_reset(hns);
1078 hns3_warn(hw, "Global reset detected, don't clear reset status");
1081 ret = HNS3VF_VECTOR0_EVENT_RST;
1085 /* Check for vector0 mailbox(=CMDQ RX) event source */
1086 if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1087 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
1088 ret = HNS3VF_VECTOR0_EVENT_MBX;
1093 ret = HNS3VF_VECTOR0_EVENT_OTHER;
1101 hns3vf_interrupt_handler(void *param)
1103 struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1104 struct hns3_adapter *hns = dev->data->dev_private;
1105 struct hns3_hw *hw = &hns->hw;
1106 enum hns3vf_evt_cause event_cause;
1109 if (hw->irq_thread_id == 0)
1110 hw->irq_thread_id = pthread_self();
1112 /* Disable interrupt */
1113 hns3vf_disable_irq0(hw);
1115 /* Read out interrupt causes */
1116 event_cause = hns3vf_check_event_cause(hns, &clearval);
1118 switch (event_cause) {
1119 case HNS3VF_VECTOR0_EVENT_RST:
1120 hns3_schedule_reset(hns);
1122 case HNS3VF_VECTOR0_EVENT_MBX:
1123 hns3_dev_handle_mbx_msg(hw);
1129 /* Clear interrupt causes */
1130 hns3vf_clear_event_cause(hw, clearval);
1132 /* Enable interrupt */
1133 hns3vf_enable_irq0(hw);
1137 hns3vf_set_default_dev_specifications(struct hns3_hw *hw)
1139 hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
1140 hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
1141 hw->rss_key_size = HNS3_RSS_KEY_SIZE;
1142 hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
1146 hns3vf_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
1148 struct hns3_dev_specs_0_cmd *req0;
1150 req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
1152 hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
1153 hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
1154 hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
1155 hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
1159 hns3vf_check_dev_specifications(struct hns3_hw *hw)
1161 if (hw->rss_ind_tbl_size == 0 ||
1162 hw->rss_ind_tbl_size > HNS3_RSS_IND_TBL_SIZE_MAX) {
1163 hns3_warn(hw, "the size of hash lookup table configured (%u)"
1164 " exceeds the maximum(%u)", hw->rss_ind_tbl_size,
1165 HNS3_RSS_IND_TBL_SIZE_MAX);
1173 hns3vf_query_dev_specifications(struct hns3_hw *hw)
1175 struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
1179 for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
1180 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
1182 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1184 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
1186 ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
1190 hns3vf_parse_dev_specifications(hw, desc);
1192 return hns3vf_check_dev_specifications(hw);
1196 hns3vf_get_capability(struct hns3_hw *hw)
1198 struct rte_pci_device *pci_dev;
1199 struct rte_eth_dev *eth_dev;
1203 eth_dev = &rte_eth_devices[hw->data->port_id];
1204 pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1206 /* Get PCI revision id */
1207 ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
1208 HNS3_PCI_REVISION_ID);
1209 if (ret != HNS3_PCI_REVISION_ID_LEN) {
1210 PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
1214 hw->revision = revision;
1216 if (revision < PCI_REVISION_ID_HIP09_A) {
1217 hns3vf_set_default_dev_specifications(hw);
1218 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
1219 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
1220 hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
1221 hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
1222 hw->rss_info.ipv6_sctp_offload_supported = false;
1223 hw->promisc_mode = HNS3_UNLIMIT_PROMISC_MODE;
1227 ret = hns3vf_query_dev_specifications(hw);
1230 "failed to query dev specifications, ret = %d",
1235 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
1236 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
1237 hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
1238 hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
1239 hw->rss_info.ipv6_sctp_offload_supported = true;
1240 hw->promisc_mode = HNS3_LIMIT_PROMISC_MODE;
1246 hns3vf_check_tqp_info(struct hns3_hw *hw)
1248 if (hw->tqps_num == 0) {
1249 PMD_INIT_LOG(ERR, "Get invalid tqps_num(0) from PF.");
1253 if (hw->rss_size_max == 0) {
1254 PMD_INIT_LOG(ERR, "Get invalid rss_size_max(0) from PF.");
1258 hw->tqps_num = RTE_MIN(hw->rss_size_max, hw->tqps_num);
1264 hns3vf_get_port_base_vlan_filter_state(struct hns3_hw *hw)
1269 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN,
1270 HNS3_MBX_GET_PORT_BASE_VLAN_STATE, NULL, 0,
1271 true, &resp_msg, sizeof(resp_msg));
1273 if (ret == -ETIME) {
1275 * Getting current port based VLAN state from PF driver
1276 * will not affect VF driver's basic function. Because
1277 * the VF driver relies on hns3 PF kernel ether driver,
1278 * to avoid introducing compatibility issues with older
1279 * version of PF driver, no failure will be returned
1280 * when the return value is ETIME. This return value has
1281 * the following scenarios:
1282 * 1) Firmware didn't return the results in time
1283 * 2) the result return by firmware is timeout
1284 * 3) the older version of kernel side PF driver does
1285 * not support this mailbox message.
1286 * For scenarios 1 and 2, it is most likely that a
1287 * hardware error has occurred, or a hardware reset has
1288 * occurred. In this case, these errors will be caught
1289 * by other functions.
1291 PMD_INIT_LOG(WARNING,
1292 "failed to get PVID state for timeout, maybe "
1293 "kernel side PF driver doesn't support this "
1294 "mailbox message, or firmware didn't respond.");
1295 resp_msg = HNS3_PORT_BASE_VLAN_DISABLE;
1297 PMD_INIT_LOG(ERR, "failed to get port based VLAN state,"
1302 hw->port_base_vlan_cfg.state = resp_msg ?
1303 HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
1308 hns3vf_get_queue_info(struct hns3_hw *hw)
1310 #define HNS3VF_TQPS_RSS_INFO_LEN 6
1311 uint8_t resp_msg[HNS3VF_TQPS_RSS_INFO_LEN];
1314 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QINFO, 0, NULL, 0, true,
1315 resp_msg, HNS3VF_TQPS_RSS_INFO_LEN);
1317 PMD_INIT_LOG(ERR, "Failed to get tqp info from PF: %d", ret);
1321 memcpy(&hw->tqps_num, &resp_msg[0], sizeof(uint16_t));
1322 memcpy(&hw->rss_size_max, &resp_msg[2], sizeof(uint16_t));
1324 return hns3vf_check_tqp_info(hw);
1328 hns3vf_get_queue_depth(struct hns3_hw *hw)
1330 #define HNS3VF_TQPS_DEPTH_INFO_LEN 4
1331 uint8_t resp_msg[HNS3VF_TQPS_DEPTH_INFO_LEN];
1334 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QDEPTH, 0, NULL, 0, true,
1335 resp_msg, HNS3VF_TQPS_DEPTH_INFO_LEN);
1337 PMD_INIT_LOG(ERR, "Failed to get tqp depth info from PF: %d",
1342 memcpy(&hw->num_tx_desc, &resp_msg[0], sizeof(uint16_t));
1343 memcpy(&hw->num_rx_desc, &resp_msg[2], sizeof(uint16_t));
1349 hns3vf_get_tc_info(struct hns3_hw *hw)
1355 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_TCINFO, 0, NULL, 0,
1356 true, &resp_msg, sizeof(resp_msg));
1358 hns3_err(hw, "VF request to get TC info from PF failed %d",
1363 hw->hw_tc_map = resp_msg;
1365 for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
1366 if (hw->hw_tc_map & BIT(i))
1374 hns3vf_get_host_mac_addr(struct hns3_hw *hw)
1376 uint8_t host_mac[RTE_ETHER_ADDR_LEN];
1379 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_MAC_ADDR, 0, NULL, 0,
1380 true, host_mac, RTE_ETHER_ADDR_LEN);
1382 hns3_err(hw, "Failed to get mac addr from PF: %d", ret);
1386 memcpy(hw->mac.mac_addr, host_mac, RTE_ETHER_ADDR_LEN);
1392 hns3vf_get_configuration(struct hns3_hw *hw)
1396 hw->mac.media_type = HNS3_MEDIA_TYPE_NONE;
1397 hw->rss_dis_flag = false;
1399 /* Get device capability */
1400 ret = hns3vf_get_capability(hw);
1402 PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
1406 /* Get queue configuration from PF */
1407 ret = hns3vf_get_queue_info(hw);
1411 /* Get queue depth info from PF */
1412 ret = hns3vf_get_queue_depth(hw);
1416 /* Get user defined VF MAC addr from PF */
1417 ret = hns3vf_get_host_mac_addr(hw);
1421 ret = hns3vf_get_port_base_vlan_filter_state(hw);
1425 /* Get tc configuration from PF */
1426 return hns3vf_get_tc_info(hw);
1430 hns3vf_set_tc_queue_mapping(struct hns3_adapter *hns, uint16_t nb_rx_q,
1433 struct hns3_hw *hw = &hns->hw;
1435 if (nb_rx_q < hw->num_tc) {
1436 hns3_err(hw, "number of Rx queues(%u) is less than tcs(%u).",
1437 nb_rx_q, hw->num_tc);
1441 if (nb_tx_q < hw->num_tc) {
1442 hns3_err(hw, "number of Tx queues(%u) is less than tcs(%u).",
1443 nb_tx_q, hw->num_tc);
1447 return hns3_queue_to_tc_mapping(hw, nb_rx_q, nb_tx_q);
1451 hns3vf_request_link_info(struct hns3_hw *hw)
1456 if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
1458 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1459 &resp_msg, sizeof(resp_msg));
1461 hns3_err(hw, "Failed to fetch link status from PF: %d", ret);
1465 hns3vf_update_link_status(struct hns3_hw *hw, uint8_t link_status,
1466 uint32_t link_speed, uint8_t link_duplex)
1468 struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
1469 struct hns3_mac *mac = &hw->mac;
1473 changed = mac->link_status != link_status ||
1474 mac->link_speed != link_speed ||
1475 mac->link_duplex != link_duplex;
1480 * VF's link status/speed/duplex were updated by polling from PF driver,
1481 * because the link status/speed/duplex may be changed in the polling
1482 * interval, so driver will report lse (lsc event) once any of the above
1483 * thress variables changed.
1484 * But if the PF's link status is down and driver saved link status is
1485 * also down, there are no need to report lse.
1488 if (link_status == ETH_LINK_DOWN && link_status == mac->link_status)
1491 mac->link_status = link_status;
1492 mac->link_speed = link_speed;
1493 mac->link_duplex = link_duplex;
1496 rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
1500 hns3vf_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
1502 #define HNS3VF_VLAN_MBX_MSG_LEN 5
1503 struct hns3_hw *hw = &hns->hw;
1504 uint8_t msg_data[HNS3VF_VLAN_MBX_MSG_LEN];
1505 uint16_t proto = htons(RTE_ETHER_TYPE_VLAN);
1506 uint8_t is_kill = on ? 0 : 1;
1508 msg_data[0] = is_kill;
1509 memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1510 memcpy(&msg_data[3], &proto, sizeof(proto));
1512 return hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_FILTER,
1513 msg_data, HNS3VF_VLAN_MBX_MSG_LEN, true, NULL,
1518 hns3vf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1520 struct hns3_adapter *hns = dev->data->dev_private;
1521 struct hns3_hw *hw = &hns->hw;
1524 if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
1526 "vf set vlan id failed during resetting, vlan_id =%u",
1530 rte_spinlock_lock(&hw->lock);
1531 ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1532 rte_spinlock_unlock(&hw->lock);
1534 hns3_err(hw, "vf set vlan id failed, vlan_id =%u, ret =%d",
1541 hns3vf_en_hw_strip_rxvtag(struct hns3_hw *hw, bool enable)
1546 msg_data = enable ? 1 : 0;
1547 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_RX_OFF_CFG,
1548 &msg_data, sizeof(msg_data), false, NULL, 0);
1550 hns3_err(hw, "vf enable strip failed, ret =%d", ret);
1556 hns3vf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1558 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1559 struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1560 unsigned int tmp_mask;
1563 if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
1564 hns3_err(hw, "vf set vlan offload failed during resetting, "
1565 "mask = 0x%x", mask);
1569 tmp_mask = (unsigned int)mask;
1570 /* Vlan stripping setting */
1571 if (tmp_mask & ETH_VLAN_STRIP_MASK) {
1572 rte_spinlock_lock(&hw->lock);
1573 /* Enable or disable VLAN stripping */
1574 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1575 ret = hns3vf_en_hw_strip_rxvtag(hw, true);
1577 ret = hns3vf_en_hw_strip_rxvtag(hw, false);
1578 rte_spinlock_unlock(&hw->lock);
1585 hns3vf_handle_all_vlan_table(struct hns3_adapter *hns, int on)
1587 struct rte_vlan_filter_conf *vfc;
1588 struct hns3_hw *hw = &hns->hw;
1595 vfc = &hw->data->vlan_filter_conf;
1596 for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1597 if (vfc->ids[i] == 0)
1602 * 64 means the num bits of ids, one bit corresponds to
1606 /* count trailing zeroes */
1607 vbit = ~ids & (ids - 1);
1608 /* clear least significant bit set */
1609 ids ^= (ids ^ (ids - 1)) ^ vbit;
1614 ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1617 "VF handle vlan table failed, ret =%d, on = %d",
1628 hns3vf_remove_all_vlan_table(struct hns3_adapter *hns)
1630 return hns3vf_handle_all_vlan_table(hns, 0);
1634 hns3vf_restore_vlan_conf(struct hns3_adapter *hns)
1636 struct hns3_hw *hw = &hns->hw;
1637 struct rte_eth_conf *dev_conf;
1641 dev_conf = &hw->data->dev_conf;
1642 en = dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP ? true
1644 ret = hns3vf_en_hw_strip_rxvtag(hw, en);
1646 hns3_err(hw, "VF restore vlan conf fail, en =%d, ret =%d", en,
1652 hns3vf_dev_configure_vlan(struct rte_eth_dev *dev)
1654 struct hns3_adapter *hns = dev->data->dev_private;
1655 struct rte_eth_dev_data *data = dev->data;
1656 struct hns3_hw *hw = &hns->hw;
1659 if (data->dev_conf.txmode.hw_vlan_reject_tagged ||
1660 data->dev_conf.txmode.hw_vlan_reject_untagged ||
1661 data->dev_conf.txmode.hw_vlan_insert_pvid) {
1662 hns3_warn(hw, "hw_vlan_reject_tagged, hw_vlan_reject_untagged "
1663 "or hw_vlan_insert_pvid is not support!");
1666 /* Apply vlan offload setting */
1667 ret = hns3vf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
1669 hns3_err(hw, "dev config vlan offload failed, ret =%d", ret);
1675 hns3vf_set_alive(struct hns3_hw *hw, bool alive)
1679 msg_data = alive ? 1 : 0;
1680 return hns3_send_mbx_msg(hw, HNS3_MBX_SET_ALIVE, 0, &msg_data,
1681 sizeof(msg_data), false, NULL, 0);
1685 hns3vf_keep_alive_handler(void *param)
1687 struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1688 struct hns3_adapter *hns = eth_dev->data->dev_private;
1689 struct hns3_hw *hw = &hns->hw;
1693 ret = hns3_send_mbx_msg(hw, HNS3_MBX_KEEP_ALIVE, 0, NULL, 0,
1694 false, &respmsg, sizeof(uint8_t));
1696 hns3_err(hw, "VF sends keeping alive cmd failed(=%d)",
1699 rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
1704 hns3vf_service_handler(void *param)
1706 struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1707 struct hns3_adapter *hns = eth_dev->data->dev_private;
1708 struct hns3_hw *hw = &hns->hw;
1711 * The query link status and reset processing are executed in the
1712 * interrupt thread.When the IMP reset occurs, IMP will not respond,
1713 * and the query operation will time out after 30ms. In the case of
1714 * multiple PF/VFs, each query failure timeout causes the IMP reset
1715 * interrupt to fail to respond within 100ms.
1716 * Before querying the link status, check whether there is a reset
1717 * pending, and if so, abandon the query.
1719 if (!hns3vf_is_reset_pending(hns))
1720 hns3vf_request_link_info(hw);
1722 hns3_warn(hw, "Cancel the query when reset is pending");
1724 rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler,
1729 hns3_query_vf_resource(struct hns3_hw *hw)
1731 struct hns3_vf_res_cmd *req;
1732 struct hns3_cmd_desc desc;
1736 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_VF_RSRC, true);
1737 ret = hns3_cmd_send(hw, &desc, 1);
1739 hns3_err(hw, "query vf resource failed, ret = %d", ret);
1743 req = (struct hns3_vf_res_cmd *)desc.data;
1744 num_msi = hns3_get_field(rte_le_to_cpu_16(req->vf_intr_vector_number),
1745 HNS3_VF_VEC_NUM_M, HNS3_VF_VEC_NUM_S);
1746 if (num_msi < HNS3_MIN_VECTOR_NUM) {
1747 hns3_err(hw, "Just %u msi resources, not enough for vf(min:%d)",
1748 num_msi, HNS3_MIN_VECTOR_NUM);
1752 hw->num_msi = num_msi;
1758 hns3vf_init_hardware(struct hns3_adapter *hns)
1760 struct hns3_hw *hw = &hns->hw;
1761 uint16_t mtu = hw->data->mtu;
1764 ret = hns3vf_set_promisc_mode(hw, true, false, false);
1768 ret = hns3vf_config_mtu(hw, mtu);
1770 goto err_init_hardware;
1772 ret = hns3vf_vlan_filter_configure(hns, 0, 1);
1774 PMD_INIT_LOG(ERR, "Failed to initialize VLAN config: %d", ret);
1775 goto err_init_hardware;
1778 ret = hns3_config_gro(hw, false);
1780 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
1781 goto err_init_hardware;
1785 * In the initialization clearing the all hardware mapping relationship
1786 * configurations between queues and interrupt vectors is needed, so
1787 * some error caused by the residual configurations, such as the
1788 * unexpected interrupt, can be avoid.
1790 ret = hns3vf_init_ring_with_vector(hw);
1792 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
1793 goto err_init_hardware;
1796 ret = hns3vf_set_alive(hw, true);
1798 PMD_INIT_LOG(ERR, "Failed to VF send alive to PF: %d", ret);
1799 goto err_init_hardware;
1805 (void)hns3vf_set_promisc_mode(hw, false, false, false);
1810 hns3vf_clear_vport_list(struct hns3_hw *hw)
1812 return hns3_send_mbx_msg(hw, HNS3_MBX_HANDLE_VF_TBL,
1813 HNS3_MBX_VPORT_LIST_CLEAR, NULL, 0, false,
1818 hns3vf_init_vf(struct rte_eth_dev *eth_dev)
1820 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1821 struct hns3_adapter *hns = eth_dev->data->dev_private;
1822 struct hns3_hw *hw = &hns->hw;
1825 PMD_INIT_FUNC_TRACE();
1827 /* Get hardware io base address from pcie BAR2 IO space */
1828 hw->io_base = pci_dev->mem_resource[2].addr;
1830 /* Firmware command queue initialize */
1831 ret = hns3_cmd_init_queue(hw);
1833 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
1834 goto err_cmd_init_queue;
1837 /* Firmware command initialize */
1838 ret = hns3_cmd_init(hw);
1840 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
1844 /* Get VF resource */
1845 ret = hns3_query_vf_resource(hw);
1849 rte_spinlock_init(&hw->mbx_resp.lock);
1851 hns3vf_clear_event_cause(hw, 0);
1853 ret = rte_intr_callback_register(&pci_dev->intr_handle,
1854 hns3vf_interrupt_handler, eth_dev);
1856 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
1857 goto err_intr_callback_register;
1860 /* Enable interrupt */
1861 rte_intr_enable(&pci_dev->intr_handle);
1862 hns3vf_enable_irq0(hw);
1864 /* Get configuration from PF */
1865 ret = hns3vf_get_configuration(hw);
1867 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
1868 goto err_get_config;
1871 ret = hns3_tqp_stats_init(hw);
1873 goto err_get_config;
1875 ret = hns3vf_set_tc_queue_mapping(hns, hw->tqps_num, hw->tqps_num);
1877 PMD_INIT_LOG(ERR, "failed to set tc info, ret = %d.", ret);
1878 goto err_set_tc_queue;
1881 ret = hns3vf_clear_vport_list(hw);
1883 PMD_INIT_LOG(ERR, "Failed to clear tbl list: %d", ret);
1884 goto err_set_tc_queue;
1887 ret = hns3vf_init_hardware(hns);
1889 goto err_set_tc_queue;
1891 hns3_rss_set_default_args(hw);
1896 hns3_tqp_stats_uninit(hw);
1899 hns3vf_disable_irq0(hw);
1900 rte_intr_disable(&pci_dev->intr_handle);
1901 hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1903 err_intr_callback_register:
1905 hns3_cmd_uninit(hw);
1906 hns3_cmd_destroy_queue(hw);
1914 hns3vf_uninit_vf(struct rte_eth_dev *eth_dev)
1916 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1917 struct hns3_adapter *hns = eth_dev->data->dev_private;
1918 struct hns3_hw *hw = &hns->hw;
1920 PMD_INIT_FUNC_TRACE();
1922 hns3_rss_uninit(hns);
1923 (void)hns3_config_gro(hw, false);
1924 (void)hns3vf_set_alive(hw, false);
1925 (void)hns3vf_set_promisc_mode(hw, false, false, false);
1926 hns3_tqp_stats_uninit(hw);
1927 hns3vf_disable_irq0(hw);
1928 rte_intr_disable(&pci_dev->intr_handle);
1929 hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1931 hns3_cmd_uninit(hw);
1932 hns3_cmd_destroy_queue(hw);
1937 hns3vf_do_stop(struct hns3_adapter *hns)
1939 struct hns3_hw *hw = &hns->hw;
1942 hw->mac.link_status = ETH_LINK_DOWN;
1945 * The "hns3vf_do_stop" function will also be called by .stop_service to
1946 * prepare reset. At the time of global or IMP reset, the command cannot
1947 * be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be
1948 * accessed during the reset process. So the mbuf can not be released
1949 * during reset and is required to be released after the reset is
1952 if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0)
1953 hns3_dev_release_mbufs(hns);
1955 if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) {
1956 hns3vf_configure_mac_addr(hns, true);
1957 ret = hns3_reset_all_tqps(hns);
1959 hns3_err(hw, "failed to reset all queues ret = %d",
1968 hns3vf_unmap_rx_interrupt(struct rte_eth_dev *dev)
1970 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1971 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1972 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1973 uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
1974 uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
1977 if (dev->data->dev_conf.intr_conf.rxq == 0)
1980 /* unmap the ring with vector */
1981 if (rte_intr_allow_others(intr_handle)) {
1982 vec = RTE_INTR_VEC_RXTX_OFFSET;
1983 base = RTE_INTR_VEC_RXTX_OFFSET;
1985 if (rte_intr_dp_is_en(intr_handle)) {
1986 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
1987 (void)hns3vf_bind_ring_with_vector(hw, vec, false,
1990 if (vec < base + intr_handle->nb_efd - 1)
1994 /* Clean datapath event and queue/vec mapping */
1995 rte_intr_efd_disable(intr_handle);
1996 if (intr_handle->intr_vec) {
1997 rte_free(intr_handle->intr_vec);
1998 intr_handle->intr_vec = NULL;
2003 hns3vf_dev_stop(struct rte_eth_dev *dev)
2005 struct hns3_adapter *hns = dev->data->dev_private;
2006 struct hns3_hw *hw = &hns->hw;
2008 PMD_INIT_FUNC_TRACE();
2009 dev->data->dev_started = 0;
2011 hw->adapter_state = HNS3_NIC_STOPPING;
2012 hns3_set_rxtx_function(dev);
2014 /* Disable datapath on secondary process. */
2015 hns3_mp_req_stop_rxtx(dev);
2016 /* Prevent crashes when queues are still in use. */
2017 rte_delay_ms(hw->tqps_num);
2019 rte_spinlock_lock(&hw->lock);
2020 if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
2022 hns3vf_do_stop(hns);
2023 hns3vf_unmap_rx_interrupt(dev);
2024 hw->adapter_state = HNS3_NIC_CONFIGURED;
2026 hns3_rx_scattered_reset(dev);
2027 rte_eal_alarm_cancel(hns3vf_service_handler, dev);
2028 rte_spinlock_unlock(&hw->lock);
2034 hns3vf_dev_close(struct rte_eth_dev *eth_dev)
2036 struct hns3_adapter *hns = eth_dev->data->dev_private;
2037 struct hns3_hw *hw = &hns->hw;
2040 if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2041 rte_free(eth_dev->process_private);
2042 eth_dev->process_private = NULL;
2046 if (hw->adapter_state == HNS3_NIC_STARTED)
2047 ret = hns3vf_dev_stop(eth_dev);
2049 hw->adapter_state = HNS3_NIC_CLOSING;
2050 hns3_reset_abort(hns);
2051 hw->adapter_state = HNS3_NIC_CLOSED;
2052 rte_eal_alarm_cancel(hns3vf_keep_alive_handler, eth_dev);
2053 hns3vf_configure_all_mc_mac_addr(hns, true);
2054 hns3vf_remove_all_vlan_table(hns);
2055 hns3vf_uninit_vf(eth_dev);
2056 hns3_free_all_queues(eth_dev);
2057 rte_free(hw->reset.wait_data);
2058 rte_free(eth_dev->process_private);
2059 eth_dev->process_private = NULL;
2060 hns3_mp_uninit_primary();
2061 hns3_warn(hw, "Close port %u finished", hw->data->port_id);
2067 hns3vf_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2070 struct hns3_adapter *hns = eth_dev->data->dev_private;
2071 struct hns3_hw *hw = &hns->hw;
2072 uint32_t version = hw->fw_version;
2075 ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2076 hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2077 HNS3_FW_VERSION_BYTE3_S),
2078 hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2079 HNS3_FW_VERSION_BYTE2_S),
2080 hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2081 HNS3_FW_VERSION_BYTE1_S),
2082 hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2083 HNS3_FW_VERSION_BYTE0_S));
2084 ret += 1; /* add the size of '\0' */
2085 if (fw_size < (uint32_t)ret)
2092 hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
2093 __rte_unused int wait_to_complete)
2095 struct hns3_adapter *hns = eth_dev->data->dev_private;
2096 struct hns3_hw *hw = &hns->hw;
2097 struct hns3_mac *mac = &hw->mac;
2098 struct rte_eth_link new_link;
2100 memset(&new_link, 0, sizeof(new_link));
2101 switch (mac->link_speed) {
2102 case ETH_SPEED_NUM_10M:
2103 case ETH_SPEED_NUM_100M:
2104 case ETH_SPEED_NUM_1G:
2105 case ETH_SPEED_NUM_10G:
2106 case ETH_SPEED_NUM_25G:
2107 case ETH_SPEED_NUM_40G:
2108 case ETH_SPEED_NUM_50G:
2109 case ETH_SPEED_NUM_100G:
2110 case ETH_SPEED_NUM_200G:
2111 new_link.link_speed = mac->link_speed;
2114 new_link.link_speed = ETH_SPEED_NUM_100M;
2118 new_link.link_duplex = mac->link_duplex;
2119 new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2120 new_link.link_autoneg =
2121 !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2123 return rte_eth_linkstatus_set(eth_dev, &new_link);
2127 hns3vf_do_start(struct hns3_adapter *hns, bool reset_queue)
2129 struct hns3_hw *hw = &hns->hw;
2130 uint16_t nb_rx_q = hw->data->nb_rx_queues;
2131 uint16_t nb_tx_q = hw->data->nb_tx_queues;
2134 ret = hns3vf_set_tc_queue_mapping(hns, nb_rx_q, nb_tx_q);
2138 hns3_enable_rxd_adv_layout(hw);
2140 ret = hns3_init_queues(hns, reset_queue);
2142 hns3_err(hw, "failed to init queues, ret = %d.", ret);
2148 hns3vf_map_rx_interrupt(struct rte_eth_dev *dev)
2150 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2151 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2152 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2153 uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
2154 uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
2155 uint32_t intr_vector;
2160 * hns3 needs a separate interrupt to be used as event interrupt which
2161 * could not be shared with task queue pair, so KERNEL drivers need
2162 * support multiple interrupt vectors.
2164 if (dev->data->dev_conf.intr_conf.rxq == 0 ||
2165 !rte_intr_cap_multiple(intr_handle))
2168 rte_intr_disable(intr_handle);
2169 intr_vector = hw->used_rx_queues;
2170 /* It creates event fd for each intr vector when MSIX is used */
2171 if (rte_intr_efd_enable(intr_handle, intr_vector))
2174 if (intr_handle->intr_vec == NULL) {
2175 intr_handle->intr_vec =
2176 rte_zmalloc("intr_vec",
2177 hw->used_rx_queues * sizeof(int), 0);
2178 if (intr_handle->intr_vec == NULL) {
2179 hns3_err(hw, "Failed to allocate %u rx_queues"
2180 " intr_vec", hw->used_rx_queues);
2182 goto vf_alloc_intr_vec_error;
2186 if (rte_intr_allow_others(intr_handle)) {
2187 vec = RTE_INTR_VEC_RXTX_OFFSET;
2188 base = RTE_INTR_VEC_RXTX_OFFSET;
2191 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2192 ret = hns3vf_bind_ring_with_vector(hw, vec, true,
2193 HNS3_RING_TYPE_RX, q_id);
2195 goto vf_bind_vector_error;
2196 intr_handle->intr_vec[q_id] = vec;
2198 * If there are not enough efds (e.g. not enough interrupt),
2199 * remaining queues will be bond to the last interrupt.
2201 if (vec < base + intr_handle->nb_efd - 1)
2204 rte_intr_enable(intr_handle);
2207 vf_bind_vector_error:
2208 free(intr_handle->intr_vec);
2209 intr_handle->intr_vec = NULL;
2210 vf_alloc_intr_vec_error:
2211 rte_intr_efd_disable(intr_handle);
2216 hns3vf_restore_rx_interrupt(struct hns3_hw *hw)
2218 struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
2219 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2220 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2224 if (dev->data->dev_conf.intr_conf.rxq == 0)
2227 if (rte_intr_dp_is_en(intr_handle)) {
2228 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2229 ret = hns3vf_bind_ring_with_vector(hw,
2230 intr_handle->intr_vec[q_id], true,
2231 HNS3_RING_TYPE_RX, q_id);
2241 hns3vf_restore_filter(struct rte_eth_dev *dev)
2243 hns3_restore_rss_filter(dev);
2247 hns3vf_dev_start(struct rte_eth_dev *dev)
2249 struct hns3_adapter *hns = dev->data->dev_private;
2250 struct hns3_hw *hw = &hns->hw;
2253 PMD_INIT_FUNC_TRACE();
2254 if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
2257 rte_spinlock_lock(&hw->lock);
2258 hw->adapter_state = HNS3_NIC_STARTING;
2259 ret = hns3vf_do_start(hns, true);
2261 hw->adapter_state = HNS3_NIC_CONFIGURED;
2262 rte_spinlock_unlock(&hw->lock);
2265 ret = hns3vf_map_rx_interrupt(dev);
2267 goto map_rx_inter_err;
2270 * There are three register used to control the status of a TQP
2271 * (contains a pair of Tx queue and Rx queue) in the new version network
2272 * engine. One is used to control the enabling of Tx queue, the other is
2273 * used to control the enabling of Rx queue, and the last is the master
2274 * switch used to control the enabling of the tqp. The Tx register and
2275 * TQP register must be enabled at the same time to enable a Tx queue.
2276 * The same applies to the Rx queue. For the older network enginem, this
2277 * function only refresh the enabled flag, and it is used to update the
2278 * status of queue in the dpdk framework.
2280 ret = hns3_start_all_txqs(dev);
2282 goto map_rx_inter_err;
2284 ret = hns3_start_all_rxqs(dev);
2286 goto start_all_rxqs_fail;
2288 hw->adapter_state = HNS3_NIC_STARTED;
2289 rte_spinlock_unlock(&hw->lock);
2291 hns3_rx_scattered_calc(dev);
2292 hns3_set_rxtx_function(dev);
2293 hns3_mp_req_start_rxtx(dev);
2294 hns3vf_service_handler(dev);
2296 hns3vf_restore_filter(dev);
2298 /* Enable interrupt of all rx queues before enabling queues */
2299 hns3_dev_all_rx_queue_intr_enable(hw, true);
2302 * After finished the initialization, start all tqps to receive/transmit
2303 * packets and refresh all queue status.
2305 hns3_start_tqps(hw);
2309 start_all_rxqs_fail:
2310 hns3_stop_all_txqs(dev);
2312 (void)hns3vf_do_stop(hns);
2313 hw->adapter_state = HNS3_NIC_CONFIGURED;
2314 rte_spinlock_unlock(&hw->lock);
2320 is_vf_reset_done(struct hns3_hw *hw)
2322 #define HNS3_FUN_RST_ING_BITS \
2323 (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) | \
2324 BIT(HNS3_VECTOR0_CORERESET_INT_B) | \
2325 BIT(HNS3_VECTOR0_IMPRESET_INT_B) | \
2326 BIT(HNS3_VECTOR0_FUNCRESET_INT_B))
2330 if (hw->reset.level == HNS3_VF_RESET) {
2331 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
2332 if (val & HNS3_VF_RST_ING_BIT)
2335 val = hns3_read_dev(hw, HNS3_FUN_RST_ING);
2336 if (val & HNS3_FUN_RST_ING_BITS)
2343 hns3vf_is_reset_pending(struct hns3_adapter *hns)
2345 struct hns3_hw *hw = &hns->hw;
2346 enum hns3_reset_level reset;
2349 * According to the protocol of PCIe, FLR to a PF device resets the PF
2350 * state as well as the SR-IOV extended capability including VF Enable
2351 * which means that VFs no longer exist.
2353 * HNS3_VF_FULL_RESET means PF device is in FLR reset. when PF device
2354 * is in FLR stage, the register state of VF device is not reliable,
2355 * so register states detection can not be carried out. In this case,
2356 * we just ignore the register states and return false to indicate that
2357 * there are no other reset states that need to be processed by driver.
2359 if (hw->reset.level == HNS3_VF_FULL_RESET)
2362 /* Check the registers to confirm whether there is reset pending */
2363 hns3vf_check_event_cause(hns, NULL);
2364 reset = hns3vf_get_reset_level(hw, &hw->reset.pending);
2365 if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
2366 hns3_warn(hw, "High level reset %d is pending", reset);
2373 hns3vf_wait_hardware_ready(struct hns3_adapter *hns)
2375 struct hns3_hw *hw = &hns->hw;
2376 struct hns3_wait_data *wait_data = hw->reset.wait_data;
2379 if (wait_data->result == HNS3_WAIT_SUCCESS) {
2381 * After vf reset is ready, the PF may not have completed
2382 * the reset processing. The vf sending mbox to PF may fail
2383 * during the pf reset, so it is better to add extra delay.
2385 if (hw->reset.level == HNS3_VF_FUNC_RESET ||
2386 hw->reset.level == HNS3_FLR_RESET)
2388 /* Reset retry process, no need to add extra delay. */
2389 if (hw->reset.attempts)
2391 if (wait_data->check_completion == NULL)
2394 wait_data->check_completion = NULL;
2395 wait_data->interval = 1 * MSEC_PER_SEC * USEC_PER_MSEC;
2396 wait_data->count = 1;
2397 wait_data->result = HNS3_WAIT_REQUEST;
2398 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback,
2400 hns3_warn(hw, "hardware is ready, delay 1 sec for PF reset complete");
2402 } else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
2403 gettimeofday(&tv, NULL);
2404 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
2405 tv.tv_sec, tv.tv_usec);
2407 } else if (wait_data->result == HNS3_WAIT_REQUEST)
2410 wait_data->hns = hns;
2411 wait_data->check_completion = is_vf_reset_done;
2412 wait_data->end_ms = (uint64_t)HNS3VF_RESET_WAIT_CNT *
2413 HNS3VF_RESET_WAIT_MS + get_timeofday_ms();
2414 wait_data->interval = HNS3VF_RESET_WAIT_MS * USEC_PER_MSEC;
2415 wait_data->count = HNS3VF_RESET_WAIT_CNT;
2416 wait_data->result = HNS3_WAIT_REQUEST;
2417 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
2422 hns3vf_prepare_reset(struct hns3_adapter *hns)
2424 struct hns3_hw *hw = &hns->hw;
2427 if (hw->reset.level == HNS3_VF_FUNC_RESET) {
2428 ret = hns3_send_mbx_msg(hw, HNS3_MBX_RESET, 0, NULL,
2433 __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
2439 hns3vf_stop_service(struct hns3_adapter *hns)
2441 struct hns3_hw *hw = &hns->hw;
2442 struct rte_eth_dev *eth_dev;
2444 eth_dev = &rte_eth_devices[hw->data->port_id];
2445 if (hw->adapter_state == HNS3_NIC_STARTED) {
2446 rte_eal_alarm_cancel(hns3vf_service_handler, eth_dev);
2447 hns3vf_update_link_status(hw, ETH_LINK_DOWN, hw->mac.link_speed,
2448 hw->mac.link_duplex);
2450 hw->mac.link_status = ETH_LINK_DOWN;
2452 hns3_set_rxtx_function(eth_dev);
2454 /* Disable datapath on secondary process. */
2455 hns3_mp_req_stop_rxtx(eth_dev);
2456 rte_delay_ms(hw->tqps_num);
2458 rte_spinlock_lock(&hw->lock);
2459 if (hw->adapter_state == HNS3_NIC_STARTED ||
2460 hw->adapter_state == HNS3_NIC_STOPPING) {
2461 hns3_enable_all_queues(hw, false);
2462 hns3vf_do_stop(hns);
2463 hw->reset.mbuf_deferred_free = true;
2465 hw->reset.mbuf_deferred_free = false;
2468 * It is cumbersome for hardware to pick-and-choose entries for deletion
2469 * from table space. Hence, for function reset software intervention is
2470 * required to delete the entries.
2472 if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0)
2473 hns3vf_configure_all_mc_mac_addr(hns, true);
2474 rte_spinlock_unlock(&hw->lock);
2480 hns3vf_start_service(struct hns3_adapter *hns)
2482 struct hns3_hw *hw = &hns->hw;
2483 struct rte_eth_dev *eth_dev;
2485 eth_dev = &rte_eth_devices[hw->data->port_id];
2486 hns3_set_rxtx_function(eth_dev);
2487 hns3_mp_req_start_rxtx(eth_dev);
2488 if (hw->adapter_state == HNS3_NIC_STARTED) {
2489 hns3vf_service_handler(eth_dev);
2491 /* Enable interrupt of all rx queues before enabling queues */
2492 hns3_dev_all_rx_queue_intr_enable(hw, true);
2494 * Enable state of each rxq and txq will be recovered after
2495 * reset, so we need to restore them before enable all tqps;
2497 hns3_restore_tqp_enable_state(hw);
2499 * When finished the initialization, enable queues to receive
2500 * and transmit packets.
2502 hns3_enable_all_queues(hw, true);
2509 hns3vf_check_default_mac_change(struct hns3_hw *hw)
2511 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2512 struct rte_ether_addr *hw_mac;
2516 * The hns3 PF ethdev driver in kernel support setting VF MAC address
2517 * on the host by "ip link set ..." command. If the hns3 PF kernel
2518 * ethdev driver sets the MAC address for VF device after the
2519 * initialization of the related VF device, the PF driver will notify
2520 * VF driver to reset VF device to make the new MAC address effective
2521 * immediately. The hns3 VF PMD driver should check whether the MAC
2522 * address has been changed by the PF kernel ethdev driver, if changed
2523 * VF driver should configure hardware using the new MAC address in the
2524 * recovering hardware configuration stage of the reset process.
2526 ret = hns3vf_get_host_mac_addr(hw);
2530 hw_mac = (struct rte_ether_addr *)hw->mac.mac_addr;
2531 ret = rte_is_zero_ether_addr(hw_mac);
2533 rte_ether_addr_copy(&hw->data->mac_addrs[0], hw_mac);
2535 ret = rte_is_same_ether_addr(&hw->data->mac_addrs[0], hw_mac);
2537 rte_ether_addr_copy(hw_mac, &hw->data->mac_addrs[0]);
2538 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2539 &hw->data->mac_addrs[0]);
2540 hns3_warn(hw, "Default MAC address has been changed to:"
2541 " %s by the host PF kernel ethdev driver",
2550 hns3vf_restore_conf(struct hns3_adapter *hns)
2552 struct hns3_hw *hw = &hns->hw;
2555 ret = hns3vf_check_default_mac_change(hw);
2559 ret = hns3vf_configure_mac_addr(hns, false);
2563 ret = hns3vf_configure_all_mc_mac_addr(hns, false);
2567 ret = hns3vf_restore_promisc(hns);
2569 goto err_vlan_table;
2571 ret = hns3vf_restore_vlan_conf(hns);
2573 goto err_vlan_table;
2575 ret = hns3vf_get_port_base_vlan_filter_state(hw);
2577 goto err_vlan_table;
2579 ret = hns3vf_restore_rx_interrupt(hw);
2581 goto err_vlan_table;
2583 ret = hns3_restore_gro_conf(hw);
2585 goto err_vlan_table;
2587 if (hw->adapter_state == HNS3_NIC_STARTED) {
2588 ret = hns3vf_do_start(hns, false);
2590 goto err_vlan_table;
2591 hns3_info(hw, "hns3vf dev restart successful!");
2592 } else if (hw->adapter_state == HNS3_NIC_STOPPING)
2593 hw->adapter_state = HNS3_NIC_CONFIGURED;
2597 hns3vf_configure_all_mc_mac_addr(hns, true);
2599 hns3vf_configure_mac_addr(hns, true);
2603 static enum hns3_reset_level
2604 hns3vf_get_reset_level(struct hns3_hw *hw, uint64_t *levels)
2606 enum hns3_reset_level reset_level;
2608 /* return the highest priority reset level amongst all */
2609 if (hns3_atomic_test_bit(HNS3_VF_RESET, levels))
2610 reset_level = HNS3_VF_RESET;
2611 else if (hns3_atomic_test_bit(HNS3_VF_FULL_RESET, levels))
2612 reset_level = HNS3_VF_FULL_RESET;
2613 else if (hns3_atomic_test_bit(HNS3_VF_PF_FUNC_RESET, levels))
2614 reset_level = HNS3_VF_PF_FUNC_RESET;
2615 else if (hns3_atomic_test_bit(HNS3_VF_FUNC_RESET, levels))
2616 reset_level = HNS3_VF_FUNC_RESET;
2617 else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
2618 reset_level = HNS3_FLR_RESET;
2620 reset_level = HNS3_NONE_RESET;
2622 if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
2623 return HNS3_NONE_RESET;
2629 hns3vf_reset_service(void *param)
2631 struct hns3_adapter *hns = (struct hns3_adapter *)param;
2632 struct hns3_hw *hw = &hns->hw;
2633 enum hns3_reset_level reset_level;
2634 struct timeval tv_delta;
2635 struct timeval tv_start;
2640 * The interrupt is not triggered within the delay time.
2641 * The interrupt may have been lost. It is necessary to handle
2642 * the interrupt to recover from the error.
2644 if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
2645 SCHEDULE_DEFERRED) {
2646 __atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED,
2648 hns3_err(hw, "Handling interrupts in delayed tasks");
2649 hns3vf_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
2650 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2651 if (reset_level == HNS3_NONE_RESET) {
2652 hns3_err(hw, "No reset level is set, try global reset");
2653 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
2656 __atomic_store_n(&hw->reset.schedule, SCHEDULE_NONE, __ATOMIC_RELAXED);
2659 * Hardware reset has been notified, we now have to poll & check if
2660 * hardware has actually completed the reset sequence.
2662 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2663 if (reset_level != HNS3_NONE_RESET) {
2664 gettimeofday(&tv_start, NULL);
2665 hns3_reset_process(hns, reset_level);
2666 gettimeofday(&tv, NULL);
2667 timersub(&tv, &tv_start, &tv_delta);
2668 msec = tv_delta.tv_sec * MSEC_PER_SEC +
2669 tv_delta.tv_usec / USEC_PER_MSEC;
2670 if (msec > HNS3_RESET_PROCESS_MS)
2671 hns3_err(hw, "%d handle long time delta %" PRIx64
2672 " ms time=%ld.%.6ld",
2673 hw->reset.level, msec, tv.tv_sec, tv.tv_usec);
2678 hns3vf_reinit_dev(struct hns3_adapter *hns)
2680 struct rte_eth_dev *eth_dev = &rte_eth_devices[hns->hw.data->port_id];
2681 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2682 struct hns3_hw *hw = &hns->hw;
2685 if (hw->reset.level == HNS3_VF_FULL_RESET) {
2686 rte_intr_disable(&pci_dev->intr_handle);
2687 ret = hns3vf_set_bus_master(pci_dev, true);
2689 hns3_err(hw, "failed to set pci bus, ret = %d", ret);
2694 /* Firmware command initialize */
2695 ret = hns3_cmd_init(hw);
2697 hns3_err(hw, "Failed to init cmd: %d", ret);
2701 if (hw->reset.level == HNS3_VF_FULL_RESET) {
2703 * UIO enables msix by writing the pcie configuration space
2704 * vfio_pci enables msix in rte_intr_enable.
2706 if (pci_dev->kdrv == RTE_PCI_KDRV_IGB_UIO ||
2707 pci_dev->kdrv == RTE_PCI_KDRV_UIO_GENERIC) {
2708 if (hns3vf_enable_msix(pci_dev, true))
2709 hns3_err(hw, "Failed to enable msix");
2712 rte_intr_enable(&pci_dev->intr_handle);
2715 ret = hns3_reset_all_tqps(hns);
2717 hns3_err(hw, "Failed to reset all queues: %d", ret);
2721 ret = hns3vf_init_hardware(hns);
2723 hns3_err(hw, "Failed to init hardware: %d", ret);
2730 static const struct eth_dev_ops hns3vf_eth_dev_ops = {
2731 .dev_configure = hns3vf_dev_configure,
2732 .dev_start = hns3vf_dev_start,
2733 .dev_stop = hns3vf_dev_stop,
2734 .dev_close = hns3vf_dev_close,
2735 .mtu_set = hns3vf_dev_mtu_set,
2736 .promiscuous_enable = hns3vf_dev_promiscuous_enable,
2737 .promiscuous_disable = hns3vf_dev_promiscuous_disable,
2738 .allmulticast_enable = hns3vf_dev_allmulticast_enable,
2739 .allmulticast_disable = hns3vf_dev_allmulticast_disable,
2740 .stats_get = hns3_stats_get,
2741 .stats_reset = hns3_stats_reset,
2742 .xstats_get = hns3_dev_xstats_get,
2743 .xstats_get_names = hns3_dev_xstats_get_names,
2744 .xstats_reset = hns3_dev_xstats_reset,
2745 .xstats_get_by_id = hns3_dev_xstats_get_by_id,
2746 .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
2747 .dev_infos_get = hns3vf_dev_infos_get,
2748 .fw_version_get = hns3vf_fw_version_get,
2749 .rx_queue_setup = hns3_rx_queue_setup,
2750 .tx_queue_setup = hns3_tx_queue_setup,
2751 .rx_queue_release = hns3_dev_rx_queue_release,
2752 .tx_queue_release = hns3_dev_tx_queue_release,
2753 .rx_queue_start = hns3_dev_rx_queue_start,
2754 .rx_queue_stop = hns3_dev_rx_queue_stop,
2755 .tx_queue_start = hns3_dev_tx_queue_start,
2756 .tx_queue_stop = hns3_dev_tx_queue_stop,
2757 .rx_queue_intr_enable = hns3_dev_rx_queue_intr_enable,
2758 .rx_queue_intr_disable = hns3_dev_rx_queue_intr_disable,
2759 .rxq_info_get = hns3_rxq_info_get,
2760 .txq_info_get = hns3_txq_info_get,
2761 .rx_burst_mode_get = hns3_rx_burst_mode_get,
2762 .tx_burst_mode_get = hns3_tx_burst_mode_get,
2763 .mac_addr_add = hns3vf_add_mac_addr,
2764 .mac_addr_remove = hns3vf_remove_mac_addr,
2765 .mac_addr_set = hns3vf_set_default_mac_addr,
2766 .set_mc_addr_list = hns3vf_set_mc_mac_addr_list,
2767 .link_update = hns3vf_dev_link_update,
2768 .rss_hash_update = hns3_dev_rss_hash_update,
2769 .rss_hash_conf_get = hns3_dev_rss_hash_conf_get,
2770 .reta_update = hns3_dev_rss_reta_update,
2771 .reta_query = hns3_dev_rss_reta_query,
2772 .filter_ctrl = hns3_dev_filter_ctrl,
2773 .vlan_filter_set = hns3vf_vlan_filter_set,
2774 .vlan_offload_set = hns3vf_vlan_offload_set,
2775 .get_reg = hns3_get_regs,
2776 .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
2777 .tx_done_cleanup = hns3_tx_done_cleanup,
2780 static const struct hns3_reset_ops hns3vf_reset_ops = {
2781 .reset_service = hns3vf_reset_service,
2782 .stop_service = hns3vf_stop_service,
2783 .prepare_reset = hns3vf_prepare_reset,
2784 .wait_hardware_ready = hns3vf_wait_hardware_ready,
2785 .reinit_dev = hns3vf_reinit_dev,
2786 .restore_conf = hns3vf_restore_conf,
2787 .start_service = hns3vf_start_service,
2791 hns3vf_dev_init(struct rte_eth_dev *eth_dev)
2793 struct hns3_adapter *hns = eth_dev->data->dev_private;
2794 struct hns3_hw *hw = &hns->hw;
2797 PMD_INIT_FUNC_TRACE();
2799 eth_dev->process_private = (struct hns3_process_private *)
2800 rte_zmalloc_socket("hns3_filter_list",
2801 sizeof(struct hns3_process_private),
2802 RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
2803 if (eth_dev->process_private == NULL) {
2804 PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
2808 /* initialize flow filter lists */
2809 hns3_filterlist_init(eth_dev);
2811 hns3_set_rxtx_function(eth_dev);
2812 eth_dev->dev_ops = &hns3vf_eth_dev_ops;
2813 eth_dev->rx_queue_count = hns3_rx_queue_count;
2814 if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2815 ret = hns3_mp_init_secondary();
2817 PMD_INIT_LOG(ERR, "Failed to init for secondary "
2818 "process, ret = %d", ret);
2819 goto err_mp_init_secondary;
2822 hw->secondary_cnt++;
2826 ret = hns3_mp_init_primary();
2829 "Failed to init for primary process, ret = %d",
2831 goto err_mp_init_primary;
2834 hw->adapter_state = HNS3_NIC_UNINITIALIZED;
2836 hw->data = eth_dev->data;
2837 hns3_parse_devargs(eth_dev);
2839 ret = hns3_reset_init(hw);
2841 goto err_init_reset;
2842 hw->reset.ops = &hns3vf_reset_ops;
2844 ret = hns3vf_init_vf(eth_dev);
2846 PMD_INIT_LOG(ERR, "Failed to init vf: %d", ret);
2850 /* Allocate memory for storing MAC addresses */
2851 eth_dev->data->mac_addrs = rte_zmalloc("hns3vf-mac",
2852 sizeof(struct rte_ether_addr) *
2853 HNS3_VF_UC_MACADDR_NUM, 0);
2854 if (eth_dev->data->mac_addrs == NULL) {
2855 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
2856 "to store MAC addresses",
2857 sizeof(struct rte_ether_addr) *
2858 HNS3_VF_UC_MACADDR_NUM);
2860 goto err_rte_zmalloc;
2864 * The hns3 PF ethdev driver in kernel support setting VF MAC address
2865 * on the host by "ip link set ..." command. To avoid some incorrect
2866 * scenes, for example, hns3 VF PMD driver fails to receive and send
2867 * packets after user configure the MAC address by using the
2868 * "ip link set ..." command, hns3 VF PMD driver keep the same MAC
2869 * address strategy as the hns3 kernel ethdev driver in the
2870 * initialization. If user configure a MAC address by the ip command
2871 * for VF device, then hns3 VF PMD driver will start with it, otherwise
2872 * start with a random MAC address in the initialization.
2874 if (rte_is_zero_ether_addr((struct rte_ether_addr *)hw->mac.mac_addr))
2875 rte_eth_random_addr(hw->mac.mac_addr);
2876 rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
2877 ð_dev->data->mac_addrs[0]);
2879 hw->adapter_state = HNS3_NIC_INITIALIZED;
2881 if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
2883 hns3_err(hw, "Reschedule reset service after dev_init");
2884 hns3_schedule_reset(hns);
2886 /* IMP will wait ready flag before reset */
2887 hns3_notify_reset_ready(hw, false);
2889 rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
2894 hns3vf_uninit_vf(eth_dev);
2897 rte_free(hw->reset.wait_data);
2900 hns3_mp_uninit_primary();
2902 err_mp_init_primary:
2903 err_mp_init_secondary:
2904 eth_dev->dev_ops = NULL;
2905 eth_dev->rx_pkt_burst = NULL;
2906 eth_dev->tx_pkt_burst = NULL;
2907 eth_dev->tx_pkt_prepare = NULL;
2908 rte_free(eth_dev->process_private);
2909 eth_dev->process_private = NULL;
2915 hns3vf_dev_uninit(struct rte_eth_dev *eth_dev)
2917 struct hns3_adapter *hns = eth_dev->data->dev_private;
2918 struct hns3_hw *hw = &hns->hw;
2920 PMD_INIT_FUNC_TRACE();
2922 if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2923 rte_free(eth_dev->process_private);
2924 eth_dev->process_private = NULL;
2928 if (hw->adapter_state < HNS3_NIC_CLOSING)
2929 hns3vf_dev_close(eth_dev);
2931 hw->adapter_state = HNS3_NIC_REMOVED;
2936 eth_hns3vf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2937 struct rte_pci_device *pci_dev)
2939 return rte_eth_dev_pci_generic_probe(pci_dev,
2940 sizeof(struct hns3_adapter),
2945 eth_hns3vf_pci_remove(struct rte_pci_device *pci_dev)
2947 return rte_eth_dev_pci_generic_remove(pci_dev, hns3vf_dev_uninit);
2950 static const struct rte_pci_id pci_id_hns3vf_map[] = {
2951 { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_VF) },
2952 { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_PFC_VF) },
2953 { .vendor_id = 0, }, /* sentinel */
2956 static struct rte_pci_driver rte_hns3vf_pmd = {
2957 .id_table = pci_id_hns3vf_map,
2958 .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
2959 .probe = eth_hns3vf_pci_probe,
2960 .remove = eth_hns3vf_pci_remove,
2963 RTE_PMD_REGISTER_PCI(net_hns3_vf, rte_hns3vf_pmd);
2964 RTE_PMD_REGISTER_PCI_TABLE(net_hns3_vf, pci_id_hns3vf_map);
2965 RTE_PMD_REGISTER_KMOD_DEP(net_hns3_vf, "* igb_uio | vfio-pci");
2966 RTE_PMD_REGISTER_PARAM_STRING(net_hns3_vf,
2967 HNS3_DEVARG_RX_FUNC_HINT "=vec|sve|simple|common "
2968 HNS3_DEVARG_TX_FUNC_HINT "=vec|sve|simple|common ");