net/hns3: fix fake queue rollback
[dpdk.git] / drivers / net / hns3 / hns3_ethdev_vf.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2021 HiSilicon Limited.
3  */
4
5 #include <linux/pci_regs.h>
6 #include <rte_alarm.h>
7 #include <ethdev_pci.h>
8 #include <rte_io.h>
9 #include <rte_pci.h>
10 #include <rte_vfio.h>
11
12 #include "hns3_ethdev.h"
13 #include "hns3_logs.h"
14 #include "hns3_rxtx.h"
15 #include "hns3_regs.h"
16 #include "hns3_intr.h"
17 #include "hns3_dcb.h"
18 #include "hns3_mp.h"
19
20 #define HNS3VF_KEEP_ALIVE_INTERVAL      2000000 /* us */
21 #define HNS3VF_SERVICE_INTERVAL         1000000 /* us */
22
23 #define HNS3VF_RESET_WAIT_MS    20
24 #define HNS3VF_RESET_WAIT_CNT   2000
25
26 /* Reset related Registers */
27 #define HNS3_GLOBAL_RESET_BIT           0
28 #define HNS3_CORE_RESET_BIT             1
29 #define HNS3_IMP_RESET_BIT              2
30 #define HNS3_FUN_RST_ING_B              0
31
32 enum hns3vf_evt_cause {
33         HNS3VF_VECTOR0_EVENT_RST,
34         HNS3VF_VECTOR0_EVENT_MBX,
35         HNS3VF_VECTOR0_EVENT_OTHER,
36 };
37
38 static enum hns3_reset_level hns3vf_get_reset_level(struct hns3_hw *hw,
39                                                     uint64_t *levels);
40 static int hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
41 static int hns3vf_dev_configure_vlan(struct rte_eth_dev *dev);
42
43 static int hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
44                                   struct rte_ether_addr *mac_addr);
45 static int hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
46                                      struct rte_ether_addr *mac_addr);
47 static int hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
48                                    __rte_unused int wait_to_complete);
49
50 /* set PCI bus mastering */
51 static int
52 hns3vf_set_bus_master(const struct rte_pci_device *device, bool op)
53 {
54         uint16_t reg;
55         int ret;
56
57         ret = rte_pci_read_config(device, &reg, sizeof(reg), PCI_COMMAND);
58         if (ret < 0) {
59                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
60                              PCI_COMMAND);
61                 return ret;
62         }
63
64         if (op)
65                 /* set the master bit */
66                 reg |= PCI_COMMAND_MASTER;
67         else
68                 reg &= ~(PCI_COMMAND_MASTER);
69
70         return rte_pci_write_config(device, &reg, sizeof(reg), PCI_COMMAND);
71 }
72
73 /**
74  * hns3vf_find_pci_capability - lookup a capability in the PCI capability list
75  * @cap: the capability
76  *
77  * Return the address of the given capability within the PCI capability list.
78  */
79 static int
80 hns3vf_find_pci_capability(const struct rte_pci_device *device, int cap)
81 {
82 #define MAX_PCIE_CAPABILITY 48
83         uint16_t status;
84         uint8_t pos;
85         uint8_t id;
86         int ttl;
87         int ret;
88
89         ret = rte_pci_read_config(device, &status, sizeof(status), PCI_STATUS);
90         if (ret < 0) {
91                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x", PCI_STATUS);
92                 return 0;
93         }
94
95         if (!(status & PCI_STATUS_CAP_LIST))
96                 return 0;
97
98         ttl = MAX_PCIE_CAPABILITY;
99         ret = rte_pci_read_config(device, &pos, sizeof(pos),
100                                   PCI_CAPABILITY_LIST);
101         if (ret < 0) {
102                 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
103                              PCI_CAPABILITY_LIST);
104                 return 0;
105         }
106
107         while (ttl-- && pos >= PCI_STD_HEADER_SIZEOF) {
108                 ret = rte_pci_read_config(device, &id, sizeof(id),
109                                           (pos + PCI_CAP_LIST_ID));
110                 if (ret < 0) {
111                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
112                                      (pos + PCI_CAP_LIST_ID));
113                         break;
114                 }
115
116                 if (id == 0xFF)
117                         break;
118
119                 if (id == cap)
120                         return (int)pos;
121
122                 ret = rte_pci_read_config(device, &pos, sizeof(pos),
123                                           (pos + PCI_CAP_LIST_NEXT));
124                 if (ret < 0) {
125                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
126                                      (pos + PCI_CAP_LIST_NEXT));
127                         break;
128                 }
129         }
130         return 0;
131 }
132
133 static int
134 hns3vf_enable_msix(const struct rte_pci_device *device, bool op)
135 {
136         uint16_t control;
137         int pos;
138         int ret;
139
140         pos = hns3vf_find_pci_capability(device, PCI_CAP_ID_MSIX);
141         if (pos) {
142                 ret = rte_pci_read_config(device, &control, sizeof(control),
143                                     (pos + PCI_MSIX_FLAGS));
144                 if (ret < 0) {
145                         PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
146                                      (pos + PCI_MSIX_FLAGS));
147                         return -ENXIO;
148                 }
149
150                 if (op)
151                         control |= PCI_MSIX_FLAGS_ENABLE;
152                 else
153                         control &= ~PCI_MSIX_FLAGS_ENABLE;
154                 ret = rte_pci_write_config(device, &control, sizeof(control),
155                                           (pos + PCI_MSIX_FLAGS));
156                 if (ret < 0) {
157                         PMD_INIT_LOG(ERR, "failed to write PCI offset 0x%x",
158                                     (pos + PCI_MSIX_FLAGS));
159                         return -ENXIO;
160                 }
161
162                 return 0;
163         }
164
165         return -ENXIO;
166 }
167
168 static int
169 hns3vf_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
170 {
171         /* mac address was checked by upper level interface */
172         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
173         int ret;
174
175         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
176                                 HNS3_MBX_MAC_VLAN_UC_ADD, mac_addr->addr_bytes,
177                                 RTE_ETHER_ADDR_LEN, false, NULL, 0);
178         if (ret) {
179                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
180                                       mac_addr);
181                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
182                          mac_str, ret);
183         }
184         return ret;
185 }
186
187 static int
188 hns3vf_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
189 {
190         /* mac address was checked by upper level interface */
191         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
192         int ret;
193
194         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
195                                 HNS3_MBX_MAC_VLAN_UC_REMOVE,
196                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN,
197                                 false, NULL, 0);
198         if (ret) {
199                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
200                                       mac_addr);
201                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
202                          mac_str, ret);
203         }
204         return ret;
205 }
206
207 static int
208 hns3vf_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
209 {
210         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
211         struct rte_ether_addr *addr;
212         int ret;
213         int i;
214
215         for (i = 0; i < hw->mc_addrs_num; i++) {
216                 addr = &hw->mc_addrs[i];
217                 /* Check if there are duplicate addresses */
218                 if (rte_is_same_ether_addr(addr, mac_addr)) {
219                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
220                                               addr);
221                         hns3_err(hw, "failed to add mc mac addr, same addrs"
222                                  "(%s) is added by the set_mc_mac_addr_list "
223                                  "API", mac_str);
224                         return -EINVAL;
225                 }
226         }
227
228         ret = hns3vf_add_mc_mac_addr(hw, mac_addr);
229         if (ret) {
230                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
231                                       mac_addr);
232                 hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
233                          mac_str, ret);
234         }
235         return ret;
236 }
237
238 static int
239 hns3vf_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
240                     __rte_unused uint32_t idx,
241                     __rte_unused uint32_t pool)
242 {
243         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
244         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
245         int ret;
246
247         rte_spinlock_lock(&hw->lock);
248
249         /*
250          * In hns3 network engine adding UC and MC mac address with different
251          * commands with firmware. We need to determine whether the input
252          * address is a UC or a MC address to call different commands.
253          * By the way, it is recommended calling the API function named
254          * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
255          * using the rte_eth_dev_mac_addr_add API function to set MC mac address
256          * may affect the specifications of UC mac addresses.
257          */
258         if (rte_is_multicast_ether_addr(mac_addr))
259                 ret = hns3vf_add_mc_addr_common(hw, mac_addr);
260         else
261                 ret = hns3vf_add_uc_mac_addr(hw, mac_addr);
262
263         rte_spinlock_unlock(&hw->lock);
264         if (ret) {
265                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
266                                       mac_addr);
267                 hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
268                          ret);
269         }
270
271         return ret;
272 }
273
274 static void
275 hns3vf_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
276 {
277         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
278         /* index will be checked by upper level rte interface */
279         struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
280         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
281         int ret;
282
283         rte_spinlock_lock(&hw->lock);
284
285         if (rte_is_multicast_ether_addr(mac_addr))
286                 ret = hns3vf_remove_mc_mac_addr(hw, mac_addr);
287         else
288                 ret = hns3vf_remove_uc_mac_addr(hw, mac_addr);
289
290         rte_spinlock_unlock(&hw->lock);
291         if (ret) {
292                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
293                                       mac_addr);
294                 hns3_err(hw, "failed to remove mac addr(%s), ret = %d",
295                          mac_str, ret);
296         }
297 }
298
299 static int
300 hns3vf_set_default_mac_addr(struct rte_eth_dev *dev,
301                             struct rte_ether_addr *mac_addr)
302 {
303 #define HNS3_TWO_ETHER_ADDR_LEN (RTE_ETHER_ADDR_LEN * 2)
304         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
305         struct rte_ether_addr *old_addr;
306         uint8_t addr_bytes[HNS3_TWO_ETHER_ADDR_LEN]; /* for 2 MAC addresses */
307         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
308         int ret;
309
310         /*
311          * It has been guaranteed that input parameter named mac_addr is valid
312          * address in the rte layer of DPDK framework.
313          */
314         old_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
315         rte_spinlock_lock(&hw->lock);
316         memcpy(addr_bytes, mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN);
317         memcpy(&addr_bytes[RTE_ETHER_ADDR_LEN], old_addr->addr_bytes,
318                RTE_ETHER_ADDR_LEN);
319
320         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
321                                 HNS3_MBX_MAC_VLAN_UC_MODIFY, addr_bytes,
322                                 HNS3_TWO_ETHER_ADDR_LEN, true, NULL, 0);
323         if (ret) {
324                 /*
325                  * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev
326                  * driver. When user has configured a MAC address for VF device
327                  * by "ip link set ..." command based on the PF device, the hns3
328                  * PF kernel ethdev driver does not allow VF driver to request
329                  * reconfiguring a different default MAC address, and return
330                  * -EPREM to VF driver through mailbox.
331                  */
332                 if (ret == -EPERM) {
333                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
334                                               old_addr);
335                         hns3_warn(hw, "Has permanet mac addr(%s) for vf",
336                                   mac_str);
337                 } else {
338                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
339                                               mac_addr);
340                         hns3_err(hw, "Failed to set mac addr(%s) for vf: %d",
341                                  mac_str, ret);
342                 }
343         }
344
345         rte_ether_addr_copy(mac_addr,
346                             (struct rte_ether_addr *)hw->mac.mac_addr);
347         rte_spinlock_unlock(&hw->lock);
348
349         return ret;
350 }
351
352 static int
353 hns3vf_configure_mac_addr(struct hns3_adapter *hns, bool del)
354 {
355         struct hns3_hw *hw = &hns->hw;
356         struct rte_ether_addr *addr;
357         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
358         int err = 0;
359         int ret;
360         int i;
361
362         for (i = 0; i < HNS3_VF_UC_MACADDR_NUM; i++) {
363                 addr = &hw->data->mac_addrs[i];
364                 if (rte_is_zero_ether_addr(addr))
365                         continue;
366                 if (rte_is_multicast_ether_addr(addr))
367                         ret = del ? hns3vf_remove_mc_mac_addr(hw, addr) :
368                               hns3vf_add_mc_mac_addr(hw, addr);
369                 else
370                         ret = del ? hns3vf_remove_uc_mac_addr(hw, addr) :
371                               hns3vf_add_uc_mac_addr(hw, addr);
372
373                 if (ret) {
374                         err = ret;
375                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
376                                               addr);
377                         hns3_err(hw, "failed to %s mac addr(%s) index:%d "
378                                  "ret = %d.", del ? "remove" : "restore",
379                                  mac_str, i, ret);
380                 }
381         }
382         return err;
383 }
384
385 static int
386 hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
387                        struct rte_ether_addr *mac_addr)
388 {
389         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
390         int ret;
391
392         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
393                                 HNS3_MBX_MAC_VLAN_MC_ADD,
394                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
395                                 NULL, 0);
396         if (ret) {
397                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
398                                       mac_addr);
399                 hns3_err(hw, "Failed to add mc mac addr(%s) for vf: %d",
400                          mac_str, ret);
401         }
402
403         return ret;
404 }
405
406 static int
407 hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
408                           struct rte_ether_addr *mac_addr)
409 {
410         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
411         int ret;
412
413         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
414                                 HNS3_MBX_MAC_VLAN_MC_REMOVE,
415                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
416                                 NULL, 0);
417         if (ret) {
418                 hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
419                                       mac_addr);
420                 hns3_err(hw, "Failed to remove mc mac addr(%s) for vf: %d",
421                          mac_str, ret);
422         }
423
424         return ret;
425 }
426
427 static int
428 hns3vf_set_mc_addr_chk_param(struct hns3_hw *hw,
429                              struct rte_ether_addr *mc_addr_set,
430                              uint32_t nb_mc_addr)
431 {
432         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
433         struct rte_ether_addr *addr;
434         uint32_t i;
435         uint32_t j;
436
437         if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
438                 hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%u) "
439                          "invalid. valid range: 0~%d",
440                          nb_mc_addr, HNS3_MC_MACADDR_NUM);
441                 return -EINVAL;
442         }
443
444         /* Check if input mac addresses are valid */
445         for (i = 0; i < nb_mc_addr; i++) {
446                 addr = &mc_addr_set[i];
447                 if (!rte_is_multicast_ether_addr(addr)) {
448                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
449                                               addr);
450                         hns3_err(hw,
451                                  "failed to set mc mac addr, addr(%s) invalid.",
452                                  mac_str);
453                         return -EINVAL;
454                 }
455
456                 /* Check if there are duplicate addresses */
457                 for (j = i + 1; j < nb_mc_addr; j++) {
458                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
459                                 hns3_ether_format_addr(mac_str,
460                                                       RTE_ETHER_ADDR_FMT_SIZE,
461                                                       addr);
462                                 hns3_err(hw, "failed to set mc mac addr, "
463                                          "addrs invalid. two same addrs(%s).",
464                                          mac_str);
465                                 return -EINVAL;
466                         }
467                 }
468
469                 /*
470                  * Check if there are duplicate addresses between mac_addrs
471                  * and mc_addr_set
472                  */
473                 for (j = 0; j < HNS3_VF_UC_MACADDR_NUM; j++) {
474                         if (rte_is_same_ether_addr(addr,
475                                                    &hw->data->mac_addrs[j])) {
476                                 hns3_ether_format_addr(mac_str,
477                                                       RTE_ETHER_ADDR_FMT_SIZE,
478                                                       addr);
479                                 hns3_err(hw, "failed to set mc mac addr, "
480                                          "addrs invalid. addrs(%s) has already "
481                                          "configured in mac_addr add API",
482                                          mac_str);
483                                 return -EINVAL;
484                         }
485                 }
486         }
487
488         return 0;
489 }
490
491 static int
492 hns3vf_set_mc_mac_addr_list(struct rte_eth_dev *dev,
493                             struct rte_ether_addr *mc_addr_set,
494                             uint32_t nb_mc_addr)
495 {
496         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
497         struct rte_ether_addr *addr;
498         int cur_addr_num;
499         int set_addr_num;
500         int num;
501         int ret;
502         int i;
503
504         ret = hns3vf_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
505         if (ret)
506                 return ret;
507
508         rte_spinlock_lock(&hw->lock);
509         cur_addr_num = hw->mc_addrs_num;
510         for (i = 0; i < cur_addr_num; i++) {
511                 num = cur_addr_num - i - 1;
512                 addr = &hw->mc_addrs[num];
513                 ret = hns3vf_remove_mc_mac_addr(hw, addr);
514                 if (ret) {
515                         rte_spinlock_unlock(&hw->lock);
516                         return ret;
517                 }
518
519                 hw->mc_addrs_num--;
520         }
521
522         set_addr_num = (int)nb_mc_addr;
523         for (i = 0; i < set_addr_num; i++) {
524                 addr = &mc_addr_set[i];
525                 ret = hns3vf_add_mc_mac_addr(hw, addr);
526                 if (ret) {
527                         rte_spinlock_unlock(&hw->lock);
528                         return ret;
529                 }
530
531                 rte_ether_addr_copy(addr, &hw->mc_addrs[hw->mc_addrs_num]);
532                 hw->mc_addrs_num++;
533         }
534         rte_spinlock_unlock(&hw->lock);
535
536         return 0;
537 }
538
539 static int
540 hns3vf_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
541 {
542         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
543         struct hns3_hw *hw = &hns->hw;
544         struct rte_ether_addr *addr;
545         int err = 0;
546         int ret;
547         int i;
548
549         for (i = 0; i < hw->mc_addrs_num; i++) {
550                 addr = &hw->mc_addrs[i];
551                 if (!rte_is_multicast_ether_addr(addr))
552                         continue;
553                 if (del)
554                         ret = hns3vf_remove_mc_mac_addr(hw, addr);
555                 else
556                         ret = hns3vf_add_mc_mac_addr(hw, addr);
557                 if (ret) {
558                         err = ret;
559                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
560                                               addr);
561                         hns3_err(hw, "Failed to %s mc mac addr: %s for vf: %d",
562                                  del ? "Remove" : "Restore", mac_str, ret);
563                 }
564         }
565         return err;
566 }
567
568 static int
569 hns3vf_set_promisc_mode(struct hns3_hw *hw, bool en_bc_pmc,
570                         bool en_uc_pmc, bool en_mc_pmc)
571 {
572         struct hns3_mbx_vf_to_pf_cmd *req;
573         struct hns3_cmd_desc desc;
574         int ret;
575
576         req = (struct hns3_mbx_vf_to_pf_cmd *)desc.data;
577
578         /*
579          * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev driver,
580          * so there are some features for promiscuous/allmulticast mode in hns3
581          * VF PMD driver as below:
582          * 1. The promiscuous/allmulticast mode can be configured successfully
583          *    only based on the trusted VF device. If based on the non trusted
584          *    VF device, configuring promiscuous/allmulticast mode will fail.
585          *    The hns3 VF device can be confiruged as trusted device by hns3 PF
586          *    kernel ethdev driver on the host by the following command:
587          *      "ip link set <eth num> vf <vf id> turst on"
588          * 2. After the promiscuous mode is configured successfully, hns3 VF PMD
589          *    driver can receive the ingress and outgoing traffic. In the words,
590          *    all the ingress packets, all the packets sent from the PF and
591          *    other VFs on the same physical port.
592          * 3. Note: Because of the hardware constraints, By default vlan filter
593          *    is enabled and couldn't be turned off based on VF device, so vlan
594          *    filter is still effective even in promiscuous mode. If upper
595          *    applications don't call rte_eth_dev_vlan_filter API function to
596          *    set vlan based on VF device, hns3 VF PMD driver will can't receive
597          *    the packets with vlan tag in promiscuoue mode.
598          */
599         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MBX_VF_TO_PF, false);
600         req->msg[0] = HNS3_MBX_SET_PROMISC_MODE;
601         req->msg[1] = en_bc_pmc ? 1 : 0;
602         req->msg[2] = en_uc_pmc ? 1 : 0;
603         req->msg[3] = en_mc_pmc ? 1 : 0;
604         req->msg[4] = hw->promisc_mode == HNS3_LIMIT_PROMISC_MODE ? 1 : 0;
605
606         ret = hns3_cmd_send(hw, &desc, 1);
607         if (ret)
608                 hns3_err(hw, "Set promisc mode fail, ret = %d", ret);
609
610         return ret;
611 }
612
613 static int
614 hns3vf_dev_promiscuous_enable(struct rte_eth_dev *dev)
615 {
616         struct hns3_adapter *hns = dev->data->dev_private;
617         struct hns3_hw *hw = &hns->hw;
618         int ret;
619
620         ret = hns3vf_set_promisc_mode(hw, true, true, true);
621         if (ret)
622                 hns3_err(hw, "Failed to enable promiscuous mode, ret = %d",
623                         ret);
624         return ret;
625 }
626
627 static int
628 hns3vf_dev_promiscuous_disable(struct rte_eth_dev *dev)
629 {
630         bool allmulti = dev->data->all_multicast ? true : false;
631         struct hns3_adapter *hns = dev->data->dev_private;
632         struct hns3_hw *hw = &hns->hw;
633         int ret;
634
635         ret = hns3vf_set_promisc_mode(hw, true, false, allmulti);
636         if (ret)
637                 hns3_err(hw, "Failed to disable promiscuous mode, ret = %d",
638                         ret);
639         return ret;
640 }
641
642 static int
643 hns3vf_dev_allmulticast_enable(struct rte_eth_dev *dev)
644 {
645         struct hns3_adapter *hns = dev->data->dev_private;
646         struct hns3_hw *hw = &hns->hw;
647         int ret;
648
649         if (dev->data->promiscuous)
650                 return 0;
651
652         ret = hns3vf_set_promisc_mode(hw, true, false, true);
653         if (ret)
654                 hns3_err(hw, "Failed to enable allmulticast mode, ret = %d",
655                         ret);
656         return ret;
657 }
658
659 static int
660 hns3vf_dev_allmulticast_disable(struct rte_eth_dev *dev)
661 {
662         struct hns3_adapter *hns = dev->data->dev_private;
663         struct hns3_hw *hw = &hns->hw;
664         int ret;
665
666         if (dev->data->promiscuous)
667                 return 0;
668
669         ret = hns3vf_set_promisc_mode(hw, true, false, false);
670         if (ret)
671                 hns3_err(hw, "Failed to disable allmulticast mode, ret = %d",
672                         ret);
673         return ret;
674 }
675
676 static int
677 hns3vf_restore_promisc(struct hns3_adapter *hns)
678 {
679         struct hns3_hw *hw = &hns->hw;
680         bool allmulti = hw->data->all_multicast ? true : false;
681
682         if (hw->data->promiscuous)
683                 return hns3vf_set_promisc_mode(hw, true, true, true);
684
685         return hns3vf_set_promisc_mode(hw, true, false, allmulti);
686 }
687
688 static int
689 hns3vf_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id,
690                              bool mmap, enum hns3_ring_type queue_type,
691                              uint16_t queue_id)
692 {
693         struct hns3_vf_bind_vector_msg bind_msg;
694         const char *op_str;
695         uint16_t code;
696         int ret;
697
698         memset(&bind_msg, 0, sizeof(bind_msg));
699         code = mmap ? HNS3_MBX_MAP_RING_TO_VECTOR :
700                 HNS3_MBX_UNMAP_RING_TO_VECTOR;
701         bind_msg.vector_id = vector_id;
702
703         if (queue_type == HNS3_RING_TYPE_RX)
704                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_RX;
705         else
706                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_TX;
707
708         bind_msg.param[0].ring_type = queue_type;
709         bind_msg.ring_num = 1;
710         bind_msg.param[0].tqp_index = queue_id;
711         op_str = mmap ? "Map" : "Unmap";
712         ret = hns3_send_mbx_msg(hw, code, 0, (uint8_t *)&bind_msg,
713                                 sizeof(bind_msg), false, NULL, 0);
714         if (ret)
715                 hns3_err(hw, "%s TQP %u fail, vector_id is %u, ret is %d.",
716                          op_str, queue_id, bind_msg.vector_id, ret);
717
718         return ret;
719 }
720
721 static int
722 hns3vf_init_ring_with_vector(struct hns3_hw *hw)
723 {
724         uint16_t vec;
725         int ret;
726         int i;
727
728         /*
729          * In hns3 network engine, vector 0 is always the misc interrupt of this
730          * function, vector 1~N can be used respectively for the queues of the
731          * function. Tx and Rx queues with the same number share the interrupt
732          * vector. In the initialization clearing the all hardware mapping
733          * relationship configurations between queues and interrupt vectors is
734          * needed, so some error caused by the residual configurations, such as
735          * the unexpected Tx interrupt, can be avoid.
736          */
737         vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
738         if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
739                 vec = vec - 1; /* the last interrupt is reserved */
740         hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
741         for (i = 0; i < hw->intr_tqps_num; i++) {
742                 /*
743                  * Set gap limiter/rate limiter/quanity limiter algorithm
744                  * configuration for interrupt coalesce of queue's interrupt.
745                  */
746                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
747                                        HNS3_TQP_INTR_GL_DEFAULT);
748                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
749                                        HNS3_TQP_INTR_GL_DEFAULT);
750                 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
751                 /*
752                  * QL(quantity limiter) is not used currently, just set 0 to
753                  * close it.
754                  */
755                 hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
756
757                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
758                                                    HNS3_RING_TYPE_TX, i);
759                 if (ret) {
760                         PMD_INIT_LOG(ERR, "VF fail to unbind TX ring(%d) with "
761                                           "vector: %u, ret=%d", i, vec, ret);
762                         return ret;
763                 }
764
765                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
766                                                    HNS3_RING_TYPE_RX, i);
767                 if (ret) {
768                         PMD_INIT_LOG(ERR, "VF fail to unbind RX ring(%d) with "
769                                           "vector: %u, ret=%d", i, vec, ret);
770                         return ret;
771                 }
772         }
773
774         return 0;
775 }
776
777 static int
778 hns3vf_dev_configure(struct rte_eth_dev *dev)
779 {
780         struct hns3_adapter *hns = dev->data->dev_private;
781         struct hns3_hw *hw = &hns->hw;
782         struct rte_eth_conf *conf = &dev->data->dev_conf;
783         enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
784         uint16_t nb_rx_q = dev->data->nb_rx_queues;
785         uint16_t nb_tx_q = dev->data->nb_tx_queues;
786         struct rte_eth_rss_conf rss_conf;
787         uint32_t max_rx_pkt_len;
788         uint16_t mtu;
789         bool gro_en;
790         int ret;
791
792         hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
793
794         /*
795          * Some versions of hardware network engine does not support
796          * individually enable/disable/reset the Tx or Rx queue. These devices
797          * must enable/disable/reset Tx and Rx queues at the same time. When the
798          * numbers of Tx queues allocated by upper applications are not equal to
799          * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
800          * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
801          * work as usual. But these fake queues are imperceptible, and can not
802          * be used by upper applications.
803          */
804         ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
805         if (ret) {
806                 hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.", ret);
807                 return ret;
808         }
809
810         hw->adapter_state = HNS3_NIC_CONFIGURING;
811         if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
812                 hns3_err(hw, "setting link speed/duplex not supported");
813                 ret = -EINVAL;
814                 goto cfg_err;
815         }
816
817         /* When RSS is not configured, redirect the packet queue 0 */
818         if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
819                 conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
820                 hw->rss_dis_flag = false;
821                 rss_conf = conf->rx_adv_conf.rss_conf;
822                 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
823                 if (ret)
824                         goto cfg_err;
825         }
826
827         /*
828          * If jumbo frames are enabled, MTU needs to be refreshed
829          * according to the maximum RX packet length.
830          */
831         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
832                 max_rx_pkt_len = conf->rxmode.max_rx_pkt_len;
833                 if (max_rx_pkt_len > HNS3_MAX_FRAME_LEN ||
834                     max_rx_pkt_len <= HNS3_DEFAULT_FRAME_LEN) {
835                         hns3_err(hw, "maximum Rx packet length must be greater "
836                                  "than %u and less than %u when jumbo frame enabled.",
837                                  (uint16_t)HNS3_DEFAULT_FRAME_LEN,
838                                  (uint16_t)HNS3_MAX_FRAME_LEN);
839                         ret = -EINVAL;
840                         goto cfg_err;
841                 }
842
843                 mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(max_rx_pkt_len);
844                 ret = hns3vf_dev_mtu_set(dev, mtu);
845                 if (ret)
846                         goto cfg_err;
847                 dev->data->mtu = mtu;
848         }
849
850         ret = hns3vf_dev_configure_vlan(dev);
851         if (ret)
852                 goto cfg_err;
853
854         /* config hardware GRO */
855         gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
856         ret = hns3_config_gro(hw, gro_en);
857         if (ret)
858                 goto cfg_err;
859
860         hns3_init_rx_ptype_tble(dev);
861
862         hw->adapter_state = HNS3_NIC_CONFIGURED;
863         return 0;
864
865 cfg_err:
866         (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
867         hw->adapter_state = HNS3_NIC_INITIALIZED;
868
869         return ret;
870 }
871
872 static int
873 hns3vf_config_mtu(struct hns3_hw *hw, uint16_t mtu)
874 {
875         int ret;
876
877         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MTU, 0, (const uint8_t *)&mtu,
878                                 sizeof(mtu), true, NULL, 0);
879         if (ret)
880                 hns3_err(hw, "Failed to set mtu (%u) for vf: %d", mtu, ret);
881
882         return ret;
883 }
884
885 static int
886 hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
887 {
888         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
889         uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
890         int ret;
891
892         /*
893          * The hns3 PF/VF devices on the same port share the hardware MTU
894          * configuration. Currently, we send mailbox to inform hns3 PF kernel
895          * ethdev driver to finish hardware MTU configuration in hns3 VF PMD
896          * driver, there is no need to stop the port for hns3 VF device, and the
897          * MTU value issued by hns3 VF PMD driver must be less than or equal to
898          * PF's MTU.
899          */
900         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
901                 hns3_err(hw, "Failed to set mtu during resetting");
902                 return -EIO;
903         }
904
905         /*
906          * when Rx of scattered packets is off, we have some possibility of
907          * using vector Rx process function or simple Rx functions in hns3 PMD
908          * driver. If the input MTU is increased and the maximum length of
909          * received packets is greater than the length of a buffer for Rx
910          * packet, the hardware network engine needs to use multiple BDs and
911          * buffers to store these packets. This will cause problems when still
912          * using vector Rx process function or simple Rx function to receiving
913          * packets. So, when Rx of scattered packets is off and device is
914          * started, it is not permitted to increase MTU so that the maximum
915          * length of Rx packets is greater than Rx buffer length.
916          */
917         if (dev->data->dev_started && !dev->data->scattered_rx &&
918             frame_size > hw->rx_buf_len) {
919                 hns3_err(hw, "failed to set mtu because current is "
920                         "not scattered rx mode");
921                 return -EOPNOTSUPP;
922         }
923
924         rte_spinlock_lock(&hw->lock);
925         ret = hns3vf_config_mtu(hw, mtu);
926         if (ret) {
927                 rte_spinlock_unlock(&hw->lock);
928                 return ret;
929         }
930         if (mtu > RTE_ETHER_MTU)
931                 dev->data->dev_conf.rxmode.offloads |=
932                                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
933         else
934                 dev->data->dev_conf.rxmode.offloads &=
935                                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
936         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
937         rte_spinlock_unlock(&hw->lock);
938
939         return 0;
940 }
941
942 static int
943 hns3vf_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
944 {
945         struct hns3_adapter *hns = eth_dev->data->dev_private;
946         struct hns3_hw *hw = &hns->hw;
947         uint16_t q_num = hw->tqps_num;
948
949         /*
950          * In interrupt mode, 'max_rx_queues' is set based on the number of
951          * MSI-X interrupt resources of the hardware.
952          */
953         if (hw->data->dev_conf.intr_conf.rxq == 1)
954                 q_num = hw->intr_tqps_num;
955
956         info->max_rx_queues = q_num;
957         info->max_tx_queues = hw->tqps_num;
958         info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
959         info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
960         info->max_mac_addrs = HNS3_VF_UC_MACADDR_NUM;
961         info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
962         info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
963
964         info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
965                                  DEV_RX_OFFLOAD_UDP_CKSUM |
966                                  DEV_RX_OFFLOAD_TCP_CKSUM |
967                                  DEV_RX_OFFLOAD_SCTP_CKSUM |
968                                  DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
969                                  DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
970                                  DEV_RX_OFFLOAD_SCATTER |
971                                  DEV_RX_OFFLOAD_VLAN_STRIP |
972                                  DEV_RX_OFFLOAD_VLAN_FILTER |
973                                  DEV_RX_OFFLOAD_JUMBO_FRAME |
974                                  DEV_RX_OFFLOAD_RSS_HASH |
975                                  DEV_RX_OFFLOAD_TCP_LRO);
976         info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
977                                  DEV_TX_OFFLOAD_IPV4_CKSUM |
978                                  DEV_TX_OFFLOAD_TCP_CKSUM |
979                                  DEV_TX_OFFLOAD_UDP_CKSUM |
980                                  DEV_TX_OFFLOAD_SCTP_CKSUM |
981                                  DEV_TX_OFFLOAD_MULTI_SEGS |
982                                  DEV_TX_OFFLOAD_TCP_TSO |
983                                  DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
984                                  DEV_TX_OFFLOAD_GRE_TNL_TSO |
985                                  DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
986                                  DEV_TX_OFFLOAD_MBUF_FAST_FREE |
987                                  hns3_txvlan_cap_get(hw));
988
989         if (hns3_dev_outer_udp_cksum_supported(hw))
990                 info->tx_offload_capa |= DEV_TX_OFFLOAD_OUTER_UDP_CKSUM;
991
992         if (hns3_dev_indep_txrx_supported(hw))
993                 info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
994                                  RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
995
996         info->rx_desc_lim = (struct rte_eth_desc_lim) {
997                 .nb_max = HNS3_MAX_RING_DESC,
998                 .nb_min = HNS3_MIN_RING_DESC,
999                 .nb_align = HNS3_ALIGN_RING_DESC,
1000         };
1001
1002         info->tx_desc_lim = (struct rte_eth_desc_lim) {
1003                 .nb_max = HNS3_MAX_RING_DESC,
1004                 .nb_min = HNS3_MIN_RING_DESC,
1005                 .nb_align = HNS3_ALIGN_RING_DESC,
1006                 .nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
1007                 .nb_mtu_seg_max = hw->max_non_tso_bd_num,
1008         };
1009
1010         info->default_rxconf = (struct rte_eth_rxconf) {
1011                 .rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
1012                 /*
1013                  * If there are no available Rx buffer descriptors, incoming
1014                  * packets are always dropped by hardware based on hns3 network
1015                  * engine.
1016                  */
1017                 .rx_drop_en = 1,
1018                 .offloads = 0,
1019         };
1020         info->default_txconf = (struct rte_eth_txconf) {
1021                 .tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
1022                 .offloads = 0,
1023         };
1024
1025         info->reta_size = hw->rss_ind_tbl_size;
1026         info->hash_key_size = HNS3_RSS_KEY_SIZE;
1027         info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
1028
1029         info->default_rxportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
1030         info->default_txportconf.burst_size = HNS3_DEFAULT_PORT_CONF_BURST_SIZE;
1031         info->default_rxportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
1032         info->default_txportconf.nb_queues = HNS3_DEFAULT_PORT_CONF_QUEUES_NUM;
1033         info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1034         info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1035
1036         return 0;
1037 }
1038
1039 static void
1040 hns3vf_clear_event_cause(struct hns3_hw *hw, uint32_t regclr)
1041 {
1042         hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
1043 }
1044
1045 static void
1046 hns3vf_disable_irq0(struct hns3_hw *hw)
1047 {
1048         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
1049 }
1050
1051 static void
1052 hns3vf_enable_irq0(struct hns3_hw *hw)
1053 {
1054         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
1055 }
1056
1057 static enum hns3vf_evt_cause
1058 hns3vf_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
1059 {
1060         struct hns3_hw *hw = &hns->hw;
1061         enum hns3vf_evt_cause ret;
1062         uint32_t cmdq_stat_reg;
1063         uint32_t rst_ing_reg;
1064         uint32_t val;
1065
1066         /* Fetch the events from their corresponding regs */
1067         cmdq_stat_reg = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_STAT_REG);
1068         if (BIT(HNS3_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1069                 rst_ing_reg = hns3_read_dev(hw, HNS3_FUN_RST_ING);
1070                 hns3_warn(hw, "resetting reg: 0x%x", rst_ing_reg);
1071                 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
1072                 __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
1073                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
1074                 hns3_write_dev(hw, HNS3_VF_RST_ING, val | HNS3_VF_RST_ING_BIT);
1075                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RST_INT_B);
1076                 if (clearval) {
1077                         hw->reset.stats.global_cnt++;
1078                         hns3_warn(hw, "Global reset detected, clear reset status");
1079                 } else {
1080                         hns3_schedule_delayed_reset(hns);
1081                         hns3_warn(hw, "Global reset detected, don't clear reset status");
1082                 }
1083
1084                 ret = HNS3VF_VECTOR0_EVENT_RST;
1085                 goto out;
1086         }
1087
1088         /* Check for vector0 mailbox(=CMDQ RX) event source */
1089         if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1090                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
1091                 ret = HNS3VF_VECTOR0_EVENT_MBX;
1092                 goto out;
1093         }
1094
1095         val = 0;
1096         ret = HNS3VF_VECTOR0_EVENT_OTHER;
1097 out:
1098         if (clearval)
1099                 *clearval = val;
1100         return ret;
1101 }
1102
1103 static void
1104 hns3vf_interrupt_handler(void *param)
1105 {
1106         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1107         struct hns3_adapter *hns = dev->data->dev_private;
1108         struct hns3_hw *hw = &hns->hw;
1109         enum hns3vf_evt_cause event_cause;
1110         uint32_t clearval;
1111
1112         /* Disable interrupt */
1113         hns3vf_disable_irq0(hw);
1114
1115         /* Read out interrupt causes */
1116         event_cause = hns3vf_check_event_cause(hns, &clearval);
1117
1118         switch (event_cause) {
1119         case HNS3VF_VECTOR0_EVENT_RST:
1120                 hns3_schedule_reset(hns);
1121                 break;
1122         case HNS3VF_VECTOR0_EVENT_MBX:
1123                 hns3_dev_handle_mbx_msg(hw);
1124                 break;
1125         default:
1126                 break;
1127         }
1128
1129         /* Clear interrupt causes */
1130         hns3vf_clear_event_cause(hw, clearval);
1131
1132         /* Enable interrupt */
1133         hns3vf_enable_irq0(hw);
1134 }
1135
1136 static void
1137 hns3vf_set_default_dev_specifications(struct hns3_hw *hw)
1138 {
1139         hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
1140         hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
1141         hw->rss_key_size = HNS3_RSS_KEY_SIZE;
1142         hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
1143 }
1144
1145 static void
1146 hns3vf_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
1147 {
1148         struct hns3_dev_specs_0_cmd *req0;
1149
1150         req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
1151
1152         hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
1153         hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
1154         hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
1155         hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
1156 }
1157
1158 static int
1159 hns3vf_check_dev_specifications(struct hns3_hw *hw)
1160 {
1161         if (hw->rss_ind_tbl_size == 0 ||
1162             hw->rss_ind_tbl_size > HNS3_RSS_IND_TBL_SIZE_MAX) {
1163                 hns3_warn(hw, "the size of hash lookup table configured (%u)"
1164                               " exceeds the maximum(%u)", hw->rss_ind_tbl_size,
1165                               HNS3_RSS_IND_TBL_SIZE_MAX);
1166                 return -EINVAL;
1167         }
1168
1169         return 0;
1170 }
1171
1172 static int
1173 hns3vf_query_dev_specifications(struct hns3_hw *hw)
1174 {
1175         struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
1176         int ret;
1177         int i;
1178
1179         for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
1180                 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
1181                                           true);
1182                 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1183         }
1184         hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
1185
1186         ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
1187         if (ret)
1188                 return ret;
1189
1190         hns3vf_parse_dev_specifications(hw, desc);
1191
1192         return hns3vf_check_dev_specifications(hw);
1193 }
1194
1195 void
1196 hns3vf_update_push_lsc_cap(struct hns3_hw *hw, bool supported)
1197 {
1198         uint16_t val = supported ? HNS3_PF_PUSH_LSC_CAP_SUPPORTED :
1199                                    HNS3_PF_PUSH_LSC_CAP_NOT_SUPPORTED;
1200         uint16_t exp = HNS3_PF_PUSH_LSC_CAP_UNKNOWN;
1201         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1202
1203         if (vf->pf_push_lsc_cap == HNS3_PF_PUSH_LSC_CAP_UNKNOWN)
1204                 __atomic_compare_exchange(&vf->pf_push_lsc_cap, &exp, &val, 0,
1205                                           __ATOMIC_ACQUIRE, __ATOMIC_ACQUIRE);
1206 }
1207
1208 static void
1209 hns3vf_get_push_lsc_cap(struct hns3_hw *hw)
1210 {
1211 #define HNS3_CHECK_PUSH_LSC_CAP_TIMEOUT_MS      500
1212
1213         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
1214         int32_t remain_ms = HNS3_CHECK_PUSH_LSC_CAP_TIMEOUT_MS;
1215         uint16_t val = HNS3_PF_PUSH_LSC_CAP_NOT_SUPPORTED;
1216         uint16_t exp = HNS3_PF_PUSH_LSC_CAP_UNKNOWN;
1217         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1218
1219         __atomic_store_n(&vf->pf_push_lsc_cap, HNS3_PF_PUSH_LSC_CAP_UNKNOWN,
1220                          __ATOMIC_RELEASE);
1221
1222         (void)hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1223                                 NULL, 0);
1224
1225         while (remain_ms > 0) {
1226                 rte_delay_ms(HNS3_POLL_RESPONE_MS);
1227                 if (__atomic_load_n(&vf->pf_push_lsc_cap, __ATOMIC_ACQUIRE) !=
1228                         HNS3_PF_PUSH_LSC_CAP_UNKNOWN)
1229                         break;
1230                 remain_ms--;
1231         }
1232
1233         /*
1234          * When exit above loop, the pf_push_lsc_cap could be one of the three
1235          * state: unknown (means pf not ack), not_supported, supported.
1236          * Here config it as 'not_supported' when it's 'unknown' state.
1237          */
1238         __atomic_compare_exchange(&vf->pf_push_lsc_cap, &exp, &val, 0,
1239                                   __ATOMIC_ACQUIRE, __ATOMIC_ACQUIRE);
1240
1241         if (__atomic_load_n(&vf->pf_push_lsc_cap, __ATOMIC_ACQUIRE) ==
1242                 HNS3_PF_PUSH_LSC_CAP_SUPPORTED) {
1243                 hns3_info(hw, "detect PF support push link status change!");
1244         } else {
1245                 /*
1246                  * Framework already set RTE_ETH_DEV_INTR_LSC bit because driver
1247                  * declared RTE_PCI_DRV_INTR_LSC in drv_flags. So here cleared
1248                  * the RTE_ETH_DEV_INTR_LSC capability.
1249                  */
1250                 dev->data->dev_flags &= ~RTE_ETH_DEV_INTR_LSC;
1251         }
1252 }
1253
1254 static int
1255 hns3vf_get_capability(struct hns3_hw *hw)
1256 {
1257         struct rte_pci_device *pci_dev;
1258         struct rte_eth_dev *eth_dev;
1259         uint8_t revision;
1260         int ret;
1261
1262         eth_dev = &rte_eth_devices[hw->data->port_id];
1263         pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1264
1265         /* Get PCI revision id */
1266         ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
1267                                   HNS3_PCI_REVISION_ID);
1268         if (ret != HNS3_PCI_REVISION_ID_LEN) {
1269                 PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
1270                              ret);
1271                 return -EIO;
1272         }
1273         hw->revision = revision;
1274
1275         if (revision < PCI_REVISION_ID_HIP09_A) {
1276                 hns3vf_set_default_dev_specifications(hw);
1277                 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
1278                 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
1279                 hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
1280                 hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE1;
1281                 hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
1282                 hw->rss_info.ipv6_sctp_offload_supported = false;
1283                 hw->promisc_mode = HNS3_UNLIMIT_PROMISC_MODE;
1284                 return 0;
1285         }
1286
1287         ret = hns3vf_query_dev_specifications(hw);
1288         if (ret) {
1289                 PMD_INIT_LOG(ERR,
1290                              "failed to query dev specifications, ret = %d",
1291                              ret);
1292                 return ret;
1293         }
1294
1295         hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
1296         hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
1297         hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
1298         hw->drop_stats_mode = HNS3_PKTS_DROP_STATS_MODE2;
1299         hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
1300         hw->rss_info.ipv6_sctp_offload_supported = true;
1301         hw->promisc_mode = HNS3_LIMIT_PROMISC_MODE;
1302
1303         return 0;
1304 }
1305
1306 static int
1307 hns3vf_check_tqp_info(struct hns3_hw *hw)
1308 {
1309         if (hw->tqps_num == 0) {
1310                 PMD_INIT_LOG(ERR, "Get invalid tqps_num(0) from PF.");
1311                 return -EINVAL;
1312         }
1313
1314         if (hw->rss_size_max == 0) {
1315                 PMD_INIT_LOG(ERR, "Get invalid rss_size_max(0) from PF.");
1316                 return -EINVAL;
1317         }
1318
1319         hw->tqps_num = RTE_MIN(hw->rss_size_max, hw->tqps_num);
1320
1321         return 0;
1322 }
1323
1324 static int
1325 hns3vf_get_port_base_vlan_filter_state(struct hns3_hw *hw)
1326 {
1327         uint8_t resp_msg;
1328         int ret;
1329
1330         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN,
1331                                 HNS3_MBX_GET_PORT_BASE_VLAN_STATE, NULL, 0,
1332                                 true, &resp_msg, sizeof(resp_msg));
1333         if (ret) {
1334                 if (ret == -ETIME) {
1335                         /*
1336                          * Getting current port based VLAN state from PF driver
1337                          * will not affect VF driver's basic function. Because
1338                          * the VF driver relies on hns3 PF kernel ether driver,
1339                          * to avoid introducing compatibility issues with older
1340                          * version of PF driver, no failure will be returned
1341                          * when the return value is ETIME. This return value has
1342                          * the following scenarios:
1343                          * 1) Firmware didn't return the results in time
1344                          * 2) the result return by firmware is timeout
1345                          * 3) the older version of kernel side PF driver does
1346                          *    not support this mailbox message.
1347                          * For scenarios 1 and 2, it is most likely that a
1348                          * hardware error has occurred, or a hardware reset has
1349                          * occurred. In this case, these errors will be caught
1350                          * by other functions.
1351                          */
1352                         PMD_INIT_LOG(WARNING,
1353                                 "failed to get PVID state for timeout, maybe "
1354                                 "kernel side PF driver doesn't support this "
1355                                 "mailbox message, or firmware didn't respond.");
1356                         resp_msg = HNS3_PORT_BASE_VLAN_DISABLE;
1357                 } else {
1358                         PMD_INIT_LOG(ERR, "failed to get port based VLAN state,"
1359                                 " ret = %d", ret);
1360                         return ret;
1361                 }
1362         }
1363         hw->port_base_vlan_cfg.state = resp_msg ?
1364                 HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
1365         return 0;
1366 }
1367
1368 static int
1369 hns3vf_get_queue_info(struct hns3_hw *hw)
1370 {
1371 #define HNS3VF_TQPS_RSS_INFO_LEN        6
1372         uint8_t resp_msg[HNS3VF_TQPS_RSS_INFO_LEN];
1373         int ret;
1374
1375         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QINFO, 0, NULL, 0, true,
1376                                 resp_msg, HNS3VF_TQPS_RSS_INFO_LEN);
1377         if (ret) {
1378                 PMD_INIT_LOG(ERR, "Failed to get tqp info from PF: %d", ret);
1379                 return ret;
1380         }
1381
1382         memcpy(&hw->tqps_num, &resp_msg[0], sizeof(uint16_t));
1383         memcpy(&hw->rss_size_max, &resp_msg[2], sizeof(uint16_t));
1384
1385         return hns3vf_check_tqp_info(hw);
1386 }
1387
1388 static int
1389 hns3vf_get_queue_depth(struct hns3_hw *hw)
1390 {
1391 #define HNS3VF_TQPS_DEPTH_INFO_LEN      4
1392         uint8_t resp_msg[HNS3VF_TQPS_DEPTH_INFO_LEN];
1393         int ret;
1394
1395         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QDEPTH, 0, NULL, 0, true,
1396                                 resp_msg, HNS3VF_TQPS_DEPTH_INFO_LEN);
1397         if (ret) {
1398                 PMD_INIT_LOG(ERR, "Failed to get tqp depth info from PF: %d",
1399                              ret);
1400                 return ret;
1401         }
1402
1403         memcpy(&hw->num_tx_desc, &resp_msg[0], sizeof(uint16_t));
1404         memcpy(&hw->num_rx_desc, &resp_msg[2], sizeof(uint16_t));
1405
1406         return 0;
1407 }
1408
1409 static int
1410 hns3vf_get_tc_info(struct hns3_hw *hw)
1411 {
1412         uint8_t resp_msg;
1413         int ret;
1414         uint32_t i;
1415
1416         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_TCINFO, 0, NULL, 0,
1417                                 true, &resp_msg, sizeof(resp_msg));
1418         if (ret) {
1419                 hns3_err(hw, "VF request to get TC info from PF failed %d",
1420                          ret);
1421                 return ret;
1422         }
1423
1424         hw->hw_tc_map = resp_msg;
1425
1426         for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
1427                 if (hw->hw_tc_map & BIT(i))
1428                         hw->num_tc++;
1429         }
1430
1431         return 0;
1432 }
1433
1434 static int
1435 hns3vf_get_host_mac_addr(struct hns3_hw *hw)
1436 {
1437         uint8_t host_mac[RTE_ETHER_ADDR_LEN];
1438         int ret;
1439
1440         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_MAC_ADDR, 0, NULL, 0,
1441                                 true, host_mac, RTE_ETHER_ADDR_LEN);
1442         if (ret) {
1443                 hns3_err(hw, "Failed to get mac addr from PF: %d", ret);
1444                 return ret;
1445         }
1446
1447         memcpy(hw->mac.mac_addr, host_mac, RTE_ETHER_ADDR_LEN);
1448
1449         return 0;
1450 }
1451
1452 static int
1453 hns3vf_get_configuration(struct hns3_hw *hw)
1454 {
1455         int ret;
1456
1457         hw->mac.media_type = HNS3_MEDIA_TYPE_NONE;
1458         hw->rss_dis_flag = false;
1459
1460         /* Get device capability */
1461         ret = hns3vf_get_capability(hw);
1462         if (ret) {
1463                 PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
1464                 return ret;
1465         }
1466
1467         hns3vf_get_push_lsc_cap(hw);
1468
1469         /* Get queue configuration from PF */
1470         ret = hns3vf_get_queue_info(hw);
1471         if (ret)
1472                 return ret;
1473
1474         /* Get queue depth info from PF */
1475         ret = hns3vf_get_queue_depth(hw);
1476         if (ret)
1477                 return ret;
1478
1479         /* Get user defined VF MAC addr from PF */
1480         ret = hns3vf_get_host_mac_addr(hw);
1481         if (ret)
1482                 return ret;
1483
1484         ret = hns3vf_get_port_base_vlan_filter_state(hw);
1485         if (ret)
1486                 return ret;
1487
1488         /* Get tc configuration from PF */
1489         return hns3vf_get_tc_info(hw);
1490 }
1491
1492 static int
1493 hns3vf_set_tc_queue_mapping(struct hns3_adapter *hns, uint16_t nb_rx_q,
1494                             uint16_t nb_tx_q)
1495 {
1496         struct hns3_hw *hw = &hns->hw;
1497
1498         return hns3_queue_to_tc_mapping(hw, nb_rx_q, nb_tx_q);
1499 }
1500
1501 static void
1502 hns3vf_request_link_info(struct hns3_hw *hw)
1503 {
1504         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1505         bool send_req;
1506         int ret;
1507
1508         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
1509                 return;
1510
1511         send_req = vf->pf_push_lsc_cap == HNS3_PF_PUSH_LSC_CAP_NOT_SUPPORTED ||
1512                    vf->req_link_info_cnt > 0;
1513         if (!send_req)
1514                 return;
1515
1516         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1517                                 NULL, 0);
1518         if (ret) {
1519                 hns3_err(hw, "failed to fetch link status, ret = %d", ret);
1520                 return;
1521         }
1522
1523         if (vf->req_link_info_cnt > 0)
1524                 vf->req_link_info_cnt--;
1525 }
1526
1527 void
1528 hns3vf_update_link_status(struct hns3_hw *hw, uint8_t link_status,
1529                           uint32_t link_speed, uint8_t link_duplex)
1530 {
1531         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
1532         struct hns3_vf *vf = HNS3_DEV_HW_TO_VF(hw);
1533         struct hns3_mac *mac = &hw->mac;
1534         int ret;
1535
1536         /*
1537          * PF kernel driver may push link status when VF driver is in resetting,
1538          * driver will stop polling job in this case, after resetting done
1539          * driver will start polling job again.
1540          * When polling job started, driver will get initial link status by
1541          * sending request to PF kernel driver, then could update link status by
1542          * process PF kernel driver's link status mailbox message.
1543          */
1544         if (!__atomic_load_n(&vf->poll_job_started, __ATOMIC_RELAXED))
1545                 return;
1546
1547         if (hw->adapter_state != HNS3_NIC_STARTED)
1548                 return;
1549
1550         mac->link_status = link_status;
1551         mac->link_speed = link_speed;
1552         mac->link_duplex = link_duplex;
1553         ret = hns3vf_dev_link_update(dev, 0);
1554         if (ret == 0 && dev->data->dev_conf.intr_conf.lsc != 0)
1555                 hns3_start_report_lse(dev);
1556 }
1557
1558 static int
1559 hns3vf_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
1560 {
1561 #define HNS3VF_VLAN_MBX_MSG_LEN 5
1562         struct hns3_hw *hw = &hns->hw;
1563         uint8_t msg_data[HNS3VF_VLAN_MBX_MSG_LEN];
1564         uint16_t proto = htons(RTE_ETHER_TYPE_VLAN);
1565         uint8_t is_kill = on ? 0 : 1;
1566
1567         msg_data[0] = is_kill;
1568         memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1569         memcpy(&msg_data[3], &proto, sizeof(proto));
1570
1571         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_FILTER,
1572                                  msg_data, HNS3VF_VLAN_MBX_MSG_LEN, true, NULL,
1573                                  0);
1574 }
1575
1576 static int
1577 hns3vf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1578 {
1579         struct hns3_adapter *hns = dev->data->dev_private;
1580         struct hns3_hw *hw = &hns->hw;
1581         int ret;
1582
1583         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
1584                 hns3_err(hw,
1585                          "vf set vlan id failed during resetting, vlan_id =%u",
1586                          vlan_id);
1587                 return -EIO;
1588         }
1589         rte_spinlock_lock(&hw->lock);
1590         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1591         rte_spinlock_unlock(&hw->lock);
1592         if (ret)
1593                 hns3_err(hw, "vf set vlan id failed, vlan_id =%u, ret =%d",
1594                          vlan_id, ret);
1595
1596         return ret;
1597 }
1598
1599 static int
1600 hns3vf_en_hw_strip_rxvtag(struct hns3_hw *hw, bool enable)
1601 {
1602         uint8_t msg_data;
1603         int ret;
1604
1605         msg_data = enable ? 1 : 0;
1606         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_RX_OFF_CFG,
1607                                 &msg_data, sizeof(msg_data), false, NULL, 0);
1608         if (ret)
1609                 hns3_err(hw, "vf enable strip failed, ret =%d", ret);
1610
1611         return ret;
1612 }
1613
1614 static int
1615 hns3vf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1616 {
1617         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1618         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1619         unsigned int tmp_mask;
1620         int ret = 0;
1621
1622         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED)) {
1623                 hns3_err(hw, "vf set vlan offload failed during resetting, "
1624                              "mask = 0x%x", mask);
1625                 return -EIO;
1626         }
1627
1628         tmp_mask = (unsigned int)mask;
1629         /* Vlan stripping setting */
1630         if (tmp_mask & ETH_VLAN_STRIP_MASK) {
1631                 rte_spinlock_lock(&hw->lock);
1632                 /* Enable or disable VLAN stripping */
1633                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1634                         ret = hns3vf_en_hw_strip_rxvtag(hw, true);
1635                 else
1636                         ret = hns3vf_en_hw_strip_rxvtag(hw, false);
1637                 rte_spinlock_unlock(&hw->lock);
1638         }
1639
1640         return ret;
1641 }
1642
1643 static int
1644 hns3vf_handle_all_vlan_table(struct hns3_adapter *hns, int on)
1645 {
1646         struct rte_vlan_filter_conf *vfc;
1647         struct hns3_hw *hw = &hns->hw;
1648         uint16_t vlan_id;
1649         uint64_t vbit;
1650         uint64_t ids;
1651         int ret = 0;
1652         uint32_t i;
1653
1654         vfc = &hw->data->vlan_filter_conf;
1655         for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1656                 if (vfc->ids[i] == 0)
1657                         continue;
1658                 ids = vfc->ids[i];
1659                 while (ids) {
1660                         /*
1661                          * 64 means the num bits of ids, one bit corresponds to
1662                          * one vlan id
1663                          */
1664                         vlan_id = 64 * i;
1665                         /* count trailing zeroes */
1666                         vbit = ~ids & (ids - 1);
1667                         /* clear least significant bit set */
1668                         ids ^= (ids ^ (ids - 1)) ^ vbit;
1669                         for (; vbit;) {
1670                                 vbit >>= 1;
1671                                 vlan_id++;
1672                         }
1673                         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1674                         if (ret) {
1675                                 hns3_err(hw,
1676                                          "VF handle vlan table failed, ret =%d, on = %d",
1677                                          ret, on);
1678                                 return ret;
1679                         }
1680                 }
1681         }
1682
1683         return ret;
1684 }
1685
1686 static int
1687 hns3vf_remove_all_vlan_table(struct hns3_adapter *hns)
1688 {
1689         return hns3vf_handle_all_vlan_table(hns, 0);
1690 }
1691
1692 static int
1693 hns3vf_restore_vlan_conf(struct hns3_adapter *hns)
1694 {
1695         struct hns3_hw *hw = &hns->hw;
1696         struct rte_eth_conf *dev_conf;
1697         bool en;
1698         int ret;
1699
1700         dev_conf = &hw->data->dev_conf;
1701         en = dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP ? true
1702                                                                    : false;
1703         ret = hns3vf_en_hw_strip_rxvtag(hw, en);
1704         if (ret)
1705                 hns3_err(hw, "VF restore vlan conf fail, en =%d, ret =%d", en,
1706                          ret);
1707         return ret;
1708 }
1709
1710 static int
1711 hns3vf_dev_configure_vlan(struct rte_eth_dev *dev)
1712 {
1713         struct hns3_adapter *hns = dev->data->dev_private;
1714         struct rte_eth_dev_data *data = dev->data;
1715         struct hns3_hw *hw = &hns->hw;
1716         int ret;
1717
1718         if (data->dev_conf.txmode.hw_vlan_reject_tagged ||
1719             data->dev_conf.txmode.hw_vlan_reject_untagged ||
1720             data->dev_conf.txmode.hw_vlan_insert_pvid) {
1721                 hns3_warn(hw, "hw_vlan_reject_tagged, hw_vlan_reject_untagged "
1722                               "or hw_vlan_insert_pvid is not support!");
1723         }
1724
1725         /* Apply vlan offload setting */
1726         ret = hns3vf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
1727         if (ret)
1728                 hns3_err(hw, "dev config vlan offload failed, ret =%d", ret);
1729
1730         return ret;
1731 }
1732
1733 static int
1734 hns3vf_set_alive(struct hns3_hw *hw, bool alive)
1735 {
1736         uint8_t msg_data;
1737
1738         msg_data = alive ? 1 : 0;
1739         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_ALIVE, 0, &msg_data,
1740                                  sizeof(msg_data), false, NULL, 0);
1741 }
1742
1743 static void
1744 hns3vf_keep_alive_handler(void *param)
1745 {
1746         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1747         struct hns3_adapter *hns = eth_dev->data->dev_private;
1748         struct hns3_hw *hw = &hns->hw;
1749         int ret;
1750
1751         ret = hns3_send_mbx_msg(hw, HNS3_MBX_KEEP_ALIVE, 0, NULL, 0,
1752                                 false, NULL, 0);
1753         if (ret)
1754                 hns3_err(hw, "VF sends keeping alive cmd failed(=%d)",
1755                          ret);
1756
1757         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
1758                           eth_dev);
1759 }
1760
1761 static void
1762 hns3vf_service_handler(void *param)
1763 {
1764         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1765         struct hns3_adapter *hns = eth_dev->data->dev_private;
1766         struct hns3_hw *hw = &hns->hw;
1767
1768         /*
1769          * The query link status and reset processing are executed in the
1770          * interrupt thread. When the IMP reset occurs, IMP will not respond,
1771          * and the query operation will timeout after 30ms. In the case of
1772          * multiple PF/VFs, each query failure timeout causes the IMP reset
1773          * interrupt to fail to respond within 100ms.
1774          * Before querying the link status, check whether there is a reset
1775          * pending, and if so, abandon the query.
1776          */
1777         if (!hns3vf_is_reset_pending(hns))
1778                 hns3vf_request_link_info(hw);
1779         else
1780                 hns3_warn(hw, "Cancel the query when reset is pending");
1781
1782         rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler,
1783                           eth_dev);
1784 }
1785
1786 static void
1787 hns3vf_start_poll_job(struct rte_eth_dev *dev)
1788 {
1789 #define HNS3_REQUEST_LINK_INFO_REMAINS_CNT      3
1790
1791         struct hns3_vf *vf = HNS3_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1792
1793         if (vf->pf_push_lsc_cap == HNS3_PF_PUSH_LSC_CAP_SUPPORTED)
1794                 vf->req_link_info_cnt = HNS3_REQUEST_LINK_INFO_REMAINS_CNT;
1795
1796         __atomic_store_n(&vf->poll_job_started, 1, __ATOMIC_RELAXED);
1797
1798         hns3vf_service_handler(dev);
1799 }
1800
1801 static void
1802 hns3vf_stop_poll_job(struct rte_eth_dev *dev)
1803 {
1804         struct hns3_vf *vf = HNS3_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1805
1806         rte_eal_alarm_cancel(hns3vf_service_handler, dev);
1807
1808         __atomic_store_n(&vf->poll_job_started, 0, __ATOMIC_RELAXED);
1809 }
1810
1811 static int
1812 hns3_query_vf_resource(struct hns3_hw *hw)
1813 {
1814         struct hns3_vf_res_cmd *req;
1815         struct hns3_cmd_desc desc;
1816         uint16_t num_msi;
1817         int ret;
1818
1819         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_VF_RSRC, true);
1820         ret = hns3_cmd_send(hw, &desc, 1);
1821         if (ret) {
1822                 hns3_err(hw, "query vf resource failed, ret = %d", ret);
1823                 return ret;
1824         }
1825
1826         req = (struct hns3_vf_res_cmd *)desc.data;
1827         num_msi = hns3_get_field(rte_le_to_cpu_16(req->vf_intr_vector_number),
1828                                  HNS3_VF_VEC_NUM_M, HNS3_VF_VEC_NUM_S);
1829         if (num_msi < HNS3_MIN_VECTOR_NUM) {
1830                 hns3_err(hw, "Just %u msi resources, not enough for vf(min:%d)",
1831                          num_msi, HNS3_MIN_VECTOR_NUM);
1832                 return -EINVAL;
1833         }
1834
1835         hw->num_msi = num_msi;
1836
1837         return 0;
1838 }
1839
1840 static int
1841 hns3vf_init_hardware(struct hns3_adapter *hns)
1842 {
1843         struct hns3_hw *hw = &hns->hw;
1844         uint16_t mtu = hw->data->mtu;
1845         int ret;
1846
1847         ret = hns3vf_set_promisc_mode(hw, true, false, false);
1848         if (ret)
1849                 return ret;
1850
1851         ret = hns3vf_config_mtu(hw, mtu);
1852         if (ret)
1853                 goto err_init_hardware;
1854
1855         ret = hns3vf_vlan_filter_configure(hns, 0, 1);
1856         if (ret) {
1857                 PMD_INIT_LOG(ERR, "Failed to initialize VLAN config: %d", ret);
1858                 goto err_init_hardware;
1859         }
1860
1861         ret = hns3_config_gro(hw, false);
1862         if (ret) {
1863                 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
1864                 goto err_init_hardware;
1865         }
1866
1867         /*
1868          * In the initialization clearing the all hardware mapping relationship
1869          * configurations between queues and interrupt vectors is needed, so
1870          * some error caused by the residual configurations, such as the
1871          * unexpected interrupt, can be avoid.
1872          */
1873         ret = hns3vf_init_ring_with_vector(hw);
1874         if (ret) {
1875                 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
1876                 goto err_init_hardware;
1877         }
1878
1879         return 0;
1880
1881 err_init_hardware:
1882         (void)hns3vf_set_promisc_mode(hw, false, false, false);
1883         return ret;
1884 }
1885
1886 static int
1887 hns3vf_clear_vport_list(struct hns3_hw *hw)
1888 {
1889         return hns3_send_mbx_msg(hw, HNS3_MBX_HANDLE_VF_TBL,
1890                                  HNS3_MBX_VPORT_LIST_CLEAR, NULL, 0, false,
1891                                  NULL, 0);
1892 }
1893
1894 static int
1895 hns3vf_init_vf(struct rte_eth_dev *eth_dev)
1896 {
1897         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1898         struct hns3_adapter *hns = eth_dev->data->dev_private;
1899         struct hns3_hw *hw = &hns->hw;
1900         int ret;
1901
1902         PMD_INIT_FUNC_TRACE();
1903
1904         /* Get hardware io base address from pcie BAR2 IO space */
1905         hw->io_base = pci_dev->mem_resource[2].addr;
1906
1907         /* Firmware command queue initialize */
1908         ret = hns3_cmd_init_queue(hw);
1909         if (ret) {
1910                 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
1911                 goto err_cmd_init_queue;
1912         }
1913
1914         /* Firmware command initialize */
1915         ret = hns3_cmd_init(hw);
1916         if (ret) {
1917                 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
1918                 goto err_cmd_init;
1919         }
1920
1921         /* Get VF resource */
1922         ret = hns3_query_vf_resource(hw);
1923         if (ret)
1924                 goto err_cmd_init;
1925
1926         rte_spinlock_init(&hw->mbx_resp.lock);
1927
1928         hns3vf_clear_event_cause(hw, 0);
1929
1930         ret = rte_intr_callback_register(&pci_dev->intr_handle,
1931                                          hns3vf_interrupt_handler, eth_dev);
1932         if (ret) {
1933                 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
1934                 goto err_intr_callback_register;
1935         }
1936
1937         /* Enable interrupt */
1938         rte_intr_enable(&pci_dev->intr_handle);
1939         hns3vf_enable_irq0(hw);
1940
1941         /* Get configuration from PF */
1942         ret = hns3vf_get_configuration(hw);
1943         if (ret) {
1944                 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
1945                 goto err_get_config;
1946         }
1947
1948         ret = hns3_tqp_stats_init(hw);
1949         if (ret)
1950                 goto err_get_config;
1951
1952         /* Hardware statistics of imissed registers cleared. */
1953         ret = hns3_update_imissed_stats(hw, true);
1954         if (ret) {
1955                 hns3_err(hw, "clear imissed stats failed, ret = %d", ret);
1956                 goto err_set_tc_queue;
1957         }
1958
1959         ret = hns3vf_set_tc_queue_mapping(hns, hw->tqps_num, hw->tqps_num);
1960         if (ret) {
1961                 PMD_INIT_LOG(ERR, "failed to set tc info, ret = %d.", ret);
1962                 goto err_set_tc_queue;
1963         }
1964
1965         ret = hns3vf_clear_vport_list(hw);
1966         if (ret) {
1967                 PMD_INIT_LOG(ERR, "Failed to clear tbl list: %d", ret);
1968                 goto err_set_tc_queue;
1969         }
1970
1971         ret = hns3vf_init_hardware(hns);
1972         if (ret)
1973                 goto err_set_tc_queue;
1974
1975         hns3_rss_set_default_args(hw);
1976
1977         ret = hns3vf_set_alive(hw, true);
1978         if (ret) {
1979                 PMD_INIT_LOG(ERR, "Failed to VF send alive to PF: %d", ret);
1980                 goto err_set_tc_queue;
1981         }
1982
1983         return 0;
1984
1985 err_set_tc_queue:
1986         hns3_tqp_stats_uninit(hw);
1987
1988 err_get_config:
1989         hns3vf_disable_irq0(hw);
1990         rte_intr_disable(&pci_dev->intr_handle);
1991         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1992                              eth_dev);
1993 err_intr_callback_register:
1994 err_cmd_init:
1995         hns3_cmd_uninit(hw);
1996         hns3_cmd_destroy_queue(hw);
1997 err_cmd_init_queue:
1998         hw->io_base = NULL;
1999
2000         return ret;
2001 }
2002
2003 static void
2004 hns3vf_uninit_vf(struct rte_eth_dev *eth_dev)
2005 {
2006         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2007         struct hns3_adapter *hns = eth_dev->data->dev_private;
2008         struct hns3_hw *hw = &hns->hw;
2009
2010         PMD_INIT_FUNC_TRACE();
2011
2012         hns3_rss_uninit(hns);
2013         (void)hns3_config_gro(hw, false);
2014         (void)hns3vf_set_alive(hw, false);
2015         (void)hns3vf_set_promisc_mode(hw, false, false, false);
2016         hns3_tqp_stats_uninit(hw);
2017         hns3vf_disable_irq0(hw);
2018         rte_intr_disable(&pci_dev->intr_handle);
2019         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
2020                              eth_dev);
2021         hns3_cmd_uninit(hw);
2022         hns3_cmd_destroy_queue(hw);
2023         hw->io_base = NULL;
2024 }
2025
2026 static int
2027 hns3vf_do_stop(struct hns3_adapter *hns)
2028 {
2029         struct hns3_hw *hw = &hns->hw;
2030         int ret;
2031
2032         hw->mac.link_status = ETH_LINK_DOWN;
2033
2034         /*
2035          * The "hns3vf_do_stop" function will also be called by .stop_service to
2036          * prepare reset. At the time of global or IMP reset, the command cannot
2037          * be sent to stop the tx/rx queues. The mbuf in Tx/Rx queues may be
2038          * accessed during the reset process. So the mbuf can not be released
2039          * during reset and is required to be released after the reset is
2040          * completed.
2041          */
2042         if (__atomic_load_n(&hw->reset.resetting,  __ATOMIC_RELAXED) == 0)
2043                 hns3_dev_release_mbufs(hns);
2044
2045         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0) {
2046                 hns3vf_configure_mac_addr(hns, true);
2047                 ret = hns3_reset_all_tqps(hns);
2048                 if (ret) {
2049                         hns3_err(hw, "failed to reset all queues ret = %d",
2050                                  ret);
2051                         return ret;
2052                 }
2053         }
2054         return 0;
2055 }
2056
2057 static void
2058 hns3vf_unmap_rx_interrupt(struct rte_eth_dev *dev)
2059 {
2060         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2061         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2062         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2063         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
2064         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
2065         uint16_t q_id;
2066
2067         if (dev->data->dev_conf.intr_conf.rxq == 0)
2068                 return;
2069
2070         /* unmap the ring with vector */
2071         if (rte_intr_allow_others(intr_handle)) {
2072                 vec = RTE_INTR_VEC_RXTX_OFFSET;
2073                 base = RTE_INTR_VEC_RXTX_OFFSET;
2074         }
2075         if (rte_intr_dp_is_en(intr_handle)) {
2076                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2077                         (void)hns3vf_bind_ring_with_vector(hw, vec, false,
2078                                                            HNS3_RING_TYPE_RX,
2079                                                            q_id);
2080                         if (vec < base + intr_handle->nb_efd - 1)
2081                                 vec++;
2082                 }
2083         }
2084         /* Clean datapath event and queue/vec mapping */
2085         rte_intr_efd_disable(intr_handle);
2086         if (intr_handle->intr_vec) {
2087                 rte_free(intr_handle->intr_vec);
2088                 intr_handle->intr_vec = NULL;
2089         }
2090 }
2091
2092 static int
2093 hns3vf_dev_stop(struct rte_eth_dev *dev)
2094 {
2095         struct hns3_adapter *hns = dev->data->dev_private;
2096         struct hns3_hw *hw = &hns->hw;
2097
2098         PMD_INIT_FUNC_TRACE();
2099         dev->data->dev_started = 0;
2100
2101         hw->adapter_state = HNS3_NIC_STOPPING;
2102         hns3_set_rxtx_function(dev);
2103         rte_wmb();
2104         /* Disable datapath on secondary process. */
2105         hns3_mp_req_stop_rxtx(dev);
2106         /* Prevent crashes when queues are still in use. */
2107         rte_delay_ms(hw->cfg_max_queues);
2108
2109         rte_spinlock_lock(&hw->lock);
2110         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED) == 0) {
2111                 hns3_stop_tqps(hw);
2112                 hns3vf_do_stop(hns);
2113                 hns3vf_unmap_rx_interrupt(dev);
2114                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2115         }
2116         hns3_rx_scattered_reset(dev);
2117         hns3vf_stop_poll_job(dev);
2118         hns3_stop_report_lse(dev);
2119         rte_spinlock_unlock(&hw->lock);
2120
2121         return 0;
2122 }
2123
2124 static int
2125 hns3vf_dev_close(struct rte_eth_dev *eth_dev)
2126 {
2127         struct hns3_adapter *hns = eth_dev->data->dev_private;
2128         struct hns3_hw *hw = &hns->hw;
2129         int ret = 0;
2130
2131         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2132                 rte_free(eth_dev->process_private);
2133                 eth_dev->process_private = NULL;
2134                 return 0;
2135         }
2136
2137         if (hw->adapter_state == HNS3_NIC_STARTED)
2138                 ret = hns3vf_dev_stop(eth_dev);
2139
2140         hw->adapter_state = HNS3_NIC_CLOSING;
2141         hns3_reset_abort(hns);
2142         hw->adapter_state = HNS3_NIC_CLOSED;
2143         rte_eal_alarm_cancel(hns3vf_keep_alive_handler, eth_dev);
2144         hns3vf_configure_all_mc_mac_addr(hns, true);
2145         hns3vf_remove_all_vlan_table(hns);
2146         hns3vf_uninit_vf(eth_dev);
2147         hns3_free_all_queues(eth_dev);
2148         rte_free(hw->reset.wait_data);
2149         rte_free(eth_dev->process_private);
2150         eth_dev->process_private = NULL;
2151         hns3_mp_uninit_primary();
2152         hns3_warn(hw, "Close port %u finished", hw->data->port_id);
2153
2154         return ret;
2155 }
2156
2157 static int
2158 hns3vf_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2159                       size_t fw_size)
2160 {
2161         struct hns3_adapter *hns = eth_dev->data->dev_private;
2162         struct hns3_hw *hw = &hns->hw;
2163         uint32_t version = hw->fw_version;
2164         int ret;
2165
2166         ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2167                        hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2168                                       HNS3_FW_VERSION_BYTE3_S),
2169                        hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2170                                       HNS3_FW_VERSION_BYTE2_S),
2171                        hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2172                                       HNS3_FW_VERSION_BYTE1_S),
2173                        hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2174                                       HNS3_FW_VERSION_BYTE0_S));
2175         if (ret < 0)
2176                 return -EINVAL;
2177
2178         ret += 1; /* add the size of '\0' */
2179         if (fw_size < (size_t)ret)
2180                 return ret;
2181         else
2182                 return 0;
2183 }
2184
2185 static int
2186 hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
2187                        __rte_unused int wait_to_complete)
2188 {
2189         struct hns3_adapter *hns = eth_dev->data->dev_private;
2190         struct hns3_hw *hw = &hns->hw;
2191         struct hns3_mac *mac = &hw->mac;
2192         struct rte_eth_link new_link;
2193
2194         memset(&new_link, 0, sizeof(new_link));
2195         switch (mac->link_speed) {
2196         case ETH_SPEED_NUM_10M:
2197         case ETH_SPEED_NUM_100M:
2198         case ETH_SPEED_NUM_1G:
2199         case ETH_SPEED_NUM_10G:
2200         case ETH_SPEED_NUM_25G:
2201         case ETH_SPEED_NUM_40G:
2202         case ETH_SPEED_NUM_50G:
2203         case ETH_SPEED_NUM_100G:
2204         case ETH_SPEED_NUM_200G:
2205                 if (mac->link_status)
2206                         new_link.link_speed = mac->link_speed;
2207                 break;
2208         default:
2209                 if (mac->link_status)
2210                         new_link.link_speed = ETH_SPEED_NUM_UNKNOWN;
2211                 break;
2212         }
2213
2214         if (!mac->link_status)
2215                 new_link.link_speed = ETH_SPEED_NUM_NONE;
2216
2217         new_link.link_duplex = mac->link_duplex;
2218         new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2219         new_link.link_autoneg =
2220             !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2221
2222         return rte_eth_linkstatus_set(eth_dev, &new_link);
2223 }
2224
2225 static int
2226 hns3vf_do_start(struct hns3_adapter *hns, bool reset_queue)
2227 {
2228         struct hns3_hw *hw = &hns->hw;
2229         uint16_t nb_rx_q = hw->data->nb_rx_queues;
2230         uint16_t nb_tx_q = hw->data->nb_tx_queues;
2231         int ret;
2232
2233         ret = hns3vf_set_tc_queue_mapping(hns, nb_rx_q, nb_tx_q);
2234         if (ret)
2235                 return ret;
2236
2237         hns3_enable_rxd_adv_layout(hw);
2238
2239         ret = hns3_init_queues(hns, reset_queue);
2240         if (ret)
2241                 hns3_err(hw, "failed to init queues, ret = %d.", ret);
2242
2243         return ret;
2244 }
2245
2246 static int
2247 hns3vf_map_rx_interrupt(struct rte_eth_dev *dev)
2248 {
2249         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2250         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2251         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2252         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
2253         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
2254         uint32_t intr_vector;
2255         uint16_t q_id;
2256         int ret;
2257
2258         /*
2259          * hns3 needs a separate interrupt to be used as event interrupt which
2260          * could not be shared with task queue pair, so KERNEL drivers need
2261          * support multiple interrupt vectors.
2262          */
2263         if (dev->data->dev_conf.intr_conf.rxq == 0 ||
2264             !rte_intr_cap_multiple(intr_handle))
2265                 return 0;
2266
2267         rte_intr_disable(intr_handle);
2268         intr_vector = hw->used_rx_queues;
2269         /* It creates event fd for each intr vector when MSIX is used */
2270         if (rte_intr_efd_enable(intr_handle, intr_vector))
2271                 return -EINVAL;
2272
2273         if (intr_handle->intr_vec == NULL) {
2274                 intr_handle->intr_vec =
2275                         rte_zmalloc("intr_vec",
2276                                     hw->used_rx_queues * sizeof(int), 0);
2277                 if (intr_handle->intr_vec == NULL) {
2278                         hns3_err(hw, "Failed to allocate %u rx_queues"
2279                                      " intr_vec", hw->used_rx_queues);
2280                         ret = -ENOMEM;
2281                         goto vf_alloc_intr_vec_error;
2282                 }
2283         }
2284
2285         if (rte_intr_allow_others(intr_handle)) {
2286                 vec = RTE_INTR_VEC_RXTX_OFFSET;
2287                 base = RTE_INTR_VEC_RXTX_OFFSET;
2288         }
2289
2290         for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2291                 ret = hns3vf_bind_ring_with_vector(hw, vec, true,
2292                                                    HNS3_RING_TYPE_RX, q_id);
2293                 if (ret)
2294                         goto vf_bind_vector_error;
2295                 intr_handle->intr_vec[q_id] = vec;
2296                 /*
2297                  * If there are not enough efds (e.g. not enough interrupt),
2298                  * remaining queues will be bond to the last interrupt.
2299                  */
2300                 if (vec < base + intr_handle->nb_efd - 1)
2301                         vec++;
2302         }
2303         rte_intr_enable(intr_handle);
2304         return 0;
2305
2306 vf_bind_vector_error:
2307         free(intr_handle->intr_vec);
2308         intr_handle->intr_vec = NULL;
2309 vf_alloc_intr_vec_error:
2310         rte_intr_efd_disable(intr_handle);
2311         return ret;
2312 }
2313
2314 static int
2315 hns3vf_restore_rx_interrupt(struct hns3_hw *hw)
2316 {
2317         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
2318         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2319         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2320         uint16_t q_id;
2321         int ret;
2322
2323         if (dev->data->dev_conf.intr_conf.rxq == 0)
2324                 return 0;
2325
2326         if (rte_intr_dp_is_en(intr_handle)) {
2327                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2328                         ret = hns3vf_bind_ring_with_vector(hw,
2329                                         intr_handle->intr_vec[q_id], true,
2330                                         HNS3_RING_TYPE_RX, q_id);
2331                         if (ret)
2332                                 return ret;
2333                 }
2334         }
2335
2336         return 0;
2337 }
2338
2339 static void
2340 hns3vf_restore_filter(struct rte_eth_dev *dev)
2341 {
2342         hns3_restore_rss_filter(dev);
2343 }
2344
2345 static int
2346 hns3vf_dev_start(struct rte_eth_dev *dev)
2347 {
2348         struct hns3_adapter *hns = dev->data->dev_private;
2349         struct hns3_hw *hw = &hns->hw;
2350         int ret;
2351
2352         PMD_INIT_FUNC_TRACE();
2353         if (__atomic_load_n(&hw->reset.resetting, __ATOMIC_RELAXED))
2354                 return -EBUSY;
2355
2356         rte_spinlock_lock(&hw->lock);
2357         hw->adapter_state = HNS3_NIC_STARTING;
2358         ret = hns3vf_do_start(hns, true);
2359         if (ret) {
2360                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2361                 rte_spinlock_unlock(&hw->lock);
2362                 return ret;
2363         }
2364         ret = hns3vf_map_rx_interrupt(dev);
2365         if (ret)
2366                 goto map_rx_inter_err;
2367
2368         /*
2369          * There are three register used to control the status of a TQP
2370          * (contains a pair of Tx queue and Rx queue) in the new version network
2371          * engine. One is used to control the enabling of Tx queue, the other is
2372          * used to control the enabling of Rx queue, and the last is the master
2373          * switch used to control the enabling of the tqp. The Tx register and
2374          * TQP register must be enabled at the same time to enable a Tx queue.
2375          * The same applies to the Rx queue. For the older network enginem, this
2376          * function only refresh the enabled flag, and it is used to update the
2377          * status of queue in the dpdk framework.
2378          */
2379         ret = hns3_start_all_txqs(dev);
2380         if (ret)
2381                 goto map_rx_inter_err;
2382
2383         ret = hns3_start_all_rxqs(dev);
2384         if (ret)
2385                 goto start_all_rxqs_fail;
2386
2387         hw->adapter_state = HNS3_NIC_STARTED;
2388         rte_spinlock_unlock(&hw->lock);
2389
2390         hns3_rx_scattered_calc(dev);
2391         hns3_set_rxtx_function(dev);
2392         hns3_mp_req_start_rxtx(dev);
2393
2394         hns3vf_restore_filter(dev);
2395
2396         /* Enable interrupt of all rx queues before enabling queues */
2397         hns3_dev_all_rx_queue_intr_enable(hw, true);
2398         hns3_start_tqps(hw);
2399
2400         if (dev->data->dev_conf.intr_conf.lsc != 0)
2401                 hns3vf_dev_link_update(dev, 0);
2402         hns3vf_start_poll_job(dev);
2403
2404         return ret;
2405
2406 start_all_rxqs_fail:
2407         hns3_stop_all_txqs(dev);
2408 map_rx_inter_err:
2409         (void)hns3vf_do_stop(hns);
2410         hw->adapter_state = HNS3_NIC_CONFIGURED;
2411         rte_spinlock_unlock(&hw->lock);
2412
2413         return ret;
2414 }
2415
2416 static bool
2417 is_vf_reset_done(struct hns3_hw *hw)
2418 {
2419 #define HNS3_FUN_RST_ING_BITS \
2420         (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) | \
2421          BIT(HNS3_VECTOR0_CORERESET_INT_B) | \
2422          BIT(HNS3_VECTOR0_IMPRESET_INT_B) | \
2423          BIT(HNS3_VECTOR0_FUNCRESET_INT_B))
2424
2425         uint32_t val;
2426
2427         if (hw->reset.level == HNS3_VF_RESET) {
2428                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
2429                 if (val & HNS3_VF_RST_ING_BIT)
2430                         return false;
2431         } else {
2432                 val = hns3_read_dev(hw, HNS3_FUN_RST_ING);
2433                 if (val & HNS3_FUN_RST_ING_BITS)
2434                         return false;
2435         }
2436         return true;
2437 }
2438
2439 bool
2440 hns3vf_is_reset_pending(struct hns3_adapter *hns)
2441 {
2442         struct hns3_hw *hw = &hns->hw;
2443         enum hns3_reset_level reset;
2444
2445         /*
2446          * According to the protocol of PCIe, FLR to a PF device resets the PF
2447          * state as well as the SR-IOV extended capability including VF Enable
2448          * which means that VFs no longer exist.
2449          *
2450          * HNS3_VF_FULL_RESET means PF device is in FLR reset. when PF device
2451          * is in FLR stage, the register state of VF device is not reliable,
2452          * so register states detection can not be carried out. In this case,
2453          * we just ignore the register states and return false to indicate that
2454          * there are no other reset states that need to be processed by driver.
2455          */
2456         if (hw->reset.level == HNS3_VF_FULL_RESET)
2457                 return false;
2458
2459         /* Check the registers to confirm whether there is reset pending */
2460         hns3vf_check_event_cause(hns, NULL);
2461         reset = hns3vf_get_reset_level(hw, &hw->reset.pending);
2462         if (hw->reset.level != HNS3_NONE_RESET && reset != HNS3_NONE_RESET &&
2463             hw->reset.level < reset) {
2464                 hns3_warn(hw, "High level reset %d is pending", reset);
2465                 return true;
2466         }
2467         return false;
2468 }
2469
2470 static int
2471 hns3vf_wait_hardware_ready(struct hns3_adapter *hns)
2472 {
2473         struct hns3_hw *hw = &hns->hw;
2474         struct hns3_wait_data *wait_data = hw->reset.wait_data;
2475         struct timeval tv;
2476
2477         if (wait_data->result == HNS3_WAIT_SUCCESS) {
2478                 /*
2479                  * After vf reset is ready, the PF may not have completed
2480                  * the reset processing. The vf sending mbox to PF may fail
2481                  * during the pf reset, so it is better to add extra delay.
2482                  */
2483                 if (hw->reset.level == HNS3_VF_FUNC_RESET ||
2484                     hw->reset.level == HNS3_FLR_RESET)
2485                         return 0;
2486                 /* Reset retry process, no need to add extra delay. */
2487                 if (hw->reset.attempts)
2488                         return 0;
2489                 if (wait_data->check_completion == NULL)
2490                         return 0;
2491
2492                 wait_data->check_completion = NULL;
2493                 wait_data->interval = 1 * MSEC_PER_SEC * USEC_PER_MSEC;
2494                 wait_data->count = 1;
2495                 wait_data->result = HNS3_WAIT_REQUEST;
2496                 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback,
2497                                   wait_data);
2498                 hns3_warn(hw, "hardware is ready, delay 1 sec for PF reset complete");
2499                 return -EAGAIN;
2500         } else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
2501                 hns3_clock_gettime(&tv);
2502                 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
2503                           tv.tv_sec, tv.tv_usec);
2504                 return -ETIME;
2505         } else if (wait_data->result == HNS3_WAIT_REQUEST)
2506                 return -EAGAIN;
2507
2508         wait_data->hns = hns;
2509         wait_data->check_completion = is_vf_reset_done;
2510         wait_data->end_ms = (uint64_t)HNS3VF_RESET_WAIT_CNT *
2511                                 HNS3VF_RESET_WAIT_MS + hns3_clock_gettime_ms();
2512         wait_data->interval = HNS3VF_RESET_WAIT_MS * USEC_PER_MSEC;
2513         wait_data->count = HNS3VF_RESET_WAIT_CNT;
2514         wait_data->result = HNS3_WAIT_REQUEST;
2515         rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
2516         return -EAGAIN;
2517 }
2518
2519 static int
2520 hns3vf_prepare_reset(struct hns3_adapter *hns)
2521 {
2522         struct hns3_hw *hw = &hns->hw;
2523         int ret;
2524
2525         if (hw->reset.level == HNS3_VF_FUNC_RESET) {
2526                 ret = hns3_send_mbx_msg(hw, HNS3_MBX_RESET, 0, NULL,
2527                                         0, true, NULL, 0);
2528                 if (ret)
2529                         return ret;
2530         }
2531         __atomic_store_n(&hw->reset.disable_cmd, 1, __ATOMIC_RELAXED);
2532
2533         return 0;
2534 }
2535
2536 static int
2537 hns3vf_stop_service(struct hns3_adapter *hns)
2538 {
2539         struct hns3_hw *hw = &hns->hw;
2540         struct rte_eth_dev *eth_dev;
2541
2542         eth_dev = &rte_eth_devices[hw->data->port_id];
2543         if (hw->adapter_state == HNS3_NIC_STARTED) {
2544                 /*
2545                  * Make sure call update link status before hns3vf_stop_poll_job
2546                  * because update link status depend on polling job exist.
2547                  */
2548                 hns3vf_update_link_status(hw, ETH_LINK_DOWN, hw->mac.link_speed,
2549                                           hw->mac.link_duplex);
2550                 hns3vf_stop_poll_job(eth_dev);
2551         }
2552         hw->mac.link_status = ETH_LINK_DOWN;
2553
2554         hns3_set_rxtx_function(eth_dev);
2555         rte_wmb();
2556         /* Disable datapath on secondary process. */
2557         hns3_mp_req_stop_rxtx(eth_dev);
2558         rte_delay_ms(hw->cfg_max_queues);
2559
2560         rte_spinlock_lock(&hw->lock);
2561         if (hw->adapter_state == HNS3_NIC_STARTED ||
2562             hw->adapter_state == HNS3_NIC_STOPPING) {
2563                 hns3_enable_all_queues(hw, false);
2564                 hns3vf_do_stop(hns);
2565                 hw->reset.mbuf_deferred_free = true;
2566         } else
2567                 hw->reset.mbuf_deferred_free = false;
2568
2569         /*
2570          * It is cumbersome for hardware to pick-and-choose entries for deletion
2571          * from table space. Hence, for function reset software intervention is
2572          * required to delete the entries.
2573          */
2574         if (__atomic_load_n(&hw->reset.disable_cmd, __ATOMIC_RELAXED) == 0)
2575                 hns3vf_configure_all_mc_mac_addr(hns, true);
2576         rte_spinlock_unlock(&hw->lock);
2577
2578         return 0;
2579 }
2580
2581 static int
2582 hns3vf_start_service(struct hns3_adapter *hns)
2583 {
2584         struct hns3_hw *hw = &hns->hw;
2585         struct rte_eth_dev *eth_dev;
2586
2587         eth_dev = &rte_eth_devices[hw->data->port_id];
2588         hns3_set_rxtx_function(eth_dev);
2589         hns3_mp_req_start_rxtx(eth_dev);
2590         if (hw->adapter_state == HNS3_NIC_STARTED) {
2591                 hns3vf_start_poll_job(eth_dev);
2592
2593                 /* Enable interrupt of all rx queues before enabling queues */
2594                 hns3_dev_all_rx_queue_intr_enable(hw, true);
2595                 /*
2596                  * Enable state of each rxq and txq will be recovered after
2597                  * reset, so we need to restore them before enable all tqps;
2598                  */
2599                 hns3_restore_tqp_enable_state(hw);
2600                 /*
2601                  * When finished the initialization, enable queues to receive
2602                  * and transmit packets.
2603                  */
2604                 hns3_enable_all_queues(hw, true);
2605         }
2606
2607         return 0;
2608 }
2609
2610 static int
2611 hns3vf_check_default_mac_change(struct hns3_hw *hw)
2612 {
2613         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2614         struct rte_ether_addr *hw_mac;
2615         int ret;
2616
2617         /*
2618          * The hns3 PF ethdev driver in kernel support setting VF MAC address
2619          * on the host by "ip link set ..." command. If the hns3 PF kernel
2620          * ethdev driver sets the MAC address for VF device after the
2621          * initialization of the related VF device, the PF driver will notify
2622          * VF driver to reset VF device to make the new MAC address effective
2623          * immediately. The hns3 VF PMD driver should check whether the MAC
2624          * address has been changed by the PF kernel ethdev driver, if changed
2625          * VF driver should configure hardware using the new MAC address in the
2626          * recovering hardware configuration stage of the reset process.
2627          */
2628         ret = hns3vf_get_host_mac_addr(hw);
2629         if (ret)
2630                 return ret;
2631
2632         hw_mac = (struct rte_ether_addr *)hw->mac.mac_addr;
2633         ret = rte_is_zero_ether_addr(hw_mac);
2634         if (ret) {
2635                 rte_ether_addr_copy(&hw->data->mac_addrs[0], hw_mac);
2636         } else {
2637                 ret = rte_is_same_ether_addr(&hw->data->mac_addrs[0], hw_mac);
2638                 if (!ret) {
2639                         rte_ether_addr_copy(hw_mac, &hw->data->mac_addrs[0]);
2640                         hns3_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2641                                               &hw->data->mac_addrs[0]);
2642                         hns3_warn(hw, "Default MAC address has been changed to:"
2643                                   " %s by the host PF kernel ethdev driver",
2644                                   mac_str);
2645                 }
2646         }
2647
2648         return 0;
2649 }
2650
2651 static int
2652 hns3vf_restore_conf(struct hns3_adapter *hns)
2653 {
2654         struct hns3_hw *hw = &hns->hw;
2655         int ret;
2656
2657         ret = hns3vf_check_default_mac_change(hw);
2658         if (ret)
2659                 return ret;
2660
2661         ret = hns3vf_configure_mac_addr(hns, false);
2662         if (ret)
2663                 return ret;
2664
2665         ret = hns3vf_configure_all_mc_mac_addr(hns, false);
2666         if (ret)
2667                 goto err_mc_mac;
2668
2669         ret = hns3vf_restore_promisc(hns);
2670         if (ret)
2671                 goto err_vlan_table;
2672
2673         ret = hns3vf_restore_vlan_conf(hns);
2674         if (ret)
2675                 goto err_vlan_table;
2676
2677         ret = hns3vf_get_port_base_vlan_filter_state(hw);
2678         if (ret)
2679                 goto err_vlan_table;
2680
2681         ret = hns3vf_restore_rx_interrupt(hw);
2682         if (ret)
2683                 goto err_vlan_table;
2684
2685         ret = hns3_restore_gro_conf(hw);
2686         if (ret)
2687                 goto err_vlan_table;
2688
2689         if (hw->adapter_state == HNS3_NIC_STARTED) {
2690                 ret = hns3vf_do_start(hns, false);
2691                 if (ret)
2692                         goto err_vlan_table;
2693                 hns3_info(hw, "hns3vf dev restart successful!");
2694         } else if (hw->adapter_state == HNS3_NIC_STOPPING)
2695                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2696
2697         ret = hns3vf_set_alive(hw, true);
2698         if (ret) {
2699                 hns3_err(hw, "failed to VF send alive to PF: %d", ret);
2700                 goto err_vlan_table;
2701         }
2702
2703         return 0;
2704
2705 err_vlan_table:
2706         hns3vf_configure_all_mc_mac_addr(hns, true);
2707 err_mc_mac:
2708         hns3vf_configure_mac_addr(hns, true);
2709         return ret;
2710 }
2711
2712 static enum hns3_reset_level
2713 hns3vf_get_reset_level(struct hns3_hw *hw, uint64_t *levels)
2714 {
2715         enum hns3_reset_level reset_level;
2716
2717         /* return the highest priority reset level amongst all */
2718         if (hns3_atomic_test_bit(HNS3_VF_RESET, levels))
2719                 reset_level = HNS3_VF_RESET;
2720         else if (hns3_atomic_test_bit(HNS3_VF_FULL_RESET, levels))
2721                 reset_level = HNS3_VF_FULL_RESET;
2722         else if (hns3_atomic_test_bit(HNS3_VF_PF_FUNC_RESET, levels))
2723                 reset_level = HNS3_VF_PF_FUNC_RESET;
2724         else if (hns3_atomic_test_bit(HNS3_VF_FUNC_RESET, levels))
2725                 reset_level = HNS3_VF_FUNC_RESET;
2726         else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
2727                 reset_level = HNS3_FLR_RESET;
2728         else
2729                 reset_level = HNS3_NONE_RESET;
2730
2731         if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
2732                 return HNS3_NONE_RESET;
2733
2734         return reset_level;
2735 }
2736
2737 static void
2738 hns3vf_reset_service(void *param)
2739 {
2740         struct hns3_adapter *hns = (struct hns3_adapter *)param;
2741         struct hns3_hw *hw = &hns->hw;
2742         enum hns3_reset_level reset_level;
2743         struct timeval tv_delta;
2744         struct timeval tv_start;
2745         struct timeval tv;
2746         uint64_t msec;
2747
2748         /*
2749          * The interrupt is not triggered within the delay time.
2750          * The interrupt may have been lost. It is necessary to handle
2751          * the interrupt to recover from the error.
2752          */
2753         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
2754                             SCHEDULE_DEFERRED) {
2755                 __atomic_store_n(&hw->reset.schedule, SCHEDULE_REQUESTED,
2756                                  __ATOMIC_RELAXED);
2757                 hns3_err(hw, "Handling interrupts in delayed tasks");
2758                 hns3vf_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
2759                 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2760                 if (reset_level == HNS3_NONE_RESET) {
2761                         hns3_err(hw, "No reset level is set, try global reset");
2762                         hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
2763                 }
2764         }
2765         __atomic_store_n(&hw->reset.schedule, SCHEDULE_NONE, __ATOMIC_RELAXED);
2766
2767         /*
2768          * Hardware reset has been notified, we now have to poll & check if
2769          * hardware has actually completed the reset sequence.
2770          */
2771         reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2772         if (reset_level != HNS3_NONE_RESET) {
2773                 hns3_clock_gettime(&tv_start);
2774                 hns3_reset_process(hns, reset_level);
2775                 hns3_clock_gettime(&tv);
2776                 timersub(&tv, &tv_start, &tv_delta);
2777                 msec = hns3_clock_calctime_ms(&tv_delta);
2778                 if (msec > HNS3_RESET_PROCESS_MS)
2779                         hns3_err(hw, "%d handle long time delta %" PRIu64
2780                                  " ms time=%ld.%.6ld",
2781                                  hw->reset.level, msec, tv.tv_sec, tv.tv_usec);
2782         }
2783 }
2784
2785 static int
2786 hns3vf_reinit_dev(struct hns3_adapter *hns)
2787 {
2788         struct rte_eth_dev *eth_dev = &rte_eth_devices[hns->hw.data->port_id];
2789         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2790         struct hns3_hw *hw = &hns->hw;
2791         int ret;
2792
2793         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2794                 rte_intr_disable(&pci_dev->intr_handle);
2795                 ret = hns3vf_set_bus_master(pci_dev, true);
2796                 if (ret < 0) {
2797                         hns3_err(hw, "failed to set pci bus, ret = %d", ret);
2798                         return ret;
2799                 }
2800         }
2801
2802         /* Firmware command initialize */
2803         ret = hns3_cmd_init(hw);
2804         if (ret) {
2805                 hns3_err(hw, "Failed to init cmd: %d", ret);
2806                 return ret;
2807         }
2808
2809         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2810                 /*
2811                  * UIO enables msix by writing the pcie configuration space
2812                  * vfio_pci enables msix in rte_intr_enable.
2813                  */
2814                 if (pci_dev->kdrv == RTE_PCI_KDRV_IGB_UIO ||
2815                     pci_dev->kdrv == RTE_PCI_KDRV_UIO_GENERIC) {
2816                         if (hns3vf_enable_msix(pci_dev, true))
2817                                 hns3_err(hw, "Failed to enable msix");
2818                 }
2819
2820                 rte_intr_enable(&pci_dev->intr_handle);
2821         }
2822
2823         ret = hns3_reset_all_tqps(hns);
2824         if (ret) {
2825                 hns3_err(hw, "Failed to reset all queues: %d", ret);
2826                 return ret;
2827         }
2828
2829         ret = hns3vf_init_hardware(hns);
2830         if (ret) {
2831                 hns3_err(hw, "Failed to init hardware: %d", ret);
2832                 return ret;
2833         }
2834
2835         return 0;
2836 }
2837
2838 static const struct eth_dev_ops hns3vf_eth_dev_ops = {
2839         .dev_configure      = hns3vf_dev_configure,
2840         .dev_start          = hns3vf_dev_start,
2841         .dev_stop           = hns3vf_dev_stop,
2842         .dev_close          = hns3vf_dev_close,
2843         .mtu_set            = hns3vf_dev_mtu_set,
2844         .promiscuous_enable = hns3vf_dev_promiscuous_enable,
2845         .promiscuous_disable = hns3vf_dev_promiscuous_disable,
2846         .allmulticast_enable = hns3vf_dev_allmulticast_enable,
2847         .allmulticast_disable = hns3vf_dev_allmulticast_disable,
2848         .stats_get          = hns3_stats_get,
2849         .stats_reset        = hns3_stats_reset,
2850         .xstats_get         = hns3_dev_xstats_get,
2851         .xstats_get_names   = hns3_dev_xstats_get_names,
2852         .xstats_reset       = hns3_dev_xstats_reset,
2853         .xstats_get_by_id   = hns3_dev_xstats_get_by_id,
2854         .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
2855         .dev_infos_get      = hns3vf_dev_infos_get,
2856         .fw_version_get     = hns3vf_fw_version_get,
2857         .rx_queue_setup     = hns3_rx_queue_setup,
2858         .tx_queue_setup     = hns3_tx_queue_setup,
2859         .rx_queue_release   = hns3_dev_rx_queue_release,
2860         .tx_queue_release   = hns3_dev_tx_queue_release,
2861         .rx_queue_start     = hns3_dev_rx_queue_start,
2862         .rx_queue_stop      = hns3_dev_rx_queue_stop,
2863         .tx_queue_start     = hns3_dev_tx_queue_start,
2864         .tx_queue_stop      = hns3_dev_tx_queue_stop,
2865         .rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
2866         .rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
2867         .rxq_info_get       = hns3_rxq_info_get,
2868         .txq_info_get       = hns3_txq_info_get,
2869         .rx_burst_mode_get  = hns3_rx_burst_mode_get,
2870         .tx_burst_mode_get  = hns3_tx_burst_mode_get,
2871         .mac_addr_add       = hns3vf_add_mac_addr,
2872         .mac_addr_remove    = hns3vf_remove_mac_addr,
2873         .mac_addr_set       = hns3vf_set_default_mac_addr,
2874         .set_mc_addr_list   = hns3vf_set_mc_mac_addr_list,
2875         .link_update        = hns3vf_dev_link_update,
2876         .rss_hash_update    = hns3_dev_rss_hash_update,
2877         .rss_hash_conf_get  = hns3_dev_rss_hash_conf_get,
2878         .reta_update        = hns3_dev_rss_reta_update,
2879         .reta_query         = hns3_dev_rss_reta_query,
2880         .flow_ops_get       = hns3_dev_flow_ops_get,
2881         .vlan_filter_set    = hns3vf_vlan_filter_set,
2882         .vlan_offload_set   = hns3vf_vlan_offload_set,
2883         .get_reg            = hns3_get_regs,
2884         .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
2885         .tx_done_cleanup    = hns3_tx_done_cleanup,
2886 };
2887
2888 static const struct hns3_reset_ops hns3vf_reset_ops = {
2889         .reset_service       = hns3vf_reset_service,
2890         .stop_service        = hns3vf_stop_service,
2891         .prepare_reset       = hns3vf_prepare_reset,
2892         .wait_hardware_ready = hns3vf_wait_hardware_ready,
2893         .reinit_dev          = hns3vf_reinit_dev,
2894         .restore_conf        = hns3vf_restore_conf,
2895         .start_service       = hns3vf_start_service,
2896 };
2897
2898 static int
2899 hns3vf_dev_init(struct rte_eth_dev *eth_dev)
2900 {
2901         struct hns3_adapter *hns = eth_dev->data->dev_private;
2902         struct hns3_hw *hw = &hns->hw;
2903         int ret;
2904
2905         PMD_INIT_FUNC_TRACE();
2906
2907         eth_dev->process_private = (struct hns3_process_private *)
2908             rte_zmalloc_socket("hns3_filter_list",
2909                                sizeof(struct hns3_process_private),
2910                                RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
2911         if (eth_dev->process_private == NULL) {
2912                 PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
2913                 return -ENOMEM;
2914         }
2915
2916         hns3_flow_init(eth_dev);
2917
2918         hns3_set_rxtx_function(eth_dev);
2919         eth_dev->dev_ops = &hns3vf_eth_dev_ops;
2920         eth_dev->rx_queue_count = hns3_rx_queue_count;
2921         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2922                 ret = hns3_mp_init_secondary();
2923                 if (ret) {
2924                         PMD_INIT_LOG(ERR, "Failed to init for secondary "
2925                                           "process, ret = %d", ret);
2926                         goto err_mp_init_secondary;
2927                 }
2928
2929                 hw->secondary_cnt++;
2930                 return 0;
2931         }
2932
2933         ret = hns3_mp_init_primary();
2934         if (ret) {
2935                 PMD_INIT_LOG(ERR,
2936                              "Failed to init for primary process, ret = %d",
2937                              ret);
2938                 goto err_mp_init_primary;
2939         }
2940
2941         hw->adapter_state = HNS3_NIC_UNINITIALIZED;
2942         hns->is_vf = true;
2943         hw->data = eth_dev->data;
2944         hns3_parse_devargs(eth_dev);
2945
2946         ret = hns3_reset_init(hw);
2947         if (ret)
2948                 goto err_init_reset;
2949         hw->reset.ops = &hns3vf_reset_ops;
2950
2951         ret = hns3vf_init_vf(eth_dev);
2952         if (ret) {
2953                 PMD_INIT_LOG(ERR, "Failed to init vf: %d", ret);
2954                 goto err_init_vf;
2955         }
2956
2957         /* Allocate memory for storing MAC addresses */
2958         eth_dev->data->mac_addrs = rte_zmalloc("hns3vf-mac",
2959                                                sizeof(struct rte_ether_addr) *
2960                                                HNS3_VF_UC_MACADDR_NUM, 0);
2961         if (eth_dev->data->mac_addrs == NULL) {
2962                 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
2963                              "to store MAC addresses",
2964                              sizeof(struct rte_ether_addr) *
2965                              HNS3_VF_UC_MACADDR_NUM);
2966                 ret = -ENOMEM;
2967                 goto err_rte_zmalloc;
2968         }
2969
2970         /*
2971          * The hns3 PF ethdev driver in kernel support setting VF MAC address
2972          * on the host by "ip link set ..." command. To avoid some incorrect
2973          * scenes, for example, hns3 VF PMD driver fails to receive and send
2974          * packets after user configure the MAC address by using the
2975          * "ip link set ..." command, hns3 VF PMD driver keep the same MAC
2976          * address strategy as the hns3 kernel ethdev driver in the
2977          * initialization. If user configure a MAC address by the ip command
2978          * for VF device, then hns3 VF PMD driver will start with it, otherwise
2979          * start with a random MAC address in the initialization.
2980          */
2981         if (rte_is_zero_ether_addr((struct rte_ether_addr *)hw->mac.mac_addr))
2982                 rte_eth_random_addr(hw->mac.mac_addr);
2983         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
2984                             &eth_dev->data->mac_addrs[0]);
2985
2986         hw->adapter_state = HNS3_NIC_INITIALIZED;
2987
2988         if (__atomic_load_n(&hw->reset.schedule, __ATOMIC_RELAXED) ==
2989                             SCHEDULE_PENDING) {
2990                 hns3_err(hw, "Reschedule reset service after dev_init");
2991                 hns3_schedule_reset(hns);
2992         } else {
2993                 /* IMP will wait ready flag before reset */
2994                 hns3_notify_reset_ready(hw, false);
2995         }
2996         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
2997                           eth_dev);
2998         return 0;
2999
3000 err_rte_zmalloc:
3001         hns3vf_uninit_vf(eth_dev);
3002
3003 err_init_vf:
3004         rte_free(hw->reset.wait_data);
3005
3006 err_init_reset:
3007         hns3_mp_uninit_primary();
3008
3009 err_mp_init_primary:
3010 err_mp_init_secondary:
3011         eth_dev->dev_ops = NULL;
3012         eth_dev->rx_pkt_burst = NULL;
3013         eth_dev->rx_descriptor_status = NULL;
3014         eth_dev->tx_pkt_burst = NULL;
3015         eth_dev->tx_pkt_prepare = NULL;
3016         eth_dev->tx_descriptor_status = NULL;
3017         rte_free(eth_dev->process_private);
3018         eth_dev->process_private = NULL;
3019
3020         return ret;
3021 }
3022
3023 static int
3024 hns3vf_dev_uninit(struct rte_eth_dev *eth_dev)
3025 {
3026         struct hns3_adapter *hns = eth_dev->data->dev_private;
3027         struct hns3_hw *hw = &hns->hw;
3028
3029         PMD_INIT_FUNC_TRACE();
3030
3031         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
3032                 rte_free(eth_dev->process_private);
3033                 eth_dev->process_private = NULL;
3034                 return 0;
3035         }
3036
3037         if (hw->adapter_state < HNS3_NIC_CLOSING)
3038                 hns3vf_dev_close(eth_dev);
3039
3040         hw->adapter_state = HNS3_NIC_REMOVED;
3041         return 0;
3042 }
3043
3044 static int
3045 eth_hns3vf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
3046                      struct rte_pci_device *pci_dev)
3047 {
3048         return rte_eth_dev_pci_generic_probe(pci_dev,
3049                                              sizeof(struct hns3_adapter),
3050                                              hns3vf_dev_init);
3051 }
3052
3053 static int
3054 eth_hns3vf_pci_remove(struct rte_pci_device *pci_dev)
3055 {
3056         return rte_eth_dev_pci_generic_remove(pci_dev, hns3vf_dev_uninit);
3057 }
3058
3059 static const struct rte_pci_id pci_id_hns3vf_map[] = {
3060         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_VF) },
3061         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_PFC_VF) },
3062         { .vendor_id = 0, }, /* sentinel */
3063 };
3064
3065 static struct rte_pci_driver rte_hns3vf_pmd = {
3066         .id_table = pci_id_hns3vf_map,
3067         .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
3068         .probe = eth_hns3vf_pci_probe,
3069         .remove = eth_hns3vf_pci_remove,
3070 };
3071
3072 RTE_PMD_REGISTER_PCI(net_hns3_vf, rte_hns3vf_pmd);
3073 RTE_PMD_REGISTER_PCI_TABLE(net_hns3_vf, pci_id_hns3vf_map);
3074 RTE_PMD_REGISTER_KMOD_DEP(net_hns3_vf, "* igb_uio | vfio-pci");
3075 RTE_PMD_REGISTER_PARAM_STRING(net_hns3_vf,
3076                 HNS3_DEVARG_RX_FUNC_HINT "=vec|sve|simple|common "
3077                 HNS3_DEVARG_TX_FUNC_HINT "=vec|sve|simple|common "
3078                 HNS3_DEVARG_DEV_CAPS_MASK "=<1-65535> ");