net/hns3: fix Rx interrupt after reset
[dpdk.git] / drivers / net / hns3 / hns3_ethdev_vf.c
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4
5 #include <errno.h>
6 #include <stdio.h>
7 #include <stdbool.h>
8 #include <string.h>
9 #include <inttypes.h>
10 #include <unistd.h>
11 #include <arpa/inet.h>
12 #include <linux/pci_regs.h>
13
14 #include <rte_alarm.h>
15 #include <rte_atomic.h>
16 #include <rte_bus_pci.h>
17 #include <rte_byteorder.h>
18 #include <rte_common.h>
19 #include <rte_cycles.h>
20 #include <rte_dev.h>
21 #include <rte_eal.h>
22 #include <rte_ether.h>
23 #include <rte_ethdev_driver.h>
24 #include <rte_ethdev_pci.h>
25 #include <rte_interrupts.h>
26 #include <rte_io.h>
27 #include <rte_log.h>
28 #include <rte_pci.h>
29 #include <rte_vfio.h>
30
31 #include "hns3_ethdev.h"
32 #include "hns3_logs.h"
33 #include "hns3_rxtx.h"
34 #include "hns3_regs.h"
35 #include "hns3_intr.h"
36 #include "hns3_dcb.h"
37 #include "hns3_mp.h"
38
39 #define HNS3VF_KEEP_ALIVE_INTERVAL      2000000 /* us */
40 #define HNS3VF_SERVICE_INTERVAL         1000000 /* us */
41
42 #define HNS3VF_RESET_WAIT_MS    20
43 #define HNS3VF_RESET_WAIT_CNT   2000
44
45 /* Reset related Registers */
46 #define HNS3_GLOBAL_RESET_BIT           0
47 #define HNS3_CORE_RESET_BIT             1
48 #define HNS3_IMP_RESET_BIT              2
49 #define HNS3_FUN_RST_ING_B              0
50
51 enum hns3vf_evt_cause {
52         HNS3VF_VECTOR0_EVENT_RST,
53         HNS3VF_VECTOR0_EVENT_MBX,
54         HNS3VF_VECTOR0_EVENT_OTHER,
55 };
56
57 static enum hns3_reset_level hns3vf_get_reset_level(struct hns3_hw *hw,
58                                                     uint64_t *levels);
59 static int hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
60 static int hns3vf_dev_configure_vlan(struct rte_eth_dev *dev);
61
62 static int hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
63                                   struct rte_ether_addr *mac_addr);
64 static int hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
65                                      struct rte_ether_addr *mac_addr);
66 /* set PCI bus mastering */
67 static void
68 hns3vf_set_bus_master(const struct rte_pci_device *device, bool op)
69 {
70         uint16_t reg;
71
72         rte_pci_read_config(device, &reg, sizeof(reg), PCI_COMMAND);
73
74         if (op)
75                 /* set the master bit */
76                 reg |= PCI_COMMAND_MASTER;
77         else
78                 reg &= ~(PCI_COMMAND_MASTER);
79
80         rte_pci_write_config(device, &reg, sizeof(reg), PCI_COMMAND);
81 }
82
83 /**
84  * hns3vf_find_pci_capability - lookup a capability in the PCI capability list
85  * @cap: the capability
86  *
87  * Return the address of the given capability within the PCI capability list.
88  */
89 static int
90 hns3vf_find_pci_capability(const struct rte_pci_device *device, int cap)
91 {
92 #define MAX_PCIE_CAPABILITY 48
93         uint16_t status;
94         uint8_t pos;
95         uint8_t id;
96         int ttl;
97
98         rte_pci_read_config(device, &status, sizeof(status), PCI_STATUS);
99         if (!(status & PCI_STATUS_CAP_LIST))
100                 return 0;
101
102         ttl = MAX_PCIE_CAPABILITY;
103         rte_pci_read_config(device, &pos, sizeof(pos), PCI_CAPABILITY_LIST);
104         while (ttl-- && pos >= PCI_STD_HEADER_SIZEOF) {
105                 rte_pci_read_config(device, &id, sizeof(id),
106                                     (pos + PCI_CAP_LIST_ID));
107
108                 if (id == 0xFF)
109                         break;
110
111                 if (id == cap)
112                         return (int)pos;
113
114                 rte_pci_read_config(device, &pos, sizeof(pos),
115                                     (pos + PCI_CAP_LIST_NEXT));
116         }
117         return 0;
118 }
119
120 static int
121 hns3vf_enable_msix(const struct rte_pci_device *device, bool op)
122 {
123         uint16_t control;
124         int pos;
125
126         pos = hns3vf_find_pci_capability(device, PCI_CAP_ID_MSIX);
127         if (pos) {
128                 rte_pci_read_config(device, &control, sizeof(control),
129                                     (pos + PCI_MSIX_FLAGS));
130                 if (op)
131                         control |= PCI_MSIX_FLAGS_ENABLE;
132                 else
133                         control &= ~PCI_MSIX_FLAGS_ENABLE;
134                 rte_pci_write_config(device, &control, sizeof(control),
135                                      (pos + PCI_MSIX_FLAGS));
136                 return 0;
137         }
138         return -ENXIO;
139 }
140
141 static int
142 hns3vf_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
143 {
144         /* mac address was checked by upper level interface */
145         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
146         int ret;
147
148         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
149                                 HNS3_MBX_MAC_VLAN_UC_ADD, mac_addr->addr_bytes,
150                                 RTE_ETHER_ADDR_LEN, false, NULL, 0);
151         if (ret) {
152                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
153                                       mac_addr);
154                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
155                          mac_str, ret);
156         }
157         return ret;
158 }
159
160 static int
161 hns3vf_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
162 {
163         /* mac address was checked by upper level interface */
164         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
165         int ret;
166
167         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
168                                 HNS3_MBX_MAC_VLAN_UC_REMOVE,
169                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN,
170                                 false, NULL, 0);
171         if (ret) {
172                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
173                                       mac_addr);
174                 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
175                          mac_str, ret);
176         }
177         return ret;
178 }
179
180 static int
181 hns3vf_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
182 {
183         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
184         struct rte_ether_addr *addr;
185         int ret;
186         int i;
187
188         for (i = 0; i < hw->mc_addrs_num; i++) {
189                 addr = &hw->mc_addrs[i];
190                 /* Check if there are duplicate addresses */
191                 if (rte_is_same_ether_addr(addr, mac_addr)) {
192                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
193                                               addr);
194                         hns3_err(hw, "failed to add mc mac addr, same addrs"
195                                  "(%s) is added by the set_mc_mac_addr_list "
196                                  "API", mac_str);
197                         return -EINVAL;
198                 }
199         }
200
201         ret = hns3vf_add_mc_mac_addr(hw, mac_addr);
202         if (ret) {
203                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
204                                       mac_addr);
205                 hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
206                          mac_str, ret);
207         }
208         return ret;
209 }
210
211 static int
212 hns3vf_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
213                     __rte_unused uint32_t idx,
214                     __rte_unused uint32_t pool)
215 {
216         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
217         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
218         int ret;
219
220         rte_spinlock_lock(&hw->lock);
221
222         /*
223          * In hns3 network engine adding UC and MC mac address with different
224          * commands with firmware. We need to determine whether the input
225          * address is a UC or a MC address to call different commands.
226          * By the way, it is recommended calling the API function named
227          * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
228          * using the rte_eth_dev_mac_addr_add API function to set MC mac address
229          * may affect the specifications of UC mac addresses.
230          */
231         if (rte_is_multicast_ether_addr(mac_addr))
232                 ret = hns3vf_add_mc_addr_common(hw, mac_addr);
233         else
234                 ret = hns3vf_add_uc_mac_addr(hw, mac_addr);
235
236         rte_spinlock_unlock(&hw->lock);
237         if (ret) {
238                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
239                                       mac_addr);
240                 hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
241                          ret);
242         }
243
244         return ret;
245 }
246
247 static void
248 hns3vf_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
249 {
250         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
251         /* index will be checked by upper level rte interface */
252         struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
253         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
254         int ret;
255
256         rte_spinlock_lock(&hw->lock);
257
258         if (rte_is_multicast_ether_addr(mac_addr))
259                 ret = hns3vf_remove_mc_mac_addr(hw, mac_addr);
260         else
261                 ret = hns3vf_remove_uc_mac_addr(hw, mac_addr);
262
263         rte_spinlock_unlock(&hw->lock);
264         if (ret) {
265                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
266                                       mac_addr);
267                 hns3_err(hw, "failed to remove mac addr(%s), ret = %d",
268                          mac_str, ret);
269         }
270 }
271
272 static int
273 hns3vf_set_default_mac_addr(struct rte_eth_dev *dev,
274                             struct rte_ether_addr *mac_addr)
275 {
276 #define HNS3_TWO_ETHER_ADDR_LEN (RTE_ETHER_ADDR_LEN * 2)
277         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
278         struct rte_ether_addr *old_addr;
279         uint8_t addr_bytes[HNS3_TWO_ETHER_ADDR_LEN]; /* for 2 MAC addresses */
280         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
281         int ret;
282
283         /*
284          * It has been guaranteed that input parameter named mac_addr is valid
285          * address in the rte layer of DPDK framework.
286          */
287         old_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
288         rte_spinlock_lock(&hw->lock);
289         memcpy(addr_bytes, mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN);
290         memcpy(&addr_bytes[RTE_ETHER_ADDR_LEN], old_addr->addr_bytes,
291                RTE_ETHER_ADDR_LEN);
292
293         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
294                                 HNS3_MBX_MAC_VLAN_UC_MODIFY, addr_bytes,
295                                 HNS3_TWO_ETHER_ADDR_LEN, true, NULL, 0);
296         if (ret) {
297                 /*
298                  * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev
299                  * driver. When user has configured a MAC address for VF device
300                  * by "ip link set ..." command based on the PF device, the hns3
301                  * PF kernel ethdev driver does not allow VF driver to request
302                  * reconfiguring a different default MAC address, and return
303                  * -EPREM to VF driver through mailbox.
304                  */
305                 if (ret == -EPERM) {
306                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
307                                               old_addr);
308                         hns3_warn(hw, "Has permanet mac addr(%s) for vf",
309                                   mac_str);
310                 } else {
311                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
312                                               mac_addr);
313                         hns3_err(hw, "Failed to set mac addr(%s) for vf: %d",
314                                  mac_str, ret);
315                 }
316         }
317
318         rte_ether_addr_copy(mac_addr,
319                             (struct rte_ether_addr *)hw->mac.mac_addr);
320         rte_spinlock_unlock(&hw->lock);
321
322         return ret;
323 }
324
325 static int
326 hns3vf_configure_mac_addr(struct hns3_adapter *hns, bool del)
327 {
328         struct hns3_hw *hw = &hns->hw;
329         struct rte_ether_addr *addr;
330         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
331         int err = 0;
332         int ret;
333         int i;
334
335         for (i = 0; i < HNS3_VF_UC_MACADDR_NUM; i++) {
336                 addr = &hw->data->mac_addrs[i];
337                 if (rte_is_zero_ether_addr(addr))
338                         continue;
339                 if (rte_is_multicast_ether_addr(addr))
340                         ret = del ? hns3vf_remove_mc_mac_addr(hw, addr) :
341                               hns3vf_add_mc_mac_addr(hw, addr);
342                 else
343                         ret = del ? hns3vf_remove_uc_mac_addr(hw, addr) :
344                               hns3vf_add_uc_mac_addr(hw, addr);
345
346                 if (ret) {
347                         err = ret;
348                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
349                                               addr);
350                         hns3_err(hw, "failed to %s mac addr(%s) index:%d "
351                                  "ret = %d.", del ? "remove" : "restore",
352                                  mac_str, i, ret);
353                 }
354         }
355         return err;
356 }
357
358 static int
359 hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
360                        struct rte_ether_addr *mac_addr)
361 {
362         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
363         int ret;
364
365         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
366                                 HNS3_MBX_MAC_VLAN_MC_ADD,
367                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
368                                 NULL, 0);
369         if (ret) {
370                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
371                                       mac_addr);
372                 hns3_err(hw, "Failed to add mc mac addr(%s) for vf: %d",
373                          mac_str, ret);
374         }
375
376         return ret;
377 }
378
379 static int
380 hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
381                           struct rte_ether_addr *mac_addr)
382 {
383         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
384         int ret;
385
386         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
387                                 HNS3_MBX_MAC_VLAN_MC_REMOVE,
388                                 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
389                                 NULL, 0);
390         if (ret) {
391                 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
392                                       mac_addr);
393                 hns3_err(hw, "Failed to remove mc mac addr(%s) for vf: %d",
394                          mac_str, ret);
395         }
396
397         return ret;
398 }
399
400 static int
401 hns3vf_set_mc_addr_chk_param(struct hns3_hw *hw,
402                              struct rte_ether_addr *mc_addr_set,
403                              uint32_t nb_mc_addr)
404 {
405         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
406         struct rte_ether_addr *addr;
407         uint32_t i;
408         uint32_t j;
409
410         if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
411                 hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%d) "
412                          "invalid. valid range: 0~%d",
413                          nb_mc_addr, HNS3_MC_MACADDR_NUM);
414                 return -EINVAL;
415         }
416
417         /* Check if input mac addresses are valid */
418         for (i = 0; i < nb_mc_addr; i++) {
419                 addr = &mc_addr_set[i];
420                 if (!rte_is_multicast_ether_addr(addr)) {
421                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
422                                               addr);
423                         hns3_err(hw,
424                                  "failed to set mc mac addr, addr(%s) invalid.",
425                                  mac_str);
426                         return -EINVAL;
427                 }
428
429                 /* Check if there are duplicate addresses */
430                 for (j = i + 1; j < nb_mc_addr; j++) {
431                         if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
432                                 rte_ether_format_addr(mac_str,
433                                                       RTE_ETHER_ADDR_FMT_SIZE,
434                                                       addr);
435                                 hns3_err(hw, "failed to set mc mac addr, "
436                                          "addrs invalid. two same addrs(%s).",
437                                          mac_str);
438                                 return -EINVAL;
439                         }
440                 }
441
442                 /*
443                  * Check if there are duplicate addresses between mac_addrs
444                  * and mc_addr_set
445                  */
446                 for (j = 0; j < HNS3_VF_UC_MACADDR_NUM; j++) {
447                         if (rte_is_same_ether_addr(addr,
448                                                    &hw->data->mac_addrs[j])) {
449                                 rte_ether_format_addr(mac_str,
450                                                       RTE_ETHER_ADDR_FMT_SIZE,
451                                                       addr);
452                                 hns3_err(hw, "failed to set mc mac addr, "
453                                          "addrs invalid. addrs(%s) has already "
454                                          "configured in mac_addr add API",
455                                          mac_str);
456                                 return -EINVAL;
457                         }
458                 }
459         }
460
461         return 0;
462 }
463
464 static int
465 hns3vf_set_mc_mac_addr_list(struct rte_eth_dev *dev,
466                             struct rte_ether_addr *mc_addr_set,
467                             uint32_t nb_mc_addr)
468 {
469         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
470         struct rte_ether_addr *addr;
471         int cur_addr_num;
472         int set_addr_num;
473         int num;
474         int ret;
475         int i;
476
477         ret = hns3vf_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
478         if (ret)
479                 return ret;
480
481         rte_spinlock_lock(&hw->lock);
482         cur_addr_num = hw->mc_addrs_num;
483         for (i = 0; i < cur_addr_num; i++) {
484                 num = cur_addr_num - i - 1;
485                 addr = &hw->mc_addrs[num];
486                 ret = hns3vf_remove_mc_mac_addr(hw, addr);
487                 if (ret) {
488                         rte_spinlock_unlock(&hw->lock);
489                         return ret;
490                 }
491
492                 hw->mc_addrs_num--;
493         }
494
495         set_addr_num = (int)nb_mc_addr;
496         for (i = 0; i < set_addr_num; i++) {
497                 addr = &mc_addr_set[i];
498                 ret = hns3vf_add_mc_mac_addr(hw, addr);
499                 if (ret) {
500                         rte_spinlock_unlock(&hw->lock);
501                         return ret;
502                 }
503
504                 rte_ether_addr_copy(addr, &hw->mc_addrs[hw->mc_addrs_num]);
505                 hw->mc_addrs_num++;
506         }
507         rte_spinlock_unlock(&hw->lock);
508
509         return 0;
510 }
511
512 static int
513 hns3vf_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
514 {
515         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
516         struct hns3_hw *hw = &hns->hw;
517         struct rte_ether_addr *addr;
518         int err = 0;
519         int ret;
520         int i;
521
522         for (i = 0; i < hw->mc_addrs_num; i++) {
523                 addr = &hw->mc_addrs[i];
524                 if (!rte_is_multicast_ether_addr(addr))
525                         continue;
526                 if (del)
527                         ret = hns3vf_remove_mc_mac_addr(hw, addr);
528                 else
529                         ret = hns3vf_add_mc_mac_addr(hw, addr);
530                 if (ret) {
531                         err = ret;
532                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
533                                               addr);
534                         hns3_err(hw, "Failed to %s mc mac addr: %s for vf: %d",
535                                  del ? "Remove" : "Restore", mac_str, ret);
536                 }
537         }
538         return err;
539 }
540
541 static int
542 hns3vf_set_promisc_mode(struct hns3_hw *hw, bool en_bc_pmc,
543                         bool en_uc_pmc, bool en_mc_pmc)
544 {
545         struct hns3_mbx_vf_to_pf_cmd *req;
546         struct hns3_cmd_desc desc;
547         int ret;
548
549         req = (struct hns3_mbx_vf_to_pf_cmd *)desc.data;
550
551         /*
552          * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev driver,
553          * so there are some features for promiscuous/allmulticast mode in hns3
554          * VF PMD driver as below:
555          * 1. The promiscuous/allmulticast mode can be configured successfully
556          *    only based on the trusted VF device. If based on the non trusted
557          *    VF device, configuring promiscuous/allmulticast mode will fail.
558          *    The hns3 VF device can be confiruged as trusted device by hns3 PF
559          *    kernel ethdev driver on the host by the following command:
560          *      "ip link set <eth num> vf <vf id> turst on"
561          * 2. After the promiscuous mode is configured successfully, hns3 VF PMD
562          *    driver can receive the ingress and outgoing traffic. In the words,
563          *    all the ingress packets, all the packets sent from the PF and
564          *    other VFs on the same physical port.
565          * 3. Note: Because of the hardware constraints, By default vlan filter
566          *    is enabled and couldn't be turned off based on VF device, so vlan
567          *    filter is still effective even in promiscuous mode. If upper
568          *    applications don't call rte_eth_dev_vlan_filter API function to
569          *    set vlan based on VF device, hns3 VF PMD driver will can't receive
570          *    the packets with vlan tag in promiscuoue mode.
571          */
572         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MBX_VF_TO_PF, false);
573         req->msg[0] = HNS3_MBX_SET_PROMISC_MODE;
574         req->msg[1] = en_bc_pmc ? 1 : 0;
575         req->msg[2] = en_uc_pmc ? 1 : 0;
576         req->msg[3] = en_mc_pmc ? 1 : 0;
577
578         ret = hns3_cmd_send(hw, &desc, 1);
579         if (ret)
580                 hns3_err(hw, "Set promisc mode fail, ret = %d", ret);
581
582         return ret;
583 }
584
585 static int
586 hns3vf_dev_promiscuous_enable(struct rte_eth_dev *dev)
587 {
588         struct hns3_adapter *hns = dev->data->dev_private;
589         struct hns3_hw *hw = &hns->hw;
590         int ret;
591
592         ret = hns3vf_set_promisc_mode(hw, true, true, true);
593         if (ret)
594                 hns3_err(hw, "Failed to enable promiscuous mode, ret = %d",
595                         ret);
596         return ret;
597 }
598
599 static int
600 hns3vf_dev_promiscuous_disable(struct rte_eth_dev *dev)
601 {
602         bool allmulti = dev->data->all_multicast ? true : false;
603         struct hns3_adapter *hns = dev->data->dev_private;
604         struct hns3_hw *hw = &hns->hw;
605         int ret;
606
607         ret = hns3vf_set_promisc_mode(hw, true, false, allmulti);
608         if (ret)
609                 hns3_err(hw, "Failed to disable promiscuous mode, ret = %d",
610                         ret);
611         return ret;
612 }
613
614 static int
615 hns3vf_dev_allmulticast_enable(struct rte_eth_dev *dev)
616 {
617         struct hns3_adapter *hns = dev->data->dev_private;
618         struct hns3_hw *hw = &hns->hw;
619         int ret;
620
621         if (dev->data->promiscuous)
622                 return 0;
623
624         ret = hns3vf_set_promisc_mode(hw, true, false, true);
625         if (ret)
626                 hns3_err(hw, "Failed to enable allmulticast mode, ret = %d",
627                         ret);
628         return ret;
629 }
630
631 static int
632 hns3vf_dev_allmulticast_disable(struct rte_eth_dev *dev)
633 {
634         struct hns3_adapter *hns = dev->data->dev_private;
635         struct hns3_hw *hw = &hns->hw;
636         int ret;
637
638         if (dev->data->promiscuous)
639                 return 0;
640
641         ret = hns3vf_set_promisc_mode(hw, true, false, false);
642         if (ret)
643                 hns3_err(hw, "Failed to disable allmulticast mode, ret = %d",
644                         ret);
645         return ret;
646 }
647
648 static int
649 hns3vf_restore_promisc(struct hns3_adapter *hns)
650 {
651         struct hns3_hw *hw = &hns->hw;
652         bool allmulti = hw->data->all_multicast ? true : false;
653
654         if (hw->data->promiscuous)
655                 return hns3vf_set_promisc_mode(hw, true, true, true);
656
657         return hns3vf_set_promisc_mode(hw, true, false, allmulti);
658 }
659
660 static int
661 hns3vf_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id,
662                              bool mmap, enum hns3_ring_type queue_type,
663                              uint16_t queue_id)
664 {
665         struct hns3_vf_bind_vector_msg bind_msg;
666         const char *op_str;
667         uint16_t code;
668         int ret;
669
670         memset(&bind_msg, 0, sizeof(bind_msg));
671         code = mmap ? HNS3_MBX_MAP_RING_TO_VECTOR :
672                 HNS3_MBX_UNMAP_RING_TO_VECTOR;
673         bind_msg.vector_id = vector_id;
674
675         if (queue_type == HNS3_RING_TYPE_RX)
676                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_RX;
677         else
678                 bind_msg.param[0].int_gl_index = HNS3_RING_GL_TX;
679
680         bind_msg.param[0].ring_type = queue_type;
681         bind_msg.ring_num = 1;
682         bind_msg.param[0].tqp_index = queue_id;
683         op_str = mmap ? "Map" : "Unmap";
684         ret = hns3_send_mbx_msg(hw, code, 0, (uint8_t *)&bind_msg,
685                                 sizeof(bind_msg), false, NULL, 0);
686         if (ret)
687                 hns3_err(hw, "%s TQP %d fail, vector_id is %d, ret is %d.",
688                          op_str, queue_id, bind_msg.vector_id, ret);
689
690         return ret;
691 }
692
693 static int
694 hns3vf_init_ring_with_vector(struct hns3_hw *hw)
695 {
696         uint8_t vec;
697         int ret;
698         int i;
699
700         /*
701          * In hns3 network engine, vector 0 is always the misc interrupt of this
702          * function, vector 1~N can be used respectively for the queues of the
703          * function. Tx and Rx queues with the same number share the interrupt
704          * vector. In the initialization clearing the all hardware mapping
705          * relationship configurations between queues and interrupt vectors is
706          * needed, so some error caused by the residual configurations, such as
707          * the unexpected Tx interrupt, can be avoid. Because of the hardware
708          * constraints in hns3 hardware engine, we have to implement clearing
709          * the mapping relationship configurations by binding all queues to the
710          * last interrupt vector and reserving the last interrupt vector. This
711          * method results in a decrease of the maximum queues when upper
712          * applications call the rte_eth_dev_configure API function to enable
713          * Rx interrupt.
714          */
715         vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
716         hw->intr_tqps_num = vec - 1; /* the last interrupt is reserved */
717         for (i = 0; i < hw->intr_tqps_num; i++) {
718                 /*
719                  * Set gap limiter and rate limiter configuration of queue's
720                  * interrupt.
721                  */
722                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
723                                        HNS3_TQP_INTR_GL_DEFAULT);
724                 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
725                                        HNS3_TQP_INTR_GL_DEFAULT);
726                 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
727
728                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
729                                                    HNS3_RING_TYPE_TX, i);
730                 if (ret) {
731                         PMD_INIT_LOG(ERR, "VF fail to unbind TX ring(%d) with "
732                                           "vector: %d, ret=%d", i, vec, ret);
733                         return ret;
734                 }
735
736                 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
737                                                    HNS3_RING_TYPE_RX, i);
738                 if (ret) {
739                         PMD_INIT_LOG(ERR, "VF fail to unbind RX ring(%d) with "
740                                           "vector: %d, ret=%d", i, vec, ret);
741                         return ret;
742                 }
743         }
744
745         return 0;
746 }
747
748 static int
749 hns3vf_dev_configure(struct rte_eth_dev *dev)
750 {
751         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
752         struct hns3_rss_conf *rss_cfg = &hw->rss_info;
753         struct rte_eth_conf *conf = &dev->data->dev_conf;
754         enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
755         uint16_t nb_rx_q = dev->data->nb_rx_queues;
756         uint16_t nb_tx_q = dev->data->nb_tx_queues;
757         struct rte_eth_rss_conf rss_conf;
758         uint16_t mtu;
759         int ret;
760
761         /*
762          * Hardware does not support individually enable/disable/reset the Tx or
763          * Rx queue in hns3 network engine. Driver must enable/disable/reset Tx
764          * and Rx queues at the same time. When the numbers of Tx queues
765          * allocated by upper applications are not equal to the numbers of Rx
766          * queues, driver needs to setup fake Tx or Rx queues to adjust numbers
767          * of Tx/Rx queues. otherwise, network engine can not work as usual. But
768          * these fake queues are imperceptible, and can not be used by upper
769          * applications.
770          */
771         ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
772         if (ret) {
773                 hns3_err(hw, "Failed to set rx/tx fake queues: %d", ret);
774                 return ret;
775         }
776
777         hw->adapter_state = HNS3_NIC_CONFIGURING;
778         if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
779                 hns3_err(hw, "setting link speed/duplex not supported");
780                 ret = -EINVAL;
781                 goto cfg_err;
782         }
783
784         /* When RSS is not configured, redirect the packet queue 0 */
785         if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
786                 rss_conf = conf->rx_adv_conf.rss_conf;
787                 if (rss_conf.rss_key == NULL) {
788                         rss_conf.rss_key = rss_cfg->key;
789                         rss_conf.rss_key_len = HNS3_RSS_KEY_SIZE;
790                 }
791
792                 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
793                 if (ret)
794                         goto cfg_err;
795         }
796
797         /*
798          * If jumbo frames are enabled, MTU needs to be refreshed
799          * according to the maximum RX packet length.
800          */
801         if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
802                 /*
803                  * Security of max_rx_pkt_len is guaranteed in dpdk frame.
804                  * Maximum value of max_rx_pkt_len is HNS3_MAX_FRAME_LEN, so it
805                  * can safely assign to "uint16_t" type variable.
806                  */
807                 mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(conf->rxmode.max_rx_pkt_len);
808                 ret = hns3vf_dev_mtu_set(dev, mtu);
809                 if (ret)
810                         goto cfg_err;
811                 dev->data->mtu = mtu;
812         }
813
814         ret = hns3vf_dev_configure_vlan(dev);
815         if (ret)
816                 goto cfg_err;
817
818         hw->adapter_state = HNS3_NIC_CONFIGURED;
819         return 0;
820
821 cfg_err:
822         (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
823         hw->adapter_state = HNS3_NIC_INITIALIZED;
824
825         return ret;
826 }
827
828 static int
829 hns3vf_config_mtu(struct hns3_hw *hw, uint16_t mtu)
830 {
831         int ret;
832
833         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MTU, 0, (const uint8_t *)&mtu,
834                                 sizeof(mtu), true, NULL, 0);
835         if (ret)
836                 hns3_err(hw, "Failed to set mtu (%u) for vf: %d", mtu, ret);
837
838         return ret;
839 }
840
841 static int
842 hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
843 {
844         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
845         uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
846         int ret;
847
848         /*
849          * The hns3 PF/VF devices on the same port share the hardware MTU
850          * configuration. Currently, we send mailbox to inform hns3 PF kernel
851          * ethdev driver to finish hardware MTU configuration in hns3 VF PMD
852          * driver, there is no need to stop the port for hns3 VF device, and the
853          * MTU value issued by hns3 VF PMD driver must be less than or equal to
854          * PF's MTU.
855          */
856         if (rte_atomic16_read(&hw->reset.resetting)) {
857                 hns3_err(hw, "Failed to set mtu during resetting");
858                 return -EIO;
859         }
860
861         rte_spinlock_lock(&hw->lock);
862         ret = hns3vf_config_mtu(hw, mtu);
863         if (ret) {
864                 rte_spinlock_unlock(&hw->lock);
865                 return ret;
866         }
867         if (frame_size > RTE_ETHER_MAX_LEN)
868                 dev->data->dev_conf.rxmode.offloads |=
869                                                 DEV_RX_OFFLOAD_JUMBO_FRAME;
870         else
871                 dev->data->dev_conf.rxmode.offloads &=
872                                                 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
873         dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
874         rte_spinlock_unlock(&hw->lock);
875
876         return 0;
877 }
878
879 static int
880 hns3vf_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
881 {
882         struct hns3_adapter *hns = eth_dev->data->dev_private;
883         struct hns3_hw *hw = &hns->hw;
884         uint16_t q_num = hw->tqps_num;
885
886         /*
887          * In interrupt mode, 'max_rx_queues' is set based on the number of
888          * MSI-X interrupt resources of the hardware.
889          */
890         if (hw->data->dev_conf.intr_conf.rxq == 1)
891                 q_num = hw->intr_tqps_num;
892
893         info->max_rx_queues = q_num;
894         info->max_tx_queues = hw->tqps_num;
895         info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
896         info->min_rx_bufsize = hw->rx_buf_len;
897         info->max_mac_addrs = HNS3_VF_UC_MACADDR_NUM;
898         info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
899
900         info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
901                                  DEV_RX_OFFLOAD_UDP_CKSUM |
902                                  DEV_RX_OFFLOAD_TCP_CKSUM |
903                                  DEV_RX_OFFLOAD_SCTP_CKSUM |
904                                  DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
905                                  DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
906                                  DEV_RX_OFFLOAD_KEEP_CRC |
907                                  DEV_RX_OFFLOAD_SCATTER |
908                                  DEV_RX_OFFLOAD_VLAN_STRIP |
909                                  DEV_RX_OFFLOAD_QINQ_STRIP |
910                                  DEV_RX_OFFLOAD_VLAN_FILTER |
911                                  DEV_RX_OFFLOAD_JUMBO_FRAME);
912         info->tx_queue_offload_capa = DEV_TX_OFFLOAD_MBUF_FAST_FREE;
913         info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
914                                  DEV_TX_OFFLOAD_IPV4_CKSUM |
915                                  DEV_TX_OFFLOAD_TCP_CKSUM |
916                                  DEV_TX_OFFLOAD_UDP_CKSUM |
917                                  DEV_TX_OFFLOAD_SCTP_CKSUM |
918                                  DEV_TX_OFFLOAD_VLAN_INSERT |
919                                  DEV_TX_OFFLOAD_QINQ_INSERT |
920                                  DEV_TX_OFFLOAD_MULTI_SEGS |
921                                  DEV_TX_OFFLOAD_TCP_TSO |
922                                  DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
923                                  DEV_TX_OFFLOAD_GRE_TNL_TSO |
924                                  DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
925                                  info->tx_queue_offload_capa);
926
927         info->rx_desc_lim = (struct rte_eth_desc_lim) {
928                 .nb_max = HNS3_MAX_RING_DESC,
929                 .nb_min = HNS3_MIN_RING_DESC,
930                 .nb_align = HNS3_ALIGN_RING_DESC,
931         };
932
933         info->tx_desc_lim = (struct rte_eth_desc_lim) {
934                 .nb_max = HNS3_MAX_RING_DESC,
935                 .nb_min = HNS3_MIN_RING_DESC,
936                 .nb_align = HNS3_ALIGN_RING_DESC,
937         };
938
939         info->vmdq_queue_num = 0;
940
941         info->reta_size = HNS3_RSS_IND_TBL_SIZE;
942         info->hash_key_size = HNS3_RSS_KEY_SIZE;
943         info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
944         info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
945         info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
946
947         return 0;
948 }
949
950 static void
951 hns3vf_clear_event_cause(struct hns3_hw *hw, uint32_t regclr)
952 {
953         hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
954 }
955
956 static void
957 hns3vf_disable_irq0(struct hns3_hw *hw)
958 {
959         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
960 }
961
962 static void
963 hns3vf_enable_irq0(struct hns3_hw *hw)
964 {
965         hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
966 }
967
968 static enum hns3vf_evt_cause
969 hns3vf_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
970 {
971         struct hns3_hw *hw = &hns->hw;
972         enum hns3vf_evt_cause ret;
973         uint32_t cmdq_stat_reg;
974         uint32_t rst_ing_reg;
975         uint32_t val;
976
977         /* Fetch the events from their corresponding regs */
978         cmdq_stat_reg = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_STAT_REG);
979
980         if (BIT(HNS3_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
981                 rst_ing_reg = hns3_read_dev(hw, HNS3_FUN_RST_ING);
982                 hns3_warn(hw, "resetting reg: 0x%x", rst_ing_reg);
983                 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
984                 rte_atomic16_set(&hw->reset.disable_cmd, 1);
985                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
986                 hns3_write_dev(hw, HNS3_VF_RST_ING, val | HNS3_VF_RST_ING_BIT);
987                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RST_INT_B);
988                 if (clearval) {
989                         hw->reset.stats.global_cnt++;
990                         hns3_warn(hw, "Global reset detected, clear reset status");
991                 } else {
992                         hns3_schedule_delayed_reset(hns);
993                         hns3_warn(hw, "Global reset detected, don't clear reset status");
994                 }
995
996                 ret = HNS3VF_VECTOR0_EVENT_RST;
997                 goto out;
998         }
999
1000         /* Check for vector0 mailbox(=CMDQ RX) event source */
1001         if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1002                 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
1003                 ret = HNS3VF_VECTOR0_EVENT_MBX;
1004                 goto out;
1005         }
1006
1007         val = 0;
1008         ret = HNS3VF_VECTOR0_EVENT_OTHER;
1009 out:
1010         if (clearval)
1011                 *clearval = val;
1012         return ret;
1013 }
1014
1015 static void
1016 hns3vf_interrupt_handler(void *param)
1017 {
1018         struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1019         struct hns3_adapter *hns = dev->data->dev_private;
1020         struct hns3_hw *hw = &hns->hw;
1021         enum hns3vf_evt_cause event_cause;
1022         uint32_t clearval;
1023
1024         if (hw->irq_thread_id == 0)
1025                 hw->irq_thread_id = pthread_self();
1026
1027         /* Disable interrupt */
1028         hns3vf_disable_irq0(hw);
1029
1030         /* Read out interrupt causes */
1031         event_cause = hns3vf_check_event_cause(hns, &clearval);
1032
1033         switch (event_cause) {
1034         case HNS3VF_VECTOR0_EVENT_RST:
1035                 hns3_schedule_reset(hns);
1036                 break;
1037         case HNS3VF_VECTOR0_EVENT_MBX:
1038                 hns3_dev_handle_mbx_msg(hw);
1039                 break;
1040         default:
1041                 break;
1042         }
1043
1044         /* Clear interrupt causes */
1045         hns3vf_clear_event_cause(hw, clearval);
1046
1047         /* Enable interrupt */
1048         hns3vf_enable_irq0(hw);
1049 }
1050
1051 static int
1052 hns3vf_check_tqp_info(struct hns3_hw *hw)
1053 {
1054         uint16_t tqps_num;
1055
1056         tqps_num = hw->tqps_num;
1057         if (tqps_num > HNS3_MAX_TQP_NUM_PER_FUNC || tqps_num == 0) {
1058                 PMD_INIT_LOG(ERR, "Get invalid tqps_num(%u) from PF. valid "
1059                                   "range: 1~%d",
1060                              tqps_num, HNS3_MAX_TQP_NUM_PER_FUNC);
1061                 return -EINVAL;
1062         }
1063
1064         if (hw->rx_buf_len == 0)
1065                 hw->rx_buf_len = HNS3_DEFAULT_RX_BUF_LEN;
1066         hw->alloc_rss_size = RTE_MIN(hw->rss_size_max, hw->tqps_num);
1067
1068         return 0;
1069 }
1070
1071 static int
1072 hns3vf_get_queue_info(struct hns3_hw *hw)
1073 {
1074 #define HNS3VF_TQPS_RSS_INFO_LEN        6
1075         uint8_t resp_msg[HNS3VF_TQPS_RSS_INFO_LEN];
1076         int ret;
1077
1078         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QINFO, 0, NULL, 0, true,
1079                                 resp_msg, HNS3VF_TQPS_RSS_INFO_LEN);
1080         if (ret) {
1081                 PMD_INIT_LOG(ERR, "Failed to get tqp info from PF: %d", ret);
1082                 return ret;
1083         }
1084
1085         memcpy(&hw->tqps_num, &resp_msg[0], sizeof(uint16_t));
1086         memcpy(&hw->rss_size_max, &resp_msg[2], sizeof(uint16_t));
1087         memcpy(&hw->rx_buf_len, &resp_msg[4], sizeof(uint16_t));
1088
1089         return hns3vf_check_tqp_info(hw);
1090 }
1091
1092 static int
1093 hns3vf_get_queue_depth(struct hns3_hw *hw)
1094 {
1095 #define HNS3VF_TQPS_DEPTH_INFO_LEN      4
1096         uint8_t resp_msg[HNS3VF_TQPS_DEPTH_INFO_LEN];
1097         int ret;
1098
1099         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QDEPTH, 0, NULL, 0, true,
1100                                 resp_msg, HNS3VF_TQPS_DEPTH_INFO_LEN);
1101         if (ret) {
1102                 PMD_INIT_LOG(ERR, "Failed to get tqp depth info from PF: %d",
1103                              ret);
1104                 return ret;
1105         }
1106
1107         memcpy(&hw->num_tx_desc, &resp_msg[0], sizeof(uint16_t));
1108         memcpy(&hw->num_rx_desc, &resp_msg[2], sizeof(uint16_t));
1109
1110         return 0;
1111 }
1112
1113 static int
1114 hns3vf_get_tc_info(struct hns3_hw *hw)
1115 {
1116         uint8_t resp_msg;
1117         int ret;
1118
1119         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_TCINFO, 0, NULL, 0,
1120                                 true, &resp_msg, sizeof(resp_msg));
1121         if (ret) {
1122                 hns3_err(hw, "VF request to get TC info from PF failed %d",
1123                          ret);
1124                 return ret;
1125         }
1126
1127         hw->hw_tc_map = resp_msg;
1128
1129         return 0;
1130 }
1131
1132 static int
1133 hns3vf_get_host_mac_addr(struct hns3_hw *hw)
1134 {
1135         uint8_t host_mac[RTE_ETHER_ADDR_LEN];
1136         int ret;
1137
1138         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_MAC_ADDR, 0, NULL, 0,
1139                                 true, host_mac, RTE_ETHER_ADDR_LEN);
1140         if (ret) {
1141                 hns3_err(hw, "Failed to get mac addr from PF: %d", ret);
1142                 return ret;
1143         }
1144
1145         memcpy(hw->mac.mac_addr, host_mac, RTE_ETHER_ADDR_LEN);
1146
1147         return 0;
1148 }
1149
1150 static int
1151 hns3vf_get_configuration(struct hns3_hw *hw)
1152 {
1153         int ret;
1154
1155         hw->mac.media_type = HNS3_MEDIA_TYPE_NONE;
1156         hw->rss_dis_flag = false;
1157
1158         /* Get queue configuration from PF */
1159         ret = hns3vf_get_queue_info(hw);
1160         if (ret)
1161                 return ret;
1162
1163         /* Get queue depth info from PF */
1164         ret = hns3vf_get_queue_depth(hw);
1165         if (ret)
1166                 return ret;
1167
1168         /* Get user defined VF MAC addr from PF */
1169         ret = hns3vf_get_host_mac_addr(hw);
1170         if (ret)
1171                 return ret;
1172
1173         /* Get tc configuration from PF */
1174         return hns3vf_get_tc_info(hw);
1175 }
1176
1177 static int
1178 hns3vf_set_tc_info(struct hns3_adapter *hns)
1179 {
1180         struct hns3_hw *hw = &hns->hw;
1181         uint16_t nb_rx_q = hw->data->nb_rx_queues;
1182         uint16_t nb_tx_q = hw->data->nb_tx_queues;
1183         uint8_t i;
1184
1185         hw->num_tc = 0;
1186         for (i = 0; i < HNS3_MAX_TC_NUM; i++)
1187                 if (hw->hw_tc_map & BIT(i))
1188                         hw->num_tc++;
1189
1190         if (nb_rx_q < hw->num_tc) {
1191                 hns3_err(hw, "number of Rx queues(%d) is less than tcs(%d).",
1192                          nb_rx_q, hw->num_tc);
1193                 return -EINVAL;
1194         }
1195
1196         if (nb_tx_q < hw->num_tc) {
1197                 hns3_err(hw, "number of Tx queues(%d) is less than tcs(%d).",
1198                          nb_tx_q, hw->num_tc);
1199                 return -EINVAL;
1200         }
1201
1202         hns3_set_rss_size(hw, nb_rx_q);
1203         hns3_tc_queue_mapping_cfg(hw, nb_tx_q);
1204
1205         return 0;
1206 }
1207
1208 static void
1209 hns3vf_request_link_info(struct hns3_hw *hw)
1210 {
1211         uint8_t resp_msg;
1212         int ret;
1213
1214         if (rte_atomic16_read(&hw->reset.resetting))
1215                 return;
1216         ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1217                                 &resp_msg, sizeof(resp_msg));
1218         if (ret)
1219                 hns3_err(hw, "Failed to fetch link status from PF: %d", ret);
1220 }
1221
1222 static int
1223 hns3vf_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
1224 {
1225 #define HNS3VF_VLAN_MBX_MSG_LEN 5
1226         struct hns3_hw *hw = &hns->hw;
1227         uint8_t msg_data[HNS3VF_VLAN_MBX_MSG_LEN];
1228         uint16_t proto = htons(RTE_ETHER_TYPE_VLAN);
1229         uint8_t is_kill = on ? 0 : 1;
1230
1231         msg_data[0] = is_kill;
1232         memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1233         memcpy(&msg_data[3], &proto, sizeof(proto));
1234
1235         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_FILTER,
1236                                  msg_data, HNS3VF_VLAN_MBX_MSG_LEN, true, NULL,
1237                                  0);
1238 }
1239
1240 static int
1241 hns3vf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1242 {
1243         struct hns3_adapter *hns = dev->data->dev_private;
1244         struct hns3_hw *hw = &hns->hw;
1245         int ret;
1246
1247         if (rte_atomic16_read(&hw->reset.resetting)) {
1248                 hns3_err(hw,
1249                          "vf set vlan id failed during resetting, vlan_id =%u",
1250                          vlan_id);
1251                 return -EIO;
1252         }
1253         rte_spinlock_lock(&hw->lock);
1254         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1255         rte_spinlock_unlock(&hw->lock);
1256         if (ret)
1257                 hns3_err(hw, "vf set vlan id failed, vlan_id =%u, ret =%d",
1258                          vlan_id, ret);
1259
1260         return ret;
1261 }
1262
1263 static int
1264 hns3vf_en_hw_strip_rxvtag(struct hns3_hw *hw, bool enable)
1265 {
1266         uint8_t msg_data;
1267         int ret;
1268
1269         msg_data = enable ? 1 : 0;
1270         ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_RX_OFF_CFG,
1271                                 &msg_data, sizeof(msg_data), false, NULL, 0);
1272         if (ret)
1273                 hns3_err(hw, "vf enable strip failed, ret =%d", ret);
1274
1275         return ret;
1276 }
1277
1278 static int
1279 hns3vf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1280 {
1281         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1282         struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1283         unsigned int tmp_mask;
1284         int ret = 0;
1285
1286         if (rte_atomic16_read(&hw->reset.resetting)) {
1287                 hns3_err(hw, "vf set vlan offload failed during resetting, "
1288                              "mask = 0x%x", mask);
1289                 return -EIO;
1290         }
1291
1292         tmp_mask = (unsigned int)mask;
1293         /* Vlan stripping setting */
1294         if (tmp_mask & ETH_VLAN_STRIP_MASK) {
1295                 rte_spinlock_lock(&hw->lock);
1296                 /* Enable or disable VLAN stripping */
1297                 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1298                         ret = hns3vf_en_hw_strip_rxvtag(hw, true);
1299                 else
1300                         ret = hns3vf_en_hw_strip_rxvtag(hw, false);
1301                 rte_spinlock_unlock(&hw->lock);
1302         }
1303
1304         return ret;
1305 }
1306
1307 static int
1308 hns3vf_handle_all_vlan_table(struct hns3_adapter *hns, int on)
1309 {
1310         struct rte_vlan_filter_conf *vfc;
1311         struct hns3_hw *hw = &hns->hw;
1312         uint16_t vlan_id;
1313         uint64_t vbit;
1314         uint64_t ids;
1315         int ret = 0;
1316         uint32_t i;
1317
1318         vfc = &hw->data->vlan_filter_conf;
1319         for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1320                 if (vfc->ids[i] == 0)
1321                         continue;
1322                 ids = vfc->ids[i];
1323                 while (ids) {
1324                         /*
1325                          * 64 means the num bits of ids, one bit corresponds to
1326                          * one vlan id
1327                          */
1328                         vlan_id = 64 * i;
1329                         /* count trailing zeroes */
1330                         vbit = ~ids & (ids - 1);
1331                         /* clear least significant bit set */
1332                         ids ^= (ids ^ (ids - 1)) ^ vbit;
1333                         for (; vbit;) {
1334                                 vbit >>= 1;
1335                                 vlan_id++;
1336                         }
1337                         ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1338                         if (ret) {
1339                                 hns3_err(hw,
1340                                          "VF handle vlan table failed, ret =%d, on = %d",
1341                                          ret, on);
1342                                 return ret;
1343                         }
1344                 }
1345         }
1346
1347         return ret;
1348 }
1349
1350 static int
1351 hns3vf_remove_all_vlan_table(struct hns3_adapter *hns)
1352 {
1353         return hns3vf_handle_all_vlan_table(hns, 0);
1354 }
1355
1356 static int
1357 hns3vf_restore_vlan_conf(struct hns3_adapter *hns)
1358 {
1359         struct hns3_hw *hw = &hns->hw;
1360         struct rte_eth_conf *dev_conf;
1361         bool en;
1362         int ret;
1363
1364         dev_conf = &hw->data->dev_conf;
1365         en = dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP ? true
1366                                                                    : false;
1367         ret = hns3vf_en_hw_strip_rxvtag(hw, en);
1368         if (ret)
1369                 hns3_err(hw, "VF restore vlan conf fail, en =%d, ret =%d", en,
1370                          ret);
1371         return ret;
1372 }
1373
1374 static int
1375 hns3vf_dev_configure_vlan(struct rte_eth_dev *dev)
1376 {
1377         struct hns3_adapter *hns = dev->data->dev_private;
1378         struct rte_eth_dev_data *data = dev->data;
1379         struct hns3_hw *hw = &hns->hw;
1380         int ret;
1381
1382         if (data->dev_conf.txmode.hw_vlan_reject_tagged ||
1383             data->dev_conf.txmode.hw_vlan_reject_untagged ||
1384             data->dev_conf.txmode.hw_vlan_insert_pvid) {
1385                 hns3_warn(hw, "hw_vlan_reject_tagged, hw_vlan_reject_untagged "
1386                               "or hw_vlan_insert_pvid is not support!");
1387         }
1388
1389         /* Apply vlan offload setting */
1390         ret = hns3vf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
1391         if (ret)
1392                 hns3_err(hw, "dev config vlan offload failed, ret =%d", ret);
1393
1394         return ret;
1395 }
1396
1397 static int
1398 hns3vf_set_alive(struct hns3_hw *hw, bool alive)
1399 {
1400         uint8_t msg_data;
1401
1402         msg_data = alive ? 1 : 0;
1403         return hns3_send_mbx_msg(hw, HNS3_MBX_SET_ALIVE, 0, &msg_data,
1404                                  sizeof(msg_data), false, NULL, 0);
1405 }
1406
1407 static void
1408 hns3vf_keep_alive_handler(void *param)
1409 {
1410         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1411         struct hns3_adapter *hns = eth_dev->data->dev_private;
1412         struct hns3_hw *hw = &hns->hw;
1413         uint8_t respmsg;
1414         int ret;
1415
1416         ret = hns3_send_mbx_msg(hw, HNS3_MBX_KEEP_ALIVE, 0, NULL, 0,
1417                                 false, &respmsg, sizeof(uint8_t));
1418         if (ret)
1419                 hns3_err(hw, "VF sends keeping alive cmd failed(=%d)",
1420                          ret);
1421
1422         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
1423                           eth_dev);
1424 }
1425
1426 static void
1427 hns3vf_service_handler(void *param)
1428 {
1429         struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1430         struct hns3_adapter *hns = eth_dev->data->dev_private;
1431         struct hns3_hw *hw = &hns->hw;
1432
1433         /*
1434          * The query link status and reset processing are executed in the
1435          * interrupt thread.When the IMP reset occurs, IMP will not respond,
1436          * and the query operation will time out after 30ms. In the case of
1437          * multiple PF/VFs, each query failure timeout causes the IMP reset
1438          * interrupt to fail to respond within 100ms.
1439          * Before querying the link status, check whether there is a reset
1440          * pending, and if so, abandon the query.
1441          */
1442         if (!hns3vf_is_reset_pending(hns))
1443                 hns3vf_request_link_info(hw);
1444         else
1445                 hns3_warn(hw, "Cancel the query when reset is pending");
1446
1447         rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler,
1448                           eth_dev);
1449 }
1450
1451 static int
1452 hns3_query_vf_resource(struct hns3_hw *hw)
1453 {
1454         struct hns3_vf_res_cmd *req;
1455         struct hns3_cmd_desc desc;
1456         uint16_t num_msi;
1457         int ret;
1458
1459         hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_VF_RSRC, true);
1460         ret = hns3_cmd_send(hw, &desc, 1);
1461         if (ret) {
1462                 hns3_err(hw, "query vf resource failed, ret = %d", ret);
1463                 return ret;
1464         }
1465
1466         req = (struct hns3_vf_res_cmd *)desc.data;
1467         num_msi = hns3_get_field(rte_le_to_cpu_16(req->vf_intr_vector_number),
1468                                  HNS3_VEC_NUM_M, HNS3_VEC_NUM_S);
1469         if (num_msi < HNS3_MIN_VECTOR_NUM) {
1470                 hns3_err(hw, "Just %u msi resources, not enough for vf(min:%d)",
1471                          num_msi, HNS3_MIN_VECTOR_NUM);
1472                 return -EINVAL;
1473         }
1474
1475         hw->num_msi = (num_msi > hw->tqps_num + 1) ? hw->tqps_num + 1 : num_msi;
1476
1477         return 0;
1478 }
1479
1480 static int
1481 hns3vf_init_hardware(struct hns3_adapter *hns)
1482 {
1483         struct hns3_hw *hw = &hns->hw;
1484         uint16_t mtu = hw->data->mtu;
1485         int ret;
1486
1487         ret = hns3vf_set_promisc_mode(hw, true, false, false);
1488         if (ret)
1489                 return ret;
1490
1491         ret = hns3vf_config_mtu(hw, mtu);
1492         if (ret)
1493                 goto err_init_hardware;
1494
1495         ret = hns3vf_vlan_filter_configure(hns, 0, 1);
1496         if (ret) {
1497                 PMD_INIT_LOG(ERR, "Failed to initialize VLAN config: %d", ret);
1498                 goto err_init_hardware;
1499         }
1500
1501         ret = hns3_config_gro(hw, false);
1502         if (ret) {
1503                 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
1504                 goto err_init_hardware;
1505         }
1506
1507         /*
1508          * In the initialization clearing the all hardware mapping relationship
1509          * configurations between queues and interrupt vectors is needed, so
1510          * some error caused by the residual configurations, such as the
1511          * unexpected interrupt, can be avoid.
1512          */
1513         ret = hns3vf_init_ring_with_vector(hw);
1514         if (ret) {
1515                 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
1516                 goto err_init_hardware;
1517         }
1518
1519         ret = hns3vf_set_alive(hw, true);
1520         if (ret) {
1521                 PMD_INIT_LOG(ERR, "Failed to VF send alive to PF: %d", ret);
1522                 goto err_init_hardware;
1523         }
1524
1525         hns3vf_request_link_info(hw);
1526         return 0;
1527
1528 err_init_hardware:
1529         (void)hns3vf_set_promisc_mode(hw, false, false, false);
1530         return ret;
1531 }
1532
1533 static int
1534 hns3vf_clear_vport_list(struct hns3_hw *hw)
1535 {
1536         return hns3_send_mbx_msg(hw, HNS3_MBX_HANDLE_VF_TBL,
1537                                  HNS3_MBX_VPORT_LIST_CLEAR, NULL, 0, false,
1538                                  NULL, 0);
1539 }
1540
1541 static int
1542 hns3vf_init_vf(struct rte_eth_dev *eth_dev)
1543 {
1544         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1545         struct hns3_adapter *hns = eth_dev->data->dev_private;
1546         struct hns3_hw *hw = &hns->hw;
1547         int ret;
1548
1549         PMD_INIT_FUNC_TRACE();
1550
1551         /* Get hardware io base address from pcie BAR2 IO space */
1552         hw->io_base = pci_dev->mem_resource[2].addr;
1553
1554         /* Firmware command queue initialize */
1555         ret = hns3_cmd_init_queue(hw);
1556         if (ret) {
1557                 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
1558                 goto err_cmd_init_queue;
1559         }
1560
1561         /* Firmware command initialize */
1562         ret = hns3_cmd_init(hw);
1563         if (ret) {
1564                 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
1565                 goto err_cmd_init;
1566         }
1567
1568         /* Get VF resource */
1569         ret = hns3_query_vf_resource(hw);
1570         if (ret)
1571                 goto err_cmd_init;
1572
1573         rte_spinlock_init(&hw->mbx_resp.lock);
1574
1575         hns3vf_clear_event_cause(hw, 0);
1576
1577         ret = rte_intr_callback_register(&pci_dev->intr_handle,
1578                                          hns3vf_interrupt_handler, eth_dev);
1579         if (ret) {
1580                 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
1581                 goto err_intr_callback_register;
1582         }
1583
1584         /* Enable interrupt */
1585         rte_intr_enable(&pci_dev->intr_handle);
1586         hns3vf_enable_irq0(hw);
1587
1588         /* Get configuration from PF */
1589         ret = hns3vf_get_configuration(hw);
1590         if (ret) {
1591                 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
1592                 goto err_get_config;
1593         }
1594
1595         /*
1596          * The hns3 PF ethdev driver in kernel support setting VF MAC address
1597          * on the host by "ip link set ..." command. To avoid some incorrect
1598          * scenes, for example, hns3 VF PMD driver fails to receive and send
1599          * packets after user configure the MAC address by using the
1600          * "ip link set ..." command, hns3 VF PMD driver keep the same MAC
1601          * address strategy as the hns3 kernel ethdev driver in the
1602          * initialization. If user configure a MAC address by the ip command
1603          * for VF device, then hns3 VF PMD driver will start with it, otherwise
1604          * start with a random MAC address in the initialization.
1605          */
1606         ret = rte_is_zero_ether_addr((struct rte_ether_addr *)hw->mac.mac_addr);
1607         if (ret)
1608                 rte_eth_random_addr(hw->mac.mac_addr);
1609
1610         ret = hns3vf_clear_vport_list(hw);
1611         if (ret) {
1612                 PMD_INIT_LOG(ERR, "Failed to clear tbl list: %d", ret);
1613                 goto err_get_config;
1614         }
1615
1616         ret = hns3vf_init_hardware(hns);
1617         if (ret)
1618                 goto err_get_config;
1619
1620         hns3_set_default_rss_args(hw);
1621
1622         return 0;
1623
1624 err_get_config:
1625         hns3vf_disable_irq0(hw);
1626         rte_intr_disable(&pci_dev->intr_handle);
1627         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1628                              eth_dev);
1629 err_intr_callback_register:
1630 err_cmd_init:
1631         hns3_cmd_uninit(hw);
1632         hns3_cmd_destroy_queue(hw);
1633 err_cmd_init_queue:
1634         hw->io_base = NULL;
1635
1636         return ret;
1637 }
1638
1639 static void
1640 hns3vf_uninit_vf(struct rte_eth_dev *eth_dev)
1641 {
1642         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1643         struct hns3_adapter *hns = eth_dev->data->dev_private;
1644         struct hns3_hw *hw = &hns->hw;
1645
1646         PMD_INIT_FUNC_TRACE();
1647
1648         hns3_rss_uninit(hns);
1649         (void)hns3vf_set_alive(hw, false);
1650         (void)hns3vf_set_promisc_mode(hw, false, false, false);
1651         hns3vf_disable_irq0(hw);
1652         rte_intr_disable(&pci_dev->intr_handle);
1653         hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1654                              eth_dev);
1655         hns3_cmd_uninit(hw);
1656         hns3_cmd_destroy_queue(hw);
1657         hw->io_base = NULL;
1658 }
1659
1660 static int
1661 hns3vf_do_stop(struct hns3_adapter *hns)
1662 {
1663         struct hns3_hw *hw = &hns->hw;
1664         bool reset_queue;
1665
1666         hw->mac.link_status = ETH_LINK_DOWN;
1667
1668         if (rte_atomic16_read(&hw->reset.disable_cmd) == 0) {
1669                 hns3vf_configure_mac_addr(hns, true);
1670                 reset_queue = true;
1671         } else
1672                 reset_queue = false;
1673         return hns3_stop_queues(hns, reset_queue);
1674 }
1675
1676 static void
1677 hns3vf_unmap_rx_interrupt(struct rte_eth_dev *dev)
1678 {
1679         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1680         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1681         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1682         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
1683         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
1684         uint16_t q_id;
1685
1686         if (dev->data->dev_conf.intr_conf.rxq == 0)
1687                 return;
1688
1689         /* unmap the ring with vector */
1690         if (rte_intr_allow_others(intr_handle)) {
1691                 vec = RTE_INTR_VEC_RXTX_OFFSET;
1692                 base = RTE_INTR_VEC_RXTX_OFFSET;
1693         }
1694         if (rte_intr_dp_is_en(intr_handle)) {
1695                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
1696                         (void)hns3vf_bind_ring_with_vector(hw, vec, false,
1697                                                            HNS3_RING_TYPE_RX,
1698                                                            q_id);
1699                         if (vec < base + intr_handle->nb_efd - 1)
1700                                 vec++;
1701                 }
1702         }
1703         /* Clean datapath event and queue/vec mapping */
1704         rte_intr_efd_disable(intr_handle);
1705         if (intr_handle->intr_vec) {
1706                 rte_free(intr_handle->intr_vec);
1707                 intr_handle->intr_vec = NULL;
1708         }
1709 }
1710
1711 static void
1712 hns3vf_dev_stop(struct rte_eth_dev *dev)
1713 {
1714         struct hns3_adapter *hns = dev->data->dev_private;
1715         struct hns3_hw *hw = &hns->hw;
1716
1717         PMD_INIT_FUNC_TRACE();
1718
1719         hw->adapter_state = HNS3_NIC_STOPPING;
1720         hns3_set_rxtx_function(dev);
1721         rte_wmb();
1722         /* Disable datapath on secondary process. */
1723         hns3_mp_req_stop_rxtx(dev);
1724         /* Prevent crashes when queues are still in use. */
1725         rte_delay_ms(hw->tqps_num);
1726
1727         rte_spinlock_lock(&hw->lock);
1728         if (rte_atomic16_read(&hw->reset.resetting) == 0) {
1729                 hns3vf_do_stop(hns);
1730                 hns3vf_unmap_rx_interrupt(dev);
1731                 hns3_dev_release_mbufs(hns);
1732                 hw->adapter_state = HNS3_NIC_CONFIGURED;
1733         }
1734         rte_eal_alarm_cancel(hns3vf_service_handler, dev);
1735         rte_spinlock_unlock(&hw->lock);
1736 }
1737
1738 static void
1739 hns3vf_dev_close(struct rte_eth_dev *eth_dev)
1740 {
1741         struct hns3_adapter *hns = eth_dev->data->dev_private;
1742         struct hns3_hw *hw = &hns->hw;
1743
1744         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1745                 return;
1746
1747         if (hw->adapter_state == HNS3_NIC_STARTED)
1748                 hns3vf_dev_stop(eth_dev);
1749
1750         hw->adapter_state = HNS3_NIC_CLOSING;
1751         hns3_reset_abort(hns);
1752         hw->adapter_state = HNS3_NIC_CLOSED;
1753         rte_eal_alarm_cancel(hns3vf_keep_alive_handler, eth_dev);
1754         hns3vf_configure_all_mc_mac_addr(hns, true);
1755         hns3vf_remove_all_vlan_table(hns);
1756         hns3vf_uninit_vf(eth_dev);
1757         hns3_free_all_queues(eth_dev);
1758         rte_free(hw->reset.wait_data);
1759         rte_free(eth_dev->process_private);
1760         eth_dev->process_private = NULL;
1761         hns3_mp_uninit_primary();
1762         hns3_warn(hw, "Close port %d finished", hw->data->port_id);
1763 }
1764
1765 static int
1766 hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
1767                        __rte_unused int wait_to_complete)
1768 {
1769         struct hns3_adapter *hns = eth_dev->data->dev_private;
1770         struct hns3_hw *hw = &hns->hw;
1771         struct hns3_mac *mac = &hw->mac;
1772         struct rte_eth_link new_link;
1773
1774         memset(&new_link, 0, sizeof(new_link));
1775         switch (mac->link_speed) {
1776         case ETH_SPEED_NUM_10M:
1777         case ETH_SPEED_NUM_100M:
1778         case ETH_SPEED_NUM_1G:
1779         case ETH_SPEED_NUM_10G:
1780         case ETH_SPEED_NUM_25G:
1781         case ETH_SPEED_NUM_40G:
1782         case ETH_SPEED_NUM_50G:
1783         case ETH_SPEED_NUM_100G:
1784                 new_link.link_speed = mac->link_speed;
1785                 break;
1786         default:
1787                 new_link.link_speed = ETH_SPEED_NUM_100M;
1788                 break;
1789         }
1790
1791         new_link.link_duplex = mac->link_duplex;
1792         new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
1793         new_link.link_autoneg =
1794             !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
1795
1796         return rte_eth_linkstatus_set(eth_dev, &new_link);
1797 }
1798
1799 static int
1800 hns3vf_do_start(struct hns3_adapter *hns, bool reset_queue)
1801 {
1802         struct hns3_hw *hw = &hns->hw;
1803         int ret;
1804
1805         ret = hns3vf_set_tc_info(hns);
1806         if (ret)
1807                 return ret;
1808
1809         ret = hns3_start_queues(hns, reset_queue);
1810         if (ret)
1811                 hns3_err(hw, "Failed to start queues: %d", ret);
1812
1813         return ret;
1814 }
1815
1816 static int
1817 hns3vf_map_rx_interrupt(struct rte_eth_dev *dev)
1818 {
1819         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1820         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1821         struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1822         uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
1823         uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
1824         uint32_t intr_vector;
1825         uint16_t q_id;
1826         int ret;
1827
1828         if (dev->data->dev_conf.intr_conf.rxq == 0)
1829                 return 0;
1830
1831         /* disable uio/vfio intr/eventfd mapping */
1832         rte_intr_disable(intr_handle);
1833
1834         /* check and configure queue intr-vector mapping */
1835         if (rte_intr_cap_multiple(intr_handle) ||
1836             !RTE_ETH_DEV_SRIOV(dev).active) {
1837                 intr_vector = hw->used_rx_queues;
1838                 /* It creates event fd for each intr vector when MSIX is used */
1839                 if (rte_intr_efd_enable(intr_handle, intr_vector))
1840                         return -EINVAL;
1841         }
1842         if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
1843                 intr_handle->intr_vec =
1844                         rte_zmalloc("intr_vec",
1845                                     hw->used_rx_queues * sizeof(int), 0);
1846                 if (intr_handle->intr_vec == NULL) {
1847                         hns3_err(hw, "Failed to allocate %d rx_queues"
1848                                      " intr_vec", hw->used_rx_queues);
1849                         ret = -ENOMEM;
1850                         goto vf_alloc_intr_vec_error;
1851                 }
1852         }
1853
1854         if (rte_intr_allow_others(intr_handle)) {
1855                 vec = RTE_INTR_VEC_RXTX_OFFSET;
1856                 base = RTE_INTR_VEC_RXTX_OFFSET;
1857         }
1858         if (rte_intr_dp_is_en(intr_handle)) {
1859                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
1860                         ret = hns3vf_bind_ring_with_vector(hw, vec, true,
1861                                                            HNS3_RING_TYPE_RX,
1862                                                            q_id);
1863                         if (ret)
1864                                 goto vf_bind_vector_error;
1865                         intr_handle->intr_vec[q_id] = vec;
1866                         if (vec < base + intr_handle->nb_efd - 1)
1867                                 vec++;
1868                 }
1869         }
1870         rte_intr_enable(intr_handle);
1871         return 0;
1872
1873 vf_bind_vector_error:
1874         rte_intr_efd_disable(intr_handle);
1875         if (intr_handle->intr_vec) {
1876                 free(intr_handle->intr_vec);
1877                 intr_handle->intr_vec = NULL;
1878         }
1879         return ret;
1880 vf_alloc_intr_vec_error:
1881         rte_intr_efd_disable(intr_handle);
1882         return ret;
1883 }
1884
1885 static int
1886 hns3vf_restore_rx_interrupt(struct hns3_hw *hw)
1887 {
1888         struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
1889         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1890         struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1891         uint16_t q_id;
1892         int ret;
1893
1894         if (dev->data->dev_conf.intr_conf.rxq == 0)
1895                 return 0;
1896
1897         if (rte_intr_dp_is_en(intr_handle)) {
1898                 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
1899                         ret = hns3vf_bind_ring_with_vector(hw,
1900                                         intr_handle->intr_vec[q_id], true,
1901                                         HNS3_RING_TYPE_RX, q_id);
1902                         if (ret)
1903                                 return ret;
1904                 }
1905         }
1906
1907         return 0;
1908 }
1909
1910 static void
1911 hns3vf_restore_filter(struct rte_eth_dev *dev)
1912 {
1913         hns3_restore_rss_filter(dev);
1914 }
1915
1916 static int
1917 hns3vf_dev_start(struct rte_eth_dev *dev)
1918 {
1919         struct hns3_adapter *hns = dev->data->dev_private;
1920         struct hns3_hw *hw = &hns->hw;
1921         int ret;
1922
1923         PMD_INIT_FUNC_TRACE();
1924         if (rte_atomic16_read(&hw->reset.resetting))
1925                 return -EBUSY;
1926
1927         rte_spinlock_lock(&hw->lock);
1928         hw->adapter_state = HNS3_NIC_STARTING;
1929         ret = hns3vf_do_start(hns, true);
1930         if (ret) {
1931                 hw->adapter_state = HNS3_NIC_CONFIGURED;
1932                 rte_spinlock_unlock(&hw->lock);
1933                 return ret;
1934         }
1935         ret = hns3vf_map_rx_interrupt(dev);
1936         if (ret) {
1937                 hw->adapter_state = HNS3_NIC_CONFIGURED;
1938                 rte_spinlock_unlock(&hw->lock);
1939                 return ret;
1940         }
1941         hw->adapter_state = HNS3_NIC_STARTED;
1942         rte_spinlock_unlock(&hw->lock);
1943
1944         hns3_set_rxtx_function(dev);
1945         hns3_mp_req_start_rxtx(dev);
1946         rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler, dev);
1947
1948         hns3vf_restore_filter(dev);
1949
1950         /* Enable interrupt of all rx queues before enabling queues */
1951         hns3_dev_all_rx_queue_intr_enable(hw, true);
1952         /*
1953          * When finished the initialization, enable queues to receive/transmit
1954          * packets.
1955          */
1956         hns3_enable_all_queues(hw, true);
1957
1958         return ret;
1959 }
1960
1961 static bool
1962 is_vf_reset_done(struct hns3_hw *hw)
1963 {
1964 #define HNS3_FUN_RST_ING_BITS \
1965         (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) | \
1966          BIT(HNS3_VECTOR0_CORERESET_INT_B) | \
1967          BIT(HNS3_VECTOR0_IMPRESET_INT_B) | \
1968          BIT(HNS3_VECTOR0_FUNCRESET_INT_B))
1969
1970         uint32_t val;
1971
1972         if (hw->reset.level == HNS3_VF_RESET) {
1973                 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
1974                 if (val & HNS3_VF_RST_ING_BIT)
1975                         return false;
1976         } else {
1977                 val = hns3_read_dev(hw, HNS3_FUN_RST_ING);
1978                 if (val & HNS3_FUN_RST_ING_BITS)
1979                         return false;
1980         }
1981         return true;
1982 }
1983
1984 bool
1985 hns3vf_is_reset_pending(struct hns3_adapter *hns)
1986 {
1987         struct hns3_hw *hw = &hns->hw;
1988         enum hns3_reset_level reset;
1989
1990         hns3vf_check_event_cause(hns, NULL);
1991         reset = hns3vf_get_reset_level(hw, &hw->reset.pending);
1992         if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
1993                 hns3_warn(hw, "High level reset %d is pending", reset);
1994                 return true;
1995         }
1996         return false;
1997 }
1998
1999 static int
2000 hns3vf_wait_hardware_ready(struct hns3_adapter *hns)
2001 {
2002         struct hns3_hw *hw = &hns->hw;
2003         struct hns3_wait_data *wait_data = hw->reset.wait_data;
2004         struct timeval tv;
2005
2006         if (wait_data->result == HNS3_WAIT_SUCCESS) {
2007                 /*
2008                  * After vf reset is ready, the PF may not have completed
2009                  * the reset processing. The vf sending mbox to PF may fail
2010                  * during the pf reset, so it is better to add extra delay.
2011                  */
2012                 if (hw->reset.level == HNS3_VF_FUNC_RESET ||
2013                     hw->reset.level == HNS3_FLR_RESET)
2014                         return 0;
2015                 /* Reset retry process, no need to add extra delay. */
2016                 if (hw->reset.attempts)
2017                         return 0;
2018                 if (wait_data->check_completion == NULL)
2019                         return 0;
2020
2021                 wait_data->check_completion = NULL;
2022                 wait_data->interval = 1 * MSEC_PER_SEC * USEC_PER_MSEC;
2023                 wait_data->count = 1;
2024                 wait_data->result = HNS3_WAIT_REQUEST;
2025                 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback,
2026                                   wait_data);
2027                 hns3_warn(hw, "hardware is ready, delay 1 sec for PF reset complete");
2028                 return -EAGAIN;
2029         } else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
2030                 gettimeofday(&tv, NULL);
2031                 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
2032                           tv.tv_sec, tv.tv_usec);
2033                 return -ETIME;
2034         } else if (wait_data->result == HNS3_WAIT_REQUEST)
2035                 return -EAGAIN;
2036
2037         wait_data->hns = hns;
2038         wait_data->check_completion = is_vf_reset_done;
2039         wait_data->end_ms = (uint64_t)HNS3VF_RESET_WAIT_CNT *
2040                                       HNS3VF_RESET_WAIT_MS + get_timeofday_ms();
2041         wait_data->interval = HNS3VF_RESET_WAIT_MS * USEC_PER_MSEC;
2042         wait_data->count = HNS3VF_RESET_WAIT_CNT;
2043         wait_data->result = HNS3_WAIT_REQUEST;
2044         rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
2045         return -EAGAIN;
2046 }
2047
2048 static int
2049 hns3vf_prepare_reset(struct hns3_adapter *hns)
2050 {
2051         struct hns3_hw *hw = &hns->hw;
2052         int ret = 0;
2053
2054         if (hw->reset.level == HNS3_VF_FUNC_RESET) {
2055                 ret = hns3_send_mbx_msg(hw, HNS3_MBX_RESET, 0, NULL,
2056                                         0, true, NULL, 0);
2057         }
2058         rte_atomic16_set(&hw->reset.disable_cmd, 1);
2059
2060         return ret;
2061 }
2062
2063 static int
2064 hns3vf_stop_service(struct hns3_adapter *hns)
2065 {
2066         struct hns3_hw *hw = &hns->hw;
2067         struct rte_eth_dev *eth_dev;
2068
2069         eth_dev = &rte_eth_devices[hw->data->port_id];
2070         if (hw->adapter_state == HNS3_NIC_STARTED)
2071                 rte_eal_alarm_cancel(hns3vf_service_handler, eth_dev);
2072         hw->mac.link_status = ETH_LINK_DOWN;
2073
2074         hns3_set_rxtx_function(eth_dev);
2075         rte_wmb();
2076         /* Disable datapath on secondary process. */
2077         hns3_mp_req_stop_rxtx(eth_dev);
2078         rte_delay_ms(hw->tqps_num);
2079
2080         rte_spinlock_lock(&hw->lock);
2081         if (hw->adapter_state == HNS3_NIC_STARTED ||
2082             hw->adapter_state == HNS3_NIC_STOPPING) {
2083                 hns3vf_do_stop(hns);
2084                 hw->reset.mbuf_deferred_free = true;
2085         } else
2086                 hw->reset.mbuf_deferred_free = false;
2087
2088         /*
2089          * It is cumbersome for hardware to pick-and-choose entries for deletion
2090          * from table space. Hence, for function reset software intervention is
2091          * required to delete the entries.
2092          */
2093         if (rte_atomic16_read(&hw->reset.disable_cmd) == 0)
2094                 hns3vf_configure_all_mc_mac_addr(hns, true);
2095         rte_spinlock_unlock(&hw->lock);
2096
2097         return 0;
2098 }
2099
2100 static int
2101 hns3vf_start_service(struct hns3_adapter *hns)
2102 {
2103         struct hns3_hw *hw = &hns->hw;
2104         struct rte_eth_dev *eth_dev;
2105
2106         eth_dev = &rte_eth_devices[hw->data->port_id];
2107         hns3_set_rxtx_function(eth_dev);
2108         hns3_mp_req_start_rxtx(eth_dev);
2109         if (hw->adapter_state == HNS3_NIC_STARTED) {
2110                 hns3vf_service_handler(eth_dev);
2111
2112                 /* Enable interrupt of all rx queues before enabling queues */
2113                 hns3_dev_all_rx_queue_intr_enable(hw, true);
2114                 /*
2115                  * When finished the initialization, enable queues to receive
2116                  * and transmit packets.
2117                  */
2118                 hns3_enable_all_queues(hw, true);
2119         }
2120
2121         return 0;
2122 }
2123
2124 static int
2125 hns3vf_check_default_mac_change(struct hns3_hw *hw)
2126 {
2127         char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2128         struct rte_ether_addr *hw_mac;
2129         int ret;
2130
2131         /*
2132          * The hns3 PF ethdev driver in kernel support setting VF MAC address
2133          * on the host by "ip link set ..." command. If the hns3 PF kernel
2134          * ethdev driver sets the MAC address for VF device after the
2135          * initialization of the related VF device, the PF driver will notify
2136          * VF driver to reset VF device to make the new MAC address effective
2137          * immediately. The hns3 VF PMD driver should check whether the MAC
2138          * address has been changed by the PF kernel ethdev driver, if changed
2139          * VF driver should configure hardware using the new MAC address in the
2140          * recovering hardware configuration stage of the reset process.
2141          */
2142         ret = hns3vf_get_host_mac_addr(hw);
2143         if (ret)
2144                 return ret;
2145
2146         hw_mac = (struct rte_ether_addr *)hw->mac.mac_addr;
2147         ret = rte_is_zero_ether_addr(hw_mac);
2148         if (ret) {
2149                 rte_ether_addr_copy(&hw->data->mac_addrs[0], hw_mac);
2150         } else {
2151                 ret = rte_is_same_ether_addr(&hw->data->mac_addrs[0], hw_mac);
2152                 if (!ret) {
2153                         rte_ether_addr_copy(hw_mac, &hw->data->mac_addrs[0]);
2154                         rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2155                                               &hw->data->mac_addrs[0]);
2156                         hns3_warn(hw, "Default MAC address has been changed to:"
2157                                   " %s by the host PF kernel ethdev driver",
2158                                   mac_str);
2159                 }
2160         }
2161
2162         return 0;
2163 }
2164
2165 static int
2166 hns3vf_restore_conf(struct hns3_adapter *hns)
2167 {
2168         struct hns3_hw *hw = &hns->hw;
2169         int ret;
2170
2171         ret = hns3vf_check_default_mac_change(hw);
2172         if (ret)
2173                 return ret;
2174
2175         ret = hns3vf_configure_mac_addr(hns, false);
2176         if (ret)
2177                 return ret;
2178
2179         ret = hns3vf_configure_all_mc_mac_addr(hns, false);
2180         if (ret)
2181                 goto err_mc_mac;
2182
2183         ret = hns3vf_restore_promisc(hns);
2184         if (ret)
2185                 goto err_vlan_table;
2186
2187         ret = hns3vf_restore_vlan_conf(hns);
2188         if (ret)
2189                 goto err_vlan_table;
2190
2191         ret = hns3vf_restore_rx_interrupt(hw);
2192         if (ret)
2193                 goto err_vlan_table;
2194
2195         if (hw->adapter_state == HNS3_NIC_STARTED) {
2196                 ret = hns3vf_do_start(hns, false);
2197                 if (ret)
2198                         goto err_vlan_table;
2199                 hns3_info(hw, "hns3vf dev restart successful!");
2200         } else if (hw->adapter_state == HNS3_NIC_STOPPING)
2201                 hw->adapter_state = HNS3_NIC_CONFIGURED;
2202         return 0;
2203
2204 err_vlan_table:
2205         hns3vf_configure_all_mc_mac_addr(hns, true);
2206 err_mc_mac:
2207         hns3vf_configure_mac_addr(hns, true);
2208         return ret;
2209 }
2210
2211 static enum hns3_reset_level
2212 hns3vf_get_reset_level(struct hns3_hw *hw, uint64_t *levels)
2213 {
2214         enum hns3_reset_level reset_level;
2215
2216         /* return the highest priority reset level amongst all */
2217         if (hns3_atomic_test_bit(HNS3_VF_RESET, levels))
2218                 reset_level = HNS3_VF_RESET;
2219         else if (hns3_atomic_test_bit(HNS3_VF_FULL_RESET, levels))
2220                 reset_level = HNS3_VF_FULL_RESET;
2221         else if (hns3_atomic_test_bit(HNS3_VF_PF_FUNC_RESET, levels))
2222                 reset_level = HNS3_VF_PF_FUNC_RESET;
2223         else if (hns3_atomic_test_bit(HNS3_VF_FUNC_RESET, levels))
2224                 reset_level = HNS3_VF_FUNC_RESET;
2225         else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
2226                 reset_level = HNS3_FLR_RESET;
2227         else
2228                 reset_level = HNS3_NONE_RESET;
2229
2230         if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
2231                 return HNS3_NONE_RESET;
2232
2233         return reset_level;
2234 }
2235
2236 static void
2237 hns3vf_reset_service(void *param)
2238 {
2239         struct hns3_adapter *hns = (struct hns3_adapter *)param;
2240         struct hns3_hw *hw = &hns->hw;
2241         enum hns3_reset_level reset_level;
2242         struct timeval tv_delta;
2243         struct timeval tv_start;
2244         struct timeval tv;
2245         uint64_t msec;
2246
2247         /*
2248          * The interrupt is not triggered within the delay time.
2249          * The interrupt may have been lost. It is necessary to handle
2250          * the interrupt to recover from the error.
2251          */
2252         if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_DEFERRED) {
2253                 rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_REQUESTED);
2254                 hns3_err(hw, "Handling interrupts in delayed tasks");
2255                 hns3vf_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
2256                 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2257                 if (reset_level == HNS3_NONE_RESET) {
2258                         hns3_err(hw, "No reset level is set, try global reset");
2259                         hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
2260                 }
2261         }
2262         rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_NONE);
2263
2264         /*
2265          * Hardware reset has been notified, we now have to poll & check if
2266          * hardware has actually completed the reset sequence.
2267          */
2268         reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2269         if (reset_level != HNS3_NONE_RESET) {
2270                 gettimeofday(&tv_start, NULL);
2271                 hns3_reset_process(hns, reset_level);
2272                 gettimeofday(&tv, NULL);
2273                 timersub(&tv, &tv_start, &tv_delta);
2274                 msec = tv_delta.tv_sec * MSEC_PER_SEC +
2275                        tv_delta.tv_usec / USEC_PER_MSEC;
2276                 if (msec > HNS3_RESET_PROCESS_MS)
2277                         hns3_err(hw, "%d handle long time delta %" PRIx64
2278                                  " ms time=%ld.%.6ld",
2279                                  hw->reset.level, msec, tv.tv_sec, tv.tv_usec);
2280         }
2281 }
2282
2283 static int
2284 hns3vf_reinit_dev(struct hns3_adapter *hns)
2285 {
2286         struct rte_eth_dev *eth_dev = &rte_eth_devices[hns->hw.data->port_id];
2287         struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2288         struct hns3_hw *hw = &hns->hw;
2289         int ret;
2290
2291         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2292                 rte_intr_disable(&pci_dev->intr_handle);
2293                 hns3vf_set_bus_master(pci_dev, true);
2294         }
2295
2296         /* Firmware command initialize */
2297         ret = hns3_cmd_init(hw);
2298         if (ret) {
2299                 hns3_err(hw, "Failed to init cmd: %d", ret);
2300                 return ret;
2301         }
2302
2303         if (hw->reset.level == HNS3_VF_FULL_RESET) {
2304                 /*
2305                  * UIO enables msix by writing the pcie configuration space
2306                  * vfio_pci enables msix in rte_intr_enable.
2307                  */
2308                 if (pci_dev->kdrv == RTE_KDRV_IGB_UIO ||
2309                     pci_dev->kdrv == RTE_KDRV_UIO_GENERIC) {
2310                         if (hns3vf_enable_msix(pci_dev, true))
2311                                 hns3_err(hw, "Failed to enable msix");
2312                 }
2313
2314                 rte_intr_enable(&pci_dev->intr_handle);
2315         }
2316
2317         ret = hns3_reset_all_queues(hns);
2318         if (ret) {
2319                 hns3_err(hw, "Failed to reset all queues: %d", ret);
2320                 return ret;
2321         }
2322
2323         ret = hns3vf_init_hardware(hns);
2324         if (ret) {
2325                 hns3_err(hw, "Failed to init hardware: %d", ret);
2326                 return ret;
2327         }
2328
2329         return 0;
2330 }
2331
2332 static const struct eth_dev_ops hns3vf_eth_dev_ops = {
2333         .dev_start          = hns3vf_dev_start,
2334         .dev_stop           = hns3vf_dev_stop,
2335         .dev_close          = hns3vf_dev_close,
2336         .mtu_set            = hns3vf_dev_mtu_set,
2337         .promiscuous_enable = hns3vf_dev_promiscuous_enable,
2338         .promiscuous_disable = hns3vf_dev_promiscuous_disable,
2339         .allmulticast_enable = hns3vf_dev_allmulticast_enable,
2340         .allmulticast_disable = hns3vf_dev_allmulticast_disable,
2341         .stats_get          = hns3_stats_get,
2342         .stats_reset        = hns3_stats_reset,
2343         .xstats_get         = hns3_dev_xstats_get,
2344         .xstats_get_names   = hns3_dev_xstats_get_names,
2345         .xstats_reset       = hns3_dev_xstats_reset,
2346         .xstats_get_by_id   = hns3_dev_xstats_get_by_id,
2347         .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
2348         .dev_infos_get      = hns3vf_dev_infos_get,
2349         .rx_queue_setup     = hns3_rx_queue_setup,
2350         .tx_queue_setup     = hns3_tx_queue_setup,
2351         .rx_queue_release   = hns3_dev_rx_queue_release,
2352         .tx_queue_release   = hns3_dev_tx_queue_release,
2353         .rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
2354         .rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
2355         .dev_configure      = hns3vf_dev_configure,
2356         .mac_addr_add       = hns3vf_add_mac_addr,
2357         .mac_addr_remove    = hns3vf_remove_mac_addr,
2358         .mac_addr_set       = hns3vf_set_default_mac_addr,
2359         .set_mc_addr_list   = hns3vf_set_mc_mac_addr_list,
2360         .link_update        = hns3vf_dev_link_update,
2361         .rss_hash_update    = hns3_dev_rss_hash_update,
2362         .rss_hash_conf_get  = hns3_dev_rss_hash_conf_get,
2363         .reta_update        = hns3_dev_rss_reta_update,
2364         .reta_query         = hns3_dev_rss_reta_query,
2365         .filter_ctrl        = hns3_dev_filter_ctrl,
2366         .vlan_filter_set    = hns3vf_vlan_filter_set,
2367         .vlan_offload_set   = hns3vf_vlan_offload_set,
2368         .get_reg            = hns3_get_regs,
2369         .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
2370 };
2371
2372 static const struct hns3_reset_ops hns3vf_reset_ops = {
2373         .reset_service       = hns3vf_reset_service,
2374         .stop_service        = hns3vf_stop_service,
2375         .prepare_reset       = hns3vf_prepare_reset,
2376         .wait_hardware_ready = hns3vf_wait_hardware_ready,
2377         .reinit_dev          = hns3vf_reinit_dev,
2378         .restore_conf        = hns3vf_restore_conf,
2379         .start_service       = hns3vf_start_service,
2380 };
2381
2382 static int
2383 hns3vf_dev_init(struct rte_eth_dev *eth_dev)
2384 {
2385         struct hns3_adapter *hns = eth_dev->data->dev_private;
2386         struct hns3_hw *hw = &hns->hw;
2387         int ret;
2388
2389         PMD_INIT_FUNC_TRACE();
2390
2391         eth_dev->process_private = (struct hns3_process_private *)
2392             rte_zmalloc_socket("hns3_filter_list",
2393                                sizeof(struct hns3_process_private),
2394                                RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
2395         if (eth_dev->process_private == NULL) {
2396                 PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
2397                 return -ENOMEM;
2398         }
2399
2400         /* initialize flow filter lists */
2401         hns3_filterlist_init(eth_dev);
2402
2403         hns3_set_rxtx_function(eth_dev);
2404         eth_dev->dev_ops = &hns3vf_eth_dev_ops;
2405         if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2406                 hns3_mp_init_secondary();
2407                 hw->secondary_cnt++;
2408                 return 0;
2409         }
2410
2411         hns3_mp_init_primary();
2412
2413         hw->adapter_state = HNS3_NIC_UNINITIALIZED;
2414         hns->is_vf = true;
2415         hw->data = eth_dev->data;
2416
2417         ret = hns3_reset_init(hw);
2418         if (ret)
2419                 goto err_init_reset;
2420         hw->reset.ops = &hns3vf_reset_ops;
2421
2422         ret = hns3vf_init_vf(eth_dev);
2423         if (ret) {
2424                 PMD_INIT_LOG(ERR, "Failed to init vf: %d", ret);
2425                 goto err_init_vf;
2426         }
2427
2428         /* Allocate memory for storing MAC addresses */
2429         eth_dev->data->mac_addrs = rte_zmalloc("hns3vf-mac",
2430                                                sizeof(struct rte_ether_addr) *
2431                                                HNS3_VF_UC_MACADDR_NUM, 0);
2432         if (eth_dev->data->mac_addrs == NULL) {
2433                 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
2434                              "to store MAC addresses",
2435                              sizeof(struct rte_ether_addr) *
2436                              HNS3_VF_UC_MACADDR_NUM);
2437                 ret = -ENOMEM;
2438                 goto err_rte_zmalloc;
2439         }
2440
2441         rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
2442                             &eth_dev->data->mac_addrs[0]);
2443         hw->adapter_state = HNS3_NIC_INITIALIZED;
2444         /*
2445          * Pass the information to the rte_eth_dev_close() that it should also
2446          * release the private port resources.
2447          */
2448         eth_dev->data->dev_flags |= RTE_ETH_DEV_CLOSE_REMOVE;
2449
2450         if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_PENDING) {
2451                 hns3_err(hw, "Reschedule reset service after dev_init");
2452                 hns3_schedule_reset(hns);
2453         } else {
2454                 /* IMP will wait ready flag before reset */
2455                 hns3_notify_reset_ready(hw, false);
2456         }
2457         rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
2458                           eth_dev);
2459         return 0;
2460
2461 err_rte_zmalloc:
2462         hns3vf_uninit_vf(eth_dev);
2463
2464 err_init_vf:
2465         rte_free(hw->reset.wait_data);
2466
2467 err_init_reset:
2468         eth_dev->dev_ops = NULL;
2469         eth_dev->rx_pkt_burst = NULL;
2470         eth_dev->tx_pkt_burst = NULL;
2471         eth_dev->tx_pkt_prepare = NULL;
2472         rte_free(eth_dev->process_private);
2473         eth_dev->process_private = NULL;
2474
2475         return ret;
2476 }
2477
2478 static int
2479 hns3vf_dev_uninit(struct rte_eth_dev *eth_dev)
2480 {
2481         struct hns3_adapter *hns = eth_dev->data->dev_private;
2482         struct hns3_hw *hw = &hns->hw;
2483
2484         PMD_INIT_FUNC_TRACE();
2485
2486         if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2487                 return -EPERM;
2488
2489         eth_dev->dev_ops = NULL;
2490         eth_dev->rx_pkt_burst = NULL;
2491         eth_dev->tx_pkt_burst = NULL;
2492         eth_dev->tx_pkt_prepare = NULL;
2493
2494         if (hw->adapter_state < HNS3_NIC_CLOSING)
2495                 hns3vf_dev_close(eth_dev);
2496
2497         hw->adapter_state = HNS3_NIC_REMOVED;
2498         return 0;
2499 }
2500
2501 static int
2502 eth_hns3vf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2503                      struct rte_pci_device *pci_dev)
2504 {
2505         return rte_eth_dev_pci_generic_probe(pci_dev,
2506                                              sizeof(struct hns3_adapter),
2507                                              hns3vf_dev_init);
2508 }
2509
2510 static int
2511 eth_hns3vf_pci_remove(struct rte_pci_device *pci_dev)
2512 {
2513         return rte_eth_dev_pci_generic_remove(pci_dev, hns3vf_dev_uninit);
2514 }
2515
2516 static const struct rte_pci_id pci_id_hns3vf_map[] = {
2517         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_VF) },
2518         { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_PFC_VF) },
2519         { .vendor_id = 0, /* sentinel */ },
2520 };
2521
2522 static struct rte_pci_driver rte_hns3vf_pmd = {
2523         .id_table = pci_id_hns3vf_map,
2524         .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
2525         .probe = eth_hns3vf_pci_probe,
2526         .remove = eth_hns3vf_pci_remove,
2527 };
2528
2529 RTE_PMD_REGISTER_PCI(net_hns3_vf, rte_hns3vf_pmd);
2530 RTE_PMD_REGISTER_PCI_TABLE(net_hns3_vf, pci_id_hns3vf_map);
2531 RTE_PMD_REGISTER_KMOD_DEP(net_hns3_vf, "* igb_uio | vfio-pci");