1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2018-2019 Hisilicon Limited.
11 #include <arpa/inet.h>
12 #include <linux/pci_regs.h>
14 #include <rte_alarm.h>
15 #include <rte_atomic.h>
16 #include <rte_bus_pci.h>
17 #include <rte_byteorder.h>
18 #include <rte_common.h>
19 #include <rte_cycles.h>
22 #include <rte_ether.h>
23 #include <rte_ethdev_driver.h>
24 #include <rte_ethdev_pci.h>
25 #include <rte_interrupts.h>
31 #include "hns3_ethdev.h"
32 #include "hns3_logs.h"
33 #include "hns3_rxtx.h"
34 #include "hns3_regs.h"
35 #include "hns3_intr.h"
39 #define HNS3VF_KEEP_ALIVE_INTERVAL 2000000 /* us */
40 #define HNS3VF_SERVICE_INTERVAL 1000000 /* us */
42 #define HNS3VF_RESET_WAIT_MS 20
43 #define HNS3VF_RESET_WAIT_CNT 2000
45 /* Reset related Registers */
46 #define HNS3_GLOBAL_RESET_BIT 0
47 #define HNS3_CORE_RESET_BIT 1
48 #define HNS3_IMP_RESET_BIT 2
49 #define HNS3_FUN_RST_ING_B 0
51 enum hns3vf_evt_cause {
52 HNS3VF_VECTOR0_EVENT_RST,
53 HNS3VF_VECTOR0_EVENT_MBX,
54 HNS3VF_VECTOR0_EVENT_OTHER,
57 static enum hns3_reset_level hns3vf_get_reset_level(struct hns3_hw *hw,
59 static int hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
60 static int hns3vf_dev_configure_vlan(struct rte_eth_dev *dev);
62 static int hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
63 struct rte_ether_addr *mac_addr);
64 static int hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
65 struct rte_ether_addr *mac_addr);
66 /* set PCI bus mastering */
68 hns3vf_set_bus_master(const struct rte_pci_device *device, bool op)
72 rte_pci_read_config(device, ®, sizeof(reg), PCI_COMMAND);
75 /* set the master bit */
76 reg |= PCI_COMMAND_MASTER;
78 reg &= ~(PCI_COMMAND_MASTER);
80 rte_pci_write_config(device, ®, sizeof(reg), PCI_COMMAND);
84 * hns3vf_find_pci_capability - lookup a capability in the PCI capability list
85 * @cap: the capability
87 * Return the address of the given capability within the PCI capability list.
90 hns3vf_find_pci_capability(const struct rte_pci_device *device, int cap)
92 #define MAX_PCIE_CAPABILITY 48
98 rte_pci_read_config(device, &status, sizeof(status), PCI_STATUS);
99 if (!(status & PCI_STATUS_CAP_LIST))
102 ttl = MAX_PCIE_CAPABILITY;
103 rte_pci_read_config(device, &pos, sizeof(pos), PCI_CAPABILITY_LIST);
104 while (ttl-- && pos >= PCI_STD_HEADER_SIZEOF) {
105 rte_pci_read_config(device, &id, sizeof(id),
106 (pos + PCI_CAP_LIST_ID));
114 rte_pci_read_config(device, &pos, sizeof(pos),
115 (pos + PCI_CAP_LIST_NEXT));
121 hns3vf_enable_msix(const struct rte_pci_device *device, bool op)
126 pos = hns3vf_find_pci_capability(device, PCI_CAP_ID_MSIX);
128 rte_pci_read_config(device, &control, sizeof(control),
129 (pos + PCI_MSIX_FLAGS));
131 control |= PCI_MSIX_FLAGS_ENABLE;
133 control &= ~PCI_MSIX_FLAGS_ENABLE;
134 rte_pci_write_config(device, &control, sizeof(control),
135 (pos + PCI_MSIX_FLAGS));
142 hns3vf_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
144 /* mac address was checked by upper level interface */
145 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
148 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
149 HNS3_MBX_MAC_VLAN_UC_ADD, mac_addr->addr_bytes,
150 RTE_ETHER_ADDR_LEN, false, NULL, 0);
152 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
154 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
161 hns3vf_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
163 /* mac address was checked by upper level interface */
164 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
167 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
168 HNS3_MBX_MAC_VLAN_UC_REMOVE,
169 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN,
172 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
174 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
181 hns3vf_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
183 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
184 struct rte_ether_addr *addr;
188 for (i = 0; i < hw->mc_addrs_num; i++) {
189 addr = &hw->mc_addrs[i];
190 /* Check if there are duplicate addresses */
191 if (rte_is_same_ether_addr(addr, mac_addr)) {
192 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
194 hns3_err(hw, "failed to add mc mac addr, same addrs"
195 "(%s) is added by the set_mc_mac_addr_list "
201 ret = hns3vf_add_mc_mac_addr(hw, mac_addr);
203 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
205 hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
212 hns3vf_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
213 __rte_unused uint32_t idx,
214 __rte_unused uint32_t pool)
216 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
217 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
220 rte_spinlock_lock(&hw->lock);
223 * In hns3 network engine adding UC and MC mac address with different
224 * commands with firmware. We need to determine whether the input
225 * address is a UC or a MC address to call different commands.
226 * By the way, it is recommended calling the API function named
227 * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
228 * using the rte_eth_dev_mac_addr_add API function to set MC mac address
229 * may affect the specifications of UC mac addresses.
231 if (rte_is_multicast_ether_addr(mac_addr))
232 ret = hns3vf_add_mc_addr_common(hw, mac_addr);
234 ret = hns3vf_add_uc_mac_addr(hw, mac_addr);
236 rte_spinlock_unlock(&hw->lock);
238 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
240 hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
248 hns3vf_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
250 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
251 /* index will be checked by upper level rte interface */
252 struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
253 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
256 rte_spinlock_lock(&hw->lock);
258 if (rte_is_multicast_ether_addr(mac_addr))
259 ret = hns3vf_remove_mc_mac_addr(hw, mac_addr);
261 ret = hns3vf_remove_uc_mac_addr(hw, mac_addr);
263 rte_spinlock_unlock(&hw->lock);
265 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
267 hns3_err(hw, "failed to remove mac addr(%s), ret = %d",
273 hns3vf_set_default_mac_addr(struct rte_eth_dev *dev,
274 struct rte_ether_addr *mac_addr)
276 #define HNS3_TWO_ETHER_ADDR_LEN (RTE_ETHER_ADDR_LEN * 2)
277 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
278 struct rte_ether_addr *old_addr;
279 uint8_t addr_bytes[HNS3_TWO_ETHER_ADDR_LEN]; /* for 2 MAC addresses */
280 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
284 * It has been guaranteed that input parameter named mac_addr is valid
285 * address in the rte layer of DPDK framework.
287 old_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
288 rte_spinlock_lock(&hw->lock);
289 memcpy(addr_bytes, mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN);
290 memcpy(&addr_bytes[RTE_ETHER_ADDR_LEN], old_addr->addr_bytes,
293 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
294 HNS3_MBX_MAC_VLAN_UC_MODIFY, addr_bytes,
295 HNS3_TWO_ETHER_ADDR_LEN, true, NULL, 0);
298 * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev
299 * driver. When user has configured a MAC address for VF device
300 * by "ip link set ..." command based on the PF device, the hns3
301 * PF kernel ethdev driver does not allow VF driver to request
302 * reconfiguring a different default MAC address, and return
303 * -EPREM to VF driver through mailbox.
306 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
308 hns3_warn(hw, "Has permanet mac addr(%s) for vf",
311 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
313 hns3_err(hw, "Failed to set mac addr(%s) for vf: %d",
318 rte_ether_addr_copy(mac_addr,
319 (struct rte_ether_addr *)hw->mac.mac_addr);
320 rte_spinlock_unlock(&hw->lock);
326 hns3vf_configure_mac_addr(struct hns3_adapter *hns, bool del)
328 struct hns3_hw *hw = &hns->hw;
329 struct rte_ether_addr *addr;
330 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
335 for (i = 0; i < HNS3_VF_UC_MACADDR_NUM; i++) {
336 addr = &hw->data->mac_addrs[i];
337 if (rte_is_zero_ether_addr(addr))
339 if (rte_is_multicast_ether_addr(addr))
340 ret = del ? hns3vf_remove_mc_mac_addr(hw, addr) :
341 hns3vf_add_mc_mac_addr(hw, addr);
343 ret = del ? hns3vf_remove_uc_mac_addr(hw, addr) :
344 hns3vf_add_uc_mac_addr(hw, addr);
348 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
350 hns3_err(hw, "failed to %s mac addr(%s) index:%d "
351 "ret = %d.", del ? "remove" : "restore",
359 hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
360 struct rte_ether_addr *mac_addr)
362 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
365 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
366 HNS3_MBX_MAC_VLAN_MC_ADD,
367 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
370 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
372 hns3_err(hw, "Failed to add mc mac addr(%s) for vf: %d",
380 hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
381 struct rte_ether_addr *mac_addr)
383 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
386 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
387 HNS3_MBX_MAC_VLAN_MC_REMOVE,
388 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
391 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
393 hns3_err(hw, "Failed to remove mc mac addr(%s) for vf: %d",
401 hns3vf_set_mc_addr_chk_param(struct hns3_hw *hw,
402 struct rte_ether_addr *mc_addr_set,
405 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
406 struct rte_ether_addr *addr;
410 if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
411 hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%d) "
412 "invalid. valid range: 0~%d",
413 nb_mc_addr, HNS3_MC_MACADDR_NUM);
417 /* Check if input mac addresses are valid */
418 for (i = 0; i < nb_mc_addr; i++) {
419 addr = &mc_addr_set[i];
420 if (!rte_is_multicast_ether_addr(addr)) {
421 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
424 "failed to set mc mac addr, addr(%s) invalid.",
429 /* Check if there are duplicate addresses */
430 for (j = i + 1; j < nb_mc_addr; j++) {
431 if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
432 rte_ether_format_addr(mac_str,
433 RTE_ETHER_ADDR_FMT_SIZE,
435 hns3_err(hw, "failed to set mc mac addr, "
436 "addrs invalid. two same addrs(%s).",
443 * Check if there are duplicate addresses between mac_addrs
446 for (j = 0; j < HNS3_VF_UC_MACADDR_NUM; j++) {
447 if (rte_is_same_ether_addr(addr,
448 &hw->data->mac_addrs[j])) {
449 rte_ether_format_addr(mac_str,
450 RTE_ETHER_ADDR_FMT_SIZE,
452 hns3_err(hw, "failed to set mc mac addr, "
453 "addrs invalid. addrs(%s) has already "
454 "configured in mac_addr add API",
465 hns3vf_set_mc_mac_addr_list(struct rte_eth_dev *dev,
466 struct rte_ether_addr *mc_addr_set,
469 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
470 struct rte_ether_addr *addr;
477 ret = hns3vf_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
481 rte_spinlock_lock(&hw->lock);
482 cur_addr_num = hw->mc_addrs_num;
483 for (i = 0; i < cur_addr_num; i++) {
484 num = cur_addr_num - i - 1;
485 addr = &hw->mc_addrs[num];
486 ret = hns3vf_remove_mc_mac_addr(hw, addr);
488 rte_spinlock_unlock(&hw->lock);
495 set_addr_num = (int)nb_mc_addr;
496 for (i = 0; i < set_addr_num; i++) {
497 addr = &mc_addr_set[i];
498 ret = hns3vf_add_mc_mac_addr(hw, addr);
500 rte_spinlock_unlock(&hw->lock);
504 rte_ether_addr_copy(addr, &hw->mc_addrs[hw->mc_addrs_num]);
507 rte_spinlock_unlock(&hw->lock);
513 hns3vf_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
515 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
516 struct hns3_hw *hw = &hns->hw;
517 struct rte_ether_addr *addr;
522 for (i = 0; i < hw->mc_addrs_num; i++) {
523 addr = &hw->mc_addrs[i];
524 if (!rte_is_multicast_ether_addr(addr))
527 ret = hns3vf_remove_mc_mac_addr(hw, addr);
529 ret = hns3vf_add_mc_mac_addr(hw, addr);
532 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
534 hns3_err(hw, "Failed to %s mc mac addr: %s for vf: %d",
535 del ? "Remove" : "Restore", mac_str, ret);
542 hns3vf_set_promisc_mode(struct hns3_hw *hw, bool en_bc_pmc,
543 bool en_uc_pmc, bool en_mc_pmc)
545 struct hns3_mbx_vf_to_pf_cmd *req;
546 struct hns3_cmd_desc desc;
549 req = (struct hns3_mbx_vf_to_pf_cmd *)desc.data;
552 * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev driver,
553 * so there are some features for promiscuous/allmulticast mode in hns3
554 * VF PMD driver as below:
555 * 1. The promiscuous/allmulticast mode can be configured successfully
556 * only based on the trusted VF device. If based on the non trusted
557 * VF device, configuring promiscuous/allmulticast mode will fail.
558 * The hns3 VF device can be confiruged as trusted device by hns3 PF
559 * kernel ethdev driver on the host by the following command:
560 * "ip link set <eth num> vf <vf id> turst on"
561 * 2. After the promiscuous mode is configured successfully, hns3 VF PMD
562 * driver can receive the ingress and outgoing traffic. In the words,
563 * all the ingress packets, all the packets sent from the PF and
564 * other VFs on the same physical port.
565 * 3. Note: Because of the hardware constraints, By default vlan filter
566 * is enabled and couldn't be turned off based on VF device, so vlan
567 * filter is still effective even in promiscuous mode. If upper
568 * applications don't call rte_eth_dev_vlan_filter API function to
569 * set vlan based on VF device, hns3 VF PMD driver will can't receive
570 * the packets with vlan tag in promiscuoue mode.
572 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MBX_VF_TO_PF, false);
573 req->msg[0] = HNS3_MBX_SET_PROMISC_MODE;
574 req->msg[1] = en_bc_pmc ? 1 : 0;
575 req->msg[2] = en_uc_pmc ? 1 : 0;
576 req->msg[3] = en_mc_pmc ? 1 : 0;
578 ret = hns3_cmd_send(hw, &desc, 1);
580 hns3_err(hw, "Set promisc mode fail, ret = %d", ret);
586 hns3vf_dev_promiscuous_enable(struct rte_eth_dev *dev)
588 struct hns3_adapter *hns = dev->data->dev_private;
589 struct hns3_hw *hw = &hns->hw;
592 ret = hns3vf_set_promisc_mode(hw, true, true, true);
594 hns3_err(hw, "Failed to enable promiscuous mode, ret = %d",
600 hns3vf_dev_promiscuous_disable(struct rte_eth_dev *dev)
602 bool allmulti = dev->data->all_multicast ? true : false;
603 struct hns3_adapter *hns = dev->data->dev_private;
604 struct hns3_hw *hw = &hns->hw;
607 ret = hns3vf_set_promisc_mode(hw, true, false, allmulti);
609 hns3_err(hw, "Failed to disable promiscuous mode, ret = %d",
615 hns3vf_dev_allmulticast_enable(struct rte_eth_dev *dev)
617 struct hns3_adapter *hns = dev->data->dev_private;
618 struct hns3_hw *hw = &hns->hw;
621 if (dev->data->promiscuous)
624 ret = hns3vf_set_promisc_mode(hw, true, false, true);
626 hns3_err(hw, "Failed to enable allmulticast mode, ret = %d",
632 hns3vf_dev_allmulticast_disable(struct rte_eth_dev *dev)
634 struct hns3_adapter *hns = dev->data->dev_private;
635 struct hns3_hw *hw = &hns->hw;
638 if (dev->data->promiscuous)
641 ret = hns3vf_set_promisc_mode(hw, true, false, false);
643 hns3_err(hw, "Failed to disable allmulticast mode, ret = %d",
649 hns3vf_restore_promisc(struct hns3_adapter *hns)
651 struct hns3_hw *hw = &hns->hw;
652 bool allmulti = hw->data->all_multicast ? true : false;
654 if (hw->data->promiscuous)
655 return hns3vf_set_promisc_mode(hw, true, true, true);
657 return hns3vf_set_promisc_mode(hw, true, false, allmulti);
661 hns3vf_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id,
662 bool mmap, enum hns3_ring_type queue_type,
665 struct hns3_vf_bind_vector_msg bind_msg;
670 memset(&bind_msg, 0, sizeof(bind_msg));
671 code = mmap ? HNS3_MBX_MAP_RING_TO_VECTOR :
672 HNS3_MBX_UNMAP_RING_TO_VECTOR;
673 bind_msg.vector_id = vector_id;
675 if (queue_type == HNS3_RING_TYPE_RX)
676 bind_msg.param[0].int_gl_index = HNS3_RING_GL_RX;
678 bind_msg.param[0].int_gl_index = HNS3_RING_GL_TX;
680 bind_msg.param[0].ring_type = queue_type;
681 bind_msg.ring_num = 1;
682 bind_msg.param[0].tqp_index = queue_id;
683 op_str = mmap ? "Map" : "Unmap";
684 ret = hns3_send_mbx_msg(hw, code, 0, (uint8_t *)&bind_msg,
685 sizeof(bind_msg), false, NULL, 0);
687 hns3_err(hw, "%s TQP %d fail, vector_id is %d, ret is %d.",
688 op_str, queue_id, bind_msg.vector_id, ret);
694 hns3vf_init_ring_with_vector(struct hns3_hw *hw)
701 * In hns3 network engine, vector 0 is always the misc interrupt of this
702 * function, vector 1~N can be used respectively for the queues of the
703 * function. Tx and Rx queues with the same number share the interrupt
704 * vector. In the initialization clearing the all hardware mapping
705 * relationship configurations between queues and interrupt vectors is
706 * needed, so some error caused by the residual configurations, such as
707 * the unexpected Tx interrupt, can be avoid. Because of the hardware
708 * constraints in hns3 hardware engine, we have to implement clearing
709 * the mapping relationship configurations by binding all queues to the
710 * last interrupt vector and reserving the last interrupt vector. This
711 * method results in a decrease of the maximum queues when upper
712 * applications call the rte_eth_dev_configure API function to enable
715 vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
716 /* vec - 1: the last interrupt is reserved */
717 hw->intr_tqps_num = vec > hw->tqps_num ? hw->tqps_num : vec - 1;
718 for (i = 0; i < hw->intr_tqps_num; i++) {
720 * Set gap limiter and rate limiter configuration of queue's
723 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
724 HNS3_TQP_INTR_GL_DEFAULT);
725 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
726 HNS3_TQP_INTR_GL_DEFAULT);
727 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
729 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
730 HNS3_RING_TYPE_TX, i);
732 PMD_INIT_LOG(ERR, "VF fail to unbind TX ring(%d) with "
733 "vector: %d, ret=%d", i, vec, ret);
737 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
738 HNS3_RING_TYPE_RX, i);
740 PMD_INIT_LOG(ERR, "VF fail to unbind RX ring(%d) with "
741 "vector: %d, ret=%d", i, vec, ret);
750 hns3vf_dev_configure(struct rte_eth_dev *dev)
752 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
753 struct hns3_rss_conf *rss_cfg = &hw->rss_info;
754 struct rte_eth_conf *conf = &dev->data->dev_conf;
755 enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
756 uint16_t nb_rx_q = dev->data->nb_rx_queues;
757 uint16_t nb_tx_q = dev->data->nb_tx_queues;
758 struct rte_eth_rss_conf rss_conf;
764 * Hardware does not support individually enable/disable/reset the Tx or
765 * Rx queue in hns3 network engine. Driver must enable/disable/reset Tx
766 * and Rx queues at the same time. When the numbers of Tx queues
767 * allocated by upper applications are not equal to the numbers of Rx
768 * queues, driver needs to setup fake Tx or Rx queues to adjust numbers
769 * of Tx/Rx queues. otherwise, network engine can not work as usual. But
770 * these fake queues are imperceptible, and can not be used by upper
773 ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
775 hns3_err(hw, "Failed to set rx/tx fake queues: %d", ret);
779 hw->adapter_state = HNS3_NIC_CONFIGURING;
780 if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
781 hns3_err(hw, "setting link speed/duplex not supported");
786 /* When RSS is not configured, redirect the packet queue 0 */
787 if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
788 conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
789 rss_conf = conf->rx_adv_conf.rss_conf;
790 if (rss_conf.rss_key == NULL) {
791 rss_conf.rss_key = rss_cfg->key;
792 rss_conf.rss_key_len = HNS3_RSS_KEY_SIZE;
795 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
801 * If jumbo frames are enabled, MTU needs to be refreshed
802 * according to the maximum RX packet length.
804 if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
806 * Security of max_rx_pkt_len is guaranteed in dpdk frame.
807 * Maximum value of max_rx_pkt_len is HNS3_MAX_FRAME_LEN, so it
808 * can safely assign to "uint16_t" type variable.
810 mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(conf->rxmode.max_rx_pkt_len);
811 ret = hns3vf_dev_mtu_set(dev, mtu);
814 dev->data->mtu = mtu;
817 ret = hns3vf_dev_configure_vlan(dev);
821 /* config hardware GRO */
822 gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
823 ret = hns3_config_gro(hw, gro_en);
827 hw->adapter_state = HNS3_NIC_CONFIGURED;
831 (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
832 hw->adapter_state = HNS3_NIC_INITIALIZED;
838 hns3vf_config_mtu(struct hns3_hw *hw, uint16_t mtu)
842 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MTU, 0, (const uint8_t *)&mtu,
843 sizeof(mtu), true, NULL, 0);
845 hns3_err(hw, "Failed to set mtu (%u) for vf: %d", mtu, ret);
851 hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
853 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
854 uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
858 * The hns3 PF/VF devices on the same port share the hardware MTU
859 * configuration. Currently, we send mailbox to inform hns3 PF kernel
860 * ethdev driver to finish hardware MTU configuration in hns3 VF PMD
861 * driver, there is no need to stop the port for hns3 VF device, and the
862 * MTU value issued by hns3 VF PMD driver must be less than or equal to
865 if (rte_atomic16_read(&hw->reset.resetting)) {
866 hns3_err(hw, "Failed to set mtu during resetting");
870 rte_spinlock_lock(&hw->lock);
871 ret = hns3vf_config_mtu(hw, mtu);
873 rte_spinlock_unlock(&hw->lock);
876 if (frame_size > RTE_ETHER_MAX_LEN)
877 dev->data->dev_conf.rxmode.offloads |=
878 DEV_RX_OFFLOAD_JUMBO_FRAME;
880 dev->data->dev_conf.rxmode.offloads &=
881 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
882 dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
883 rte_spinlock_unlock(&hw->lock);
889 hns3vf_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
891 struct hns3_adapter *hns = eth_dev->data->dev_private;
892 struct hns3_hw *hw = &hns->hw;
893 uint16_t q_num = hw->tqps_num;
896 * In interrupt mode, 'max_rx_queues' is set based on the number of
897 * MSI-X interrupt resources of the hardware.
899 if (hw->data->dev_conf.intr_conf.rxq == 1)
900 q_num = hw->intr_tqps_num;
902 info->max_rx_queues = q_num;
903 info->max_tx_queues = hw->tqps_num;
904 info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
905 info->min_rx_bufsize = hw->rx_buf_len;
906 info->max_mac_addrs = HNS3_VF_UC_MACADDR_NUM;
907 info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
908 info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
910 info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
911 DEV_RX_OFFLOAD_UDP_CKSUM |
912 DEV_RX_OFFLOAD_TCP_CKSUM |
913 DEV_RX_OFFLOAD_SCTP_CKSUM |
914 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
915 DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
916 DEV_RX_OFFLOAD_KEEP_CRC |
917 DEV_RX_OFFLOAD_SCATTER |
918 DEV_RX_OFFLOAD_VLAN_STRIP |
919 DEV_RX_OFFLOAD_VLAN_FILTER |
920 DEV_RX_OFFLOAD_JUMBO_FRAME |
921 DEV_RX_OFFLOAD_RSS_HASH |
922 DEV_RX_OFFLOAD_TCP_LRO);
923 info->tx_queue_offload_capa = DEV_TX_OFFLOAD_MBUF_FAST_FREE;
924 info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
925 DEV_TX_OFFLOAD_IPV4_CKSUM |
926 DEV_TX_OFFLOAD_TCP_CKSUM |
927 DEV_TX_OFFLOAD_UDP_CKSUM |
928 DEV_TX_OFFLOAD_SCTP_CKSUM |
929 DEV_TX_OFFLOAD_MULTI_SEGS |
930 DEV_TX_OFFLOAD_TCP_TSO |
931 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
932 DEV_TX_OFFLOAD_GRE_TNL_TSO |
933 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
934 info->tx_queue_offload_capa |
935 hns3_txvlan_cap_get(hw));
937 info->rx_desc_lim = (struct rte_eth_desc_lim) {
938 .nb_max = HNS3_MAX_RING_DESC,
939 .nb_min = HNS3_MIN_RING_DESC,
940 .nb_align = HNS3_ALIGN_RING_DESC,
943 info->tx_desc_lim = (struct rte_eth_desc_lim) {
944 .nb_max = HNS3_MAX_RING_DESC,
945 .nb_min = HNS3_MIN_RING_DESC,
946 .nb_align = HNS3_ALIGN_RING_DESC,
949 info->vmdq_queue_num = 0;
951 info->reta_size = HNS3_RSS_IND_TBL_SIZE;
952 info->hash_key_size = HNS3_RSS_KEY_SIZE;
953 info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
954 info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
955 info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
961 hns3vf_clear_event_cause(struct hns3_hw *hw, uint32_t regclr)
963 hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
967 hns3vf_disable_irq0(struct hns3_hw *hw)
969 hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
973 hns3vf_enable_irq0(struct hns3_hw *hw)
975 hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
978 static enum hns3vf_evt_cause
979 hns3vf_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
981 struct hns3_hw *hw = &hns->hw;
982 enum hns3vf_evt_cause ret;
983 uint32_t cmdq_stat_reg;
984 uint32_t rst_ing_reg;
987 /* Fetch the events from their corresponding regs */
988 cmdq_stat_reg = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_STAT_REG);
990 if (BIT(HNS3_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
991 rst_ing_reg = hns3_read_dev(hw, HNS3_FUN_RST_ING);
992 hns3_warn(hw, "resetting reg: 0x%x", rst_ing_reg);
993 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
994 rte_atomic16_set(&hw->reset.disable_cmd, 1);
995 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
996 hns3_write_dev(hw, HNS3_VF_RST_ING, val | HNS3_VF_RST_ING_BIT);
997 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RST_INT_B);
999 hw->reset.stats.global_cnt++;
1000 hns3_warn(hw, "Global reset detected, clear reset status");
1002 hns3_schedule_delayed_reset(hns);
1003 hns3_warn(hw, "Global reset detected, don't clear reset status");
1006 ret = HNS3VF_VECTOR0_EVENT_RST;
1010 /* Check for vector0 mailbox(=CMDQ RX) event source */
1011 if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1012 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
1013 ret = HNS3VF_VECTOR0_EVENT_MBX;
1018 ret = HNS3VF_VECTOR0_EVENT_OTHER;
1026 hns3vf_interrupt_handler(void *param)
1028 struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1029 struct hns3_adapter *hns = dev->data->dev_private;
1030 struct hns3_hw *hw = &hns->hw;
1031 enum hns3vf_evt_cause event_cause;
1034 if (hw->irq_thread_id == 0)
1035 hw->irq_thread_id = pthread_self();
1037 /* Disable interrupt */
1038 hns3vf_disable_irq0(hw);
1040 /* Read out interrupt causes */
1041 event_cause = hns3vf_check_event_cause(hns, &clearval);
1043 switch (event_cause) {
1044 case HNS3VF_VECTOR0_EVENT_RST:
1045 hns3_schedule_reset(hns);
1047 case HNS3VF_VECTOR0_EVENT_MBX:
1048 hns3_dev_handle_mbx_msg(hw);
1054 /* Clear interrupt causes */
1055 hns3vf_clear_event_cause(hw, clearval);
1057 /* Enable interrupt */
1058 hns3vf_enable_irq0(hw);
1062 hns3vf_get_capability(struct hns3_hw *hw)
1064 struct rte_pci_device *pci_dev;
1065 struct rte_eth_dev *eth_dev;
1069 eth_dev = &rte_eth_devices[hw->data->port_id];
1070 pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1072 /* Get PCI revision id */
1073 ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
1074 HNS3_PCI_REVISION_ID);
1075 if (ret != HNS3_PCI_REVISION_ID_LEN) {
1076 PMD_INIT_LOG(ERR, "failed to read pci revision id: %d", ret);
1079 hw->revision = revision;
1085 hns3vf_check_tqp_info(struct hns3_hw *hw)
1089 tqps_num = hw->tqps_num;
1090 if (tqps_num > HNS3_MAX_TQP_NUM_PER_FUNC || tqps_num == 0) {
1091 PMD_INIT_LOG(ERR, "Get invalid tqps_num(%u) from PF. valid "
1093 tqps_num, HNS3_MAX_TQP_NUM_PER_FUNC);
1097 if (hw->rx_buf_len == 0)
1098 hw->rx_buf_len = HNS3_DEFAULT_RX_BUF_LEN;
1099 hw->alloc_rss_size = RTE_MIN(hw->rss_size_max, hw->tqps_num);
1104 hns3vf_get_port_base_vlan_filter_state(struct hns3_hw *hw)
1109 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN,
1110 HNS3_MBX_GET_PORT_BASE_VLAN_STATE, NULL, 0,
1111 true, &resp_msg, sizeof(resp_msg));
1113 if (ret == -ETIME) {
1115 * Getting current port based VLAN state from PF driver
1116 * will not affect VF driver's basic function. Because
1117 * the VF driver relies on hns3 PF kernel ether driver,
1118 * to avoid introducing compatibility issues with older
1119 * version of PF driver, no failure will be returned
1120 * when the return value is ETIME. This return value has
1121 * the following scenarios:
1122 * 1) Firmware didn't return the results in time
1123 * 2) the result return by firmware is timeout
1124 * 3) the older version of kernel side PF driver does
1125 * not support this mailbox message.
1126 * For scenarios 1 and 2, it is most likely that a
1127 * hardware error has occurred, or a hardware reset has
1128 * occurred. In this case, these errors will be caught
1129 * by other functions.
1131 PMD_INIT_LOG(WARNING,
1132 "failed to get PVID state for timeout, maybe "
1133 "kernel side PF driver doesn't support this "
1134 "mailbox message, or firmware didn't respond.");
1135 resp_msg = HNS3_PORT_BASE_VLAN_DISABLE;
1137 PMD_INIT_LOG(ERR, "failed to get port based VLAN state,"
1142 hw->port_base_vlan_cfg.state = resp_msg ?
1143 HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
1148 hns3vf_get_queue_info(struct hns3_hw *hw)
1150 #define HNS3VF_TQPS_RSS_INFO_LEN 6
1151 uint8_t resp_msg[HNS3VF_TQPS_RSS_INFO_LEN];
1154 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QINFO, 0, NULL, 0, true,
1155 resp_msg, HNS3VF_TQPS_RSS_INFO_LEN);
1157 PMD_INIT_LOG(ERR, "Failed to get tqp info from PF: %d", ret);
1161 memcpy(&hw->tqps_num, &resp_msg[0], sizeof(uint16_t));
1162 memcpy(&hw->rss_size_max, &resp_msg[2], sizeof(uint16_t));
1163 memcpy(&hw->rx_buf_len, &resp_msg[4], sizeof(uint16_t));
1165 return hns3vf_check_tqp_info(hw);
1169 hns3vf_get_queue_depth(struct hns3_hw *hw)
1171 #define HNS3VF_TQPS_DEPTH_INFO_LEN 4
1172 uint8_t resp_msg[HNS3VF_TQPS_DEPTH_INFO_LEN];
1175 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QDEPTH, 0, NULL, 0, true,
1176 resp_msg, HNS3VF_TQPS_DEPTH_INFO_LEN);
1178 PMD_INIT_LOG(ERR, "Failed to get tqp depth info from PF: %d",
1183 memcpy(&hw->num_tx_desc, &resp_msg[0], sizeof(uint16_t));
1184 memcpy(&hw->num_rx_desc, &resp_msg[2], sizeof(uint16_t));
1190 hns3vf_get_tc_info(struct hns3_hw *hw)
1195 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_TCINFO, 0, NULL, 0,
1196 true, &resp_msg, sizeof(resp_msg));
1198 hns3_err(hw, "VF request to get TC info from PF failed %d",
1203 hw->hw_tc_map = resp_msg;
1209 hns3vf_get_host_mac_addr(struct hns3_hw *hw)
1211 uint8_t host_mac[RTE_ETHER_ADDR_LEN];
1214 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_MAC_ADDR, 0, NULL, 0,
1215 true, host_mac, RTE_ETHER_ADDR_LEN);
1217 hns3_err(hw, "Failed to get mac addr from PF: %d", ret);
1221 memcpy(hw->mac.mac_addr, host_mac, RTE_ETHER_ADDR_LEN);
1227 hns3vf_get_configuration(struct hns3_hw *hw)
1231 hw->mac.media_type = HNS3_MEDIA_TYPE_NONE;
1232 hw->rss_dis_flag = false;
1234 /* Get device capability */
1235 ret = hns3vf_get_capability(hw);
1237 PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
1241 /* Get queue configuration from PF */
1242 ret = hns3vf_get_queue_info(hw);
1246 /* Get queue depth info from PF */
1247 ret = hns3vf_get_queue_depth(hw);
1251 /* Get user defined VF MAC addr from PF */
1252 ret = hns3vf_get_host_mac_addr(hw);
1256 ret = hns3vf_get_port_base_vlan_filter_state(hw);
1260 /* Get tc configuration from PF */
1261 return hns3vf_get_tc_info(hw);
1265 hns3vf_set_tc_info(struct hns3_adapter *hns)
1267 struct hns3_hw *hw = &hns->hw;
1268 uint16_t nb_rx_q = hw->data->nb_rx_queues;
1269 uint16_t nb_tx_q = hw->data->nb_tx_queues;
1273 for (i = 0; i < HNS3_MAX_TC_NUM; i++)
1274 if (hw->hw_tc_map & BIT(i))
1277 if (nb_rx_q < hw->num_tc) {
1278 hns3_err(hw, "number of Rx queues(%d) is less than tcs(%d).",
1279 nb_rx_q, hw->num_tc);
1283 if (nb_tx_q < hw->num_tc) {
1284 hns3_err(hw, "number of Tx queues(%d) is less than tcs(%d).",
1285 nb_tx_q, hw->num_tc);
1289 hns3_set_rss_size(hw, nb_rx_q);
1290 hns3_tc_queue_mapping_cfg(hw, nb_tx_q);
1296 hns3vf_request_link_info(struct hns3_hw *hw)
1301 if (rte_atomic16_read(&hw->reset.resetting))
1303 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1304 &resp_msg, sizeof(resp_msg));
1306 hns3_err(hw, "Failed to fetch link status from PF: %d", ret);
1310 hns3vf_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
1312 #define HNS3VF_VLAN_MBX_MSG_LEN 5
1313 struct hns3_hw *hw = &hns->hw;
1314 uint8_t msg_data[HNS3VF_VLAN_MBX_MSG_LEN];
1315 uint16_t proto = htons(RTE_ETHER_TYPE_VLAN);
1316 uint8_t is_kill = on ? 0 : 1;
1318 msg_data[0] = is_kill;
1319 memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1320 memcpy(&msg_data[3], &proto, sizeof(proto));
1322 return hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_FILTER,
1323 msg_data, HNS3VF_VLAN_MBX_MSG_LEN, true, NULL,
1328 hns3vf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1330 struct hns3_adapter *hns = dev->data->dev_private;
1331 struct hns3_hw *hw = &hns->hw;
1334 if (rte_atomic16_read(&hw->reset.resetting)) {
1336 "vf set vlan id failed during resetting, vlan_id =%u",
1340 rte_spinlock_lock(&hw->lock);
1341 ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1342 rte_spinlock_unlock(&hw->lock);
1344 hns3_err(hw, "vf set vlan id failed, vlan_id =%u, ret =%d",
1351 hns3vf_en_hw_strip_rxvtag(struct hns3_hw *hw, bool enable)
1356 msg_data = enable ? 1 : 0;
1357 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_RX_OFF_CFG,
1358 &msg_data, sizeof(msg_data), false, NULL, 0);
1360 hns3_err(hw, "vf enable strip failed, ret =%d", ret);
1366 hns3vf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1368 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1369 struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1370 unsigned int tmp_mask;
1373 if (rte_atomic16_read(&hw->reset.resetting)) {
1374 hns3_err(hw, "vf set vlan offload failed during resetting, "
1375 "mask = 0x%x", mask);
1379 tmp_mask = (unsigned int)mask;
1380 /* Vlan stripping setting */
1381 if (tmp_mask & ETH_VLAN_STRIP_MASK) {
1382 rte_spinlock_lock(&hw->lock);
1383 /* Enable or disable VLAN stripping */
1384 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1385 ret = hns3vf_en_hw_strip_rxvtag(hw, true);
1387 ret = hns3vf_en_hw_strip_rxvtag(hw, false);
1388 rte_spinlock_unlock(&hw->lock);
1395 hns3vf_handle_all_vlan_table(struct hns3_adapter *hns, int on)
1397 struct rte_vlan_filter_conf *vfc;
1398 struct hns3_hw *hw = &hns->hw;
1405 vfc = &hw->data->vlan_filter_conf;
1406 for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1407 if (vfc->ids[i] == 0)
1412 * 64 means the num bits of ids, one bit corresponds to
1416 /* count trailing zeroes */
1417 vbit = ~ids & (ids - 1);
1418 /* clear least significant bit set */
1419 ids ^= (ids ^ (ids - 1)) ^ vbit;
1424 ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1427 "VF handle vlan table failed, ret =%d, on = %d",
1438 hns3vf_remove_all_vlan_table(struct hns3_adapter *hns)
1440 return hns3vf_handle_all_vlan_table(hns, 0);
1444 hns3vf_restore_vlan_conf(struct hns3_adapter *hns)
1446 struct hns3_hw *hw = &hns->hw;
1447 struct rte_eth_conf *dev_conf;
1451 dev_conf = &hw->data->dev_conf;
1452 en = dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP ? true
1454 ret = hns3vf_en_hw_strip_rxvtag(hw, en);
1456 hns3_err(hw, "VF restore vlan conf fail, en =%d, ret =%d", en,
1462 hns3vf_dev_configure_vlan(struct rte_eth_dev *dev)
1464 struct hns3_adapter *hns = dev->data->dev_private;
1465 struct rte_eth_dev_data *data = dev->data;
1466 struct hns3_hw *hw = &hns->hw;
1469 if (data->dev_conf.txmode.hw_vlan_reject_tagged ||
1470 data->dev_conf.txmode.hw_vlan_reject_untagged ||
1471 data->dev_conf.txmode.hw_vlan_insert_pvid) {
1472 hns3_warn(hw, "hw_vlan_reject_tagged, hw_vlan_reject_untagged "
1473 "or hw_vlan_insert_pvid is not support!");
1476 /* Apply vlan offload setting */
1477 ret = hns3vf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
1479 hns3_err(hw, "dev config vlan offload failed, ret =%d", ret);
1485 hns3vf_set_alive(struct hns3_hw *hw, bool alive)
1489 msg_data = alive ? 1 : 0;
1490 return hns3_send_mbx_msg(hw, HNS3_MBX_SET_ALIVE, 0, &msg_data,
1491 sizeof(msg_data), false, NULL, 0);
1495 hns3vf_keep_alive_handler(void *param)
1497 struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1498 struct hns3_adapter *hns = eth_dev->data->dev_private;
1499 struct hns3_hw *hw = &hns->hw;
1503 ret = hns3_send_mbx_msg(hw, HNS3_MBX_KEEP_ALIVE, 0, NULL, 0,
1504 false, &respmsg, sizeof(uint8_t));
1506 hns3_err(hw, "VF sends keeping alive cmd failed(=%d)",
1509 rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
1514 hns3vf_service_handler(void *param)
1516 struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1517 struct hns3_adapter *hns = eth_dev->data->dev_private;
1518 struct hns3_hw *hw = &hns->hw;
1521 * The query link status and reset processing are executed in the
1522 * interrupt thread.When the IMP reset occurs, IMP will not respond,
1523 * and the query operation will time out after 30ms. In the case of
1524 * multiple PF/VFs, each query failure timeout causes the IMP reset
1525 * interrupt to fail to respond within 100ms.
1526 * Before querying the link status, check whether there is a reset
1527 * pending, and if so, abandon the query.
1529 if (!hns3vf_is_reset_pending(hns))
1530 hns3vf_request_link_info(hw);
1532 hns3_warn(hw, "Cancel the query when reset is pending");
1534 rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler,
1539 hns3_query_vf_resource(struct hns3_hw *hw)
1541 struct hns3_vf_res_cmd *req;
1542 struct hns3_cmd_desc desc;
1546 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_VF_RSRC, true);
1547 ret = hns3_cmd_send(hw, &desc, 1);
1549 hns3_err(hw, "query vf resource failed, ret = %d", ret);
1553 req = (struct hns3_vf_res_cmd *)desc.data;
1554 num_msi = hns3_get_field(rte_le_to_cpu_16(req->vf_intr_vector_number),
1555 HNS3_VEC_NUM_M, HNS3_VEC_NUM_S);
1556 if (num_msi < HNS3_MIN_VECTOR_NUM) {
1557 hns3_err(hw, "Just %u msi resources, not enough for vf(min:%d)",
1558 num_msi, HNS3_MIN_VECTOR_NUM);
1562 hw->num_msi = num_msi;
1568 hns3vf_init_hardware(struct hns3_adapter *hns)
1570 struct hns3_hw *hw = &hns->hw;
1571 uint16_t mtu = hw->data->mtu;
1574 ret = hns3vf_set_promisc_mode(hw, true, false, false);
1578 ret = hns3vf_config_mtu(hw, mtu);
1580 goto err_init_hardware;
1582 ret = hns3vf_vlan_filter_configure(hns, 0, 1);
1584 PMD_INIT_LOG(ERR, "Failed to initialize VLAN config: %d", ret);
1585 goto err_init_hardware;
1588 ret = hns3_config_gro(hw, false);
1590 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
1591 goto err_init_hardware;
1595 * In the initialization clearing the all hardware mapping relationship
1596 * configurations between queues and interrupt vectors is needed, so
1597 * some error caused by the residual configurations, such as the
1598 * unexpected interrupt, can be avoid.
1600 ret = hns3vf_init_ring_with_vector(hw);
1602 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
1603 goto err_init_hardware;
1606 ret = hns3vf_set_alive(hw, true);
1608 PMD_INIT_LOG(ERR, "Failed to VF send alive to PF: %d", ret);
1609 goto err_init_hardware;
1612 hns3vf_request_link_info(hw);
1616 (void)hns3vf_set_promisc_mode(hw, false, false, false);
1621 hns3vf_clear_vport_list(struct hns3_hw *hw)
1623 return hns3_send_mbx_msg(hw, HNS3_MBX_HANDLE_VF_TBL,
1624 HNS3_MBX_VPORT_LIST_CLEAR, NULL, 0, false,
1629 hns3vf_init_vf(struct rte_eth_dev *eth_dev)
1631 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1632 struct hns3_adapter *hns = eth_dev->data->dev_private;
1633 struct hns3_hw *hw = &hns->hw;
1636 PMD_INIT_FUNC_TRACE();
1638 /* Get hardware io base address from pcie BAR2 IO space */
1639 hw->io_base = pci_dev->mem_resource[2].addr;
1641 /* Firmware command queue initialize */
1642 ret = hns3_cmd_init_queue(hw);
1644 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
1645 goto err_cmd_init_queue;
1648 /* Firmware command initialize */
1649 ret = hns3_cmd_init(hw);
1651 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
1655 /* Get VF resource */
1656 ret = hns3_query_vf_resource(hw);
1660 rte_spinlock_init(&hw->mbx_resp.lock);
1662 hns3vf_clear_event_cause(hw, 0);
1664 ret = rte_intr_callback_register(&pci_dev->intr_handle,
1665 hns3vf_interrupt_handler, eth_dev);
1667 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
1668 goto err_intr_callback_register;
1671 /* Enable interrupt */
1672 rte_intr_enable(&pci_dev->intr_handle);
1673 hns3vf_enable_irq0(hw);
1675 /* Get configuration from PF */
1676 ret = hns3vf_get_configuration(hw);
1678 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
1679 goto err_get_config;
1683 * The hns3 PF ethdev driver in kernel support setting VF MAC address
1684 * on the host by "ip link set ..." command. To avoid some incorrect
1685 * scenes, for example, hns3 VF PMD driver fails to receive and send
1686 * packets after user configure the MAC address by using the
1687 * "ip link set ..." command, hns3 VF PMD driver keep the same MAC
1688 * address strategy as the hns3 kernel ethdev driver in the
1689 * initialization. If user configure a MAC address by the ip command
1690 * for VF device, then hns3 VF PMD driver will start with it, otherwise
1691 * start with a random MAC address in the initialization.
1693 ret = rte_is_zero_ether_addr((struct rte_ether_addr *)hw->mac.mac_addr);
1695 rte_eth_random_addr(hw->mac.mac_addr);
1697 ret = hns3vf_clear_vport_list(hw);
1699 PMD_INIT_LOG(ERR, "Failed to clear tbl list: %d", ret);
1700 goto err_get_config;
1703 ret = hns3vf_init_hardware(hns);
1705 goto err_get_config;
1707 hns3_set_default_rss_args(hw);
1712 hns3vf_disable_irq0(hw);
1713 rte_intr_disable(&pci_dev->intr_handle);
1714 hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1716 err_intr_callback_register:
1718 hns3_cmd_uninit(hw);
1719 hns3_cmd_destroy_queue(hw);
1727 hns3vf_uninit_vf(struct rte_eth_dev *eth_dev)
1729 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1730 struct hns3_adapter *hns = eth_dev->data->dev_private;
1731 struct hns3_hw *hw = &hns->hw;
1733 PMD_INIT_FUNC_TRACE();
1735 hns3_rss_uninit(hns);
1736 (void)hns3_config_gro(hw, false);
1737 (void)hns3vf_set_alive(hw, false);
1738 (void)hns3vf_set_promisc_mode(hw, false, false, false);
1739 hns3vf_disable_irq0(hw);
1740 rte_intr_disable(&pci_dev->intr_handle);
1741 hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1743 hns3_cmd_uninit(hw);
1744 hns3_cmd_destroy_queue(hw);
1749 hns3vf_do_stop(struct hns3_adapter *hns)
1751 struct hns3_hw *hw = &hns->hw;
1754 hw->mac.link_status = ETH_LINK_DOWN;
1756 if (rte_atomic16_read(&hw->reset.disable_cmd) == 0) {
1757 hns3vf_configure_mac_addr(hns, true);
1760 reset_queue = false;
1761 return hns3_stop_queues(hns, reset_queue);
1765 hns3vf_unmap_rx_interrupt(struct rte_eth_dev *dev)
1767 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1768 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1769 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1770 uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
1771 uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
1774 if (dev->data->dev_conf.intr_conf.rxq == 0)
1777 /* unmap the ring with vector */
1778 if (rte_intr_allow_others(intr_handle)) {
1779 vec = RTE_INTR_VEC_RXTX_OFFSET;
1780 base = RTE_INTR_VEC_RXTX_OFFSET;
1782 if (rte_intr_dp_is_en(intr_handle)) {
1783 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
1784 (void)hns3vf_bind_ring_with_vector(hw, vec, false,
1787 if (vec < base + intr_handle->nb_efd - 1)
1791 /* Clean datapath event and queue/vec mapping */
1792 rte_intr_efd_disable(intr_handle);
1793 if (intr_handle->intr_vec) {
1794 rte_free(intr_handle->intr_vec);
1795 intr_handle->intr_vec = NULL;
1800 hns3vf_dev_stop(struct rte_eth_dev *dev)
1802 struct hns3_adapter *hns = dev->data->dev_private;
1803 struct hns3_hw *hw = &hns->hw;
1805 PMD_INIT_FUNC_TRACE();
1807 hw->adapter_state = HNS3_NIC_STOPPING;
1808 hns3_set_rxtx_function(dev);
1810 /* Disable datapath on secondary process. */
1811 hns3_mp_req_stop_rxtx(dev);
1812 /* Prevent crashes when queues are still in use. */
1813 rte_delay_ms(hw->tqps_num);
1815 rte_spinlock_lock(&hw->lock);
1816 if (rte_atomic16_read(&hw->reset.resetting) == 0) {
1817 hns3vf_do_stop(hns);
1818 hns3vf_unmap_rx_interrupt(dev);
1819 hns3_dev_release_mbufs(hns);
1820 hw->adapter_state = HNS3_NIC_CONFIGURED;
1822 rte_eal_alarm_cancel(hns3vf_service_handler, dev);
1823 rte_spinlock_unlock(&hw->lock);
1827 hns3vf_dev_close(struct rte_eth_dev *eth_dev)
1829 struct hns3_adapter *hns = eth_dev->data->dev_private;
1830 struct hns3_hw *hw = &hns->hw;
1832 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1835 if (hw->adapter_state == HNS3_NIC_STARTED)
1836 hns3vf_dev_stop(eth_dev);
1838 hw->adapter_state = HNS3_NIC_CLOSING;
1839 hns3_reset_abort(hns);
1840 hw->adapter_state = HNS3_NIC_CLOSED;
1841 rte_eal_alarm_cancel(hns3vf_keep_alive_handler, eth_dev);
1842 hns3vf_configure_all_mc_mac_addr(hns, true);
1843 hns3vf_remove_all_vlan_table(hns);
1844 hns3vf_uninit_vf(eth_dev);
1845 hns3_free_all_queues(eth_dev);
1846 rte_free(hw->reset.wait_data);
1847 rte_free(eth_dev->process_private);
1848 eth_dev->process_private = NULL;
1849 hns3_mp_uninit_primary();
1850 hns3_warn(hw, "Close port %d finished", hw->data->port_id);
1854 hns3vf_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
1857 struct hns3_adapter *hns = eth_dev->data->dev_private;
1858 struct hns3_hw *hw = &hns->hw;
1859 uint32_t version = hw->fw_version;
1862 ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
1863 hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
1864 HNS3_FW_VERSION_BYTE3_S),
1865 hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
1866 HNS3_FW_VERSION_BYTE2_S),
1867 hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
1868 HNS3_FW_VERSION_BYTE1_S),
1869 hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
1870 HNS3_FW_VERSION_BYTE0_S));
1871 ret += 1; /* add the size of '\0' */
1872 if (fw_size < (uint32_t)ret)
1879 hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
1880 __rte_unused int wait_to_complete)
1882 struct hns3_adapter *hns = eth_dev->data->dev_private;
1883 struct hns3_hw *hw = &hns->hw;
1884 struct hns3_mac *mac = &hw->mac;
1885 struct rte_eth_link new_link;
1887 memset(&new_link, 0, sizeof(new_link));
1888 switch (mac->link_speed) {
1889 case ETH_SPEED_NUM_10M:
1890 case ETH_SPEED_NUM_100M:
1891 case ETH_SPEED_NUM_1G:
1892 case ETH_SPEED_NUM_10G:
1893 case ETH_SPEED_NUM_25G:
1894 case ETH_SPEED_NUM_40G:
1895 case ETH_SPEED_NUM_50G:
1896 case ETH_SPEED_NUM_100G:
1897 new_link.link_speed = mac->link_speed;
1900 new_link.link_speed = ETH_SPEED_NUM_100M;
1904 new_link.link_duplex = mac->link_duplex;
1905 new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
1906 new_link.link_autoneg =
1907 !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
1909 return rte_eth_linkstatus_set(eth_dev, &new_link);
1913 hns3vf_do_start(struct hns3_adapter *hns, bool reset_queue)
1915 struct hns3_hw *hw = &hns->hw;
1918 ret = hns3vf_set_tc_info(hns);
1922 ret = hns3_start_queues(hns, reset_queue);
1924 hns3_err(hw, "Failed to start queues: %d", ret);
1930 hns3vf_map_rx_interrupt(struct rte_eth_dev *dev)
1932 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1933 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1934 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1935 uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
1936 uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
1937 uint32_t intr_vector;
1941 if (dev->data->dev_conf.intr_conf.rxq == 0)
1944 /* disable uio/vfio intr/eventfd mapping */
1945 rte_intr_disable(intr_handle);
1947 /* check and configure queue intr-vector mapping */
1948 if (rte_intr_cap_multiple(intr_handle) ||
1949 !RTE_ETH_DEV_SRIOV(dev).active) {
1950 intr_vector = hw->used_rx_queues;
1951 /* It creates event fd for each intr vector when MSIX is used */
1952 if (rte_intr_efd_enable(intr_handle, intr_vector))
1955 if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
1956 intr_handle->intr_vec =
1957 rte_zmalloc("intr_vec",
1958 hw->used_rx_queues * sizeof(int), 0);
1959 if (intr_handle->intr_vec == NULL) {
1960 hns3_err(hw, "Failed to allocate %d rx_queues"
1961 " intr_vec", hw->used_rx_queues);
1963 goto vf_alloc_intr_vec_error;
1967 if (rte_intr_allow_others(intr_handle)) {
1968 vec = RTE_INTR_VEC_RXTX_OFFSET;
1969 base = RTE_INTR_VEC_RXTX_OFFSET;
1971 if (rte_intr_dp_is_en(intr_handle)) {
1972 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
1973 ret = hns3vf_bind_ring_with_vector(hw, vec, true,
1977 goto vf_bind_vector_error;
1978 intr_handle->intr_vec[q_id] = vec;
1979 if (vec < base + intr_handle->nb_efd - 1)
1983 rte_intr_enable(intr_handle);
1986 vf_bind_vector_error:
1987 rte_intr_efd_disable(intr_handle);
1988 if (intr_handle->intr_vec) {
1989 free(intr_handle->intr_vec);
1990 intr_handle->intr_vec = NULL;
1993 vf_alloc_intr_vec_error:
1994 rte_intr_efd_disable(intr_handle);
1999 hns3vf_restore_rx_interrupt(struct hns3_hw *hw)
2001 struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
2002 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2003 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2007 if (dev->data->dev_conf.intr_conf.rxq == 0)
2010 if (rte_intr_dp_is_en(intr_handle)) {
2011 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2012 ret = hns3vf_bind_ring_with_vector(hw,
2013 intr_handle->intr_vec[q_id], true,
2014 HNS3_RING_TYPE_RX, q_id);
2024 hns3vf_restore_filter(struct rte_eth_dev *dev)
2026 hns3_restore_rss_filter(dev);
2030 hns3vf_dev_start(struct rte_eth_dev *dev)
2032 struct hns3_adapter *hns = dev->data->dev_private;
2033 struct hns3_hw *hw = &hns->hw;
2036 PMD_INIT_FUNC_TRACE();
2037 if (rte_atomic16_read(&hw->reset.resetting))
2040 rte_spinlock_lock(&hw->lock);
2041 hw->adapter_state = HNS3_NIC_STARTING;
2042 ret = hns3vf_do_start(hns, true);
2044 hw->adapter_state = HNS3_NIC_CONFIGURED;
2045 rte_spinlock_unlock(&hw->lock);
2048 ret = hns3vf_map_rx_interrupt(dev);
2050 hw->adapter_state = HNS3_NIC_CONFIGURED;
2051 rte_spinlock_unlock(&hw->lock);
2054 hw->adapter_state = HNS3_NIC_STARTED;
2055 rte_spinlock_unlock(&hw->lock);
2057 hns3_set_rxtx_function(dev);
2058 hns3_mp_req_start_rxtx(dev);
2059 rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler, dev);
2061 hns3vf_restore_filter(dev);
2063 /* Enable interrupt of all rx queues before enabling queues */
2064 hns3_dev_all_rx_queue_intr_enable(hw, true);
2066 * When finished the initialization, enable queues to receive/transmit
2069 hns3_enable_all_queues(hw, true);
2075 is_vf_reset_done(struct hns3_hw *hw)
2077 #define HNS3_FUN_RST_ING_BITS \
2078 (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) | \
2079 BIT(HNS3_VECTOR0_CORERESET_INT_B) | \
2080 BIT(HNS3_VECTOR0_IMPRESET_INT_B) | \
2081 BIT(HNS3_VECTOR0_FUNCRESET_INT_B))
2085 if (hw->reset.level == HNS3_VF_RESET) {
2086 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
2087 if (val & HNS3_VF_RST_ING_BIT)
2090 val = hns3_read_dev(hw, HNS3_FUN_RST_ING);
2091 if (val & HNS3_FUN_RST_ING_BITS)
2098 hns3vf_is_reset_pending(struct hns3_adapter *hns)
2100 struct hns3_hw *hw = &hns->hw;
2101 enum hns3_reset_level reset;
2103 hns3vf_check_event_cause(hns, NULL);
2104 reset = hns3vf_get_reset_level(hw, &hw->reset.pending);
2105 if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
2106 hns3_warn(hw, "High level reset %d is pending", reset);
2113 hns3vf_wait_hardware_ready(struct hns3_adapter *hns)
2115 struct hns3_hw *hw = &hns->hw;
2116 struct hns3_wait_data *wait_data = hw->reset.wait_data;
2119 if (wait_data->result == HNS3_WAIT_SUCCESS) {
2121 * After vf reset is ready, the PF may not have completed
2122 * the reset processing. The vf sending mbox to PF may fail
2123 * during the pf reset, so it is better to add extra delay.
2125 if (hw->reset.level == HNS3_VF_FUNC_RESET ||
2126 hw->reset.level == HNS3_FLR_RESET)
2128 /* Reset retry process, no need to add extra delay. */
2129 if (hw->reset.attempts)
2131 if (wait_data->check_completion == NULL)
2134 wait_data->check_completion = NULL;
2135 wait_data->interval = 1 * MSEC_PER_SEC * USEC_PER_MSEC;
2136 wait_data->count = 1;
2137 wait_data->result = HNS3_WAIT_REQUEST;
2138 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback,
2140 hns3_warn(hw, "hardware is ready, delay 1 sec for PF reset complete");
2142 } else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
2143 gettimeofday(&tv, NULL);
2144 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
2145 tv.tv_sec, tv.tv_usec);
2147 } else if (wait_data->result == HNS3_WAIT_REQUEST)
2150 wait_data->hns = hns;
2151 wait_data->check_completion = is_vf_reset_done;
2152 wait_data->end_ms = (uint64_t)HNS3VF_RESET_WAIT_CNT *
2153 HNS3VF_RESET_WAIT_MS + get_timeofday_ms();
2154 wait_data->interval = HNS3VF_RESET_WAIT_MS * USEC_PER_MSEC;
2155 wait_data->count = HNS3VF_RESET_WAIT_CNT;
2156 wait_data->result = HNS3_WAIT_REQUEST;
2157 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
2162 hns3vf_prepare_reset(struct hns3_adapter *hns)
2164 struct hns3_hw *hw = &hns->hw;
2167 if (hw->reset.level == HNS3_VF_FUNC_RESET) {
2168 ret = hns3_send_mbx_msg(hw, HNS3_MBX_RESET, 0, NULL,
2171 rte_atomic16_set(&hw->reset.disable_cmd, 1);
2177 hns3vf_stop_service(struct hns3_adapter *hns)
2179 struct hns3_hw *hw = &hns->hw;
2180 struct rte_eth_dev *eth_dev;
2182 eth_dev = &rte_eth_devices[hw->data->port_id];
2183 if (hw->adapter_state == HNS3_NIC_STARTED)
2184 rte_eal_alarm_cancel(hns3vf_service_handler, eth_dev);
2185 hw->mac.link_status = ETH_LINK_DOWN;
2187 hns3_set_rxtx_function(eth_dev);
2189 /* Disable datapath on secondary process. */
2190 hns3_mp_req_stop_rxtx(eth_dev);
2191 rte_delay_ms(hw->tqps_num);
2193 rte_spinlock_lock(&hw->lock);
2194 if (hw->adapter_state == HNS3_NIC_STARTED ||
2195 hw->adapter_state == HNS3_NIC_STOPPING) {
2196 hns3vf_do_stop(hns);
2197 hw->reset.mbuf_deferred_free = true;
2199 hw->reset.mbuf_deferred_free = false;
2202 * It is cumbersome for hardware to pick-and-choose entries for deletion
2203 * from table space. Hence, for function reset software intervention is
2204 * required to delete the entries.
2206 if (rte_atomic16_read(&hw->reset.disable_cmd) == 0)
2207 hns3vf_configure_all_mc_mac_addr(hns, true);
2208 rte_spinlock_unlock(&hw->lock);
2214 hns3vf_start_service(struct hns3_adapter *hns)
2216 struct hns3_hw *hw = &hns->hw;
2217 struct rte_eth_dev *eth_dev;
2219 eth_dev = &rte_eth_devices[hw->data->port_id];
2220 hns3_set_rxtx_function(eth_dev);
2221 hns3_mp_req_start_rxtx(eth_dev);
2222 if (hw->adapter_state == HNS3_NIC_STARTED) {
2223 hns3vf_service_handler(eth_dev);
2225 /* Enable interrupt of all rx queues before enabling queues */
2226 hns3_dev_all_rx_queue_intr_enable(hw, true);
2228 * When finished the initialization, enable queues to receive
2229 * and transmit packets.
2231 hns3_enable_all_queues(hw, true);
2238 hns3vf_check_default_mac_change(struct hns3_hw *hw)
2240 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2241 struct rte_ether_addr *hw_mac;
2245 * The hns3 PF ethdev driver in kernel support setting VF MAC address
2246 * on the host by "ip link set ..." command. If the hns3 PF kernel
2247 * ethdev driver sets the MAC address for VF device after the
2248 * initialization of the related VF device, the PF driver will notify
2249 * VF driver to reset VF device to make the new MAC address effective
2250 * immediately. The hns3 VF PMD driver should check whether the MAC
2251 * address has been changed by the PF kernel ethdev driver, if changed
2252 * VF driver should configure hardware using the new MAC address in the
2253 * recovering hardware configuration stage of the reset process.
2255 ret = hns3vf_get_host_mac_addr(hw);
2259 hw_mac = (struct rte_ether_addr *)hw->mac.mac_addr;
2260 ret = rte_is_zero_ether_addr(hw_mac);
2262 rte_ether_addr_copy(&hw->data->mac_addrs[0], hw_mac);
2264 ret = rte_is_same_ether_addr(&hw->data->mac_addrs[0], hw_mac);
2266 rte_ether_addr_copy(hw_mac, &hw->data->mac_addrs[0]);
2267 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2268 &hw->data->mac_addrs[0]);
2269 hns3_warn(hw, "Default MAC address has been changed to:"
2270 " %s by the host PF kernel ethdev driver",
2279 hns3vf_restore_conf(struct hns3_adapter *hns)
2281 struct hns3_hw *hw = &hns->hw;
2284 ret = hns3vf_check_default_mac_change(hw);
2288 ret = hns3vf_configure_mac_addr(hns, false);
2292 ret = hns3vf_configure_all_mc_mac_addr(hns, false);
2296 ret = hns3vf_restore_promisc(hns);
2298 goto err_vlan_table;
2300 ret = hns3vf_restore_vlan_conf(hns);
2302 goto err_vlan_table;
2304 ret = hns3vf_get_port_base_vlan_filter_state(hw);
2306 goto err_vlan_table;
2308 ret = hns3vf_restore_rx_interrupt(hw);
2310 goto err_vlan_table;
2312 ret = hns3_restore_gro_conf(hw);
2314 goto err_vlan_table;
2316 if (hw->adapter_state == HNS3_NIC_STARTED) {
2317 ret = hns3vf_do_start(hns, false);
2319 goto err_vlan_table;
2320 hns3_info(hw, "hns3vf dev restart successful!");
2321 } else if (hw->adapter_state == HNS3_NIC_STOPPING)
2322 hw->adapter_state = HNS3_NIC_CONFIGURED;
2326 hns3vf_configure_all_mc_mac_addr(hns, true);
2328 hns3vf_configure_mac_addr(hns, true);
2332 static enum hns3_reset_level
2333 hns3vf_get_reset_level(struct hns3_hw *hw, uint64_t *levels)
2335 enum hns3_reset_level reset_level;
2337 /* return the highest priority reset level amongst all */
2338 if (hns3_atomic_test_bit(HNS3_VF_RESET, levels))
2339 reset_level = HNS3_VF_RESET;
2340 else if (hns3_atomic_test_bit(HNS3_VF_FULL_RESET, levels))
2341 reset_level = HNS3_VF_FULL_RESET;
2342 else if (hns3_atomic_test_bit(HNS3_VF_PF_FUNC_RESET, levels))
2343 reset_level = HNS3_VF_PF_FUNC_RESET;
2344 else if (hns3_atomic_test_bit(HNS3_VF_FUNC_RESET, levels))
2345 reset_level = HNS3_VF_FUNC_RESET;
2346 else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
2347 reset_level = HNS3_FLR_RESET;
2349 reset_level = HNS3_NONE_RESET;
2351 if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
2352 return HNS3_NONE_RESET;
2358 hns3vf_reset_service(void *param)
2360 struct hns3_adapter *hns = (struct hns3_adapter *)param;
2361 struct hns3_hw *hw = &hns->hw;
2362 enum hns3_reset_level reset_level;
2363 struct timeval tv_delta;
2364 struct timeval tv_start;
2369 * The interrupt is not triggered within the delay time.
2370 * The interrupt may have been lost. It is necessary to handle
2371 * the interrupt to recover from the error.
2373 if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_DEFERRED) {
2374 rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_REQUESTED);
2375 hns3_err(hw, "Handling interrupts in delayed tasks");
2376 hns3vf_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
2377 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2378 if (reset_level == HNS3_NONE_RESET) {
2379 hns3_err(hw, "No reset level is set, try global reset");
2380 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
2383 rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_NONE);
2386 * Hardware reset has been notified, we now have to poll & check if
2387 * hardware has actually completed the reset sequence.
2389 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2390 if (reset_level != HNS3_NONE_RESET) {
2391 gettimeofday(&tv_start, NULL);
2392 hns3_reset_process(hns, reset_level);
2393 gettimeofday(&tv, NULL);
2394 timersub(&tv, &tv_start, &tv_delta);
2395 msec = tv_delta.tv_sec * MSEC_PER_SEC +
2396 tv_delta.tv_usec / USEC_PER_MSEC;
2397 if (msec > HNS3_RESET_PROCESS_MS)
2398 hns3_err(hw, "%d handle long time delta %" PRIx64
2399 " ms time=%ld.%.6ld",
2400 hw->reset.level, msec, tv.tv_sec, tv.tv_usec);
2405 hns3vf_reinit_dev(struct hns3_adapter *hns)
2407 struct rte_eth_dev *eth_dev = &rte_eth_devices[hns->hw.data->port_id];
2408 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2409 struct hns3_hw *hw = &hns->hw;
2412 if (hw->reset.level == HNS3_VF_FULL_RESET) {
2413 rte_intr_disable(&pci_dev->intr_handle);
2414 hns3vf_set_bus_master(pci_dev, true);
2417 /* Firmware command initialize */
2418 ret = hns3_cmd_init(hw);
2420 hns3_err(hw, "Failed to init cmd: %d", ret);
2424 if (hw->reset.level == HNS3_VF_FULL_RESET) {
2426 * UIO enables msix by writing the pcie configuration space
2427 * vfio_pci enables msix in rte_intr_enable.
2429 if (pci_dev->kdrv == RTE_KDRV_IGB_UIO ||
2430 pci_dev->kdrv == RTE_KDRV_UIO_GENERIC) {
2431 if (hns3vf_enable_msix(pci_dev, true))
2432 hns3_err(hw, "Failed to enable msix");
2435 rte_intr_enable(&pci_dev->intr_handle);
2438 ret = hns3_reset_all_queues(hns);
2440 hns3_err(hw, "Failed to reset all queues: %d", ret);
2444 ret = hns3vf_init_hardware(hns);
2446 hns3_err(hw, "Failed to init hardware: %d", ret);
2453 static const struct eth_dev_ops hns3vf_eth_dev_ops = {
2454 .dev_start = hns3vf_dev_start,
2455 .dev_stop = hns3vf_dev_stop,
2456 .dev_close = hns3vf_dev_close,
2457 .mtu_set = hns3vf_dev_mtu_set,
2458 .promiscuous_enable = hns3vf_dev_promiscuous_enable,
2459 .promiscuous_disable = hns3vf_dev_promiscuous_disable,
2460 .allmulticast_enable = hns3vf_dev_allmulticast_enable,
2461 .allmulticast_disable = hns3vf_dev_allmulticast_disable,
2462 .stats_get = hns3_stats_get,
2463 .stats_reset = hns3_stats_reset,
2464 .xstats_get = hns3_dev_xstats_get,
2465 .xstats_get_names = hns3_dev_xstats_get_names,
2466 .xstats_reset = hns3_dev_xstats_reset,
2467 .xstats_get_by_id = hns3_dev_xstats_get_by_id,
2468 .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
2469 .dev_infos_get = hns3vf_dev_infos_get,
2470 .fw_version_get = hns3vf_fw_version_get,
2471 .rx_queue_setup = hns3_rx_queue_setup,
2472 .tx_queue_setup = hns3_tx_queue_setup,
2473 .rx_queue_release = hns3_dev_rx_queue_release,
2474 .tx_queue_release = hns3_dev_tx_queue_release,
2475 .rx_queue_intr_enable = hns3_dev_rx_queue_intr_enable,
2476 .rx_queue_intr_disable = hns3_dev_rx_queue_intr_disable,
2477 .dev_configure = hns3vf_dev_configure,
2478 .mac_addr_add = hns3vf_add_mac_addr,
2479 .mac_addr_remove = hns3vf_remove_mac_addr,
2480 .mac_addr_set = hns3vf_set_default_mac_addr,
2481 .set_mc_addr_list = hns3vf_set_mc_mac_addr_list,
2482 .link_update = hns3vf_dev_link_update,
2483 .rss_hash_update = hns3_dev_rss_hash_update,
2484 .rss_hash_conf_get = hns3_dev_rss_hash_conf_get,
2485 .reta_update = hns3_dev_rss_reta_update,
2486 .reta_query = hns3_dev_rss_reta_query,
2487 .filter_ctrl = hns3_dev_filter_ctrl,
2488 .vlan_filter_set = hns3vf_vlan_filter_set,
2489 .vlan_offload_set = hns3vf_vlan_offload_set,
2490 .get_reg = hns3_get_regs,
2491 .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
2494 static const struct hns3_reset_ops hns3vf_reset_ops = {
2495 .reset_service = hns3vf_reset_service,
2496 .stop_service = hns3vf_stop_service,
2497 .prepare_reset = hns3vf_prepare_reset,
2498 .wait_hardware_ready = hns3vf_wait_hardware_ready,
2499 .reinit_dev = hns3vf_reinit_dev,
2500 .restore_conf = hns3vf_restore_conf,
2501 .start_service = hns3vf_start_service,
2505 hns3vf_dev_init(struct rte_eth_dev *eth_dev)
2507 struct hns3_adapter *hns = eth_dev->data->dev_private;
2508 struct hns3_hw *hw = &hns->hw;
2511 PMD_INIT_FUNC_TRACE();
2513 eth_dev->process_private = (struct hns3_process_private *)
2514 rte_zmalloc_socket("hns3_filter_list",
2515 sizeof(struct hns3_process_private),
2516 RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
2517 if (eth_dev->process_private == NULL) {
2518 PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
2522 /* initialize flow filter lists */
2523 hns3_filterlist_init(eth_dev);
2525 hns3_set_rxtx_function(eth_dev);
2526 eth_dev->dev_ops = &hns3vf_eth_dev_ops;
2527 if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2528 hns3_mp_init_secondary();
2529 hw->secondary_cnt++;
2533 hns3_mp_init_primary();
2535 hw->adapter_state = HNS3_NIC_UNINITIALIZED;
2537 hw->data = eth_dev->data;
2539 ret = hns3_reset_init(hw);
2541 goto err_init_reset;
2542 hw->reset.ops = &hns3vf_reset_ops;
2544 ret = hns3vf_init_vf(eth_dev);
2546 PMD_INIT_LOG(ERR, "Failed to init vf: %d", ret);
2550 /* Allocate memory for storing MAC addresses */
2551 eth_dev->data->mac_addrs = rte_zmalloc("hns3vf-mac",
2552 sizeof(struct rte_ether_addr) *
2553 HNS3_VF_UC_MACADDR_NUM, 0);
2554 if (eth_dev->data->mac_addrs == NULL) {
2555 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
2556 "to store MAC addresses",
2557 sizeof(struct rte_ether_addr) *
2558 HNS3_VF_UC_MACADDR_NUM);
2560 goto err_rte_zmalloc;
2563 rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
2564 ð_dev->data->mac_addrs[0]);
2565 hw->adapter_state = HNS3_NIC_INITIALIZED;
2567 * Pass the information to the rte_eth_dev_close() that it should also
2568 * release the private port resources.
2570 eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
2572 if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_PENDING) {
2573 hns3_err(hw, "Reschedule reset service after dev_init");
2574 hns3_schedule_reset(hns);
2576 /* IMP will wait ready flag before reset */
2577 hns3_notify_reset_ready(hw, false);
2579 rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
2584 hns3vf_uninit_vf(eth_dev);
2587 rte_free(hw->reset.wait_data);
2590 eth_dev->dev_ops = NULL;
2591 eth_dev->rx_pkt_burst = NULL;
2592 eth_dev->tx_pkt_burst = NULL;
2593 eth_dev->tx_pkt_prepare = NULL;
2594 rte_free(eth_dev->process_private);
2595 eth_dev->process_private = NULL;
2601 hns3vf_dev_uninit(struct rte_eth_dev *eth_dev)
2603 struct hns3_adapter *hns = eth_dev->data->dev_private;
2604 struct hns3_hw *hw = &hns->hw;
2606 PMD_INIT_FUNC_TRACE();
2608 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2611 eth_dev->dev_ops = NULL;
2612 eth_dev->rx_pkt_burst = NULL;
2613 eth_dev->tx_pkt_burst = NULL;
2614 eth_dev->tx_pkt_prepare = NULL;
2616 if (hw->adapter_state < HNS3_NIC_CLOSING)
2617 hns3vf_dev_close(eth_dev);
2619 hw->adapter_state = HNS3_NIC_REMOVED;
2624 eth_hns3vf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2625 struct rte_pci_device *pci_dev)
2627 return rte_eth_dev_pci_generic_probe(pci_dev,
2628 sizeof(struct hns3_adapter),
2633 eth_hns3vf_pci_remove(struct rte_pci_device *pci_dev)
2635 return rte_eth_dev_pci_generic_remove(pci_dev, hns3vf_dev_uninit);
2638 static const struct rte_pci_id pci_id_hns3vf_map[] = {
2639 { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_VF) },
2640 { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_PFC_VF) },
2641 { .vendor_id = 0, /* sentinel */ },
2644 static struct rte_pci_driver rte_hns3vf_pmd = {
2645 .id_table = pci_id_hns3vf_map,
2646 .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
2647 .probe = eth_hns3vf_pci_probe,
2648 .remove = eth_hns3vf_pci_remove,
2651 RTE_PMD_REGISTER_PCI(net_hns3_vf, rte_hns3vf_pmd);
2652 RTE_PMD_REGISTER_PCI_TABLE(net_hns3_vf, pci_id_hns3vf_map);
2653 RTE_PMD_REGISTER_KMOD_DEP(net_hns3_vf, "* igb_uio | vfio-pci");